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Abstract

Lineage tracing is a crucial method to provide insights into the evolving landscape of progenitor
potential during lineage commitment in human hematopoiesis. A deeper understanding of the
hematopoietic process can have promising clinical implications for the development of immune
therapies where the composition of the immune system needs to be altered. Numerous lineage
tracing techniques which introduce genetic modifications have been employed in model systems.
Approaches in humans usually require the detection of somatic mutations in nuclear or mitochon-
drial DNA at single-cell level. Here, we perform retrospective lineage tracing by detecting somatic
mitochondrial mutations in single-cell sequencing data, and use them as natural genetic barcode to
link genetic regulators of hematopoietic stem and progenitor cells (HSPCs) to cell fate in PBMCs.
We employ previously published scATAC-seq data from two replicates of CD34+ HSPCs and two
replicates of PBMCs from the same donor with a three months time interval, to identify mitochon-
drial variants. Lineages biased clones were quantified with a chi-squared test, and differentially
expressed genes and enriched pathways were inferred. In contrast with previously published results,
we observed clones with a significant bias towards the lymphoid, myeloid, and HSC self-renewal
lineage. However, regulatory networks of these clones showed minimal overlap between the repli-
cates, indicating uncertainty in the results. Despite this uncertainty, the observation of lineage
biased clones provide an opportunistic perspective for the suitability of mitochondrial mutations
for lineage tracing.



Layman summary

The hematopoietic system consists of the bone marrow and the blood cells and tissues it produces.
Different paths of cell differentiation lead to different mature cells. We call these paths lineages,
and the function of the mature cells we call 'fate’. It is important to understand how this system
works, and why some cells follow a different lineage than other cells. By knowing exactly how this
works, we can improve medical procedures such as stem cell transplantation and immune therapy.

Here, we try to follow a single cell and all its daughter cells by using mutations in the DNA
of mitochondria in cells in the bone marrow and the blood. When cells divide, the mitochondria
are distributed over the two daughter cells. The same mutation in two cells can mean that they
belong to the same family, we call a ’clone’. That is why we search for mutations in the bone
marrow, and in the blood a few months later, to see the different fates the bone marrow cells have
developed in.

To search for these mutations in the mitochondria we use a method called single-cell sequenc-
ing assay for transposase-accessible chromatin (scATAC-seq). scATAC-seq sequences the parts of
the open part of the genome that can be transcribed. This is a very usefull approach to sequence
the mitochondria, because the entire mitochondrial genome is open. Next to the mitochondria,
this method also sequences the nuclear genome of each cell. We can use the genes on the open
parts of the chromatin to identify what function and fate a cell has.

By combining these methods, we can link the genes on the open nuclear genome in the bone
marrow cells, to the genes (and therefor cell fate) in the matured blood cells and see if there is a
connection. If cells from a specific clone in the bone marrow all express more of gene ’A’, and the
daughter cells from this clone in the blood are mostly of cell fate 'B’, then we can say that gene A’
might cause cells to differentiate into type 'B’. And when someone has a disease and lacks cells in
the blood of type 'B’, we could manipulate the bone marrow to express more gene A’. This way
we can change the composition of the blood cells.

We discovered some clones that mostly have cells in the lineages lymphoid, myeloid and hematopoi-
etic stem cell (HSC) self-renewal lineage, we call these clones ’lineage biased clones’. The lymphoid
lineage contains immune cells such as B cells, T cells and natural killer cells. The myeloid lineage
makes red blood cells, granulocytes, monocytes and platelets. HSC can either differentiate into
these lineages, or renew themselves.

These lineage biased clones contain specific genes for which they have more or less expression.
But these genes changed a lot when you repeat the procedure. This means that we cannot be sure
that these genes are really correlated to the cell fates, or that we found them by coincidence. But
the fact that we found lineage biased clones means that we can use the mutations in mitochondria
to follow the lineages in the hematopoietic system.
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Chapter 1

Introduction

1.1 Insights in hematopoiesis through lineage tracing

Lineage tracing refers to a set of techniques to track and trace the migration, proliferation and
differentiation of a single cell. Accurate lineage tracing is a crucial goal in the complex process of
hematopoiesis. During this highly regulated process, immature hematopoietic stem cells (HSCs)
differentiate in progenitors of specialized blood cell lineages, and ultimately develop into mature
immune cells, red blood cells and platelets. By utilizing lineage tracing techniques, valuable in-
sights in the hematopoietic system in both pathological and physiological context can be attained.
Moreover, this approach could provide information about the evolving landscape of progenitor
potential during lineage commitment and cell fate decisions. Relevant findings potentially have
clinical implications in fields such as HSC transplantations, ageing, immune-based therapy, tumor
evolution and regenerative medicine.[1][2]

Some commonly employed lineage tracing techniques include the use of fluorescent proteins as
lineage markers, retroviral or lentiviral labeling, and genetic barcoding. By introducing fluorescent
proteins whose expressions are under the control of enzymes such as Cre recombinase, cellular
clones can be visualized and tracked. Fluorescent labels can also be introduced by infecting cells
with retroviral or lentiviral vectors. These vectors integrate in the host cell genome, and are in-
herited by daughters cells. Unique DNA sequences can be inserted and used as genetic barcodes
by CRISPR/Cas9 genome editing. These barcodes can then be retrieved by high throughput se-
quencing. However, all these techniques introduce genetic tags or mutations, and are therefore not
ethical to be applied in humans in vivo.[3][4]

1.2 Somatic mitochondrial mutations as genetic barcode

An alternative to genome altering lineage tracing approaches is retrospective lineage tracing, where
somatic mutations are used as natural genetic barcodes [1]. A single cell has multiple mitochondria,
which contain 100-1000 copies of mitochondrial DNA (mtDNA) that can acquire somatic muta-
tions, causing various levels of allelic heteroplasmy (Figure 1.1a). Somatic mutations in the mtDNA
with heteroplasmy levels of at least 5 percent can be stably propagated to daughter cells[5][6]. The
mitochondrial genome has various characteristics that provide an advantage over its nuclear coun-
terpart in distinguishing true mutations from background noise. The size of the circular human
mitochondrial genome (approximately 16.6 kilobases) makes it small enough to be sequenced cost
effective, and large enough to be a substantial target. In comparison to nuclear DNA (nDNA),
mtDNA has a higher mutation rate (10-100 folds) and higher copy numbers (100-1000 per cell).[5][6]

Despite the advantages of mtDNA for lineage tracing, there are some considerations. For ex-
ample, the inheritance patterns of mtDNA are more complicated than those of nDNA, making
lineage inference a challenge [1]. Another potential limitation is the horizontal transfer of mito-
chondria (HMT) between cells. While HMT has been observed in various pathological conditions,
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triggered by stress responses, its extent and role in natural development and tissue homeostasis
remains unclear [7]. Nonetheless, to significantly confound a lineage tracing analysis, HMT would
require frequent occurrences. This scenario appears unlikely, as Ludwig et al.[5] found no evidence
of such event in their data.
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(a) Dynamics of mtDNA heteroplasmy. Derived
from Ludwig et al., 2019, Cell 176 (b) ATAC sequencing approach.

Figure 1.1: Schematic overview of mutation propagation in mitochondria and ATAC sequencing.

1.3 scATAC-seq for mitochondrial mutation detection

With the abundant availability of single-cell RNA sequencing (scRNA-seq) data, it may seem ben-
eficial to use this data for detecting mtDNA mutations as clonal markers. However, factors such as
RNA editing, transcription errors, technical artifacts, and limitations in mitochondrial sequencing
depth pose challenges on the effectiveness of scRNA-seq for this purpose. As an alternative, single-
cell sequencing assay for transposase-accessible chromatin (scATAC-seq) bypasses most of these
obstacles. ATAC-seq identifies open accessible chromatin regions in the genome by fragmenting
these regions with the use of hyperactive Tnb transposase and adds adapters. These fragments
can then be purified, amplified and sequenced (Figure 1.1b). The microfluidics-based single cell
approach using 10X Genomics has become widely used. This system captures single transposed
nucleus and adds unique barcodes to the DNA fragments. As the mitochondrial genome is not
packaged into chromatin, it can be sequenced effectively with ATAC-seq [6].

Lareau et al.[8] introduced a modified version of the droplet-based 10X Genomics workflow, known
as mitochondrial single-cell assay for transposase-accessible chromatin sequencing (mtscATAC-seq).
This approach offers several improvements over scATAC-seq to enable higher and more uniform
coverage of the mitochondrial genome. In contrast to scATAC-seq, mtscATAC-seq involves pro-
cessing whole cells instead of isolated nuclei to retain a higher abundance of mitochondrial DNA.
To minimize the potential mixing of mtDNA between cells, the mtscATAC-seq method incorpo-
rates modified cell lysis techniques and introduces a formaldehyde fixation step.

The utilization of scATAC-seq is not without its limitations. Differentially accessible regions
currently lack power in cell-type annotation in comparison to differentially expressed genes in
transcriptomics data [9]. 'Gene activity scores’ can be computed based on distal and proximal
accessible elements to a promoter region, enabling the inference of gene expression. Nevertheless,
these gene scores do not not have the same golden standard signatures for unsupervised cell-type
discovery that scRNA-seq has. The extensively available annotated scRNA-seq data can fill this gap
by serving as a reference data to transfer cell labels. During this label transfer process, the query
and reference datasets are projected into a shared lower-dimensional space defined by a canonical
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correlation structure. In this shared space, mutual nearest-neighbors are identified across the query
and reference cells, which serve as anchors during data integration (Figure 1.2). However, certain
limitations should be considered when employing this method of annotation. Firstly, dominant
cell-types in the reference datasets may bias the cell-type prediction in the query data. Secondly,
cell-types that are absent from the reference data will not be identified in the query data. The
reference data should therefore be selected based on the expected cell-types and their abundance

in the query data.[9][10]
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Figure 1.2: Data integration for cell-type label transfer. Query and reference data are projected into a
shared lower dimensional space, in which anchors are identified. Derived from Stuart et al., 2019, Cell
177 [10]

1.4 Lineage biased clones and genetic regulators in hematopoiesis

One of the key objectives in hematopoietic lineage tracing is to gain a deeper understanding of the
regulatory mechanisms underlying cell fate decision. To study these mechanisms, it is necessary
to identify clones with a distinct lineage bias. Lineage biased clones refer to cells with shared
ancestry that are more prone to differentiate into specific cell fates. Through the identification of
differentially expressed genes (DEGs) and enriched pathways between these lineage biased clones,
genetic predictors of lineages commitment could be identified (Figure 1.3).[11][12]

Previous studies have successfully detected lineage biased clones both in wvitro in humans and
in vivo in mice models. For instance, Cosgrove et al.[13] discovered myeloid biased, erythroid
biased and differentiation-inactive clones along with their metabolic pathways and DEGs in mice.
They conducted lineage tracing in vivo using DRAG in situ barcoding [14], followed by scRNA-seq
to recover the barcodes from hematopoietic stem and progenitor cells (HSPCs), and bulk sequenc-
ing of DNA after 47-67 weeks. If at least 75 percent of cells in a clone was myeloid or erythroid,
the clone was assigned as lineage biased. Among the DEGs discovered were established markers
of myeloid potential such as Mpo, Ctsg, Ms4a3 and Cpad.

Lareau et al.[8] identified erythroid and monocyte biased clones in 20-day cultures of human CD34+
HSPCs. They performed lineage tracing using mtDNA mutations detected with mtscATAC-seq,
and identified lineage biased clones based on the fraction of monocyte/erythroid cells in a clone.
They permutated this cell-type distribution 100 times and computed a z-score for each clone. The
clone was identified as lineage biased if the z-score between the observed and permutated fraction
was at least 5. They identified various transcription factor motifs associated with these biased
clones, including SPI1 and CEBPA for monocyte bias. This same study aimed to explore clonal
tracing in human hematopoiesis in vivo. They profiled mtDNA mutations in mtscATAC-seq data
obtained from CD34+ HSPCs and PBMCs collected 3 months later, and applied a Chi-squared
test to investigate the association between clonal output and inferred cell states. In contrast to
their in witro study, no evidence of lineage biased clones was observed. To date, based on our
existing knowledge, lineage biased clones have not been documented in human hematopoiesis in
vivo.
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Figure 1.3: By tracing the lineage between CD34+4+ HSPCs and PBMCs, clones with a predisposition
towards a certain cell fate could be identified. By analyzing DEGs of these clones, genetic regulators of
lineage commitment could be discovered.

1.5 Research Questions

The primary objective of our study is to examine the utility of mtDNA mutations for in vivo
lineage tracing in humans. This investigation poses challenges due to the absence of a definitive
ground truth. Potential confounding variables, such as loss of mutations or mitochondrial transfer,
may influence our findings. Nevertheless, the identification of substantial lineage biased clones
with distinct genetic networks can mitigate these limitations and provide valuable insights.

Second, employing these methods we aim to investigate the presence of genetic regulators that
can predict lineage commitment in HSPCs. The identification of such predictors would indicate
the potential for manipulating HSPCs to modulate the cellular output of the bone marrow, leading
to beneficial outcomes in diverse pathogenic processes. This could be promising for the develop-
ment of therapeutic strategies that need to alter the composition of the immune system for clinical
applications.
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Methods

Instructions and code to reproduce this analysis can be found in the Github repository:
https://github.com/TeamPerie/Report_Daphne

2.1 Samples

We used the public human in vivo mtscATAC-seq data set from Lareau et al. [8] for our analysis.
This data set contains two replicates of bone marrow-derived CD34+ HSPCs and two replicates of
PBMCs with a 3 months time interval. Both samples were from the same healthy donor (male, 47
years old). All 10x mtscATAC-seq libraries were sequenced paired end and were aimed to contain
100 million reads and at least 20x coverage of the mitochondrial genome.

2.2 Preprocessing

All replicates were preprocessed separately to yield annotated high-quality cells.

MGATK - .
. imension .
Hete.ropla‘smy Quality Control Reduction Cell Annotation
estimation

2.2.1 Cell Ranger ATAC

Reads were mapped to the a modified version of the h38 human reference genome using Cell
Ranger ATAC count version 2.1.0. The reference genome was modified to hard-mask regions on
the nuclear genome that shared homology with the mitochondrial genome. This modification
forces homologous reads to the mitochondrial genome during mapping, increasing mtDNA depth
and capturing every mitochondrial variant. Cell Ranger ATAC count identifies peaks of accessible
DNA, and calls cells based on the fragments overlapping these peaks. All default settings were
used, but '—force-cells’ was set to 6000 to keep a high cell count for an accurate heteroplasmy
estimation.

2.2.2 MGATK

Filtered cells and peaks were then used to identify somatic mtDNA mutations using the mitochon-
drial genome analysis toolkit mgatk version 0.6.7[8]. In contrast to other variant callers, mgatk
focuses on clonal mtDNA variants by combining signal across and between cells.
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2.2.3 Quality control

An additional quality filtering was applied to keep cells with a minimum of 1000 unique fragments,
25 percent (CD34+ HSPCs) or 60 percent (PBMCs) fragments in peaks, and 20x mtDNA coverage.
These cutoffs were selected based on the density, and are equal to the cutoff utilized by Lareau et
al.[8]

2.2.4 Dimension reduction

The high quality chromatin data was further analyzed with the R package Signac[15] (R version
4.2.2, Signac version 1.9.0). Dimension reduction was performed based on latent semantic indexing
(LSI). This a combination of term frequency-inverse document frequency (TF-IDF) normalization
followed by a singular value decomposition (SVD) on the top variable features. LSI normalizes for
sequencing depth across cells and across peaks and identifies relationships between peaks to reduce
dimensions. Note that the first TF-IDF dimension often captures sequencing depth, thus technical
variation, therefore we excluded the first dimension from the downstream analysis. The first
2:30 LSI dimensions were used to construct a shared nearest-neighbor graph, on which a Louvain
clustering was performed with a resolution of 0.85. A UMAP based on the LSI dimensions was
constructed to visualize the cells.

2.2.5 Cell annotation

Cells were annotated by transferring labels from reference scRNA-seq data. For the CD34+ bone
marrow samples, the CITE-seq reference of human BMNC from the Seurat package was employed
(Seurat version 4.3.0). For the PBMCs, existing 10X scRNA-seq v3 PBMC data was used as
reference [10].

2.3 Identify mitochondrial variants

To identify mitochondrial variants, mtDNA mutation counts for the replicates were added together.
Somatic mutations suitable for lineage tracing were identified based on thresholds. First, mutations
must be detected in at least 5 cells, and maximum 1000 cells across the joined replicates. With
these cutoffs, we exclude mutations that might be a result of sequencing error or potential germline
mutations. Next, mutations must exhibit a strand concordance of at least 0.5, ensuring consistency
between forward and reverse reads to eliminate technical noise. A variable mean ratio (VMR)
threshold of at least 0.01 was set to assess the variation in allele frequency across cells. A low VMR
indicates that most cells have this mutations with the same allele frequency (VAF), suggesting the
mutation to be wild type and unsuitable for lineage tracing. Next, replicates were separated again
to classify cells into clones. In order to classify a cell as mutant, the mutation must have a minimum
VAF of 5 percent, and at least 2 forward and 2 reverse reads containing the mutation.

2.4 Calculate lineage bias

Clones from which the cells are more prone differentiate into a specific cell fate, and thus are lineage
biased, are identified with a Chi-squared goodness of fit test. For each clone, we tested whether
the distribution of cell-types among the mutant cells significantly differed from the distribution
observed across all cells. The null hypothesis assumed no difference in the distribution, indicating
the absence of lineage bias. The alternative hypothesis suggested the presence of lineage bias. For
the CD34+ HSPCs, we compared the HSCs against all other cell-types to test for clones with a
predisposition towards self-renewal or proliferation. For the PBMCs, we focused on comparing
the lymphoid (activated- and memory B cells, gamma/delta-, naive CD4-, memory CD4- and
cytotoxic CD8 T cells, and T regulatory cells) and myeloid (CD14- and CD16-monocytes) lineage.
We excluded the NK cells and dendritic cells to diminish ambiguity in lineage assignment.

10
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2.5 Analyze genetic mechanisms

In each replicate, we conducted a differential gene expression analysis within CD34+ hematopoietic
stem and progenitor cells (HSPCs) between lineage biased clones, employing the Wilcoxon rank
sum test. Genes exhibiting a significant Wilcoxon statistic, a minimum log2 fold change of 0.1,
and a p-value below 0.05 were selected for subsequent KEGG pathway analysis [16].

11
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Results

3.1 mtscATAC-seq retrieved substantial mtDNA depth

We utilized mtscATAC-seq data of two CD34+ HSPC replicates and two PBMC replicates after a
three months interval to perform in vivo retrospective lineage tracing. Cell Ranger ATAC analysis
yielded approximately 6000 cells per sample, with an average of approximately 16,000 (BM) and
9000 (PBMC) fragments detected per cell. Subsequent filtering based on unique fragments, reads
in the peak (FRIP), and mtDNA depth resulted in an average of 3800 cells with 167,000 peaks and
an average mtDNA depth of 100 (BM), as well as 5110 cells with 140,000 peaks and an average
mtDNA depth of 50 (PBMC) (Figure 3.1). Exact numbers can be found in appendix A.1.

3.2 Cell states annotated with scRNA-seq label transfer

Following quality control, cells were clustered and embedded in UMAP dimensions (Figure 3.2). As
anticipated, the first LSI dimension exhibited a strong correlation with sequencing depth (Appendix
Figure A.2). Cell-type annotation based on scRNA-seq label transfer revealed distinct subsets of
T cells, B cells, monocytes and dendritic cells in the PBMC samples (Figure 3.2b). However, the
identification of NK-cells proved to be less straightforward. Cluster 4 in PBMC1 and cluster 4 and
13 in PBMC2 are confidently annotated as NK cells. Additionally, cluster 5 and 8 for PBMCI1,
and cluster 0 for PBMC2 are also annotated as NK cells. But, this prediction carries uncertainty
due to significant overlap observed with memory CD4 T cells. Various hematopoietic lineages were
identified in the CD34+ HSPC samples (Figure 3.2a). However, these samples exhibited higher
cellular heterogeneity within the clusters than the PBMC samples. In contrast to the PBMC
samples, the bone marrow samples exhibit a more continuous landscape of cell identities rather
than distinct clusters.

3.3 Mitochondrial variants identified as clonal markers

Threshold based mutation identification yielded a total of 2143 unique mutations as clonal markers,
433 of these were shared between CD344+ HSPCs and PBMCs (Figure 3.3). A strong correlation
between clone sizes was observed among replicates, suggesting minimal sampling issues. Clone
size correlation between bone-marrow and PBMCs was comparatively lower. In general, clones
appeared larger in the PBMC samples than in the bone marrow samples.

When visualizing the CD34+ HSPCs and PBMCs in UMAPs and coloring the cells on allele
frequency for specific mutations (2788C>A, 12868G>A, 3209A>G), we observe a visual lineage
bias. Cells with high allele frequencies tended to cluster in specific locations locations within the
UMAPs (Figure 3.4 bottom). Mutation 2783C>A seems to be biased towards T cells, 12868G>A
seem to be biased towards cytotoxic CD8 T cells, and mutation 3209A>G seems to have a bias
towards monocytes. These findings are contrasting with the results from Lareau et al.[8], where
cells with higher allele frequencies appeared to be randomly distributed across their UMAP plots

12
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(Figure 3.4 top). It should be noted that our analysis treated replicates separately, whereas Lareau
et al. merged replicates, resulting in the presence of four UMAPs in our analysis compared to their
two UMAPs.

3.4 Lineage biased clones detected

To test whether the clones have a lineages bias, cells were assigned to categories for comparison.
In the CD344 HSPCs, we compared cells annotated as HSC (818 in total) against all other cells
(6617 in total) (Figure 3.5a). Employing a Chi-square test, 26 clones, with 271 cells in total,
were detected with a bias towards HSCs (Figure 3.5b). No clones with a bias towards non-HSCs
were detected. See Appendix Table A.2 and Figure A.3, A.4 and A.5, for details on all biased clones.

In the PBMC clones, we compared cells annotated in the lymphoid lineage (4179 in total) with
the myeloid lineage (973 in total) and excluded NK cells and DCs (Figure 3.6a). We excluded NK
cells due to the uncertain cell-type prediction (Figure 3.2), and DCs because they can arise from
both the myeloid and the lymphoid lineage [17]. Utilizing the Chi-square test, 2 clones with 414
cells in total, were detected with a lymphoid bias, and 25 clones with 248 cells with a myeloid
bias (Figure 3.6b). See Appendix Table A.3 and Figure A.6, A.7 and A.8, for details on all biased

clones.

3.5 Potential regulatory networks observed

The lineage biased CD34+ HSPC clones were colored in the bone marrow UMAPs to visualize
their heterogeneity in accessible chromatin features (Figure 3.7a). Consistent with expectations,
we observed a higher proportion of cells from HSC-biased clones in the HSC region of the UMAP
compared to other regions. However, some cells of the HSC biased clones were identified in other
regions of the UMAP, indicating that these clones contain differentiation active cells. In order to
investigate potential genetic predictors associated with hematopoietic stem cell (HSC) self-renewal
or proliferation, we tested the clones for differentially expressed genes (DEGs) and enriched path-
ways (Figure 3.7b). 16,607 genes were detected in replicate 1, and 16,612 in replicate 2. Among
these, 817 (replicate 1) and 888 (replicate 2) exhibited a high log2 fold change and significant
p-value and where subsequently identified as differentially expressed. Between the replicates, 20
DEGs showed overlap. Subsequent KEGG pathway analysis of the DEGs revealed no shared path-
ways between the replicates, except for the regulation of actin cytoskeleton pathway observed in
non-HSC biased clones.

The lineage biased PBMC clones were traced back to the CD34+ bone marrow samples, and
visualized in the bone marrow UMAPs (Figure 3.8a). No visual lineage bias is observed in these
clones in the CD34+4 HSPCs, indicating that lymphoid and myeloid biased progenitor have similar
accessible chromatin features. Specifically, cells from myeloid-biased clones were also detected in
the lymphoid progenitor area of the UMAP, while lymphoid-biased cells were also found in the
granulocyte-macrophage progenitors (GMP) area. 16,938 genes were detected in replicate 1, and
16,526 in replicate 2 (Figure 3.8b). Among these, 734 (replicate 1) and 769 (replicate 2) exhibited
a high log2 fold change and significant p-value and where subsequently identified as differentially
expressed. Between the replicates, 9 DEGs showed overlap. The differentially expressed genes
displayed a relatively low average log2 fold change in comparison to the results from the HSC
biased clones. Further KEGG pathway analysis of the significant DEGs did not reveal any shared
pathways between the replicates.

13
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Figure 3.1: Quality control results of the CD34+4+ HSPCs and PBMCs. Cells are filtered based on the
unique nuclear fragments, fraction of reads in peaks (FRIP) and average mtDNA sequencing depth.
Circular plots show the coverage over the mitochondrial genome before and after filtering for the 5/50/95
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Figure 3.2: UMAP visualizations of all quality controlled CD34+ HSPCs and PBMCs. Cells are
colored based on the Louvain clustering (left), label transfer (middle), and final annotation (right). The
heatmap depicts the proportion of cells in each clustered that has been predicted each cell-type.
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Figure 3.5: Results of the lineage bias test for CD34+ HSPC clones towards HSCs or non-HSCs (other).
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Figure 3.6: Results of the lineage bias test for PBMC clones towards lymphoid or myeloid
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(b) Volcano plots showing differentially expressed genes between the HSC/Other biased clones. Genes are labeled
when they have a significant p-value (below 0.05), high average log2 fold change (above 0.1) and are present in
both replicates. Dashed line represents these cutoffs. Enriched KEGG pathways are displayed in the bar plots on
the right.

Figure 3.7: Results of the regulatory network analysis for clones biased towards HSCs or non-HSCs

(other) in the CD34+4 HSPCs. Results are shown for both replicates (BM1 = replicate 1; BM2 =
replicate 2)
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(b) Volcano plots showing differentially expressed genes between the lymphoid/myeloid biased clones. Genes are
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Figure 3.8: Results of the regulatory network analysis for clones biased towards lymphoid or myeloid in
the CD344+ HSPCs. Results are shown for both replicates (BM1 = replicate 1; BM2 = replicate 2)
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Chapter 4

Discussion and Conclusion

Here, we used somatic mitochondrial mutations to perform lineage tracing of the hematopoietic
process in human in vivo. We employed single cell chromatin accessibility data to detect mitochon-
drial mutations in the CD34+ HSPCs and PBMCs of the same healthy donor with a 3 months
time interval. Genetic regulators for lymphoid and myeloid progeny, and for HSC self-renewal,
were detected using a chi-squared test for lineage bias and subsequent testing for differentially
expressed genes (DEGs) and enriched pathways.

Despite adapting comparable methods as those utilized in the original publication of the data
(Lareau et al.[8]), our results hold opposing views. Where Lareau et al. observe no lineage bias
in the PBMC clones, we detect clones that are significantly biased. A small error while joining a
matrix of allele frequencies with other metadata of the cells such as UMAP dimensions, without
matching for cellular barcodes, explained the random distribution of mutant cells and absence of
lineage bias in the results of Lareau et al. (Appendix Figure A.2). This observation highlights the
importance of reproducibility.

Although we observe lineage biased clones and associated regulatory networks, these findings are
not robust. The mutant cells from myeloid and lymphoid biased clones show comparable acces-
sible chromatin features in the CD344+ HSPCs when displayed in the UMAP. This can explain
the different DEGs and enriched pathways between replicates, as they might show significance due
to coincidence. As the replicates displayed high similarity up until this point in the analysis, its
divergent DEGs and pathways imply minor variations to have considerable consequences. Hence,
the resulting regulatory networks are unreliable for predicting cell fate. The robustness of the
results could be improved by setting more stringent thresholds for variant detection. The unstable
regulatory networks can be explained by various additional factors, which we can divide into two
categories.

First, cells could be assigned to the same clone even though they are from a different ancestor
cell. This cause false negative results, where clones will not be detected as lineage biased. Cell-
type annotation influences the accuracy of dividing cells into categories for the chi-squared test.
The scRNA-seq label transfer shows a low confidence for various clusters, particularly in the con-
tinuous landscape of CD34+4 HSPCs. This ambiguous annotation could cause distinct lineages to
be categorized together, resulting in low fold changes and p-values for the DEGs. This limits the
chi-squared test for lineage bias as it requires a priori category defining. The decision for comparing
lymphoid with myeloid and HSC self-renewal with proliferation was because these are one of the
earliest branching points in cell fate commitment. Still, resolution can be increased to compare
more distinct cell subsets or progenitors. Additionally, a chi-squared test might not be the correct
method for defining lineage bias towards HSC self-renewal, as many cells from a HSC biased clone
still seem to differentiate into other progenitors and into the PBMC. Other factors that can gener-
ate false negative results are the possible horizontal transfer of mitochondria between cells and the
potential rise of similar mutations by coincidence. With the size of the mitochondrial genome and
with its high mutation rate, there could be a significant probability of two cells carrying the same
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mutations by coincidence instead of shared ancestry. Especially when analyzing long-lived cells
such as naive T cells [18], this probability will increase. Another point of consideration is the time
interval between CD34+ HSPC and PBMC sampling, and the longevity of certain cell-types. HSCs
differentiate into mature blood cells in approximately 4-12 weeks, but lymphocytes might take even
longer [19]. The 3 months time interval in our data should be able to sample daughter cells, or close
descendants, of the clones sampled in the bone marrow. But some CD34+ HSPCs might not have
differentiated into the PBMC yet, and some might already have multiple generations in the PBMC.

Secondly, a factor that could confound the observed lineage bias is the independence of cell fate
from mitochondrial mutations. When using mitochondrial mutations as clonal marker to infer
genetic predictors of lineage commitment, we assume these mutations to be independent from cell
fate. This might not be the case, as mutations in certain mitochondrial genes could alter the
function of the cell, and consequently its cell fate decisions.

Despite potential confounding factors, the generation of false positive results will be rare. Therefor,
the observed lineage bias is most likely accurate and supports the proposition that the propaga-
tion of chromatin state enables long-term inheritance of cellular function[20][21]. Other promising
results where the genetic regulators of clones biased towards HSC self-renewal and proliferation.
These results showed higher robustness than for the lymphoid and myeloid biased clones, as more
DEGs and pathways were overlapping between replicates, and the enrichment for certain pathways
where in agreement with the biological hypothesis. The actin cytoskeleton pathway is a key regula-
tor of migration of cells within the body, which aligns with it’s enrichment in proliferating HSPCs
[22]. The enrichment of the cellular senescence pathway in self-renewing HSCs is consistent with
the function of these HSCs, as this pathway maintains tissue homeostasis and halts proliferation
[23].

There are many uncertainties in the use somatic mitochondrial mutations as genetic barcode.
Not much is known about the frequency of horizontal transfer, mitophagy and the distribution of
mitochondria during mitosis. The impact and frequency of the confounding and limiting factors
need to be studied in detail to draw conclusions from lineage tracing studies using mitochondrial
mutations, and to trust the resulting genetic predictors. But, important steps have been made
towards a better understanding of the strengths and limitations of this approach. In this study,
lineage biased clones were observed in human in vivo. As far as we know, this has not been ob-
served before and provides a promising perspective on the usability of mitochondrial mutations for
lineage tracing.
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Appendix A

Appendix

A.1 Cell numbers

Nr. cells after
Cell Ranger

Nr. fragments
per cell after
Cell Ranger

Nr. cells after
QC filtering

Nr. peaks after
QC filtering

Average mtDNA
depth after
QC filtering

BM1 6032 16355 3897 171432 104
BM2 6044 15100 3689 163321 93
PBMC1 | 6000 8550 4994 139280 48
PBMC2 | 6000 9316 5226 141294 o4

Table A.1: Exact numbers of cells, peaks and fragments after various preprocessing steps. BM1 =
CD34+ HSPC replicate 1; BM2 = CD34+ HSPC replicate 2; PBMC1 = PBMC replicate 1; PBMC2 =
PBMC replicate 2.
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A.2 Correlation LSI dimensions and sequencing depth
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Figure A.1: Correlation between the sequencing depth and each LSI dimension for all samples. BM1 =
CD34+ HSPC replicate 1; BM2 = CD34+ HSPC replicate 2; PBMC1 = PBMC replicate 1; PBMC2 =
PBMC replicate 2.

A.3 Coding error Lareau et al.

After observing a coding error in the code of Lareau et al.[8], a pull request was created (https:
//github.com/caleblareau/mtscATACpaper_reproducibility/pull/6, Figure A.2)

sdf <- readRD5(".. output/PBMCatac_SignacSeurat_labelTransfer.rds™)

34 4+ sdf <- sdf[colnames{afinl),] #make

sdfimito_cluster <- cluster_name[l1:dim{afinl}[2]]

Figure A.2: Line 34 was added to the code of Lareau et al.[8] to order cells in both dataframes in the
same order.
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A.4 Chi-Squared results

A.4.1 HSC self-renewal vs. proliferation bias

Mutation Chisq stats pvalue p adjust | nr. cells | odds ratio
7374A>G 18.2969137166512 | 1.89013139053996¢e-05 | 0.008978 | 6 15.65
2537G>A | 14.6314428400962 | 0.000130715351321805 | 0.062089 | 7 10.43
6300G>A 11.9142705617183 | 0.000557055465531023 | 0.264601 | 8 7.82
5109A>G 11.7951199893932 | 0.000593861841572743 | 0.282084 | 5 11.74
14847G>A | 8.93570292128873 | 0.00279649828965589 1 6 7.82
11318T>G | 8.93570292128873 | 0.00279649828965589 | 1 6 7.82
3209A>G | 6.64346266680977 | 0.0099520316062046 1 84 1.98
204T>C 6.298052530843 0.012087068980956 1 26 2.88
15806G>A | 5.45722422327308 | 0.0194875804105077 1 8 4.69
13635T>C | 5.45722422327308 | 0.0194875804105077 1 8 4.69
6456G>A | 4.46838511512794 | 0.0345276101699638 1 24 2.60
11225G>A | 4.34030582931895 | 0.0372202371475907 1 9 3.91
15366A>G | 4.14592427504435 | 0.0417348650410089 1 14 3.13
2300G>A | 4.09343174084059 | 0.0430501503722248 1 5 5.21
3239G>A | 4.09343174084059 | 0.0430501503722248 1 5 5.21
9380G>A | 4.09343174084059 | 0.0430501503722248 1 5 5.21
10310G>A | 4.09343174084059 | 0.0430501503722248 1 5 5.21
11561G>A | 4.09343174084059 | 0.0430501503722248 1 5 5.21
733T>C 4.09343174084059 | 0.0430501503722248 1 5 5.21
1193T>C 4.09343174084059 | 0.0430501503722248 1 5 5.21
3949T>C 4.09343174084059 | 0.0430501503722248 1 5 5.21
9454T>C 4.09343174084059 | 0.0430501503722248 1 5 5.21
12101T>C | 4.09343174084059 | 0.0430501503722248 1 5 5.21
14468T>C | 4.09343174084059 | 0.0430501503722248 1 5 5.21
13104A>G | 4.09343174084059 | 0.0430501503722248 1 5 5.21
1200G>A | 4.09343174084059 | 0.0430501503722248 1 5 5.21

Table A.2: Results of the Chi-Squared test for lineage bias for HSC self-renewal or proliferation, only
mutations with a p-value < 0.05 are reported. Odds ratio above 1 defines clones biased towards HSC

self-renewal. P values were adjusted with a Bonferroni correction.
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Figure A.3: CD34+ HSPCs and PBMCs embedding in the UMAP, cells are colored based on the allele
frequency for the mutations from the lineage biased clones towards HSC self-renewal. (PART 1)
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Figure A.4: CD34+ HSPCs and PBMCs embedding in the UMAP, cells are colored based on the allele
frequency for the mutations from the lineage biased clones towards HSC self-renewal. (PART 2)
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Figure A.5: CD34+ HSPCs and PBMCs embedding in the UMAP, cells are colored based on the allele
frequency for the mutations from the lineage biased clones towards HSC self-renewal. (PART 3)

A.4.2 Lymphoid vs. Myeloid

Mutation Chisq stats pvalue p adjust | nr. cells | odds ratio
2788C>A 24.7984191886274 | 6.36496478550977e-07 | 0.000246 | 380 2.46
7374A>G | 22.8322259136213 | 1.76776583709284e-06 | 0.000684 | 5 0
3209A>G | 21.8015736144636 | 3.02352054422938e-06 | 0.001170 | 7 0.03
3244G>A | 14.0188421559237 | 0.000180987890606431 | 0.070042 | 26 0.25
11167A>G | 13.056422329352 | 0.00030224622102532 | 0.116969 | 5 0.05
2784A>C 9.85426137463878 | 0.00169438814368686 | 0.655728 | 109 3.19
7919G>A | 9.65651296937938 | 0.00188681430756684 | 0.730197 | 6 0.10
6890A>G | 8.62943879320659 | 0.00330773460138613 | 1 9 0.17
6190G>A | 7.29057449030523 | 0.00693173066224561 1 7 0.16
15106G>A | 7.29057449030523 | 0.00693173066224561 1 7 0.16
9553G>A | 5.99479230744131 | 0.0143481702365158 1 5 0.14
14710G>A | 5.99479230744131 | 0.0143481702365158 1 5 0.14
7242T>C 5.99479230744131 | 0.0143481702365158 1 5 0.14
11228T>C | 5.99479230744131 | 0.0143481702365158 1 5 0.14
3714A>G | 5.99479230744131 | 0.0143481702365158 1 5 0.14
1082A>G | 5.88623606150608 | 0.0152596822337696 1 14 0.29
15639T>C | 5.64042941839096 | 0.0175509079237964 1 11 0.26
3242G>A | 5.57086781179263 | 0.0182617078823791 1 8 0.21
15699G>A | 5.57086781179263 | 0.0182617078823791 1 8 0.21
2407T>C 5.57086781179263 | 0.0182617078823791 1 8 0.21
1949G>A | 4.32720022623751 | 0.0375078933510424 1 27 0.43
1201A>G | 4.2819823336544 | 0.0385184004016032 1 9 0.27
5894A>G | 4.2819823336544 | 0.0385184004016032 1 9 0.27
14410G>A | 4.17815085884447 | 0.0409483552498958 1 6 0.21
3695T>C 4.17815085884447 | 0.0409483552498958 1 6 0.21
4057T>C 4.17815085884447 | 0.0409483552498958 1 6 0.21
15968T>C | 4.17815085884447 | 0.0409483552498958 1 6 0.21

Table A.3: Results of the Chi-Squared test for lineage bias for lymphoid or myeloid, only mutations
with a p-value < 0.05 are reported. Odds ratio above 1 defines clones biased towards lymphoid, below 1
towards myeloid. P values were adjusted with a Bonferroni correction.
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Figure A.6: CD34+ HSPCs and PBMCs embedding in the UMAP, cells are colored based on the allele
frequency for the mutations from the lineage biased clones towards lymphoid or myeloid. (PART 1)
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Figure A.7: CD34+ HSPCs and PBMCs embedding in the UMAP, cells are colored based on the allele
frequency for the mutations from the lineage biased clones towards lymphoid or myeloid. (PART 2)
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Figure A.8: CD34+ HSPCs and PBMCs embedding in the UMAP, cells are colored based on the allele
frequency for the mutations from the lineage biased clones towards lymphoid or myeloid. (PART 3)
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