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Abstract

The main goal of this research thesis is to retrieve three dimensional human body models, of the parent and
infant, depicted in the private YOUth dataset, from multiple uncalibrated cameras. The previous research in
this area is primarily reliant on ground-truth annotations of two dimensional poses across the multi-view data
or the prior knowledge of the camera parameters. To this end, we develop a mechanism which bridges two
dimensional pose estimation methods with camera calibration and three dimensional human reconstruction
models. To reliably achieve our goal, we study the mechanisms of top-down and bottom-up two dimen-
sional pose estimation methods, as well as, one-stage and two-stage three dimensional human reconstruction
strategies. To link the data between these different models, we develop a pipeline which identifies the same
individual across sequential frames and different points of view, ensuring to accommodate for missing, or re-
dundant, information. We quantify the quality of the reconstruction based on the estimated two dimensional
pose data. The study of the qualitative results show the implications of challenges, such as occlusions and two
dimensional pose detection ambiguities, which cannot be accounted for in the absence of ground-truth pose
annotations or ground-truth camera parameters.

Project Code: https://github.com/Vlad-2299/3DHumanReconstruction YOUth.git
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1 Introduction
In recent years, the computer vision field has witnessed remarkable advancements in the reconstruction of three-

dimensional (3D) scenes from two-dimensional (2D) data. In particular, the reconstruction of humans, in 3D, has
been a highly studied area in the domain. The resulting 3D human models can be used in a vast set of different
applications, including social behavior understanding, sports broadcasting, gaming and medical diagnostics. A
typical 3D human reconstruction pipeline encompasses several steps in order to obtain its final result. These steps
include camera calibration, feature extraction, tracking and the estimation of the 3D human structure. When
building such a pipeline, one needs to account for the type of scenario that is being reconstructed. Several works
allow for a consistent reconstruction when only a single person is in scene [1, 2]. However, more robust works
can achieve competitive results by reconstructing multiple people from a single frame [3, 4]. Nonetheless, depth
ambiguities and occlusions, both spatial and temporal, can heavily impact the overall quality of the reconstruction.
These challenges introduce errors and ambiguities in feature extraction, as well as body scale estimation, and
motion information. To mitigate such challenges, multi-view approaches [5,6] have been proposed. By possessing
multi-view information, obtained from a set of synchronized cameras, developers can achieve a more consistent
and robust 3D reconstruction, often taking advantage of known camera parameters. In spite of that, when working
with in-the-wild data, accurate reconstruction cannot be guaranteed, unless the camera parameters are accurately
estimated, as they contain crucial information about the characteristics and position, relative to the scene, of the
camera. Thus, the multi-view methods that allow for 3D human reconstruction in-the-wild [7,8], need to initially
estimate the missing camera parameters.

Following these preliminaries, this research project has the end goal of performing a consistent 3D human
reconstruction on the private, non-annotated, YOUth dataset1. YOUth consists of thousands of videos depicting
children, of various ages, interacting with one of their parents for a period of time. The playful interaction takes
place in a relatively small, static room, with a set of a few toys and is monitored from four uncalibrated cameras
and a microphone, where, in some views, the zoom setting is applied throughout the video. For this research,
only the video information will be utilized for the reconstruction, outlining the multi-person, multi-view and
in-the-wild scenario. Essentially, our goal is to reconstruct two close-range interacting agents, by utilizing the
temporal information from four different cameras.

1.1 Research Objectives

This research project targets the study of previously developed techniques for 3D human pose estimation. More
specifically, our goal is to understand the different approaches employed, given one’s available setup and investigate
which strategies would best fit to our data. Ultimately, after developing a robust 3D human reconstruction system,
we intend to deliver the obtained reconstructions for further research, which will enable the study of the interactive
behavior between the two agents. Along these lines, we will dive into the challenges caused by severe occlusions
and search for mitigating solutions.

1.2 Research Questions

The current state of the art heavily balances towards monocular 3D human reconstruction systems. Since
synchronized multi-view data is more scarce than monocular data, multi-view 3D human reconstruction systems
often assume that the multi-view data was collected in a controlled environment. These prior assumptions often
require the user to supply the 3D reconstruction system with 2D human poses or camera parameters. The systems
which estimate the camera parameters either only allow the reconstruction on one individual, or require the user
to pass 2D human poses, along with the identification of the person in order to establish feature correspondences
among the different views. Given that the aim of the project is to perform a consistent 3D reconstruction on
two people, the main research question is the following: How accurately can we perform a multi-view 3D human
reconstruction, between two close range interacting agents, without ground truth annotations?

This research question can be divided into the following sub-questions:

� Can we establish an efficient and reliable feature correspondence mechanism to track individuals among
sequential frames and different views?

� During prolonged temporal occlusions, will the reconstruction be improved if we discard the deficient view?

1https://www.uu.nl/en/research/youth-cohort-study

5

https://www.uu.nl/en/research/youth-cohort-study


1.3 Research Outlook

As a consequence of the step-wise approach that one inherently adopts when trying to solve the 3D human
reconstruction problem, the following sections are structured in the following manner. After studying some of
the most relevant works in 3D human reconstruction, we start by introducing the concept of 2D pose estimation,
branching to the contrasting differences of the two proposed approaches, top-down and bottom-up. Following
this, we introduce the different training routines that enable the model to lift the previously detected 2D poses,
in the case of two-step monocular approaches, into the 3D space. We then turn our attention to automatic
camera calibration strategies and multi-view triangulation approaches, discussing different strategies that enable
the model to perform 3D reconstruction from 2D data. Afterwards, we introduce the details of the parametric
model that will enable the reconstruction of the human mesh, parameterizing its shape and pose.
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2 Literature Review
This section presents a discussion about the literature concerning 3D human reconstruction. Even though the

studied methods are aimed at the same target, the majority of these methods employ contrasting techniques to
achieve their end goal. From studying the literature, our objective is to understand such contrasting implemen-
tations and determine to which scenarios they fit best, as often, the choice of intermediate implementations is
ruled by specific challenges/optimization that the authors are trying to overcome/implement.

The following Table 1 gives an overview of the relevant studies conducted in 3D human reconstruction, includ-
ing the current state-of-the-art (SOTA) models evaluated on Human3.6M [9], MPI-INF-3DHP [10], MuPoTS-
3D [11], 3DPW [12] and HumanEva-I [13] datasets (for a description of the mentioned datasets please refer to
Section 2.6). From each column, respectively, one can recognize which methods allow the 3D modeling of multiple
people in one single frame; which methods are employed in a multi-camera setup; which methods don’t require
the camera parameters to be known beforehand; does the method take into account temporal information; is the
3D pose estimation technique reliant on a prior 2D keypoint estimation to regress 3D positions of each joint; and
finally, does the method fit a parametric human body, or does it simply estimate its skeleton.

Method Multi-Person Multi-View In-The-Wild Temporal Two-Stage Model-Based

Wang et al. [8] ✓ ✓ ✓ ✓ ✓ ✓
Iqbal et al. [7] ✓ ✓ ✓ × ✓ ×
QuickPose [5] ✓ ✓ × ✓ ✓ ×
MetaPose [14] × ✓ ✓ × ✓ ×
Dong et al. [6] ✓ ✓ × × ✓ ×
Kanazawa et al. [15] × × ✓ × × ✓
CLIFF [16] 2 ✓ × ✓ × × ✓
SPEC [17] ✓ × ✓ × × ✓
PARE [18] ✓ × ✓ × × ✓
Ugrinovic et al. [19] ✓ × ✓ × × ✓
Liu et al. [1] 3 × × ✓ ✓ ✓ ×
P-STMO [2] 4 × × ✓ ✓ ✓ ×
Zanfir et al. [20] ✓ × ✓ ✓ ✓ ✓
VideoPose3D [21] × × ✓ ✓ ✓ ×
Shan et al. [22] × × ✓ ✓ ✓ ×
SMPLify [23] × × ✓ × ✓ ✓
Chun et al. [3] 5 ✓ × × ✓ ✓ ×
Cheng et al. [4] 6 ✓ × ✓ ✓ ✓ ×
HybrIK [24] × × ✓ × ✓ ✓
Yang et al. [25] × × ✓ × × ×
Iskakov et al. [26] × ✓ × × ✓ ×
Moon et al. [27] ✓ × ✓ × ✓ ×
HoloPose [28] ✓ × ✓ × ✓ ×
Li et al. [29] × ✓ ✓ × × ✓
Zanfir et al. [30] ✓ × ✓ × ✓ ✓

Table 1: Overview of relevant studies for 3D human pose estimation

From the works listed above, the ones that best satisfy the criteria of our data were prioritized. Such criteria
concern the multi-view, multi-person paradigm, in an in-the-wild scenario. For this reason, the first quintet

2SOTA on the 3DPW dataset. Leaderboard: https://paperswithcode.com/sota/3d-human-pose-estimation-on-3dpw
3SOTA on the HumanEva-I dataset. Leaderboard: https://paperswithcode.com/sota/3d-human-pose-estimation-on-humaneva-i
4SOTA on the MPI-INF-3DHP dataset. Leaderboard:

https://paperswithcode.com/sota/3d-human-pose-estimation-on-mpi-inf-3dhp
5SOTA on the Human3.6M dataset. Leaderboard: https://paperswithcode.com/sota/3d-human-pose-estimation-on-human36m
6SOTA on the MuPoTS-3D dataset. Leaderboard:

https://paperswithcode.com/sota/3d-multi-person-pose-estimation-root-relative
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of works outlines the methods that can be deployed in a setup where multiple cameras are available. In one
hand, when good quality synchronized and multi-perspective data of the same scene is available, one naturally
overcomes the inherent challenges of occlusion and depth ambiguity which one faces with monocular data. On
the other hand, the challenge of establishing view-view correspondences arises. Usually, to overcome such an
obstacle, researchers first extract 2D poses and then perform the 3D reconstruction through triangulation. The
works that best address this issue, according to our criteria, are those of Wang et al. (DMMR) [8] and Iqbal et
al. [7].

Unfortunately, the number of studies that address the multi-view 3D reconstruction of multiple humans in-
the-wild is very limited. Thus, the remaining listed works only concern single-view scenarios. The second quintet
in Table (1), references the methods that directly estimate 3D pose and shape information from a single image,
without requiring paired 2D pose annotations. Such methods benefit from the fact that they decouple themselves
from prior 2D pose detectors, thus they don’t rely on the quality of 2D joint detection. However, they are
inherently less robust to domain shifts, as the feature extraction step is more prone to fail in scenarios that it has
not seen in the training data, as it uses image information, such as head and limb orientation, to estimate 3D
poses. The work of Kanazawa et al. [15] often serves as a baseline for other one-stage approaches, such as the ones
mentioned in the second group of the table. Due to the nature of the problem, capturing the human pose from a
sequence of images might yield a noisy reconstruction. To this end, some works adopt temporal inferences, and
capture long-term information, to robustly estimate consistent poses from videos. All the works present in the
third quintet of the table benefit from the temporal information available in videos. Finally, without following
any hierarchical logic, the last ten works serve only as complementary information to the references in future
sections.
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2.1 2D Pose Estimation

Early classic methods, as DeepPose [31], formulate the pose estimation as a joint regression problem, by
utilizing a 7-layered convolutional deep neural network which learned the natural topology and interactions
between joints. With the advances of Convolutional Neural Network (CNN) [32] architectures, researchers were
able to increase their 3D reconstruction performance for both single-person [33, 34] and multi-person [35–37]
scenarios. For either case, during the following years, different network architectures have been applied to solve
the task. Although 2D human pose estimation is naturally a regression problem, historically, these methods
haven’t been as accurate as heatmap-based techniques, therefore received less attention [38]. The core idea of
regression-based architectures is to directly map the input to the output joints coordinates, which is flexible
and efficient for various human pose estimation tasks and real time applications. Regression-based architectures
are more efficient, but less accurate, than the heatmap-based architectures [39]. Overall, the quality of a pose
estimation system is dictated by its robustness to occlusions and severe deformations, success on rare and novel
poses, and by its invariance to changes in appearance due to factors like clothing and lighting [33].

Figure 1: Architecture proposed by Bulat et al. [34] that represents the core idea of the most used representation
for human keypoints, the heatmap [37]

Bulat et al. [34] proposed a CNN cascade, heatmap-based architecture, which serves as a baseline for more
recent heatmap-based approaches (see Figure 2.1). The general concept of the proposed architecture can be
divided into two parts. The first, a part detection network, which is trained to detect individual human body
parts, outputting a set of N part heatmaps. The second, a regression subnetwork that jointly regresses the part
heatmaps, stacked along with the input image, to confidence maps representing the location of the specific body
part. In general, it is more efficient to use a single heatmap for a single keypoint, as it eases the management of
the challenges caused by occlusions and close-range interactions between multiple people [33].

In recent years, transformer-based networks [40, 41] have embraced the task with relative success, leveraging
from the advances of Vision Transformer (ViT) [42]. Contrary to the CNN-based models, the attention layers
in the transformer-based architecture enable the model to capture long-range relationships efficiently, and also
reveal the dependencies that are taken into account when predicting the location of each keypoint. The detected
dependencies can provide further explainability of how the model handles special cases, such as occlusions. But
nevertheless, these methods are all heatmap-based.

2.1.1 Single-Person

As one can expect, single person approaches are inherently more simplistic than their multi-person counter-
parts, as they are able to assume more prior knowledge, such as the number of keypoints to be regressed.
Conventionally, these systems either require a pre-processing step which crops the image, containing one single
person, or the input image must portray a single individual. On the other hand, systems such as Stacked Hourglass
Networks, proposed by Newell et al. [33], utilize the center annotations, provided with all images, during training.
For this reason, the network only estimates the pose of the person in the direct center. In addition to the center
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annotation, the network makes use of keypoint visibility annotations, that reflect on the joints which are not visible
in the image, but with apparent position. Due to such training routine, the network is able to deal with partial
occlusions. Nonetheless, assessing the performance of how the model deals with occlusions can be a challenge, as
it often falls into two distinct categories. The fist consists of cases where the body keypoint is not visible, but its
position is apparent and annotations are provided. The second consists of cases which have no information about
where a particular joint might be, thus if no ground truth annotation is provided, it is impossible to assess the
quality of the prediction. To this end, the network has to make strong assumptions of keypoint location [33].

2.1.2 Multi-Person

When inferring the pose of multiple people in a single image, one is faced with a set of new challenges, which
where not present in the single person scenario. First, each image may contain an unknown number of people
at different positions or scales. Second, close range interacting people induce complex spatial interference that
makes the association of parts more difficult. Such examples are occlusions, contact, limb articulations, or loose
clothing. Third, real-time performance becomes challenging, as the run-time complexity tends to grow with the
number of people present in the image [35]. Nonetheless, multi-person pose estimation techniques have seen rapid
advances that try to overcome these challenges, being mainly divided into top-down and bottom-up approaches.

Figure 2: Overview of the AlphaPose pipeline [37]. (i) the full picture is split into a different number of cropped
images, resulted from the human detection step. (ii) the localization of keypoints is formulated with the symmetric
integral keypoints regression and human pose is estimated. (iii) the pose-guided alignment (PGA) module is
applied on the predicted human re-identification feature to obtain pose-aligned human re-identification features.

2.1.2.1 Top-Down Top-down approaches [37, 43–45], interpret the process as a two-stage pipeline. Initially,
a detector is employed to predict, and crop, bounding boxes for each person in the image, which are in turn fed
to the proceeding pose estimation network. Due to the human detection step, top-down approaches can leverage
from prior knowledge about human appearance and pose patterns, which allows them to achieve higher accuracy
in keypoint detection. Furthermore, given the human detections over a period of time, tracking algorithms can
be utilized.

The commonly adapted, top-down, multi-person, pose estimation method, AlphaPose [37], embraces the
challenge by first, given an input image, obtaining human detections using and off-the-shelf object detector such
as YoloV3 7 or EfficientDet [47]. Given the fact that the detection stage and the pose estimation stage are separate,
and since the second stage is dependent of the first, in order to alleviate the missing detection problem, AlphaPose
lowers the detection confidence to provide more candidates for the subsequent step. The redundant poses are

7https://pjreddie.com/darknet/yolo/
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then eliminated by a parametric pose Non-Maximum-Suppression (NMS), which works as a pose distance metric
to compare pose similarity. In parallel, the cropped human detection images are also forwarded to a tracking
network, which obtains its re-identification features, and matches it according to the features in previous frames.

The Mask R-CNN [45], which can be extended for human pose estimation, by adapting the segmentation
system to keypoints, implements an additional branch into the pose estimation pipeline. In parallel, with the
human detection step, they predict, in a pixel-to-pixel manner, the segmentation mask for each detected individual.
Following detection and segmentation, they perform the keypoint detection step, where only a single pixel is
labeled as the respective human joint. The results of this method are shown in Figure 3.

Figure 3: Keypoint detection results on the Coco test set using Mask R-CNN (ResNet-50-FPN) for pose estima-
tion, with person segmentations mask predicted by the same model [45]

Figure 4: Overview of the OpenPose pipeline. (a) input image that is fed into a CNN to jointly perdict (b)
confidence maps for each body part detection and (c) PAFs for part association. (d) corresponds to the matching
step that associates body part candidates. (e) resulting assembly of the previous step into a full body pose [35]

2.1.2.2 Bottom-Up Bottom-up approaches [35, 48], as their top-down counterparts, interpret the process
as a two-stage pipeline. First, they localize all human body keypoints in an input image, and then employ a
clustering technique to group them into each person. Due to this strategy, bottom-up approaches are more robust
to occlusions and achieve higher accuracy in dense crowds, when comparing to top-down approaches.

Cao et al. [35] proposed Part Affinity Fields (PAFs) that model the association between human body keypoints.
In other words, PAFs represent a set of flow fields that encode unstructured pairwise relationships between body
parts of a variable number of people, as can be seen in Figure 4. Additionally, Cao et al. adopt two concurrent
networks that estimate face landmarks and hand keypoints.

Other approaches, such as DensePose [49], perform the association task by implementing human body part
segmentation. More specifically, they associate the detected keypoints by segmenting individual limbs/body parts
in order to group the respective body joints. However, due to the inherent ambiguity and variability in human
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body shape and pose, as well as loose clothing, consistent segmentation of body parts becomes a challenge, which
inherently impacts keypoint association. Kocabas et al. [48], proposed a similar approach to the top-down Mask
R-CNN for pose estimation, but in a bottom-up fashion, where they first perform human keypoint estimation,
followed by simultaneous human detection and segmentation.

2.1.2.3 Combined After the advances made in top-down and bottom-up human pose estimation techniques,
a few researchers proposed a combination of the both methods. Before deep learning, earlier methods, such as Hua
et al. [50], introduced a data driven belief propagation Monte Carlo algorithm [51], integrating both top-down
and bottom-up reasoning mechanisms. Alternative methods propose Gaussian mixture modeling, or different
classifiers for joint and skeleton location [52,53]. More recently, leveraging the advancements of deep learning, the
proposed methods that make use of both top-down and bottom-up information, such as Hu and Ramanan [54]
employ a hierarchical rectified Gaussian model to incorporate top-down feedback with bottom-up CNNs. Cai et
al. [55], incorporate spatial and temporal consistencies to alleviate the challenges caused by depth ambiguities
and severe self-occlusions, by introducing a spatial-temporal graph convolutional network (GCN).

Figure 5: Framework that employs a top-down branch to estimate fine-grained instance-wise 3D pose, and a
bottom-up branch to generate global-aware camera-centric 3D pose, proposed by Cheng et al. [4]

Cheng et al. [4] proposed three main networks for human pose estimation (see Figure 5). The first, a top-
down network, estimates human joints from all persons, depicted in the processed frame. The network begins
by estimating enlarged bounding boxes around the detected humans, producing heatmaps for all joints inside it,
and estimating the ID for each joint to group them into the corresponding person. After estimating the 2D pose
heatmaps, a directed GCN is used to refine the potentially incomplete poses caused by occlusions or partially
out-of-bounding box body parts. The second network aims to surpass the limitation of the first, which is the lack
of global awareness of other persons, since top-down methods perform estimation only inside the bounding box.
Thus, they propose a bottom-up network that processes multiple persons simultaneously, easing the estimation of
poses in camera-centric coordinates. Acknowledging that bottom-up methods suffer from human scale variations,
they concatenate the heatmaps, obtained from the previous network, with the original input frame as the input
to the second network. The third and final network takes the output from the previous two networks as input,
and finds the corresponding poses.
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2.2 3D Human Pose Estimation

Several recent works leverage the advances of deep neural networks in order to directly infer 3D body pa-
rameters (more information at Section 2.5) from image features. However, most of the existing methods first
estimate 2D joint locations, and, from these, estimate the 3D body parameters. In general, two-stage pose esti-
mation techniques outperform their end-to-end counterparts, as they benefit from intermediate supervision and
can better adapt to domain shifts [15]. Additionally, training such a model in an end-to-end manner aggregates
new challenges, such as the lack of large-scale ground truth 3D annotations for in-the-wild images. Therefore,
in order to overcome these shortcomings, researchers have turned to the degree of supervision of their methods,
proposing different techniques and network architectures.

2.2.1 Fully-supervised Training

Fully-supervised methods aim to learn a mapping from 2D pose to 3D pose information, given pairs of 2D-
3D correspondences as supervision. Therefore, the methods that take this path, directly predict 3D poses from
images [56]. However, this is a highly challenging approach, starting from the fact that it is very difficult to acquire
large amounts of training images with accurate 3D pose annotations. Leveraging the skewed available data, some
methods employ augmentation techniques to further train their networks [57], or incorporate additional data
with 2D pose annotations [58], which are easier to obtain. Adversarial losses during training or testing have also
been proposed to improve the performance of the models [25]. Overall, full supervision yields the lowest 3D pose
estimation errors, but does not allow for in-the-wild deployment.

2.2.2 Semi-supervised Training

Semi-supervised methods require only a small subset of training data with 3D annotations, using the remaining
samples as unlabeled data. To this end, these methods assume that multiple views of the same 2D pose are
available and use multi-view constrains for supervision during the training phase [59]. To achieve this intermediate
supervision for 3D pose prediction, it is required to input ground-truth 2D pose annotations, or multi-view imagery
with extrinsic camera parameters (for a description of camera parameters see Section 2.3) [21], these are known
as two-stage methods. However, while demonstrating impressive results, the main limiting factor is the need
of ground-truth 3D data [7], as can be seen by the evaluation tests performed by VideoPose3D, where their
semi-supervised approach becomes more effective as it decouples itself from 3D pose annotations [21].

Figure 6: Semi-supervised training with a 3D pose model that takes a sequence of 2D poses as input. 3D
trajectories are regressed of the person and soft-constrains are added to match the mean bone lengths of the
unlabeled predictions to the labeled ones. Proposed by VideoPose3D [21]
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2.2.3 Weakly-supervised Training

Weakly-supervised methods do not require paired 2D-3D annotated data. Essentially, these enable the training
with only 2D annotated images. The approaches to obtain 3D pose estimations vary upon the techniques proposed
by the researchers. Iqbal et al. [7] propose a framework that can be deployed in in-the-wild scenarios, where
multiple views are available. They approach this task by training an end-to-end framework, using multi-view
consistency and employing an object function that can only be minimized when the predictions of the trained
model are consistent and plausible across all camera views. Alternatively, Tome et al. [60] propose a probabilistic
3D pose model that reasons jointly about 2D keypoint estimation and 3D pose reconstruction. To account for
human size variance, the data was normalized such that the sum of the squared limb lengths on the human
skeleton is one. Essentially, this approach employs a multi-stage CNN architecture which uses the knowledge of
plausible 3D joint locations to refine the search for better 2D joint locations, from a single image, with known
camera parameters, as input.

Figure 7: Overview of the framework proposed by Kanazawa et al. [15]

In the monocular in-the-wild paradigm, Kanazawa et al. (HMR) [15] introduce an end-to-end single-stage
adversarial learning framework (HMR), that reconstructs a full 3D human body from a single RGB image, with
no intermediate supervision. The model was trained on images with ground truth 2D joint annotations and
it assumes that a pool of 3D meshes of human bodies, of varying shape and pose, is available. The proposed
framework begins by extracting convolutional features of the input image, which in turn are sent to a iterative 3D
regression module. During regression, the module infers the 3D human body and camera such that its 3D joints
project onto the annotated 2D joints. Afterwards, the infered parameters are sent to an adversarial discriminator
network wich determines if the 3D parameters are real parameters, based on the available pool of meshes.

HMR’s top-down architecture (see Figure 7) was effectively adopted, by many researchers, as baseline [16–
19, 61], where each contributed differently for the improvement of results. For instance, Li et al. [16] propose
Carry Location Information in Full Frames (CLIFF), inferring global rotations, of multiple people, relative to
the camera, by feeding and supervising the model with global-location-aware information, in the original camera
coordinate system, along with the encoded image, and not the cropped images of the human detection, like
was previously done by HMR. Essentially, CLIFF takes into account the different global rotation, of each human
body, relative to the original camera. This is accomplished via the CLIFF Annotator model that generates pseudo
ground truth SMPL (see Section 2.5) parameter annotations, on an existing 2D dataset, which in turn are used
to train the CLIFF model.
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2.3 Camera Calibration

2D projections lack the z component of the 3D coordinate space. The key factor in this research is how to
recover the lost z component in order to perform 3D reconstruction (x, y, z), from 2D images (x, y). Therefore,
camera parameters have to be determined in order to proceed with this task. The computation of the internal
(intrinsic) camera calibration parameters can occur simultaneously with the estimation of the external (extrinsic)
pose of the camera with respect to a known calibration target [62]. Camera calibration requires estimation of
intrinsic parameters such as focal length and principal point of a single camera, as well as extrinsic parameters,
namely rotation and translation. However, several factors might affect the camera parameters. In one hand, it
is necessary to re-calibrate the intrinsic camera parameters if any mechanical damage or replacement is done.
Additionally, zoom modifies the focal length of the lens, thus it directly influences the intrinsic camera parameters.
On the other hand, changing the camera’s position or orientation will require the re-calibration of the extrinsic
parameters.

Figure 8: Overview of 2D-3D keypoint mapping with known camera parameters, in monocular (a) and multi-view
scenarios via epipolar geometry (b) and bundle adjustment (c) [62]

Most camera calibration methods require the aid of specific calibration patterns, such as a chessboard, since
its scale is known and has high contrast features. However, this traditional approach does not work in already
recorded videos where no calibration patterns are in sight. Early auto-calibration methods [63] are based on the
detection of scene keypoints via the implementation of detection algorithms, such as the Scale Invariant Feature
Transform (SIFT) algorithm [64], however these usually have to deal with a large number of parameters, which
makes them slow to run, and rarely obtain the most reliable results [65]. Thus, researches have turned to tracking
human body pose in order to obtain the extrinsic parameters.

Any approach that uses human body pose, in order to learn the extrinsic camera parameters, has to adopt
a pose tracking approach. Given a single-person scenario, identifying the location of the left elbow is relatively
easy among the different perspectives. However, when multiple people are present, identifying one single left
elbow among the different perspectives becomes a challenge. Iqbal et al. [7] adopt a previously proposed pose
tracking mechanism [44] that is based on optical flow. Wang et al. [8] adopt a CNN termed Omni-Scale Network
(OSNet) [66], for omni-scale feature learning. Essentially, OSNet learns to detect and match features among the
different views, regardless of their scale.

In order to accurately estimate the extrinsic camera parameters, using the human body as a target, researchers
often opt for a multi-camera setup. The availability of different perspectives allows to recover epipolar geom-
etry, structure from motion, (see Figure 8 (b)), by detecting and matching human body keypoints. A popular
optimization-based technique, known in computer vision as bundle adjustment (see Figure 8 (c)), recovers structure
from motion by performing robust non-linear minimization of the measured re-projection errors [62]. Essentially,
keypoint correspondences are triangulated using the direct linear transform method [67] (epipolar geometry).
Thereafter, in order to minimize re-projection error, a refinement stage optimizes the camera pose (bundle ad-
justment). Such refinements are often done by a neural network which is initialized with the information acquired
in the triangulation step, as was done by Usman et al. [14].

Wang et al. [8] propose a physics-geometry consistent denoising framework, and a robust latent motion prior,
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to remove noisy keypoint detections, and recover the extrinsic camera parameters. They first estimate and track
the 2D poses, then obtain the fundamental matrix from multi-view 2D poses, in the first frame, using epipolar
geometry with known intrinsic parameters. Essentially, the fundamental matrix tells how keypoints in each view
are related to epipolar lines in the other view, and epipolar geometry between two views is the geometry of the
intersection of the image planes, having as baseline the line joining the camera centers, as is shown in Figure 8
(b). After this initial, and inaccurate, estimation of the camera parameters, the physics-geometry consistency is
applied to reduce noises in the 2D poses from each view. To achieve this, first a set of optical rays is utilized, which
come from the optical center of the camera and pass through corresponding 2D joint coordinates. This results in a
physical constraint, and enforces the rays from each view to be co-planar. This technique is similar to the bundle
adjustment approach. Finally, they simultaneously optimize multi-person motions and camera parameters, by
adopting a Variant Auto-Encoder (VAE) [68], using bidirectional Gated Recurrent Unit (GRU) [69] as backbone,
which is used to optimize long sequences of frames. This motion prior contains both local kinematics and global
dynamics, and can be trained on short motion clips.

2.4 Multi-View Triangulation

As we have seen so far, dealing with occlusions is a geometrically ill-posed problem. Single view methods
infer the occluded human parts in a data-driven manner, often making strong assumptions about scenes and
human body pose in order to predict the position of the occluded keypoint. Multi-view methods help to deal
with this problem by providing multiple perspectives of the scene, essentially offering supplementary information
about the pose of each individual. Additionally, when training with multi-view data, one drastically reduces
the amounts of information where 2D joint positions are not fully annotated, due to hard occlusions. However,
possessing this additional data aggregates other challenges. After estimating the 2D poses for all the N views, one
can apply a triangulation strategy, using the known extrinsic camera parameters, and associate each individual
among the different views. In this section we will focus on the triangulation methods that aggregate information
from multiple views, in order to infer 3D joint coordinates.

2.4.1 Algebraic Triangulation Approach

Figure 9: Outline of the algebraic triangulation approach, proposed by [26]

Algebraic methods take as input a set of RGB images with known camera parameters, compute 2D joint
heatmaps and infer the 2D joint positions by applying soft-argmax function. The 2D positions of the keypoints
are in turn passed to the triangulation module, along with joint confidences, that outputs the triangulated 3D
pose using the same introduced logic in the previous Section 2.3 (see Figure 9). Robust triangulation algorithms
assume that the joint coordinates from each view are dependent of each other, since in some views the position of
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2D joints cannot be reliably estimated, e.g. due to occlusions. Iskakov et al. [26] address this task by implementing
additional weights to the coefficients of the matrix of each view, which are controlled by the neural network branch
that is learned jointly with the 2D joint detector. Essentially, the additional weight dictates the contribution that
each camera view has on the reconstruction of the specific joint. Thus, the learned weight reflects the confidence
of each join detection, which decreases the contribution of the joint that has the least confidence.

2.4.2 Volumetric Triangulation Approach

Figure 10: Outline of the volumetric triangulation approach, proposed by [26]

The volumetric approach, contrary to the algebraic approach, processes the images from the different cameras
jointly, which enables the model to add a 3D human pose prior and filter out the cameras with wrong projection
matrices. The core idea of this approach is to fill a 3D cube by projecting the output of the 2D detection along the
projection rays inside the 3D cube. The projections, from each view, are then aggregated and processed. Iskakov
et al. [26] explores three different aggregation methods. The first consists of the raw summation of the voxel data,
which causes each view to contribute equally to the reconstruction. Second is the summation of the voxel data,
with normalized confidence weights, which dictate the contribution from each camera. For the third method, the
softmax of each voxel is computed across all cameras, producing the volumetric coefficient distribution, similarly
to the second method. Thereafter, the voxel maps from each view are summed with the volumetric coefficients.

Overall, the volumetric triangulation outperforms the algebraic approach. However, this solution is based on
single person reconstruction, and requires that at least two camera views observe the pelvis. Additionally, the
algebraic triangulation approach is preferred over the volumetric, as it shares common steps with estimating the
extrinsic camera parameters.

2.5 3D Human Body Representation

When inferring the 3D human body pose and shape, researchers often encode the 3D mesh of a human body
using the Skinned Multi-person Linear Model (SMPL) [70]. By employing standard skinning methods, SMPL is
highly compatible with existing graphics software and rendering engines. Essentially, these traditional methods
model how vertices are related to an underlying skeleton structure. A skinned body model defines the vertices of
a template T and a rest pose, joint positions J and blend weights W , given the pose of the skeleton θ. Vertex
locations of the mesh are computed using linear blending of the verticies based on rotation of different joints. To
achieve this, the SMPL model’s parameters were trained to minimize vertex reconstruction error on the multi-pose
and multi-shape datasets. Each dataset contains meshes with the same topology as the SMPL model. The multi-
pose dataset consists of 1786 meshes, also called “registrations”, of 40 individuals, where 20 females span 291
registrations and 20 males span 895 registrations. The multi-shape dataset consists of a total of 1700 registrations
for males and 2100 for females. Since the model decomposes shape and pose, these are trained separately.
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Figure 11: Overview of SMPL mesh results according to variation of shape β (left-to-right) and pose θ parameters
(top-to-bottom)

SMPL provides a differentiable function, which takes dozens of parameters as input, (Θ = θ, β), and returns
a posed 3D mesh of 6890 vertices (V ) and 24 joints (K). The pose parameters (θ ∈ RK×3) consist of the global
rotation of the root joint (pelvis), with respect to the camera coordinate system, and 23 local rotations of other
articulated joints, relative to their parents along the kinematic tree. The shape (β ∈ R10) is parameterized by the
first 10 coefficients of a Principal Component Analysis (PCA) of the shape space. The impact that each learned
parameter has on the resulting mesh can be seen in Figure 11.

Currently, three SMPL models are available for public use. Since SMPL infers the shape parameters from
2D joints, the full estimation of the 3D shape becomes highly ambiguous when reconstructing the male or female
body. To this end, besides the neutral model, which does not take sex distinctive features into account, SMPL
offers a separate pre-trained model for the male and female body type. Nonetheless, SMPL will fail to represent
accurate body shapes of e.g. pregnant women, babies, children, body builders, amputees, etc [71]. Therefore, to
account for such body shapes, different models have to be learned. Unfortunately, such variations of the SMPL
model are only available for infants younger than 10 months [72].

Overall, the methods that construct a full 3D mesh of the human body by estimating several parameters are
known as model-based methods, and fall into two distinct categories. Optimization-based approaches estimate
the body pose and shape by deploying an iterative fitting process, which tunes the parameters to reduce the
error between its 2D projection and 2D observations, e.g. 2D joint locations, as is done by Wang et al. [8] in
the multi-view scenario. However, the optimization problem is non-convex [15] and is likely to fall into local
minima, for such a reason, Wang et al. introduced the previously mentioned VAE model. On the other hand,
without robust solutions to the mentioned challenges, the spotlight is shifted towards learning-based approaches,
which use neural networks to regress the model parameters directly, such as the method proposed by Kanazawa
et al. [15].
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2.6 Datasets

Deep learning-based 3D human pose estimation methods perform best when trained on large amounts of quality
labeled data. However, different datasets provide different 3D skeleton formats, labeling different anatomical
keyopoints. Thus, the methods that utilize these 3D pose annotations for training either stick to one type
of skeleton, or apply a conversion mechanism to keep the skeleton consistent. Meanwhile, weakly-supervised
methods, that lift 2D poses to 3D poses, in the case of a two-step approach, require only consistency when
detecting 2D keypoints. However, the model-based methods that we targeted in this research do not suffer from
such discrepancies, as they give less importance to pose accuracy and emphasize on the parametric 3D mesh. For
our research, the most relevant datasets are the following:

Human3.6M

Commonly used dataset for training fully-supervised methods, as the data was collected in controlled indoor
settings, using a calibrated multi-camera motion capture system. Contains a total of 3.6 million 3D human poses
and corresponding images, depicting 11 professional actors (6 male and 5 female) and contains 17 different action
scenarios, such as taking a photo or smoking. Everything was recorded from four different view angles [9].

MPI-INF-3DHP

Consists of more than 1.3 million annotated frames. It records 8 actors performing 8 different activities from
14 camera views [10]. This dataset is collected both indoors and outdoors with a multi camera marker-less MoCap
system, which causes the 3D annotations to have some noise [15]

MSCOCO

Large-scale in-the-wild 2D human pose dataset8. This dataset utilizes the same 2D human pose format as the
Human3.6M dataset.

3DPW

3DPW is an in-the-wild dataset with ground-truth SMPL parameters [12].

Halpe-FullBody

Figure 12: Halpe dataset kepoint format: (a) body and foot, (b) face, (c) hand

Halpe is a dataset introduced by AlphaPose [37]. The goal of it’s development was to facilitate the research
on whole body human pose estimation. Each person is annotated in total with 136 kepoints, including 20 for
body, 6 for feet, 42 for hands and 68 for face. For training, the researcher can select which keypoints the model
will learn, e. g. those of the body and feet, totaling at 26 keypoints.

8https://cocodataset.org
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3 Methodology

Figure 13: Simplified overview of the step-wise data process of the developed framework.

This section underlines, and motivates, the structure of the developed framework. Figure 13 illustrates the
flow of data throughout the system, as well as which systems are responsible for each step. Based on the literature
study conducted in Section 2, we elect the systems which are most fit to our data and goal. Bearing in mind
that our multi-view, multi-person data has no ground truth pose annotations, nor information about the camera
parameters, we opt for a model-based two-stage framework.

3.1 Structure of the Framework

The ultimate goal of the framework is to perform a consistent 3D human reconstruction on the YOUth data.
Contrary to many 3D human reconstruction multi-view systems, as input, our system only takes video data and
follows a specific set of prior assumptions. The established assumptions are guided by the nature of the YOUth
data. Our framework assumes that a maximum of two individuals are captured, per different view, and that no
camera panning or zooming is applied during the processed video.

After specifying the video to process, as well as the initial and final time stamps, the system will break down
the video into frames, per each view (see Video Processor 3.2). Once all the frames are saved, an off-the-shelf 2D
keypoint regression model is employed to extract the joint locations of all the people in each frame (see 2D Pose
Estimation 3.3). After processing a batch of frames, the extracted keypoints are saved into a json file. However,
the data obtained from the previous step is prone to be noisy and dynamically inconsistent. In other words, the
number of detections, per each frame, is volatile and does not always represent the same individual which was
captured in the previous frame. To this end, we developed a keypoint processor pipeline which removes unreliable
detections and interpolates missing data. Additionally, the pipeline ensures that the detections are frame-to-frame
and view-to-view consistent (see Keypoint Processor Pipeline 3.4). With the prior knowledge that the same two
people are in scene, we annex the 2D poses of the same individual throughout the frame sequence. Off-the-shelf
2D pose estimators cannot perform this step as they expect a variable number of people to be detected and do
not keep track of the same individual throughout the video. Nonetheless, complementary re-identification models
can be employed to aid this step. However, off-the-shelf re-identification models also suffer from the assumption
that a variable number of people might be in scene, and that new individuals might be detected throughout the
frame sequence, often failing to re-identify the same individual across a different point of view.

Once all keypoints are processed, these are fed to a dynamic multi-person, multi-view, in-the-wild mesh
recovery system (see Camera Calibration and 3D Reconstruction 3.5). Once again, with the prior knowledge of
the data that we want to process, we can interfere on the reconstruction of each human body mesh, and adjust
its characteristics accordingly to the body of the represented person, making the reconstruction more realistic.
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Finally, after estimating the meshes, for each frame, as well as the camera parameters, these can be visualized in
an independent visualization program (see Section A.1).

3.2 Video Processor

As our initial step, we employ the multimedia framework FFmpeg [73] to crop the original four view video into
separate single view videos, preserving video quality and discarding sound data. Based on the original four view
video, throughout the framework we declare that the top left view represents view 0, the top right represents view
1, bottom left represents view 2 and bottom right represents view 3. For each of the single view videos, using
FFmpeg, we extract and store 30 frames per second (FPS), always ensuring to preserve image quality, since low
quality images are more prone to generate noisy data in future steps. FFmpeg was used since it can be applied
for both tasks in this step.

In order to avoid overloading the volatile memory and the graphics processing unit of the computer in the
next step, the data was divided into different sub-folders, referenced as frame batches. Given each view, frames
are stored in their respective folder. Inside each view folder, the frame sequence is divided in batches of 100
frames. By doing this operation, the future step (2D Pose Estimation 3.3) will treat each batch as independent
information, consequently losing all temporal data at each new batch. We underline that this has no negative
consequences for the processed data, and that after the 2D pose estimation the data is treated as a whole, and
not in batches.

3.3 2D Pose Estimation

Considering that camera parameters can be approximately estimated by triangulating tracked features from
different views, we employ a top-down human pose estimator, AlphaPose [37]. Unlike bottom-up mechanisms,
which detect individual keypoints, with AlphaPose we are able to perform keypoint tracking by utilizing the
human bounding box detection and deploying, in parallel, an off-the-shelf human tracking mechanism, saving
computation time. Additionally, from the studied top-down pose estimators, AlphaPose was the one to reveal
better results, on top yielding poses in the same format as required for the SMPL human body model. Opting for
another model, with a different 2D pose format, would induce ambiguities in establishing the keypoint position
in the 3D human body mesh, since these are annotated differently.

While executing AlphaPose, at each frame, for each human detection, a dictionary object is created to specify
the name of the frame, the detected keypoint and human bounding box coordinates, as well as personal tracking
identification (ID). In addition, with the intent of not losing any temporal information, for frames where no
detections are captured, we create a dummy detection dictionary, containing the name of the frame and a track
ID flag of 0.

Since top-down architectures begin by estimating the location of each person, we opt for the YOLOX [74] model
as human detector. Following the human detection, we elect the pre-trained FastPose model as joint regressor,
with a ResNet50 [75] backbone, which follows the same skeleton structure as the SMPL model (see Figure 14).
Most importantly, we opted for this model due to its scalability for capturing facial and hand keypoints, which
can be useful for further analysis of the YOUth data. The employed joint regression model estimates 26 keypoint
locations for each detected person, as well as the confidence score of each keypoint. The confidence score will
be used as a quality measure of the detected keypoint in future steps, since occluded keypoints are expected to
yield a lower confidence score. In parallel, we employ Torchreid [76] as the pose tracking module, which aims to
re-identify people across different camera views and across different frames within the same view. At each frame,
Torchreid assigns a unique ID number, starting at 1, for each new person in scene. If the person is recognized
by Torchreid from previous frames, the same ID number will be used for the current detection. However, the
temporal memory of Torchreid is only preserved while processing the same frame batch. Finally, given the number
of data batches in each view folder, created in the previous step (Video Processor 3.2), a single file is created
containing all the information of all the detections in the respective frame batch.

3.4 Keypoint Processor Pipeline

Given the raw output data generated in the previous step (2D Pose Estimation 3.3), the pipeline aims to
output, for each view and for each frame, a single json file that contains the parent’s keypoints in the first list
index and the child’s keypoints in the second index. Noting that we have no prior knowledge about the location
of the parent nor the child, this pipeline takes a step-wise approach in order to disambiguate the identification
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Figure 14: Halp human body skeleton format.

of both individuals. Initially, the pipeline assumes that each frame should contain two detections. However, this
is not the case with the raw output data. We need to account for noisy detections, such as the detection of the
doll toy, or situations where two detections are generated for the same person. Therefore, the initial Step 3.4.1
ensures to remove excessive detections, and the following Step 3.4.2 ensures to match and identify the detections
of each individual. Additionally, temporal and spatial occlusions are a frequent challenge in our data. It is often
encountered that only a single individual was captured in the 2D pose estimation step. In order to deal with
the challenges of temporal occlusions, Step 3.4.3 ensures that we don’t have incomplete data, and interpolates
the missing keypoints of the missing individual. Finally, in order to combine the information among the different
views, Step 3.4.4 distinguishes which detections belong to which individual across the four views.

3.4.1 Discard Extra Detections

On one hand, we discard initial and final frames where detections are missing. Given the fact that one can
only interpolate values given an initial and final range, the first and last frames, which contain less than two
detections, are discarded. If such is the case for one view, the remaining views get padded in order to preserve
temporal consistency. Therefore, the initial and final frame is preserved only if, among the four views, we have a
minimum of two detections.

On the other hand, we discard detections in frames which contain more than two detections. The disambigua-
tion process falls into two paradigms. The first checks if two of the track IDs in the current frame match the
history of the previous frame’s track IDs. If such is not the case, we calculate the keypoint (k) overlap between
the current frame (f) detections (N) and the previous frame (f − 1) detections (M) (see Equation 1). Given all
(N ×M) overlap values, we match n to m if the average overlap value of all 26 keypoints is the closest to zero.
In addition, this step applies a unique logic for the initial frame’s detections. Here, we discard the detections
that have the lowest bounding box perimeter. Dispite being prone to errors, we perform this step in order to
avoid anchoring the detection of the doll toy to the detections of one of the individuals. If we did not apply this
logic, the detection of the doll would stay consistently anchored throughout the entire frame sequence, in which
it was detected. On the other hand, this logic might ignore the detection of the child, if two parent detections are
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captured. However, due to the high volatility of poses, due to movement, we are able to fix this error in future
steps.

overlapfn,f−1m =

∑26
k=1 |kf − kf−1|

26
(1)

3.4.2 Frame-to-Frame Consistency

This step in the pipeline aims to anchor the detections of the same individual to the same list index. Given
the unstructured detection list, with a maximum of two detections per each frame, we iterate over all the frames
and compare the similarity between the current frame detections, and the previous frame detections. If a previous
frame doesn’t contain any detections, the pipeline will trace-back to the last frame with at least one detection.
In order to consistently identify the correct index for the current frame detections, we first need to verify how
many detections are present in the current and previous frame. Additionally, due to the high ambiguity in track
ID assignment, our main similarity metric between two detections is keypoint overlap, which is calculated using
Equation 1.

There are four main matching processes that this algorithm takes into account:

1. The first matching paradigm is selected when both the previous and current frame have two detections.
For this scenario the algorithm starts by identifying if the current detection’s IDs match with the previous
detections IDs, indexing the current detections to the same index as the previous. If this is not the case
for at least one current detection, the algorithm identifies the best index for both current detections, given
the overlap values with the previous two detections. If both IDs don’t match, the algorithm calculates the
keypoint overlap between both current detections, the overlap between the first previous detection with the
first current detection and the previous second detection with the current second detection. By calculating
these three overlap values we are able to identify scenarios in which the current frame has two detections,
but for the same person. The double detection of the same person happens when the overlap between the
two current detections is lesser than both overlap values with the previous detection or if the indices in
the current frame are swapped in comparison to the previous frame. Thus, in order to disambiguate this
situation, we calculate the bounding box overlap of all the detections, and index them accordingly. If the
keypoint overlap between both current detections is not lesser than the other two overlap values, we assign
the current detections to the indices that best match the previous detection.

2. The second matching paradigm is selected when the current frame has two detections, and the previous
only one. We begin by identifying the indices of the previous missing detection, which has a null value.
Thereafter, the algorithm verifies if the previous detection ID value matches at least one of the current
detections ID values. If not, we traverse back until we find a previous frame with two detections. This
procedure ensures that if noisy detections get assigned, we are able to recover the correct index order. In
practice, this happens when we have one detection of an individual, and one detection of the toy doll.
However, if the ID value matches at least one of the current detections, we apply the same logic that we
used on the previous paradigm but we start by calculating the three overlap values.

3. The third matching paradigm accounts for scenarios in which we have one current detection, and one previous
detection. For this stage, the algorithm does not begin by matching the ID value with the previous frame,
instead, we trace back to the frame in which the missing person in the previous frame is present. Thereafter,
we calculate the keypoint overlap between the current and previous detection, and current detection with
the recovered missing detection, matching the current detection to the index with best overlap value.

4. The final matching paradigm accounts for scenarios in which we have one current detection and two previous
detections. This process matches the current frame to the index of the previous detection which best overlaps
the current detection.

Given the structure of this disambiguation algorithm, we are able to approximate the number of times Torchreid
wrongly identifies an individual and the number of times AlphaPose generates two detections for a single individ-
ual. Once the algorithm detects that the current first detection ID is present in the second detection ID history
list, or vice-versa, we increment the number of Torchreid errors. Meanwhile, AlphaPose errors are incremented
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once the algorithm detects that the both current detections have a better overlapping value than the overlapping
values between the current and previous detections.

3.4.3 Interpolate Missing Detections

After indexing the detection data, we can distinguish the frames in which the detection step failed for a
particular individual. Due to the loss of information, this stage aims to linearly interpolate the unknown keypoint
values that fall between two existing detections. Given the keypoint value lists of detection n at frame f and the
detection m at frame f + I, with I corresponding to the number of frames in which the individual detections are
missing. For each keypoint value we calculate the difference between kf and kf+I , and the resulting stride value
is the quotient between the keypoint difference and I. Thus, for each missing detection (i ∈ I), we calculate the
keypoint value by adding kn to the stride value times i. We note that this step will interpolate all the keypoints
between any given range, regardless of the I value. However, interpolated frame ranges are stored to be taken into
account in future steps, allowing to discontinue the data from the view in which I exceeds a maximum threshold.

3.4.4 View-to-View Consistency

This step aims to match the indexed data, resulted from the previous steps, across the four views. Previously,
we treated the data from each view independently. Now, our goal is to merge the data from the different views,
by associating the detections in one view, to the detections in another view. In essence, our goal is to identify the
same individual across the data obtained from different cameras. To do so, we deploy and fine-tune, an instance
segmentation Mask R-CNN Detectron2 model9. We opted for Detectron2, which encapsulates the Mask R-CNN
model, since it has built in support to fine tune the model on custom COCO datasets. To this end, we perform the
fine-tuning on the COCO Human Instance Segmentation dataset10, changing the output layer from 18 possible
classes to 1. By changing the number of possible outputs, we inhibit the model of regressing the bounding boxes
and the segmentation instances for the unnecessary classes, saving computation time. During literature review,
while we were evaluating the advantages of one-stage frameworks, we noticed that works such as of Ugrinovic et
al. [19] used Detectron2 as their semantic segmentation model. Initially, we deployed Detectron2 with the same
goal as Ugrinovic et al., however, with the advances of the research and the preference for two-stage frameworks,
we utilized the same model, but for different purposes.

In order to save computation time, and to avoid calculating the instance segmentations on all available frames,
we deploy the instance segmentation model on the first and last frames of each frame batch, which resulted from
the video processor step (Section 3.2). For videos in which Step 3.4.1 deleted more than 3 batches (300 frames),
we include the middle frame of each remaining batch, and for cases where 5 (500 frames) or more batches got
deleted, we add 5 frames per batch. Essentially, this step counts how many available frames there are for the
reconstruction, and populates the Detectron2 data file accordingly, ensuring that we don’t have nor too many
nor too less frames to calculate the instance segmentation on the human bodies. In parallel, for all the stored
Detectron2 frames, we store the bounding boxes of all the detections generated by the 2D pose estimation (Section
3.3). In addition to storing the original video frames, we create a duplicate frame list where we follow a color
transfer algorithm [77]. In essence, we normalize the colors of the remaining views, given view 0. For a list of four
frames, same frame per four views, we convert all frames to the CIELAB (L*a*b*) color space, where a small
change in an amount of color value produces a relatively equal change in color importance. Thereafter, given the
source frame of view 0, and a target frame of any remaining views, we compute the mean and standard deviation
for each of the L*a*b* channels of both frames, which represents the distribution of colors in the frames. In order
to normalize the color statistics of the target frame, given the source frame, we subtract the mean of each channel
in the target image, multiply the quotient between the standard deviation in the source and target frame , and
add the mean of the corresponding channel of the source image, ensuring to preserve the 0 to 255 pixel value
range for each color channel. This is done to account for the different color pallets in each camera. Nonetheless,
we execute the instance segmentation model on the original frames, in order not to lose any data quality. Once in
execution, Detectron2 begins by predicting bounding boxes around each detected human, and for each bounding
box we obtain the segmentation instances, which highlight the pixels that contain the detected human body.
After execution, for each frame in each view, we store the segmentation instances together with the bounding box
information. With this data, our initial goal is to follow the same indexation principle as the list of AlphaPose

9https://detectron2.readthedocs.io/en/latest/
10https://cocodataset.org/#explore
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detections, from Step 3.4.2. This will discard all the redundant Detectron2 detections, keeping only the most
representative segmentation of each individual. To achieve this we compare and match the bounding box lists
of both detection models, following Equation 1. Once correctly indexed, detection masks are generated on the
normalized images, which contain only the values of the pixels which were segmented. Finally, for each mask, a
color histogram of 16 color bins is calculated and normalized. We execute Detectron2 on the original frame and
not on the cropped bounding box, which resulted from AlphaPose, due to the fact that we cannot guarantee that
only a single person is depicted in the cropped frame.

To avoid repeated histogram comparisons, in each view, for each individual, we select the frame that has
the best bounding box overlap score between the two bounding box lists. In essence, the algorithm finds the
most representative segmentation of the individual, given the AlphaPose bounding box. The similarity of a pair
of histograms is measured using the Chi-square distance, which quantifies the difference between observed and
expected frequencies in the histograms. Thus, the lesser the Chi-square distance, the more similar the histograms
are. Given that this metric calculates the difference, we ensure to calculate, normalize, and average the difference
between histogram one and two and histogram two and one, guaranteeing symmetry in the operation. Given the
four views, two detections per view, and the normalization of the Chi-square distance, we perform a total of 48
(43 × 22) comparisons. Here, we underline that for each pair of views, we compute two commutative similarity
values which indicate the similarity of the histograms of the detections in the same list index, and the histograms
of the detections in opposite list indices. Thus, if the first item is lesser than the second, we know that the
detections are view-to-view consistent. Once all the comparisons are performed, the algorithm will elect the
views which are not consistent with the remaining, by following the iterative logic illustrated in Figure 15. The
disambiguation process begins by generating two value matrices, the first containing the similarity values between
the detections in the same index and the second matrix stores the similarity values between the detections in
different indices (see Tables (a) in Figure 15). Given the sum of the scores in each column, staring at view 1, the
algorithm iteratively decides if the the detections of the same individual are interchanged, among the two views.
For instance, if the algorithm deems that the detections in view 2 are interchanged in relation to the other views,
the row values of that same view will be also interchanged, as is the case of iteration (b) to (c) in Figure 15. As
a result, a boolean variable is stored to indicate if all the detections of the individuals should be interchanged, or
not.

Figure 15: Illustrative example of the person inter-view identification process. The values concern the practical
case of view-to-view person identification of video B45358

Once the AlphaPose detections are consistently indexed at each view, we can merge the information from all
the views and identify which detections belong to the infant and which detections belong to the parent. Assuming
that the parent’s body size is larger than the child’s, for each frame we calculate and average, among the four
views, the bounding box perimeter of each individual. Consequently, the average of the computed values will
determine which detections belong to which individual. This step utilizes the prior assumption that two people
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are always present in scene and that no camera panning or zooming is applied.

3.5 Camera Calibration and 3D Human Reconstruction

As input, this step takes the data returned from the keypoint processor pipeline (Section 3.4). At this stage,
the 2D keypoint data is assumed to consistently contain two detections per frame. Meaning that missing data was
interpolated and redundant detections were removed. Moreover, it is assumed that, in the four different frame
sequences of each view, for each frame detection list, the first index contains the 2D keypoints of the parent,
and the second list index contains the 2D keypoints of the infant. Having the 2D keypoint information, of each
individual, per different views, we utilize the works of Wang et al. [8] DMMR to calculate the position of the
cameras and keypoints in the 3D world.

Given our multi-view, in-the-wild data, and the literature review conducted in the previous section, the other
candidate to perform the computations of this step would be the works of Iqbal et al. [7]. However, despite not
benefiting from temporal information, the possibility of using the candidate method was discontinued due to the
fact that it yields reconstructions of the human body skeleton, and not a human body mesh. Additionally, the
method proposed by Iqbal et al. is not publicly available, making it out of reach for this research project. On
the other hand, the elected DMMR method, on top of benefiting from temporal information, by utilizing the
VAE mechanism, described in Section 2.3, is able to calculate both the camera parameters, and the parameters
required to fit the parametric human body model, given 2D keypoints. By fitting a human body model, we are
able to yield realistic reconstructions of the individuals, which capture body, limb and head orientation.

In essence, this step is composed of two phases. The first phase targets the optimization of the camera
parameters, over the entire sequence of frames. The first phase is performed for each different YOUth video,
since it is assumed that the cameras are not consistently in the same position, or zoom setting, throughout all
the videos in the database. However, it is also assumed that the camera parameters are consistent throughout
the frame sequence. Thus, the second phase takes the previously computed camera parameters, and fixes them
throughout the new reconstruction. Essentially, the main goal of the second phase is to calculate the 3D poses of
both individuals. Given that the second phase takes fixed camera parameters, our target is to minimize keypoint
re-projection error.

Once the framework reaches this stage, DMMR’s data folder is automatically updated with all the information
from all the four views. However, during the data population process, one can define the maximum number of
consecutive frames in which the 2D pose estimation (Section 3.3) failed to generate a detection for one of the
individuals. If the defined threshold is met, the framework discards the deficient view during the frames in which
the detections are incomplete. This mechanism was developed with the goal of minimizing keypoint re-projection
error. Essentially, it enables DMMR to use a variable number of camera information during the reconstruction
of the entire frame sequence, without losing any temporal information. We underline that if the missing data
overlaps between two views, for the shortest intersection of ranges, we utilize the interpolated poses in order to
preserve a third view. If the mechanism detects a case in which two views require to be discarded at the same
frame ranges, an error message will be displayed, halting the splitting of the data. DMMR utilizes both the 2D
keypoints data and the original frames in order to fit the parametric human body model, SMPL Neutral. Original
frames are required for this step since a sub-mechanism within DMMR, SPIN [78], utilizes the frame information
to perform iterative fitting on the 2D joints, essentially optimizing the regressed shape and orientation of the
SMPL model. Unfortunately, the SMPL Neural model is not trained to be fitted to the body proportions of a 10
month old child. The only possible alternative for this scenario would be to employ the SMIL model [72]. Even
then, SMIL is not the most representative model for our scenario since it was fitted for the body proportions of
preterm infants, and requires the input of a depth channel, which is captured from RGBD cameras. On top of
that, we elected the SMPL model due to its compatibility with mechanisms such as SPIN.

Before fitting the 3D SMPL model, one can specify a pair of parameters which will guide the reconstruction
process. The first boolean parameter determines if the camera parameters should be optimized to the data, or
stay unchanged. The second parameter reflects on the scale of the SMPL child model. Given that both individuals
have significant body scale differences, the SMPL model of the parent has a constant scale of 100%, and the child
as a pre-defined scale value of 45%. The child scale value was defined based on the international growth charts of
children aged between 0 and 59 months, released by the World Health Organization (WHO) [79]. The research
indicates that, on average, the body scale of a 10 month old child is approximately 25% to 30% compared to that
of an adult. However, these values are nuanced for our reconstruction, since we aim to scale down an adult sized
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human body. Therefore, in order to avoid reconstructing a miniature adult body, the scale parameter of the child
is fixed at 45%.

A set of camera parameters was pre-computed on the YOUth data and was saved as an initial guess for all the
upcoming reconstruction procedures. In order to do so, we manually selected four pairs of intrinsic and extrinsic
camera parameters from the MHHI [80] dataset, ensuring that the MHHI cameras follow the same resolution
scheme as the cameras that captured the YOUth data. Thereafter, we utilized DMMR to adjust these camera
parameters on the demonstration video of the YOUth data. Once fitted, we save these camera parameters to be
utilized as initial guesses for future reconstructions. When optimizing the camera parameters, the re-projection
error is taken into account. For each frame, the camera parameters are jointly optimized with the triangulated
keypoints in order to reduce re-projection error between the estimated keypoints and the input 2D keypoints.
Additionally, during the triangulation of keypoints, input 2D keypoint confidence score, which resulted from the
2D pose estimation step (Section 3.3), is taken into account. This will prioritize the keypoint location at the
view in which it has the highest confidence score. For instance, if spatial occlusions are present in one view, the
keypoints of the occluded body part are roughly guessed by the 2D pose estimator, yielding a lower confidence
score value. Consequently, this mechanism will prioritize the triangulated keypoint location over the remaining
views, where the keypoint at hands is visibly detected. However, by enabling this feature, we introduce high levels
of ambiguity, while calculating the 3D human poses, for the cases which only a single view captures a specific
keypoint or keypoints. If this happens, the reconstructed pose will only be representative for the view in which
the keypoints are detected, failing to accurately triangulate the remaining keypoints across the view.

Given one’s aim with this step, the reconstruction phase is ruled by the value of the camera optimization
parameter. After executing the first phase, by optimizing the camera parameters, the current method returns the
optimized camera parameters, over the entire frame sequence, the reconstructed body meshes and the re-projection
errors of each keypoint in each frame. Consequently, to proceed to the second phase of the reconstruction, the
user has to update the camera parameters, within DMMR’s data folder, with the outputted camera parameters
from the first phase. On top of that, the camera optimization flag is required to be turned off in order for the
second phase to be fully initialized. Once this is done, the second phase will return the optimized body meshes
and the respective re-projection error values.
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4 Experiments and Results
This section dives into the evaluation of the developed system. After introducing the data used for the

evaluation (see Section 4.1) we motivate the choice on the selected metrics (see Section 4.2). Bearing in mind
that we do not possess any ground truth annotations, we evaluate the 3D human reconstruction step, based
on the data generated by Step 3.4. Additionally, we aim to study the relationship between the quality of the
reconstruction and keypoint confidence score. Given the relation between these two variables, before performing
a reconstruction, we target the prediction of the quality of the reconstruction, based only on keypoint confidence
scores. Furthermore, after introducing the results in Section 4.3, we interpret the issues in the reconstruction.

4.1 Data

The evaluation of the developed system is performed on a total of 19 distinct YOUth videos. For each video,
clips of 35 to 30 seconds were selected. We disregard sections of the video in which we observe camera movement.
Additionally, we aim to capture different interactions, behavior and movement patterns among the parent and
infant. Nonetheless, the reconstruction is performed on a variable number of frames. Due to the nature of Step
3.4.1, we often encounter initial, or final frames, in which a pair of detections is not found. On top of benchmarking
our system, our goal with these experiments is to understand what negatively impacts the reconstruction and
which scenarios should be avoided. More specifically, we aim to understand the implications of strong spatial
occlusions, and close range interactions, on the reconstruction. Fairly short video clips were selected due to the
high computation demands of the camera calibration and 3D human reconstruction procedure (Section 3.5).

As further insight, processing a 1050 frame sequence (35 seconds) of a YOUth video requires approximately
two hours11. The first step of the framework (Video Processor 3.2) takes approximately 3 minutes to split the
data into frames. The proceeding step (2D Pose Estimation 3.3) outputs the 2D poses after processing the data
for roughly 12 minutes. Once the 2D data reaches the next phase (Keypoint Processor Pipeline 3.4), it requires
approximately 2 minutes to be processed. Regarding the pipeline, the most time consuming step is the generation
of detection masks for all the selected frames in step View-to-View Consistency 3.4.4. Respectively, phase one
and phase two of step Camera Calibration and 3D Human Reconstruction 3.5, take roughly 60 and 40 minutes
to complete. The difference in computation time is justified by the camera optimization procedure in phase one,
which slows down the overall reconstruction.

4.2 Metrics

In the absence of ground truth 2D or 3D human joint annotations, we perform a qualitative and quantitative
validation of the system. To quantify our results, we use AlphaPose’s 2D keypoint location and confidence score,
together with the estimated 3D keypoint location. Each 3D keypoint is projected back to the image plane of
each camera. With the re-projected 2D keypoints, and the 2D keypoints estimated by AlphaPose (see Figure
16), we measure the re-projection error, using Euclidean distance. Under this evaluation scheme, we underline
that the performance of AlphaPose, when regressing 2D human keypoints, is not optimal. We frequently observe
that inaccurate 2D poses are generated during occlusions or close-range interactions. Therefore, we state that
re-projection error values do not directly reflect on the quality of the 3D reconstruction, compared to the YOUth
video.

By observing that occlusions often lead to low keypoint confidence values, which lead to inaccurate poses, we
now aim to study the relationship between 2D keypoint confidence and re-projection error. To study the relation-
ship between the pair of variables, we measure linear correlation using the Pearson correlation coefficient.
The coefficient ranges from −1 to 1, and reflects the strength and direction of the relationship between the two
variables. Essentially, a coefficient value close to 1 means that there is a strong positive correlation between the
two variables, thus if one variable’s value increases, the other variable’s value also tends to increase. On the
other hand, a coefficient value close to −1 means that there is a strong negative correlation between the two
variables, which means that when a variable’s value increases, the other tends to decrease. Finally, if the resulting
coefficient value is close to 0, we can conclude that both variables are not related to one another. Once we have
an understanding of how keypoint confidence relates to re-projection error, we can estimate the quality of the
reconstruction, given the confidence score.

11We run the experiment on one MSI GeForce RTX 2080 Ti
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Figure 16: 2D overlap between keypoints predicted by AlphaPose (dark color) and estimated 3D keypoints (light
color). In white we outline the vertices of the predicted SMPL mesh.

4.3 Results

While processing each YOUth video, we notice that the quality of the 3D reconstruction is not consistent
for each video. Given the fact that each video is unique in its own characteristics, we begin by analyzing the
overall keypoint confidence value, obtained in Step 4.3.1. Afterwards, we analyze the re-projection error during
phase one of Step 3.5. Consequently, we analyze and compare the results obtained from phase two of Step 3.5,
with the results obtained from phase one. With this comparison we aim to verify how phase two benefits from
the computation of the camera parameters in phase one. Additionally, we hope to motivate, by analyzing the
re-projection error, why discarding incomplete information in one view is more beneficial to the reconstruction
quality. To conclude our result analysis, we measure how re-projection error relates to 2D keypoint confidence.
More specifically, we aim to study how the different aspects in the captured YOUth data relate to defective
reconstructions (see Section 4.3.5).

4.3.1 Keypoint Confidence Scores

Table 2 contains the averaged keypoint confidence values for each individual. For the tables which contain
the averaged values, over all views, per individual, please reference to the Appendix Section A.2 to find their
complete versions. The following are the averaged keypoint confidence output scores returned by AlphaPose,
during the 2D pose estimation (Section 3.3). By overviewing their overall outcome on the conducted evaluation,
we identify which human body joints are frequently occluded in the YOUth data. Similarly, we determine which
of the depicted individuals is more prone to reconstruction defects.

By observing the averaged confidence values, we identify that the regression of keypoints for the parent is more
challenging than the regression of the keypoints of the infant. To gain further insight of the reasons which lead
to such a challenge, we analyze the averaged values per individual keypoints for both individuals. The following
histogram plots concern the 2D detection confidence values of the parent (Figure 17) and the child (Figure 18).
Despite representing different individuals, common patterns can be observed. We notice that the confidence
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YOUth 2D Keypoint Confidence Error Count

Video Name Parent Infant ReID + AP

B33718 00:13:40 - 00:14:15 0.712 0.658 290

B33892 00:10:00 - 00:10:35 0.685 0.618 21

B35985 00:10:50 - 00:11:25 0.661 0.649 227

B38777 00:11:17 - 00:11:52 0.719 0.564 80

B40508 00:06:55 - 00:07:30 0.729 0.646 660

B44801 00:02:55 - 00:03:25 0.577 0.615 117

B45111 00:11:26 - 00:12:01 0.668 0.661 72

B45358 00:01:25 - 00:02:00 0.718 0.700 4

B47859 00:07:35 - 00:08:05 0.688 0.685 6

B51848 00:15:35 - 00:16:05 0.705 0.662 199

B64396 00:14:00 - 00:14:35 0.659 0.662 656

B64612 00:01:53 - 00:02:23 0.637 0.687 81

B67411 00:14:35 - 00:15:10 0.749 0.778 8

B70410 00:01:20 - 00:01:55 0.720 0.727 9

B83755 00:10:30 - 00:11:05 0.733 0.678 7

B86218 00:06:00 - 00:06:35 0.717 0.751 12

B89136 00:06:25 - 00:07:00 0.671 0.759 457

B93177 00:14:25 - 00:15:00 0.730 0.726 12

B97605 00:06:45 - 00:07:20 0.745 0.540 7

Average 34.483 42.494 117.474

Table 2: Average 2D pose estimation keypoint confidence score of each individual, given the four views. Error
count reflects the number of total AlphaPose (AP) and Torchreid (ReID) errors, of each video

values concerning the lower body (knees, heels, and toes) are diminished, in relation to the detection confidence
of the upper body parts. By observing the YOUth data, we can reason about these results. Very frequently, the
parent is captured sitting on their calves, cross legged, crouching, among many other self-occluding poses. On
top of being depicted in unconventional sitting poses, we note that the colors of the lower body of the parent are
often of a darker tone, which frequently overlaps with the background color, increasing the difficulty for the 2D
pose estimator model to accurately regress the body joints. On the contrary, these negative features are not as
frequently present during the detection of the upper body joints. On top of that, the data prioritizes the capture
of the face of both individuals, over the depiction of the entire body.
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Figure 17: Histogram plot of the parent’s individual keypoint confidence scores. The values are the view averages
among all 19 videos.
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Figure 18: Histogram plot of the infant’s individual keypoint confidence scores. The values are the view averages
among all 19 videos.
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4.3.2 Re-projection Error - Camera Optimization

The previous Section 4.3.1 quantified the performance of the 2D pose estimation method (Section 3.3) on the
YOUth data. Consequently, the current section quantifies how phase one of Step 3.5 performs with the AlphaPose
data, processed by the keypoint processor pipeline (Step 3.4). To conduct the evaluation, we compute the re-
projection error of the 3D estimated keypoints in relation to the 2D pose data. The overall results concerning
the detections of the parent and infant are listed in Table 9.

The following histogram plots quantify the re-projection error of individual keypoints for the parent’s detection
(Figure 19), and the infant’s detection (Figure 20), at each view. For this scenario, we notice that the different
views contain significant deviations of averaged values. In general, view 0 yields the smallest re-projection error.
This is reasonable given the inclined top-down view of camera 0, which is less prone to occlusions between both
individuals. Contrary to the remaining views, view 0 captures a general overview of the entire room, without
being too close to the depicted individuals. Thus, we can conclude that view 0 is the most informative view for
the reconstruction. Meanwhile, views 1 and 3 present the highest values in re-projection error. This is due to
their close range proximity, and diminished field of view, in regard of the captured individuals. We conclude that,
overall, the lower body parts are often occluded in the YOUth data. This phenomena is more problematic for the
reconstruction of the parent, than for the reconstruction of the infant, given their natural anatomical differences.

Figure 19: Histogram plot of average parent keypoint re-projection error values, per each view of all 19 videos,
during phase one of Step 3.5
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Figure 20: Histogram plot of average infant keypoint re-projection error values, per each view of all 19 videos,
during phase one of Step 3.5
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4.3.3 Re-projection Error - Fixed Camera Parameters

Table 11 contains the re-projection error values of phase two of Step 3.5. Having the results from step one as
a baseline, we calculate the difference in re-projection error between both phases. By evaluating the difference in
re-projection error, and by visualizing the 3D human body meshes, we reach the conclusion that the videos which
have a high positive difference in re-projection error contain the reconstuction of meshes in unrealistic poses, for
an example see Figure 23. On the other hand, accurate poses were achieved for the videos which are represented
by a negative difference in re-projection error. This means that the reconstruction was improved in comparison
to the first phase. We can also notice that the detections of the parent are more ambiguous than the detections
of the child, given the difference values.

Similarly to the analysis of results of phase one, for phase two we compute the histogram plots of the averaged
keypoint re-projection errors at each view, for both the parent (Figure 21) and the infant (Figure 22). Overall,
we observe that the re-projection errors were not improved. However, this is explained by the fact that in phase
two, the cameras cannot be adjusted to account for the defective poses in the faulty detections. This observation
indicates that if we feed defective data to phase one of Step 3.5, the cameras will be adjusted to account for the
defects in the data. More specifically, after executing phase two on phase’s one camera parameters, we are unable
to discriminate the videos in which the keypoint processor pipeline failed to correctly index the detections of each
individual. To detect such defects, we are required to, beforehand, know the approximated camera parameters.
An example of this scenario is given the next Section 5. Nonetheless, the defective data can be clearly observed in
the mesh visualization system (Section A.1). By doing so, we state that the keypoint processor pipeline (Section
3.4) failed to correctly index the individuals, for video B35985, B45358 and B51848. The erroneous scenarios are
described in Section 4.3.6.

Figure 21: Histogram plot of average parent keypoint re-projection error values, per each view of all 19 videos,
during phase two of Step 3.5
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Figure 22: Histogram plot of average infant keypoint re-projection error values, per each view of all 19 videos,
during phase two of Step (3.5).

The high ambiguity about the location of one keypoint, among the four views, leads to errors in the recon-
struction. More specifically, given the high uncertainty of the location of the lower body keypoints, the resulting
body models might suffer from pose instability throughout the 3D visualization, in addition to reconstructing
body meshes in unrealistic positions (see Figure 23 for an example). However, these erroneous poses are only
reconstructed during a short period of frames, since they suffer from high amounts of jitter throughout the frame
sequence. Having insight about the pose information from Step 3.3, we can underline that in the initial frame
of video B45111, the left leg of the parent was only captured in view 1, while being undetected in the remaining
views (see Figure 23). For a visualization of the difference in re-projection error between both phases, for video
B45111, see Figure 24.
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Figure 23: Depiction of the reconstruction of the first frame of video B45111. The captured scenario depicts the
mesh results during high ambiguity in estimating the 3D position of the parent’s legs. The green colored mesh
represents the parent, and the red mesh represents the infant.

Figure 24: Plot of re-projection errors, throughout the frame sequence, between phase one and phase two of
Camera Calibration and 3D Human Reconstruction 3.5, for video B45111.
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4.3.4 Re-projection Error with Variable Number of Views

We now target our attention on the view discarding feature, described at Step 3.5. By ignoring the views with
insufficient detections, during specific frame ranges, we aim to quantify and compare the resulting re-projection
error. Utilizing the same 19 videos, we now enable the mechanism to capture frame ranges in which one of the
individuals was out of detection for more than 3 seconds (90 frames). From our data, 3 videos were impacted.
The updated re-projection values for the selected videos can be seen in Table 3. Regarding the discarded frame
sequences, view 3 of video B33892 was discarded two times, between frames [258−456] and [764−938]. This was
caused by the missing detections of the infant (see Figure 38 and Figure 39). View number 1 of video B40508
was ignored during frames [648 − 835], due to the missing detections of the infant (see Figure 40 and Figure
41). Finally, concerning the missing detections of the infant in video B64396, view 3 was ignored during frames
[157 − 319], view 0 during frames [580 − 745] and, once again, view 3 was discarded during frames [746 − 847],
having its original missing frame range padded in order to account for the overlapping missing detections in view
0 (see Figure 42 and Figure 44). From this study, we conclude that temporal occlusions affect more the infant
than the parent. This is to be expected given the fact that the larger body proportions of the parent often occlude
the smaller body of the infant.

Updated Re-Projection Error - P2 Difference

Video Name Parent Infant Parent Infant

B33892 25.179 18.102 -2.072 -2.869

B40508 43.137 40.578 -2.095 -4.558

B64396 54.995 56.275 3.511 2.945

Table 3: New re-projection error values for videos in which one individual was undetected for more than 3 seconds.

From the average re-projection errors listed above (Table 3), we verify that discarding one view from the
reconstruction is often beneficial to the quantitative results. However, as we see with the reconstruction outcome
of video B64396, performing the reconstruction with only three views during 267 frames (8.9 seconds) negatively
impacts the re-projection error. The following histogram plots (Figure 25 and Figure 26) quantify the updated re-
projection error averages, over all the previously computed results. For each view, we notice that the re-projection
error did not suffer significant changes.
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Figure 25: Histogram plot of the updated average keypoint re-projection error values, across all the 19 videos,
for the parent detection.
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Figure 26: Histogram plot the updated average keypoint re-projection error values, across all the 19 videos, for
the infant detection.

4.3.5 Keypoint Confidence and Re-Projection Error Analysis

To underline what we have previously observed, we calculate the linear Pearson correlation coefficient between
re-projection error and 2D keypoint confidence values. Based on the plots below (Figure 27 and Figure 30) we
confirm that uncertain keypoint detections lead to an increase in re-projection error, since both variables show
strong negative correlation. These results relate to the fact that the 3D Human Reconstruction step prioritizes
the location of keypoints which have a higher confidence value.
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Figure 27: Linear correlation coefficient value between confidence score and re-projection error, of keypoints which
belong to the parent detection among all 19 videos.
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Figure 28: Linear correlation coefficient value between confidence score and re-projection error, of keypoints which
belong to the infant detection among all 19 videos.

4.3.6 Pipeline Error Analysis

After performing the quantitative evaluation, we now aim to bring the qualitative errors to surface. These
correspond to the calculations performed prior to step Camera Calibration and 3D Human Reconstruction 3.5.
Having previously identified the videos with qualitative errors (B35985, B45358 and B51848 ), we now aim to
understand the video characteristics which introduced unsolvable nuances for the keypoint processor pipeline
(Section 3.4).

B35985

We begin by noting that video B35985 has a different camera layout, compared to the remaining videos.
Additionally, view 0, the source view for the color transfer algorithm, is depicted in a yellowish color pallet. This
is undesirable since we are normalizing the colors of the remaining views to the least informative video coloring.
However, we detect that the error originates from both an AlphaPose and ReID error. Halfway of the frame
sequence, in view 0 we notice that the horizontally extended legs of the parent are semi occluded, and the torso of
the child is depicted in close range to the parent. This leads the human detector model to identify only the torso
of the parent and the torso of the infant with the legs of the parent. The problematic pose is thereafter associated
with both the parent and the infant, which introduces ambiguities in discriminating to whom the pose belongs.
For the following frames, the keypoint processor pipeline mistakenly switched the detections of the parent with
the detections of the infant. For the remaining views, the pipeline correctly indexed the resulting detections.

B45358

For video B45358, the view-to-view consistency algorithm (Section 3.4.4) failed to correctly identify which
detections belonged to the parent and which detections belonged to the infant, in regard of view 2. The inaccurate
decision originated from the segmentation of the infant’s upper body, in the parent’s detection of view 2. In other
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words, the segmentation mask which concerned the detection of the parent, contained both individuals. This
overlap of depictions caused the histogram comparing mechanism to identify the faulty detection as a detection
of the infant and not the parent (for the representative disambiguation values see Figure 15). Nonetheless, the
detections were correctly indexed, given the frame-to-frame consistency mechanism (Section 3.4.2).

Figure 29: Illustrative example of the impact of incorrect indexing on the reconstruction of video B45358.

B51848

For video B51848 we notice that, once again, the fusion of errors of AlphaPose and ReID caused the detections
of the individuals to be interchanged during the frame-to-frame consistency procedure (Section 3.4.2). After
observing these results, we underline that close-range interactions, during spatial occlusions, lead to identification
errors between both individuals, which lead to reconstruction flaws.
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5 Ablation Study
This section aims to quantify how different parameters, and camera optimization strategies, interfere in the

overall results of the 3D reconstruction. Two additional experiments are conducted in order to gain further
insight about the variation in re-projection error, when the detections in one view are exchanged or completely
discarded from the reconstruction. We conduct a total of 6 different ablation experiments on the same YOUth
demonstration video. As baseline, we perform the original two phase scheme of step Camera Calibration and 3D
Human Reconstruction 3.5, with the parent’s scale fixed at 100% and the child’s scale at 45%. The results of the
baseline experiment concern the second phase of the reconstruction and serve as benchmark for the remaining
experiments.

Demo 00:03:45 - 00:04:20 Parent Re-Proj. Error Infant Re-Proj. Error

Experiment V0 V1 V2 V3 V0 V1 V2 V3

Baseline 30.758 22.920 47.063 40.979 13.822 30.177 23.200 20.599

Table 4: Baseline experiment re-projection error values, per each view, for each individual

5.1 Child Scale

The following experiments demonstrate the influence of the child’s scale parameter. For the first experiment,
we perform the second phase of Step 3.5 with the infant’s scale defined as the same scale as the parent’s, 100%.
The second experiment follows the same principles of the first, but with the child’s scale defined at 75%.

Demo 00:03:45 - 00:04:20 Parent Re-Proj. Error Infant Re-Proj. Error

Child Body Scale V0 V1 V2 V3 V0 V1 V2 V3

100% 30.793 23.118 46.991 41.336 16.970 41.510 27.136 28.966

75% 30.736 22.878 47.067 40.997 14.597 32.609 24.104 24.311

Table 5: Ablation study re-projection error results on the demonstration video.

Based on the values in Table 5 and the benchmark results, we observe that the baseline scale of the infant
yields superior quantitative results, in comparison to the two experiments. Figure 30 illustrates the qualitative
impact on the reconstruction of the child, given the different scale values. We underline that high scale values for
the body mesh of the child yield unrealistic, thus, undesirable results.

Figure 30: Qualitative illustration of the different scales used to reconstruct the body mesh of the infant.
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5.2 Person-Specific Camera Calibration

For the following studies, we perform the camera calibration phase on individual agent’s 2D keypoints. The
fist experiment optimizes the camera parameters on the keypoints of the parent and the second on the keypoints
of the infant.

Demo 00:03:45 - 00:04:20 Parent Re-Proj. Error Infant Re-Proj. Error

Camera Calibration V0 V1 V2 V3 V0 V1 V2 V3

Parent 30.355 22.360 46.440 40.566 17.644 38.231 29.606 22.579

Infant 47.175 25.520 56.467 43.876 12.512 29.222 22.388 18.940

Table 6: Ablation study re-projection error results on the demonstration video.

Given the re-projection error values of both experiments, we note that, during phase two of Step 3.5, the
reconstruction is optimal to the individual with which we optimized the cameras on. However, the second
individual, absent during the camera calibration phase, is reconstructed with higher uncertainty, suffering from
increased amounts of jitter during the reconstruction visualization. These studies confirm that, in order to retrieve
the most optimal reconstruction results, we are required of using both individual’s keypoints during the camera
optimization phase.

5.3 Exchange and Removal of Detections

The final pair of experiments aim to quantify the change in re-projection error during wrong keypoint in-
dexation and during the reconstruction with only three cameras. We perform both of the experiments with the
same camera parameters as we performed the baseline study. The first experiment exchanges the keypoints of
the individuals in view 2 and the second experiment discards all the information from view 2.

Demo 00:03:45 - 00:04:20 Parent Re-Proj. Error Infant Re-Proj. Error

View 2 Keypoints V0 V1 V2 V3 V0 V1 V2 V3

Exchanged 40.033 34.262 194.555 46.222 34.240 54.301 160.980 25.570

Discarded 31.923 19.995 − 41.664 12.225 27.935 − 20.086

Table 7: Ablation study re-projection error results on the demonstration video.

Based on the re-projection errors listed in Table 7, we confirm that wrongly indexed views are only quantifiable,
by their re-projection error, when we have a correct estimation of the camera parameters. Meanwhile, for the
second experiment, the re-projection errors of the present view, don’t suffer significant changes when compared to
the baseline experiment. However, by discarding view 2 from the reconstruction, we notice an increased amount
of pose uncertainty during the mesh visualization. The most impacted body parts are the parent’s legs. This is
to be expected given the established observations in Section 4.3.3. By losing all the information coming from one
view, the uncertainty in predicting the 3D position of low confidence 2D keypoints is increased.
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6 Conclusion and Future Work
This research project had the ultimate goal of enabling the 3D human reconstruction on the non-annotated

YOUth data. In order to accomplish this milestone, we steered our research according to the most optimal
methods and strategies, which aligned with the criteria of our data, developing features which filled the gaps
in the field of in-the-wild multi-view 3D human reconstruction. To understand how the developed methodology
helped us to achieve our main goal, we first have to seek the answer for our sub-questions:

Can we establish an efficient and reliable feature correspondence mechanism to track individuals among
sequential frames and different views?

Based on the overall qualitative and quantitative results, it can be concluded that the developed framework
often overcame the natural ambiguities in the 2D pose information, yielding accurate 3D representations of the
depicted individuals. After the validation of the qualitative results, from the 19 processed videos, we have observed
that only 3 videos caused the pipeline to fail during the 2D pose disambiguation process. As was described
in Section 4.3.6, we identified that the origin of the wrong indexation derived from AlphaPose, Torchreid and
Detectron2 ambiguities. Despite being unable to solve for these prior model errors, we conclude that the developed
mechanism reliably corresponded the features among different frames and different views.

During prolonged temporal occlusions, will the reconstruction be improved if we discard the deficient view?

To answer this sub-question, we first have to understand the YOUth data and how accurately it is represented
by the reconstruction. As we have observed, the accuracy of the 2D pose estimation model was highly influenced by
the quality of the captured video. In other words, ambiguous depictions and frequent occlusions led to an overall
decrease in keypoint regression accuracy. As a consequence, discarding one deficient view from the reconstruction
is only beneficial if the remaining views accurately capture the position of all human keypoints. Unfortunately,
this is not the case with the YOUth data, as occlusions and color ambiguities tend to be present in more than
one view. This is to be expected during depictions of close-range interactions and when clothing of a similar color
tone as the background is being worn. Therefore, we conclude that to achieve optimal reconstruction quality, we
are required of utilizing all the information available.

Given the answers to our sub-questions, now we seek to reply to our main question:

How accurately can we perform a multi-view 3D human reconstruction, between two close range interacting
agents, without ground-truth annotations?

Despite the inability to quantify the performance of our framework, we have established that ambiguous
depictions lead to ambiguous reconstructions. Therefore, we conclude that the accuracy of the reconstructed
individuals is proportionally impacted by how accurately all the body features of both individuals are captured
in the data. Nonetheless, the biggest limitation of our research was the reconstruction of an infant body, with an
adult sized model. Although we were able to realistically approximate the scale of the adult model to the body
size of the infant, we failed to capture its true body proportions.

In it’s current state, the pipeline discards the information from all views if at least two detections aren’t
unanimously present in the initial or final frame. This can have negative implications on the analysis of the data
since the initial or final sequence of frames of the selected YOUth video is discarded from the reconstruction.
Therefore, one could perform modifications to pipeline’s Step 3.4.1 in order to overcome this loss of data. One
could allow the pipeline to discard only the information from the deficient view, and maintain the remaining
three, if all contain at least two detections. Eventually, when the remaining view matches the detections of the
remaining views, one can start the tracking of all the data coming from the previously deficient view. This range
requires to be flagged and transmitted to Step 3.5, where the data population process identifies the range, and
populates the data accordingly.

As was previously mentioned, we limit the reconstruction for YOUth videos which do not contain any camera
movement (Section 4.1). This limitation not only discards valuable information from the reconstruction, but also
requires the user to account for any camera changes when selecting a video to process. Therefore, we suggest the
integration of a new mechanism between Step 3.2 and Step 3.3, in order to account for camera pan and zoom
change. This can be identified with optical flow based techniques, as described in the works of Makkapati et
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al. [81]. The goal of the additional step is to encompass the data in movement, by identifying it’s initial and
final frame. Once captured, these ranges should be saved and transmitted to Step 3.5, for the data population
procedure. These ranges should be flagged not to discard the view, but to allow for camera optimization.

Despite the improvements that can still be implemented to the framework, we hope to have opened a gateway
for further research of the YOUth data. By observing the SMPL parameters one can gain insight about each
individual’s location, pose, shape and orientation. With further processing of these values, one can estimate, for
example, how frequently the parent touches the infant. With the current mesh visualization system, we are limited
to the observation of the interactions between both individuals. For further analysis of the data, we underline that
the reconstruction should not be limited to the depicted individuals. To better understand behavior patterns,
one can model, in 3D, each toy in the fixed toy set. One possible solution to accomplish this would be to model,
beforehand, a mesh of each toy. Thereafter, in parallel with the 2D human pose estimation step, one could deploy
separate toy identification models to identify the position of each toy in the scene. After the identification, and
during the triangulation procedure, one could develop a mechanism to distinguish human keypoints from the
feature coordinates of the toy, eventually calculating its location in the 3D scene.
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[49] R. A. Güler, N. Neverova, and I. Kokkinos, “Densepose: Dense human pose estimation in the wild,” 2018.
[Online]. Available: https://arxiv.org/abs/1802.00434

[50] G. Hua, M.-H. Yang, and Y. Wu, “Learning to estimate human pose with data driven belief propagation,”
pp. 747–754 vol. 2, 2005.

[51] W. Krauth, “Introduction to monte carlo algorithms,” 1996. [Online]. Available: https://arxiv.org/abs/
cond-mat/9612186

[52] P. Kuo and D. Makris, “Integration of bottom-up/top-down approaches for 2d pose estimation using
probabilistic gaussian modelling,” pp. 242–255, 2011. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1077314210001864

[53] S. Wang, H. Ai, T. Yamashita, and S. Lao, “Combined top-down/bottom-up human articulated pose esti-
mation using adaboost learning,” pp. 3670–3673, 2010.

[54] P. Hu and D. Ramanan, “Bottom-up and top-down reasoning with hierarchical rectified gaussians,” pp.
5600–5609, 2016.

[55] Y. Cai, L. Ge, J. Liu, J. Cai, T.-J. Cham, J. Yuan, and N. M. Thalmann, “Exploiting spatial-temporal
relationships for 3d pose estimation via graph convolutional networks,” pp. 2272–2281, 2019.

[56] S. Li and A. B. Chan, “3d human pose estimation from monocular images with deep convolutional neural
network,” 2014.

[57] W. Chen, H. Wang, Y. Li, H. Su, Z. Wang, C. Tu, D. Lischinski, D. Cohen-Or, and B. Chen,
“Synthesizing training images for boosting human 3d pose estimation,” 2016. [Online]. Available:
https://arxiv.org/abs/1604.02703

[58] G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Daniilidis, “Coarse-to-fine volumetric prediction for
single-image 3d human pose,” 2016. [Online]. Available: https://arxiv.org/abs/1611.07828

50

https://arxiv.org/abs/2107.11291
https://arxiv.org/abs/2012.14214
https://arxiv.org/abs/2110.09408
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1711.07319
https://viso.ai/deep-learning/yolov3-overview/
https://arxiv.org/abs/1911.09070
https://arxiv.org/abs/1807.04067
https://arxiv.org/abs/1802.00434
https://arxiv.org/abs/cond-mat/9612186
https://arxiv.org/abs/cond-mat/9612186
https://www.sciencedirect.com/science/article/pii/S1077314210001864
https://www.sciencedirect.com/science/article/pii/S1077314210001864
https://arxiv.org/abs/1604.02703
https://arxiv.org/abs/1611.07828


[59] H. Rhodin, J. Spörri, I. Katircioglu, V. Constantin, F. Meyer, E. Müller, M. Salzmann, and P. Fua,
“Learning monocular 3d human pose estimation from multi-view images,” 2018. [Online]. Available:
https://arxiv.org/abs/1803.04775

[60] D. Tome, C. Russell, and L. Agapito, “Lifting from the deep: Convolutional 3d pose estimation from a single
image,” jul 2017.

[61] W. Jiang, “Coherent reconstruction of multiple humans from a single image,” 2020. [Online]. Available:
https://jiangwenpl.github.io/multiperson/

[62] R. Szeliski, Computer vision: Algorithms and applications. Springer Nature Switzerland, 2022.

[63] Hartley, “An algorithm for self calibration from several views,” pp. 908–912, 1994.

[64] D. Lowe, 1999. [Online]. Available: https://www.cs.ubc.ca/∼lowe/papers/ijcv04.pdf

[65] A. M. Truong, W. Philips, N. Deligiannis, L. Abrahamyan, and J. Guan, “Automatic multi-camera extrinsic
parameter calibration based on pedestrian torsors,” 2019.

[66] K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, “Omni-scale feature learning for person re-identification,”
October 2019.

[67] H. Hristov, “The direct linear transform,” Nov 2022. [Online]. Available: https://www.baeldung.com/cs/
direct-linear-transform

[68] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013. [Online]. Available:
https://arxiv.org/abs/1312.6114

[69] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using rnn encoder-decoder for statistical machine translation,” 2014.
[Online]. Available: https://arxiv.org/abs/1406.1078

[70] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black, “SMPL: A skinned multi-person linear
model,” pp. 248:1–248:16, Oct. 2015.

[71] J. Williams. [Online]. Available: https://smpl.is.tue.mpg.de/index.html

[72] N. Hesse, S. Pujades, J. Romero, and M. Black, “Skinned multi-infant linear body model,” 2021.

[73] P. Mahol, “Ffmpeg documentation,” May 2023. [Online]. Available: https://ffmpeg.org/ffmpeg.html

[74] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series in 2021,” arXiv preprint
arXiv:2107.08430, 2021.

[75] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2015.

[76] K. Zhou and T. Xiang, “Torchreid: A library for deep learning person re-identification in pytorch,” 2019.

[77] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, “Color transfer between images,” pp. 34–41, 10 2001.

[78] N. Kolotouros, G. Pavlakos, M. J. Black, and K. Daniilidis, “Learning to reconstruct 3d human pose and
shape via model-fitting in the loop,” 2019.

[79] E. Graber, “Growth charts - who child growth standards,” Sep 2010.

[80] X. Li, Z. Fan, Y. Liu, Y. Li, and Q. Dai, “3d pose detection of closely interactive humans using multi-view
cameras,” p. 2831, 06 2019.

[81] V. V. Makkapati, “Robust camera pan and zoom change detection using optical flow,” 2007.

51

https://arxiv.org/abs/1803.04775
https://jiangwenpl.github.io/multiperson/
https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
https://www.baeldung.com/cs/direct-linear-transform
https://www.baeldung.com/cs/direct-linear-transform
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1406.1078
https://smpl.is.tue.mpg.de/index.html
https://ffmpeg.org/ffmpeg.html


A Appendix

A.1 Mesh Visualization

With the intent of performing a 3D reconstruction of the scene depicted in the input video, we created a mesh
visualization program. After executing the previous step 3.5, the resulting meshes can be sequentially visualized,
together with the predicted cameras. Once in execution, a set of keyboard keys can be pressed in order to interact
with the reconstruction. Given the four cameras, one can set the scene view to match the perspective of any of
the used cameras for the reconstruction. By pressing the keyboard key 1, 2, 3 or 4 we respectively set the view
to match the perspective of camera 0 (red), 1 (yellow), 2 (blue) or 3 (green). By pressing the keyboard key
Space the visualized meshes will be updated along the frame sequence. Additionally, the key a increments one
frame and key b decrements one frame, updating the visualization. See Figure 31 for an illustrative example of
the layout of the cameras in the reconstruction scene.

Figure 31: Bird eye view of the initial frame of the reconstructed demonstration video.
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Figure 32: Illustrative example of the data used to perform the reconstruction depicted in Figure 31

Figure 33: Reconstructed data of Figure 32, according to each camera view.
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Figure 34: Reconstruction visualization of video B33892, when the parent picks up the infant.

Figure 35: Reconstruction visualization of video B89136, while the infant is on the lap of the parent, and both
interact with the same toy.
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Figure 36: Reconstruction visualization of video B47859, during the moment in which the infant crawls away
from the parent.

Figure 37: Reconstruction visualization of video B83755, while both individuals interact with the same toy.
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A.2 Auxiliary Tables

Keypoint Confidence Values

YOUth Parent Keypoint Conf. Infant Keypoint Conf. Error Count

Video Name V0 V1 V2 V3 V0 V1 V2 V3 ReID AP

B33718 00:13:40 - 00:14:15 0.687 0.695 0.720 0.748 0.744 0.665 0.607 0.619 202 88

B33892 00:10:00 - 00:10:35 0.644 0.723 0.632 0.740 0.646 0.609 0.668 0.548 16 5

B35985 00:10:50 - 00:11:25 0.646 0.684 0.741 0.695 0.657 0.713 0.610 0.495 119 108

B38777 00:11:17 - 00:11:52 0.648 0.680 0.708 0.841 0.636 0.428 0.561 0.630 43 37

B40508 00:06:55 - 00:07:30 0.731 0.808 0.724 0.651 0.628 0.614 0.674 0.668 479 181

B44801 00:02:55 - 00:03:25 0.613 0.687 0.595 0.412 0.613 0.592 0.740 0.515 95 19

B45111 00:11:26 - 00:12:01 0.777 0.616 0.711 0.568 0.643 0.794 0.690 0.515 34 38

B45358 00:01:25 - 00:02:00 0.642 0.703 0.727 0.798 0.743 0.719 0.715 0.621 0 4

B47859 00:07:35 - 00:08:05 0.715 0.659 0.683 0.696 0.517 0.771 0.682 0.770 0 6

B51848 00:15:35 - 00:16:05 0.851 0.515 0.771 0.684 0.584 0.823 0.602 0.638 136 63

B64396 00:14:00 - 00:14:35 0.719 0.598 0.680 0.638 0.706 0.548 0.739 0.609 430 226

B64612 00:01:53 - 00:02:23 0.673 0.693 0.605 0.577 0.783 0.544 0.739 0.680 63 18

B67411 00:14:35 - 00:15:10 0.789 0.630 0.780 0.797 0.791 0.843 0.805 0.673 0 8

B70410 00:01:20 - 00:01:55 0.795 0.678 0.684 0.723 0.737 0.762 0.770 0.634 0 9

B83755 00:10:30 - 00:11:05 0.736 0.741 0.705 0.751 0.652 0.682 0.709 0.668 0 7

B86218 00:06:00 - 00:06:35 0.759 0.745 0.757 0.606 0.789 0.582 0.801 0.831 0 12

B89136 00:06:25 - 00:07:00 0.702 0.726 0.728 0.529 0.820 0.762 0.746 0.710 315 142

B93177 00:14:25 - 00:15:00 0.757 0.719 0.805 0.637 0.744 0.741 0.763 0.656 0 12

B97605 00:06:45 - 00:07:20 0.746 0.748 0.774 0.689 0.503 0.635 0.576 0.444 0 7

Average 0.712 0.685 0.692 0.719 0.658 0.618 0.619 0.564 117.474 52.105

Table 8: Average 2D pose estimation keypoint confidence score of each individual, in each view. Error count
reflects the number of total AlphaPose (AP) and Torchreid (ReID) errors, of each video
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Re-projection Error - Camera Optimization

Avg Re-Projection Error - P1

Video Name Parent Infant

B33718 50.163 40.810

B33892 28.157 21.746

B35985 84.868 98.602

B38777 28.882 31.740

B40508 45.802 45.641

B44801 50.194 56.587

B45111 70.625 39.586

B45358 54.388 53.982

B47859 24.640 23.902

B51848 66.910 57.428

B64396 51.780 54.194

B64612 42.282 27.566

B67411 25.003 19.097

B70410 50.594 28.838

B83755 34.581 27.524

B86218 35.762 14.752

B89136 36.135 19.556

B93177 37.203 18.893

B97605 34.483 42.494

Average 44.866 38.211

Table 9: Average keypoint re-projection error, during phase one (P1) of Step 3.5
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YOUth Parent Re-Proj. Error Infant Re-Proj. Error

Video Name V0 V1 V2 V3 V0 V1 V2 V3

B33718 00:13:40 - 00:14:15 31.406 56.801 52.129 60.314 17.593 26.771 56.484 62.393

B33892 00:10:00 - 00:10:35 28.904 29.742 26.292 27.688 17.812 22.011 19.889 27.270

B35985 00:10:50 - 00:11:25 118.354 96.719 58.718 65.679 111.741 44.804 133.278 104.586

B38777 00:11:17 - 00:11:52 33.863 29.131 28.701 23.833 18.883 44.44 35.489 28.147

B40508 00:06:55 - 00:07:30 31.646 25.880 48.443 77.241 34.332 38.932 45.329 63.972

B44801 00:02:55 - 00:03:25 52.946 31.841 42.094 73.894 27.072 29.752 20.725 148.800

B45111 00:11:26 - 00:12:01 34.828 69.376 96.183 82.112 76.904 16.202 40.782 24.456

B45358 00:01:25 - 00:02:00 36.601 67.932 51.054 61.963 45.807 34.423 91.063 44.634

B47859 00:07:35 - 00:08:05 17.332 29.261 22.220 29.746 35.017 17.891 25.265 17.434

B51848 00:15:35 - 00:16:05 22.573 134.157 38.319 72.593 44.410 58.379 40.851 86.074

B64396 00:14:00 - 00:14:35 26.888 94.308 35.163 50.762 22.477 123.679 21.682 48.936

B64612 00:01:53 - 00:02:23 25.728 43.311 51.094 48.996 12.113 46.443 26.823 24.883

B67411 00:14:35 - 00:15:10 15.842 35.774 20.651 27.745 14.203 11.251 14.826 36.107

B70410 00:01:20 - 00:01:55 18.483 53.290 70.218 60.386 15.143 18.379 20.045 61.785

B83755 00:10:30 - 00:11:05 27.441 35.238 33.482 42.163 24.206 19.606 25.997 40.285

B86218 00:06:00 - 00:06:35 19.340 18.665 25.250 79.792 7.317 29.410 11.058 11.225

B89136 00:06:25 - 00:07:00 21.402 32.483 22.786 67.871 10.757 26.970 17.986 22.512

B93177 00:14:25 - 00:15:00 21.134 39.678 27.209 60.790 13.146 15.840 17.564 29.022

B97605 00:06:45 - 00:07:20 20.623 35.688 27.400 54.221 30.682 25.831 39.637 73.827

Average 50.163 28.157 84.868 28.882 40.810 21.746 98.602 31.740

Table 10: Average keypoint re-projection error, during phase one of Step 3.5
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Re-projection Error - Fixed Camera Parameters

Avg Re-Projection Error - P2 Difference

Video Name Parent Infant Parent Infant

B33718 47.271 39.220 -2.892 -1.590

B33892 27.251 20.971 -0.906 -0.775

B35985 83.912 95.938 -0.956 - 2.664

B38777 53.33 29.062 24.448 -2.678

B40508 45.232 45.136 -0.570 -0.505

B44801 54.065 55.146 3.871 -1.441

B45111 82.954 38.699 12.329 -0.887

B45358 51.644 53.313 -2.744 -0.669

B47859 24.197 23.187 -0.443 -0.715

B51848 72.410 56.214 5.500 1.214

B64396 51.484 53.330 -0.296 -0.864

B64612 63.690 25.942 21.408 -1.624

B67411 22.918 18.312 -2.085 -0.785

B70410 53.700 28.338 3.106 -0.500

B83755 33.678 26.741 -0.903 -0.783

B86218 33.596 14.153 -2.166 -0.599

B89136 35.798 19.407 -0.337 -0.149

B93177 23.849 17.938 -13.354 -0.955

B97605 43.585 40.596 9.102 -1.898

Average 47.609 36.842 2.665 -1.036

Table 11: Average keypoint re-projection error, during phase two of Step 3.5
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YOUth Parent Re-Proj. Error Infant Re-Proj. Error

Video Name V0 V1 V2 V3 V0 V1 V2 V3

B33718 00:13:40 - 00:14:15 28.772 53.056 40.017 67.239 15.767 23.809 55.126 62.176

B33892 00:10:00 - 00:10:35 28.636 28.271 25.969 26.130 17.069 21.032 18.782 27.001

B35985 00:10:50 - 00:11:25 113.992 92.388 62.966 66.302 120.471 45.800 125.798 91.682

B38777 00:11:17 - 00:11:52 57.726 76.756 53.213 25.626 17.419 43.445 31.308 24.077

B40508 00:13:45 - 00:14:20 30.988 25.875 47.526 76.539 34.732 39.199 44.427 62.185

B44801 00:02:55 - 00:03:25 56.637 47.319 42.143 70.160 27.071 29.752 20.724 148.800

B45111 00:11:26 - 00:12:01 34.749 79.621 104.533 112.912 76.925 15.453 38.419 23.997

B45358 00:01:25 - 00:02:00 38.993 62.800 54.332 50.449 44.330 35.067 88.321 45.546

B47859 00:07:35 - 00:08:05 17.143 29.131 21.181 29.333 34.501 17.404 24.377 16.464

B51848 00:15:35 - 00:16:05 22.562 154.095 37.201 75.785 43.408 56.595 40.502 84.352

B64396 00:14:00 - 00:14:35 28.002 89.805 34.874 53.254 22.540 122.681 20.212 47.886

B64612 00:01:53 - 00:02:23 43.715 74.389 48.944 87.713 11.080 44.041 25.044 23.604

B67411 00:14:35 - 00:15:10 14.198 34.999 18.369 24.106 13.833 10.482 14.032 34.903

B70410 00:01:20 - 00:01:55 19.139 70.429 68.301 56.930 15.058 17.754 19.336 61.204

B83755 00:10:30 - 00:11:05 26.933 33.530 33.221 41.027 23.672 19.367 24.998 38.926

B86218 00:06:00 - 00:06:35 18.764 17.316 23.026 75.278 6.825 29.701 9.940 10.145

B89136 00:06:25 - 00:07:00 21.230 32.141 22.212 67.609 10.689 26.723 17.880 22.337

B93177 00:14:25 - 00:15:00 13.409 23.425 14.579 43.983 12.775 15.009 16.227 27.742

B97605 00:06:45 - 00:07:20 26.121 52.635 29.883 65.699 30.642 23.661 35.953 72.129

Average 47.271 27.251 83.912 53.330 39.220 20.971 95.938 29.062

Table 12: Average keypoint re-projection error, during phase two of Step 3.5
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A.3 Auxiliary Plots

Missing Data - B333892

Figure 38: Frame-by-frame sequence of the captured (colored) and uncaptured (gray) detections of the parent in
video B333892

Figure 39: Frame-by-frame sequence of the captured (colored) and uncaptured (gray) detections of the infant in
video B333892
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Missing Data - B40508

Figure 40: Frame-by-frame sequence of the captured (colored) and uncaptured (gray) detections of the parent in
video B40508

Figure 41: Frame-by-frame sequence of the captured (colored) and uncaptured (gray) detections of the infant in
video B40508
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Missing Data - B64396

Figure 42: Frame-by-frame sequence of the captured (colored) and uncaptured (gray) detections of the parent in
video B64396

Figure 43: Frame-by-frame sequence of the captured (colored) and uncaptured (gray) detections of the infant in
video B64396
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Figure 44: Re-projection error over time during phase one and phase two of the demonstration video reconstruction
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