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Abstract

The field of process mining is challenged by the complexity of true processes when
extracting accurate process behavior and statistics from information systems. Tradi-
tional process mining algorithms assume a single case notion, whereas actual pro-
cesses contain many possible ones, represented by objects. Object-centric process min-
ing has been introduced as a case-agnostic solution, which mitigates the problem of
misleading process behavior and statistics via the object-centric event log (OCEL). It
allows multiple case notions which are called object types. Objects have many-to-
many relationships with events. However, when performing predictive process mon-
itoring on OCELs, issues arise when including object information as features due to
these many-to-many relationships. This has not been addressed by existing literature.
We propose a heterogeneous object event graph encoding (HOEG), that incorporates
events and objects into a graph with different node types. We evaluate our novel en-
coding against an extant graph-based encoding and several baselines on the task of
remaining time prediction. On our HOEG we employ a heterogeneous graph neural
network (GNN) architecture that is converted from a homogeneous one. The HOEG-
based GNN learns an optimal way to include object information when forming pre-
dictions. The experiments are executed on three OCELs, one of which is extracted
from an operational process at a large Dutch financial institution. Our results indi-
cate that HOEG outperforms its competition for well-structured OCELs. Furthermore,
we argue that HOEG mainly excels when OCELs host informative object attributes
and abundant object interactions. Considering this, we propose HOEG as a promising
general technique to leverage the multi-dimensional data structure given in OCELs for
tasks like predicting process remaining time.

Keywords: Object-Centric Process Mining; Graph Machine Learning; Predictive Pro-
cess Monitoring; Heterogeneous Graph Neural Networks; Feature Encoding
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1 Introduction

Process mining has long been struggling to mine correct process behavior and statistics
from information systems [1–19]. In both industry and academia, a single case notion was
being assumed, which often did not reflect the true nature of the processes at hand. In
reality, most processes contain multiple interacting objects, a subset of which can be dis-
covered in information system logging [19]. Taking a recruitment process as an example,
these objects could be vacancy, application, applicant, job offer, resource, etc. Generally, these
objects are contained as entities in relational databases that are behind the information
systems that support a process [19, 20]. Now, when selecting one of these objects as a case
notion, one views the event log from a particular perspective, and one ”flattens” the event
log [5]. Previous work [4, 13] has shown that this leads to divergence, convergence, and
deficiency, amounting to misleading statistics and behavior.

Over the years, several approaches to deal with these issues have been proposed [1, 2,
4, 5, 7, 15, 16, 18, 19, 21, 22]. Van der Aalst et al. [1], introduce us to the limitations of tra-
ditional business process management languages and systems (BPMSs). He demonstrates
that any process may contain entities with many-to-many relationships, which causes is-
sues when incorporating these into one process model. Moreover, he argues that interac-
tions between different processes are lost when applying traditional process mining tech-
niques. Hull [15] and Cohn & Hull [16] take a data management perspective, suggesting
capturing the evolvement of business artifacts as they pass through business processes.
They argue their approach as being more holistic since interaction dynamics can be ex-
pressed and data and process developments are merged into one actionable data structure.
Fahland et al. [18] and Lu et al. [19] further popularized this artifact-centric view by intro-
ducing artifact-centric conformance checking and process discovery respectively. In 2017,
a new object-centric behavioral constraint modeling language was introduced to merge
data and behavior perspectives and capture fine-grained object interactions and life-cycles
[2]. And in 2020, Ghahfarokhi et al. [23] proposed the object-centric event log (OCEL), a
new standard. This solution can handle multiple case notions via one multi-dimensional
data structure. Finally, process mining (PM) tool vendors in the industry (Celonis and
Mehrwerk) are embracing the object-centric process mining paradigm [24, 25]. With these
developments, the question arises of how the sub-field of predictive process monitoring
(PPM) is affected. Can PPM adopting object-centricity leverage the more comprehensive
and correct process behavior and performance statistics for better results? How to handle
the new data structure in PPM? What predictive models perform well on OCELs?



How Object-Centric is Object-Centric Predictive Process Monitoring? 7

To gain an initial understanding of an object-centric process, consider an example of
an order at an e-commerce store.

Example 1: Object Multiplicity in Placing an Order

Place order

Place order

Pay order

Pick item

Pay order

Pack item

Pick item Pack item

Ship package
Confirm 
delivery

Laptop
(i1)

Coupon
(i2)

p1o1

o2
Shoes

(i3) p2

d1

Figure 1. Digital process trace left behind by the order placement scenario. Events are
shown on top, and objects (colored on object type) are given at the bottom.

Suppose that a customer places an order, buying a laptop and a digital coupon. The
customer needs the laptop the same day and thus pays extra to have same-day delivery.
Later that day, another order by the customer is recorded, containing only a pair of shoes
among the order line items. After that, when all order-picking-related tasks have been
performed, the items are packaged and loaded onto a delivery vehicle. The coupon is
not packaged since it is digital, so an email is sent instead of an actual package. Recog-
nizing that the laptop and shoes have the same delivery address, the e-commerce store
ships them in the same delivery.

In this example, we can recognize eight objects of four object types (in bold): two sales
orders, three sales order items, two packages, and one delivery (illustrated in Figure 1).
These object types could have attributes such as urgency for order, or route length

for delivery. Furthermore, Figure 1 visualizes the process execution using the following
activities: Place order, Pay order, Pick item, Pack item, Ship package, and Confirm delivery.
These activities are related to a timestamp and may have the event attribute resource.

Conceptualizing this from an object-centric data perspective, we can distinguish two
viewpoints: the events and the objects, resulting in an events table and an objects table
[23]. Consequently, when performing machine learning on such data, we observe these
same two perspectives. When using the events perspective, we obtain a feature vector
per event, containing information about the activity, event attributes, and possibly other
event-level derivations. Taking the objects perspective, we obtain a feature vector per
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object, containing information about object attributes and possibly other derived object-
based features.

Early attempts in object-centric predictive process monitoring show promising results
[26–29]. Most notably Adams et al. [27] propose a framework for event-level object-centric
feature extraction and Berti et al. [30] propound object-level feature extraction. The for-
mer (i.a.) innovatively suggests an event-level feature encoding in which an object-centric
directly-follows graph (OC-DFG) is discovered per process execution and used as an en-
coding structure. They then append features to the nodes in these graphs. The latter delves
into exploiting object interactions via object graphs (see Def. 4 in [30]).

Though an object-centric event feature graph encoding already introduces more in-
formative features compared to traditional event log-based features, we recognize limita-
tions when it comes to learning from object characteristics. Using the previous example,
we elaborate on two limitations that come with aggregating object information into the
events perspective: unavailability of objects and information loss due to object attribute
aggregation.

First, route length cannot be appended as an event feature, as only the last two
events relate to a delivery (d1). A solution would be filling route length for the events
that do not refer to a delivery object. However, this can confuse the predictive model as
there is no natural default route length value to use for filling.

Second, suppose we want to predict the remaining time of this example process at
the Ship package event. In the example, the first order has a high urgency, say 1. The
second order has less urgence, as the customer did not pay an additional fee for same-day
delivery. Assume o2 has an urgency value of 3. Furthermore, suppose another customer,
at a different time, places an order o3, buying the same laptop, but with an urgency value
of 2. If we encode urgency as an event feature, we must take an aggregate, like the
average of all urgency values that Ship package refers to. For both process executions, this
would amount to urgency = 2. Now, we would learn similar patterns for these traces
and give an equal prediction for both process executions, even though one included a
high urgency order and the other a regular urgency one.

On the objects perspective, the object graph approach does not consider events ex-
plicitly. Applying this to the example, we observe that we miss the granular information
provided by each event.

These observations inspire the investigation of features and encodings that facilitate
the learning of patterns from both event and object perspectives within OCELs. This has
not yet been explored in object-centric PPM literature. With this research, we aim to ad-
dress this gap. The central research question then is:

How to leverage the multi-dimensional data structure given in object-centric event logs in order to
predict process remaining time?

Supporting this are the following sub-questions:

SRQ1 How do existing approaches perform machine learning tasks on object-centric
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event logs?

SRQ2 How does extant predictive process mining literature take advantage of the en-
hanced data structure provided by the object-centric event log?

SRQ3 What feature encodings enable machine learning models to take advantage of the
enhanced data structure provided by the object-centric event log for predictive
tasks?

SRQ4 How do machine learning models operating on these feature encodings perform
when predicting process remaining time?

Consequently, it is our research objective to design a general technique for encoding object-
centric events, objects, attributes, and features, facilitating predictive tasks without the need for
flattening events, filling unavailable object features, or aggregating on objects. Given that pre-
dicting remaining times in object-centric process executions stands as a generic task in the
field, this serves as our target for evaluating the various feature encoding types investi-
gated. In light of this, we contribute to the field a framework for thinking about features
derived from object-centric event logs. That is, using our results and analysis one can make
a nuanced trade-off in choosing either an event-based or an event-object-based encoding
for graph machine learning on OCELs.

Accomplishing our research objective and resolving our central question involves pro-
viding a theoretical background (Section 2) and surveying related works (Section 3). Sec-
tion 4 then proposes our novel encoding to tackle the limitations of current efforts pre-
sented in the previous chapter. Subsequently, the Experimental Setup delineates the frame-
work for the experiments that are executed. These are used to evaluate the novel encoding
against the state of the art on three object-centric datasets. Most notably, one dataset was
extracted from a complex real-life process that is under high pressure at a large Dutch
financial institution, where compliance is eminent. Section 6 presents the results of the
experiments. The Discussion, then, gives critical interpretations of the results, recommen-
dations for configuring our novel encoding, and a synthesis conveying the implications of
the results. We conclude in Section 8 by summarizing our work, attending to our research
questions, and providing suggestions for future work.
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2 Theoretical Background

This section provides the theoretical preliminaries. Definitions are given for both the core
process mining concepts and the machine learning (ML) ideas used.

2.1 Object-Centric Event Logs

An object-centric event log (OCEL) consists of events and objects related to a business
process execution. At a minimum, an OCEL contains event vectors with a related activ-
ity, timestamp, and one (or more) object reference(s). The coming paragraphs give visu-
ally supported formal definitions for an OCEL and reify the concepts that are introduced
through an approachable realistic example.

Definition 2.1 (Universes). These following are the universes used in the formal definition
of OCEL [23].

- Ue is the universe of event identifiers.

- Uact is the universe of activities

- Uatt is the universe of attribute names.

- Uval is the universe of attribute values.

- Utyp is the universe of attribute types.

- Uo is the universe of object identifiers.

- Uot is the universe of objects types.

- Utimest is the universe of timestamps.

Definition 2.2 (Object-Centric Event Log). An object-centric event log [23] is a tupleOCEL =

(E,AN,AV,AT,OT,O, πtyp, πact, πtime, πvmap, πomap, πotyp, πovmap,≤) such that:

- E ⊆ Ue is the set of event identifiers.

- AN ⊆ Uatt is the set of attributes names.

- AV ⊆ Uval is the set of attribute values, such that AN ∩AV = ∅.

- AT ⊆ Utyp is the set of attribute types.

- OT ⊆ Uot is the set of object types.

- O ⊆ Uo is the set of object identifiers.

- πtyp : AN ∪ AV → AT is the function associating an attribute name or value to its corre-
sponding type.

- πact : E → Uact is the function associating an event (identifier) to its activity.

- πtime : E → Utimest is the function associating an event (identifier) to a timestamp.
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- πvmap : E → (AN ↛ AV ) such that πtyp(n) = πtyp (πvmap(e)(n)) ∀e ∈ E∀n ∈ dom (πvmap(e))

is the function associating an event (identifier) to its attribute value assignments (See Re-
lation 1 in Figure 2).

- πomap : E → P(O) is the function mapping an event (identifier) to a set of related object
identifiers (cf. Relation 2 in Figure 2).

- πotyp ∈ O → OT assigns one and only one object type to each object identifier.

- πovmap : O → (AN ↛ AV ) such that

πtyp(n) = πtyp (πovmap(o)(n)) ∀n ∈ dom (πovmap(o))∀o ∈ O

is the function that relates an object to its attribute value assignments (cf. Relation 3 in
Figure 2). As defined, it takes two parameters, object o and an attribute name n, for o ∈ O

and n ∈ AN .

- ≤ is a total order (i.e., it respects the antisymmetry, transitivity, and connexity properties).
A possible way to define a total order is to consider the timestamps associated with the
events as a pre-order (i.e., assuming some arbitrary, but fixed order for events having the
same timestamp). Figure 2 models this as an attribute of the Log class.

0..*
Event

event identifier

activity

timestamp

Object

object identifier

type

Event Attribute

name

value

type

Log

ocel version

ordering

0..*
Object Attribute

name

value

type

0..*

0..*

1..* 

1

3

2

1..*

Figure 2. A UML Class diagram depicting the metamodel for OCEL (v1.0), describing the
relationships between the entities visually. Adapted from [23].

Definition 2.3 (Traditional Event Log). In light of an object-centric event log, a traditional
event log is a tupleEL = (E,AN,AV,AT,Σ, πtyp, πact, πtimeπvmap, πomap ≤) where the def-
initions in Definition 2 hold. Moreover, Σ = {σ ∈ Uot}, where trace σ is a sequence of event
identifiers such that |πomap(e)(σ)| = 1 ∀e ∈ E. We see that σ corresponds to a single object
type in an OCEL.

We can observe that an object-centric event log is a generalization of a traditional event
log, where each event has one and only one case identifier linking events to traces. Sup-
pose there exist multiple objects that relate to events in an OCEL. This means that one
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event may refer to multiple objects of possibly different types. When considering only
one object type, we would convert object-centric data to a traditional event log as follows.
When an event refers to no objects of the considered type, the event is omitted (deficiency).
When an event has one object reference to the selected type, the event is kept. Finally, if an
event is associated with multiple objects of the respective type, the event is duplicated for
each object reference (convergence). We experience divergence when events that reference
different objects of the same object type not selected as the case notion, are taken to be
causally related. Van der Aalst & Berti [5] mathematically outlines event log flattening as
follows.

Definition 2.4 (Flattening an Object-Centric Event Log). Let L = (E,⪯E) be an object-
centric event log and ot ∈ Uot an object type representing a case notion.
The flattened event log, then, is Lot =

(
Eot,⪯ot

E

)
, where:

• ei = ((πei(e), i) , πact(e), πtime(e), πomap(e)⊕ ( case, {i}), πvmap(e)) for any e ∈ E and
i ∈ πomap(e)(ot),

• Eot = {ei | e ∈ E ∧ i ∈ πomap(e)(ot)}, and

• ⪯ot
E=

{(
e′i, e

′′
j

)
∈ Eot × Eot | e′ ∈ E ∧ i ∈ πomap (e

′) ( ot)∧e′′ ∈ E∧j ∈ πomap (e
′′) (ot)∧

e′ ⪯E e′′ ∧ (e′ = e′′ ⇒ i = j)}.

A flattened event log is still an event log after removing and duplicating events. See Defi-
nition 4.1 in [5].

Convergence, and divergence, were first conceptualized by Segers [13]. Van der Aalst [4]
adds the concept of deficiency and demonstrates the three phenomena through examples.
To aid our understanding, we define a use case that indicates the limitations of traditional
event logs.

Example 2: Organizing the Complexity of Order to Cash Executions
Consider an order-to-cash (OTC) process of an online retailer. This process usually starts
with an order placement and ends with a package delivery confirmation.

Execution A. Suppose there is a customer named Tim who places an order, buying a
laptop and a digital coupon. Later that day, another order by Tim is recorded, con-
taining only a pair of shoes among the order line items. After that, when all order-
picking-related tasks have been performed, the items can be packaged and loaded onto
a delivery vehicle. The coupon is not packaged since it is digital, so an email is sent in-
stead of an actual package. Recognizing that the other packages have the same delivery
address, they are included in the same delivery. After three days total, Tim receives his
orders.

Execution B. At another time, Tim places an order containing a mattress, a shirt, and
a packet of lightweight medicine. The mattress, now, is relatively large and is packaged
and put into a full truck. A keen employee identifies that the shirt and medicine can be
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efficiently packed into one package. Meanwhile, the mattress has been returned to the
depot as the delivery was unsuccessful (e.g., Tim was not home). Finally, both packages
are loaded into the next available truck for delivery. This delivery was later confirmed
to be successful.

Data Model. From these fictitious process executions, we can distinguish four object
types: order, item, package, and delivery. Order has a one-to-many relationship with
item. Item has a many-to-zero-or-one relationship with package and package relates
many-to-many with delivery. This can be conceptually captured in the diagram below
(Figure 3).

Order

Item

Package

Delivery

o1 o2 o3

Laptop
(i1)

Coupon
(i2)

Shoes
(i3)

Mattress
(i4)

Medicine
(i6)

Shirt
(i5)

p1 p2 p3 p4

d1 d2 d3

1

1..*

1..*

1..*

1..*

0..1

Figure 3. The data model of the example OTC scenario on entity and instance level.

OCEL. An excerpt from a possible OCEL event table arising from Execution A is ex-
pressed in Table 1. Table 2 exemplifies the second (conceptual) part of this OCEL, object
tables. In the following, we make the connection from Definitions 2.1 and 2.2 to an
instance of a log, to clarify their meanings.

- E = {e1, e2, . . . , e18}

- AN = {resource, Urgency, discount, weight, size, route length, no. stops}

- AV = {CloudServiceA, . . . , 678.0, . . . , 0.0, . . . , 0.5, . . . , small, . . . , long, . . . , 18.0}

- AT = {string, float}

- OT = {order, item, package, delivery}

- O = {o1, o2, o3, i1, i2, i3, i4, i5, p1, p2, p3, p4, d1, d2, d3}

The functions (denoted π) then, operate like lookup functions in a map. Based on certain
keys as parameters, they return the associated values. As an example, event attribute
resource for event e3 can be looked up through πvmap(e3, resource) = CloudServiceB

and likewise πovmap(o2, Urgency) = 3.0.
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Table 1. Sample from the event table highlighting Execution A.

ID Activity Time Resource Order Item Package Delivery
...

...
...

...
...

...
...

...
e1 Place order 2023-01-30 CloudServiceA {o1} {i1, i2} {} {}
e2 Pay order 2023-01-30 CloudServiceA {o1} {} {} {}
e3 Place order 2023-01-30 CloudServiceB {o2} {i3} {} {}
e4 Pay order 2023-01-30 CloudServiceB {o2} {} {} {}
e5 Pick item 2023-01-31 WarehouseTeamX {o1} {i1} {} {}
e6 Pick item 2023-01-31 WarehouseTeamX {o2} {i3} {} {}
e7 Pack item 2023-01-31 WarehouseTeamX {o1} {i1} {p1} {}
e8 Pack item 2023-01-31 WarehouseTeamX {o2} {i3} {p2} {}
e9 Ship package 2023-02-01 WarehouseTeamY {o1, o2} {i1, i3} {p1, p2} {d1}
e10 Confirm delivery 2023-02-02 PostalServiceP {o1, o2} {i1, i3} {p1, p2} {d1}

...
...

...
...

...
...

...
...

Table 2. Object tables for the different object types.
ID Urgency ID Discount ID Weight Size ID Route length No. stops
o1 1.0 i1 33.0 p1 3.5 medium d1 short 5.0
o2 3.0 i2 0.0 p2 3.0 medium d2 normal 27.0
o3 2.0 i3 25.0 p3 26.0 large d3 long 18.0

i4 0.0 p4 0.5 small
i5 15.0
i6 0.0

Flattening. Traditional process discovery algorithms require a single case notion. For
the OCEL in Table 1 this would entail flattening the table along a selected object (the case
notion). If we were to select order as the case notion, we would yield Table 3. Looking
at the flat event log, we notice that the activity Ship package is duplicated (convergence).
Deficiency is achieved when taking package or delivery as the trace definition. That is,
for both these object types, there are events that have no reference to them (e1, e2, e3,
e4, and e5), implying they will disappear in the process of flattening.

Table 3. Execution A flattened on order. Note duplicate events e9 and e10.
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ID Activity Time Resource Order Item Package Delivery
...

...
...

...
...

...
...

...
e1 Place order 2023-01-30 CloudServiceA {o1} {i1, i2} {} {}
e2 Pay order 2023-01-30 CloudServiceA {o1} {} {} {}
e3 Place order 2023-01-30 CloudServiceB {o2} {i3} {} {}
...

...
...

...
...

...
...

...
e9 Ship package 2023-02-01 WarehouseTeamY {o1} {i1, i3} {p1, p2} {d1}
e9 Ship package 2023-02-01 WarehouseTeamY {o2} {i1, i3} {p1, p2} {d1}
e10 Confirm delivery 2023-02-02 PostalServiceP {o1} {i1, i3} {p1, p2} {d1}
e10 Confirm delivery 2023-02-02 PostalServiceP {o2} {i1, i3} {p1, p2} {d1}

...
...

...
...

...
...

...
...

To explain divergence, we direct our attention to Execution B, flattened along order (cf.
Table 4).

Table 4. Event table excerpt of Execution B exhibiting divergence.

ID Activity Time Resource Order Item Package Delivery
...

...
...

...
...

...
...

...
e13 Place order 2023-02-03 CloudServiceA {o3} {i4, i5, i6} {} {}
e14 Pay order 2023-02-03 CloudServiceA {o3} {i4, i5, i6} {} {}
e15 Pick item 2023-02-04 WarehouseTeamX {o3} {i4} {} {}
e16 Pick item 2023-02-04 WarehouseTeamX {o3} {i5} {} {}
e17 Pack item 2023-02-04 WarehouseTeamX {o3} {i5} {p4} {}
e18 Pack item 2023-02-04 WarehouseTeamX {o3} {i4} {p3} {}
e19 Pick item 2023-02-04 WarehouseTeamX {o3} {i6} {} {}
e20 Pack item 2023-02-04 WarehouseTeamX {o3} {i6} {p4} {}
e21 Ship package 2023-02-04 WarehouseTeamY {o3} {i4} {p3} {d2}
e22 Ship package 2023-02-05 WarehouseTeamZ {o3} {i4, i5, i6} {p3, p4} {d3}
e23 Confirm delivery 2023-02-06 PostalServiceQ {o3} {i5, i6} {p4} {d3}

...
...

...
...

...
...

...
...

Discovering a directly-follows graph (DFG) from this, we would generate the model
given by Figure 4. It showcases incorrect relations between events. For instance, an
item cannot be packed before it has been picked.

Pick itemPlace order Pack item Ship package
Confirm 
delivery

Figure 4. Directly-follows diagram of Execution B experiencing divergence.

Finally, in order to solve these issues, recent works [5, 31] propose object-centric native
process discovery techniques. These would construct a model comparable to the one in
Figure 5, displaying more accurate causalities between events.
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Item-level

Pick itemPlace order Pack item Ship package
Confirm 
delivery

Package-level

Figure 5. Directly-follows diagram of Execution B with a solution to the divergence
issue. Based on Fig. 8 in [4].

2.2 Graph Neural Networks

In short, a graph neural network [32–34] is an optimizable composite function that oper-
ates over graph attributes (node, edge, and global features), preserving graph symmetries
in order to model a certain target (which may be a graph, vector, or scalar variable) with
respect to the data [35].

Let us unfold this into comprehensible parts. Starting with how our data is structured
in a graph, we move to some fundamentals that undergird GNNs, after which we outline
GNNs mathematically and by example. The following is based on the exposition given by
Bronstein et al. [36] and Veličković [37].

2.2.1 Graph Data

We assume a graph G = (V,E), such that the set of edges E ⊆ V × V specify the con-
nectivity of the vertices in V . Furthermore, we load all nodes u ∈ V with feature vectors
xu ∈ Rd, where d indicates the dimension node feature vectors. Accordingly, this is orga-
nized in node feature matrix X ∈ R|V |×d. With the form

X =


x1

x2

...
x|V |

 (1)

In company with this, the set of edges1 E is represented using an adjacency matrix: A ∈
R|V |×|V |, with

auv =

1 (u, v) ∈ E

0 (u, v) /∈ E
(2)

2.2.2 Invariant and Equivariant to Permutations

These representations impose an ordering on the nodes, which would obstruct learning
a generalized model from graph data, as permuting the order would alter the model’s

1We refrain from including edge feature information in this explanation. It is however often possible to
add and leverage this in a model.
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prediction outputs. Therefore, a GNN is constrained by the following rules:

f
(
PX,PAP⊤

)
= f(X,A)( Invariance ) (3)

F
(
PX,PAPP⊤

)
= PF(X,A)( Equivariance) (4)

where P is a permutation matrix and functions f and F do not affect A.

Besides that, the edges in E permit a locality constraint in f and F. Akin to a convo-
lution operation in convolutional neural networks [38] for images, this means a GNN can
operate over node neighborhoods. We define this neighborhood as such:

Nu = {v | (u, v) ∈ E ∨ (v, u) ∈ E} (5)

The multiset2 of all neighborhood features now, is expressed through:

XNu =
{
{xv | v ∈ Nu}

}
(6)

Now we can specify a local function ϕ(xu,XNu) that operates on every node and their
neighborhood in isolation. We can collect this into F such that:

F(X,A) =


− ϕ (x1,XN1) −
− ϕ (x2,XN2) −

...
− ϕ (xn,XNn) −

 (7)

Bronstein et al. [36] demonstrate that if ϕ is permutation invariant, then F is permutation
equivariant:

ϕ
permutation invariant

−→ F
permutation equivariant

−→ (8)

2.2.3 Graph Neural Network Layers

In the context of deep learning, we recognize that GNNs implement three types of archi-
tectural layers [36].

1. Equivariant message passing. This permutation equivariant layer maps a representa-
tion of a graph to an updated representation, yielding the same graph (structure)
[36].

2. Local pooling. This is a downsampling technique that reduces an input graph (with
updated node representations) to a smaller sized graph or even a single node. This
can result in a better generalized and more performant model [39].

2A multiset, denoted
{
{. . .}

}
, allows for elements occurring multiple times. This is the case in feature

graphs, as features of different nodes may be equal.
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3. Global pooling. Also called the flat pooling or readout layer, this layer transforms a
graph to a fixed-sized representation in one step [39].

We define these in the coming definitions (2.5, 2.6, 2.7), after which an example is worked
out showing how information flows through the layers of a GNN.

Definition 2.5 (Message-Passing Layer Types). To learn graph representations, node in-
formation is shared across neighborhoods. Going from least to most expressive power at
the cost of interpretability, scalability, or learning stability, we recognize three categories
of graph neural network layers [36].

hu = ϕ(xu,⊕v∈Nucvuψ(xv)) (Convolutional) (9)

hu = ϕ(xu,⊕v∈Nua(xu,xv)ψ(xv)) (Attentional) (10)

hu = ϕ(xu,⊕v∈Nuψ(xu,xv)) (Message-passing) (11)

Note that hu is a node embedding for node u ∈ V , meaning the above layers are applied
per node. Furthermore, ϕ and ψ are differentiable update and message functions respec-
tively (e.g., neural networks like ψ(x) = ReLU(Wx + b)). Also, ⊕ is a permutation-
invariant aggregation function (i.e., the order of the input does not influence the output).
Examples are sum, mean, median, or max.

[40–42] represent noteworthy examples of implementations of convolutional layers.
The most popularized of these is the graph convolutional network (GCN) by Kipf &
Welling [41]. Proceeding to examples of attentional architectures, [43–45] portray the state-
of-the-art. Finally, [46–48] are illustrative exhibitions of message-passing layers.

Definition 2.6 (Local pooling). Let P be a pooling operator that maps a graph G = (V,E)

to a pooled graph G′ = (V ′, E′):
G′ = P⊕

local(G) (12)

where |V | > |V ′| 3 and ⊕ is some aggregation function. The main goal of local pooling is
to reduce the number of nodes in a graph, at the same time retaining explanatory variance
with respect to the prediction target [39].

Definition 2.7 (Global pooling). Again, using G as a data loaded graph, global pooling is
defined as:

Y = P⊕
global(G) (13)

where Y may be a vector space of choice, depending on the task at hand. When doing a
regression prediction on a graph-level attribute, this could be a scalar value, whereas with
a classification task this might be vector giving a distribution of the class labels. A global
pooling layer must be permutation invariant.

3In exceptional cases, there exists |V | ≥ |V ′|. A graph is then upscaled by pooling [39].
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In the following we present an example that builds upon the OTC example (Execution
A specifically, see Table 1). Onto our nodes, we attach feature vectors that include whether
the event attribute resource refers to a warehouse team, the elapsed time (in hours), and
the number of objects that an event is associated to.

Example 3: Graph Neural Network at Work
This example demonstrates the inner workings of a graph convolutional network pre-

dicting the graph-level target remaining time.

e1

e3

e2

e6

e4

e8

e5 e7

e9
Confirm 
delivery

Figure 6. Object-centric directly-follows graph of Execution A (cf. Table 1). The
horizontal axis represents time passing, indicating the precedence order of events (not
to scale).

Representing the Data. Given the object-centric DFG of Execution A (Figure 6) and
event-level features Warehouse team, Elapsed time, and No. objects, we would yield feature
matrix X and adjacency matrix A.
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e1 e2 e3 e4 e5 e6 e7 e8 e9







0 0 3 e1 0 0 0 0 0 0 0 0 0 e1
0 0 1 e2 1 0 0 0 0 0 0 0 0 e2
0 1 2 e3 0 0 0 0 0 0 0 0 0 e3
1 1 1 e4 0 0 1 0 0 0 0 0 0 e4

X = 1 12 2 e5 A = 1 0 0 0 0 0 0 0 0 e5
0 13 2 e6 0 0 1 0 0 0 0 0 0 e6
1 13 3 e7 0 0 0 0 1 0 0 0 0 e7
1 14 3 e8 0 0 0 0 0 1 0 0 0 e8
1 21 7 e9 0 1 0 1 0 0 1 1 0 e9

Note how each row in X represents an event, containing features that describe it. In the
context of machine learning, this is called a feature vector. In a graph context, it may also
be referred to as a node vector or node feature vector. Right from the feature matrix, the
adjacency matrix, indicates the nodes’ connectivity. The columns in A indicate outgoing
edges. Take per example, node e1. It has directed arcs to e2 and e5, denoted by a 1 in
the corresponding column in A (cf. Figure 6).
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Message-Passing. Kipf & Welling [41] describe the importance of adding self connec-
tions to nodes, such that information from a node is included in the same node in the
next layer. This is done through the addition of the identity matrix, resulting in updated
adjacency matrix:

e1 e2 e3 e4 e5 e6 e7 e8 e9



1 0 0 0 0 0 0 0 0 e1
1 1 0 0 0 0 0 0 0 e2
0 0 1 0 0 0 0 0 0 e3
0 0 1 1 0 0 0 0 0 e4

Ã = 1 0 0 0 1 0 0 0 0 e5
0 0 1 0 0 1 0 0 0 e6
0 0 0 0 1 0 1 0 0 e7
0 0 0 0 0 1 0 1 0 e8
0 1 0 1 0 0 1 1 1 e9

If we now multiply X and Ã, we perform a ’message-passing’ operation using the
∑

aggregator over the whole graph. The result is the following.
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



0 0 3 e1
0 0 4 e2
0 1 2 e3
1 2 3 e4

Ã ·X = 1 12 5 e5
0 14 4 e6
2 25 5 e7
1 27 5 e8
4 49 15 e9

Taking e9 as an example, we observe the feature vectors (rows) being updated with
the sum of each of its neighbors’ (e2, e4, e7, e8, e9) features (e.g., Elapsed time =

0+1+13+14+21 = 49). From here, we can add into the equation a (learnable) weight
matrix W and a non-linear function such as ReLU to learn better representations of our
data each layer (with respect to the chosen target through the loss function). For the
sake of clarity and the example’s continuity, we leave this out.

Local pooling. Let us say that we have as our next layer a local pooling layer P avg
local that

coarsens a graph according to a cluster given as a parameter. Say we cluster the graph
on the Warehouse team feature (i.e. events that are not related to a warehouse team are
pooled into one node, and those that are related to a warehouse team are pooled into
another node).
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avg(e1, e2, e3, 
e6)

avg(e4, e5, e7, 
e8, e9)

Confirm 
delivery

Figure 7. Local pooled graph when pooling grouped on Warehouse team.

Applying P avg
local produces the graph in Figure 7, mathematically denoted and loaded

with adjacency matrix Ã =

[
1 0

1 1

]
and X′ =

[
0 3.75 3.25

1.8 23 6.6

]
as the node feature ma-

trix.

Global Pooling. We set out to predict the remaining time of running Execution A (run-
ning, since closing event e10 is not included). Therefore, let us implement a global
maximum pooling layer Pmax

global such that we can return a graph-level output. Putting
this into use, we generate the prediction Pmax

global(X
′) = 23. If we compare this against the

ground truth of 24 hours (see Table 1), we achieve a mean absolute error (see. Section
5.3.2) of MAE = |24− 23| = 1.

Representing a Graph Neural Network Architecture. There are several ways in which
we can visualize or model GNN layers in an end-to-end fashion. In this work, we opt
for a simple diagram style that shows the data flowing over arrows through matrix
transformations. The architecture that has been exemplified in the previous, is modeled
in Figure 8.

X

GraphConv

LocalAvgPool

GlobalAvgPool

y

Figure 8. Architecture of the example graph neural network.

2.2.4 Heterogeneous Graph Neural Network Architectures

A graph is a very general expression of data that can embody dynamic structures. We can
see images as graphs, where each pixel represents a vertex and is connected via an edge to
neighboring pixels. In the same manner, text can be viewed as a graph. Here, characters
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or words are nodes linked via directed edges. In these examples, each node is loaded with
features of the same dimension, making the graph homophilous. An even more expressive
data structure is a heterogeneous graph. This allows for capturing node or edge vectors
of different dimensions, meaning it can hold multiple data types. This poses a challenge
for the earlier proposed GNN, as each xu ∈ X is multiplied by one weight matrix W

(with fixed dimensions). Excitingly however, recent developments [49–52] show how to
learn graph-, edge-, or node-level representations from heterogeneous graphs. In these
networks, message-passing mechanisms are adapted to allow for the derivation of update
and message functions (ϕ and ψ, respectively) conditioned on edge or node type. As such,
information may flow between the disparate data types attached to nodes and edges in a
graph.

Xevent

GraphConv

ReLU

Pglobal,event

Xorder

GraphConv

ReLU

Pglobal,object

GraphConv

GraphConv

ReLU

GraphConv

ReLU

GraphConv

yevent yorder

Figure 9. Exemplary heterogeneous graph neural network architecture. Adapted from
[53].

Figure 9 presents us with a possible heterogeneous GNN architecture, demonstrating
conceptually how information is shared between different node types. Here, the GNN
architecture encompasses the two node types: events and orders. In the figure, an example
network architecture is constructed for each node type (event and order), which have
different feature dimensionalities. Transformation layers are inserted to pass messages
over the edges that connect nodes of type event with nodes of type order. In these layers,
a linear projection is applied to each node type’s features to project them into the same
dimensionality. Regarding the example, it would have multiple weight matrices, Wevent

and Worder, that are applied to have consistent dimensions throughout the heterogeneous
GNN architecture. Through this strategy, a heterogeneous GNN can learn an optimized
combination of different node (and edge) types with respect to the target of the task at
hand, while considering their interaction via structural (edge) information.



How Object-Centric is Object-Centric Predictive Process Monitoring? 23

2.3 Gradient Boosting Decision Trees

Gradient boosting is an ensemble learning technique that fits decision trees by minimizing
a gradient loss function. Both regression and classification tasks are possible. In layman’s
terms, gradient boosting combines multiple weak models into one strong model. When
fitting a gradient booster to data, weak models are appended iteratively, each correcting
for the error of its predecessors. Each smaller estimator is fitted to the data with respect to
the loss of the previous estimator(s). After a new weak model has been learned it is scaled
by a learning rate to prevent overfitting. Finally, when a set stopping criterion is met, the
algorithm discontinues adding weak learners and we are left with one strong model [54].

The most promising gradient boosting results were achieved using some form of deci-
sion trees (as the weak learners). In the context of predictive process mining, the XGBoost
[55], Catboost [56], and LightGBM [57] models have shown to be performant, both in ac-
curacy and scalability [58–62].
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3 Related Literature

Our work emerges from discoveries, limitations, and results of prior research. There-
fore, this section outlines the origins of object-centric thought, explores the current state of
object-centric predictive process monitoring (OCPPM), and substantiates the relevance of
this research.

3.1 Object-Centric Process Mining Lineage

3.1.1 Proclets

At the beginning of the millennium, Van der Aalst et al. [1] first explicitly pointed out the
problem of expressing multiple data entities or objects in digital processes. At that time,
multiple reports had surfaced observing issues with multiple task instances [63–68] and
inter-process interactions [69]. Custom solutions were proposed to deal with the issues.
Van der Aalst et al. [1] recognize ”squeezing cases into a single process definition” as the
latent cause of these problems. Example 3.1.1 demonstrates these multiple cases coexist in
processes.

Example 4: Hiring Process
Consider a hiring process executed in the human resources (HR) department of an

organization. In this process, several objects are at play. The object type application
takes part in a subset of the activities included in the process. For instance, Apply, Take
interview, or Sign contract. Another entity, vacancy, may have a role in events like Open
vacancy and Apply. Looking at the process from a manager’s perspective, we can detect
activities Define application requirements and Sign contract.

What we can already conclude from Example 3.1.1 is that some events are associated
with multiple objects. Each of these objects can be seen as a perspective along which one
can view the process. Merging these into one process model creates divergence, conver-
gence, and deficiency issues (See Theoretical Background). Moreover, the hiring process
given in Example 3.1.1 might be connected with a recruitment process within the same (or
even another) organization. They could share activities or objects. For instance, a man-
ager could be asked by the recruitment agency to give up requirements for the new hire to
make a vacancy ready for publication. Here, the processes of the HR department and the
recruitment agency interact.

Van der Aalst et al. [1] argue that workflow management systems are unable to ex-
press this, due to the lacking availability of process modeling languages and discovery
algorithms at the time. To fill this gap they designed a lightweight framework, where pro-
clets are used to model multiple objects interacting in workflows. Proclets are lightweight,
single-case, processes undergirded by Petri nets describing their behavior. These are con-
tained in a framework that enables multiple proclets to be linked through channels, over
which proclets interact via performatives (structured messages).
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3.1.2 Artifacts

Hull [15] surveys data-centric process modeling approaches that have become relevant
by then [12, 14, 70, 71]. He presents a way of thinking about artifacts living in business
processes, defining four dimensions of specifying workflows.

1. Business artifacts are information entities (akin to the definition in [72]) that capture
business goals and allow for analyzing the progress of those goals over time. Exam-
ples include purchase order, invoice, insurance claim, and investigation dossier.

2. Macro life-cycles describe the evolvement of artifacts. It holds relevant stages in the
evolution of an artifact. For instance, with a loan offer artifact, stages may be: cre-
ated, drafted, offered, signed, rejected, or closed.

3. Services (or tasks) in a business process capture units of work that progress artifacts
towards their goals. They exclusively affect business artifacts, i.e. all changes to
artifacts take place via services.

4. Associations delineate the temporal constraints of the effect services can have on ar-
tifacts. Typical constraints are precedence relationships (e.g., service-service: create
item before pick item; service-external event: receive request; service-internal event:
timeout).

Cohn & Hull [16] make this an actionable framework that is ready to be implemented in
a BPMS. These works do not directly address the issues of divergence and convergence.
Hull [15] is mainly motivated by new requirements that emerged from implementations
of ideas proposed by Nigam & Caswell [12].

Fahland et al. [18] then further these concepts approach by showing how to perform
conformance checking on artifact-centric process models. Conformance checking is an im-
portant process mining analysis capability in which we compare formal process models to
actual process executions [73]. Fahland et al. [74] view artifact interactions through chore-
ographies, making it possible to analyze complex and tight interactions. Subsequently, Lu
et al. [19] make the connection with divergence and convergence issues again, showing
how artifact-centric process discovery mitigates this. They introduced a family of tech-
niques to discover causal dependencies between artifacts, at both type and event level.
Through two case studies in the industry, they made a first step towards a full discovery
of artifact-centric process models from relational data sources. Taking the artifact-centric
approach they generated valuable insights on the analyzed processes. They focus on the
interaction between processes, where they use a single case notion per process at hand.
In practice, this results in large and complex models that do not visualize the overall pro-
cess in one figure. Rather, collections of interconnected process models with various case
identifiers are analyzed.
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3.1.3 Objects

Li et al. [2] suggest Object-Centric Behavioral Constraint (OCBC) models to tackle this
problem. OCBC models incorporate different objects into a single diagram, faithfully
modeling the relationship between data and behavior. Furthermore, it facilitates popular
process mining features such as extraction, discovery, conformance checking, and perfor-
mance analysis, making OCBC a potent solution to the multi-entity problem within pro-
cess mining [20]. OCBC models still tend to become highly complex and the corresponding
discovery and conformance checking techniques do not prove to be truly scalable. Addi-
tionally, the data format supporting OCBC models, XOC, is not exactly compact [20]. For
this reason, OCBC models do not meet the usability and scalability requirements of the
industry, which is the target audience in the end.

To that end, StarStar and Multiple Viewpoint (MVP) models were developed [22, 75].
These are much more scalable as the relationships between the objects are not computed
and displayed in the process model and object life-cycles are not captured as detailed as in
OCBC models. MVPs allow for conversion to classical event logs by selecting a view. This
approach is similar to features developed by commercial PM tool vendors like Celonis4,
IBM5, and Mehrwerk6 that allows importing multiple single case notion event logs. Here,
every event is still related to one object. The problem with approaches like these is that, in
reality, the same event may refer to multiple objects and there is always a trade-off when
choosing only one. Since this choice influences the frequencies shown in the discovered
model, one cannot consistently guarantee correct process statistics.

Extending these developments, in 2020, OCEL7 was put forth as a new object-centric
event log standard [23]. Accompanying this, Van der Aalst & Berti [5] provide an object-
centric process discovery technique that is (colored) Petri net-based. Their approach set a
foundation that enables scalability and usability suited for process mining in practice, as
shown by their implementation in PM4Py8.

From here, a wide range of process mining capabilities have been ”reinvented” and
extended. Van der Aalst [76] recognizes six capabilities, or types, of process mining.

1. Process discovery entails the challenge of uncovering a process model, based on event
logs.

2. Conformance checking assesses the extent to which a predefined model and a given
log correspond.

4A leading process mining software vendor. Their tool is called Celonis Execution Management System.
See https://www.celonis.com/ems/platform/

5A tech giant that bought Italian process mining startup myInvenio, which it now integrates into their
product suite. See https://www.ibm.com/products/process-mining

6Founded in 2008, Mehrwerk is one of the earliest vendors selling process mining software. The com-
pany has developed MEHRWERK ProcessMining (MPM) on the BI platform Qlik Sense to offer comprehen-
sive Process Mining capabilities to enterprise customers. See https://mpm-processmining.com/en/
execution-suite/

7The respective paper was published in 2021, but the standard was published in 2020. See https://
ocel-standard.org/

8An open source Python library for process mining, found at https://pm4py.fit.fraunhofer.de/

https://www.celonis.com/ems/platform/
https://www.ibm.com/products/process-mining
https://mpm-processmining.com/en/execution-suite/
https://mpm-processmining.com/en/execution-suite/
https://ocel-standard.org/
https://ocel-standard.org/
https://pm4py.fit.fraunhofer.de/
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3. Performance analysis deals with finding root causes of performance-related issues by
analyzing indicators such as waiting times, response times, and service times.

4. Comparative process mining is mainly used for comparing event logs by a certain win-
dow for the goal of inter- or intra-organizational learning and benchmarking. Exam-
ples of windows may include locations, periods, or categories of cases.

5. Predictive process mining uses past behavior and statistics to answer ML questions.
This can result in time and cost savings by anticipating operational issues.

6. Action-oriented process mining turns diagnostics into actions to improve operations.

The first three of these are enabled in an object-centric setting by works like [5, 8, 10, 11,
31, 77, 78]. Celonis has announced their tool Process Sphere which promises to feature
fully object-centric process mining capabilities. Integrated with their action-oriented func-
tionalities, this empowers the industrial impact of object-centric process mining [24, 79].
Mehrwerk and IBM are also working on integrating object-centricity into their platforms,
but are less overt about this.

Advancements have also been made in the field of predictive process mining. These
are discussed in the subsequent section.

3.2 Predictive Object-Centric Process Monitoring

Concerning predictive machine learning tasks performed on object-centric event logs, the
current process mining literature provides several innovative methods. The following out-
lines the extant research on predictive process monitoring that uses object-centric event
data as a starting point. We recognize a division between non-native and native object-
centric predictive process monitoring approaches. The former uses an interfacing layer
between the OCEL and traditional PPM methods to cope with the challenges that OCELs
present. The latter applies techniques to directly learn and predict from OCEL-based fea-
tures. Works in these categories are summarized in the coming paragraphs and subse-
quently characterized.

3.2.1 Single Case Projection Approaches

A first attempt to do any predictive task on OCEL data was by Rohrer et al. [26] in 2020.
They propose an approach using a Generative Adversarial Network that leverages OCELs
by including object attributes into event vectors. They used two synthetic datasets: the
RoboCup Logistics League factory logistics simulation and the OTC example process, also
used in [5, 23, 29]. Taking remaining events as their prediction target they performed
predictions per selected object type. Importantly, they demonstrated that including object
attributes of other (related) objects improves prediction results. Limiting to this work is
that the datasets are relatively small, synthetic, and not both publicly available. Besides
that, structural features that OCEL introduces were not leveraged or coped with. That



28 T.K. Smit

is, the graph or sequential structure of process data was not specifically included in the
prediction model via engineered or learned features. The state of events was encoded
through one-hot encoding of activity names, losing context of where an event is in a trace.
Lastly, to cope with many-to-many relationships between objects and events in the data,
Rohrer et al. [26] project the log onto a single case by selecting one object type. This enables
their addition of object attributes in predictive process monitoring. Most notably, their
results indicate that the inclusion object attributes aids model accuracy.

Galanti et al. [28] come from a business perspective, taking various key performance
indicators (KPIs) as target variables. The main innovation of their approach is the inclusion
of object interactions through aggregations. They suggest taking viewpoints on the OCEL
per object type and defining KPIs of interest per viewpoint. The process at hand here
operates within a large Italian utility provider and is akin to an OTC workflow. Their
prediction procedure starts with defining a KPI associated with an object type. Then, the
OCEL is first unfolded along order, similar to the concept of viewpoints proposed by Berti
& Van der Aalst [22]. Next, the obtained object-centric-like event log is enriched with
aggregation features that capture a derivative of object interactions. They propose four
interaction feature types, which we have abstracted as the following.

1. Aggregated previous object attribute. This feature aggregates a selected object attribute
(and respective object type) until the current event.

2. Conditionally aggregated previous object attribute. For categorical object attributes they
employ specific conditional functions with percentage count as the aggregate func-
tion.

3. Event object type count. A count of distinct objects of a selected object type associated
with the previous (or current) events in the current process execution.

4. Aggregated object type activity relation. A feature mapping an aggregation function
over the event long per given activity and object type. For each object (of selected
object type) in previous events (including the current), it aggregates on a given ac-
tivity. See Table 5 for an implementation with percentage as the aggregator.

To explain these features, an example is given, putting to display the innovations of Galanti
et al. [28].

Example 5: Galanti’s Features at Work
In this example, Table 5 implements each of the four interaction feature types on our

running example. Avg No. stops is an implementation of Aggregated previous object
attribute, % normal delivery route length of Conditionally aggregated previous ob-
ject attribute, No. items of Event object type count, and Aggregated object type activity
relation is instantiated in item, % Pack item.

Table 5. Object-centric event feature table demonstrating custom instances of features
suggested by Galanti et al. [28]. Note how both Execution A and B are present (cf. Table
1, 2, and 4).
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ID Activity Time Res. . . Order Item Package Delivery
Avg
No. stops

% normal
delivery
route length

No. items
item, %
Pack item

...
...

...
...

...
...

...
...

...
...

...
...

e1 Place order 2023-01-30 Clo. . . {o1} {i1, i2} {} {} 0.0 0.0 2 0.0
e2 Pay order 2023-01-30 Clo. . . {o1} {} {} {} 0.0 0.0 2 0.0
e3 Place order 2023-01-30 Clo. . . {o2} {i3} {} {} 0.0 0.0 3 0.0
e4 Pay order 2023-01-30 Clo. . . {o2} {} {} {} 0.0 0.0 3 0.0
e5 Pick item 2023-01-31 War. . . {o1} {i1} {} {} 0.0 0.0 3 0.0
e6 Pick item 2023-01-31 War. . . {o2} {i3} {} {} 0.0 0.0 3 0.0
e7 Pack item 2023-01-31 War. . . {o1} {i1} {p1} {} 0.0 0.0 3 33.3
e8 Pack item 2023-01-31 War. . . {o2} {i3} {p2} {} 0.0 0.0 3 66.7
e9 Ship package 2023-02-01 War. . . {o1, o2} {i1, i3} {p1, p2} {d1} 5.0 0.0 3 66.7

e10 Confirm delivery 2023-02-02 Pos. . . {o1, o2} {i1, i3} {p1, p2} {d1} 5.0 0.0 3 66.7
...

...
...

...
...

...
...

...
...

...
...

...
e21 Ship package 2023-02-05 War. . . {o3} {i4} {p3} {d2} 27.0 100.0 3 100.0
e22 Ship package 2023-02-05 War. . . {o3} {i4, i5, i6} {p3, p4} {d3} 22.5 50.0 3 100.0

...
...

...
...

...
...

...
...

...
...

...
...

The approach comes with several limitations. An obvious one is that it is unable to han-
dle object attributes when the attribute refers to an object type that has multiple object
instances in an event. For instance, in Table 5, e9 contains two object references of type
package. This implies that package attribute weight cannot be included in the event fea-
ture table, as we are not able to determine whether we refer to p1 or p2. Another limitation
is that activity relations are not captured by any established PPM trace encoding (e.g., ag-
gregation, index encoding [80]) or bucketing technique (e.g., clustering [81], prefix-length
[82], transition system [83]) that embed context. Importantly, they demonstrate that their
interaction features do improve prediction quality when compared to flattened and object-
centric-like event logs that do not include these features.

Lastly, the most recent work on object-centric PPM took on the problems of next activ-
ity, next event time, and remaining time prediction [29]. This work operated on one, rather
small dataset, the OTC example. This OCEL was also used for prediction by Rohrer et al.
[26] and as a sample log in [5, 23]. Gherissi et al. [29] posit their work as a conservative ini-
tial attempt to take on the challenge of object-centric predictive process monitoring. They
take a weak cognate of object interactions into their approach. That is, they first flatten the
OCEL based on a selected object type. Next, categorical variables (including activity) are
one-hot encoded, disregarding established trace encoding or bucketing techniques. Sub-
sequently, per event, a count of related objects in previous events (of the current trace)
is added as an enrichment feature, akin to the Event object type count feature by Galanti
et al. [28]. After that, to cope with the varying number of object references per event, they
define a maximum trace length, which becomes the fixed input shape for a long short-
term memory (LSTM) architecture. This LSTM then performs the said prediction tasks.
Already evident from their work is that learning from object relations does lift predictive
performance.
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3.2.2 Native Object-Centric Approaches

Recognizing the limitations of conversion from case-agnostic logs to single case notion or
viewpoint event logs, Adams et al. [27] postulate a framework for extracting and encod-
ing features from OCELs. The work extends [84] to an object-centric setting by defining
how to calculate their suggested features for OCELs, presenting new features (defined in
[10]), and producing a Python library that enables the application of their ideas in prac-
tice on any OCEL. Utilizing an object-centric case definition, either connected components
or leading type (Def. 5 and 6 in [8], respectively), they extract object-centric process ex-
ecutions in the form of directed event graphs. To each node in the graphs are attached
equal-length feature vectors. They describe either characteristics of the event in relation to
previous events in its process execution, or the whole log up to that event’s time. In total,
they list 27 features that can be grouped into five perspectives: Control-Flow, Data-Flow,
Resource, Performance and Objects. Figure 10 illustrates what such a graph-based feature
structure looks like for our running example (the Ship package event specifically).
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previous following

tstart tend

already happened
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information from full OCEL

Place order

Place order

Pay order
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Pay order
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Pick item Pack item

Ship package
Confirm 
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P6: Sojourn Time
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P8: Lagging Time
P9: Service Time
P10: Waiting Time
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O2: Previous Object Count
O3: Previous Type Count
O4: Event Objects
O5: Event Object Count
O6: Event Object Type Count

P9P10

Figure 10. Object-centric features for event-level extraction proposed by Adams et al. [27]
(cf. Fig. 4 in [27]). Features that can be extracted for event e9 are illustrated (see Table 1
for the log).

From here, three encodings may be generated. The feature graph structure, as it stands.
A sequential structure, in which each feature graph is collected into a sequence, where each
event node is only connected to its preceding and succeeding event nodes (based on the
complete timestamp) (Def. 7, [27]). And a tabular encoding, which does not take any con-
straints pertaining to the connectivity or ordering of nodes, generates a feature matrix by
concatenating all event vectors (in arbitrary order, Def. 6, [27]). The graph-based encoding
is their main innovation. The others were already known in PPM. They assess their work
on a loan application event log, which is a classical one that has been transformed to an
OCEL [85]. For each of the encodings, two use cases are given, one performing remaining
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time prediction and one demonstrating visualization capabilities. Crucially, using Shapley
values [86] and model performance results, they illustrate that information is increasingly
lost going from graph-based to sequential and finally tabular encoding. Limiting their ob-
servations is the fact that hyperparameter tuning of the models used for evaluation was
not part of the published research. Linear regression was used to model the tabular data
structure, and default LSTM and GCN architectures were used for sequential and graph-
based encoding respectively. Moreover, the model evaluation scores are presented in their
standardized form, making differences (per encoding/model) difficult to interpret. A con-
sequence of this is that we cannot rule out whether the tabular structure is still inferior
to sequential and graph structures when another model is employed. Even so, this is an
essential work in object-centric predictive process monitoring, as it enables object-centric
trace encoding for machine learning based on OCELs. Not to mention, their approach is
replicable, highly configurable, and applicable for future work in both academic and in-
dustrial spheres through ocpa9, a Python library they published alongside it [87]. In the
remainder of this thesis, we may refer to their approach as EFG, which stands for event
feature graph.

Berti et al. [30] extend the possibilities for machine learning on OCELs by introducing
the concept of object-level feature extraction via object graphs (cf Def. 4 in [30]). In a
general sense, object graphs capture the interaction objects have through events. They
give three example graphs that can be useful.

1. Object interaction graphs that connect pairs of objects if they co-occur in some event
of the log. Such an undirected graph could be used to derive features capturing
expected relations (e.g., every invoice should be connected to an order).

2. Object creation graphs that link objects via directed edges if one already exists and the
other starts to exist in a certain event. As an example, features capturing a temporal
ordering could be calculated from here (e.g., payment before invoice).

3. Object continuation graphs relate objects via directed edges that terminate their life-
cycle with the given event to all objects that start their life-cycle in that event. In the
context of HR processes, we could extract a feature about objects being birthed when-
ever a contract offer has been signed (e.g., the number of objects in the onboarding
process triggered).

Consequently, examples of feature maps are given to extract useful information as input
for prediction or anomaly detection algorithms. They demonstrate in their visual tool
called OCPM10 an implementation of anomaly detection per object via isolation forests
[88]. Furthermore, they have extended PM4Py to enable their feature extraction methods
in Python. This library furthers these ideas through object co-birth and object co-death graphs.

9An open source Python library for object-centric process analysis, found at https://github.com/
ocpm/ocpa

10OCPM is an object-centric process mining web application that supports discovery, conformance check-
ing, and exploration techniques on OCELs. See https://www.ocpm.info/

https://github.com/ocpm/ocpa
https://github.com/ocpm/ocpa
https://www.ocpm.info/
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These undirected graphs connect objects whose life-cycle is started and ended in the same
event, respectively. It gives rise to even more graph-based features for object-centric data.

3.3 Synthesis and Current Limitations

When synthesizing these related works, we observe that OCEL and the corresponding
discovery techniques strike a balance between accuracy in capturing a process’ behavior
and scalability in algorithmic model discovery. This also results in a model being more
easily interpreted and analyzed by process analysis practitioners. Concerning predictive
monitoring, this implies that less information is captured when comparing OCEL to XOC
or artifact-centric data. However, when dealing with large amounts of data, this is likely
nullified. Adding to this, OCEL allows for a more scalable ML pipeline as discovery tech-
niques are involved in feature extraction and encoding, making lighter underlying data
formats critical.

Regarding the current state-of-the-art artificial intelligence based on object-centric event
data, we observe promising results. Three works argue that OCELs allow for better pre-
dictions in predictive process monitoring when compared to traditional event logs [26,
28, 29]. Interestingly enough, these efforts all exhibit some form of flattening, incorpo-
rating lossy data preprocessing techniques. Therefore, more attention is drawn to the
two approaches that enjoy OCEL-native feature extraction techniques [27, 30], meaning
OCELs are not flattened along an object type during preprocessing or feature extraction.
Both these works take a more methodic approach, describing general features that can
be applied to any OCEL. They can be divided into two perspectives (that have not been
compared yet). Adams et al. [27] design their features on an event basis, enriching event
vectors. Berti et al. [30], on the contrary, extract features per object, generating object vec-
tors. Both give a generic open source Python implementation, bringing true object-centric
predictive process monitoring closer to industrial application.

Finally, to structure the discussion on the related works in OCPPM, we characterize
each approach along several dimensions (see Table 6). The table is horizontally divided
into native and non-native approaches. These works are then characterized on six dimen-
sions pertaining to how the approaches encode different information contained in OCELs.
Encoding Granularity indicates what perspective is taken on the OCEL. We can either take
the object tables (cf. Table 2) and enrich each row with information from the events table
(cf. Table 1), or vice versa. Process Behavior Encoding relates to how the activities in the
event log are encoded, such that context (where an activity is in the process) is consid-
ered. Event Attribute Encoding concerns the way an approach deals with event attributes.
Event-object Interaction Encoding refers to what features are proposed to incorporate the in-
teraction between events and objects. Object-object Interaction Encoding is a dimension that
considers relations between objects as features (see the discussion on Berti et al. [30] for
examples). Lastly, Object Attribute Encoding pertains to how an approach handles object
attributes (e.g., are they allowed by the approach? And, to what extent did the approach
take in object attributes?).
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Table 6. Characterization of the related works in predictive process monitoring on
object-centric event logs.

Approach
Encoding
Granularity

Process Behavior
Encoding

Event Attribute
Encoding

Event-object
Interaction Encoding

Object-object
Interaction Encoding

Object Attribute
Encoding

Native Adams et al. [27] Event-level OC-DFG Event-based Current total object count None None
as data structure features1 Previous object count

Event objects
Execution-based Event object count
features Event object type count

Berti et al. [30] Object-level None None Activity count2 Object graph features None3

Related events count2

Non-native Rohrer et al. [26] Event-level One-hot None1 None None Limited4

Galanti et al. [28] Event-level CatBoost Categorical Aggregated previous object attribute None Limited5

algorithm event attributes Conditionally aggregated previous object attribute
Event object type count
Aggregated object type activity relation

Gherissi et al. [29] Event-level One-hot None1 Event object type count None None
1 Event attributes were not mentioned, but are allowed by the approach.
2 This feature may also be viewed as an encoding of process behavior but from an object-level encoding point of view.
3 Berti et al. [30] did not include any object attributes in their work, however, their approach does support object attribute integration.
4 Only object attributes of the object type that is selected as the case notion are included.
5 Only for object types that are referred to once per event at maximum.

Upon analyzing Table 6, we observe that none of the approaches take full advantage of
the six dimensions presented. We see that a choice in one dimension can exclude options
in the other dimensions. For instance, Adams et al. [27] take an event-level perspective
(Encoding Granularity), excluding the possibility to encode object-object interactions or ob-
ject attributes without aggregation techniques (as in [28]). The approach by Berti et al. [30]
on the other hand, can encode this without compromise due to its object-level view on
OCELs, but it suffers on the Process Behavior Encoding dimension. Taking the object tables
as a basis, a lossless encoding of events (process behavior) is inaccessible.

These limitations are produced by the inherently complex structure of OCELs. That is,
as the metamodel in Figure 2 illustrates, objects and events have a many-to-many relation-
ship. This means that an event may refer to multiple objects and an object may refer to
many events. When preparing feature matrices for ML algorithms, we usually need to de-
fine fixed dimensions. Each vector (row) must have the same length (amount of columns).

When creating a feature vector per event (event-level granularity), the event vector can
refer to multiple objects that have attributes. To obtain an equal size vector for each event,
either none, a manually filled, or an aggregate of the object attributes (or other object-based
features) may be taken into the vector. An aggregate could for example be the mean of a
certain object attribute per object type.

Contrarily, when taking an object perspective, one creates a feature vector per object.
Each object refers to one or more events. Thus, to acquire a fixed-size feature matrix, we
can take either none or an aggregate of each of those events referred to. Examples of
aggregates would be the maximum value of a certain event attribute (for events related to
the respective object) or a count of related events (like in [30]).

In both perspectives, we experience a loss of information due to either the unavailabil-
ity of attributes or taking aggregates. Besides this, we can note that relational information
is lost of either

1. object-object interactions (via an object graph) when taking the event perspective, or

2. event-event interactions (via the OC-DFG) when taking the object perspective.
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Concluding this chapter, we see that the current efforts in object-centric predictive pro-
cess monitoring are promising, but have limitations that motivate either deserting OCELs
by flattening them into traditional event logs or remaining object-centric and taking aggre-
gates of features contained in OCELs. In reference to our research objective (cf. Section 1),
this thesis sets out to design an encoding approach that captures object-centric event data
without flattening events (Definition 2.4), filling unavailable object features, or performing
aggregations on objects (as in [28] or features O1-O6 in [27], see Table 5 and Figure 10 re-
spectively). The observed limitations in related literature lead to a set of requirements that
incentivize a more comprehensive, native (i.e. without flattening on object type) approach
to predictive tasks on OCELs that handles events and objects without taking aggregates.
In the following section (Section 4), we outline these requirements and present our pro-
posed approach that incorporates these requirements, satisfying the potential of OCEL for
predictive process monitoring by providing full support for the six dimensions presented
in Table 6.
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4 Approach

In the previous section, we reviewed the current literature in the field of process mining
and predictive process monitoring in an object-centric setting. This review revealed crucial
insights into the state of the art and the direction in which advancements have been made.
However, it also unearthed notable limitations that need addressing. They therefore serve
as pivotal guideposts for the formulation of our novel solution.

First, we reify these limitations into requirements or characteristics to assess a solution.
Following this, we introduce our approach. We elucidate our proposed idea on an instance
level, based on the running example both conceptually and applied to deep learning. Con-
cluding, we present a capability assessment of our approach.

4.1 Assessment Criteria for an Object-Centric Feature Encoding Approach

Object-centric process mining has emerged as a reaction and solution to flattening event
logs in traditional process mining. Therefore, this work’s goal is to extend the elim-
ination of flattening procedures to predictive process monitoring by obviating flatten-
ing on events, filling unavailable object features, and aggregating object attributes. Sec-
tion 3.3 shed light on how current PPM approaches have utilized OCELs for prediction
tasks, demonstrating that information loss still occurs in both non-native11 and native ap-
proaches. This was shown to be caused by choosing an Encoding Granularity, either event-
level or object-level. Taking one perspective excludes the possibilities and benefits that
come with the other perspective, and vice versa. Optimally, one wants all options on all
six dimensions presented in Table 6 to be taken up into one encoding. The list of options
derived from the table can be summed up in the following six assessment criteria by which
we can assess the encoding capabilities of an object-centric predictive process monitoring
approach.

C1. Encoding Granularity: event-level and object-level.

C2. Process Behavior Encoding: Execution graph structure, feature-based trace encoding,
and execution-based features.

C3. Event Attribute Encoding: Numerical attributes, numerically encoded categorical at-
tributes, and event-based features.

C4. Event-object Interaction Encoding: Any calculable interaction feature.

C5. Object-object Interaction Encoding: Object graph structure (and features).

C6. Object Attribute Encoding: Numerical attributes, numerically encoded categorical at-
tributes, and object-based features.

11Approaches that flatten the OCEL on an object type to get a traditional event log.
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A solution that aligns with our research objective then, should not be confined to either an
event-level or an object-level perspective, but have both perspectives. When not making
a choice on Encoding Granularity, but encoding both objects and events in their original
(graph) structure, one can facilitate all six dimensions to the fullest. The proceedings of
this chapter give an exposition of our novel solution that stays true to the data structure
presented in the original OCEL.

4.2 Heterogeneous Object Event Graph Encoding

We propose a heterogeneous object event graph encoding (HOEG). This encoding incorpo-
rates both event-level and object-level perspectives into a graph with different node (and
edge) types. In a heterogeneous graph, each node type may have its own shape, equal
to how OCELs contain data entities that each have a different shape. This factoid can be
derived from the metamodel in Figure 2 and directly seen on an instance level in Tables 1
and 2 in Example 2.

4.2.1 Conceptual Design

To illustrate this heterogeneous graph encoding, let us revisit Execution A from the OTC
example given in Table 1. Given the events and objects present in this table, Figure 11
visualizes its heterogeneous object event graph structure.
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Figure 11. Heterogeneous object event graph for Execution A (derived from Table 1) of
the running OTC example. Note the trimmed dotted edges going out from Ship package.
They are connected with objects o1, o2, i1, i3, p1, p2, but trimmed for readability
considerations. The dashed arrow and activity node are used to signify future event
Confirm delivery.

As depicted, the encoding uses an object-centric discovery technique to construct the
OC-DFG (like in [27]), to which it attaches object information. The event node type has
an oval shape and is linked to the objects that it refers to in the events table of the OCEL
(Table 1 in this case). Object types are separate node types in the graph structure. These
different node types are denoted by the node colors per object type. In the illustration,
there are five node types in total: event nodes, order nodes, item nodes, package nodes,
and delivery nodes. Generally speaking, the HOEG encoding has a node type per object
type and one node type to encode events.12

Contrasting HOEG to EFG via Figure 11 and 10 respectively, it becomes evident that
HOEG explicitly encodes objects and their features, whereas EFG resorts to aggregating
object information into event features (O1-O6, Figure 10).

4.2.2 Deep Learning on the HOEG Encoding

The HOEG encoding structure lends itself to heterogeneous graph neural network archi-
tectures when performing deep learning. In such architectures, we can define different
edge relation types over which the message-passing mechanism transfers information dur-
ing a forward pass of a neural network. It is through this that we are able to learn on both
event and object features simultaneously. The network learns how to best combine and
transform the information from the different node (or edge) types to predict a certain tar-
get.

From a graph neural networks perspective, the HOEG encoding can be understood as
a set of semantically sensible node and edge type names, according adjacency matrices,
and feature matrices. Building upon the visual representation introduced in Figure 9, we
now detail the underlying data driving the visualization. Doing so yields a better under-
standing of how a heterogeneous graph neural network architecture would learn patterns
from HOEG.

Consider a HOEG instance based on Execution A (cf. Tables 1 and 2), including (nu-
merically encoded) event attributes, object attributes, event-based feature Elapsed time, and
implicitly encoded object-object interactions (via events, as seen in Figure 11).

This would have the five node types: event, order, item, package, and delivery.
Besides that, it contains edge type triples:

- (event, follows, event)

- (order, interacts with, event)

12https://github.com/TKForgeron/OCPPM hosts an open source implementation of HOEG as a gen-
eral technique.

https://github.com/TKForgeron/OCPPM
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- (item, interacts with, event)

- (package, interacts with, event)

- (delivery, interacts with, event)

- (order, updates, order)

- (item, updates, item)

- (package, updates, package)

- (delivery, updates, delivery)

Each of these edge types has a separate adjacency matrix indicating the heterogeneous
object event graph’s connectivity. The latter four edge types are not visible in Figure 11.
They are introduced here to facilitate the inclusion of self-loops, where edges connect a
node to itself. This practice is a standard technique in graph deep learning. By enabling
self-loops, the GNN can enhance its node representations. This enhancement is achieved
through the message-passing mechanism, which allows nodes to exchange information
with themselves across multiple layers.

Furthermore, each node type has a distinct feature matrix with the following13 shapes:

- (9, 2) for event with features Resource and Elapsed time.

- (2, 1) for order with feature Price.

- (3, 1) for item with feature Discount.

- (2, 2) for package with features Weight and Size.

- (1, 2) for delivery with features Route length and No. stops.

Additionally, HOEG allows for encoding interaction information as edge features, which
would yield another nine feature matrices at maximum (one for each edge type).

13Where Resource, Size, and Route length are numerically encoded using some categorical encoding tech-
nique.
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4.2.3 HOEG Encoding Assessment

We assess the capabilities of the HOEG encoding conceptually in Table 7 through the as-
sessment criteria given in Section 4.1. Here, we observe that HOEG is a flexible and ex-
pressive encoding approach as it embraces the inherent structure of OCELs as its data
structure. Note the addition of event-object interaction graph structure, a novel feature.

Table 7. Heterogeneous object event graph encoding capability assessment.

Criterium Support Remark
C1. Encoding Granularity

Event-level Full
Object-level Full

C2. Process Behavior Encoding
Execution graph structure Full
Feature-based trace encoding Full When traces are encoded using features, they can

be appended as event features to event nodes.
Execution-based features Limited May be used as target variable.

When used as predictor variable, it is duplicated
across each event node in an execution graph.

C3. Event Attribute Encoding
Numerical attributes Full
Numerically encoded
categorical attributes

Full

Event-based features Full
C4. Event-object Interaction Encoding

Event-object interaction Full The interaction between events and objects is
graph structure naturally encoded into its graph structure.

Not seen before in related works.
Event-object interaction Full May either be appended as node features (to either
features event or object nodes), or as edge features.

C5. Object-object Interaction Encoding
Object interaction Full Any interaction discovery algorithm presented by
graph structure Berti et al. [30] may be used here to create direct

object-object edges.
It is otherwise also possible to let object-object
interaction be implicitly encoded via the
event-object interaction graph structure.

Object interaction features Full May either be appended as object node features, or as
edge features if direct object-object edges are present.

C6. Object Attribute Encoding
Numerical attributes Full
Numerically encoded
categorical attributes

Full

Object-based features Full

In order to evaluate the viability of the HOEG encoding for predictive process moni-
toring on object-centric event logs, we run experiments on three datasets. The following
chapters elaborate on this.
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5 Experimental Setup

Drawing upon the previous chapters, this section sets a structure for evaluating the pro-
posed HOEG encoding. First, we distinguish EFG as a graph-based encoding against
which the HOEG encoding is mainly compared. Then, both EFG and HOEG are elabo-
rated upon in terms of configuration. Second, graph neural network architecture design
choices are given and the process of tuning hyperparameters is outlined. Third, evalu-
ation methods are presented by which the graph-based feature encodings are compared
and analyzed. Fourth, the object-centric event logs used in the experiments are described
in terms of preprocessing and content. Lastly, we provide an overview of the workflow of
the experiments in a modular fashion.

5.1 Feature Encodings

Taking into account Chapters 3 and 4, we recognize two perspectives concerning object-
centric feature extraction: object-level and event-level feature encoding. Section 4 intro-
duced us to an approach that aims to solve the limitations of taking either perspective by
integrating the object- and event-level views into one heterogeneous object event graph
encoding. Consequently, to evaluate the efficacy of this integrated approach, it must be
juxtaposed against its single-perspective counterparts that emphasize either objects or
events individually. However, event-based prediction tasks have been the focus of pre-
dictive process monitoring as an academic field, and object-based predictions are not yet
established in research. Besides that, from an objects perspective, remaining time cannot
be a target variable. Therefore, we evaluate our proposed HOEG encoding predicting on
an event level only. The upcoming subsections elaborate on the configuration of the EFG
and HOEG encodings.

5.1.1 Event Feature Graph Configuration

Regarding the configuration of the EFG encoding for our experiments, we initialize the
graphs using a feature set nearly identical to Adams et al. [27]. That is, we include in
the event feature vectors a one-hot encoding of Preceding Activities (C2), the Elapsed Time
(P2), the Synchronization Time (P5), and the Previous Type Count (O3). Comparing this to
Adams et al. [27], we recognize that Aggregated Previous Characteristic Values (D1) has been
dropped, and P5 has been added. D1 has been removed due to it requiring a flattening
procedure (aggregation), which is in their use case specifically caused by the adoption
of an object attribute as an event attribute14. Furthermore, we include event attributes.
Whenever an event attribute is a categorical variable, we encode it using the count en-
coding technique, which replaces the names of the groups with the group counts. Finally,
we employ the graph-based feature structure. Primarily to stay as true to the original
data structure as possible, but also as the literature recommends so. That is, Adams et al.

14RequestedAmount in the loan application log, to be exact.
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[27] have shown promising results using the graph-based encoding and Galanti et al. [28]
suggest exploring graph-based approaches for predictive analytics on object-centric pro-
cesses. Ultimately, this encoding type results in homogeneous graphs representing process
executions, where each node holds a feature vector that describes one event.

5.1.2 Heterogeneous Object Event Graph Configuration

The most natural way of incorporating both object and event perspectives is a hetero-
geneous graph as described in the previous chapter (Section 4). When employing this
encoding, there are many configuration options, demonstrated by Table 7. In our HOEG
setup, event node types exactly correspond to the EFG encoding configuration specified
in Section 5.1.1. Event-object interaction is encoded in the structure only (not as features).
Object-object interaction is implicitly encoded via event-object edges. Objects are never
direct neighbors in our HOEG configuration. Finally, object node types contain feature
matrices based on numerically encoded object attributes only.

5.2 Models and Hyperparameters

To leverage the multi-dimensional information contained in OCELs, we utilize graph-
based deep learning models for each of the given scenarios to demonstrate how the graph-
based models exploit their respective structures.

First, we design our model architectures based on qualitative graph neural network
knowledge. When performing predictions based on event data, the context of an event is
of high importance. This is demonstrated by the abundance of research into ways of cap-
turing the state of an event as either features (i.e. trace encoding techniques [89]) or as an
inherent mechanism of a predictive model (annotated transition systems [83]). Therefore,
we employ k-dimensional GNN layers proposed by Morris et al. [90] in our architecture
design. Their message-passing layer captures higher-order graph structures at multiple
scales. Higher-order graph structures refer to patterns or relationships that exist between
groups of nodes in a graph, beyond merely the pairwise connections between individual
nodes. This fits well with capturing the state of an event given an execution graph.

Then, via guidance from literature, several hyperparameters are fixed to recommended
values and two are chosen to undergo a tuning process to find the best value within a
specified range.

The first, the number of hidden dimensions (hd), is optimized across eight settings. The
higher the number, the more complex patterns the model could potentially detect. The dis-
advantage of increasing this number is that it entails increased model complexity, which
results in lower scalability. Also, at some point increasing hd no longer decreases model
error, as more complex patterns might not be present in the data or might not generalize
to unseen data. The number of hidden dimensions is tuned because it enables insight into
learning capability facilitated by different encodings.
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The second hyperparameter that undergoes tuning is the learning rate (lr). This deter-
mines the step size at which the model’s parameters are updated during training via the
specified optimizer function (Adam in this case) [91]. Learning rate influences convergence
speed and performance. A lower lr might contribute to a slower convergence but could
cause the optimizer to find better optima. We tune this hyperparameter as it may give
insights into an encoding’s overall stability.

Both hyperparameters can interact. For example, it is possible that a combination of a
steep learning rate and a high number of hidden dimensions proves to be optimal, while in
contrast, only a high number of hidden dimensions results in more error.

In Table 8, we outline the hyperparameters that are considered. Each row indicates the
selected value or tunable value range.

Table 8. The hyperparameters used in the experiments.

Hyperparameter Value(s) Source(s) Remark
Batch size 16 Dependent on available resources.
No. epochs 30 Adams et al. [27]
Early stopping criterion 4 Dependent on available resources.
No. pre-message-passing layers 0 Adams et al. [27] We use preprocessed features.
No. message-passing layers 2 Adams et al. [27]
No. post-message-passing layers 1 Adams et al. [27]
Drop-out rate 0.0 You et al. [92]
Activation function PReLU You et al. [92]
Optimizer Adam Adams et al. [27], You et al. [92] Using default settings.
No. hidden dimensions {8, 16, 24, 32, 48, 64, 128, 256} Adams et al. [27] used 24.
Learning rate {0.01, 0.001} Adams et al. [27], You et al. [92] You et al. [92] recommend 0.01,

which is also used in [27].

5.3 Evaluation Methods

We implement several methods to evaluate the encodings and their respective models
and hyperparameters. First, a set of informative and representative baselines is given.
Next, performance metrics are elaborated on. Additionally, generalizability is expounded.
Lastly, we discuss how scalability is evaluated.

5.3.1 Baseline

Three baselines are used for determining the eminence of models or encodings. Baselines
aid in indicating how to interpret performance metrics.

Median serves as our first uninformed baseline. As our prediction task is regression-
based, the central tendency measure median is a suitable baseline to give context to the
results of complex learners.

LightGBM is used as a second baseline. This is a lightweight, yet performant gradi-
ent booster model which has been shown to be promising for PPM tasks [62]. Gradient
boosting models require a tabular data structure with fixed-size dimensions. This entails
transforming the graph encodings (Section 5.1) to tabular feature matrices, losing struc-
tural information. For HOEG, fixed-size feature matrices cannot be attained, as these en-
code heterogeneous data that may have different dimensions per node type. Therefore,
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the LightGBM baseline takes only a tabular version of the event node types as input data.
We refer to this as the event feature table (EFT) encoding.

EFGss is the third baseline model. We replicate the GCN architecture used by Adams
et al. [27]. The configuration of this GCN is reconstructed to be as similar as possible to
their model and input data structure. This entails that it runs on an adapted version of the
EFG configuration. That is, subgraph sampling15 of size four is applied to the EFG encoded
datasets before passing data to the GCN. The GCN performs graph-level predictions, pool-
ing information from the four nodes into one prediction. This is different from our EFG-
based and HOEG-based models, which make predictions per event (node). Furthermore,
the GCN is configured with the hyperparameters found in Table 8 that refer to Adams
et al. [27]. Hyperparameters not referred to are set to: batch size = 64, early stopping is
disabled, drop-out rate = 0.0, activation function = PReLU , hidden dimensions = 24,
and learning rate = 0.01. Finally, as this baseline runs on EFG (as specified in Section
5.1.1), but with subgraph sampling enabled, it is referred to as EFGss in the remainder of
this work.

5.3.2 Performance

Regarding the performance evaluation of models, we aim to depict a complete picture.
Therefore, three metrics are reported. Considering that the outputs of our models are con-
tinuous, we include only regression performance measures. The first, the mean absolute
error (MAE) takes the average of the sum of absolute errors. For this reason, it is a highly
interpretable measure.

MAE =
1

n

n∑
i=1

|yi − ŷi| (14)

We additionally include the mean squared error (MSE), which yields a positive error num-
ber by taking the average square of the errors. As such, larger errors are weighted heavier,
resulting in a greater error score for models that exhibit overfitting.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (15)

Finally, the mean absolute percentage error (MAPE), is an intuitive relative error score in
terms of interpretation. It represents the average difference between the predicted and
actual values expressed as a percentage of the actual values. For example, a MAPE value
of 7% implies that, on average, the model’s prediction deviates from the actual value by
7%.

MAPE =
100%

n

n∑
i=1

|yi − ŷi
yi

| (16)

In our context, this measure has two drawbacks. To start, if the actual value is zero (yi = 0)
the score gives an undefined value. Second, since the percentage is used, a prediction

15Consecutive nodes (ordered by time) of size four are sampled.
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lower than the true value is favored compared to a higher predicted value (e.g., for yi =
1, ŷi = 2 we yield |1−2

1 | = 1, while yi = 2, ŷi = 1 is scored |2−1
2 | = 0.5).

To conclude, for all metrics listed above, a lower value means a better-performing
model.

5.3.3 Generalizability

When developing any machine learning model, we always navigate the bias-variance
trade-off in some way. The goal of building a predictive model is to make it generaliz-
able beyond the data it was trained on to provide value in an unknown data context. An
estimator that has high bias has not learned the relevant relations between features with
respect to the target variable (underfitting). Opposing this is a model with high variance.
Such a model has fitting to the random noise in its training data, disregarding the general
patterns that exist in the full population (including data outside the training set) [93]. In
supervised learning, we strive to develop a predictor that has a good balance between high
bias and high variance, learning as much as possible from training data, while generalizing
well outside the training set.

We want to be able to indicate where a model lies on this spectrum. Therefore, we
split each data set into three splits: the training, validation, and testing split. A learner
then is fitted to the training set, while the validation set is used to compare against when
looking for optimal parameter and hyperparameter 16 combinations. From here, the best-
performing model is chosen. Naturally, this results in a bias toward the validation set. For
that reason, we evaluate the selected model using a final test set.

In the case of deep learning models, the training process of the final estimators is visu-
alized and interpreted to rectify the choice for those final models. The results of all models
on each of the splits are reported using the previously defined measures.

5.3.4 Scalability

The final dimension along which the presented approaches in this work are evaluated is
scalability. We do this by reporting on the training and prediction times. Each experiment
runs on the same hardware: Intel(R) Core(TM) i5-7500 @ 3.40GHz (4x) with 48GB memory
and NVIDIA GeForce GTX 960 with 4GB memory.

5.4 Object-Centric Datasets

The experiments are run on three datasets. The first, the loan application OCEL, is a tradi-
tional event log transformed into an object-centric one. The second is an object-centric
dataset from an order management process. This OCEL was originally generated for
demonstration purposes [5, 23], but is now being used for predictive process mining ex-
periments as well [26, 29]. The last is taken from a real-life operational system at a large

16A parameter is internal to a model and can be optimized from data, while a hyperparameter is external to
a model, being configurable by the modeler [94].
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financial organization. For each of the OCELs, we outline the data preprocessing steps and
describe the dataset.

5.4.1 Loan Application Log

The Business Process Intelligence Challenge is an initiative that brings together academia
and industry by yearly publishing a process mining-related contest on a real-life dataset.
In 2017, the corresponding event log [85] came from a loan application process, where
events can relate to one application and multiple offer objects. We adapt this to the OCEL
standard, drawing upon the work done by Adams et al. [27] 17. The resulting data model
is drawn in Figure 12.

EventApplication

1..1

1..*
Offer

1..*

1..*

Figure 12. Loan application OCEL data model. Note that this data model is an
instantiation of the contents of the Log class in the OCEL metamodel given in Figure 2.

The log contains an attribute (EventOrigin) that indicates from which object type
events originate. This is used to create object references per event. Regarding attributes,
the original log contains only event attributes. Some of these show signs that they are
transformed to be an event attribute, suggesting that they might fit as an object attribute
when transforming the log into an object-centric event log. The HOEG feature encoding
might leverage object attributes for remaining time prediction. Therefore, we include sev-
eral attributes present in the dataset originally presented, as object attributes. Determining
which attributes should describe objects and which events, is done using domain knowl-
edge, basic semantics, and data exploration. In doing so, the event log is made to conform
to the OCEL v1.0 standard [23]. Table 9 shows a summary of relevant characteristics of this
event log, which is referred to as BPI17 in the remainder of this work. The table displays
four dimensions: Cases, Events, Objects and Event-Object Interaction. Worth noting is
that on the Events dimension it becomes apparent that there is relatively little standard
deviation in events per case. Additionally the mean and median are close to each other
for events per case as well as throughput time. This might suggest that the traces have a
similar distribution, with little outliers that draw the average (trace length or throughput
time) away from the center (median). Regarding objects in the OCEL, there are 10 addi-
tional attributes available for machine learning when HOEG is employed. The first three
of object attributes listed belong to application and the others to the offer object type.

Going into the experiments, this dataset is split into training, validation, and testing
sets based on process executions. For comparability reasons, we replicate the split used

17The exact dataset can be found within the source code of “A Framework for Extracting
and Encoding Features from Object-Centric Event Data”: https://github.com/niklasadams/
OCELFeatureExtractionExperiments.

https://github.com/niklasadams/OCELFeatureExtractionExperiments
https://github.com/niklasadams/OCELFeatureExtractionExperiments
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Table 9. Summary of the BPI17 OCEL. Note: a case is defined by the connected
components execution extraction technique ([8], Def. 5).

Characteristic Value
Cases

Statistics
Total 31,509
Minimum throughput time (s) 201.1
Maximum throughput time (s) 14,604,259.8
Median throughput time (s) 1,646,735.9
Mean throughput time (s) 1,887,853.9
Standard deviation throughput time (s) 1,119,596.8

Events
Statistics

Total 393,931
Minimum per case 6
Maximum per case 41
Median per case 12
Mean per case 12.5
Standard deviation per case 3.5

Attributes
Action Categorical
EventOrigin Categorical
OrgResource Categorical

Objects
Statistics

Total applications 31,509
Total offers 42,995

Attributes
RequestedAmount Numerical
ApplicationType Categorical
LoanGoal Categorical
OfferedAmount Numerical
CreditScore Numerical
Selected Binary
MonthlyCost Numerical
NumberOfTerms Numerical
Accepted Binary
FirstWithdrawalAmount Numerical

Event-Object Interaction
Statistics

Event<>Application 328,894
Event<>Offer 201,006

by Adams et al. [27], which sets aside 30% of the traces for model testing, 0.14% for vali-
dation, and 0.56% for model training. To prevent information leakage, we apply Z-score
normalization to the full dataset based on the training set.

5.4.2 Order Management Log

The order management dataset (OTC) is a small OCEL that has been generated to serve as
an example in works by Van der Aalst & Berti [5] and Ghahfarokhi et al. [23]. Originally it
contains five object types: order, item, package, product, and customer. As the latter two
contain few unique instances, the log produces one large trace (via connected components
extraction) containing all events. As the computational complexity of many object-centric
features (from [27]) increases quadratically with trace length, these cannot be calculated
within a feasible timeframe. Therefore, we exclude product and customer as object types
and use item as the leading type for execution extraction, so that we have multiple and
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shorter traces. The data model, then, is represented in Figure 13.

ItemEventOrder

Package

1..*

1..*

1..*

1..*

1..*

1..*

Figure 13. Order management OCEL data model. Note that this data model is an
instantiation of the contents of the Log class in the OCEL metamodel given in Figure 2.

Concerning object attributes, those that describe a customer, are adapted to be event
attributes. This can be done without data duplication or loss, as events in the log have a
one-to-one relationship with customer. Furthermore, the remaining object types: order,
item, and package, do not contain object attributes in the initially generated OCEL. The
HOEG encoding does require at least one object attribute per object type. Therefore, we
encode the object identifiers as numerical object attributes. We assume these do not con-
tain relevant information concerning our prediction target, therefore the object attributes
included in the prepared OCEL could be seen as noise.

After preprocessing, the OTC OCEL can be characterized via Table 10. Evident from
these summary statistics is the limited size of the dataset, with 8, 159 traces and 22, 367

events. Additionally, in contrast to the BPI17 OCEL (Table 9, this table reports a mod-
est standard deviation throughput time in proportion to the mean or median throughput
times. Otherwise worth noting is the relatively large number of events per case, which is
caused by the high level of event-object interaction in the log. That is, the log contains a
high number of object references per event, as indicated by the many-to-many relation-
ships in Figure 13 and the high values under Event-Object Interaction in comparison to
Tables 9 and 11. These values indicate how many references there are from events to spe-
cific object types.

After encoding this log into EFG or HOEG, we split it into training, validation, and
testing sets of traces, using a 0.7/0.15/0.15 split. Finally, based on the set of traces used for
training, we apply Z-score normalization to all splits.

5.4.3 Financial Institution Log

The third dataset included in the experiments is an object-centric event log from a large fi-
nancial institution (FI18) that is kept anonymous. Therefore, details are withheld through-
out this paper. As the OCEL concerns a critical process of the organization, the dataset
cannot be made publicly available. The data originates from a workflow management

18This abbreviation is used in the remainder of this paper to refer to the OCEL originating from the financial
institution.
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Table 10. Summary of the OTC OCEL. Note: a case is defined by leading type extraction
([8], Def. 6), with item as the leading type.

Characteristic Value
Cases

Statistics
Total 8,159
Minimum throughput time (s) 447,864.0
Maximum throughput time (s) 12,109,961.0
Median throughput time (s) 3,335,901.0
Mean throughput time (s) 3,594,196.7
Standard deviation throughput time (s) 1,638,634.3

Events
Statistics

Total 22,367
Minimum per case 8
Maximum per case 155
Median per case 56
Mean per case 57.9
Standard deviation per case 22.8

Attributes
Weight Numerical
Price Numerical
Age Numerical
Bankaccount Numerical

Objects
Statistics

Total orders 2,000
Total items 8,159
Total packages 1,325

Attributes
ObjectID Numerical

Event-Object Interaction
Statistics

Event<>Order 895,990
Event<>Item 1,761,874
Event<>Package 145,490

system (WFMS) operational in the partnering financial institution. In the WFMS process
executions have been loosely standardized. That is, activities are named and connected
with a digital dossier. The system, therefore, produces well-defined case identifiers that
enable traditional process mining. Each dossier is viewed as a case identifier. There are
three dossier types: KRS, KRV, and CV, with a respective progression in complexity. If
further work is required at the end of a KRS dossier, a KRV dossier is opened in the WFMS.
The same holds for a KRV that evolves into a CV. While work has started in a new, more
complex dossier, activities can still be executed for the preceding dossier(s). This results in
divergence, to which object-centric process mining provides a solution.

The data resulting from the described process is modeled in Figure 14. From the
data model, we observe that an OCEL can be constructed. In Figure 15, the specific data
pipeline is given.

This pipeline takes data from the WFMS application logs and enriches this with at-
tributes from a dataset containing multi-source combined enrichment data (e.g. location,
number of responsible employees). All categorical attributes used for enriching are en-
coded using count encoding with normalization, such that group names are replaced by
percentage counts of the group name occurrence. This was done before extraction from
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Figure 14. Financial institution OCEL data model. Note that this data model is an
instantiation of the contents of the Log class in the OCEL metamodel given in Figure 2.

the Output Layer, as an anonymization strategy.

Most crucial to attaining an OCEL, is the Derive Linked Dossiers step in the processing
layer. Here, based on dossier lineage information from the Combined Enrichment Database,
an activity Link Objects is inserted between each dossier promotion (e.g. from KRV to CV).
Link Objects refers to both object types, creating an object-centric link in the event data.

After the Processing Layer we yield an events table and an objects table (containing the
dossiers). Events are taken from January 1st, 2023 until May 1st, 2023, and objects are
viewed as static entities.

Table 11 gives an initial characterization of the data, distinguishing four axes: cases,
events, objects, and event-object interaction. Regarding cases and events, we observe a
positive skew in the distribution of the case length. Besides that, we note a relatively high
standard deviation for case length and throughput time when compared with the other
datasets (Tables 9 and 10). This might be indicative of a highly complex process. Further-
more, this is the largest event log included in this work, with 695, 694 events, which have
3 event attributes each. As for objects, the log contains 96, 444 objects of three types: KRS,
KRV, and CV. These object types typically have a sequential order. That is, usually a KRS
evolves into a KRV, which can evolve into a CV. It is also possible for a KRS to be directly
linked to a CV. Each follow-up object type implies a more complex process execution in
terms of work performed (and seniority required) by the process practitioners. This pre-
dictable progression can be seen in the relatively little event-object interaction. Table 11
reports events referring to the different object types in comparison to the other logs (cf.
Tables 9 and 10). This can be explained by the fact that the dataset has been extracted from
a workflow-oriented information system rather than a service-oriented system. The latter
lends itself to higher levels of object interaction as cases are not predefined at the configu-
ration or deployment of the system [95].

When preparing event-based graphs (for EFG and HOEG) from the OCEL, only the activ-
ities occurring in more than 4% of the events are included (in feature C2). Besides that, we
follow the configuration procedure presented in Section 5.1.1. The execution graphs are
split into a training, validation, and testing set, with a 0.7/0.15/0.15 split. Lastly, based on
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Figure 15. The financial institution OCEL pipeline visually indicating the steps required
to arrive at the events and objects tables. Note: arrows denote dependencies and data
flows.

the training split, each graph’s features are standardized via Z-score normalization.

5.5 Machine Learning Pipeline

The previous sections can be broadly summarized in the pipeline depicted in Figure 16.
The figure shows the components of an experiment instance. We distinguish five such
components: data loading, feature encoding, model training, model evaluation, and tracking.

Traversing the pipeline, we observe that an experiment can become a complex system
to maintain. Hence, we have opted to divide it into segregated modules that each have
their responsibility.

The data loading module is responsible for parsing and validating a dataset following
the OCEL v1.0 standard. Note how we may enter any OCEL into the system.

The feature encoding component then takes this OCEL and transforms it into the four
different encoding types. Here, we select the features given in Section 5.1 to fill the encod-
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Table 11. Summary of the Financial Institution OCEL. Note: a case is defined by the
connected components execution extraction technique ([8], Def. 5).

Characteristic Value
Cases

Statistics
Total 31,277
Minimum throughput time (s) 1.1
Maximum throughput time (s) 10,111,075.0
Median throughput time (s) 2,432,327.0
Mean throughput time (s) 2,957,048.3
Standard deviation throughput time (s) 2,354,827.1

Events
Statistics

Total 695,694
Minimum per case 4
Maximum per case 158
Median per case 20
Mean per case 22.2
Standard deviation per case 13.0

Attributes
Categorical 3
Numerical 0

Objects
Statistics

Total KRS 31,513
Total KRV 31,357
Total CV 31,278

Attributes
Categorical 13
Numerical 1

Event-Object Interaction
Statistics

Event<>KRS 235,756
Event<>KRV 466,965
Event<>CV 56,137

ing structures. Furthermore, this component requires split ratios for determining the train,
validation, and test sets.

Model training, then, serves to optimize each of the four models (including specified
hyperparameters). The graph-based models are implemented in PyTorch Geometric,
an established Python library based on PyTorch [96] to enable GNN development [97].
In the figure, the Median baseline is excluded, as it does not learn or train to fit complex
statistical patterns in the data.

The models under research are then passed to the model evaluation component, where
their predictions are scored on each split based on the metrics presented in Section 5.3.2.
From these metrics, we generate a report that is used to analyze each model’s performance.

Lastly, the tracking module, retrieves run time information from the feature encoding,
model training, and model evaluation modules and monitors the training process of each
model. The first facilitates scalability reports on preprocessing methods and model train-
ing and prediction. The second enables us to navigate the bias-variance trade-off by visu-
ally analyzing the training process of our deep learning models. Via such visualizations,
we are able to assess model stability and learning capacity during training.

Note how at most phases in the experiment flow, we can specify certain configurations
(e.g., datasets, features, hyperparameters, evaluation metrics). We instantiate each experi-
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Figure 16. The machine learning pipeline of each experiment.

ment employing the same settings (except dataset and split ratio), as discussed in previous
sections of this chapter.
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6 Results

The subsequent section presents the results obtained through three experiments. In the
first, we experiment with different hyperparameter settings, producing one best perform-
ing model per encoding. The second experiment compares model performance across the
encodings. Lastly, we elaborate on the baseline experiment, where we evaluate our mod-
els against different baselines. All three experiments involve the datasets introduced in
Section 5.4, highlighting the generalizability of the results.

6.1 Hyperparameter Tuning Experiment

The goal of hyperparameter tuning is to find a set of hyperparameters that result in perfor-
mant models across different datasets. Furthermore, it can give insight into model stability
by inspecting the performance of the different settings for learning rate and hidden dimen-
sions. Recall that learning rate influences convergence speed and performance and hidden
dimensions affects a model’s learning capacity.
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Figure 17. Test MAE scores for the EFG and HOEG encoding per hyperparameter setting.
Note: scales (y-axis) are not aligned, as we intend to compare hyperparameter settings
within each encoding and dataset.

Figure 17 shows the results of tuning learning rate and hidden dimensions simultaneously.
We first tune the EFG-based model. A first observation shows that the models are stable
for both BPI17 and FI, as the MAE score range is relatively small. We generally observe
that a lower learning rate of 0.001 scores better. Looking at hidden dimensions, 256 seems
to work best for BPI17 and OTC, while hidden dimensions = 64 yields the lowest MAE for
EFG on the FI OCEL. Besides that, we observe a pattern for the OTC dataset suggesting
that increasing model complexity improves the learning capacity of the EFG-based model.
For the BPI17 and FI OCELs, Figure 17 does not indicate a distinct pattern concerning the
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hidden dimensions hyperparameter, as the various configurations exhibit relatively similar
performance.

For the HOEG encoding, we observe approximately the same model stability per dataset
as with EFG in terms of performance variance between hyperparameter combinations.
Again learning rate=0.001 yields the best model, in combination with 64, 128, and 256 hid-
den dimensions for the FI, BPI17, and OTC OCELs respectively. Akin to the EFG perfor-
mance on OTC, Figure 17 suggests that increasing the number of hidden dimensions aids
model performance.

Table 12. HOEG compared against EFG in terms of model complexity on all three
datasets.

Hidden BPI17 OTC FI Average
Dimensions Model Parameters Model Parameters Model Parameters Model Parameters

EFG HOEG EFG HOEG EFG HOEG EFG HOEG
8 587 1,857 475 1,924 395 3,092 486 2,291
16 1,427 4,985 1,203 5,628 1,043 7,964 1,224 6,192
24 2,523 9,393 2,187 11,124 1,947 14,628 2,219 11,715
32 3,875 15,081 3,427 18,412 3,107 23,084 3,470 18,859
48 7,347 30,297 6,675 38,364 6,195 45,372 6,739 38,011
64 11,843 50,633 10,947 65,484 10,307 74,828 11,032 63,648
128 40,067 183,177 38,275 245,644 36,995 264,332 38,446 231,051
256 145,667 694,025 142,083 950,028 139,523 987,404 142,424 877,152
Average Scale 1 4.0 1 5.5 1 7.4 1 5.6

Table 12 highlights the inherent higher complexity of the HOEG encoding. The same
number of hidden dimensions implies a different number of model parameters for EFG and
HOEG. On average, our HOEG configurations have 5.6 times the number of model param-
eters of an EFG (on equal datasets). This is due to the HOEG model being a heterogeneous
GNN, which duplicates a homogeneous GNN architecture across each node type and in-
serts message-passing layers per edge type (as explained in Section 2.2.4). By this, HOEG
is able to leverage object (interaction) information.

Concluding the first experiment, we observe comparable model stability for both encod-
ings. Drawing definitive conclusions about a universally optimal dataset-agnostic hyper-
parameter setting for an encoding seems to be premature. Additionally, we cannot observe
an overall superiority of one encoding type over the other. The next experiment delves
more into comparing the encoding types.

6.2 Encoding Type Experiment

In this experiment, we contrast the EFG and HOEG encoding types. Distributions are
given of the model performance of all hyperparameter combinations per split (train, val-
idation, and test). In addition, the learning curves of the best models for both EFG and
HOEG are plotted per dataset, providing insight into the training process and model per-
formance during training. Using both visualization types, we directly compare the two
encoding types in terms of model stability and learning capacity.
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Figure 18. Violin plot of the MAE score distribution over different hyperparameter
settings per split for EFG and HOEG encodings on BPI17 OCEL (left). Training and
validation loss learning curves of tuned EFG and HOEG models on BPI17 OCEL (right).

Figure 18 provides an initial impression of the potential prevalence of HOEG over EFG
in terms of learning capacity on the loan application OCEL. Looking at HOEG in the violin
plot, there is notable interquartile overlap among scores for all three splits, which suggests
stable model performance. In contrast, the EFG exhibits some indications of instability,
particularly on the training split. This is primarily attributed to a few outliers in the MAE
scores on the training split. However, when considering most MAE scores across the three
splits, EFG’s performance appears relatively consistent.

Assessing the learning curves in Figure 18, we note that EFG (depicted in orange and
burgundy) shows indications of model instability. Its training loss curve starts at a rela-
tively low value, after which it increases in an erratic manner. In contrast, the validation
loss curve demonstrates only marginal improvement, suggesting that the model struggles
to learn meaningful patterns from the data. HOEG, on the other hand, presents a more
favorable learning curve. The training curve drops over the course of the epochs, indica-
tive of effective learning. While fluctuations are evident, the overall trajectory points to
the model’s capacity to adapt to the training data. Importantly, the validation loss curve
follows a steady downward trend, signifying that the model generalizes well to unseen
data.

The violin plot in Figure 19 highlights the performance distribution on the order man-
agement demo OCEL. Notably, both encodings display significantly lower MAE scores on
the training split compared to the validation and testing splits. This discrepancy suggests
the models are overfitting, as both EFG and HOEG excel in learning the training data’s
patterns but exhibit challenges in generalizing to the validation and holdout sets. When
assessing the encoding performances across the splits, it becomes apparent that EFG shows
a slight advantage over HOEG, although we cannot assert definitive conclusions based on
these observations.

The learning curves reinforce the suggestion that both encodings highly overfit the
order management event data, as both encodings show diverging training and validation
losses. Regarding model stability, all loss curves are in steady decline, which is indicative
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Figure 19. Violin plot of the MAE score distribution over different hyperparameter
settings per split for EFG and HOEG encodings on OTC OCEL (left). Training and
validation loss learning curves of tuned EFG and HOEG models on OTC OCEL (right).
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Figure 20. Violin plot of the MAE score distribution over different hyperparameter
settings per split for EFG and HOEG encodings on FI OCEL (left). Training and
validation loss learning curves of tuned EFG and HOEG models on FI OCEL (right).

Figure 20 presents us with the MAE score distribution of the various configurations of
EFG and HOEG, along with a plot depicting the learning curves of the best model config-
urations on the FI dataset. A preliminary observation of the left plot suggests that EFG ex-
hibits more favorable score distributions compared to HOEG. However, further examina-
tion, including interquartile overlap and insights from the learning curves plot, indicates
that HOEG may possess greater stability. The learning curves on the right demonstrate
that HOEG’s training loss is less volatile, whereas EFG’s validation loss maintains a more
stable pattern throughout training. While neither EFG nor HOEG appears to be overfit-
ting, both encoding types struggle to effectively capture the OCEL patterns required for
accurate remaining time predictions.

In general, the results of the second experiment are not conclusive about which encoding
facilitates the most expressiveness of OCELs to predict process remaining time. Looking at
the learning curves, it might be suggested that HOEG trains in a more stable manner than
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EFG. Given the nuances observed in this second experiment regarding the performance
of HOEG and EFG, the following experiment delves into a comparative analysis against
established baselines to provide more context for evaluating the encodings explored.

6.3 Baseline Experiment

This baseline experiment provides context and helps us understand the relative impact of
the results of the previous experiments. Besides EFG, HOEG is now contrasted with Me-
dian, LightGBM, and EFGss (by Adams et al. [27]) baseline models per dataset (see Section
5.3.1). Recall that LightGBM takes tabular input data, meaning that structural informa-
tion is not included. Furthermore, EFGss refers to a GCN architecture running on EFG
with subgraph sampling (subgraph size: k = 4). Tables 13, 14, and 15 enable comparative
analysis of model performance, measured by MAE, MSE, and MAPE, as well as model
scalability in terms of fitting time and prediction time. The prediction time column gives
the time in seconds that it takes a model to predict on a complete dataset (all three splits).
Finally, per column, the most favorable value is emphasized for each metric.

Table 13. HOEG compared against EFG and different baseline models on performance
and scalability on BPI17 OCEL. Note that the best performing hyperparameters have been
selected: lr = 0.001, hd = 128 for both HOEG and lr = 0.001, hd = 256 for EFG.

Model Train Score Validation Score Test Score Fitting Prediction
MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE Time (s) Time (s)

Median 0.7854 1.0802 4.9764 0.7746 1.0472 4.7171 0.0042 0.0005
LightGBM 0.5282 0.5730 8.3854 0.5282 0.5664 8.2184 15.9230 0.8351
EFGss

1 0.4414 0.5481 16.9989 0.4519 0.5627 15.6191 0.4377 0.5322 14.1622 547.1785 86.1564
EFG 0.5084 0.6010 2.9345 0.5209 0.6211 3.7560 0.5052 0.5855 2.7618 122.0836 20.5225
HOEG 0.4739 0.5745 5.3590 0.4836 0.5878 5.4609 0.4700 0.5610 5.1711 536.0755 68.5030
1 GCN model running on EFG with subgraph sampling of size four and hyperparameters: lr = 0.01, hd = 24.

Upon looking at the results for the loan application log (BPI17), we notice that the
EFGss scores best on MAE and MSE (on all splits), meaning its predictions are closest
to the actual values on average and do not deviate significantly from the true remaining
times compared to the other models. The highest test MAE is 0.7746 (Median), while the
lowest is 0.4377. In contrast with the Median baseline model, HOEG achieves an MAE
score improvement of 0.4700−0.7746

0.7746 × 100% = −0.39%. EFG achieved the best MAPE score
(on all splits), which indicates that its predictions tend to be closer to the true values in
relative terms. Crucially, from strongest to weakest we observe the following ordering in
model performance: EFGss, HOEG, EFG, LightGBM, Median.

Interestingly, on the scalability perspective, Table 13 reports the reverse. The Median
takes the least time training and predicting, while the EFGss is the slowest. This is ex-
pected, as the Median model does not learn patterns like the others, there are no param-
eters to be fit. Therefore, when comparing the actual learning algorithms, it is important
to note that the LightGBM significantly outperforms the graph-based models. Also in-
teresting is the fact that the HOEG model is more scalable than the EFGss, even while
having a much higher parameter count and a lower learning rate. That is, the EFGss has
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1, 297 model parameters and a learning rate of 0.01, compared to 183, 177 parameters and
a learning rate of 0.001 for HOEG.

Table 14. HOEG compared against EFG and different baseline models on performance
and scalability on OTC OCEL. Note that the best performing hyperparameters have been
selected: lr = 0.001, hd = 256 for both HOEG and EFG.

Model Train Score Validation Score Test Score Fitting Prediction
MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE Time (s) Time (s)

Median 0.7379 0.9888 4.4810 0.7175 0.8762 3.3845 0.0064 0.0021
LightGBM 0.5422 0.5021 5.6673 0.6060 0.5980 5.2201 1.9556 0.7211
EFGss

1 0.6359 0.7769 11.2216 0.7338 1.0440 13.3283 0.6585 0.7560 11.4388 750.0486 150.5996
EFG 0.1835 0.1601 11.0881 0.5985 0.8779 13.6788 0.5352 0.6951 38.7516 83.8779 6.6364
HOEG 0.2163 0.1804 2.2094 0.6069 0.8723 5.8325 0.5505 0.6952 5.5826 305.0114 25.1399
1 GCN model running on EFG with subgraph sampling of size four and hyperparameters: lr = 0.01, hd = 24.

For the baseline results on the demo object-centric event log (OTC), performance scores
are rather different. The test MAE ranges from 0.5352, achieved by EFG, to 0.7175, at-
tained by Median. The EFG seems to be prominent when the MAE and MSE metrics are
viewed. HOEG closely follows and additionally performs better with the MAPE metric
on the training and validation set. Unexpectedly, on the holdout set, the Median model
achieves the best MAPE. Conspicuously, in line with the figures in the previous experi-
ments, for EFG and HOEG there is a steep increase in both MAE and MSE scores going
from the train to the validation or test split.

In terms of scalability, the same pattern as with the BPI17 OCEL appears. That is,
the Median takes the least time, followed by the LightGBM, EFG, HOEG, and finally the
EFGss.

Table 15. HOEG compared against EFG and different baseline models on performance
and scalability on FI OCEL. Note that the best performing hyperparameters have been
selected: lr = 0.001, hd = 64 for HOEG and EFG.

Model Train Score Validation Score Test Score Fitting Prediction
MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE Time (s) Time (s)

Median 0.7673 1.2763 4.9429 0.7702 1.2881 2.5284 0.0071 0.0005
LightGBM 0.7167 0.8035 4.6391 0.7286 0.8334 1.8010 15.8959 1.1631
EFGss

1 0.7250 1.0537 11.4524 0.7222 1.0338 9.0335 0.7310 1.0579 8.3716 645.9569 749.5316
EFG 0.6928 0.9487 20.1893 0.6906 0.9328 13.9496 0.6955 0.9518 7.8566 211.5477 21.3843
HOEG 0.6879 0.9911 22.4544 0.6919 0.9898 14.6175 0.6961 1.0037 15.1977 884.2844 82.1531
1 GCN model running on EFG with subgraph sampling of size four and hyperparameters: lr = 0.01, hd = 24.

The object-centric event data from the complex process at the financial institution yields
different scores again. Here, EFG marginally outperforms HOEG. Both set themselves
apart from the baseline models, but not by much, as our main regression metric, MAE,
ranges from 0.6955 (EFG) to 0.7702 (Median).

When considering model scalability, the fitting times differ from the other datasets.
Here, HOEG takes the longest to train, while EFGss comes in second. Prediction times
display the same order as the other datasets. Worth noting, is that compared to HOEG,
the EFGss took significantly longer to predict on the train, validation, and test set, taking
nearly 12.5 minutes (749.5316 seconds).
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On the whole, the HOEG outperforms the baseline models in all datasets based on MAE.
Considering all three metrics and OCELs, the results could be used as evidence that hints
at the GNN based on our configuration of the EFG encoding standing out across the
datasets. However, the characteristics of the three datasets appeal to a more nuanced
interpretation and discussion.
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7 Discussion

This chapter discusses interpretations, limitations, and implications of the results previ-
ously presented. There, we learned that specific characteristics of the datasets might in-
fluence the capacity of the models to learn relevant patterns and relationships from the
encoding structures. Therefore, the following is structured by dataset, along with a section
synthesizing the results and answering the research questions posed in the Introduction.

7.1 Loan Application Log

The BPI17 OCEL is relatively structured, having only two object types and originating
from a workflow management system. Each event is always related to one application,
and only the latter events in a trace are related to one or more offers. Regarding the
experimental results, this may be why the machine learning models, and especially the
graph-based ones, learn so well on this dataset. The results of the hyperparameter tuning
experiment may be used to support this, since for all hyperparameter settings, the HOEG-
based model performs relatively well.

Based on MAE and MSE, EFGss outperforms EFG by a fair margin and HOEG by a
slight margin. This might seem odd, as the EFGss is derived from the EFG encoding,
which is a large component of the HOEG structure. This may be explained by the dif-
fering preprocessing pipelines of the graph-based features driving the EFGss-based GCN
and the features undergirding the higher-order GNNs running on our EFG and HOEG
configurations.

The EFGss-based GCN performs graph-level predictions on subgraphs of size 4, sam-
pled from EFG process executions. The HOEG-based and EFG-based models give a pre-
diction per event node. This difference has two implications in favor of the EFGss.

First, the EFGss receives more examples, as the total events in the OCEL are duplicated∑
t∈L

(tsize − (k − 1)) × 1{tsize≥k}
19 times via subgraph sampling. For the BPI17 OCEL, this

means the EFGss trained on 672, 120 events, whereas our EFG and HOEG configurations
received the original 220, 965 events (considering the train split).

Secondly, subgraph sampling in combination with graph-level prediction implies that
the first k − 1 events in a trace are not predicted. This could greatly affect regression loss,
especially as the first set of events in a trace are the most difficult to predict. Crucially,
remaining times for the first k− 1 events are always higher, and usually much higher than
the events following. An exclusion of these events from predictive models might then
yield a misleadingly good regression score. Particularly MSE (but MAE as well) is affected
in a seemingly positive manner, as MSE punishes outliers. For the loan application log,
subgraph sampling excludes

∑
t∈L(k− 1)× 1{tsize≥k} + tsize × 1{tsize<k} = 94, 527 events20

19Where L is any OCEL, t indicates a trace, tsize implies number of events in a trace, k equals the subgraph
size, and 1{tsize≥k} represents an indicator function that equals 1 if tsize is greater than or equal to k and 0
otherwise.

201{tsize<k} represents an indicator function that equals 1 if tsize is less than k and 0 otherwise.
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(24% of the total, cf. Table 9).

Besides affecting regression scores, in some process mining contexts where traces are
short, not predicting the first k − 1 events of a trace might be unfavorable. In addition,
when scalability is crucial, subgraph sampling is not recommended as it requires the global
pooling operation which is expensive (as demonstrated by the last two columns of Table
13).

Subgraph sampling does, on the other hand, seem to yield more stable learning curves.
This was observed in our trials and with subgraph sampling (see Supplementary Figures,
Figure A.1).

Considering these lines of thought, HOEG seems to be the best-performing model
when looking at MAE and MSE.

7.2 Order Management Log

As described in Section 5.4.2, the order management OCEL is a small synthetic log, con-
taining 22, 367 events and 8, 159 traces (using lead type extraction based on item). More-
over, the object types used (order, item, and package), do not contain object attributes.
Besides that, this dataset contains much object interaction, implying individual traces are
relatively long.

Upon analyzing the hyperparameter tuning results for OTC we observe a seemingly
clear pattern, higher model complexity increases model performance (for both EFG and
HOEG). This could be due to the size of the OTC OCEL. When a dataset is too small, a less
complex model might not converge fast enough when learning complex patterns from the
data. A model with more hidden dimensions might use the extra hidden dimensions to
find the relevant patterns earlier in the training process.

Concerning EFG and HOEG in the second experiment, we observe strong signs of over-
fitting, in both the performance distribution plots and the learning curves. This could be
attributed to how this OCEL was generated. It is unknown which probability distribu-
tions (e.g. uniform, Gaussian, Poisson) were used to produce the timings of events or
values of attributes, neither is it known how traces and relationships were built up. The
learning curves and violin plot indicate that the models struggle to find general patterns
in the training data that exist in the validation and test data as well. They seem to fit the
noise in the training split. This might suggest that the dataset does not contain realistic
object-centric event data or contains too few examples.

The results of the baseline experiment (cf. Table 14), could serve as further support for
this since the LightGBM and EFGss models were unable to fit the data as well.

When comparing HOEG and EFG with the baselines, we observe a jump in perfor-
mance. This suggests that the graph structure does aid the predictive performance. This
may be associated with the many object interactions that this log contains. That is, object
interactions lead to more complex graph structures, where nodes have multiple incoming
or outgoing edges, which are leveraged by the HOEG-based and EFG-based GNNs.
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For the OTC OCEL, EFGss performs worse than HOEG and EFG. In some cases, sub-
graph sampling removes relevant interactions, resulting in a series of unconnected events.
For instance, in our running example (i.a. depicted in Figure 10), taking a subgraph sample
of size 4 produces many samples of events that are unconnected (e.g. {< e1, e2, e3, e4 >,<

e2, e3, e4, e5 >, ...}). This could well be the case for the OTC dataset. Therefore, the EFGss

might find difficulties in leveraging information in related events for predicting remaining
time of process execution subgraphs, explaining its lower performance.

Interpreting whether the addition of object attributes and explicit modeling of object
interactions lifts performance remains challenging. At first, it seems that including ob-
jects explicitly introduces noise, considering the slight drop in performance displayed by
Figure 19. However, upon further reasoning, one could recognize the questionable choice
of event attributes as interference. Specifically, the log contains event attributes weight,
price, which can be argued to be object attributes for any of the object types (order, item,
or package) from an ontology point of view. That is, these attributes might not be relevant
for every event, with Payment reminder as a real example from the OTC log. It would be
more fitting to consider weight and price as attributes of item, for instance. Given that
these attributes are taken as event attributes, implies they are duplicated across events,
implicitly encoding object information into events. This means our EFG might uninten-
tionally leverage object information, depending on the relevance of these attributes.

7.3 Financial Institution Log

The FI OCEL contains 695, 694 events, 31, 277 traces, 3 event attributes, and 14 object at-
tributes (recall Section 5.4.3). The object-centric event data was extracted from a real-life
operational workflow management system that supports a complex process that has many
external dependencies.

Our first experiment suggested that there is no one hyperparameter setting that works
best, for neither HOEG or EFG. This is consistent with the results of the second experi-
ment. Here, the learning curves signify that our higher-order GNN models struggle to
learn relevant complex patterns with respect to process remaining time. Though HOEG’s
learning curve presents itself more stable, the validation loss is not going down by much
over the course of the epochs. This could be attributed to the additional data that HOEG
includes compared to EFG (i.e. the 14 object attributes). Nonetheless, HOEG does not
seem to leverage this information to its advantage, as the EFG attains the best-performing
model by a negligible margin (test MAE difference of 0.6961−0.6955 = 0.0006). This might
be explained by two factors. First, a meager amount of object interactions is present in the
process (compared to the other OCELs). The reason for this is the design of the workflow
management system, which defines one case notion. Due to the nature of the process at
hand, a business case was formed for connecting these cases to attain an object-centric
event log. Ultimately, this implies there is less structural information that the HOEG can
leverage. The second factor worth considering is the limited predictive value of both the
event attributes and, to a greater extent, the object attributes. It would be reasonable to
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assume including 14 additional features, lifts the predictive performance of the HOEG-
based model. However, as the additional findings (seen in Table 15) suggest, including
more features does not improve model performance by much. This suggestion mainly be-
comes apparent by contrasting the metric scores of the Median model against the others.
In doing so, we observe a predictor that does not learn complex patterns from input fea-
tures approaching the performance of the complex models (test MAE of Median: 0.7702,
LightGBM: 0.7286). This indicatively substantiates the potentially limited predictive value
of the object attributes.

Furthermore, the baseline experiment demonstrated the EFG-based and HOEG-based
models modestly outperform the baselines. Interestingly, the Median baseline approxi-
mates the more complex baselines, without having learned complex patterns. This could
be attributed to case deadlines that are in place at the respective organization. These have
a normalizing effect on the process remaining times. These deadlines are set to feasible
dates, based on case complexity, priority, and central tendency measures (e.g. mean, me-
dian, or mode) of process execution times. Therefore, it could well be that the Median
model performs well on the events of most traces, but lacks the complexity to fit to the
events in the traces that exceeded their deadline. The findings support this explanation,
as Median achieved a relatively favorable MAPE score, while the test MSE score is the
highest (cf. Table 15).

7.4 Heterogeneous Object Event Graph Configuration Recommendations

Configuring HOEG for predictive process monitoring enables integral encoding of OCELs,
but it also entails certain risks that warrant careful consideration. Specifically, when mod-
eling a heterogeneous object event graph, it is not immediately apparent which direction
event-object edges should take. Therefore, it seems sensible to make them undirected.
Upon first thought, this seems perfectly fine. However, when considering the message-
passing mechanism in a GNN with two or more message-passing layers, it becomes clear
that information is passed from future events to the current. This is problematic, as in a
real-life scenario, features about events from the future are not available. Via objects, we
are able to leak information from many events in the future to the current one, as objects
tend to be related to many events. Therefore, we recommend modeling object node types
as source nodes with outgoing edges to event nodes, which are then the destination nodes.

Unexpectedly, this property that HOEG provides introduces an appealing advantage.
That is, we can estimate how predictable a process is based on how well a model can learn
to predict remaining time while leaking future event information (with respect to the cur-
rent event). Table 16 highlights, model performance when future event features are used
in predicting remaining time for events. We observe a drastic decrease in regression loss
for the BPI17 OCEL compared to the experimental results, where the best model achieved
a test MAE of 0.4377. For the order management log, the information leaking HOEG con-
figuration mainly shows an increase in performance on the train split. For the test set, a
modest loss decrease of 0.5352 − 0.4930 = 0.0422 is obtained, again showing the model’s



64 T.K. Smit

inability to generalize well to unseen data. For the FI OCEL, the performance increase
is negligible (0.6955 − 0.6951 = 0.0004 on the test set), compared to the best model on
the FI log. Even when information about future events may be used to predict remaining
time per event, the higher-order GNN struggles to make accurate predictions. Therefore,
these findings suggest the FI process may be highly unpredictable, strengthening previ-
ous arguments. Finally, for the FI process, this could be used as an argument to prioritize
structuring the process over introducing predictive techniques to aid its operational effi-
ciency.

Table 16. Mean absolute error scores for each dataset encoded using a leaky HOEG
configuration.

OCEL Mean Absolute Error
Train Validation Test

BPI17 0.0934 0.0927 0.0934
OTC 0.0938 0.5465 0.4930
FI 0.6854 0.6881 0.6951

Throughout our experiments, the same GNN architecture has been instantiated on
both EFG and HOEG. As the two encodings are different, there is every hope that an inter-
action might be at play between GNN design and encoding type. For instance, the higher-
order message-passing layers may be favorable for EFG, disregarding the enhanced capa-
bilities of HOEG. Conceivably, other GNN designs, employing different message-passing
layers, or a different set of hyperparameters (e.g. fixed ones from Table 8), might be needed
to learn useful patterns from the HOEG encoding. Besides that, there is a bias towards a
well-suited design for EFG, as our preliminary experiments, used to assemble our initial
GNN, were performed only on the EFG encoding. From there, one final architecture was
put forward to serve as the deep model in both encodings. Moreover, we utilized a func-
tionality that automatically converts a homogeneous model to a heterogeneous one. This
might not be necessarily optimal, as there are at least three other techniques provided by
Fey & Lenssen [97] to do this. All three provide more options to include domain-specific
configuration optimizations, which will likely yield a better-fitting model for the HOEG
encoding.

Also worth noting, is the inherent complexity of HOEG compared to EFG-based deep
learning models, as demonstrated by Table 12. This should be considered when drafting
designs based on the HOEG encoding.

7.5 Synthesis

The interpretation of the experimental results indicate that HOEG is a promising encod-
ing technique. Compared to EFG, HOEG generally exhibits favorable learning curves.
This does not seem to translate into the final model performance per se, as the HOEG en-
coding only outperforms EFG on the BPI17 log, and closely follows EFG in the OTC and
FI OCELs. These results constrain us from being able to draw definitive conclusions on
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the superiority of either encoding type. Nevertheless, the above sections presented argu-
ments that incite a nuanced answer attributing differing encoding performances to dataset
characteristics. BPI17 is a rather structured OCEL, with a decent amount of object interac-
tions, and clear event and object attributes. This likely facilitates good learning capabilities
for HOEG, explaining its edge over EFG. OTC is a small dataset, where the mechanisms
and probability distributions used for its generation are unknown. Moreover, it could be
argued that its event attributes should actually be object attributes, which obscures as-
sessing the superiority of either HOEG or EFG. Finally, the findings suggest that FI OCEL
contains noisy attributes and relatively few object interactions, making it difficult to learn
useful patterns with respect to remaining time prediction, especially for the HOEG encod-
ing. In light of our experimental results, there is some indication that HOEG may offer a
slight advantage over EFG in terms of remaining time prediction on OCELs. This is mainly
attributed to its capability to learn patterns from object interactions and object attributes,
as this is the chief difference compared to EFG (cf. Chapter 4).
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8 Conclusion

In this thesis, we set out to address the central research question: How to leverage the
multi-dimensional data structure given in object-centric event logs in order to predict process re-
maining time?. To answer this, four sub-questions aided the discussion. After providing
theoretical background, we answer the first two sub-questions through Section 3.2. Ex-
isting approaches perform machine learning tasks on OCELs by either projecting the log
onto a single case definition, or utilizing object-centric execution extraction to obtain true
object-centric traces (SRQ1). OCELs host an enhanced data structure compared to tradi-
tional event logs. Extant literature [27, 28, 30] takes advantage of this through encoding
object-centric process behavior as graphs, including features that describe event-object in-
teractions, capturing object-object interactions, and incorporating object attributes (SRQ2).
None of the extant OCPPM implementations enjoy this full set of capabilities provided by
OCELs. This gave rise to requirements for a solution that addresses the shortcomings
of individual approaches. Combining the work of Adams et al. [27] and Berti et al. [30],
we integrated the different capabilities of OCELs into one novel class of feature encod-
ings: heterogeneous object event graphs (SRQ3). Through a series of three experiments
performed on three datasets, we obtained insight into the performance and scalability of
HOEG when predicting process remaining time. HOEG was mainly contrasted with EFG,
an encoding type proposed by Adams et al. [27] that considers OC-DFGs as its main struc-
ture to attach features onto. In terms of performance, HOEG-based GNNs perform better
than EFG-based models for well-structured object-centric processes like the loan appli-
cation process. Additionally, the HOEG encoding type could be expected to excel when
attributes in the OCEL are well-defined, and object interactions are prolific, due to event-
object interaction being an explicit part of its graph encoding structure (SRQ4). Regarding
scalability, the results consistently demonstrated that models based on HOEG are more
complex than EFG-based models, having more model parameters. Therefore, they tend
to be less scalable. Considering this, we propose the heterogeneous object event graph
encoding type as a promising technique to leverage the multi-dimensional data structure
given in object-centric event logs for predicting process remaining time.

Future work might look into different configurations of HOEG, as we have only eval-
uated one possible implementation. Other options may include edge features or different
heterogeneous graph neural network architectures. Besides that, subgraph sampling tech-
niques could provide better model results, as hierarchical patterns may then be learned
better through pooling operations. Another avenue for further research would be explor-
ing different applications of the HOEG encoding, as it is flexible to a variety of tasks. Via
HOEG one can make predictions (regression or classification) on any component of the
heterogeneous graph: events, objects, edges, or a full graph. This could, for instance, pro-
vide interesting applications of outlier detection, extending the work by Berti et al. [30],
which demonstrates an initial attempt at outlier detection for objects in OCELs. Lastly, the
HOEG encoding might be utilized to assess the predictability of an object-centric process,
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giving possible insights into process maturity.
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Figure A.1. Training and validation loss learning curves of GCN [27] and higher-order
GNN models running on the subgraphed EFG with subgraph size four.
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44. Veličković, P. et al. Graph Attention Networks 2018. arXiv: 1710.10903 [stat.ML].

45. Brody, S., Alon, U. & Yahav, E. How Attentive are Graph Attention Networks? 2022.
arXiv: 2105.14491 [cs.LG].

46. Battaglia, P., Pascanu, R., Lai, M., Jimenez Rezende, D. & kavukcuoglu koray, k. Inter-
action Networks for Learning about Objects, Relations and Physics in Advances in Neural In-
formation Processing Systems (eds Lee, D., Sugiyama, M., Luxburg, U., Guyon, I. & Gar-
nett, R.) 29 (Curran Associates, Inc., 2016). https://proceedings.neurips.cc/
paper_files/paper/2016/file/3147da8ab4a0437c15ef51a5cc7f2dc4-

Paper.pdf.

47. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural Message Pass-
ing for Quantum Chemistry in Proceedings of the 34th International Conference on Machine
Learning (eds Precup, D. & Teh, Y. W.) 70 (PMLR, Aug. 2017), 1263–1272. https:
//proceedings.mlr.press/v70/gilmer17a.html.

48. Battaglia, P. W. et al. Relational inductive biases, deep learning, and graph networks 2018.
arXiv: 1806.01261 [cs.LG].

49. Schlichtkrull, M. et al. Modeling Relational Data with Graph Convolutional Networks in
The Semantic Web (eds Gangemi, A. et al.) (Springer International Publishing, Cham,
2018), 593–607. ISBN: 978-3-319-93417-4.

50. Liu, Z. et al. Heterogeneous Graph Neural Networks for Malicious Account Detection in
Proceedings of the 27th ACM International Conference on Information and Knowledge Man-
agement (Association for Computing Machinery, Torino, Italy, 2018), 2077–2085. ISBN:
9781450360142. https://doi.org/10.1145/3269206.3272010.

https://proceedings.neurips.cc/paper_files/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://arxiv.org/abs/1609.02907
https://proceedings.mlr.press/v97/wu19e.html
https://proceedings.mlr.press/v97/wu19e.html
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/2105.14491
https://proceedings.neurips.cc/paper_files/paper/2016/file/3147da8ab4a0437c15ef51a5cc7f2dc4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/3147da8ab4a0437c15ef51a5cc7f2dc4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/3147da8ab4a0437c15ef51a5cc7f2dc4-Paper.pdf
https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.mlr.press/v70/gilmer17a.html
https://arxiv.org/abs/1806.01261
https://doi.org/10.1145/3269206.3272010


How Object-Centric is Object-Centric Predictive Process Monitoring? 73

51. Zhang, C., Song, D., Huang, C., Swami, A. & Chawla, N. V. Heterogeneous Graph Neu-
ral Network in Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining (Association for Computing Machinery, Anchorage,
AK, USA, 2019), 793–803. ISBN: 9781450362016. https://doi.org/10.1145/
3292500.3330961.

52. Wang, X. et al. Heterogeneous Graph Attention Network in The World Wide Web Conference
(Association for Computing Machinery, San Francisco, CA, USA, 2019), 2022–2032.
ISBN: 9781450366748. https://doi.org/10.1145/3308558.3313562.

53. PyTorch Geometric. Heterogeneous Graph Learning https://pytorch-geometric.
readthedocs.io/en/latest/notes/heterogeneous.html (2023).

54. Friedman, J. H. Stochastic gradient boosting. Computational Statistics & Data Analysis
38. Nonlinear Methods and Data Mining, 367–378. ISSN: 0167-9473. https://www.
sciencedirect.com/science/article/pii/S0167947301000652 (2002).

55. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(Association for Computing Machinery, San Francisco, California, USA, 2016), 785–
794. ISBN: 9781450342322. https://doi.org/10.1145/2939672.2939785.

56. Dorogush, A. V., Ershov, V. & Gulin, A. CatBoost: gradient boosting with categorical fea-
tures support 2018. arXiv: 1810.11363 [cs.LG].

57. Ke, G. et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree in Advances in
Neural Information Processing Systems (eds Guyon, I. et al.) 30 (Curran Associates, Inc.,
2017). https://proceedings.neurips.cc/paper_files/paper/2017/
file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

58. Teinemaa, I., Dumas, M., Rosa, M. L. & Maggi, F. M. Outcome-Oriented Predictive
Process Monitoring: Review and Benchmark. ACM Trans. Knowl. Discov. Data 13. ISSN:
1556-4681. https://doi.org/10.1145/3301300 (Mar. 2019).

59. Verenich, I., Dumas, M., Rosa, M. L., Maggi, F. M. & Teinemaa, I. Survey and Cross-
Benchmark Comparison of Remaining Time Prediction Methods in Business Process
Monitoring. ACM Trans. Intell. Syst. Technol. 10. ISSN: 2157-6904. https://doi.
org/10.1145/3331449 (July 2019).

60. Lee, S., Lu, X. & Reijers, H. A. The Analysis of Online Event Streams: Predicting the Next
Activity for Anomaly Detection in Research Challenges in Information Science (eds Guiz-
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