
Master thesis

Mathematisch Instituut

Properties and Applications
of Hawkes Processes

Author
Peggy Bergman BSc
5834783

Supervisor
Dr. W.M. Ruszel

Second reader
Dr. K. Dajani

2nd July 2023



2

Abstract

Point processes in probability theory are special stochastic processes which model the oc-
currence of events (points) in some space and parameterized by their frequency. Hawkes
processes are general point processes where the frequency can be self-exciting or mutually
exciting. They occur in various areas such as geological sciences, epidemiology and financial
mathematics. The focus of this thesis lies in discussing different types of Hawkes processes
and their properties as well as presenting financial applications. The (linear) Hawkes process
or self-exciting Hawkes process is a process with a single counting process such that that the
occurrence of an event increases the probability of the occurrence of another event. In the
case of the (linear) Hawkes process, we prove the Law of Large Numbers and the Central
Limit Theorem. Moreover, we study the Hawkes likelihood function and the Hawkes log-
likelihood function. Besides a self-exciting Hawkes process there exists a mutually exciting
Hawkes process, which is a process with multiple counting processes that are depended on
each other. Meaning that the occurrence of an event in one of these counting processes also
lead to an increased probability of an event occurring in the other counting processes. We
study the Hawkes likelihood function and the Hawkes log-likelihood function for the mutu-
ally exciting Hawkes process. The marked Hawkes process is a (linear) Hawkes process with
added random variables called the random marks. We prove the Hawkes likelihood function
and the Hawkes log-likelihood function as well as the Central Limit Theorem. Furthermore,
we derive the dynamics for the Hawkes jump-diffusion model given by three stochastic dif-
ferential equations and prove the Law of Large Numbers and Central Limit Theorem for
this particular model.
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Introduction

Point processes in probability theory are special stochastic processes which model the occurrence
of events (points) in some space and parameterized by their frequency. For example, the Poisson
point process with constant rate µ models random events, such as the occurrence of earthquakes.
The Poisson point process can defined by considering the number of points (events) in a specified
time interval. The higher the constant rate, also called the intensity, the higher the probability of
points/events occurring in the specified time interval on average.

In 1971 Alan Hawkes introduced a new kind of mathematical process that is able to model self-
exciting and even mutually exciting phenomena. This new process is called the Hawkes process,
which is a generalization of the point process with a more complex intensity called the conditional
intensity function. Therefore, the Hawkes process is actually a self-exciting or mutually exciting
point process. A self-exciting point process models the sequence of arrivals over some period of
time in such a way that each arrival or event increases the likelihood of another event happening.
The Hawkes process has numerous applications, for instance in geological sciences, epidemiology
and mathematical finance [13]. For example, Ait-Sahalia et al [1] used a mutually exciting jump-
diffusion model, the Hawkes jump-diffusion model, to model the financial markets in different
regions all around the globe. An event occurring on the financial market in one region impacts
the financial market in the other regions as well for a certain time period in the sense that the
probability of an event occurring in these other regions increases.

The so-called power law turns out to be a popular choice for the excitation function, when modeling
geological phenomena such as earthquakes. The Omori formula is a geological model that uses
this so-called power law to predict the rate of aftershocks in a certain region after an earthquake
has occurred [19].

Unwin and et el. [31] proposed a new method using Hawkes processes for modeling infectious
diseases outbreaks. In their article they specifically model the malaria transmission in a near-
elimination setting using a generalization of the Hawkes process.

One of the goals of the thesis is that it is a self-contained overview of the Hawkes process and
the properties of the Hawkes process. Furthermore, a reader without a sufficient background
in stochastic processes, measure theory and financial mathematics will still be able to read the
thesis. However, the main goal is defining, explaining and proving certain properties of the Hawkes
process and the generalizations of the (linear) Hawkes process, such as the mutually exciting
Hawkes process and the marked Hawkes process, as well as introducing financial applications of
the Hawkes process. This means that we introduce the definition and the conditional intensity
function of the (linear) Hawkes process along with the definitions for the mutually exciting Hawkes
process and the marked Hawkes process. In case of the (linear) Hawkes process, we may think
of it as a counting process or point process that models a sequence of events or arrivals over a
non-negative time period. Each event of arrival during this time period will excite the process
in such a way that the probability of the next event happening increases and then decreases
according to the excitation function. We explain the different choices for the excitation function,
through various numerical examples and compare those examples with the numerical example of
the homogeneous Poisson process. We also provide examples for the mutually exciting Hawkes
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process and the marked Hawkes process in order to make the material more tangible, which is on
its own quite dense. Besides explaining the (linear) Hawkes process and its generalizations, we
also provide various proofs for the Law of Large Numbers, Central Limit Theorem and the Hawkes
likelihood function for the different cases. Simply stated, the Law of Large Numbers provides a
statement of the concentration of the process around the mean and the Central Limit Theorem
provides information about the asymptotic distribution of a properly rescaled Hawkes process,
which is Gaussian. The Hawkes likelihood function gives information on the joint probability of
the realizations of that certain Hawkes process. It basically states the joint probability of the
realizations as a function of the parameters of the Hawkes process and is then used to estimate
the unknown parameter(s). We prove the expression of the Hawkes likelihood function and the
Hawkes log-likelihood function in the case of the (linear) Hawkes process, the mutually exciting
Hawkes process and the marked Hawkes process. Furthermore, we give some numerical examples
of estimating certain parameters. Regarding applications of the Hawkes process in finance, we
describe and explain the Black-Scholes model and the Merton jump-diffusion model and provide
some numerical examples of those models. After that we extend the Merton model by replacing the
Poisson jump process by a mutually exciting Hawkes process, this model is known as the Hawkes
jump-diffusion model. Moreover, we prove the Law of Large Numbers and the Central Limit
Theorem in the univariate case of the Hawkes jump-diffusion model. Furthermore, we end the
section on Hawkes jump-diffusion with some simple examples where we give explicit expressions
in order to make it more comprehensible.

The thesis is structured as follows:

Chapter 1 consists of the preliminaries necessary to understand the Hawkes process and the
applications of the Hawkes process in finance sufficiently. The chapter contains measure theoretical
notions as σ-algebra, filtration and measurability. Also, the modes of convergence, the standard
Law of Large Numbers and the standard Central Limit Theorem will be explained. In the second
section of this chapter, the counting process and the point process will be discussed even as the
conditional intensity function. The third and last section is about the Poisson process.

Chapter 2 contains the necessary notions of stochastic calculus such as Itô-Doeblin formula,
Brownian motion, martingales and quadratic variation.

Chapter 3 discusses the (linear) Hawkes process. The definition is given even as the corresponding
conditional intensity function. The most common choices for the excitation function are explained
and we will derive the Hawkes process likelihood function. Lastly, the Law of Large Numbers and
the Central Limit Theorem for the linear Hawkes process are defined and the proof is given for
both theorems.

Chapter 4 discusses the mutually exciting Hawkes process. The definition of the mutually
exciting Hawkes process is given and furthermore the multivariate Hawkes process likelihood will
be stated and proven.

Chapter 5 introduces the marked Hawkes processes. Besides the definition and the corresponding
conditional intensity function, the marked Hazard function is also defined. In the second section
the marked Hawkes process likelihood will be stated and also a proof will be given. In the third
section the Central Limit Theorem for the marked case will be proven.

Chapter 6 discusses the Black-Scholes model. In this chapter the Black-Scholes stochastic
differential equation will be derived given certain assumptions on the financial market.

Chapter 7 covers the Merton jump-diffusion model. The Merton jump-diffusion model is an
extension of the Black-Scholes model in the sense that the model incorporates a jump component.
The stochastic differential equation of the option price, in case of this model, will be derived in
this chapter.

Chapter 8 introduces the Hawkes jump-diffusion model. The Hawkes jump-diffusion model
extends the Merton jump-diffusion model by replacing the Poisson jump process by a mutually
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exciting Hawkes process. In this chapter the Hawkes jump-diffusion model will be defined and
we will prove the Law of Large Numbers and Central Limit Theorem in case of the Hawkes
jump-diffusion model.

Chapter 9 provides a numerical study of the Hawkes process. Different realizations of the Hawkes
process will be simulated using Python. Furthermore, the parameters will also be estimated.
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Chapter 1

Preliminary

1.1 Measure Theory
This section will consist of the necessary definitions and theorems for understanding the material
on Hawkes processes. The reader who is already familiar with the basic notions of measure theory
may safely skip this part. For this section, we made use of the lecture notes of A.W. van der Vaart
[32], the book of L. Wasserman [35] and the lecture notes of P.J.C. Spreij [30].

Definition 1.1.1 (σ-algebra). Let Ω be some set. A collection F ⊆ 2Ω is called a σ-algebra if

(i) Ω ∈ F

(ii) If E ∈ F , then Ec ∈ F

(iii) If E1,E2, ... ∈ F , then
⋃∞

n=1 En ∈ F

Definition 1.1.2 (Measurable). Let (Ω,F) be a measurable space and let f : Ω → R. We say that
f is measurable if ∀B ∈ B(R), with B the Borel σ-algebra, it holds that

f−1[B] := {ω ∈ Ω : f(ω) ∈ B} ∈ Σ.

Definition 1.1.3 ((Continuous) Filtration). Let (Xn)n∈N0 be a stochastic process on some prob-
ability space (Ω,F ,P) and let F = (Fn)n∈N0 be a family of σ-algebras such that F0 ⊆ F1 ⊆ ... and
Fn := σ(X0, ...,Xn). Then we call F a filtration.
In case of continuous time t, we define the filtration as an increasing sequence of σ-algebras (Ft)t≥0
such that Ft := σ(Xs|s ≤ t).

We will state the three modes of convergence.

Definition 1.1.4 (Convergence in distribution). Let (Xn)n∈N be a sequence of random variables
defined on some probability space (Ω,F ,P), then (Xn)n∈N converges in distribution to the random
variable X defined on the same probability space if

P(Xn ≤ x) → P(X ≤ x) as n → ∞

for every x at which the distribution function x → P(X ≤ x) is continuous.
Notation: Xn⇝X.

13
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Let d(x,y) be a distance on Rk. For instance, the Euclidean distance defined as

d(x,y) := ||x−y|| :=
(

k∑
i=1

(xi −yi)2

) 1
2

.

Definition 1.1.5 (Convergence in probability). Let (Xn)n∈N be a sequence of random variables
defined on some probability space (Ω,F ,P), then (Xn)n∈N converges in probability to the random
variable X defined on the same probability space if for all ϵ > 0

P(d(Xn,X) > ϵ) → 0 as n → ∞.

Notation: Xn
P−→ X.

Definition 1.1.6 (Almost sure convergence). Let (Xn)n∈N be a sequence of random variables
defined on some probability space (Ω,F ,P), then (Xn)n∈N converges almost surely to the random
variable X defined on the same probability space if

P( lim
n→∞

d(Xn,X) = 0) = 1.

Notation: Xn
a.s.−−→ X.

Lemma 1.1.1 (Joint convergence in probability). Let (Xn)n∈N, (Yn)n∈N, X and Y be random
variables. If Xn

P−→ X and Yn
P−→ Y , then (Xn,Yn) P−→ (X,Y ).

Proof. Let Xn
P−→ X and Yn

P−→ Y . We will prove ∀ϵ > 0 that

P(d((Xn,Yn),(X,Y )) > ϵ) → 0 as n → ∞.

Let ϵ > 0 be given, then

P(d((Xn,Yn),(X,Y )) > ϵ) ≤ P(d(Xn,X) >
ϵ

2)+P(d(Yn,Y ) >
ϵ

2) by triangle inequality

→ 0 as n → ∞,

since ∀ϵ > 0 it holds that P(d(Xn,X) > ϵ) → 0 and P(d(Yn,Y ) > ϵ) → 0 as n → ∞.

■

Lemma 1.1.2 (Joint convergence in distribution). Let (Xn)n∈N, (Yn)n∈N, X and Y be random
variables and let Xn and Yn be independent for all n. If Xn⇝X and Yn⇝ Y and X and Y are
independent, then (Xn,Yn)⇝ (X,Y ).

Proof. Let Xn⇝X and Yn⇝ Y and suppose that Xn and Yn are independent. Then

P(Xn ≤ x,Yn ≤ y) = P(Xn ≤ x)P(Yn ≤ y)⇝ P(X ≤ x)P(Y ≤ y) = P(X ≤ x,Y ≤ y).

■

Lemma 1.1.3 (Continuous mapping theorem). Let (Xn)n∈N be random variable.

1. If Xn
P−→ X and g is a continuous function, then g(Xn) P−→ g(X)

2. If Xn⇝X and g is a continuous function, then g(Xn)⇝ g(X)
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Proof. We only prove the first assertion. Let Xn
P−→ X. Let ϵ > 0 be given. Suppose that there

exists a K large enough such that P(|X| > K) ≤ δ
2 for some δ > 0. The function g is uniformly

continuous on the interval [−K,K] and therefore there exists a δ′ > 0 such that for |x| ≤ K and
|x−y| < δ′, we have that |g(x)−g(y)| < ϵ. Hence,

P(|g(Xn)−g(X)| > ϵ) ≤ P(|X| > K)+P(|Xn −X| > δ′)

≤ δ

2 + δ

2 = δ,

for n large enough. ([25], proof of Theorem 1.24, p. 55)

■

Lemma 1.1.4 (Slutsky). Let (Xn)n∈N, (Yn)n∈N, X and Y be random variables. If Xn
P−→ X and

Yn
P−→ Y , then Xn +Yn

P−→ X +Y .

Proof. Let Xn
P−→ X and Yn

P−→ Y . We will prove ∀ϵ > 0 that

P(d(Xn +Yn − (X +Y )) > ϵ) → 0 as n → ∞.

Let ϵ > 0 be given, then

P(d(Xn +Yn − (X +Y )) > ϵ) = P(d((Xn −X)+(Yn −Y )) > ϵ)

≤ P(d(Xn −X) >
ϵ

2)+P(d(Yn −Y ) >
ϵ

2) by triangle inequality

→ 0 as n → ∞,

since ∀ϵ > 0 it holds that P(d(Xn −X) > ϵ) → 0 and P(d(Yn −Y ) > ϵ) → 0 as n → ∞.

■

Lemma 1.1.5 (Slutsky). Let (Xn)n∈N, (Yn)n∈N, X and Y be independent random variables.

1. If Xn⇝X and Yn⇝ Y , then Xn +Yn⇝X +Y .

2. If Xn⇝X and Yn
P−→ c with c a constant, then YnXn⇝ cX.

Proof. Let Xn ⇝ X and Yn ⇝ Y . By Lemma 1.1.2, we have that (Xn,Yn)⇝ (X,Y ). By the
Continuous Mapping Theorem 1.1.3 with g(x,y) = x + y, we obtain the the first assertion. Now,
let Xn⇝X and Yn

P−→ c with c a constant. By Lemma 1.1.2, we have that (Xn,Yn)⇝ (X,c). By
the Continuous Mapping Theorem 1.1.3 with g(x,y) = yx, we obtain the the second assertion.

■

The next theorems will be stated without a proof, since one can view them as classical results.

Theorem 1.1.6 (Law of Large Numbers (LLN)). Let 1
n

∑n
i=1 Xi be the sample mean of the first

n observations of a sequence of i.i.d. random variables with finite expectation. Then

1
n

n∑
i=1

Xi
P−→ E[X1].
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Theorem 1.1.7 (Strong Law of Large Numbers). Let 1
n

∑n
i=1 Xi be the sample mean of the first

n observations of a sequence of i.i.d. random variables with finite expectation. Then

1
n

n∑
i=1

Xi
a.s.−−→ E[X1].

Theorem 1.1.8 (Central Limit Theorem (CLT)). Let 1
n

∑n
i=1 Xi be the sample mean of the first

n
observations of a sequence of i.i.d. random variables. If E[X2

1 ] < ∞, then

√
n( 1

n

n∑
i=1

Xi −E[X1])⇝N (0,V ar(X1)).

Lastly, we will mention a couple important inequalities.

Definition 1.1.7 (Markov’s Inequality). Let X be a random variable and suppose that E[X]
exists. Then, for all constant c > 0 and a non-decreasing, non-negative function g, it holds that

P(X ≥ c) ≤ E[g(X)]
g(c) . (1.1)

Definition 1.1.8 (Chebyshev´s Inequality). Let X be a random variable and suppose that
V ar(X) is finite and non-zero. Then, for all ϵ > 0, it holds that

P(|X −E[X]| ≥ ϵ) ≤ V ar(X)
ϵ2 . (1.2)

Remark. | · | stands for the absolute value.
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1.2 Counting Process and Point Process
This section is largely based on the article of P.J. Laub [15] and on Chapter 2 of The Elements of
Hawkes Processes [16].

We may think of a counting process as a cumulative count of the number of arrivals into a
system up to the current time. The formal definition is given in Definition 1.2.1. Another way of
characterizing the number of arrivals is provided by the point process in Definition 1.2.3. Here,
we consider the sequence of random arrival times T = {T1,T2, ...} at which the counting process
has jumped.

Definition 1.2.1 (Counting process). A counting process is a stochastic process (Nt)t≥0, which
satisfies the following conditions:

• The process takes values in N0 such that N0 = 0

• The process is almost surely (a.s.) finite

• The process is a right-continuous step function with increments of size +1

In the next section, we will provide an example of a counting process, namely the Poisson process.

Definition 1.2.2 (History). We define the history of the arrivals up to time u as (Hu)u≥0. Note
that Hu is a filtration, Definition 1.1.3.

Definition 1.2.3 (Simple point process). A sequence of random arrival times T = {T1,T2, ...} is
a simple point process if the following conditions are satisfied:

• T takes values in [0,∞)

• The simple point process is an almost surely increasing sequence, P(0 ≤ T1 ≤ T2 ≤ ...) = 1

• The number of points in a bounded region is almost surely (a.s.) finite.

We may characterize a certain point process by specifying the conditional distribution function.
The conditional cumulative distribution function (c.d.f.) of the next arrival time Tn+1 given the
history of arrivals up to time u, Hu, is defined as

F (t|Hu) :=
∫ t

u
P(Tn+1 ∈ [s,s+ds]|Hu)ds =

∫ t

u
f(s|Hu)ds (1.3)

with f the conditional probability density function (p.d.f.). The joint p.d.f. for a realization
{t1, t2, ..., tn} is then given by

f(t1, t2, ..., tn) =
n∏

i=1
f(ti|Hti−1). (1.4)

By convention, we write F (t|Hu) as F ∗(t) and f(t|Hu) as f∗(t) for u < t. With the help of the
conditional distribution function of a point process, we may define the so-called Hazard function.

Definition 1.2.4 (Hazard function). Consider a point process Nt with associated history Ht.
Furthermore, consider the conditional c.d.f. and p.d.f. defined in (1.3). Then, the Hazard function,
which is random, is defined as

λ∗(t) = f∗(t)
1−F ∗(t) .

Due to the complexity of working with the conditional c.d.f. and p.d.f., we rather prefer the
so-called conditional intensity function λ(·), which is the expected rate of arrivals conditioned on
the history. Please note that both definitions are valid.
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Definition 1.2.5 (Conditional intensity function). Consider a counting process Nt with associated
history Ht. λ(t) is called the conditional intensity function of the counting process if λ(t) is non-
negative and Ht-measurable (Definition 1.1.2) with λ(t) defined as

λ(t) = lim
k↓0

E[Nt+k −Nt|Ht]
k

.

By integrating the conditional intensity function we obtain the so-called compensator.

Definition 1.2.6 (Compensator). The compensator for a counting process is defined as the non-
decreasing deterministic function

Λ(t) =
∫ t

0
λ(s)ds.
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1.3 Poisson Process
This section is largely based on Section 2.2 of The Elements of Hawkes Processes [16]. We will give
the definitions of a Poisson distribution, a homogeneous Poisson process and an inhomogeneous
Poisson process.

Definition 1.3.1 (Poisson distribution). A random variable X is Poisson distributed with rate
µ > 0, X ∼ Pois(µ), if it has a probability mass function given by

P(X = k) = µk

k! ·e−µ, with k = 0,1,2, ...

Definition 1.3.2 (Homogeneous Poisson process). A counting process (Nt)t≥0 is a homogeneous
Poisson process with rate µ > 0 if the following conditions are satisfied:

• For any interval I, we have that NI ∼ Pois(µ|I|) with |I| the length of the interval and NI

the number of arrivals in interval I. In other words, if the length of the interval I equals t,
we have that Nt ∼ Pois(µt).

• For any n disjoint intervals I1, I2, ..., In, the random variables NI1 ,NI2 , ...,NIn are independ-
ent.

Then it follows that the probability of Nt being equal to n is given by

P(Nt = n) = (µt)n

n! ·e−µt, with n = 0,1,2, ...

Figure 1.1: An example of Homogeneous Poisson process with µ = {1,5,10} and time up to 50.
(see Appendix 11.1)
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In figure 1.1, we see that for small µ there are rather long flat parts, which means that there
are no arrivals of new events. Contrary we see that for larger µ there are more frequent steps,
which shows that events are arriving quicker. Overall the graphs are roughly linear, which is to
be expected due to the homogeneous nature.

Definition 1.3.3 (Inhomogeneous Poisson process). A counting process (Nt)t≥0 is a inhomogen-
eous Poisson process with rate µ(t) > 0 if the following conditions are satisfied:

• For any interval I = (a,b], we have that NI ∼ Pois
(∫ b

a µ(s)ds
)

with a,b ∈ R and a ≤ b.

• For any n disjoint intervals I1, I2, ..., In, the random variables NI1 ,NI2 , ...,NIn are independ-
ent.

The difference between a homogeneous Poisson process and that of an inhomogeneous Poisson
process is that the rate µ is time-dependent in the inhomogeneous case and a constant in the
homogeneous case.



Chapter 2

Stochastic Calculus for Finance

In this chapter, the necessary definitions for understanding stochastic calculus needed for the
Black-Scholes model (Chapter 6), the Merton jump-diffusion model (Chapter 7) and the Hawkes
jump-diffusion model (Chapter 8) will be discussed. This implies that we will give the definitions
of Brownian motion, martingales, quadratic variation and the Itô-Doeblin formulas. Furthermore,
we will give some examples corresponding to those definitions. The reader who is already familiar
with these notions may safely skip this chapter. For this chapter, we made use of the book of S.E.
Shreve [29] and the lecture notes of F. Boshuizen et al. [6].

Definition 2.0.1 (Brownian motion). Let (Ω,F ,P) be a probability space. A stochastic process
(Wt)t≥0 is a called a Brownian motion if the following holds:

(i) The process starts at 0: W0 = 0

(ii) Normal increments: Wt −Ws ∼ N (0, t−s) for all 0 ≤ s < t

(iii) Independent increments: Wt −Ws ⊥⊥ (Wu : 0 ≤ u < s) for all 0 ≤ s < t.

(iv) Any sample path t 7→ Wt(ω) is continuous

Remark. We use the symbol ⊥⊥ to indicate independence.

Example 2.0.1 (Brownian motion). We show that (−Wt)t≥0 is a Brownian motion. First, we
have that (Wt)t≥0 is a Brownian motion, so W0 = 0 and thus −W0 = 0. Secondly,

E[−Wt − (−Ws)] = E[−(Wt −Ws)] = −E[Wt −Ws] = −0 = 0.

Furthermore,
V ar(−(Wt −Ws)) = V ar(Wt −Ws) = t−s,

hence (−Wt)t≥0 has normal increments. Due to the fact that (Wt)t≥0 is a Brownian motion, we
know that t 7→ Wt(ω) is continuous and so is t 7→ −Wt(ω) is continuous. Hence, (−Wt)t≥0 is a
Brownian motion.

♦

Lemma 2.0.2 (Law of Large Numbers for Brownian motion). Let (Wt)t≥0 be a Brownian motion,
then we have that limt→∞

Wt
t = 0 almost surely.

Proof. The proof can be found in ([18], Corollary 1.11, p. 14).

■
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Definition 2.0.2 (Adapted). A stochastic process (Xt)t≥0 is adapted to the filtration (Ft)t≥0 if
σ(Xt) ⊂ Ft.

Recall that a filtration (Ft)t≥0 in continuous time is an increasing sequence of σ-algebras, so
Fs ⊂ Ft for all s < t.

Definition 2.0.3 (Martingale). A stochastic process (Xt)t≥0 is a martingale with respect to the
filtration (Ft)t≥0 if the following holds:

1. (Xt)t≥0 is adapted to the filtration

2. E[|Xt|] < ∞ for all t

3. Martingale property: E[Xt|Fs] = Xs for s < t

Example 2.0.3 (Doob martingale). Let Y be a random variable such that E[|Y |] < ∞ and let
(Ft)t≥0 be an arbitrary filtration, then we have that Xt = E[Y |Ft] is a martingale with respect to
the filtration. By using the tower property, we obtain the statement.

E[Xt|Fs] = E[E[Y |Ft]|Fs] = E[Y |Fs] = Xs for all s < t

♦

Example 2.0.4. We show that the Brownian motion (Wt)t≥0 with respect to the natural filtration
fulfills the martingale property, since the first two properties of a martingale are trivially satisfied.
This means that we only need to show that E[Wt|Fs] = Ws for s < t. So

E[Wt|Fs] = E[Wt −Ws +Ws|Fs]
= E[Wt −Ws|Fs]+E[Ws|Fs]
= 0+Ws = Ws

Hence, (Wt)t≥0 satisfies the martingale property.
Note: The natural filtration of a stochastic process (Xt)t≥0 is Ft = σ(Xs|s ≤ t).

♦

Definition 2.0.4 (Quadratic variation). Let Π = {t0, t1, ..., tn} be the partition of the interval
[0,T ]. Then the covariation of the stochastic processes X = (Xt)t≥0 and Y = (Yt)t≥0 is defined as

[X,Y ]t := lim
||Π||→0

n∑
k=1

(Xtk
−Xtk−1)(Ytk

−Ytk−1),

where we call the norm of the partition the mesh. Note that the convergence is in L2(R).

Remark. The quadratic variation for a single stochastic process follows by setting Y = X. Then
we obtain the statement

[X,X]t = [X]t := lim
||Π||→0

n∑
k=1

(Xtk
−Xtk−1)2.
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Definition 2.0.5 (Itô-Doeblin formula). Let f(t,x,y) be a function for which the partial de-
rivatives ft(t,x,y), fx(t,x,y), fy(t,x,y), fxx(t,x,y), fyy(t,x,y) and fxy(t,x,y) are defined and
continuous, i.e. f ∈ C2(R×R). Furthermore, let (Xt)t≥0 and (Yt)t≥0 be a stochastic processes.
The three-dimensional Itô-Doeblin formula in differential form is then given by

df(t,Xt,Yt) = ft(t,Xt,Yt)dt+fx(t,Xt,Yt)dXt +fy(t,Xt,Yt)dYt + 1
2fxx(t,Xt,Yt)d[X]t

+1
2fyy(t,Xt,Yt)d[Y ]t +fxy(t,Xt,Yt)d[X,Y ]t.

Remark. The Itô-Doeblin formula for one-dimension and two-dimension follows from the three-
dimensional Itô-Doeblin formula stated above.

Example 2.0.5 (Itô-Doeblin formula stock price process). Let (St)t≥0 be the stock price process
assumed to follow a geometric Brownian motion. This means that St is defined as

St = S0eµt+σWt ,

with S0 the initial stock price, (Wt)t≥0 a Brownian motion and µ ∈ R and σ > 0 the drift and
volatility, respectively. To obtain the stochastic differential equation corresponding to (St)t≥0, we
will apply the Itô-Doeblin formula to f(x) = S0ex with Xt = µt+σWt. Then

Xt = µt+σWt

dXt = µdt+σdWt

d[X]t = σ2dt.

Therefore, applying Itô-Doeblin yields

dSt = df(Xt) = fx(Xt)dXt + 1
2fxx(Xt)d[X]t

= S0eXtdXt + 1
2S0eXtd[X]t

= StdXt + 1
2Std[X]t

= St (µdt+σdWt)+ 1
2Stσ

2dt

=
(

µ+ 1
2σ2

)
Stdt+σStdWt.

Note that fx(x) = fxx(x) = S0ex.
Hence, the stock price process (St)t≥0 satisfies the stochastic differential equation

dSt =
(

µ+ 1
2σ2

)
Stdt+σStdWt.

♦

Example 2.0.6 (Itô-Doeblin formula discounted stock price process). Let (S̃t)t≥0 be the discoun-
ted stock price process defined as

S̃t = e−rtSt = e−rtS0eµt+σWt = S0e(µ−r)t+σWt , t ≥ 0,

with St as in Example 2.0.5 and r is the interest rate. Hence, the drift term becomes µ − r ∈ R.
We will apply the Itô-Doeblin formula to f(x) = S0ex with Xt = (µ − r)t + σWt. Note that



24 CHAPTER 2. STOCHASTIC CALCULUS FOR FINANCE

fx(x) = fxx(x) = S0ex. Then, we have

Xt = (µ− r)t+σWt

dXt = (µ− r)dt+σdWt

d[X]t = σ2dt.

Hence,

dS̃t = df(Xt) = fx(Xt)dXt + 1
2fxx(Xt)d[X]t

= S0eXtdXt + 1
2S0eXtd[X]t

= S̃tdXt + 1
2 S̃td[X]t

= S̃t ((µ− r)dt+σdWt)+ 1
2 S̃tσ

2dt

=
(

(µ− r)+ 1
2σ2

)
S̃tdt+σS̃tdWt.

Thus, the discounted stock price process (S̃t)t≥0 satisfies the SDE

dS̃t =
(

µ− r + 1
2σ2

)
S̃tdt+σS̃tdWt.

♦
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Chapter 3

Hawkes Process

3.1 Linear Hawkes Process
The Hawkes process is a self-exciting point process and is named after Alan Hawkes, who intro-
duced in his article Spectra of some self-exciting and mutually-exciting point processes [11] the
notion of self-exciting and mutually exciting point processes in 1971. Since then, the Hawkes
process is applied in numerous different fields such as seismology, ecology and finance. In this
section, which is largely based on the article of P.J. Laub [15] and on Chapter 3 of The Elements
of Hawkes Processes [16], we will introduce the linear Hawkes process. We added the derivation
of the stochastic differential equation of the exponentially decaying intensity function and figures
3.1 and 3.4.

Definition 3.1.1 (Little "o" notation ([24], p. 314, Definition 5.2)). A function f(·) is said to be
o(k) if it holds that

lim
k→0

f(k)
k

= 0.

Definition 3.1.2 (Linear Hawkes process). A counting process (Nt)t≥0 with associated history
(Ht)t≥0 that satisfies

P(Nt+k −Nt = m | Ht) =


λ(t)k +o(k), m = 1
o(k), m > 1
1−λ(t)k +o(k), m = 0

is called a Hawkes process. The corresponding conditional intensity function (Definition 1.2.5) is
defined as

λ(t) = ν +
∫ t

0
h(t−s)dNs.

We call ν > 0 the background intensity and the function h : (0,∞) → [0,∞) is referred to as the
excitation function.

The conditional intensity function λ(·) may also be written as

λ(t) = ν +
∑
ti<t

h(t− ti),

where {t1, t2, ..., tn} is an increasing sequence of random times up to time t at which events or
arrivals occur. Therefore, we may think of a Hawkes process as a counting process or point process
that models a sequence of events or arrivals over a non-negative time period. Each event or arrival
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during this time-period will excite the process in such a way that the probability of the next event
happening increases and then decreases according to the excitation function. There are some well
studied choices for the excitation function h(·), namely the exponentially decaying intensity and
the power law function.

Definition 3.1.3 (Exponentially decaying intensity). Let the excitation function h(·) be defined
as

h(t) = αe−βt,

with α,β > 0 some constants. The exponentially decaying intensity function λ(·) is then given by

λ(t) = ν +
∫ t

0
αe−β(t−s)dNs = ν +

∑
ti<t

αe−β(t−ti).

Figure 3.1: A realization of a Hawkes process Nt with exponentially decaying intensity function
λ(t) with parameters ν = 0.1, α = 1.0 and β = 1.1.
On the left: plot of time against the number of arrivals.
On the right: plot of time against the conditional intensity function

If we compare the realization of the Hawkes process with exponentially decaying intensity function
given by

λ(t) = 0.1+
∑
ti<t

1.0e−1.1(t−ti),

on the left in Figure 3.1, to the homogeneous Poisson process in Figure 1.1 then we can note a
couple of differences. The graph of the homogeneous Poisson process is rather linear and especially
for larger rates the intervals between two events are quite small. Whereas for the exponential case
(Figure 3.1), we see that a lot of events occur in the beginning followed by some larger periods
of time where no events happen at all. Overall the Hawkes process with exponentially decaying
intensity does not really have a linear trend as opposed to the homogeneous Poisson process. We
may also compare the Hawkes process with exponentially decaying intensity function with different
parameters to each other. Let us compare the left side of Figure 3.1 to the left side of Figure 3.2.
So, if parameter α decreases and β remains the same, then the time between two events occurring
becomes significantly longer. This can been seen by the rather long flat parts in the graph of the
left side of Figure 3.2. Now, if we compare the left side of Figure 3.1 to the left side of Figure 3.3,
then we see that lots of activity will happen followed by periods of no activity at all. Thus, we
may say that β suppresses activity.
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Figure 3.2: A realization of a Hawkes process Nt with exponentially decaying intensity function
λ(t) with parameters ν = 0.1, α = 0.1 and β = 1.1.
On the left: plot of time against the number of arrivals.
On the right: plot of time against the conditional intensity function

Figure 3.3: A realization of a Hawkes process Nt with exponentially decaying intensity function
λ(t) with parameters ν = 0.1, α = 1.0 and β = 1.5.
On the left: plot of time against the number of arrivals.
On the right: plot of time against the conditional intensity function
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Definition 3.1.4 (Power law function). Let the excitation function h(·) be defined as

h(t) = k

(c+ t)p

with k,c,p > 0 some constants. This specific excitation function h(·) is referred to as the power
law function. The conditional intensity function λ(·) is then given by

λ(t) = ν +
∫ t

0

k

(c+(t−s))p
dNs = ν +

∑
ti<t

k

(c+(t− ti))p
.

Figure 3.4: A realization of a Hawkes process Nt with corresponding conditional intensity function
λ(t) with power law function as the excitation function. The parameters are given by ν = 0.1,
k = 1.0, c = 5.0 and p = 1.5.
On the left: plot of time against the number of arrivals.
On the right: plot of time against the conditional intensity function

Let us now compare the realization of the Hawkes process with the power law as the excitation
function, so we have the conditional intensity function given by

λ(t) = 0.1+
∑
ti<t

1.0
(5.0+(t− ti))1.5 ,

on the left in Figure 3.4, to the homogeneous Poisson process in Figure 1.1 then we can see
some similarity. The graph of the homogeneous Poisson process is rather linear and especially for
larger rates the intervals between two events are quite small. The graph shown on the left side in
Figure 3.4 displays roughly similar behavior. However, if we change some parameters this behavior
changes. We start with comparing the left side of Figure 3.4 to the left side of Figure 3.5. So,
parameter k decreases and the other parameters remain the same. Then, the behavior remains
roughly the same, but their are significantly less events occurring. Now, we increase parameter c
and the others remain the same (Figure 3.6), then the behavior of events arriving becomes more
erratic and the trend does not look linear anymore as opposed to Figure 3.4. Lastly, we compare
the left side of Figure 3.4 to the left side of Figure 3.7. Here, the parameter p is increased and the
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others remain the same. Then we have more or less similar looking behavior, however the graph
is less linear.

Figure 3.5: A realization of a Hawkes process Nt with corresponding conditional intensity function
λ(t) with power law function as the excitation function. The parameters are given by ν = 0.1,
k = 0.5, c = 5.0 and p = 1.5.
On the left: plot of time against the number of arrivals.
On the right: plot of time against the conditional intensity function
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Figure 3.6: A realization of a Hawkes process Nt with corresponding conditional intensity function
λ(t) with power law function as the excitation function. The parameters are given by ν = 0.1,
k = 1.0, c = 10.0 and p = 1.5.
On the left: plot of time against the number of arrivals.
On the right: plot of time against the conditional intensity function

Figure 3.7: A realization of a Hawkes process Nt with corresponding conditional intensity function
λ(t) with power law function as the excitation function. The parameters are given by ν = 0.1,
k = 1.0, c = 5.0 and p = 3.0.
On the left: plot of time against the number of arrivals.
On the right: plot of time against the conditional intensity function
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The linear Hawkes process is applicable in the seismology, in particular the power law. One is
able to predict the rate of the aftershocks caused by an earthquake using this particular Hawkes
process. As we will see, this model can become more advanced once one adds random marks in
order to account for the magnitude of an earthquake. An example of this will be given in Chapter
5. The linear Hawkes process can also be applied in the epidemiology. In the article of M.-A.
Rizoiu et al. [22] a link between the linear Hawkes process and an epidemic model with finite
population size is proposed. Their conditional intensity function is given by

λ̃(t) =
(

1− Nt

N

)(
ν +

∑
ti<t

h(t− ti)
)

,

with h(·) the excitation function and ν > 0 the background intensity just as in the linear Hawkes
process and furthermore Nt a counting process and N the finite population size. Note that if
N → ∞, so an infinite population size, then we obtain the regular conditional intensity function
for the linear Hawkes process.

Lemma 3.1.1. The exponentially decaying intensity function λ(·) satisfies the following stochastic
differential equation

dλ(t) = β(ν −λ(t))dt+αdNt, t ≥ 0. (3.1)

Proof. The exponentially decaying intensity function λ(·) can be written as

λ(t) = ν +
∫ t

0
αe−β(t−s)dNs = ν +αe−βt

∫ t

0
eβsdNs.

Taking the derivative on both sides yields

dλ(t) =
(

−αβe−βt

∫ t

0
eβsdNs

)
dt+αe−βt ·eβtdNt

=
(

−β

∫ t

0
αe−β(t−s)dNs

)
dt+αdNt

=
(

−β

(∫ t

0
αe−β(t−s)dNs +ν −ν

))
dt+αdNt

= (−β (λ(t)−ν))dt+αdNt

= β (ν −λ(t))dt+αdNt.

Hence, the stochastic differential equation dλ(t) = β(ν − λ(t))dt + αdNt corresponds to exponen-
tially decaying intensity function.

■

Lemma 3.1.1 will be used later to derive the univariate model for the Hawkes jump-diffusion model
in Chapter 8.

Lastly, we will remark that the definition of the linear Hawkes process described above can be
generalized in the form of a nonlinear Hawkes process.

Definition 3.1.5 (Non-linear Hawkes process). A counting process (Nt)t≥0 with conditional
intensity function given by

λ(t) = Ψ
(∫ t

0
h(t−s)dNs

)
,

where Ψ : R → [0,∞) and excitation function h : (0,∞) → [0,∞), is called a nonlinear Hawkes
process.
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Then, choosing Ψ such that Ψ(x) = ν + x will reduce the counting process (Nt)t≥0 to the linear
Hawkes process.

3.2 Parameter Estimation

This section is largely based on the article of P.J. Laub [15] and on Chapter 5.1 of The Elements
of Hawkes Processes [16]. In the proof of Theorem 3.2.1, we made some minor changes in the
notation and added some steps in the calculations. Furthermore, we added the log-likelihood
function.

Theorem 3.2.1 (Hawkes process likelihood). Let (Nt)t≥1 be a simple point process on [0,T ] for
some finite positive T and let {t1, t2, ..., tn} denote the arrival times of the events on [0,T ]. The
likelihood function L of (Nt)t≥1 is then of the form

L(t1, ..., tn|θ) =
(

n∏
i=1

λ∗(ti)
)

· exp
{

−
∫ T

0
λ∗(u)du

}

and the log-likelihood l has the form

l(t1, ..., tn|θ) =
n∑

i=1
λ∗(ti)−

∫ T

0
λ∗(u)du.

Remark. θ contains the background intensity ν and the parameters necessary for the excitation
function h. In the case of the exponentially decaying intensity, we have that θ := (ν,α,β).

Proof. The likelihood function in general is given by

L(t1, ..., tn|θ) =
n∏

i=1
f∗(ti)

with f∗(ti) the conditional probability density function as defined in (1.4). We want to express
the likelihood function in terms of the hazard function λ∗, Definition 1.2.4.

λ∗(t) = f∗(t)
1−F ∗(t) =

d
dtF ∗(t)

1−F ∗(t) = d

dt
(− log(1−F ∗(t))) .

Integrating both sides over the interval (ti−1, ti) gives∫ ti

ti−1

λ∗(u)du =
∫ ti

ti−1

d

du
(− log(1−F ∗(u)))du = − log(1−F ∗(ti))+ log(1−F ∗(ti−1)).

The second term on the right-hand side will be equal to zero due to the assumption that (Nt)t≥1
is a simple point process and therefore it cannot happen that multiple events occur at the same
time, hence F ∗(ti−1) = 0. Thus,∫ ti

ti−1

λ∗(u)du = − log(1−F ∗(ti)).
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So,

1−F ∗(ti) = exp
{

−
∫ ti

ti−1

λ∗(u)du

}

F ∗(ti) = 1− exp
{

−
∫ ti

ti−1

λ∗(u)du

}

Now, we can define the conditional probability density function in terms of the hazard function,
since

f∗(ti) = d

dt
F ∗(ti) = λ∗(ti) · exp

{
−
∫ ti

ti−1

λ∗(u)du

}
by the funtamental theorem of calculus.

Hence, the likelihood function becomes

L(t1, ..., tn|θ) =
n∏

i=1
f∗(ti) =

n∏
i=1

(
λ∗(ti) · exp

{
−
∫ ti

ti−1

λ∗(u)du

})

=
(

n∏
i=1

λ∗(ti)
)

· exp
{

−
∫ T

0
λ∗(u)du

}
.

The log-likelihood function is then given by

l(t1, ..., tn|θ) = log
((

n∏
i=1

λ∗(ti)
)

· exp
{

−
∫ T

0
λ∗(u)du

})

=
n∑

i=1
λ∗(ti)−

∫ T

0
λ∗(u)du.

■

In Chapter 9, we will give some numerical examples.

3.3 Limit Theorems
In this section, which is largely based on the article of Y. Seol [27], we will prove the Law of Large
Numbers and the Central Limit Theorem. Note that our description is more general, this is due
to the fact that we made less assumptions. Specifically, we do not assume that tν is a natural
number. Furthermore, we will give a more detailed version of the proofs.

Let us first recall that the conditional intensity function for the linear Hawkes process is given by

λ(t) = ν +
∫ t

0
h(t−s)dNs,

where ν > 0 the background intensity and h(·) the excitation function. In order to prove the
Law of Large Numbers and the Central Limit Theorem it is convenient to characterize the linear
Hawkes process by using the immigration-birth representation. The immigration-birth represent-
ation states that an immigrant arrives according to a standard homogeneous Poisson process with
rate ν > 0, Definition 1.3.2, and after that each immigrant may or may not have children according
to a Galton-Watson tree (see [12] for details). We define the number of children of an immigrant
as η and we assume that η is Poisson distributed with rate ||h||L1 =

∫∞
0 h(t)dt. Furthermore, the

total number of immigrants and their descendants up to time t is denoted by Nt. In this section,
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we will assume that the immigrants arrive uniformly over time with rate ν > 0 rather than Poisson
with rate ν > 0. This means that the immigrants arrive at times

i

ν
, i = 1,2,3, ....

We may write the number of immigrants and their descendants up to time t as a sum of the i−th
immigrant that arrives at time i

ν and its descendants. So

Nt =
⌊νt⌋∑
i=1

Xi.

Here, the Xi are independent and denote the number of the i−th immigrant and its descendants.
The i−th immigrant and its descendants arrive during the time interval [ i

ν , νt
ν ] for i = 1,2,3, ...,

where each immigrant generates descendants according to the immigration-birth representation
as described earlier. So, the probability that the number of immigrants and their descendants up
to time t that arrives uniformly over time with rate ν > 0 equals k ∈ N is given by

P(Nt = k) = 1
νt
ν − k

ν

= ν

νt−k
.

Before we prove the LLN and the CLT, we will define the necessary assumptions.

Assumptions:

(i) The conditional intensity function is linear and increasing, so λ(x) = ν +x for some strictly
positive ν.

(ii) It holds that the L1-norm of the excitation function h is less than one, hence ||h||L1 < 1 with
||h||L1 =

∫∞
0 h(t)dt < ∞.

The first assumption assures that the Hawkes process has a nice immigration-birth representation,
whereas the second assumption makes sure that the limits are well-defined and makes sure that
the Hawkes process does not explode.

Theorem 3.3.1 (Law of Large Numbers for linear Hawkes process). Assume that the provided
assumptions are satisfied. Then we have

Nt

t

P−→ ν

1−||h||L1
as t → ∞.

Proof. Let Xi be the number of the i−th immigrant and its descendants that arrive during the
time interval [ i

ν , νt
ν ]. We have that the Xi are i.i.d.. Let Yi be the number of the i−th immigrant

and its descendants that arrive during the time interval [ i
ν ,∞). Also, we have Yi are i.i.d.. The

moment generating function for Yi is given by

MY (θ) := E[eθYi ].

One can use the large deviation principle, for instance ([33], p. 8, Theorem 2.1) can be modified
to obtain the following statement. The moment generating function MY (θ) := E[eθYi ] satisfies the
equation

MY (θ) = eθ+(MY (θ)−1)||h||
L1
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for θ ≤ θc = ||h||L1 −1− log(||h||L1). So,

M ′
Y (θ) = d

dθ
eθ+(MY (θ)−1)||h||

L1

= eθ+(MY (θ)−1)||h||
L1 +eθ+(MY (θ)−1)||h||

L1 ·M ′
Y (θ)||h||L1 .

Hence,

E[Yi] = M ′
Y (0) = e0 +e0M ′

Y (θ)||h||L1 (since MY (0) = 1)
= 1+E[Yi]||h||L1

Thus,

E[Yi] = 1+E[Yi]||h||L1

(1−||h||L1)E[Yi] = 1

E[Yi] = 1
1−||h||L1

.

We have that

E[ 1
t

⌊νt⌋∑
i=1

Yi] = 1
t

⌊νt⌋∑
i=1

E[Yi] = 1
t

·νt ·E[Y1] since Yi are i.i.d.

= νE[Y1] = ν

1−||h||L1
.

By the Strong Law of Large Numbers, we obtain

1
t

⌊νt⌋∑
i=1

Yi
a.s.−−→ νE[Y1] = ν

1−||h||L1
as t → ∞.

By definition, we have that Nt =
∑⌊νt⌋

i=1 Xi. So, we have

Nt =
⌊νt⌋∑
i=1

Xi ≤
⌊νt⌋∑
i=1

Yi a.s..

Therefore,
Nt

t
= 1

t

⌊νt⌋∑
i=1

Xi ≤ 1
t

⌊νt⌋∑
i=1

Yi
a.s.−−→ ν

1−||h||L1
as t → ∞.

Furthermore, recall that Xi is the number of descendants of the i−th immigrant, including the
immigrant i, that arrives during the time interval [ i

ν , νt
ν ]. This means that we can write the

expected value as
E[Xi] = f

(
νt− i

ν

)
,

where f(·) satisfies the renewal equation for Hawkes processes (see [36]) with

f(t) = 1+
∫ t

0
h(t−s)f(s)ds.
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This can be derived from the fact that for all θ ≤ θc = ||h||L1 −1− log(||h||L1), it holds that

MS(t;θ) := E[eθSt ].

Note that St is the number of descendants of an immigrant, including the immigrant itself, that
arrives on time interval [0, t] and satisfies

MS(t;θ) = e
θ+
∫ t

0
(MS(t;θ)−1)h(t−s)ds

.

Then,

f(t) := E[St] = M ′
S(t;0) = 1+

∫ t

0
h(t−s)f(s)ds.

Moreover, we defined Yi to be the number of descendants of the i−th immigrant, including the
immigrant i, that arrives during the time interval [ i

ν ,∞). So, we can write the expected value of
Yi in terms of the renewal equation as

E[Yi] = lim
t→∞

f(t) = f ,

which is just a value. So, we obtain

E

⌊νt⌋∑
i=1

Yi −
⌊νt⌋∑
i=1

Xi

=
⌊νt⌋∑
i=1

(E[Yi]−E[Xi]) due to linearity of the expectation

=
⌊νt⌋∑
i=1

(
f −f

(
νt− i

ν

))
.

Hence,

lim
t→∞

1
t
E

⌊νt⌋∑
i=1

Yi −
⌊νt⌋∑
i=1

Xi

= 0.

Now, let ϵ > 0 be given, then

P

|1
t

⌊νt⌋∑
i=1

Xi − ν

1−||h||L1
| > ϵ

= P

|1
t

⌊νt⌋∑
i=1

Xi − 1
t

⌊νt⌋∑
i=1

Yi + 1
t

⌊νt⌋∑
i=1

Yi − ν

1−||h||L1
| > ϵ


≤ P

|1
t

⌊νt⌋∑
i=1

Xi − 1
t

⌊νt⌋∑
i=1

Yi| >
ϵ

2

+P

|1
t

⌊νt⌋∑
i=1

Yi − ν

1−||h||L1
| >

ϵ

2

 triangle inequality

= P

1
t

⌊νt⌋∑
i=1

Yi − 1
t

⌊νt⌋∑
i=1

Xi >
ϵ

2

+P

|1
t

⌊νt⌋∑
i=1

Yi − ν

1−||h||L1
| >

ϵ

2


→ 0 as t → ∞,

since the first component will go to zero due to the fact that

lim
t→∞

1
t
E

⌊νt⌋∑
i=1

Yi −
⌊νt⌋∑
i=1

Xi

= 0

and by the Weak Law of Large Numbers we have that the second component will go to zero.
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Then, for all ϵ > 0, it holds that

P

|1
t

⌊νt⌋∑
i=1

Xi − ν

1−||h||L1
| > ϵ

= P

|
⌊νt⌋∑
i=1

Xi − νt

1−||h||L1
| > ϵt


≤
∑⌊νt⌋

i=1 V ar(Xi)
ϵ2t2 by Chebyshev’s inequality (1.1.8)

≤ νtV ar(X1)
ϵ2t2 Xi are i.i.d.

= νV ar(X1)
ϵ2t

→ 0 as t → ∞.

Hence,
Nt

t
= 1

t

⌊νt⌋∑
i=1

Xi
a.s.−−→ ν

1−||h||L1
as t → ∞.

■

Theorem 3.3.2 (Central Limit Theorem for linear Hawkes process). Assume that the provided
assumptions are satisfied and

lim
t→∞

1√
t

∫ t

0

∫ ∞

u
h(s)dsdu = 0.

Then we have
√

t

(
Nt

t
− ν

1−||h||L1

)
⇝N

(
0,

ν||h||L1

(1−||h||L1)3

)
as t → ∞.

Proof. Let us recall that the moment generating function MY (θ) := E[eθYi ] satisfies the equation

MY (θ) = eθ+(MY (θ)−1)||h||
L1

for θ ≤ θc = ||h||L1 −1− log(||h||L1). Furthermore, recall that

M ′
Y (θ) = d

dθ
eθ+(MY (θ)−1)||h||

L1

= eθ+(MY (θ)−1)||h||
L1 +eθ+(MY (θ)−1)||h||

L1 ·M ′
Y (θ)||h||L1

= (1+M ′
Y (θ)||h||L1)MY (θ).

So the second derivative will be given by

M ′′
Y (θ) = d2

dθ2 eθ+(MY (θ)−1)||h||
L1

= d

dθ
(1+M ′

Y (θ)||h||L1)MY (θ)

= M ′
Y (θ)+M ′

Y (θ)M ′
Y (θ)||h||L1 +MY (θ)M ′′

Y (θ)||h||L1

= (1+M ′
Y (θ)||h||L1)M ′

Y (θ)+MY (θ)M ′′
Y (θ)||h||L1 .

Thus,

E[Y 2
i ] = M ′′

Y (0) = (1+M ′
Y (0)||h||L1)M ′

Y (0+MY (0M ′′
Y (0)||h||L1

= (1+E[Yi]||h||L1)E[Yi]+E[Y 2
i ]||h||L1
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Note that MY (0) = 1 and M ′
Y (0) = E[Yi]. It follows that

E[Y 2
i ] = (1+E[Yi]||h||L1)E[Yi]

1−||h||L1

=
1

1−||h||
L1

+ ||h||
L1

1−||h||
L1

· 1
1−||h||

L1

1−||h||L1

= 1
(1−||h||L1)3

Hence,

V ar(Yi) = E[Y 2
i ]− (E[Yi])2 = 1

(1−||h||L1)3 −
(

1
1−||h||L1

)2
= ||h||L1

(1−||h||L1)3 .

By the Central Limit Theorem, we have that

√
t

1
t

⌊νt⌋∑
i=1

Yi − ν

1−||h||L1

⇝N
(

0,
ν||h||L1

(1−||h||L1)3

)
as t → ∞.

The statement follows if it holds that

1√
t
E

⌊νt⌋∑
i=1

Yi −
⌊νt⌋∑
i=1

Xi

 P−→ 0 as t → ∞.

We have that

1√
t
E

⌊νt⌋∑
i=1

Yi −
⌊νt⌋∑
i=1

Xi

= 1√
t

⌊νt⌋∑
i=1

E[Yi −Xi]

= 1√
t

⌊νt⌋∑
i=1

(
f −f

(
νt− i

ν

))

= 1√
t

⌊νt⌋−1∑
i=1

(
f −f

(
i

ν

))
,

since E[Yi] = limt→∞ f(t) = f , E[Xi] = f
(

νt−i
ν

)
and f(t) = 1+

∫ t
0 h(t−s)f(s)ds the renewal equa-

tion. Note that
f = E[Yi] = 1

1−||h||L1
.

We have that,

f −f(t) =
∫∞

t h(s)ds

1−||h||L1
+
∫ t

0
h(t−s)(f −f(s))ds,
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since∫∞
t h(s)ds

1−||h||L1
+
∫ t

0
h(t−s)(f −f(s))ds = f

∫ ∞

t
h(s)ds+f

∫ t

0
h(t−s)ds−

∫ t

0
h(t−s)f(s)ds

= f

(∫ ∞

t
h(s)ds+

∫ t

0
h(t−s)ds

)
−
∫ t

0
h(t−s)f(s)ds

= f

(∫ ∞

t
h(s)ds+

∫ t

0
h(t−s)ds

)
− (f(t)−1)

= f

(∫ ∞

t
h(s)ds+

∫ t

0
h(t−s)ds

)
+1−f(t)

= f

(∫ ∞

0
h(s)ds−

∫ t

0
h(s)ds+

∫ t

0
h(t−s)ds

)
+1−f(t)

= f

(
||h||L1 −

∫ t

0
h(s)ds+

∫ t

0
h(t−s)ds

)
+1−f(t)

= f ||h||L1 +1−f(t)
= f −f(t).

Then,

f −f(s) =
∫∞

s h(u)du

1−||h||L1
+
∫ s

0
h(s−u)(f −f(u))du.

Integrating both sides yields∫ νt

0
(f −f(s))ds =

∫ νt

0

(∫∞
s h(u)du

1−||h||L1
+
∫ s

0
h(s−u)(f −f(u))du

)
ds

=
∫ νt

0

(∫∞
s h(u)du

1−||h||L1

)
ds+

∫ νt

0

(∫ s

0
h(s−u)(f −f(u))du

)
ds

=
∫ νt

0

(∫∞
s h(u)du

1−||h||L1

)
ds+

∫ νt

0

(∫ νt

u
h(s−u)ds

)
(f −f(u))du

≤
∫ νt

0

(∫∞
s h(u)du

1−||h||L1

)
ds+ ||h||L1

∫ νt

0
(f −f(u))du

This implies that ∫ νt

0
(f −f(s))ds ≤

∫ νt

0

(∫∞
s h(u)du

1−||h||L1

)
ds+ ||h||L1

∫ νt

0
(f −f(s))ds,

(1−||h||L1)
∫ νt

0
(f −f(s))ds ≤

∫ νt

0

(∫∞
s h(u)du

1−||h||L1

)
ds.

So, ∫ νt

0
(f −f(s))ds ≤

∫ νt

0

( ∫∞
s h(u)du

(1−||h||L1)2

)
ds.

Hence, we can approximate∫ νt

0
(f −f(s))ds by

∫ νt

0

( ∫∞
s h(u)du

(1−||h||L1)2

)
ds as t → ∞.
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Thus,

lim
t→∞

1√
t

∫ νt

0
(f −f(s))ds = lim

t→∞

1√
t

∫ νt

0

( ∫∞
s h(u)du

(1−||h||L1)2

)
ds = 0.

Lastly, by monotonicity of f −f(t) as a function of t, we obtain

lim
t→∞

1√
t

⌊νt⌋−1∑
i=1

(
f −f

(
i

ν

))
= 0.

This gives the statement.

■



Chapter 4

Mutually Exciting Hawkes Process

4.1 Mutually Exciting Hawkes Process
In this section we will define the mutually exciting Hawkes process. Before we do, let us recall
the self-exciting Hawkes process, also known as the (linear) Hawkes process. The (linear) Hawkes
process is defined as a counting process (Nt)t≥0 with associated history (Ht)t≥0 that satisfies

P(Nt+k −Nt = m | Ht) =


λ(t)k +o(k), m = 1
o(k), m > 1
1−λ(t)k +o(k), m = 0

.

The corresponding conditional intensity function is given by

λ(t) = ν +
∫ t

0
h(t−s)dNs,

where we call ν > 0 the background intensity and the function h : (0,∞) → [0,∞) the excitation
function. A collection of one-dimensional (linear) Hawkes process that self-excites and excites each
other is called a mutually exciting Hawkes process. The formal definition is given below.

Definition 4.1.1 (Mutually exciting Hawkes process). A collection of n counting processes
(Ni,t)t≥0,i∈{1,...,n} is called a mutually exciting Hawkes process if the conditional intensity func-
tions are defined as

λi(t) = νi +
n∑

j=1

∫ t

0
hi,j(t−s)dNj,s, i = 1, ...,n.

We call νi > 0 the background intensities and the functions hi,j : (0,∞) → [0,∞) are the excitation
functions.

As we have seen in Chapter 3, the (linear) Hawkes process is a self-exciting process, so it has
one counting process. The mutually exciting process has as its name already suggests multiple
counting processes with each a conditional intensity function that depends on each other. Simply
stated, as one process spikes we expect that the others will do so as well. For example, let us
consider the following situation. One counting process models the number of car accidents in
a specified region and the second counting process models the number of bike accidents in the
same specified region. Then we expect that if there are a high number of car accidents that the
probability that a bike accident will happen will be larger. So, the two random events depend on
each other. This is a very simplified explanation of a mutually exciting Hawkes process.
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The mutually exciting Hawkes processes are, for instance, also usable in finance. In fact, we will
encounter the mutually exciting Hawkes process in Chapter 8, which is about the Hawkes jump-
diffusion model. Simply stated the Hawkes jump-diffusion model is able to adequately capture the
behavior of financial contagion.

Example 4.1.1. Let us consider a 3-dimensional Hawkes process. This means that we will
consider a collection of three counting processes {(Nt)t≥0}3

i=1 with corresponding conditional
intensity functions

λi(t) = νi +
3∑

j=1

∫ t

0
hi,j(t−s)dNj,s, i ∈ {1,2,3}.

For this example, we consider the exponentially conditional intensity function, so the conditional
intensity function with the exponential kernel

hi,j(t) = αije−βijt.

The parameters are given byα11 α12 α13
α21 α22 α23
α31 α32 α33

=

0.2 0.2 0.2
0.2 0.2 0.2
0.2 0.2 0.2


and β11 β12 β13

β21 β22 β23
β31 β32 β33

=

3 3 3
3 3 3
3 3 3

 .

The background intensity νi = 0.5 for all i ∈ {1,2,3}.

Figure 4.1: Realization of a 3-dimensional Hawkes process. The plot at the top is the conditional
intensity function λ1(t), in the middle we have λ2(t) and lastly λ3(t).
Reference: E. Bacry, M. Bompaire, S. Gaiffas, M. Morel, S. Poulsen (see Appendix 11.2)

♦
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4.2 Parameter Estimation
This section is based on Chapter 5.3 of The Elements of Hawkes Processes [16] with exception of
the proof of Theorem 4.2.1. Also, note that the notation is changed.

Theorem 4.2.1 (Multivariate Hawkes process likelihood). Let N(·) = (N1(·), ...,Nn(·)) be a collec-
tion simple point processes on [0,T ] for some finite positive T and let {(t1,d1),(t2,d2), ...,(tp,dp)}
denote a sequence of arrival times on [0,T ] with N(T ) =

∑n
k=1 Nk(T ). The index di assigns time

ti to the component di of the simple point process. The likelihood function L of N(·) is then of
the form

L((t1,d1),(t2,d2), ...,(tp,dp)|θ) =
(

p∏
i=1

λ∗
di

(ti)
)

· exp
{

−
n∑

k=1

∫ T

0
λ∗

k(u)du

}

and the log-likelihood l has the form

l((t1,d1),(t2,d2), ...,(tp,dp)|θ) =
p∑

i=1
λ∗

di
(ti)−

n∑
k=1

∫ T

0
λ∗

k(u)du.

Remark. θ contains the background intensity ν and the parameters necessary for the excitation
function h. In the case of the exponentially decaying intensities, we have that θ := (νi,αij ,βij) for
i, j = 1,2, ...,n.

Proof. The likelihood function in general is given by

L((t1,d1),(t2,d2), ...,(tp,dp)|θ) =
p∏

i=1
f∗

di
(ti).

Using the same kind of argument as in the proof of Theorem 3.2.1, we may write

f∗
di

(ti) = λ∗
di

(ti) · exp
{

−
n∑

k=1

∫ ti

ti−1

λ∗
k(u)du

}
.

Hence, the likelihood function becomes

L((t1,d1),(t2,d2), ...,(tp,dp)|θ) =
p∏

i=1
f∗

di
(ti)

=
p∏

i=1

(
λ∗

di
(ti) · exp

{
−

n∑
k=1

∫ ti

ti−1

λ∗
k(u)du

})

=
(

p∏
i=1

λ∗
di

(ti)
)

· exp
{

−
n∑

k=1

∫ T

0
λ∗

k(u)du

}
.

The log-likelihood is then given by

l((t1,d1),(t2,d2), ...,(tp,dp)|θ) = log
((

p∏
i=1

λ∗
di

(ti)
)

· exp
{

−
n∑

k=1

∫ T

0
λ∗

k(u)du

})

=
p∑

i=1
λ∗

di
(ti)−

n∑
k=1

∫ T

0
λ∗

k(u)du.

■
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In Chapter 9 one may find some numerical studies regarding the parameters and likelihood estim-
ation for a self-exciting Hawkes process with an exponentially decaying intensity and the power
law excitation function.



Chapter 5

Marked Hawkes Process

5.1 Marked Hawkes Process
This section is largely based on the article of J.G. Rasmussen [21] with the exception of example
5.1.1.

Definition 5.1.1 ((Linear) Marked Hawkes process). A counting process (Nt)t≥0 is called a
Marked Hawkes process if it has the following conditional intensity function

λ(t) = ν +
∑
ti<t

h(t− ti, ξi).

We call ν > 0 the background intensity, (ti)i≥1 are the arrival times of the points, (ξi)i≥1 are i.i.d.
random marks and the function h : (0,∞) → [0,∞) is referred to as the excitation function. Note
that ξi is independent of the previous arrival times tj with j ≤ i.

The conditional density and conditional distribution of mark ξ associated with time t can be
defined. We denote with F ∗(ξ, t) := F (ξ, t | Hs), s < t, the conditional distribution function, where
H(·) contains the information of both times and marks of past events. The conditional density
function is denoted by f∗(ξ | t) := f(ξ | t,Hs), s < t. Using these characterization, we may now
define the Hazard function for the marked case.

Definition 5.1.2 (Marked Hazard function). The Hazard function for the marked case is defined
as

λ∗(t,ξ) = λ∗(t)f∗(ξ|t)

with λ∗(t) = f∗(t)
1−F ∗(t) the Hazard function for the unmarked case, Definition 1.2.4.

We may rewrite λ∗(t,ξ) as

λ∗(t,ξ) = f∗(t)
1−F ∗(t) ·f∗(ξ|t) = f∗(t,ξ)

1−F ∗(t) (5.1)

with f∗(t,ξ) the joint conditional density function of the time and the mark.

As an example of the marked Hawkes process we will explain the ETAS model. ETAS stands for
Epidemic Type Aftershock Sequence and is used to model earthquake times and magnitudes.
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Example 5.1.1. Let mi ∈ [0,∞] denote the magnitude of an earthquake occurring at time ti.
Notice that the mi is the random mark ξi in our model. The ground state also known as the
Hazard function for the unmarked case of the ETAS model is given by

λ∗(t) = ν +
∑
ti<t

αeβmie−γ(t−ti),

with ν,α,β,γ > 0 some constants. Note that this ground state looks similar to the exponentially
decaying intensity function

λ(t) = ν +
∑
ti<t

αe−β(t−ti)

for α,β > 0 some constants.

The conditional density function f∗(m|t) is given by

f∗(m|t) = µeµm,

the probability density function of an exponential distribution with parameter µ > 0.

Then the marked Hazard function is defined as

λ∗(t,m) = λ∗(t)f∗(m|t) =
(

ν +
∑
ti<t

αeβmie−γ(t−ti)

)
·µeµm.

The ETAS model is capable of modeling the aftershocks that might occur after an earthquake,
since each event that occurs will increase the probability of another event occurring by a certain
factor. In this case, the event will be an aftershock and the factor will be equal to αeβmi . Notice
that α and β are some positive constants, so the factor will depend on the random magnitude mi.
That means that the factor will be larger for earthquakes with an higher magnitude.

Figure 5.1 shows the occurrence of earthquakes in 2019 in Ridgecrest, California. Furthermore, it
shows the fitted ETAS model as well as the Omori formula, which we refer to as the power law
function

h(t) = k

(c+ t)p
.

Note that the probability that an event, in this case an aftershock, occurs depends on the mag-
nitude of the earthquake. A higher magnitude generally implies a higher probability of another
event occurring.
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Figure 5.1: Realization of a marked Hawkes process applied to seismology.
Reference: ([28], Figure 5, p. 11)

♦

5.2 Parameter Estimation
This section is largely based on the article of J.G. Rasmussen [21]. Note that the proof of Theorem
5.2.1 differs a bit from the article, namely we made use of Section 3.2.

Theorem 5.2.1 (Marked Hawkes process likelihood). Let N(·) be a simple point process on [0,T ]
for some finite positive T and let {(t1, ξ1),(t2, ξ2), ...,(tn, ξn)} denote a realization on [0,T ] ×M,
where M stands for the marked space (usually R or N). The likelihood function L is then of the
form

L((t1, ξ1),(t2, ξ2), ...,(tn, ξn)|θ) =
(

n∏
i=1

λ∗(ti, ξi)
)

· exp
{

−
∫ T

0
λ∗(u)du

}
and the log-likelihood l has the form

l((t1, ξ1),(t2, ξ2), ...,(tn, ξn)|θ) =
n∑

i=1
λ∗(ti, ξi)−

∫ T

0
λ∗(u)du.

Remark. θ contains the background intensity ν and the parameters necessary for the excitation
function h.

Proof. The likelihood function in general is given by

L((t1, ξ1),(t2, ξ2), ...,(tn, ξn)|θ) =
n∏

i=1
f∗(ti, ξi) =

n∏
i=1

f∗(ti)f(ξi|ti).
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Using the proof of Theorem 3.2.1, we may write

f∗(ti) = λ∗(ti) · exp
{

−
∫ ti

ti−1

λ∗(u)du

}
.

Hence, the likelihood function becomes

L((t1, ξ1),(t2, ξ2), ...,(tn, ξn)|θ) =
n∏

i=1
f∗(ti)f(ξi|ti)

=
n∏

i=1

((
λ∗(ti) · exp

{
−
∫ ti

ti−1

λ∗(u)du

})
·f(ξi|ti)

)

=
(

n∏
i=1

λ∗(ti)f(ξi|ti)
)

· exp
{

−
∫ T

0
λ∗(u)du

}

=
(

n∏
i=1

λ∗(ti, ξi)
)

· exp
{

−
∫ T

0
λ∗(u)du

}
,

since λ∗(ti, ξi) = λ∗(ti)f∗(ξi|ti).

The log-likelihood function is then given by

l((t1, ξ1),(t2, ξ2), ...,(tn, ξn)|θ) = log
((

n∏
i=1

λ∗(ti, ξi)
)

· exp
{

−
∫ T

0
λ∗(u)du

})

=
n∑

i=1
λ∗(ti, ξi)−

∫ T

0
λ∗(u)du.

■

In Chapter 9, we will provide some numerical examples regarding the parameters and likelihood
estimation for a self-exciting Hawkes process with an exponentially decaying intensity and the
power law excitation function.

5.3 Limit Theorems
This section is largely based on the article of L. Zhu [37]. Note that our notation differs from the
article and that we added more details to the proof. We will recall the conditional intensity for
marked Hawkes processes and after that we will define the assumptions needed for proving the
Central Limit Theorem. Let us first start by noting the differences between the limit theorems
for the linear Hawkes process and marked Hawkes process. Due to the extra randomness in the
marked case we will expect some differences in the Law of Large Numbers and the Central Limit
Theorem, the latter we will prove. In the linear Hawkes process we saw that the Law of Large
Numbers was given by

Nt

t

P−→ ν

1−||h||L1
as t → ∞

and the Central Limit Theorem by

√
t

(
Nt

t
− ν

1−||h||L1

)
⇝N

(
0,

ν||h||L1

(1−||h||L1)3

)
as t → ∞.
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We will see that the Law of Large Numbers and Central Limit Theorem are given by

Nt

t

a.s.−−→ ν

1−E[H(ξ)] as t → ∞

and
√

t

(
Nt

t
− ν

1−E[H(ξ)]

)
⇝N

(
0,

ν(1+V ar(H(ξ)))
(1−E[H(ξ)])3

)
as t → ∞,

respectively. The proof of the Central Limit Theorem for the marked Hawkes process will also
be entirely different compared to the linear Hawkes process due to the added randomness of the
marks.

The conditional intensity function for the marked Hawkes process is given by

λ(t) = ν +
∑
ti<t

h(t− ti, ξi).

We call ν > 0 the background intensity, (ti)i≥1 are the arrival times of the points, (ξi)i≥1 are
i.i.d. random marks and the function h is referred to as the excitation function. Note that ξi is
independent of the previous arrival times tj with j ≤ i. We assume that the random marks have
a common distribution F (ξ) and density f(ξ) on a measurable space S.

Assumptions:

(i) We assume that h(·, ·) : R+ ×S → R+ is integrable.

(ii) We define H(ξ) :=
∫∞

0 h(t,ξ)dt for all ξ ∈ S. Then, we assume that
∫
SH(ξ)f(ξ)dξ < 1.

The assumptions assure that there exists a linear marked Hawkes process and that the limits are
well-defined.

Lemma 5.3.1. For all t > 1, we have that E[λ(t)] ≤ ν
1−E[H(ξ)] is uniformly over t.

Proof.

E[λ(t)] = E[ν +
∫ t

−∞
h(t−s,ξ)dNsdξ]

= ν +E[
∫ t

−∞
h(t−s,ξ)dNsdξ]

≈ ν +E[
∫ t

−∞
h(t−s,ξ)λ(s)dsdξ] since dNs ≈ λ(s)ds

= ν +E[
∫ ∞

0
h(s,ξ)λ(t−s)dsdξ]

Since h(·, ·) : R+ ×S → R+ non-increasing and ν > 0, we have that λ(t−s) ≤ λ(t). Therefore,

E[λ(t)] ≤ ν +E[λ(t)]E[H(ξ)].

Thus,

E[λ(t)] (1−E[H(ξ)]) ≤ ν.

Hence, for all t > 1, it holds that E[λ(t)] ≤ ν
1−E[H(ξ)] .

■
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Theorem 5.3.2 (Central Limit Theorem for marked Hawkes process). Assume that the provided
assumptions are satisfied and assume that limt→∞

√
t
∫∞

t E[h(s,ξ)]ds = 0. Then,

√
t

(
Nt

t
− ν

1−E[H(ξ)]

)
⇝N

(
0,

ν(1+V ar(H(ξ)))
(1−E[H(ξ)])3

)
as t → ∞.

Proof. Let us recall that the conditional intensity function for the marked Hawkes process is given
by

λ(t) = ν +
∑
ti<t

h(t− ti, ξi).

If we integrate both sides from zero to t, we obtain the following

Λ(t) :=
∫ t

0
λ(s)ds =

∫ t

0
νds+

∑
ti<t

∫ t

0
h(s− ti, ξi)ds

= νt+
∑
ti<t

∫ t

0
h(s− ti, ξi)ds

= νt+
∑
ti<t

H(ξi)−
∑
ti<t

∫ ∞

t
h(s− ti, ξi)ds

= νt+
∑
ti<t

H(ξi)−Et,

since H(ξ) :=
∫∞

0 h(t,ξ)dt. We define Et :=
∑

ti<t

∫∞
t h(s− ti, ξi)ds as the error term.

Furthermore,

Nt −
∫ t

0 λ(s)ds
√

t
=

Nt −νt−
∑

ti<t H(ξi)+Et√
t

=
Nt −νt−

∑
ti<t H(ξi)√
t

+ Et√
t

=
Nt −NtE[H(ξ)]+NtE[H(ξ)]−νt−

∑
ti<t H(ξi)√

t
+ Et√

t

= (1−E[H(ξ)])Nt −νt√
t

+
NtE[H(ξ)]−

∑
ti<t H(ξi)√

t
+ Et√

t

= (1−E[H(ξ)]) ·
Nt − νt

(1−E[H(ξ)])√
t

+
NtE[H(ξ)]−

∑
ti<t H(ξi)√

t
+ Et√

t

= (1−E[H(ξ)]) · Nt −µt√
t

+
NtE[H(ξ)]−

∑
ti<t H(ξi)√

t
+ Et√

t
,

with µ := ν
1−E[H(ξ)] .

Hence, rearranging gives us

(1−E[H(ξ)]) · Nt −µt√
t

=
Nt −

∫ t
0 λ(s)ds
√

t
−

NtE[H(ξ)]−
∑

ti<t H(ξi)√
t

− Et√
t
.
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Dividing both sides by 1−E[H(ξ)], which is unequal to zero due to the assumptions, we obtain

Nt −µt√
t

= 1
1−E[H(ξ)]

(
Nt −

∫ t
0 λ(s)ds
√

t
−

NtE[H(ξ)]−
∑

ti<t H(ξi)√
t

− Et√
t

)

= 1
1−E[H(ξ)]

(
Nt −

∫ t
0 λ(s)ds
√

t
+
∑

ti<t(H(ξi)−E[H(ξ)])
√

t
− Et√

t

)
,

since Nt is a simple point process, where Nt := N(0, t] is defined as the number of points in the
interval (0, t] and that can be denoted with the given random sum.
We will now show that Et√

t

P−→ 0 as t → ∞.

We have that E[λ(t)] ≤ ν
1−E[H(ξ)] uniformly over t by Lemma 5.3.1.

Then:

E[Et] = E[
∑
ti<t

∫ ∞

t
h(s− ti, ξi)ds]

=
∫ t

0

∫
S

(∫ ∞

t−s
h(u,ξ)du

)
f(ξ)E[λ(s)]dξds

≤ ν

1−E[H(ξ)]

∫ t

0

∫
S

(∫ ∞

t−s
h(u,ξ)du

)
f(ξ)dξds

= ν

1−E[H(ξ)]

∫ t

0
E[
∫ ∞

s
h(u,ξ)du]ds.

Using L’Hôpital’s rule, we obtain

lim
t→∞

1√
t

∫ t

0
E[
∫ ∞

s
h(u,ξ)du]ds = lim

t→∞

1
1

1
2

√
t

E[
∫ ∞

s
h(u,ξ)du]

= lim
t→∞

2
√

t

∫ ∞

s
E[h(u,ξ)]du by Fubini Theorem

= 2 lim
t→∞

√
t

∫ ∞

s
E[h(u,ξ)]du = 0, by assumption.

By Markov’s inequality, we have that for all constant c it holds

P
(

Et√
t

≥ c

)
= P(Et ≥ c

√
t) ≤ E[Et]

c
√

t
→ 0 as t → ∞.

Hence, Et√
t

P−→ 0 as t → ∞.

Let us define M1(t) := Nt −
∫ t

0 λ(s)ds and M2(t) :=
∑

ti<t(H(ξi) −E[H(ξ)]). We show that M1
and M2 are martingales with respect to the filtration (Ht)t≥0. We start with showing that

E[M1(t)−M1(u)|Hu] = 0 for u ≤ t.
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E[M1(t)−M1(u)|Hu] = E[Nt −
∫ t

0
λ(s)ds− (Nu −

∫ u

0
λ(s)ds)|Hu]

= E[Nt −Nu − (
∫ t

0
λ(s)ds−

∫ u

0
λ(s)ds)|Hu]

= E[Nt −Nu −
∫ t

u
λ(s)ds|Hu]

= E[Nt −Nu|Hu]−E[
∫ t

u
λ(s)ds|Hu]

= E[N(u,t]|Hu]−E[
∫ t

u
λ(s)ds|Hu] = 0,

by definition. Hence, M1 is a martingale with respect to the filtration (Ht)t≥0. We now show that

E[M2(t)−M2(u)|Hu] = 0 for u ≤ t.

So,

E[M2(t)−M2(u)|Hu] = E[
∑
ti<t

(H(ξi)−E[H(ξ)])−
∑
ti<u

(H(ξi)−E[H(ξ)])|Hu]

= E[
∑

u<ti<t

(H(ξi)−E[H(ξ)])|Hu]

= E[
∑

u<ti<t

(H(ξi)−E[H(ξ)])] = 0,

by definition. Thus, M2 is a martingale with respect to the filtration (Ht)t≥0 as well. Moreover,
since

∫ t
0 λ(s)ds has a finite variation, the quadratic variation of M1(t) + M2(t) is the same as the

quadratic variation of Nt +M2(t). So

Nt +M2(t) = Nt +
∑
ti<t

(H(ξi)−E[H(ξ)])

=
∑
ti<t

(1+H(ξi)−E[H(ξ)])

Thus the quadratic variation is given by

[N +M2]t =
∑
ti<t

(1+H(ξi)−E[H(ξ)])2.

By the standard Law of Large Numbers 1.1.6, we have that

1
t

∑
ti<t

(1+H(ξi)−E[H(ξ)])2 = Nt

t
· 1
Nt

∑
ti<t

(1+H(ξi)−E[H(ξ)])2

a.s.−−→ ν

1−E[H(ξ)] ·E[(1+H(ξ)−E[H(ξ)])2] as t → ∞.

Notice that
Nt

t

a.s.−−→ ν

1−E[H(ξ)] as t → ∞

by the Law of Large Numbers.
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We may now rewrite E[(1+H(ξ)−E[H(ξ)])2], so

E[(1+H(ξ)−E[H(ξ)])2] = E[(1+(H(ξ)−E[H(ξ)]))2]
= E[12]+E[2(H(ξ)−E[H(ξ)])]+E[(H(ξ)−E[H(ξ)])2]
= 1+2E[H(ξ)−E[H(ξ)]]+E[(H(ξ)−E[H(ξ)])2]
= 1+V ar(H(ξ)).

Thus,
1
t

∑
ti<t

(1+H(ξi)−E[H(ξ)])2 a.s.−−→ ν(1+V ar(H(ξ)))
1−E[H(ξ)] as t → ∞.

Then by the standard martingale Central Limit Theorem 5.3.3, we have that

√
t

(
Nt

t
− ν

1−E[H(ξ)]

)
⇝N

(
0,

ν(1+V ar(H(ξ)))
(1−E[H(ξ)])3

)
as t → ∞.

■

Theorem 5.3.3 (Martingale Central Limit Theorem ([23], p. 172, Remark 14.3.3)). Let (Xi)n
i=0

be a martingale with respect to the filtration Fn = σ(X0,X1, ...,Xn). Set σ2
0 = V ar(X0) and for

n ≥ 1 set σ2
n = V ar(Xn|Fn−1) = E[X2

n −X2
n−1|Fn−1]. Then, by induction, we have that

E[Xn] = E[X0] and V ar(Xn) =
n∑

k=0
E[σ2

k].

If we take vt = min{n ≥ 0|
∑n

k=0 σ2
k ≥ t}, then Xvt√

t
⇝N (0,1) as t → ∞.



56 CHAPTER 5. MARKED HAWKES PROCESS



Part III

Applications of Hawkes Processes
in Finance

57





Chapter 6

Black-Scholes Model

In this chapter we will introduce the Black-Scholes model, which was introduced by Fischer Black
and Myron Scholes in the nineteen-seventies in there article The Pricing of Options and Corporate
Liabilities [5]. In order to derive the valuation formula, which is the formula for the value of an
option in terms of the price of a stock, Black and Scholes made certain assumptions on the market
[5].
Assumptions:

(i) The short-term interest rate is known and constant through time.

(ii) The stock price process follows a geometric Brownian motion with constant drift and volat-
ility.

(iii) The stock does not pay dividends.

(iv) The option is European. This means that the option can only be exercised on the maturity
time T .

(v) There are no transaction costs in buying or selling the stock or the option.

(vi) One may borrow any fraction of the price of a security to buy it or to hold it at the short-term
interest rate.

(vii) Short selling will not be penalized.

Given these assumptions, the value of the option will only depend on the price of the stock, the
time and known constants. Furthermore, the derivation of the Black-Scholes equation relies on the
no-arbitrage argument, which was introduced by Robert Merton. No-arbitrage means that there
is no riskless way to make money. Due to the involvement of Merton, the Black-Scholes equation
is also known as the Black-Scholes-Merton equation. To derive the Black-Scholes equation we will
make use of the book Stochastic Calculus for Finance II - Continuous-Time Models Chapter 4.5
written by S.E. Shreve [29].

In the Black-Scholes model, the stock price process (St)t≥0 of a risky asset is assumed to be a
geometric Brownian motion. This means that the stochastic differential equation that satisfies St

is given by
dSt = µStdt+σStdWt (6.1)

with (Wt)t≥0 a Brownian motion, µ ∈ R the drift and σ > 0 the volatility. We may interpret the
drift as a trend and the volatility as a variation or spread.

59
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Lemma 6.0.1. The stock price process (St)t≥0 of a risky asset that satisfies the stochastic dif-
ferential equation

dSt = µStdt+σStdWt

is given by

St = S0 ·e

(
µ− σ2

2

)
t+σWt

.

Proof. In order to solve the stochastic differential equation we may apply Itô-Doeblin formula,
but first we rewrite the SDE.

dSt = µStdt+σStdWt = (µdt+σdWt)St

Now, we divide both sides by St and note that the left-hand side looks like the derivative of the
logarithm. Hence, we will apply Itô-Doeblin formula to f(x) = log(x). Note that fx(x) = 1

x and
fxx(x) = − 1

x2 . So,

d(log(St)) = df(St) = fx(St)dSt + 1
2fxx(St)d[S]t

= 1
St

dSt − 1
2 · 1

S2
t

d[S]t

= 1
St

(µStdt+σStdWt)− 1
2 · 1

S2
t

·σ2S2
t dt

= µdt+σdWt − σ2

2 dt

=
(

µ− σ2

2

)
dt+σdWt.

Integration on both sides yields

log(St)− log(S0) =
(

µ− σ2

2

)
t+σWt.

log
(

St

S0

)
=
(

µ− σ2

2

)
t+σWt.

Taking the exponent on both sides and multiply with S0 gives the solution to the stochastic
differential equation, hence

St = S0 ·e

(
µ− σ2

2

)
t+σWt

.

■

Lemma 6.0.2. The stochastic differential equation of the discounted stock price process
S̃t := e−rtSt with r the interest rate (r > −1) is given by

dS̃t = d
(
e−rtSt

)
= (µ− r) S̃tdt+σS̃tdWt.



61

Proof. The differential of the discounted stock price process S̃t := e−rtSt with r the interest rate
(r > −1) can be derived by applying Itô-Doeblin formula to f(t,x) = e−rtx.
Note that ft(t,x) = −re−rtx, fx(t,x) = e−rt and fxx(t,x) = 0. Hence,

dS̃t = df(t,St) = ft(t,St)dt+fx(t,St)dSt + 1
2fxx(t,St)d[S]t

= ft(t,St)dt+fx(t,St)dSt

= −re−rtStdt+e−rtdSt

= −re−rtStdt+e−rt (µStdt+σStdWt)
= (µ− r)e−rtStdt+σe−rtStdWt

= (µ− r) S̃tdt+σS̃tdWt

Hence, the SDE for the discounted stock price process is

dS̃t = d
(
e−rtSt

)
= (µ− r) S̃tdt+σS̃tdWt.

■

With these stochastic differential equations in mind, we can start deriving the Black-Scholes
equation. The main idea behind obtaining the Black-Scholes equation is derive the delta-hedging
rule. This means that at each time t prior to the maturity time, the numbers of shares held by
the hedge of an short option position is the partial derivative with respect to the stock price St of
the option value at that certain time t. In order to derive the delta-hedging rule, we first need to
derive the SDEs for the value of the portfolio and the value of an option. We will start with the
evolution of the portfolio value.

Let Xt be the value of a portfolio at time t consisting of an investment in the stock market plus the
money market. At time t, assume that an amount of ∆t units, ∆t a random variable, is invested in
the stock at a price St. This means that the total value invested in the stock market equals ∆tSt.
Assume that the remainder of the portfolio value, Xt −∆tSt, is invested in the money market for
example in bonds or in a bank account, which gains an interest rate r per time unit. Then the
differential dXt consists of two components, the capital gain ∆tdSt on the stock position and the
interest earnings r (Xt −∆tSt)dt on the cash position. Hence,

dXt = ∆tdSt + r (Xt −∆tSt)dt

= ∆t (µStdt+σStdWt)+ r (Xt −∆tSt)dt

= ∆t (µStdt− rStdt)+σ∆tStdWt + rXtdt

= ∆t (µ− r)Stdt+ rXtdt+σ∆tStdWt.

Lemma 6.0.3. The discounted portfolio value e−rtXt satisfies the stochastic differential equation

d(e−rtXt) = ∆td
(
e−rtSt

)
.

Proof. The SDE of the discounted portfolio value e−rtXt can be computed by applying Itô-Doeblin
formula to f(t,x) = e−rtx. Note that ft(t,x) = −re−rtx, fx(t,x) = e−rt and fxx(t,x) = 0. Hence,
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d(e−rtXt) = df(t,Xt) = ft(t,Xt)dt+fx(t,Xt)dXt + 1
2fxx(t,Xt)d[X]t

= ft(t,Xt)dt+fx(t,Xt)dXt

= −re−rtXtdt+e−rtdXt

= −re−rtXtdt+e−rt (∆t (µ− r)Stdt+ rXtdt+σ∆tStdWt)
= −re−rtXtdt+∆t (µ− r)e−rtStdt+ re−rtXtdt+σ∆te

−rtStdWt

= ∆t (µ− r)e−rtStdt+σ∆te
−rtStdWt

= ∆t

(
(µ− r)e−rtStdt+σe−rtStdWt

)
= ∆td

(
e−rtSt

)
.

Therefore, the discounted portfolio value e−rtXt satisfies the stochastic differential equation

d(e−rtXt) = ∆td
(
e−rtSt

)
.

■

Let us now consider the value of an option, more specifically an European call option. An European
call option means that at maturity time T , the seller has the right, but not the obligation to sell
the asset at the strike price. So, we will consider an European call option that pays (ST − K)+

at maturity time T with K the strike price, which is a constant and K ≥ 0. We denote with
C(t,St) the value of the European call option at time t. Note that the value of the call option
is a stochastic process. Our first step will be to determine the stochastic differential equation of
C(t,St).

Lemma 6.0.4. The stochastic differential equation of C(t,St) is given by

dC(t,St) =
(

Ct(t,St)+µStCx(t,St)+ 1
2σ2S2

t Cxx(t,St)
)

dt+σStCx(t,St)dWt.

Proof. We will apply the Itô-Doeblin formula to C(t,x), so

dC(t,St) = Ct(t,St)dt+Cx(t,St)dSt + 1
2Cxx(t,St)d[S]t

= Ct(t,St)dt+Cx(t,St)(µStdt+σStdWt)+ 1
2Cxx(t,St)σ2S2

t dt

=
(

Ct(t,St)+µStCx(t,St)+ 1
2σ2S2

t Cxx(t,St)
)

dt+σStCx(t,St)dWt.

■

Now, we will derive the SDE for the discounted option price e−rtC(t,St).

Lemma 6.0.5. The stochastic differential equation of the discounted option price e−rtC(t,St) is
given by

d(e−rtC(t,St)) = e−rt

(
−rC(t,St)+Ct(t,St)+µStCx(t,St)+ 1

2σ2S2
t Cxx(t,St)

)
dt+σe−rtStCx(t,St)dWt.

Proof. We will apply the Itô-Doeblin formula to f(t,x) = e−rtx. Notice that the partial derivatives
are ft(t,x) = −re−rtx, fx(t,x) = e−rt and fxx(t,x) = 0.
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Hence,

d(e−rtC(t,St)) = df(t,C(t,St)) = ft(t,C(t,St))dt+fx(t,C(t,St))dC(t,St)+ 1
2fxx(t,C(t,St))dC(t,St)dC(t,St)

= ft(t,C(t,St))dt+fx(t,C(t,St))dC(t,St)
= −re−rtC(t,St)dt+e−rtdC(t,St)

= −re−rtC(t,St)dt+e−rt

((
Ct(t,St)+µStCx(t,St)+ 1

2σ2S2
t Cxx(t,St)

)
dt+σStCx(t,St)dWt

)
= e−rt

(
−rC(t,St)+Ct(t,St)+µStCx(t,St)+ 1

2σ2S2
t Cxx(t,St)

)
dt+σe−rtStCx(t,St)dWt.

■

To have a fair option value C(0,S0) at time 0, one should be able to start with an amount
X0 = C(0,S0) and build a portfolio process (Xt)0≤t≤T such that for all t ∈ [0,T ] it holds that
Xt = C(t,St). Hence, it holds that there is no-arbitrage in the financial market. In other words,
we must have e−rtXt = e−rtC(t,St) for all t ∈ [0,T ]. This holds if

d(e−rtXt) = d(e−rtC(t,St)) for all t ∈ [0,T ].

We know that

d(e−rtXt) = ∆t

(
(µ− r)e−rtStdt+σe−rtStdWt

)
and

d(e−rtC(t,St)) = e−rt

(
−rC(t,St)+Ct(t,St)+µStCx(t,St)+ 1

2σ2S2
t Cxx(t,St)

)
dt+σe−rtStCx(t,St)dWt.

Thus d(e−rtXt) = d(e−rtC(t,St)) holds if and only if

(i)
∆tσe−rtStdWt = σe−rtStCx(t,St)dWt (6.2)

So,
∆t = Cx(t,St) (6.3)

must hold for all t ∈ [0,T ]. We call this equality the delta-hedging rule.

(ii)

∆t(µ− r)e−rtStdt = e−rt

(
−rC(t,St)+Ct(t,St)+µStCx(t,St)+ 1

2σ2S2
t Cxx(t,St)

)
dt

(6.4)
So, we must have

∆t(µ− r)St = −rC(t,St)+Ct(t,St)+µStCx(t,St)+ 1
2σ2S2

t Cxx(t,St). (6.5)

We may now substitute ∆t = Cx(t,St). Then the left-hand side of (6.5) becomes

∆t(µ− r)St = Cx(t,St)(µ− r)St = µStCx(t,St)− rStCx(t,St). (6.6)

Therefore,

µStCx(t,St)− rStCx(t,St) = −rC(t,St)+Ct(t,St)+µStCx(t,St)+ 1
2σ2S2

t Cxx(t,St). (6.7)
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So,
−rStCx(t,St) = −rC(t,St)+Ct(t,St)+ 1

2σ2S2
t Cxx(t,St). (6.8)

Rearranging gives us the Black-Scholes SDE

rC(t,St) = Ct(t,St)+ rStCx(t,St)+ 1
2σ2S2

t Cxx(t,St) for all t ∈ [0,T ]. (6.9)

The solution to the Black-Scholes stochastic differential equation is a random process satisfying
the terminal condition c(T,ST ) = (ST −K)+ is given by

C(t,x) = xN (d+(T − t,x))−Ke−r(T −t)N (d−(T − t,x)) for t ∈ [0,T ) and x > 0, (6.10)

where
d±(τ,x) := 1

σ
√

τ

(
log
( x

K

)
+
(

r ± σ2

2

)
τ

)
.

We call this equation the Black-Scholes option pricing formula some examples are given in Figures
6.1 and 6.2. The N denotes the cumulative standard normal distribution

P(Z ≤ y) = N (y) := 1√
2π

∫ y

−∞
e− z2

2 dz = 1√
2π

∫ ∞

−y
e− z2

2 dz.

Written in a probabilistic way, we have that the value of the option is given by

C(t,x) = xP(Z ≤ d+(T − t,x))−Ke−r(T −t)P(d−(T − t,x)) (6.11)

in the case that Xt = x is fixed.

The complete derivation of the Black-Scholes formula can be found in Stochastic Calculus for
Finance II - Continuous-Time Models Section 5.2.5 [29].
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Figure 6.1: Black-Scholes option pricing formula with variable stock price S and constant strike
price K = 100, interest rate r = 0.1, maturity time T = 1 and volatility σ = 0.3.

Figure 6.2: Black-Scholes option pricing formula with variable volatility σ and constant strike
price K = 100, interest rate r = 0.1, maturity time T = 1 and stock price S = 200.

Lastly, we will note that the Black-Scholes model has its limitations. Namely, the Black-Scholes
model is unable to adequately capture the crashes in the financial market. In the next chapter, we
will see an extension of the Black-Scholes model proposed by Robert Merton. Merton extended
the Black-Scholes model by incorporating a jump component in order to model those crashes.
This jump component is a Poisson jump process.
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Chapter 7

Merton Jump-Diffusion Model

In this chapter we will introduce the Merton jump-diffusion model, which is an extension of the
Black-Scholes model in the sense that the model incorporates a jump component in order to
capture the crashes in the financial market. The Merton jump-diffusion model was introduced
in the nineteen-seventies by Robert Merton in his article Option pricing when underlying stock
returns are discontinuous [17]. This chapter will rely on Mertons article [17], however changes are
made in notation and calculations regarding the use of Itô-Doeblin formula are added.

The assumptions needed for the Black-Scholes model are still to be hold true throughout this
chapter with the exception of the continuous stock price dynamics. It is now assumed that the
stock price process follows a geometric Brownian motion with a jump component.
Assumptions:

(i) The short-term interest rate is known and constant through time.

(ii) The stock price process follows a geometric Brownian motion with constant drift and volat-
ility.

(iii) The stock does not pay dividends.

(iv) The option is European. This means that the option can only be exercised on the maturity
time T .

(v) There are no transaction costs in buying or selling the stock or the option.

(vi) One may borrow any fraction of the price of a security to buy it or to hold it at the short-term
interest rate.

(vii) Short selling will not be penalized.

In the Merton jump-diffusion model it is assumed that the total change of the stock price St is a
composition of two types of changes, namely the normal fluctuations in the price and the abnormal
fluctuations. A normal fluctuation in the price may occur due to changes in the economic outlook
or in a temporal imbalance of the supply and demand chain. These normal price fluctuations are
modeled by a standard geometric Brownian motion with constant volatility. An abnormal price
fluctuation is due to the availability of relevant and valuable information on a certain stock. This
will be modeled according to a jump process, more specifically the jump component is modeled
according to a Poisson distribution with parameter α. We may view the arrival of the valuable
information about a certain stock as an event and we assume that these arrivals are independently
and identically distributed. Then the stochastic differential equation of the stock price process
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(St)t≥0 is given by the Black-Scholes dynamics and the jump component Jt

dSt

St
= µdt+σdWt +Jt. (7.1)

The jump component consist of arrivals and jump sizes. The arrivals are modeled according to a
Poisson distribution with parameter α as stated before, hence Nt ∼ Pois(αt). The jump size Yt

is log-normally distributed, so Yt > 0. The Jt term can be specified as follows. Assume that the
stock price equals St before the jump, then after the jump the stock price will be equal to YtSt,
were Yt stands for the random variable percentage change. The change in price due to the jump
may be calculated as

dSt = YtSt −St.

So
dSt

St
= Yt −1.

Then the jump component Jt may be written as (Yt −1)dNt, hence

dSt

St
= µdt+σdWt +(Yt −1)dNt. (7.2)

Note that if a jump occurs, so dNt = 1 this happens with probability αdt, then the jump component
will be added to the stock price change. However, if no jump occurs, so dNt = 0, which happens
with probability 1 − αdt, then we will have precisely the SDE of the stock price process of the
Black-Scholes model. Furthermore, the jump component introduces a drift term as well, since

E[(Yt −1)dNt] = E[Yt −1]E[dNt] = αkdt,

due to the independence of the jump size and arrivals and we defined E[Yt − 1] = k. We need to
subtract this drift term from the jump component in order to obtain a pure jump process. Thus,

dSt

St
= µdt+σdWt +(Yt −1)dNt −αkdt

= (µ−αk)dt+σdWt +(Yt −1)dNt.

Hence, the stochastic differential equation of the stock price process (St)t≥0 for the Merton jump-
diffusion model is given by

dSt = (µ−αk)Stdt+σStdWt +St(Yt −1)dNt, (7.3)

with µ the drift term, σ the volatility, Wt a standard Brownian motion, k denotes the magnitude
of the jump and Nt is a Poisson process with parameter α ≥ 0. We assume that the Brownian
motion (Wt)t≥0 and the jump component are independent and furthermore that the jump size
and arrivals are independent. Notice that if α = 0, then we obtain the following SDE

dSt = µStdt+σStdWt,

which is precisely the SDE of the stock price process of the Black-Scholes model.
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Lemma 7.0.1. If we assume that the parameters µ,α,k and σ are constant, then we may write

St = S0 · exp{(µ− 1
2σ2 −αk)t+σWt} ·

Nt∏
j=1

Yj . (7.4)

Then, (7.4) is a solution of the stochastic differential equation

dSt = (µ−αk)Stdt+σStdWt +St(Yt −1)dNt.

Proof. In order to show that (7.4) is indeed a solution of the stochastic differential equation of
(St)t≥0, we will apply Itô-Doeblin formula. But, we will start by rewriting the SDE.

dSt = (µ−αk)Stdt+σStdWt +St(Yt −1)dNt

= (µ−αk)Stdt+σStdWt +

dNt∏
j=1

Yj −1

St

=

(µ−αk)dt+σdWt +
dNt∏
j=1

Yj −1

St.

Note that dNt gives the number of jumps in a certain interval. If the interval is not too small
multiple jumps can occur, for instance a jump with jump size Y1 and a jump with jump size Y2.
In this case, dNt = 2. Now, we divide both sides by St and note that the left-hand side looks like
the derivative of the logarithm. Hence, we will apply Itô-Doeblin formula with jump component
to f(x) = log(x). Note that fx(x) = 1

x and fxx(x) = − 1
x2 . So,

d(log(St)) = df(St) = fx(St)dSt + 1
2fxx(St)d[S]t +f

dNt∏
j=1

Yj

St

−f(St)

= 1
St

dSt + 1
2 ·− 1

S2
t

dStdSt +log

dNt∏
j=1

Yj

St

− log(St)

= 1
St

dSt + 1
2 ·− 1

S2
t

dStdSt +log


(∏dNt

j=1 Yj

)
St

St


= 1

St
dSt + 1

2 ·− 1
S2

t

dStdSt +log

dNt∏
j=1

Yj


= 1

St
((µ−αk)Stdt+σStdWt)− 1

2 · 1
S2

t

(
σ2S2

t dt
)

+log

dNt∏
j=1

Yj


= (µ−αk)dt+σdWt − 1

2σ2dt+log

dNt∏
j=1

Yj


= (µ− 1

2σ2 −αk)dt+σdWt +dNt +log

dNt∏
j=1

Yj
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Integration on both sides yields

log(St)− log(S0) = (µ− 1
2σ2 −αk)t+σWt +log

 Nt∏
j=1

Yj

 .

log
(

St

S0

)
= (µ− 1

2σ2 −αk)t+σWt +log

 Nt∏
j=1

Yj

 .

Taking the exponent on both sides and then multiply with S0 yields the desired statement

St

S0
= exp

(µ− 1
2σ2 −αk)t+σWt +log

 Nt∏
j=1

Yj


St = S0 · exp

(µ− 1
2σ2 −αk)t+σWt +log

 Nt∏
j=1

Yj


= S0 · exp{(µ− 1

2σ2 −αk)t+σWt} ·
Nt∏

j=1
Yj .

■

We will now derive the stochastic differential equation of the option price. Let the value of the
option be depending on the stock price St and the time t, so the value of the option is denoted as
C(t,St) and is a stochastic process. Then the stochastic differential equation of the option price
can be derived by applying the Itô-Doeblin formula with jump component to C(t,x).

Lemma 7.0.2. The stochastic differential equation of the option price C(t,St) is given by

dC(t,St) =
(

Ct(t,St)+ 1
2Cxx(t,St)σ2S2

t +Cx(t,St)(µ−αk)St

)
dt+Cx(t,St)σStdWt

+αE[C

t,

dNt∏
j=1

Yj

St

−C(t,St)] (7.5)

Proof. We will apply the Itô-Doeblin formula with jump component to C(t,x). So,

dC(t,St) = Ct(t,St)dt+Cx(t,St)dSt + 1
2Cxx(t,St)d[S]t +αE[C

t,

dNt∏
j=1

Yj

St

−C(t,St)]

= Ct(t,St)dt+Cx(t,St)dSt + 1
2Cxx(t,St)dStdSt +αE[C

t,

dNt∏
j=1

Yj

St

−C(t,St)]

= Ct(t,St)dt+Cx(t,St)((µ−αk)Stdt+σStdWt)+ 1
2Cxx(t,St)σ2S2

t dt

+αE[C

t,

dNt∏
j=1

Yj

St

−C(t,St)]
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=
(

Ct(t,St)+Cx(t,St)(µ−αk)St + 1
2Cxx(t,St)σ2S2

t

)
dt+Cx(t,St)σStdWt

+αE[C

t,

dNt∏
j=1

Yj

St

−C(t,St)]

Hence, the SDE of the option price is given by

dC(t,St) =
(

Ct(t,St)+ 1
2Cxx(t,St)σ2S2

t +Cx(t,St)(µ−αk)St

)
dt+Cx(t,St)σStdWt

+αE[C

t,

dNt∏
j=1

Yj

St

−C(t,St)]

■

In Figure 7.1, we have modeled the Merton jump-diffusion model. We see that there are lots of
fluctuations/jumps over the time period of one year. For instance, roughly around day 310 a large
jump occurs. In Figure 7.2, the points are not connected with straight lines as in Figure 7.1 to
make the jumps more visible.

Figure 7.1: A realization of the Merton jump-diffusion model over one year based on the code
given in Appendix 11.4.

In spite of all that is stated before, the Merton jump-diffusion model is incapable to account for
jump propagation. Jump propagation means that if an event happens in one region of the world,
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then the likelihood of an event happening in other parts of the world increases, this is also known
as financial contagion. In the next chapter, we will define the Hawkes jump-diffusion model, this
model will account for jump propagation also known as financial contagion. The Hawkes jump-
diffusion model extends the Merton jump-diffusion model by replacing the Poisson jump process
by a mutually exciting Hawkes process.

Figure 7.2: A realization of the Merton jump-diffusion model over one year.



Chapter 8

Hawkes Jump-Diffusion Model

8.1 Hawkes Jump-Diffusion Model
This section is largely based on the article of Y. Ait-Sahalia [1]. We will introduce the Hawkes
jump-diffusion model. The Hawkes jump-diffusion model extends the Merton jump-diffusion model
by replacing the Poisson jump process by a mutually exciting Hawkes process, which allows for
financial contagion. As we have seen, the Merton jump-diffusion model extended, in his turn, the
Black-Scholes model by incorporating a jump component in order to model the crashes in the
market. This was the case because the Black-Scholes model is unable to adequately capture those
crashes.

We will start with stating the definition of the Hawkes jump-diffusion model without any explan-
ation. The rest of this section will be devoted to deriving the dynamics stated in the definition of
the Hawkes jump-diffusion model.

Definition 8.1.1 (Hawkes jump-diffusion model). The Hawkes jump-diffusion model is defined
as 

dXi,t = µidt+
√

Vi,tdW X
i,t +Zi,tdNi,t, i = 1, ...,n

dVi,t = κi(θi −Vi,t)dt+ηi

√
Vi,tdW V

i,t, i = 1, ...,n

dλi(t) = −βi (νi −λi(t))dt+
∑n

j=1 αi,jdNj,t, i = 1, ...,n.

(8.1)

with Xi,t the asset log-returns, Vi,t the instantaneous variance and λi(·) the exponentially decaying
intensities.

Let us consider the asset log-returns Xi,t defined as

dXi,t = µidt+σidWi,t +Zi,tdNi,t, i = 1, ...,n, (8.2)

with µi the drift term, σi the volatility, Wt := (W1,t, ...,Wn,t)T the n-dimensional vector of stand-
ard Brownian motions, Zt := (Z1,t, ...,Zn,t)T the n-dimensional vector of jump sizes that are inde-
pendently distributed with distributions FZi

and Nt := (N1,t, ...,Nn,t)T the n-dimensional vector of
Hawkes processes, which is the jump process. The n-dimensional vector of Hawkes processes is the
mutually exciting Hawkes process defined in Definition 4.1.1 with conditional intensity functions

λi(t) = νi +
n∑

j=1

∫ t

0
hi,j(t−s)dNj,s, i = 1, ...,n.

In the described model (8.2), we assume that the drift term µi and the volatility σi are constant
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parameters. Furthermore, we assume that the vectors Wt, Zt and Nt are mutually independent.
This model can be extended by allowing for stochastic volatility, which is known as the Heston
model:

dXi,t = µidt+
√

Vi,tdW X
i,t +Zi,tdNi,t, i = 1, ...,n, (8.3)

with Vi,t the instantaneous variance that follows the following dynamics

dVi,t = κi(θi −Vi,t)dt+ηi

√
Vi,tdW V

i,t,

where κi, θi and ηi are assumed to be constant parameters.

The manageability of the jump part of the extended model and thus the possibility of estimating
the jump component depends on the parametrization of the conditional intensities λi(·). Therefore,
we will choose the excitation function hi,j(·) to be exponential, so

hi,j(t) = αi,je−βit,

with αi,j ≥ 0 and βi > 0 for all i, j = 1, ...,n. This excitation function can be interpret as follows.
Whenever a jump occurs in the asset prices, the conditional intensities λi(·) will increase by αi,j

and then decays exponentially at rate βi back towards νi.

We may write the exponentially decaying intensities λi(·) as follows

λi(t) = νi +
n∑

j=1

∫ t

0
αi,je−βi(t−s)dNj,s

= νi +
n∑

j=1
αi,je−βit

∫ t

0
eβisdNj,s, i = 1, ...,n.

Lemma 8.1.1. The exponentially decaying intensity function λi(·) satisfies the following stochastic
differential equation

dλi(t) = −βi (νi −λi(t))dt+
n∑

j=1
αi,jdNj,t, i = 1, ...,n. (8.4)

Proof. The exponentially decaying intensity function λi(·) can be written as

λi(t) = νi +
n∑

j=1
αi,je−βit

∫ t

0
eβisdNj,s, i = 1, ...,n.

Taking the derivatives on both sides yields

dλi(t) =

 n∑
j=1

−αi,jβie
−βit

∫ t

0
eβisdNj,s

dt+
n∑

j=1
αi,je−βit ·eβitdNj,t

=

−βi

n∑
j=1

∫ t

0
αi,je−βi(t−s)dNj,s

dt+
n∑

j=1
αi,jdNj,t

=

−βi

 n∑
j=1

∫ t

0
αi,je−βi(t−s)dNj,s +νi −νi

dt+
n∑

j=1
αi,jdNj,t
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= (−βi (λi(t)−νi))dt+
n∑

j=1
αi,jdNj,t

= −βi (νi −λi(t))dt+
n∑

j=1
αi,jdNj,t, i = 1, ...,n.

Hence, dλi(t) = −βi (νi −λi(t))dt+
∑n

j=1 αi,jdNj,t, i = 1, ...,n.

■

We note that the jump component of the model is able to provide for jump clustering and jump
propagation. Jump clustering means that the jumps are more or less concentrated in short periods
of time. When an event happens in one region of the world and that results in an increased
likelihood of an event happening in other regions of the world, then we call that jump propagation.
This is also known as financial contagion, where an event might stand for the booms and crashes
in the stock market.

Putting the three stochastic differential equations together gives us the Hawkes jump-diffusion
model. Hence, the Hawkes jump-diffusion model is defined as

dXi,t = µidt+
√

Vi,tdW X
i,t +Zi,tdNi,t, i = 1, ...,n

dVi,t = κi(θi −Vi,t)dt+ηi

√
Vi,tdW V

i,t, i = 1, ...,n

dλi(t) = −βi (νi −λi(t))dt+
∑n

j=1 αi,jdNj,t, i = 1, ...,n.

(8.5)

The univariate model is given by
dXt = µdt+

√
VtdW X

t +ZtdNt

dVt = κ(θ −Vt)dt+η
√

VtdW V
t

dλ(t) = −β (ν −λ(t))dt+αdNt.

(8.6)

Figure 8.1 gives a realization of a self-exciting/linear Hawkes process with corresponding condi-
tional intensity and stock price. The time will be on the horizontal axis and on the vertical axis we
have starting from the top, the cumulative number of arrivals, the conditional intensity function
and lastly the stock price.

Figure 8.1: A realization of the Hawkes process Nt with corresponding conditional intensity func-
tion λ(t) given on the top and middle. On the bottom, a graph of the corresponding stock price
St is shown. This figure is taken from [4].
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In the next section, we will prove the Law of Large Numbers and the Central Limit Theorem for
the univariate case, where we do not allow for stochastic volatility.

8.2 Limit Theorems
This section is largely based on the article of Y. Seol [26] with the exception of the proof of
Theorem 8.2.2 and examples 8.2.3 and 8.2.4. Furthermore, there are details added in the proof of
Theorem 8.2.1 and mistakes corrected in both Theorems, 8.2.1 and 8.2.2.

Let us consider the log-stock price process Xt defined as

Xt = αt+βWt +
Nt∑
i=1

Yi,

with α the drift term, β the volatility, Wt the standard Brownian motion as defined in Defini-
tion 2.0.1, Yi are independent and identically distributed (i.i.d.) R-valued random variables and∑Nt

i=1 Yi is a compound Hawkes process, where Nt is defined as a linear Hawkes process with
conditional intensity function given by

λ(t) := ν +
∫ t

0
h(t−s)dNs.

Note that Nt and Yi are independent. We will prove that under certain assumptions the Law of
Large Numbers (LLN) and the Central Limit Theorem (CLT) holds for this specific log-stock price
process Xt. Before we prove the LLN and the CLT, we will define the assumptions and recall the
LLN and the CLT in the case of a linear Hawkes process and a marked Hawkes process.
Assumptions:

(i) The random variables Yi have finite expectation and variance, hence V ar(Y1) < ∞.

(ii) The conditional intensity function is linear and increasing, so λ(x) = ν +x for some strictly
positive ν.

(iii) It holds that the L1-norm of the excitation function h is less than one, hence ||h||L1 < 1 with
||h||L1 =

∫∞
0 h(t)dt < ∞.

The second assumption assures that the Hawkes process has a nice immigration-birth representa-
tion, whereas the first and third assumption makes sure that the limits are well-defined and makes
sure that the Hawkes process does not explode.

Recall that in the linear Hawkes process, the Law of Large Numbers and the Central Limit Theorem
were given by

Nt

t

P−→ ν

1−||h||L1
as t → ∞

and
√

t

(
Nt

t
− ν

1−||h||L1

)
⇝N

(
0,

ν||h||L1

(1−||h||L1)3

)
as t → ∞,

respectively. And in the marked Hawkes process the LLN and CLT were defined as

Nt

t

a.s.−−→ ν

1−E[H(ξ)] as t → ∞

and
√

t

(
Nt

t
− ν

1−E[H(ξ)]

)
⇝N

(
0,

ν(1+V ar(H(ξ)))
(1−E[H(ξ)])3

)
as t → ∞.
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We will now state the Law of Large Numbers and the Central Limit Theorem for the Hawkes
jump-diffusion model.

Theorem 8.2.1 (Law of Large Numbers for Hawkes jump-diffusion model). Assume that the
provided assumptions are satisfied and let Xt be the log-stock price process defined as

Xt = αt+βWt +
Nt∑
i=1

Yi,

then we have that

Xt

t

P−→ α +µE[Y1] as t → ∞ with µ := ν

1−||h||L1
.

Proof. Let us consider
Xt

t
= α +β

Wt

t
+ 1

t

Nt∑
i=1

Yi.

We will look at the terms one by one. Starting with α. We have that α
P−→ α, since α is a constant.

By Lemma 2.0.2, we have that limt→∞
Wt
t = 0 almost surely. Now, we will look at

∑Nt
i=1 Yi. By

Wald’s equation, we have that

E[
Nt∑
i=1

Yi] =
∞∑

k=0
E[

k∑
i=1

Yi|Nt = k]P(Nt = k) =
∞∑

k=0
E[

k∑
i=1

Yi]P(Nt = k)

=
∞∑

k=0

k∑
i=1

E[Yi]P(Nt = k) due to finite expectation and linearity

=
∞∑

k=0

k∑
i=1

E[Y1]P(Nt = k) since Yi are i.i.d.

=
∞∑

k=0
k ·E[Y1]P(Nt = k) = E[Y1]

∞∑
k=0

k ·P(Nt = k)

= E[Y1]E[Nt]

So, we have that E[
∑Nt

i=1 Yi] = E[Y1]E[Nt]. Furthermore, due to assumption part (ii) we have that
Nt is a linear Hawkes process. Therefore, by the LLN for linear Hawkes processes 3.3.1, we obtain
that

Nt

t

a.s.−−→ ν

1−||h||L1
as t → ∞.

Hence, we have that

1
t

Nt∑
i=1

Yi
P−→ ν

1−||h||L1
E[Y1] = µE[Y1] as t → ∞.

Using Lemma 1.1.4, we obtain that

Xt

t

P−→ α +µE[Y1] as t → ∞ with µ := ν

1−||h||L1
.

■
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Theorem 8.2.2 (Central Limit Theorem for Hawkes jump-diffusion model). Assume that the
provided assumptions are satisfied and let Xt be the log-stock price process defined as

Xt = αt+βWt +
Nt∑
i=1

Yi,

then we have that

Xt − (α +µE[Y1])t√
t

⇝N (0,β2 +µV ar(Y1)+(E[Y1])2σ2) as t → ∞

with µ := ν
1−||h||

L1
and σ2 := ν

(1−||h||
L1 )3 .

Proof. Let us consider
Xt

t
= α +β

Wt

t
+ 1

t

Nt∑
i=1

Yi.

By Lemma 8.2.1, we obtained that

Xt

t

P−→ α +µE[Y1] as t → ∞ with µ := ν

1−||h||L1
.

So:
√

t

(
Xt

t
− (α +µE[Y1])

)
=

√
t

(
Xt − (α +µE[Y1])t

t

)
= Xt − (α +µE[Y1])t√

t

Plugging in Xt = αt+βWt +
∑Nt

i=1 Yi gives

αt+βWt +
∑Nt

i=1 Yi − (α +µE[Y1])t√
t

= αt+βWt +
∑Nt

i=1 Yi −αt−µE[Y1]t√
t

= βWt +
∑Nt

i=1 Yi −µE[Y1]t√
t

= βWt√
t

+
∑Nt

i=1 Yi −µE[Y1]t√
t

First, we look at βWt√
t

. We will show, using characteristic functions, that βWt√
t

is normally distrib-
uted with mean 0 and variance β2. Remember that Wt ∼ N (0, t) and thus Wt√

t
∼ N (0,1). Define

Z := Wt√
t

with Z the standard normal. The corresponding characteristic function is

φZ(θ) = e− 1
2 θ2

.

So, we obtain:
φ(θ) = E[eiθ

βWt√
t ] = E[eiθβZ ] = e− 1

2 θ2β2
.

Therefore, βWt√
t

∼ N (0,β2). Now, we will look at the second term,
∑Nt

i=1 Yi−µE[Y1]t
√

t
. First, we will
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rewrite the numerator.
Nt∑
i=1

Yi −µE[Y1]t =
Nt∑
i=1

Yi +E[Y1](E[Nt]−µt−E[Nt])

=
Nt∑
i=1

Yi +E[Y1](E[Nt]−µt)−E[Nt]E[Y1]

So: ∑Nt
i=1 Yi +E[Y1](E[Nt]−µt)−E[Nt]E[Y1]√

t
=
∑Nt

i=1 Yi −E[Nt]E[Y1]√
t

+ E[Y1](E[Nt]−µt)√
t

We have that
E[Y1](E[Nt]−µt)√

t
→ 0 as t → ∞,

since Nt
t

P−→ µ as t → ∞ by the LLN for linear Hawkes processes 3.3.1 and therefore the difference
E[Nt] − µt will go to zero as t → ∞. Furthermore, note that E[Y1] is also deterministic. So, the
entire expression will go to zero in the limit.

Now, we look at
∑Nt

i=1 Yi−E[Nt]E[Y1]
√

t
. We will show that

∑Nt
i=1 Yi −E[Nt]E[Y1]√

t
⇝N (0,µV ar(Y1)+(E[Y1])2σ2) as t → ∞.

Let X̃n := 1√
n

∑n
i=1(Yi −E[Y1]) and let Ỹt := E[Y1]

(
Nt−E[Nt]√

t

)
.

By assumption, (X̃n)n∈N/{0} and (Ỹt)t>0 are independent.

We may write
∑Nt

i=1 Yi−E[Nt]E[Y1]
√

t
=
√

Nt
t X̃Nt + Ỹt, since

√
Nt

t
X̃Nt + Ỹt =

√
Nt

t
· 1√

Nt

Nt∑
i=1

(Yi −E[Y1])+E[Y1]
(

Nt −E[Nt]√
t

)

= 1√
t

Nt∑
i=1

(Yi −E[Y1])+ E[Y1](Nt −E[Nt])√
t

=
∑Nt

i=1 Yi −NtE[Y1]√
t

+ NtE[Y1]−E[Nt]E[Y1]√
t

=
∑Nt

i=1 Yi −E[Nt]E[Y1]√
t

.

By the classical CLT 1.1.8, we have that

X̃n⇝ X̃ as n → ∞ with X̃ ∼ N (0,V ar(Y1))

Under certain conditions, we have that

Ỹ ∗ := Nt −E[Nt]√
t

⇝ Ỹ ∗ as t → ∞ with Ỹ ∗ ∼ N (0,σ2).

Those specific conditions can be read in ([10], Theorem 2.2, p. 40). So by Slutsky 1.1.5, we obtain

Ỹt⇝ Ỹ as t → ∞ with Ỹ ∼ N (0,(E[Y1])2σ2),
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since E[Y1] is just a constant.
By the LLN for linear Hawkes processes, we obtain that Nt

t
P−→ µ as t → ∞. So by the Continuous

Mapping Theorem 1.1.3, we have that√
Nt

t

P−→ √
µ as t → ∞.

Then by Slutsky 1.1.5 and the version of Continuous Mapping Theorem for compositions, we have
that √

Nt

t
X̃Nt ⇝N (0,µV ar(Y1)) as t → ∞.

Due to independence, we can apply Lemma 1.1.2. Hence, we obtain the joint convergence(√
Nt

t
X̃Nt , Ỹt

)
⇝
(
X̃∗, Ỹ

)
as t → ∞ with X̃∗ ∼ N (0,µV ar(Y1)) and Ỹ ∼ N (0,(E[Y1])2σ2).

Then, again by Slutsky, we have√
Nt

t
X̃Nt + Ỹt⇝N (0,µV ar(Y1)+(E[Y1])2σ2) as t → ∞.

So ∑Nt
i=1 Yi −E[Nt]E[Y1]√

t
⇝N (0,µV ar(Y1)+(E[Y1])2σ2) as t → ∞,

with µ := ν
1−||h||

L1
and σ2 := ν

(1−||h||
L1 )3 . We apply Slutksy once more to obtain the desired result.

Hence,

Xt − (α +µE[Y1])t√
t

= βWt√
t

+
∑Nt

i=1 Yi −E[Nt]E[Y1]√
t

+ E[Y1](E[Nt]−µt)√
t

⇝N (0,β2 +µV ar(Y1)+(E[Y1])2σ2) as t → ∞

with µ := ν
1−||h||

L1
and σ2 := ν

(1−||h||
L1 )3 .

■

Example 8.2.3 (Normal distribution). Let us recall that the log-stock price process Xt is defined
as

Xt = αt+βWt +
Nt∑
i=1

Yi.

Suppose now that Y1 ∼ N (0,1). Hence, we have E[Y1] = 0 and V ar(Y1) = 1. By the Law of Large
Numbers (8.2.1), we obtained

Xt

t

P−→ α +µE[Y1] as t → ∞ with µ := ν

1−||h||L1
.

In this case,
Xt

t

P−→ α as t → ∞.

The Central Limit Theorem (8.2.2) is in general given by

Xt − (α +µE[Y1])t√
t

⇝N (0,β2 +µV ar(Y1)+(E[Y1])2σ2) as t → ∞



8.2. LIMIT THEOREMS 81

with µ := ν
1−||h||

L1
and σ2 := ν

(1−||h||
L1 )3 .

In this case, it will be
Xt −αt√

t
⇝N (0,β2 +µ) as t → ∞.

Now, we will take the excitation function h(·) to be exponential, so h(t) = αe−βt with α,β > 0
some constants. Then:

||h||L1 =
∫ ∞

0
h(t)dt =

∫ ∞

0
αe−βtdt = α

∫ ∞

0
e−βtdt

= α

[
− 1

β
e−βt

]t=∞

t=0
= α(0+ 1

β
) = α

β
.

So

µ := ν

1−||h||L1
= ν

1− α
β

= νβ

β −α
if α ̸= β and

σ2 := ν

(1−||h||L1)3 = ν

(1− α
β )3 = νβ3

(β −α)3 if α ̸= β.

♦

Example 8.2.4 (Exponential distribution). Let us recall that the log-stock price process Xt is
defined as

Xt = αt+βWt +
Nt∑
i=1

Yi.

Suppose Y1 ∼ Exp(λ). The probability density function is given by

f(x) =
{

λe−λx if x ≥ 0
0 if x < 0

.

Then the mean equals

E[Y1] =
∫ ∞

0
xf(x)dx =

∫ ∞

0
xλe−λxdx = λ

∫ ∞

0
xe−λxdx

= λ

([
−x

λ
e−λx

]x=∞

x=0
−
∫ ∞

0
− 1

λ
e−λxdx

)
partial integration

= λ

(
0+ 1

λ

∫ ∞

0
e−λxdx

)
= λ

(
0+ 1

λ

[
− 1

λ
e−λx

]x=∞

x=0

)
= λ

(
1
λ

(0+ 1
λ

)
)

= 1
λ

.

The second moment equals

E[Y 2
1 ] =

∫ ∞

0
x2f(x)dx =

∫ ∞

0
xλe−λxdx = λ

∫ ∞

0
x2e−λxdx

= 2
λ2 by applying two times partial integration.

Then the variance is given by

V ar(Y1) = E[Y 2
1 ]− (E[Y1])2 = 2

λ2 −
(

1
λ

)2
= 1

λ2 .
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Now, we can apply the Law of Large Numbers (8.2.1) and the Central Limit Theorem (8.2.2) to
obtain

Xt

t

P−→ α + µ

λ
as t → ∞ with µ := ν

1−||h||L1

and
Xt − (α + µ

λ )t
√

t
⇝N (0,β2 + µ

λ2 + σ2

λ2 ) as t → ∞

with µ := ν
1−||h||

L1
and σ2 := ν

(1−||h||
L1 )3 .

Notice that if λ is a large number, the variance is mostly dependent on β, since µ
λ2 + σ2

λ2 will be
very small and might tend to zero. On the other hand, if λ is very small, then the variance will
be quite large. This implies that the spread will be very wide.

To be more concrete, we will take the excitation function h(·) to be the power law function, so
h(t) = k

(c+t)p with k,c,p > 0 some constants. Let p = 2, k = 1 and c = 2, then h(t) = 1
(2+t)2 . So:

||h||L1 =
∫ ∞

0
h(t)dt =

∫ ∞

0

1
(2+ t)2 dt =

[
− 1

2+ t

]t=∞

t=0
= (0+ 1

2) = 1
2 .

Hence,

µ := ν

1−||h||L1
= ν

1− 1
2

= 2ν and

σ2 := ν

(1−||h||L1)3 = ν

(1− 1
2 )3 = 8ν.

♦



Chapter 9

Numerical Study

In order to simulate a Hawkes process we need to use a Python package called "hawkes". This
package provides us with the tools to simulate the conditional intensity functions. The Python code
relies on the tutorial of Takahiro Omi [20] although changes are made in the code especially in the
code of the power law examples. Below one finds an example were we simulate the exponentially
decaying intensity with parameters α = 1.0, β = 1.1 and the background intensity equal to 0.1.
Please note that we use λ instead of µ as the background intensity.
!pip install hawkes
import Hawkes as hk
import numpy as np
from matplotlib import pyplot as plt

# Model set up for conditional intensity function
model = hk. simulator ()
model . set_kernel (’exp ’) # Exponentially decaying intensity
model . set_baseline (’const ’) # Background intensity ( constant )
parameters = {’mu ’:... , ’alpha ’:... , ’beta ’:...} # Given set of parameter values
model . set_parameter ( parameters )

# Simulation
parameters = {’mu ’:0.1, ’alpha ’:1.0, ’beta ’:1.1}
interval = [0,100]
model = hk. simulator (). set_kernel (’exp ’). set_baseline (’const ’). set_parameter (

parameters )
T = model . simulate ( interval )
model . plot_N () # Plot of time and the number of arrivals
model . plot_l () # Plot of time and conditional intensity function

A realization of a Hawkes process with exponentially decaying intensity, meaning the excitation
function is exponential, is shown in figure 9.1. In this example, we have taken the excitation
function h(·) to be

h(t) = 1.0e−1.1t

and the exponentially decaying intensity λ(·) is then

λ(t) = 0.1+
∫ t

0
1.0e−1.1(t−s)dNs = 0.1+

∑
ti<t

1.0e−1.1(t−ti).

An arrival during the time interval [0,100] will increases the intensity by α = 1.0 and then decays
exponentially at rate β = 1.1 towards the background intensity ν = 0.1. Note that the lines on top
are the realizations of the arrival times, so at those times an event/jump occurs.
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Figure 9.1: Realization Hawkes process (left) with corresponding exponentially decaying intensity
(right).

As an other example, we can take the excitation function to be the power law function with
parameters k = 0.8, p = 1.5 and c = 5.0 and constant background intensity equal to 0.1. The
realization of a Hawkes process with this particular excitation function is given in figure 9.2. So,
in this case the excitation function h(·) is chosen to be

h(t) = 0.8
(5.0+ t)1.5

and then the corresponding conditional intensity is

λ(t) = 0.1+
∫ t

0

0.8
(5.0+(t−s))1.5 dNs = 0.1+

∑
ti<t

0.8
(5.0+(t− ti))1.5 .

Each event during the time-period [0,100] will excite the process in such a way that the probability
of the next event happening increases and then decreases according to the excitation function,
h(t) = 0.8

(5.0+t)1.5 , towards the given background intensity ν = 0.1.
# Simulation power law
parameters = {’mu ’:0.1, ’k’:0.8, ’p’:1.5, ’c’:5.0}
interval = [0,100]
model = hk. simulator (). set_kernel (’pow ’). set_baseline (’const ’). set_parameter (

parameters )
T = model . simulate ( interval )
model . plot_N () # Plot of time and the number of arrivals
model . plot_l () # Plot of time and conditional intensity function
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Figure 9.2: Realization Hawkes process (left) with corresponding conditional intensity function;
power law function (right).

We also may estimate the parameters and the log-likelihood in both cases. We start with the
case of exponentially decaying intensity. We started with parameters α = 0.25, β = 1.0 and the
background intensity equal to 0.1. So, the excitation function is given by h(·) to be

h(t) = 0.25e−1.0t

and the exponentially decaying intensity λ(·) is then

λ(t) = 0.1+
∫ t

0
0.25e−1.0(t−s)dNs = 0.1+

∑
ti<t

0.25e−1.0(t−ti).

The estimated parameters, which we will denote with a hat notation, are approximately α̂ = 0.234
and β̂ = 0.997. The estimated background intensity is equal to 0.092. The log-likelihood was given
to be approximately equal to −362.1.
# Parameter estimation
parameters = {"mu":0.1, " alpha ":0.25 , "beta":1.0}
interval = [0,1000]
model_simulation = hk. simulator (). set_kernel (’exp ’). set_baseline (’const ’).

set_parameter ( parameters )
T_simulation = model_simulation . simulate ( interval )

model = hk. estimator (). set_kernel (’exp ’). set_baseline (’const ’)
model .fit( T_simulation , interval )
print (" parameters :",model . parameter ) # Estimated parameter values
print ("log - likelihood :",model .L) #Log - Likelihood
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For the conditional intensity given as the power law, we chose the excitation function to be given
by

h(t) = 0.8
(5.0+ t)1.5

and then the corresponding conditional intensity is

λ(t) = 0.1+
∫ t

0

0.8
(5.0+(t−s))1.5 dNs = 0.1+

∑
ti<t

0.8
(5.0+(t− ti))1.5 .

We found that the estimated parameters were approximately k̂ = 3.295, p̂ = 1.779 and ĉ = 11.098.
The estimated background intensity was approximately 0.101 and the log-likelihood was −587.0.
# Parameter estimation power law
parameters = {"mu":0.1, "k":0.8, "p":1.5, "c":5.0}
interval = [0,1000]
model_simulation = hk. simulator (). set_kernel (’pow ’). set_baseline (’const ’).

set_parameter ( parameters )
T_simulation = model_simulation . simulate ( interval )

model = hk. estimator (). set_kernel (’pow ’). set_baseline (’const ’)
model .fit( T_simulation , interval )
print (" parameters :",model . parameter ) # Estimated parameter values
print ("log - likelihood :",model .L) #Log - Likelihood



Chapter 10

Conclusion

One of the goals of the thesis is that it is a self-contained literature overview of the Hawkes process
and the properties of the Hawkes process. This goal is achieved by studying various articles and
books and making sure that every notion is included in this thesis. However, the main goal was
defining, explaining and proving certain properties of the Hawkes process and the generalizations
of the (linear) Hawkes process, such as the mutually exciting Hawkes process and the marked
Hawkes process as well as introducing financial applications of the Hawkes process. We achieved
this goal as well.

My own contribution involves finding the appropriate literature, studying this literature in de-
tail and extended the proofs given in this literature. Furthermore, I constructed examples and
numerical examples that satisfy the conditions of the Law of Large Numbers and the Central
Limit Theorem. Moreover, this thesis gives an complete overview of the Hawkes process and its
generalizations as well as the properties of the Hawkes process.

Below, one can find a summary of what we have studied during this master thesis.

As we saw the Hawkes process has applications in financial mathematics. The Hawkes jump-
diffusion model is able to account for financial contagion were the more common financial models
as the Black-Scholes model and the Merton jump-diffusion model failed to do so. We saw that
the Hawkes jump-diffusion model is in fact an extension of the Merton jump-diffusion model were
the Poisson jump process is replaced by a mutually exciting Hawkes process. Also, the Merton
jump-diffusion model is in fact an extension of the Black-Scholes model that incorporated a jump
component. We were able to provide a proof for the Law of Large Numbers and the Central Limit
Theorem in case of the Hawkes jump-diffusion model. Furthermore, we have seen that the Black-
Scholes model and the Merton jump-diffusion model needed certain assumptions on the financial
market to derive the formula for the value of an option in terms of the price of a stock. The above
was explained in Part three of this thesis, more specific in Chapters 6, 7 and 8.

Chapter 4 dealt with the mutually exciting Hawkes process, the same process that was incorpor-
ated in the Hawkes jump-diffusion model. For the mutually exciting Hawkes process we proved
the likelihood function and the log-likelihood function. Besides the mutually exciting Hawkes pro-
cesses we encountered the self-exciting Hawkes process in Chapter 3. For this process we proved
the Law of Large Numbers and the Central Limit Theorem as well as the likelihood function.
Furthermore, we saw that there were different choices for the excitation function, for instance
the exponentially decaying intensity, so an exponential excitation function, and the power law
function. For the exponentially decaying intensity function, we showed that it satisfied a certain
stochastic differential equation that later showed up in the Hawkes jump-diffusion model. There
was one other generalization of the Hawkes process discussed in this thesis, namely the marked
Hawkes process. For the marked Hawkes process the proof of the Central Limit Theorem was
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provided. Also, we gave an example of marked Hawkes processes in geological sciences. In this
example, we discussed how the aftershocks of an earthquake could be modeled using the ETAS
model. All these chapters were part of the second part of the thesis, the Hawkes processes.

The last chapter in this thesis involved some numerical examples. We provided the Python code to
simulate a realization of a Hawkes process when the excitation function is exponential or satisfies
the power law function. We also showed how to obtain the estimated parameter values and the
log-likelihood.



Chapter 11

Appendix

11.1 Code Chapter 1.3
The Python code below is based on https://fromosia.wordpress.com/2017/03/19/stochastic-poisson-process/
accessed on 5-5-2023.
# Simulation of Homogeneous Poisson Process

import numpy as np
import matplotlib . pyplot as plt

# Prepare data
N = 50 # step
mu = [1, 5, 10]
X_T = [np. random . poisson (lam , size=N) for lam in mu]
S = [[np.sum(X[0:i]) for i in range (N)] for X in X_T]
X = np. linspace (0, N, N)

# Plot the graph
graphs = [plt.step(X, S[i], label ="Mu = %d"%mu[i])[0] for i in range (len(mu))]
plt. legend ( handles =graphs , loc=2)
plt. title (" Homogeneous Poisson Process ", fontdict ={’fontname ’: ’Times New Roman ’, ’

fontsize ’: 21}, y=1.03)
plt.ylim(0)
plt.xlim(0)
plt. xlabel (’Time (t)’)
plt. ylabel (’Cumulative number of events ’)
plt.show ()
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11.2 Code Chapter 4.1
The Python code below can also be accessed at Github, more specifically https://github.com/
X-DataInitiative/tick/blob/TICK-367-oscar-penalization/doc/modules/code_samples/simulation/
plot_hawkes_multidim_simu.py. For further explanation, see the following article by E. Bacry
et al. [3].
# Simulation of 3- dimensional Hawkes process

!pip install tick

import numpy as np
import matplotlib . pyplot as plt

from tick. hawkes import SimuHawkesExpKernels
from tick.plot import plot_point_process

n_nodes = 3 # Dimension of the Hawkes process
adjacency = 0.2 * np.ones (( n_nodes , n_nodes )) # Intensities of exponential kernels ;

\ alpha_ {ij}
adjacency [0, 1] = 0
decays = 3 * np.ones (( n_nodes , n_nodes )) # Decays of exponential kernels ; \ beta_ {ij}
baseline = 0.5 * np.ones( n_nodes ) # Background intensities ; \ nu_i
hawkes = SimuHawkesExpKernels ( adjacency =adjacency , decays =decays ,

baseline =baseline , verbose =False , seed=2398)

run_time = 100
hawkes . end_time = run_time
dt = 0.01
hawkes . track_intensity (dt)
hawkes . simulate ()

fig , ax = plt. subplots (n_nodes , 1, figsize =(16 , 8), sharex =True , sharey =True)
plot_point_process (hawkes , n_points =50000 , t_min =10 , max_jumps =30 , ax=ax)
fig. tight_layout ()
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11.3 Code Chapter 6
The figures shown in Chapter 6 are created using the following code, which is largely based on the
Python code on https://www.codearmo.com/python-tutorial/options-trading-black-scholes-model
(Accessed on 20-5-2023)
# Option pricing formula of Black - Scholes model
import numpy as np
from scipy . stats import norm
import matplotlib . pyplot as plt

N = norm.cdf

# Value of European call option
def BS_CALL (S, K, T, r, sigma ):

d1 = (np.log(S/K) + (r + sigma ** 2/2)*T) / ( sigma *np.sqrt(T))
d2 = d1 - sigma * np.sqrt(T)
return S * N(d1) - K * np.exp(-r*T)* N(d2)

# Effect on option value whenever stock price ($S$ ) varies
K = 100 # Strike price
r = 0.1 # Interest rate
T = 1 # Maturity time
sigma = 0.3 # Volatility
S = np. arange (60 ,140 ,0.1) # Stock price

calls = [ BS_CALL (s, K, T, r, sigma ) for s in S]
plt.plot(calls , label =’Call option ’)
plt. xlabel (’Stock price ’)
plt. ylabel (’Value of call option ’)
plt. legend ()

# Effect on option value whenever the volatility ($\ sigma$ ) varies
K = 100
r = 0.1
T = 1
Sigmas = np. arange (0.0, 1.0, 0.01)
S = 200

calls = [ BS_CALL (S, K, T, r, sig) for sig in Sigmas ]
plt.plot(Sigmas , calls , label =’Call option ’)
plt. xlabel (’Volatility $\ sigma$ ’)
plt. ylabel (’Value of call option ’)
plt. legend ()
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11.4 Code Chapter 7
The figure shown in Chapter 7 are created using the following code, which is largely based on the
Python code on https://www.codearmo.com/python-tutorial/merton-jump-diffusion-model-python
(Accessed on 25-5-2023)
# Merton jump - diffusion model
import matplotlib . pyplot as plt
plt. style .use(’ggplot ’)
import numpy as np

def merton_jump_paths (S, T, r, sigma , alpha , m, d, steps , Npaths ):
size=(steps , Npaths )
dt = T/ steps
pois_rv = np. multiply (np. random . poisson ( alpha *dt , size=size),

np. random . normal (m, d, size=size)). cumsum (axis=0)
geo = np. cumsum (((r - sigma ** 2/2 - alpha *(m + d ** 2*0.5))*dt +\

sigma *np.sqrt(dt) * \
np. random . normal (size=size)), axis=0)

return np.exp(geo+ pois_rv )*S

S = 100 # Current stock price
T = 1 # Maturity time
r = 0.1 # Interest rate
sigma = 0.3 # Volatility
m = 0 # Mean of jump size Y_t
d = 0.5 # Standard deviation of jump size Y_t
alpha = 1 # Rate of Poisson process
steps = 365 # Number of time steps
Npaths = 1 # Number of paths to simulate

MJD = merton_jump_paths (S, T, r, sigma , alpha , m, d, steps , Npaths )

plt.plot(MJD)
plt. xlabel (’Days ’)
plt. ylabel (’Stock price ’)
plt. title (’Merton jump - diffusion ’)
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