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Abstract—Quantitative ultrasound (QUS) imaging aims at
quantifying physical phenomena associated with the propagation
of ultrasound in tissue, with the ultimate goal of determining
the tissue microstructure. QUS techniques include attenuation
evaluation, speed of sound evaluation, backscatter estimation,
and envelope statistics. These techniques have been applied in
multiple clinical applications such as liver steatosis, cervical
ripening detection, bone properties assessment, and oncology.
This study reviews the recent clinical applications of quantitative
ultrasound with a special focus on oncology, as well as evaluates
the current state of the implementation of QUS technology into
clinical devices. The underlying physics of each quantitative
ultrasound modality is explained in a comprehensive manner,
and the aspects impeding the widespread clinical implementation
of QUS are also investigated and discussed. Lastly, the potential
of deep learning methods to enhance the accuracy, speed, and
quality of quantitative ultrasound imaging is discussed.

Index Terms—Ultrasound, Quantitative ultrasound, Speed of
sound evaluation, Attenuation evaluation, Backscatter coefficient
estimation, Envelope statistics

1. INTRODUCTION

The field of medical imaging has experienced tremendous
growth over the last 50 years [1], with the development
of multiple imaging modalities. From the early days of X-
ray radiographs to the development of MRI, all different
imaging techniques have contributed to improving diagnostic
and therapeutic medicine.

Among all the existing techniques, ultrasound has emerged
as a versatile and indispensable tool. Unlike X-rays and
Computed Tomography (CT), ultrasound imaging does not
expose the body to harmful ionizing radiation, which has
contributed to the widespread acceptance of this imaging
modality. As a result of such an intrinsic safety profile,
ultrasound imaging has become an essential diagnostic tool for
vulnerable populations, such as children and pregnant women
[2].

Furthermore, its portability and cost-effectiveness facilitated
the spread of this imaging modality, making it more acces-
sible than others (such as MRI) [3]. In addition, its real-
time imaging capabilities have proved invaluable for guiding
interventional procedures [4], enhancing precision in needle
placements [5], and enabling dynamic assessments of organ
function [6].

Despite all the aforementioned benefits, conventional ultra-
sound B-mode imaging is mainly qualitative, which limits its
specificity. To overcome such a limitation, quantitative ultra-
sound (QUS) imaging aims at quantifying physical phenomena
associated with the propagation of ultrasounds in biological
tissue [7]. In QUS, the extracted information is used to produce
a measurement of a global physical quantity within a region
of interest (ROI) or parametric images for diagnosis. Thus,
QUS has the potential to increase the specificity of image
findings, leading to improvements in diagnostic ultrasound [8].
Moreover, QUS reduces system and operator dependency [8,
9], which is another favorable aspect of this technique.

In spite of the increasing presence of QUS in the literature,
there is no clear consensus regarding the techniques considered
as QUS. In their literature study, Oelze et al. [8] included flow
estimation through Doppler, tissue elastography, and shear
wave imaging as QUS techniques. On the other hand, more
recent literature studies [7, 10] consider that the term ”Quan-
titative” in QUS only refers to the specific field dedicated to
biomarkers describing wave interactions with the insonified
organs, in order to determine the tissue microstructure. As
a result, in such studies, only attenuation, speed of sound,
backscatter coefficient, and envelope statistics techniques are
considered QUS (excluding flow estimation and elastography
from this category). In our study, we will adopt this latter
interpretation of QUS. It is also worth mentioning that both
backscatter coefficient estimation and envelope statistics be-
long to backscatter imaging, and are consequently sometimes
reported as sub-categories of such. However, in this work, we
will treat them as distinct techniques, separating them into two
different categories.

Several previous studies have reviewed the clinical appli-
cations of QUS imaging. In 2016 Oelze et al. [8] presented
a survey of the clinical applications of backscatter coefficient
estimation and envelope statistics-based techniques, and dis-
cussed the roadblocks to their implementation into clinical
devices. However, this work only focused on backscatter
imaging-based techniques and did not comment on the state
of the art of the other QUS modalities. In 2021, two separate
studies [7, 10] provided more recent overviews of QUS,
not only including backscatter imaging, but also the rest of
quantitative ultrasound methods. Nonetheless, these studies
lacked an extensive discussion of the factors limiting the
clinical implementation of quantitative ultrasound. A more
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recent study by Fetzer et al [11], published in 2022, discussed
the state of the art of attenuation, speed of sound, and backscat-
ter coefficient estimation in the context of liver steatosis.
Importantly, this study also discussed challenges and provided
recommendations for the clinical translation of quantitative
ultrasound. Nevertheless, it did not include advances regarding
envelope statistics and was focused solely on liver steatosis,
leaving out other clinical fields in which QUS can be applied
(such as oncology). Thus, to the best of our knowledge,
there is no recent study providing the state of the art of all
existing QUS techniques, while discussing the roadblocks and
limitations to the applicability in the clinic, in other fields
rather than liver diseases.

Taking into account all of the aforementioned, in this
study, we will provide a recent review of the state of the
art in quantitative ultrasound, focusing on all QUS techniques
(attenuation, speed of sound, backscatter estimation, and en-
velope statistics). The underlying physics of each technique
will be explained, recent (when possible) clinical studies will
be reviewed, and the state of the implementation of each
method in the clinic will be analyzed. Although quantitative
ultrasound has a wide range of clinical applications, including
quantifying liver steatosis [9], detecting cervical ripening [12],
and assessing bone properties [13], this literature review will
concentrate on QUS applications in oncology. Furthermore,
the limitations and current obstacles to the widespread imple-
mentation of QUS into clinical practice will also be discussed.
Finally, we will evaluate the future directions of this technique,
including the potential of Deep Learning methods to enhance
the accuracy, speed, and quality of quantitative ultrasound
imaging.

2. PHYSICS OF ULTRASOUND

Before delving into the different existing QUS techniques,
in this section, we will introduce some basic concepts regard-
ing acoustic wave propagation, ultrasound image formation,
and factors modulating the ultrasound image.

2.1. Acoustic waves and propagation

Compression (or longitudinal) waves alternate compressions
and rarefaction of tissue in the direction of propagation of
the wave [7], and are used in all ultrasound imaging modes
(grayscale, Doppler, elastography, and QUS). The velocity of
propagation of these waves is known as the speed of sound
(SoS) and it is a tissue-dependent magnitude.

When compression waves propagate through biological tis-
sue, they undergo various physical phenomena. These include
alterations in their direction and amplitude, which can occur
as a result of reflection or refraction at interfaces between
media with distinct acoustic impedances (determined from the
speed of sound and tissue mass density). Additionally, these
waves may experience a reduction in amplitude, a phenomenon
referred to as attenuation, caused by absorption and scattering
within the medium [7].

Fig. 1: RF signal processing and ultrasound image formation
[7]. A: RF signal. B and C: I and Q demodulated components.
D: RF echo envelope.

2.2. B-mode image formation
Despite the tissue-dependency of the speed of sound, the

propagation speed of acoustic waves is assumed to be constant
in ultrasound systems, with a typical value of 1540 m/s, which
is used to convert time into distance and generate an image.
That is, the systems measure the time difference between the
emission and reception of echoes and rely on the fixed speed
of sound to precisely map the acquired echoes into depth.

The process of ultrasound B-mode image formation (de-
picted in Fig. 1) starts with radiofrequency (RF) data process-
ing [7]. The time domain RF signal contains detected reflected
and scattered echoes returning to the transducer. To create
B-mode images, the RF signal is first processed to obtain
the demodulated in-phase (I) and quadrature (Q) components.
Next, the RF echo envelope is obtained as the square root
of I2 plus Q2. Finally, the image is created by mapping the
magnitude of the echo envelope in grayscale, representing B-
mode speckle at a given lateral (RF scan line) and depth (time).

2.3. Point spread function and wave interferences
The speckle in ultrasound imaging refers to the granular

pattern that appears in B-mode images. This pattern (and
hence the ultrasound B-mode image) is mainly modulated
by two factors: the point spread function (PSF) and wave
interferences.

PSF
The speckle in B-mode images provides a signature of

the tissue microstructure at a resolution determined by the
system’s point spread function [7]. When backward ultrasound
waves emitted by a point source (e.g. a cell) are detected by the
probe, they are filtered by the PSF of the ultrasound system,
causing blurring. This blurring (which is a result of the limited
resolution of the system, combined with probe characteristics
and scanner settings) does not allow to resolve the geometry of
tiny objects or distinguish two objects that are closely located.
Thus, the PSF impedes resolving the tissue microstructure and
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Fig. 2: Spatial coherence (A) and compounding (B) SoS estimation methods [7]. A: The spatial coherence method employs
the coherence factor to estimate the SoS. A tissue with low coherence among transducer elements location underestimates
the speed of sound, whereas a tissue with high coherence provides the real value of the SoS. B: The compounding method
estimates the SoS by insonifying the tissue at different angles. More details about this method can be found in [14].

contributes to the speckle pattern that is observed in B-mode
images.

Wave interferences
When ultrasound waves interact with tightly packed tissue

components, constructive and destructive wave interferences
originate [7]. Such interferences happen due to the presence
of numerous reflectors and they contribute to the speckle
pattern features. Thus, the reflectors’ number and location
are significant factors that determine the characteristics of the
speckle image and provide important sub-resolution informa-
tion gathered by QUS backscatter imaging biomarkers (which
will be discussed later in sections 3.3 and 3.4).

3. QUS TECHNIQUES

QUS uses ultrasound waves to extract fundamental proper-
ties of tissues by analyzing their interaction with the tissue
microstructure [7]. There are four techniques used in QUS:
speed of sound evaluation, attenuation coefficient evaluation,
backscatter coefficient estimation, and envelope statistics. Each
of these methods is used to extract parameters related to tissue
microstructural properties. In this section, for each technique,
we will first provide an overview of the underlying physics,
followed by the different measurement methods employed,
and the parameters that can be extracted. Then, we will
review recent (if possible) clinical studies employing QUS in
oncology and evaluate the extent to which each method has
been implemented in clinical devices.

3.1. Speed of Sound Evaluation

3.1.1. Overview
As mentioned earlier, clinical US systems assume a constant

speed of sound (1540 m/s) along the whole path that the
ultrasound waves travel, which is used to estimate the depth
at which objects are located. However, different tissues may
have different speed of sound (SoS) values (in soft tissues,
it varies up to 10% with respect to the assumed value [7]),
violating the previous assumption and causing image quality
degradation (due to the wrong depth estimation of objects).
Original efforts in the field of speed of sound imaging were
precisely directed at improving the quality of B-mode images
affected by this phenomenon [15], locally adjusting the speed
of sound to reduce blurring. These early efforts were later
applied in the field of QUS, where tissue-dependent variations
in SoS are retrieved and can be used as a biomarker of a
pathological state.

3.1.2. Measurement
There are three main methods to quantify SoS: focusing,

spatial coherence, and compounding.

Focusing method
The focusing method consists of varying the speed of sound

in the ultrasonic beamformer until the quality of the image
is maximized [16]. To evaluate the image quality, options
such as echo signal amplitude, minimum entropy, or lateral
resolution can be used [10]. This method’s advantage is
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its ease of implementation as it can use existing hardware
configurations of diagnostic equipment. However, the focusing
method is time-consuming, due to the requirement of multiple
scans. Furthermore, this method only provides a mean estimate
along the ultrasound beam and lacks the ability to produce
a local measure within a given ROI of an organ having
inhomogeneous SoS.

Spatial coherence method
The spatial coherence method (Fig. 2.A) employs the co-

herence factor to estimate the actual speed of sound. The
coherence factor can be used as a measure of image quality
[17], and the sound speed corresponding to a specific region of
tissue is estimated by maximizing the coherence factor [18].
This method provides a global value of the SoS in the selected
ROI in m/s, without a parametric image. The advantage of
this method is its high estimation accuracy, combined with
the flexibility to adjust the area where the SoS is calculated
(this was not possible in the focusing method), which can be
set locally or globally [10]. However, the shortcoming is that
it requires individual control and signal processing for each
element in the probe, which makes it more hardware-restrictive
than focusing methods.

Compounding method
The compounding method (Fig. 2.B) directly evaluates the

speed of sound by comparing spatial shifts in images from
different transmission and reception angles [10, 14]. If the
mismatch between the assumed SoS for beamforming and the
actual SoS is high, it can cause spatial errors due to changes in
the path length at different angles. To minimize the difference
between the assumed and actual speeds of sound, the magni-
tude and direction of the shift are optimized [19]. Contrary to
the previously discussed methods, the compounding method
provides a parametric map of the SoS in the selected ROI,
although it suffers from a lack of robustness.

3.1.3. Clinical applications
In the context of oncology, speed of sound imaging QUS

techniques have been used for breast cancer assessment. The
use of SoS imaging in this field had its origin in 2007, when
Duric et al. [20] presented an ultrasound tomography system
that combined both reflection and transmission imaging, and
allowed the estimation of the speed of sound and attenuation
coefficient. Employing such a system, in 2009, Li et al. [21]
performed a speed of sound analysis on breast datasets. In
this study, they found significant differences in SoS between
malignant and benign lesions and suggested that sound-speed
tomograms could be used to differentiate breast lesions, assess
breast cancer risk, and evaluate the clinical response of breast
cancer patients to chemotherapy. A few years later, Duric et
al. [22] investigated the use of whole breast sound speed mea-
surement as a marker of breast density (which is a known risk
factor for breast cancer). They showed that volume-averaged
sound speed was significantly correlated to mammographic
percent density, showing the viability of the speed of sound to
measure breast density and its potential for early assessment

of breast cancer risk. In a more recent study (2019), Wiskin
et al. [23] presented an algorithm that used the estimated
speed of sound for the calculation of breast density. Later
that year, Ruby et al. [24] investigated the feasibility of SoS
ultrasound to distinguish breast cancer from fibroadenoma and
healthy tissue, demonstrating the speed of sound evaluation’s
capabilities for the differentiation of solid breast lesions.
Importantly, in contrast to the previously presented studies,
this work employed a conventional ultrasound system and not
a tomography system.

Besides its applications in breast cancer, SoS techniques
have been investigated for prostate cancer assessment. In their
study, Tanoue et al. [25] measured the speed of sound of
prostatic tissue to assess malignancy. They determined that the
prostatic cancer tissue type could be classified by employing
speed of sound imaging techniques. In a later study, Seifabadi
et al. [26] characterized healthy and malignant prostate cells
employing speed of sound QUS techniques, and correlated
SoS maps with T2-weighted MRI and pathology findings.
Other than breast and prostate cancer, there are not many other
oncology-related applications of SoS imaging in the literature,
being this technique especially prominent in the field of liver
diseases.

3.1.4. Clinical implementation

SoS estimation capabilities have been implemented into
several ultrasound tomographic systems. Some systems that
are currently being used to perform in vivo clinical tests are the
SoftVue (Delphinus Medical Technologies), QT Scanner 2000
(QT Ultrasound), MUT Mark II (Mastoscopia), and KIT 3D
USCT (Karlsruhe Institute of Technology) [27]. However, all
these examples correspond to ultrasound tomography systems
that are exclusively built for breast cancer treatment (see Fig.
3). In addition to those systems, a few ultrasound manu-
facturers are offering SoS estimation capabilities [7], which
are mostly based on the calculation of the mean speed of
sound within a selected ROI (without providing SoS maps).
An example of such a system is the Aixplorer MACH 30
(Aixplorer, Supersonic Imagine) [28].

Fig. 3: KIT 3D USCT ultrasound tomography system designed
by Karlsruhe Institute of Technology [27].

4



3.2. Attenuation Coefficient Evaluation

3.2.1. Overview
Ultrasound attenuation refers to the loss of mechanical

energy as an acoustic wave propagates in tissue [29]. Due to
the attenuation, the magnitude of the echo within the image
is reduced, which can lead to a loss of structural details in
deeper areas and the appearance of shadows. As a result,
attenuation can be seen as either an artifact in imaging or a
unique characteristic of the tissue that has diagnostic value.
QUS focuses on the latter aspect, utilizing attenuation to
characterize tissue.

Attenuation increases with ultrasound frequency, and it is
usually reported in dB/cm/MHz. This relation between atten-
uation and frequency is often assumed to be linear on a log
scale [30]. Thus, the attenuation at a given frequency can be
obtained by multiplying the attenuation in dB/cm/MHz by the
corresponding frequency (MHz). This results in an attenuation
measurement in dB/cm, which is often used. Another value
that is usually measured and reported is the slope of the linear
relation between attenuation and frequency, which is known
as the attenuation coefficient slope (ACS) [30].

3.2.2. Measurement
To determine the attenuation characteristics of the target

tissue, one can evaluate the backscattered signal that returns
in the same direction as the transmission. Based on this, two
techniques are mainly used to measure attenuation, i.e., the
spectral difference and the spectral shift methods.

Both methods start with the discretization of an ROI into
rectangular windows (Fig. 4.A) to locally estimate the at-
tenuation coefficient. In the spectral difference method (Fig.
4.B), the attenuation coefficient slope is estimated from the
reduction of the echo signal power with depth, obtained by
comparing the signal from windows at two different depths.
On the other hand, the spectral shift method (Fig. 4.C)
estimates the ACS from the downshift in the center frequency
of the backscatter echo with depth, which happens due to
frequency-dependent attenuation. This second method assumes
a linear relation between frequency and attenuation, which is
not completely accurate for many tissues [7].

Furthermore, these methods require some calibration to
account for the wave diffraction confounder of the transducer
[7], a phenomenon that reduces the echo signal power with
depth. To perform the calibration, echo signals from a refer-
ence phantom whose attenuation is known must be obtained
using the same equipment and system settings as the clinical
examination. After the calibration, the attenuation coefficient
of the scanned organ at the frequency and depth of interest is
finally retrieved.

3.2.3. Clinical applications
The clinical applications of attenuation coefficient evalua-

tion in the field of oncology mainly involve breast, prostate,
and thyroid cancer. Regarding breast cancer, as mentioned
before in section 3.1.3, in 2007 the ultrasound tomography
system was presented, which had both attenuation and speed

Fig. 4: Attenuation coefficient estimation methods. A: Division
of the ROI into rectangular windows for local attenuation coef-
ficient calculation. B: Spectral difference method. C: Spectral
shift method. The figure was obtained from [7].

of sound imaging capabilities. However, despite the authors
in [20] highlighting the potential of combining both speed of
sound and attenuation information for characterizing benign
and malignant lesions, only Wiskin et al. [23] employed both
biomarkers in their study for the calculation of breast density.
Additionally, another recent work by Pal et al. [31] used
attenuation coefficient evaluation combined with near-infrared
spectroscopy for breast tissue characterization, demonstrating
that cancerous tissue presented a higher attenuation coefficient
compared to normal tissue.

Concerning prostate cancer, an early study by Chapelon et
al. [32] in 1999 investigated the use of attenuation imaging
during the treatment of localized prostate cancer through
HIFU. They determined that real-time visual display of the
damaged tissue via differential imaging of the attenuation co-
efficient could provide the surgeon with an instant assessment
of the treatment’s result. Besides this study, and despite the
potential of the attenuation coefficient for tumorous tissue
characterization, there are no recent studies (to the best of
our knowledge) employing the attenuation coefficient as a
biomarker to distinguish pathological from healthy tissue in
prostate cancer.

With respect to thyroid cancer, a study by Zenteno et al. [33]
in 2013 successfully characterized different types of thyroid
tissue employing attenuation coefficient estimation techniques
in rodent models. In 2015, Rouyer et al. [34] investigated the
variability of ultrasonic attenuation coefficients in healthy thy-
roids, finding a non-negligible inter-subject variability. Some
years after, in 2017, Coila et al. [35] validated the feasibility
of in vivo estimations of the attenuation coefficient slope
(ACS) from thyroid nodules, and found that all thyroid nodules
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had a lower ACS with respect to healthy tissue. Despite all
these efforts, not many recent studies employing attenuation
coefficient estimation techniques to characterize thyroid tissues
can be encountered. Nonetheless, as with SoS, attenuation
imaging is especially relevant in the field of liver diseases.
3.2.4. Clinical implementation

All ultrasound tomographic systems that were listed in
section 3.1.4 combine speed of sound and attenuation ca-
pabilities. However, as commented before, the applicability
of those systems is only limited to breast cancer. Apart
from those systems, few ultrasound manufacturers offer real-
time attenuation images on their scanners. Examples of such
scanners are the Aplio i-series US systems (Cannon Medical
Systems, Fig. 5) [36], FibroScan system (Echosens) [37], and
RS85 US system (Samsung Medison) [38]. Nevertheless, the
attenuation coefficient estimation capabilities of these systems
have been employed for liver diseases, and no use of them in
oncology has been reported.

Fig. 5: Attenuation coefficient estimation in a Aplio i800 US
system [37].

3.3. Backscatter Coefficient Estimation
3.3.1. Overview

Backscatter imaging refers to the analysis of echoes received
by an ultrasound transducer caused by compression wave
reflection and scattering. These echoes are affected by the
tissue microstructure, resulting in changes in magnitude due
to constructive and destructive wave interferences.

In the field of QUS imaging, the most widely accepted
method for describing backscatter is to use the magnitude
squared and frequency dependence of RF echoes to calculate
the backscatter coefficient (BSC) [7]. The BSC at a particular
frequency corresponds to the time-average scattered intensity
in the backward direction per unit solid angle per unit volume,
normalized by the average incident wave intensity (cm−1Sr−1)
[29]. In addition to being related to tissue microstructure, the
BSC is a fundamental property of tissue, which makes it both

Fig. 6: Reference phantom method for the estimation of BSC
[7]. A: The tissue is interrogated with ultrasound. B: RF image
obtained from backscattered ultrasound. C: Reference image
obtained from the reference phantom. D and E: The computed
power spectrum at each window for both images. F: The
spectral ratio is computed and a calibration by the known BSC
of the reference phantom is performed to eliminate system-
dependent effects. G: BSC affected by total attenuation. H:
BSC after removal of depth-dependent attenuation. I: Result-
ing BSC parametric image.

operator and system-independent. BSC estimation-based QUS
techniques consist of parameterizing the BSC to yield esti-
mates of the scatterer properties, which provide a geometrical
interpretation of the underlying tissue microstructure.
3.3.2. Measurement

The BSC is most commonly obtained using the reference
phantom technique [7], following the process depicted in
Fig. 6. First, the tissue is interrogated and a backscattered
RF image is obtained, after which the image is divided into
discrete rectangular windows. Next, using the same ultrasound
system, a reference RF image is taken, employing a reference
phantom with known BSC. This reference image is then
divided into the exact same windows as before. Subsequently,
at every measurement window, power spectra are computed
for both images. Then, to eliminate the effects caused by the
point spread function and beam diffraction, a spectral ratio
is computed at each window, performing a calibration by the
known BSC of the reference phantom. However, the tissue
BSC is still affected by total attenuation, which is why depth-
dependent attenuation is removed for every window. After
the compensation for attenuation, a system-independent BSC
parametric image is finally obtained.

The reference phantom technique has the benefit of being
applicable for any transducer geometry [8]. In addition to
this technique, there is another BSC estimation method called
the planar reference method, which employs a smooth plate
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of material with known reflectivity instead of a phantom
to provide the reference signal. However, the utilization of
this technique is limited to weakly focused single-element
transducers, which makes it less versatile than the reference
phantom approach.

3.3.3. Parameters
In the previously presented QUS techniques (speed of sound

and attenuation coefficient) the tissue property being measured
was directly used as a QUS biomarker of pathological state.
However, BSC-based QUS techniques do not infer tissue prop-
erties directly from the BSC, but they consist of parameterizing
the measured BSC and employing those parameters to estimate
microstructural tissue properties.

An early approach to parameterizing the BSC consisted of
fitting a line to the normalized power spectrum converted to
decibel scale versus frequency. In this approach, presented
by Lizzi et al. [39], the spectral slope (SS), mid-band fit
(MBF), and spectral intercept (SI) were used to parameterize
the normalized power spectrum, and these parameters were
then used to describe the tissue microstructure.

Nevertheless, the linear approach may fail to capture all
of the structure in the normalized power spectrum or the
BSC representing scattering from tissues [8]. As a result,
an alternative approach was developed, which consisted of
modeling the BSC using an intensity form factor [40]. Such
intensity form factor models yield tissue microstructure-related
parameters like the effective scatterer diameter (ESD) and the
effective acoustic concentration (EAC).

3.3.4. Clinical applications
Compared to SoS and attenuation estimation, Backscatter

coefficient estimation techniques have been extensively ap-
plied in the field of oncology. As a result, in this section,
we will mainly focus on recent applications. Specifically,
applications have been especially reported in the fields of
breast cancer, prostate cancer, thyroid cancer, and lymph
nodes.

Breast cancer
There are multiple recent studies employing BSC-derived

parameters as biomarkers for breast tissue characterization.
Sadegui et al. [41] evaluated the efficacy of applying textural
analysis techniques to QUS spectral parametric maps to clas-
sify malignant and non-malignant breast lesions. Following a
similar trend, Nizam et al. [42] employed QUS parameters
(ESD) for binary classification of breast lesions. They high-
lighted the promising capabilities of using ESD for lesion
binary classification, achieving high sensitivity, specificity,
and accuracies of around 96% in each case. Besides tissue
characterization, BSC estimation has been recently used to
evaluate treatment response. An example of such an appli-
cation is the study by Bhardwaj et al. [43], which explored
the capabilities of QUS spectral parameters to predict the
recurrence of locally advanced breast cancer in the early
stages of neoadjuvant chemotherapy. By employing multiple
QUS parameters and applying textural analysis techniques, the

authors demonstrated the effectiveness of QUS in predicting
recurrence.
Prostate cancer

Treatment response assessment has been one of the recent
applications of BSC estimation techniques in the field of
prostate cancer. The study by Sharma et al. [44] is an ex-
ample of this application. In such study, the authors examined
prostate tumor response to ultrasound-stimulated microbubbles
(USMB) and hyperthermia (HT) in mice, using multiple
BSC-related parameters, such as the spectral slope, spectral
intercept, mid-band fit, average scatterer diameter, and average
acoustic concentration. Their findings revealed the usefulness
of such parameters for assessing tumor response to treatment
in vivo. Another study by Rohbach et al. [45] used five spectral
parameters to improve transrectal ultrasound (TRUS) guided
biopsies, directing them to cancer-suspicious regions in the
prostate.
Thyroid cancer

Some recent studies have employed BSC techniques in
the field of thyroid cancer. Rohrbach et al. [46] employed
parameters like the EAC, ESD, and other spectral parameters
to detect thyroid cancer. By training a linear classifier with
combinations of such parameters, the authors successfully
developed a non-invasive tool that could potentially be used
for thyroid cancer detection. In a similar study, Goundan et al.
[47], investigated the use of multiple BSC-derived parameters
to distinguish between benign and malignant thyroid nodules.
Similarly to the previously presented study, the authors trained
a linear classifier employing the estimated QUS parameters,
concluding that QUS has the potential to improve the dis-
crimination between benign and malignant thyroid nodules,
and hence reduce the number of biopsies of benign nodules.
Lymph nodes

Tran et al. [48] employed quantitative ultrasound radiomic
markers to predict radiotherapy response in metastatic lymph
nodes of head and neck cancer. Six QUS parameters were
extracted, parametric maps were formed and textural analysis
was applied on such parametric maps. The authors found
statistically significant differences in QUS-radiomic parame-
ters between complete and partial chemotherapy responders,
determining that multivariable QUS-radiomic features have the
capacity to predict treatment response. In a more recent study,
Hoerig et al. [49] aimed to apply BSC estimation methods
to differentiate metastatic and non-metastatic lymph nodes
in vivo, employing clinical frequencies to achieve this. This
study determined that metastatic lymph nodes in vivo exhibit
significant differences in ESD and EAC compared with their
non-metastatic counterparts, with the subsequent potential to
aid in the identification of lymph nodes during biopsies and
avoid unnecessary invasive procedures.
3.3.5. Clinical implementation

To the best of our knowledge, no ultrasound manufacturer
has yet released a clinical system with BSC estimation capa-
bilities. Nevertheless, in [50], a commercial implementation
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Fig. 7: Echo envelope statistics histogram fit using homodyned K and Nakgami statistical models [7].

of BSC estimation was presented, showing that it is feasible
to measure the BSC with a clinical scanner in a specified
ROI by having pre-acquired phantom data in the ultrasound
system. Considering the number of studies using BSC-related
parameters and its minimal system dependence, it is expected
that BSC calculation will be incorporated into clinical systems
in the future.

3.4. Envelope Statistics

3.4.1. Overview
In addition to the BSC, the RF echo envelope of the

backscattered ultrasound also contains information about the
underlying tissue microstructure. Envelope statistics consists
precisely of exploiting first-order statistical properties of such
an envelope to infer the microstructural properties of tissue.
In contrast to the BSC estimation techniques, which convert
backscattered signals into the frequency domain, envelope
statistics techniques mainly work in the time domain (same
as classic B-mode imaging).

3.4.2. Measurement
As explained in section 2.2, B-mode images are formed

using the magnitude of the RF echo envelope (or speckle).
Taking this into account, in envelope statistics, an ROI of
the B-mode image is selected, and a histogram of the echo
envelope magnitude is computed. Next, probability density
functions of statistical models are used to fit the histogram, and
the parameters corresponding to those statistical models are
employed to infer tissue properties. This process is depicted
in Fig. 7.

3.4.3. Distributions and parameters
Multiple distributions can be used to describe the magnitude

of the echo envelope, and each distribution adjusts to certain
scattering characteristics.

Rayleigh and Rician distributions
The most basic distribution is the Rayleigh distribution,

which arises when a large number of nearly identical and
random scatterers contribute to the echo signal [8]. Pre-
Rayleigh scattering conditions occur when this number of
scatterers per resolution is low (less than 10). The Rician
distribution is an extension of the Rayleigh distribution, and
it provides an estimate of the strength of coherent signal. It
models a situation where there are specular scatterers or these
are periodically located. These two distributions provide hints
of the scatterers’ distribution but do not include any quan-
titative parameter. Nevertheless, other distributions introduce
parameters related to tissue characteristics.

K distribution
The K distribution [51] is a generalization of the Rayleigh

distribution that can be used in situations where the number
of scatterers per resolution is small. This distribution intro-
duces the parameter µ, which corresponds to the number of
scatterers per resolution cell (when µ → ∞ the K distribution
approaches the Rayleigh distribution).

Homodyned-K distribution
The homodyned-K [52] is an extension of the K distribution.

Besides the capabilities of its counterpart, this distribution can
model situations where coherent signals exist due to period-
ically located scatterers. In addition to µ, the homodyned-K
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distribution includes a second parameter k, which describes
the level of structure or periodicity in scatterers’ locations.

Nakagami distribution
The Nakagami distribution [53], or m-distribution, intro-

duces the Nakagami parameter m. Depending on the value of
m, the signal (or tissue) can be classified into four categories
[8]: 1) m < 0.5, few scatterers per resolution cell with
gamma-distributed scattering cross sections; 2) 0.5 ≤ m ≤ 1,
pre-Rayleigh scattering conditions; 3) m ≈ 1, Rayleigh
distributed; 4) m > 1, the distribution is considered Rician
or post-Rayleigh. This distribution is highly versatile as it is
applicable in multiple cases.

3.4.4. Clinical applications
Similarly to BSC, envelope statistics techniques have been

used for breast cancer, prostate cancer, thyroid cancer, and
lymph nodes.

Breast cancer
In 2003, Shankar et al. [54] used a multiparametric approach

for the classification of breast masses in ultrasound images.
These parameters were based on Nakagami and K distributions
that were fitted to the echo envelope, which were combined
to create a linear discriminant that successfully distinguished
malignant and benign masses. Examples of similar approaches
can be found in the recent literature. For instance, Muhtadi et
al. [55] extracted texture features from Nakagami parametric
maps generated from ultrasound envelope images to classify
breast cancer. They demonstrated that texture features derived
from Nakagami parameters have the potential to early diagnose
breast cancer. A similar study by Chowdhury et al. [56]
analyzed Nakagami parametric maps for the classification of
breast lesions. The particularity of this study is the extraction
of numerous features (up to 72), which were used to conduct
a thorough feature selection, determining those that are more
useful for the classification of breast cancer.

Prostate cancer
Some recent studies reported the use of envelope statistics

in the field of prostate cancer. In their study, Rohrbach et al.
[45] (already introduced in section 3.3.4) combined the use of
BSC-derived parameters and the Nakagami parameter to train
a linear discriminant classifier and a support vector machine, in
an attempt to improve the detection of prostate cancer. The best
result was reported when combining envelope statistics with
prostate-specific antigen values and BSC-specific parameters
(EAC and ESD). Similarly to the previous study, Xiao et al.
[57] attempted to improve the detection of prostate cancer by
extracting spatial features from Nakagami distribution mean
diagrams and training a support vector machine.

Thyroid cancer
Montero et al. [58] evaluated the performance of a QUS-

based multi-parametric classification technique to distinguish
between benign and malignant thyroid cancer in rodent mod-
els. In such a study, they employed a combination of attenu-
ation coefficient slope, ESD, EAC, Nakagami parameter, and

k-parameter to perform a binary classification with a linear
discriminant classifier. They determined that the best perfor-
mance was achieved when combining EAC and Nakagami
parameters, resulting in a sensitivity and specificity of 100%.
In a more recent study of similar characteristics, Goundan et al.
[47] trained a linear discriminant classifier for the classification
of benign and malignant thyroid tumors, combining different
BSC-related parameters with the Nakagami parameter.
Lymph nodes

Mamou et al. [59] utilized a combination of backscatter
and envelope parameters for freshly dissected lymph node
characterization in patients with colorectal cancer. The study
used both Nakagami and homodyned-K distribution to param-
eterize the echo envelope in a 3D high-frequency ultrasound.
By combining the effective scatterer size with homodyned-K
distribution parameters, the authors achieved a specificity and
sensitivity of 95%, proving the usefulness of this technique
for detecting small metastatic foci in dissected lymph nodes.
Another study by Bui et al. [60] attempted to identify the
probability density functions that best model the envelope of
lymph node parenchyma, fat, and phosphate-buffered saline
(PBS). After a comparison of nine distributions (including
Rayleigh and Nakagami), the Gamma distribution was found
to be the best to model parenchyma, while the Weibull
distribution was determined to be the optimal choice for fat
and PBS.
3.4.5. Clinical implementation

An example of envelope statistics implementation in clinical
devices is the acoustic structure quantification (ASQ) software
included by Toshiba in their Aplio ultrasound scanners [61].
The ASQ technique statistically analyzes the echo signals
and quantifies the degree of deviation from the Rayleigh
distribution. However, this technique has been mainly used for
liver diseases and its use in oncology is still to be investigated.
Furthermore, this software employs only the Rayleigh distri-
bution without providing any other statistical model parameter
(such as Nakagami or K-distribution).

4. LIMITATIONS TO CLINICAL
IMPLEMENTATION AND WIDESPREAD USE

Quantitative ultrasound techniques have emerged as an alter-
native to conventional B-mode imaging, providing quantitative
biomarkers that improve diagnostic capabilities. However,
their implementation into clinical practice in oncology has not
been straightforward.

On the one hand, speed of sound and attenuation imaging
have been available in several manufacturers´ systems for
years. An example of such a system is the ultrasound to-
mography device used for breast cancer assessment. However,
this system’s utility is limited to breast cancer assessment
alone, making it less versatile and cost-effective compared
to conventional ultrasound systems. Moreover, beyond breast
cancer, research on the application of SoS and attenuation
coefficient estimation in oncology remains relatively scarce.
Thus, despite the implementation of these biomarkers in
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multiple commercial devices, due to a lack of recent stud-
ies employing them for cancerous tissue characterization or
therapy response assessment, their clinical use for oncology is
unclear at the moment.

On the other hand, for backscatter coefficient and envelop
statistics, the picture is rather different. Multiple recent studies
are reporting the use of these techniques in oncology, showing
their validity for improving diagnostics, but their integration
into clinical systems has been limited so far. In the past,
this constraint was attributed to the lack of accessibility to
ultrasound RF data. However, in model digital scanners, this
challenge has been largely overcome, as RF data can be easily
accessed. Previous studies [8] also highlighted the need for a
proper calibration procedure in order to use BSC-based QUS
techniques, which is more likely to be the reason behind
its cumbersome clinical implementation. However, the pre-
calibration burden would be greatly reduced if manufacturers
included pre-collected data from reference phantoms in their
ultrasound systems [7, 8].

In general, we consider that the main limitation for the
actual widespread implementation of QUS techniques in on-
cology is the need for standardization. In the field of liver
diseases, such standardization is currently an ongoing pro-
cess, performed by the QIBA-PEQUS (quantitative imaging
biomarkers alliance–pulse echo quantitative ultrasound) com-
mittee of the Radiological Society of North America [11]. This
committee aims to establish a consensus on standardized quan-
titative ultrasound features for hepatic steatosis biomarkers, to
be used under equivalent conditions across manufacturers. To
achieve this, they presented a three-level framework, which
consisted of: 1) establishing measurement standards to reduce
variability and bias; 2) demonstrating how a specific biomarker
is related to the biological concept of interest; 3) investigat-
ing the relationship between multiple simultaneous biomarker
measurements and the biologic concept of interest (combining
SoS, attenuation coefficient, and BSC). Therefore, following
the demonstration of several studies indicating that QUS has
the potential to improve cancer diagnostics and treatment, a
similar effort for standardization in the field of oncology would
be of utmost importance. This process would offer valuable
insights into the real-world applicability of less commonly
employed biomarkers (in oncology) such as SoS or attenuation
coefficient, as well as facilitate the transition of BSC and
envelope statistics from research settings to clinical practice.

5. FUTURE DIRECTIONS: QUS AND DEEP
LEARNING

Despite the challenges that need to be tackled for the clinical
implementation of QUS, the field continues evolving and new
applications are emerging. In this aspect, artificial intelligence
(AI) has started to make an impact in QUS. In particular, there
are two main applications for which AI has been used in QUS.

On one side, multiple studies have reported the use of
machine and deep learning approaches for feature extraction
from QUS multi-parametric images [62, 63]. In those studies,
especially prominent for breast cancer, multiple BSC and

envelope statistics-related parameters are used for parametric
map creation, which are then analyzed with deep learning
to extract relevant features used for tissue characterization or
therapy response assessment.

On the other side, several studies have employed deep
learning for speed of sound image reconstruction, allowing
SoS estimation in conventional ultrasound scanners [64, 65].
Solving the reconstruction problem to obtain such SoS maps
in conventional ultrasound scanners is a challenging task that
requires carefully chosen regularization and numerical opti-
mization techniques, but the implementation of deep learning-
based methods eases the task of finding the best regularization
parameters.

All in all, the use of AI in QUS is starting to have a
significant impact, and the relevance of machine and deep
learning in this field is expected to grow in the following
years, as AI-based approaches become more and more popular.
AI could potentially tackle the limitations to the widespread
use of quantitative ultrasound that were previously mentioned,
allowing the reconstruction of the speed of sound maps and
facilitating the implementation of automatic tissue characteri-
zation software in conventional ultrasound scanners based on
QUS biomarkers.

6. CONCLUSION

Quantitative ultrasound is an innovative technique that
shows great promise in revolutionizing the diagnosis and treat-
ment of various diseases. By correlating quantitative biomark-
ers to the biological state of tissues, QUS has been the focus of
numerous clinical applications. In this work, we have focused
on QUS applications in oncology, providing the physics and
reviewing the use of each QUS technique in this field. From
this study, it is clear that BSC estimation and envelope
statistics are the most promising and commonly used QUS
techniques in the field of oncology, given the multiple tissue-
describing biomarkers that they provide. However, despite
their potential, these techniques are not yet available in clinical
systems. Furthermore, other techniques such as attenuation
and speed of sound estimation are already implemented in
clinical devices, but there is a limited number of recent
studies employing them for oncology. To make this technology
more widely available and accessible, standardization of QUS
biomarkers and techniques is essential. Such an effort, which
has already been done in other fields like liver diseases, would
facilitate the clinical use of QUS in oncology, providing a
more reliable treatment that is both system and operator-
independent. Moreover, the field of QUS is not indifferent
to the emergence of AI in the past few years, with several
studies reporting the use of machine and deep learning meth-
ods for tissue characterization or QUS image reconstruction.
The synergy between QUS and AI could revolutionize this
field, tackling some of its limitations and accelerating the
widespread implementation of these techniques in clinical
settings.
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