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Abstract—Osteoporosis, a prevalent skeletal disorder affecting
postmenopausal women and older adults, leads to reduced bone
mass and deteriorating bone microarchitecture, resulting in
heightened fracture risk. Early diagnosis is crucial for timely
treatment and fracture prevention. Bone mineral density (BMD)
estimation is pivotal in this regard, with trabecular tissue pro-
viding key insights. Dual-Energy X-ray Absorptiometry (DXA)
and Quantitative Computed Tomography (QCT) are the current
clinical standards but come with several limitations. Spectral CT,
a promising technology, overcomes these limitations by employing
dual-energy techniques. It quantifies materials based on distinct
attenuation properties at different energy levels. A three-material
decomposition technique shows potential in dual-energy CT,
enabling BMD quantification without a calibration phantom
and addressing adipose tissue influence. This review explores
the application of three-material decomposition in spectral CT
for osteoporosis BMD assessment, evaluating existing techniques,
strengths, and limitations, and offering insights into spectral
CT’s potential in early diagnosis and osteoporosis management,
outlining future directions, including technological advancements
and improved BMD analysis using three-material decomposition
in spectral CT.

Index Terms—osteoporosis, spectral CT, three-material decom-
position

1. Introduction
Osteoporosis is a prevalent skeletal disorder that affects mil-

lions of individuals worldwide, particularly postmenopausal
women and older adults [1]. It is characterized by reduced
bone mass and deterioration of bone microarchitecture, leading
to increased bone fragility and a heightened risk of fractures
[2]. The World Health Organization (WHO) estimates that
worldwide, one in three women over the age of 50 will
experience osteoporotic fractures, along with one in five men
in the same age group [3]. These fractures can have severe
consequences, including pain, disability, reduced quality of
life, and increased mortality rates [4].

Early diagnosis of osteoporosis is paramount to avoid the
development of fractures and begin early treatment to deter
further bone mass decline. To detect early signs of osteo-
porosis, bone mineral density (BMD) must be estimated. The
BMD is representative of the presence, and in what quantity,
of minerals such as calcium hydroxyapatite (HA) within the
bone and it is best observed on the trabecular tissue [5].

The current gold standard technique for BMD assessment is
Dual-Energy X-ray Absorptiometry (DXA) [6]. DXA is a non-
invasive technique characterized by its low radiation exposure

and cost-effectiveness [7]. However, its two-dimensional na-
ture makes it size-dependent [8]. Furthermore, DXA is unable
to differentiate between compact cortical bone and porous tra-
becular bone [8]. Quantitative Computed Tomography (QCT)
is a widely used method for assessing BMD volumetrically.
Contrary to DXA, QCT measurements are independent of
body size and provide the ability to separately analyze cortical
and trabecular bone [9]. However, it’s important to note that
QCT involves higher radiation exposure and requires the use
of a phantom for calibration. Additionally, the impact of
adipose tissue in bone marrow on QCT measurements has been
investigated in several studies, revealing a tendency for BMD
underestimation [10].

Spectral CT imaging has emerged as a promising technol-
ogy with the potential to address the limitations of conven-
tional CT and offer additional advantages for BMD assessment
[11]. Dual-energy spectral CT offers increased information
acquisition by capturing attenuation values at two distinct
energy levels. This feature permits the differentiation and
quantification of materials with varying attenuation properties
at specific energies. The majority of dual-energy CT (DECT)
acquisition methods, such as rapid kVp switching and dual-
source CT, necessitate prospective techniques entailing specific
acquisition protocols [12]. A more recent advancement is
the dual-layer detector CT (DLCT) system, which inherently
captures dual-layer energy information, eliminating the neces-
sity for dedicated acquisition protocols, with lower radiation
exposure and the potential for opportunistic screening [13].

Previous works have highlighted the potential of employing
a three-material decomposition technique for BMD assessment
in DECT images [14]. This same approach has also demon-
strated efficacy in distinguishing between acute and chronic
thoracolumbar vertebral fractures based on the extent of bone
marrow edema [15]. Consequently, the implementation of a
three-material decomposition method holds the potential for
enabling BMD quantification without the need for a calibration
phantom, while simultaneously mitigating the effect of adipose
tissue.

The purpose of this literature review is to investigate the use
of spectral CT with the three-material decomposition approach
for assessing BMD in the diagnosis of osteoporosis. The ex-
isting methods for assessing BMD, along with their respective
advantages and limitations, are addressed in Section 2. The
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fundamental principles and technological progress of spectral
CT are explained in Section 3. The progression towards three-
material decomposition and recent advancements are discussed
in Section 4. The challenges encountered and potential future
directions in this field are proposed in Section 5, culminating
in a conclusion in Section 6.

2. Osteoporosis and bone mineral density

2.1. Definition of osteoporosis

Osteoporosis, the most prevalent metabolic bone disease
worldwide, has emerged as a significant public health concern
and economic burden [16]. This condition is characterized by
the progressive loss of bone mass and deterioration of bone
microarchitecture, both of which contribute to an increased
risk of skeletal fragility and fractures [2]. Fragility or low-
trauma fractures are the main sources of morbidity and mor-
tality associated with osteoporosis. Thus, the primary objective
of managing osteoporosis is the prevention of these fractures
[17].

Early diagnosis plays a crucial role in the effective man-
agement of osteoporosis. Unfortunately, clinical detection of
osteoporosis is often challenging before a fracture event occurs
[17]. By identifying bone loss at an early stage, further disease
progression and subsequent fractures can be mitigated.

Osteoporosis is associated with an imbalance in bone re-
modeling, in which there is relatively greater bone resorption
than bone formation. The principal consequence of bone
structure is that trabecular bone (the spongy inner part of
bones) loses its density.

Consequently, trabecular bone (the spongy inner part of
bones) loses its density and cortical bone (the outer shell)
thins [18] (see Fig. ??. This structural deterioration weakens
the bones, making them more susceptible to fractures even
with minimal trauma or stress. Sites that have high trabecular
bone content (posterior–anterior spine) are more metabolically
active; therefore, a significant change in BMD is likely to
occur earlier at the spine than at the hip or forearm [19].

Fig. 1: Three-dimensional micro-CT where the loss of BMD
in trabecular bone in osteoporosis can be observed for a 52-
year-old woman (A) and 84-year-old woman (B) with vertebral
fracture. Source: [6]

Osteoporosis predominantly affects older adults, especially
women post-menopause, due to the decline in estrogen levels
[20]. Individuals with a family history of osteoporosis, a
personal history of fractures, or certain medical conditions
like hyperthyroidism, rheumatoid arthritis, or gastrointestinal
disorders are also at higher risk [21]. Sedentary individuals,
those with low calcium and vitamin D intake, smokers, heavy
alcohol consumers, and those with low body weight are prone
to osteoporosis [21].

2.2. Diagosis of osteoporosis
The most commonly utilized method for identifying osteo-

porosis and assessing bone health is through the measurement
of BMD, a process called bone densitometry. Bone mineral
density can be defined as the amount of bone mass per unit
volume (volumetric density, g/cm3), or per unit area (areal
density, g/cm2). The standard techniques for BMD assessment
are DXA and QCT.
2.2.1. DXA

DXA stands as the cornerstone of bone densitometry, rep-
resenting a well-established clinical approach for assessing
BMD based on a 2-D projectional area measurement (aBMD).
Employed as both an initial screening tool and a follow-up
mechanism, DXA offers a means to appraise the effectiveness
of therapeutic interventions for osteopenia (low bone mass)
and osteoporosis. The precision and consistency exhibited by
DXA measurements have paved the way for the formulation
of diagnostic criteria for osteoporosis, as outlined by the WHO
[22].

This technique is non-invasive and works by passing two
X-ray beams of different energy levels through the bones.
It is characterized by its cost-effectiveness and low radiation
exposure. However, it also has some limitations. Firstly, the
two-dimensional nature of this method makes the BMD mea-
surement susceptible to overlying structures and degenerative
bone changes that artificially increase the BMD values [8].
DXA measurements are also dependent on body size as it
determines the areal BMD. Therefore, BMD measurements
can be underestimated in small patients and overestimated in
tall patients [8]. Moreover, DXA is unable to differentiate
between compact cortical bone and porous trabecular bone
[8].

The diagnosis relies on T-scores, which indicate how many
standard deviations above or below the average BMD of a
reference population the patient’s BMD falls. These T-scores
are influenced by gender and race. The WHO classifies normal
BMD as having a T-scores exceeding –1.0. Low bone mass
or osteopenia is characterized by t-scores ranging from –1.0
to –2.4, while T-scores of –2.5 or lower indicate the presence
of osteoporosis. [11].
2.2.2. QCT

QCT provides volumetric BMD (vBMD), and both the
trabecular and cortical bone compartments can be assessed
[23]. It presents several advantages over DXA due to its three-
dimensional nature and its ability to leverage routine CT scans.
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A key disparity between these two technologies pertains to
the tracking of bone density changes. QCT-measured spine
BMD values tend to exhibit relatively accelerated rates of bone
loss with advancing age when contrasted with DXA values
[24]. This difference is primarily attributed to QCT’s focus
on trabecular bone measurements, where the rate of change is
more pronounced compared to cortical bone [9].

Nevertheless, the practical use of QCT for frequent or
longitudinal BMD assessments is limited by the higher ra-
diation exposure required in comparison to DXA scans [7].
Additionally, the influence of adipose tissue in bone marrow
on QCT measurements has been the subject of investigation
in several studies, revealing a tendency for BMD underestima-
tion [25]. Furthermore, proper positioning of a bone density
calibration (BDC) phantom within the scanner, a step that
can occasionally be overlooked, is crucial for accurate QCT
measurements.

It’s important to recognize that the WHO-defined spine
T-scores for osteoporosis, derived from DXA data, are not
directly applicable to QCT. The American College of Radi-
ology provides threshold values following the World Health
Organization (WHO) DXA guidelines, as there are presently
no established WHO diagnostic guidelines specific to QCT.
According to these guidelines, osteoporosis is identified when
the BMD in the spine falls below 80 mg/cm3 HA, osteopenia
is categorized for BMD ranging between 80 and 120 mg/cm3

HA, while BMD measurements surpassing 120 mg/cm3 HA
are classified as normal [26]. The two classification criteria
for DXA and QCT are shown in Table I.

TABLE I: Classification of osteoporosis for QCT and DXA

Classification QCT (mg/cm3) DXA (T-score)

Normal > 120 > -1.0

Ostopenia > 80, < 120 > -1.0, < -2.5

Osteoporosis < 80 < -2.5

In practice, DXA typically serves as the primary tool for ini-
tial screening and follow-up in bone density assessment, while
QCT is utilized as a complementary technique. Cases, where
QCT offers advantages over DXA, include situations involving
extreme variations in body height (very large and very small
patients), instances of significant spinal degenerative disease,
severely obese patients, and scenarios requiring heightened
sensitivity to subtle changes in trabecular bone density [26].

3. Spectral CT Imaging
The diagnosis and evaluation of osteoporosis have long

relied on established techniques such as DXA and QCT.
However, the evolving landscape of technology has ushered
in a new era with the advent of spectral CT, also known as
DECT. This innovative approach harnesses the power of dual
X-ray energy levels, offering a more nuanced understanding
of scanned tissues compared to traditional methods. The allure
of spectral CT lies in its potential to address the limitations of

existing standards, propelling it into the forefront of medical
imaging advancements.

3.1. Physical basis
Conventional X-rays have long been the foundation for

assessing how materials interact with radiation. Two primary
interactions, the photoelectric effect and Compton scattering,
play essential roles in how X-rays and matter interplay,
affecting image contrast and overall attenuation. The linear
attenuation coefficient (µ) quantifies the proportion of X-ray
beam attenuation per unit thickness of the attenuating material.
It is influenced by factors such as the energy of the X-ray beam
(E), the atomic number (Z), and the physical density (ρ) of
the material [27]. In the context of CT, the µ value for each
scanned voxel (represented as r, the specific unit volume) can
be obtained from the CT Hounsfield unit (HU) value:

µ(E) =
HU(E) ∗ µwater(E)

1000[HU ]
+ µwater(E) (1)

The HU is a standardized scale based on the linear atten-
uation coefficient of the tissue contained within the voxel,
relative to that of water.

The linear attenuation coefficient µ can be considered
approximately proportional to the physical density, being µ/ρ
the mass attenuation coefficient [28].

In traditional CT, a single X-ray beam energy is used, lead-
ing to a loss of energy dependence in tissues. Consequently,
tissues with similar attenuation coefficients obtain identical
HU values when exposed to the same X-ray beam energy.
This similarity hinders differentiation between these tissues.
An example is calcium and iodine, which may have the same
attenuation at different densities (concentrations) and thus will
have the same HU value. However, they present different
attenuation curves (linear attenuation coefficients as a function
of energy) and if scanned at different energies, they can be
differentiated (see Fig. 2).

This is why spectral CT was introduced, as it capitalizes
the energy dependence of tissues offering a superior material
differentiation. This aspect holds particular significance in the
context of osteoporosis, especially when evaluating BMD.
Conventional CT measurements of BMD often exhibit under-
estimation due to the intricate composition of bone tissue. By
enabling precise material differentiation, spectral CT enables
more precise quantification, thereby offering the potential for
more accurate assessments.

The specific material decomposition techniques employed
for material differentiation and quantification are discussed in
Section 4.

3.2. Technology
The commonly used technique is dual-energy spectral CT

which employs two distinct X-ray energy spectra for the
imaging process, one high energy and one low energy.

In the 1980s, various research groups investigated DECT’s
potential for BMD assessment, enabling measurements with
minimal interference from bone marrow fat [11], [30]–[33].
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Fig. 2: This graph shows the linear attenuation coefficient of
iodine at two different densities and calcium as a function
of the energy of the incident X-ray photon. If iodine at
0.01g/cm3 and calcium are irradiated with an energy of ≈
75keV (black solid line), both will show the same HU value.
However, if irradiated with an energy of 10 keV (black dashed
line), the materials can be distinguished. Source: [29].

However, limitations such as increased radiation dosage as-
sociated with DECT and the enhanced precision offered by
single-energy CT protocols led to the temporary abandonment
of DECT. A decade ago, the landscape shifted, resulting in
a resurgence of interest in DECT, which culminated in its
commercial availability [14], [34]–[36]. Since then, BMD has
been evaluated with dual source DECT (dsDECT) [14], [34],
[35] and rapid kVp switching DECT [36].

In dsDECT scanners, there are two separate X-ray tubes
and two distinct detectors integrated, each positioned within
the gantry at an approximate 90º offset from the other. In the
case of fast kVp switching scanners, the X-ray tube switches
back and forth between low and high energy during the
same rotation, capturing both sets of projections. However,
these advanced technologies require specialized examination
protocols, can be susceptible to motion artifacts, and are linked
to elevated radiation exposure [12].

A recent innovation in DECT technology, the dual-layer
detector CT (DLCT) has been introduced. This pioneering
technique consists of a single tube that gives a polychromatic
X-ray beam (120 or 140 kVp) and a dual-layer detector
that performs the spectral separation. The layer detector is
composed of two layers: the inner one is sensitive to low
energies and the external one, to high energies. A standard
clinical image is reconstructed from the data of both layers
without the requirement of preselecting a DECT protocol
[37]. Furthermore, compared to the other methods, it does not
expose the patient to higher radiation doses [38].

Another significant benefit of DLCT systems is that the
dual-energy information from these layers is accessible in
every standard clinical examination. This stands in contrast to
dual-source or rapid kV-switching systems, where the acqui-
sition of dual-energy information takes place only upon prior
prescription before the examination. As a result, DLCT offers

an ongoing potential for additional analyses using previously
acquired imaging data, such as BMD measurements in scans
not explicitly intended for this purpose. This potential could
potentially eliminate the requirement for an additional DXA
scan [13].

Fig. 3: Drawing of the 3 mentioned DECT systems. A) Dual-
source DECT with two sources and two detectors placed at
approximately 90º. B) Rapid kVp switching DECT. C) Dual-
layer DECT with one detector with two layers for low and
high energies. Source: [29]

4. Three-material decomposition of Spectral CT Data
Once information is acquired from the DECT system,

material decomposition is employed to measure the mate-
rials within an image by utilizing their unique attenuation
characteristics at various energy levels. While many studies
have predominantly employed the two-material decomposition
approach due to its straightforward nature, recently, three-
material decomposition algorithms have been developed and
put into practice, offering enhanced accuracy in material
differentiation.

4.1. Two-material decomposition
The first two-basis-material decomposition algorithm was

developed by Alvarez and Macovski [39]. The principle behind
this algorithm is that the interaction of X-rays in any material
can be roughly approximated as a linear combination of
each attenuation phenomenon or the relative mass attenuation
coefficients of each phenomenon, being the most relevant the
photoelectric effect (µP /ρ) and Compton scattering (µC/ρ):

µ

ρ
(E) ≈ µP

ρ
(E) +

µC

ρ
(E) (2)

where µ
ρ is the mass attenuation coefficient of a material at

energy E.
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This demonstrates that with a conventional X-ray beam, the
effective attenuation coefficient can be computed by factoring
in the contributions of Compton and photoelectric interactions,
which are modeled based on the effective density (ρeff ). From
Eq. 2:

µeff ≈ ρeff

(
µP

ρ
(E) +

µC

ρ
(E)

)
(3)

From the work of Alvarez and Macovski, Kalender et al.
defined the mass attenuation coefficient of a given mixture,
as a function of energy, with a linear combination of the
mass attenuation coefficients of two hypothetical known basis
materials (1 and 2) present at different mass densities (ρ1 and
ρ2) at a given position r [40]:

µ(r, E) = ρ1(r)

(
µ

ρ

)
1

(E) + ρ2(r)

(
µ

ρ

)
2

(E) (4)

The linear attenuation coefficient at a specific spatial loca-
tion, µ(r, E) (representing the measured attenuation in CT),
results from the combination of two distinct materials with
known mass attenuation coefficients (µ/ρ)1,2(E), each exist-
ing at unknown mass densities within the voxel (denoted as
ρ1 and ρ2). It’s important to note there is no solution to this
equation when a single X-ray spectrum is employed [40].

If we measure the attenuation coefficients after irradiation
with two X-ray energies (high and low, EH,L), Eq. 4 can be
solved as a system of two equations with two unknowns (ρ1
and ρ2).

µ(r, EH) = ρ1(r)
(

µ
ρ

)
1
(EH) + ρ2(r)

(
µ
ρ

)
2
(EH))

µ(r, EL) = ρ1(r)
(

µ
ρ

)
1
(EL) + ρ2(r)

(
µ
ρ

)
2
(EL))

(5)
Applying this algorithm allows, material-selective images

can be obtained where the basis materials (e.g., calcium
and iodine) are detected, labeled, quantified, displayed, or
subtracted [33]. Some examples of material-specific images
are iodine maps or virtual non-contrast images.

After computing the effective densities of the fundamen-
tal materials (ρ1 and ρ2), the linear attenuation coefficient
of the mixture (µ(r, E)) and consequently the CT numbers
can be determined by simulating irradiation with a virtual
monochromatic beam spanning a wide range of energies,
including those beyond the effective energy range. These re-
sulting images are referred to as virtual monoenergetic images
(VMI) (see Fig. 4). VMI obtained at lower keV values prove
beneficial for enhancing focal lesions with low contrast. They
can also contribute to improving the contrast-to-noise ratio
and reducing the need for administered contrast agents [41].
Conversely, VMI obtained at higher keV values are valuable
for mitigating issues like proton-starving and beam-hardening
artifacts that arise in the presence of metallic objects. This
advantage, however, comes at the cost of reduced contrast
[42]. A disadvantage when using VMI algorithms is that

noise increases with lower energies which has already been
addressed with noise-reduction systems [43].

4.2. Three-material decomposition
In principle, dual-energy CT scans can characterize an

object with up to two constituent elements as they offer
only two independent measurements. However, there exist
three-material decomposition algorithms that can leverage two
datasets to obtain the fractions of three distinct materials.

The most straightforward approach is provided by Goodsitt
et al. [30]. The authors began with the assumption that the
effective linear attenuation coefficient as a function of X-ray
energy, µeff (E), is derived from the summation of the mass
attenuation coefficients of each basis material (i) multiplied
by their respective concentrations. Here, the concentration ci
is defined as the product of the fractional volume Vi and mass
density (ρi).

µeff =
∑
i

µi(E)

ρi
ci (6)

Substituting Eq. 1 in Eq. 6 and given that the conservation
of volume is respected, a system of three equations can be
solved (Eq. 7):

CT (EH) = V1CT1(EH) + V2CT2(EH) + V3CT3(EH)

CT (EL) = V1CT1(EL) + V2CT2(EL) + V3CT3(EL)

V1 + V2 + V3 ≈ 1
(7)

This model allows the computation, within the image do-
main, of the fractional volumes (V1,2,3) of three fundamental
materials, through two measurements, while adhering to a
third criterion (the preservation of volume). However, the
attenuation in the image can be affected by noise and thus,
the sum of the fractional volumes can not always considered
to be exactly 1. Therefore, the algorithms that implement this
method add constraints such as making the sum equal or
greater than 95 (V1 + V2 + V3 ≥ 0.95) [44]. Additionally,
the applicability of this model is limited by instances where
volume conservation is not maintained universally (e.g., salt
in water or iron in fat or soft tissue).

A more generalized model was proposed in [45], based
on the conservation of mass. In the first step of the model,
the dual-energy datasets are used to calculate the ρeff (E).
In the second step, the ρeff (E) is used in a system of three
equations (Eq. 8) where the fractional masses (f1,2,3) of the
three materials are the unknowns and the conservation of mass
is respected:
µeff,L = ρeff (µm1(EL) ∗ f1 + µm2(EL) ∗ f2 + µm3(EL) ∗ f3)
µeff,H = ρeff (µm1(EH) ∗ f1 + µm2(EH) ∗ f2 + µm3(EH) ∗ f3)
f1 + f2 + f3 = 1

(8)
By solving the linear equation system on a pixel-by-pixel

base for f1, f2, and f3, 3D images for all material volume
fractions are generated.

5



Fig. 4: Post-processing step in DECT data. A) Example of material decomposition in projection domain using a fast kVp
switching system to obtain energy-selective (VMI) and material-selective (iodine maps) images. B) Example of material
decomposition in image domain using dsDECT system. The images obtained at two distinct energies are processed to obtain
energy-selective (VMI) and material-selective (iodine maps) images. Source: [29].

This is the concept behind the three-basis-material (or
multimaterial) decomposition algorithms 5. Nowadays, the
material decomposition and labeling algorithms on the dif-
ferent scanners may use algorithms with graphic vectors.

Fig. 5: Illustration of three-material decomposition through
a two-dimensional mapping of CT numbers (measured in
HU) obtained from a dual-energy scan. In this example, any
unknown material falling within the triangle, established by the
CT number pairs of the three chosen fundamental materials,
can be depicted as a linear combination of these components.
Source: [46].

4.3. Material differentiation in BMD assessment for diag-
nosis of osteoporosis

Two-material decomposition techniques have been widely
employed in spectral CT to separate two main materials and
provide quantitative information about their composition. In
BMD assessment for osteoporosis, the two main materials
are often HA and water. There are several studies that have
implemented a two-material decomposition algorithm using
DLCT scans. In [37], the researchers conducted a two-material
decomposition, analyzing HA and water, on spectral images
acquired using a DLCT system to quantify BMD in an
anthropomorphic spine phantom. The derived BMD values
were then compared to DXA results, revealing a high level
of accuracy. A distinct approach was employed in [47]. to
ascertain BMD in similar anthropomorphic spine phantom
and vertebral specimens also using water and HA as basis
components. Utilizing the correlation between 50 and 200 keV
monoenergetic images and a calibration equation based on a
single BDC phantom scan, HU values were translated into
BMD values. This method demonstrated exceptional accuracy
in phantom data. In vertebral specimens, strong correlations
and agreement were established between QCT and spectral-
based outcomes. Similarly, in [48], authors utilized a compa-
rable approach to compute BMD values in 33 patients, yielding
results comparable to QCT.

However, bone is a complex tissue composed of multi-
ple materials, including red bone marrow (RBM) and mar-
row adipose tissue (MAT). It has been demonstrated that
MAT has a bad effect on BMD quantification leading to
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its underestimation [10]. To investigate the extent of the
effect MAT on BMD measurements, Sfeir et al. conducted
a comparative analysis of single-energy and dual-energy CT
(SECT and DECT) performance focused on the trabecular
bone compartment of the lumbar spine as well as both the
trabecular and cortical compartments of the femoral neck.
The DECT method employed a sophisticated three-material
decomposition approach, which allowed for the assessment of
volume fractions of HA, RBM, and MAT, thus accounting for
the presence of marrow fat. Notably, the DECT-derived BMD
values were observed to be higher than the corresponding
SECT values, with more significant differences noted in the
trabecular bone compartments. This variance was notably
smaller in the cortical bone compartment, where MAT is not
present to the same extent. Furthermore, the underestimation
of BMD values by SECT, when compared to DECT, exhibited
an incremental trend with decreasing BMD values. The find-
ings from this study shed valuable light on the influence of
MAT on BMD measurements and underscore the significance
of employing advanced imaging techniques, such as DECT
with three-material decomposition, to achieve more precise
and comprehensive evaluations of bone health.

Hofmann et al. indicated the potential of a three-material
decomposition method to assess BMD in DECT images with-
out the influence of soft tissue and fat, compared to DXA and
QCT [14]. They showed that clinical indications align with
the DXA gold standard. The workflow they proposed revealed
bone degradation effects that are typically imperceptible on
standard CT images, potentially leading to inaccuracies in
conventional QCT outcomes.

In [15], they successfully implemented a 3-material de-
composition algorithm to differentiate acute and chronic tho-
racolumbar vertebral fractures based on the level of bone
marrow edema. This study showed that the detection of bone
marrow edema and thus acute vertebral fractures based on
three-material decomposition generated from DLCT images
was feasible with a substantially higher accuracy compared to
conventional CT images.

In [49], Gruenewald et al. assessed BMD for the prediction
of osteoporosis-associated fractures using DECT systems and
a material decomposition software that differentiates collagen
matrix, calcium hydroxyapatite, water, fat marrow, and adipose
tissue for each voxel, an algorithm previously proposed by
Nickoloff et al. [32]. This allowed the identification of patients
at risk to sustain osteoporosis-associated fractures with a sensi-
tivity of 85.45% and a specificity of 89.19%. Additionally, the
DECT-derived BMD threshold for the identification of at-risk
patients lies above the American College of Radiology (ACR)
QCT guidelines for the identification of osteoporosis (93.70
mg/cm3 vs 80 mg/cm3). This higher threshold can in part be
attributed to the removal of the aforementioned confounding
variables as well as the elimination of technical shortcomings
that underestimate conventional QCT-based BMD measure-
ments, such as the fat error.

Although most papers focus on non-contrast DECT images,
some works have analyzed the effect of intravenously injected

contrast for BMD assessment. This is particularly relevant for
cancer patients, who suffer from rapid bone loss and undergo
contrast-enhanced staging CT scans with DECT mode. Most
of these studies [50], [51] have generally concluded that
contrast agents have a minor influence, and improved CT
imaging remains effective in accurately evaluating trabecular
bone mineral content, even when contrast-enhanced scans are
compared to unenhanced scans. However, Ma et al. concluded
that HA concentration assessed in both enhanced and unen-
hanced modes might have similar diagnostic efficacy [52].

5. Future directions and discussion
The BMD assessment for osteoporosis diagnosis has two

established gold standards: DXA and QCT. However, these
two methods exhibit several drawbacks that may render them
suboptimal for this specific purpose. Spectral CT (DECT)
coupled with material decomposition algorithms have gained
attention. Research in this area has shown promising potential
to develop a system that surpasses the established clinical
standards, offering notably enhanced accuracy.

One of the significant advantages of spectral CT in BMD
assessment is the ability to perform phantomless calibration.
Traditional BMD assessments often require the use of external
phantoms for calibration, which can be time-consuming and
may introduce errors. Spectral CT eliminates the need for
phantoms, streamlining the process and potentially reducing
the risk of inaccuracies associated with phantom-based calibra-
tions. Additionally, spectral CT provides access to the entire
energy spectrum of X-rays. In BMD assessment, this allows
for a more comprehensive analysis of bone composition,
potentially leading to more accurate and detailed information
about bone health.

While two-material decomposition techniques have shown
substantial progress in BMD assessment, there is potential
for further advancement through more sophisticated multi-
material decomposition methods. Incorporating additional ma-
terials beyond the fundamental constituents, such as red bone
marrow and marrow adipose tissue, could enable a more
comprehensive and accurate quantification of bone health.
By accounting for the complex composition of bone tissue,
these advanced approaches could potentially offer enhanced
diagnostic accuracy, particularly in cases where the presence of
diverse tissue components impacts BMD measurements [10].

Specifically, some considerations could be taken for the
research of three-material decomposition algorithms. Firstly,
including physiologically relevant materials that have more
distinctive attenuation properties could improve BMD as-
sessment given that RBM, water, and MAT have similar
attenuation properties [10]. This would signify a less narrow
triangle for a three-material decomposition system (see Fig.
5. Additionally, physiological constraints on material concen-
trations could avoid biologically impossible volume fractions.
However, it should be noted that physiological constraints
would have to account for the dynamic composition of bone
marrow among patients [53]. Another consideration is the site
of the image acquisition. The amount of trabecular and cortical
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bone impacts the results as trabecular bone shows higher BMD
in the spine [19]. Furthermore, multi-material decomposition
including more bone components could be investigated. In the
study by Gruenewald et al. [49], 5 different materials were
quantified using a different algorithm.

The validation and clinical translation of three-material
decomposition methods for BMD assessment hold significant
promise. Studies like that of Sfeir et al. [10] have begun
to shed light on the influence of marrow adipose tissue
on BMD measurements. In fact, some studies have found
discrepancies with the ACR osteoporosis definition thresholds.
Further research in larger patient cohorts and clinical settings
could provide valuable insights into the practical impact of
these findings. The validation of three-material decomposition
algorithms against established gold standards (DXA and QCT)
in real-world patient populations would establish the clinical
utility and accuracy of these advanced techniques.

Given that DXA and QCT, while established as gold stan-
dards, are acknowledged to have inherent limitations, it is
imperative to strategize on how to compare a new method
to them. Simply seeking a method that performs well in
comparison to these standards may not ultimately yield the
most optimal solution. One potential approach involves initi-
ating a comprehensive comparative analysis to establish their
equivalency. Moreover, employing phantom data may unveil
a superior spetral CT coupled with a three-material decom-
position (sCT-3MD) method that potentially outperforms the
existing standards.

While much of the focus has been on non-contrast DECT
images, there is a growing interest in exploring the impact
of intravenously injected contrast agents on BMD assessment
[50]–[52]. For cancer patients undergoing contrast-enhanced
staging CT scans, understanding how contrast agents influence
BMD measurements is crucial. Investigating the potential
benefits and limitations of using contrast-enhanced DECT for
BMD assessment could open new avenues for accurate bone
health evaluation, especially in populations with rapid bone
turnover.

Integrating machine learning algorithms with spectral CT
data holds immense potential for refining BMD assessment.
Machine learning models for diagnosing and classifying os-
teoporosis and detecting fractures from images have shown
promising performance. Some studies on this matter are re-
viewed in [54].

In conclusion, the field of material decomposition in os-
teoporosis diagnosis is rapidly evolving, with exciting op-
portunities to enhance the accuracy, specificity, and clinical
applicability of BMD assessment using spectral CT tech-
niques. Continued research and innovation in these directions
could reshape how osteoporosis is diagnosed, monitored, and
managed, ultimately improving patient outcomes and quality
of life.

6. Conclusion
In summary, this literature review delves into the advances

in the field of three-material decomposition with DECT as a

transformative approach for precise BMD assessment for the
diagnosis of osteoporosis. By evaluating the existing standards
of BMD evaluation, explaining the foundational principles of
spectral CT, and discussing the ongoing advancements and
limitations within three-material decomposition algorithms,
this review offers a detailed and comprehensive overview of
the landscape within this evolving field.

We can conclude that spectral CT holds the potential in
revolutionizing BMD assessment when compared to current
clinical standards such as DXA and QCT. The inherent limi-
tations of DXA and QCT, encompassing susceptibility to over-
lying structures, body size dependence, radiation exposure,
and adipose tissue influence, underscore the urgent need for
innovative alternatives.

Spectral CT’s distinctive dual-energy techniques, coupled
with the refinement of three-material decomposition algo-
rithms, offer a paradigm shift in BMD assessment. By pre-
cisely quantifying materials based on distinct attenuation prop-
erties at varying energy levels, this technology demonstrates
the potential to address the existing challenges. In specific,
DLCT, which includes a single detector, appears as a pioneer-
ing solution with a lower radiation dose.

Future avenues for research in this field include incorporat-
ing additional materials such as MAT and RBM, physiological
constraints and considerations related to image acquisition
sites. The validation and clinical translation of these algo-
rithms hold substantial promise, as demonstrated by studies
highlighting the influence of marrow adipose tissue on BMD
measurements. Additionally, investigating the impact of in-
travenously injected contrast agents on BMD assessment and
integrating machine learning algorithms with spectral CT data
offer new dimensions for refining BMD assessment.

In conclusion, this literature review underscores the transfor-
mative potential of spectral CT and three-material decomposi-
tion for advancing BMD assessment in osteoporosis diagnosis.
As this field progresses, interdisciplinary collaboration, con-
tinued research endeavors, and the translation of innovations
into clinical practice will collectively shape a future where
accurate, early diagnosis and effective management of osteo-
porosis are within reach, ultimately enhancing the quality of
life for individuals at risk.
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