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Abstract

This project aimed to identify variables that consistently predict item non-response in Scot-
tish adolescents using multiverse modeling. To implement multiverse modelling, four different
state of the art algorithms were employed, along with various tuned versions. The focus of the
project was on individual variable importance, although model performance was essential as
well.

The results indicated that all algorithms (except for the Random Forest) performed reason-
ably well after tuning, depending on the target variable. The Random Forest models exhibited
poor performance across all target variables and were excluded from the overall variable im-
portance analysis. Three significant findings emerged from the study. Firstly, variables from a
mental health questionnaire showed associations with missingness in multiple dependent vari-
ables. Specifically, variables related to emotions, fear, prosocial behavior, and hyperactivity
were important for multiple targets. Secondly, missingness on the questionnaire itself was as-
sociated with variables related to alcohol and drug use. Lastly, missingness in the variable
concerning parental supervision was strongly associated with whether the adolescent was likely
tot talk to their father/carer if they had concerns.

The project had a few limitations, including some technical shortcomings. The hyperpa-
rameter optimisation process could have been more comprehensive, and the preprocessing steps
were considered too harsh in retrospect. Recommendations for future research included dif-
ferent options to account for imbalanced data, which is ever-present in survey data. Ethical
concerns about interpreting machine learning results and what research in the field on response
mechanisms should emphasise were discussed as well.
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1 Introduction
Quantitative research within the social sciences regularly involves survey designs, where numerous
questions are asked to respondents so data can be generated and analysed. While the goal generally
is to have the data be as complete as possible, collected data will usually contain a fair amount
of missing responses. Typically, these come in two flavours, with ‘unit non-response’ referring to
the absence of an entire record of a respondent, and ‘item non-response’ indicating one or multiple
items of a respondent are missing. Both present the researcher with their own unique problems,
given the researchers had not intended for them to happen. In the case of unit non-response, the
sample might not reflect the true population, leading to biased results among other harmful effects
(Särndal & Lundström, 2005). A possible solution is weighting of the respondents that the sample
did capture, as to construct a more accurate representation of the population. The other kind, item
non-response, could be perceived as less abstract, as not entire records of data are missing, but only
certain values of records. This essentially forces the researcher(s) to make a decision on how to treat
these values, as computationally, almost no analyses can be performed. Among the social sciences,
the item non-response problem deserves attention and proper treatment, but is often overlooked
or neglected in reality, with crude methods like listwise deletion and mean imputation still being
widely popular (Bell, Kromrey & Ferron, 2009; Savage et al., 2021). Both methods can introduce
bias into the results, which could lead to inaccurate conclusions.

Fortunately, more sophisticated methods like multiple imputation by chained equations (MICE)
and full information maximum likelihood (FIML) are receiving more recognition. In short, the
FIML method estimates a likelihood function for each individual based on the variables that are
present, thus using all data available. The MICE method works differently by using a series of
regression models (where the variable with missing values is taken as the dependent variable, and
the independent variables are the remaining variables) to make predictions for the missing values.
A random component is added to the predictions to emulate a level of uncertainty. Normally,
MICE will perform multiple cycles, constantly updating the regression models with the imputed
values of the earlier cycle (Van Buuren & Groothuis-Oudshoorn, 2011). Except for a few specific
situations, research has shown that MICE and FIML consistently outperform the aforementioned
listwise deletion and mean imputation (Wulff & Jeppesen, 2017; Witte, Foraita & Didelez, 2022),
and will produce unbiased imputations if the missing data was generated by specific mechanisms
(Wulff & Jeppesen, 2017). Modern literature divides these missing data mechanisms in three
distinct categories: Missing Completely At Random (MCAR), Missing At Random (MAR), and
Missing Not At Random (MNAR), also called Not Data Dependent, Seen Data Dependent and
Unseen Data Dependent, respectively (Van Buuren & Groothuis-Oudshoorn, 2011). In summary,
when data is MCAR, the missingness is unrelated to the observed as well as the unobserved data.
An example of this would be if data is not recorded because of an accidental technical difficulty
during an online survey. Data is MAR when the probability of missingness is related to the observed
data. Imagine a survey is held among a population to monitor anxiety, and sex of the participant is
recorded as well. Assume for the sake of the example that males have a harder time answering the
questions regarding anxiety, and tend to skip them. Data would then (rather counterintuitively)
be called Missing At Random, as the probability of missing is dependent of sex of the respondent.
Finally, MNAR implies the reason data is missing because it is related to unobserved data. In the
aforementioned example about the anxiety survey, data would be MNAR if sex of the respondent
had not been observed, meaning the probability of missingness on questions concerning anxiety
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would now be dependent on unobserved data.

Accordingly, the sophisticated methods mentioned earlier make use of this observed data to compute
imputations for the missing values. Therefore, they can only produce unbiased results if data
are either MCAR or MAR. Naturally, these methods will fail to account for the non-response
bias in their results if the data are MNAR, as the unobserved variables (the underlying cause
of the missingness) are not present in the data. So although they are shown to perform better
than listwise deletion and mean imputation (and other crude methods), researchers might not feel
comfortable implementing these methods as they will have to determine what the missing data
mechanism is. Especially in the social sciences, of which its students have been shown to be the
least statistically literate among peers (Pan & Tang, 2004; Berndt et al., 2021), a certain hesitancy
might be structurally present to consider these modern instruments. Determining what the missing
data mechanism is requires the researcher to anticipate what variables might have missing values,
and what other variables might account for their missingness. Data on those variables should then
also be collected. Identifying which variables can account for this missingness, however, presents
its own set of challenges. While the general topic of non-response is widely explored, validated
information about specific constructs (like what may cause respondents to refrain from answering
questions about depression) is missing, leaving the researcher to resort to speculation. To remove
the need for this scientifically ambiguous process, this thesis project will aim to enrich a common
knowledge base about these specific variables by predicting missingness with the assistance of
algorithmic modelling. This knowledge base could lead to researchers (in particular in the social
sciences) experiencing less of a barrier to implement methods like MICE and FIML. Subsequently,
more accurate data and interpretations could be produced.

As the necessity and relevancy of a trustworthy scientific process is at the core of this project,
principles of Open Science were applied. These principles aim to attain transparency, collabora-
tion and accessibility by ensuring data is publicly available, research is able to be reproduced, and
taking ethical considerations into account (Vicente-Saez & Martinez-Fuentes, 2018). Additionally,
in consideration of possible harmful biases that may occur when the researchers degrees of free-
dom are not accounted for, this project utilises the novel concept of multiverse analysis (Steegen,
Tuerlinckx, Gelman & Vanpaemel, 2016). The researcher degrees of freedom refer to the inherent
nonuniformity of scientific experiments, as researchers can choose from a variety of different meth-
ods and approaches to conduct the data collection and analysis processes. Data dredging is one of
those instances, for example, where the researcher degrees of freedom are not taken into account;
Exhaustive analysis of the data and deliberately only reporting a particular set of results may create
a skewed representation of the data (Smith & Ebrahim, 2002). Aiming to counteract these biases,
multiverse analysis makes use of multiple methods and assesses whether results congrue among
the methods used, thus increasing reliability and transparency. Regarding this project, multiverse
analysis was implemented by using various (appropiate) machine learning algorithms, along with
different parametrizations. Results of all of the algorithmic models were reported regardless of
quality.

The data analysed in this project is from a survey concerning mental health, and alcohol and
drug use among Scottish adolescents. Multiple studies have shown the majority of adults with a
substance use disorder first comes in contact with alcohol and drugs as adolescents (Gutierrez &
Sher, 2015), so research on these topics is crucial at this age. Moreover, adolescents have been
shown to be increasingly vulnerable to mental health problems in general (Kieling et al, 2011).
Accordingly, it is of significant importance to make valid inferences, which in terms of quantitative
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research, requires the data to be accurate. Exploring what variables might be associated with
non-response on these topics can help future research with including them, which in combination
with missing data techniques decreases the bias the data might have. Hence, the research question
of this thesis project is: “What variables are able to consistently predict item non-response among
Scottish adolescents through multiverse modelling?”

A short description of the data is given first. This is followed by the methodology, consisting of
a detailed description of the steps taken in processing the data. All of the selected algorithmic
models are also elaborated on in this section. Subsequently, the results are listed, proceeded by
the discussion and limitations. Ethical considerations and the conclusion complete the project.
All files (except for the data, which is discussed later) and documentation are available at https:
//github.com/LDvLeeuwen/Thesis_LDvL.git. Note that the nature of the project was exploratory,
and that reproduction is highly encouraged.

2 Data
The survey consisted of 89 questions and was conducted in 2018 by Ipsos MORI Scotland. The
target population was adolescents ages 12 through 18, living in Scotland. Aside from alcohol
consumption, mental health, and drug use, the survey discusses topics like parental supervision,
leisure activities and friendships. To illustrate, “Have you ever had a proper alcoholic drink - a
whole drink, not just a sip?”, “Have you ever been offered powders or pills that are sold as legal
highs?” and “How many close friends would you say you have?” were among the questions included
in the survey. A “Strengths and Difficulties” questionnaire was included at the end, and measured
a variety of mental health constructs with statements as “I worry a lot” and “I have many fears, I
am easily scared”.

The final data set provided by Ipsos consists of 635 columns, with a sample of 23.365 respondents.
The reason for the large discrepancy between the number of questions and number of columns is
because a lot of columns hold the same information, but are coded or grouped differently. Moreover,
the presence of questions that consist of multiple statements regarding the same topic causes some
questions to translate to twenty or more columns in the data. The data is publicly available (as
long as the intention with the data is non-commercial; see appendix A). Skip patterns (also named
‘routing’) were also present in the data. Skip patterns intend to increase efficiency of a survey
by only asking certain questions to a subset of the sample based on answers on earlier questions.
The missing responses (if the question was indeed not asked to a respondent as a result of a skip
pattern) on these items were coded as ‘-1’ in the data. Missing values as a result of the respondent
not answering the question were coded as ‘-9’. Naturally, only the latter are of interest in the scope
of this project, as the researchers did not intend for these values to be unrecorded.

3 Methodology
In this section, an overview of the steps taken to process the data is provided, along with information
about the algorithmic models and why they were deemed appropiate for the analysis. All of the
processing of the data and algorithmic modelling was done in R 4.2.1. Machine learning was
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implemented with the caret package (Kuhn et al., 2020). To ensure comprehensibility, trivial
steps concerning the processing were not described, but are explained in the source code.

3.1 Data preparation
The data was prepared by removing irrelevant data, selecting which variables could be taken as
dependent variables based on a cluster analysis, and finally, imputations with MICE.

3.1.1 Data cleaning
First off, data containing skip pattern questions were deemed irrelevant, and were removed accord-
ingly. While this may appear like unnecessary data reduction, the provided codebook and example
survey were examined thoroughly to support this decision. The survey was designed to include
every kind of drug, for instance, which were only asked to adolescents who said that they had ever
taken drugs. This results in variables that are very highly correlated, and essentially carry the same
information. Another example is question 12: “How many cigarettes did you smoke on each day in
the last 7 days, ending yesterday?”, which end up as 7 columns that all highly correlate with each
other, and are therefore redundant for the analyses. Secondly, a correlation analysis was performed
to discern whether variables held similar information. Correlations of each pair of variables were
calculated with pairwise comparison, and as to not remove essential data, only the first variable of
the pair was removed if correlations rose above a coefficient of 0.7. Lastly, a couple of variables
were deleted as a result of qualitative assessment. Administrative variables like the respondent ID,
variables that convey information about the same construct but were coded differently, and trivial
variables about cigarette brands all fall into this category.

3.1.2 Dependent variable selection
Of the remaining 192 variables, the missingness of 74 variables were considered a possible contender
as a dependent variable, as they contained more than 10% missing values. Next, a cluster analysis
was performed to determine whether variables followed a similar missingness pattern. In other
words, if the missing values in two or more variables occur in a corresponding order, they should
not be analysed separately, since they virtually carry the same information regarding missingness.

To realise this, dummies were constructed based on the missingness of these variables. Next, a
correlation matrix was calculated, essentially measuring the similarity of missingness of each pair
of dummies. By converting the similarity matrix to a distance matrix, hierarchical clustering (with
average linking) could be performed. The result is shown by figure 1:
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Figure 1: Cluster dendrogram
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A cutoff of 0.2 was applied for the distance score, leading to a total of twelve clusters. Two of those
clusters were excluded from the analysis. The resulting ten clusters are listed below in table 1,
along with the survey questions corresponding to the variables.

Table 1: Cluster subjects

Cluster
number Cluster subject Variables

1 How well off the adolescent feels
about the family they live with welloff

2

Where or to whom the
adolescent would want to go to
if they felt that they needed
help because they were using
alcohol/drugs

helptch, helppar, helpfri, helpdsv, helpksw,
helpkst, helptfw, helptft, helpclw, helpweb,
helpdk, helpoth

3

How much information school
has provided the adolescent
about alcohol/drugs, according
to the adolescent

alrisk, drgrisk, allife, drglife, aldecs, drgdecs,
peerviews, sayno, subsinfo, avoidal, avoiddrg

4

How much advice/support
school has provided the
adolescent about alcohol/drugs,
according to the adolescent

schdrg, schsm, schact

5 How much the adolescent is
enjoying school likeskl, pressu1, exclax

6 In the past year, how much the
adolescent has skipped school Truant1

7
Strengths & Difficulties
questionnaire, various mental
health constructs

somatic, shares, tantrum, loner, fights, kind,
lies, bullied, helpout, steals, oldbest, afraid,
ssomatic, safraid, stantrum, sobeys, sfights,
slies, ssteals, sreflect, sattends, sloner,
sfriend, spopular, sbullied, soldbest, sshares,
skind, shelpout, emotion1, hyper1, prosoc1,
emotion2, conduct2, hyper2, peer2, prosoc2,
SDQscore2

8

How much the parental figures
know about them and their
activities, according to the
adolescent

dadscore2

9 Whether the adolescent does
nothing in their free time nothin2

10
How much evenings the
adolescent spends with friends
in a typical week

withfrev2
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Both of the excluded clusters only consisted of one dummy: One is the dummy indicating missing-
ness in the variable wwbands. This variable holds a score that consists of all of the questions of the
“Strengths and Difficulties” questionnaire compiled together, and is thus not based on response.
The second cluster is the dummy indicating missingness in scmost. This variable holds information
about how much adolescents thought a packet of cigarettes would cost, and was deemed irrelevant
in the scope of the project.

A lot of the clusters consist of variables that were formed by the same question in the survey, which
explains the similarity in missingness pattern. An example of this is cluster 3, where most of the
variables represent an option to the question “In school, how much have you learned about the
following?”, with the options being “The risks to your health from cigarettes”, “The risks to your
health from alcohol”, and so forth.

One variable of the ten remaining clusters was selected arbitrarily for analysis, and are listed below
in table 2, along with the amount of missingness. In preparation of the data analysis, a different data
frame was formed for each cluster. These consisted of all of the preprocessed 192 variables minus
the variables inside the cluster in question. Additionally, the binary dummy variable indicating the
presence of missing values for the selected variable of that cluster is included in the respective data
frame.

Table 2: Missingness in the dependent variables

Cluster Variable Missingness (in %)
1 welloff 11.26
2 helptch 11.91
3 alrisk 11.44
4 schdrg 13.46
5 likeskl 10.55
6 Truant1 13.18
7 somatic 15.53
8 dadscore2 11.92
9 nothin2 11.44

10 withfrev2 11.99

3.1.3 Imputation with MICE
MICE was used (with package mice) to impute the missing values in the data. Having extensively
described the potential harm of applying MICE when the data might not be MCAR/MAR, this
may appear tricky. Prohibiting the use of MICE, however, creates a circular argument, as the goal
of this project is to uncover the underlying response mechanisms so future research can make sure
potential missing data would follow a MCAR/MAR pattern. For this reason, MICE was still opted
for, with additional assessment of the quality of imputations (which is mentioned later).

Since there are 10 distinct data sets for each of the dependent variables, imputations were computed
for each of those frames. To make the process more efficient, the quickpred function was used, a
method described by Stef van Buuren (2018). This method makes a selection of predictors, instead
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of taking every possible variable as a predictor, which is the default. The result is a predictor matrix
for the data frame, stating which variables are allowed to predict what variables through a binary
system. The selection is done by calculating two types of correlations: The first correlation uses
the values of the target and the predictor directly, whereas the second correlation uses the response
indicator of the target and the values of the predictor. If the largest of these correlations exceeds the
argument mincor (of which a value of 0.2 was selected), the predictor will be added to the matrix.
Additionally, the procedure eliminates predictors whose proportion of usable cases fails to meet the
minimum specified by the argument minpuc, of which a value of 0.2 was implemented. Consequently,
the resulting matrix is included in the imputation process through the predictorMatrix argument
in the mice function. This drastically speeds up the process, as generally the entire data frame,
but roughly 25 variables are used as predictor (for each variable with missing values).

Furthermore, an m of 1 and a maxit of 3 were implemented. The m parameter denotes the amount
of imputations MICE will make for each missing value. As variables are not selected on p-values
or confidence intervals in this project (but rather if they harmonize among different algorithmic
models), standard errors are less important. Therefore, a single imputation is appropiate. The
maxit argument indicates how much iterations the MICE algorithm should run. In order to let the
imputations converge, but to be mindful of the computational cost, a maxit of 3 was selected.

Lastly, the imputation technique for each variable. MICE requires a specification of a univariate
method for each variable to be imputed. Not every method is appropiate for each type of data:
For instance, logistic regression should only be used for binary variables. If these are not specified,
MICE uses predictive mean matching (pmm) for numeric variables, logistic regression (logreg) for
binary variables, and polytomous logistic regression (polyreg) for multiclass variables as a default.
These default options were deemed appropiate for the data, and since all variables were converted to
the correct data type beforehand (numeric as numeric, categories as factors), no specifications were
given for this argument. Afterwards, this was checked with the method element of the imputation
objects. The loggedEvents element (which keeps track of all shortcomings like multicollinearity)
was also inspected for each set of imputations, but none were reported.

3.2 Analyses
The goal of this project can essentially be translated to a binary classification problem, as the
algorithms are trained to predict missingness in a variable by taking a respective dummy (where 0
is coded as ‘missing’ and 1 as ‘present’) as the target. As table 2 visualises clearly, all of the ten
target variables roughly have the same missing rate at 12%. The two classes are decidedly very im-
balanced, which might pose a problem; For example, one could predict every case as ‘present’, and
would be right in 88% of those cases. Balanced accuracy and the Matthews correlation coefficient
were therefore used as the main evaluation metrics, as they both provide a more accurate assess-
ment of model performance on imbalanced data. Balanced accuracy does this by taking both the
sensitivity (the proportion of actual positive instances that are correctly identified as positive) and
the specificity (the proportion of actual negative instances that are correctly identified as negative)
into account. On the other hand, the Matthews correlation coefficient is calculated with all four
possible outcomes of binary classification (true positives, true negatives, false positives, and false
negatives), ensuring that all measures of performance are taken into consideration. Formulas are
given below.
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Balanced Accuracy = Sensitivity + Specificity
2

𝑀𝐶𝐶 = (𝑇 𝑃 × 𝑇 𝑁) − (𝐹𝑃 × 𝐹𝑁)
√(𝑇 𝑃 + 𝐹𝑃) × (𝑇 𝑃 + 𝐹𝑁) × (𝑇 𝑁 + 𝐹𝑃) × (𝑇 𝑁 + 𝐹𝑁)

Moreover, algorithmic models whose performance has been shown to be gravely affected by class
imbalance, like Logistic Regression or Linear Discriminant Analysis, were therefore not included
(Brown & Mues, 2012). Algorithms who have been shown to struggle with large amounts of data
(Naive Bayes, for instance) were also rejected. Furthermore, as variable evaluation is central to
this project, algorithms like Support Vector Machines (which uses high-dimensional spaces, making
interpretation of individual variables harder), were also not included. Utimately, the Random
Forest, Neural Networks, XGBoost Regression and Adaptive Boosting algorithms were used. In
the scope of the project, the models have to perform well on unseen data, so the importance of
the variables belonging to those models can be generalised beyond the data used in this project.
In order to evaluate how well the models perform on unseen data, the data was split in a training
and a test set (with a margin of 70% for the training set). Tuning of the models was thus only
applied on the training set. To reduce the chance of overfitting, and in the spirit of multiverse
analysis, different training and test sets were formed for each algorithm. Overfitting occurs when
a model becomes too complex and starts to “memorize” the training data rather than learning the
underlying patterns. The splitting of the training and test sets was performed before each algorithm
was implemented in the code, and by changing the seed (with set.seed) each time the data was
split, the training and test sets were different for each algorithm. Three distinct tuning methods
were utilized, of which a general description is listed below. Afterwards, a detailed explanation
about the implementations of each algorithmic model is given.

3.2.1 Tuning methods
3.2.1.1 Hyperparameter grid search

Hyperparameters refer to the variables that define the behaviour and performance of a ma-
chine learning algorithm. These differ with each algorithm, and tuning them allow for better
model performance. For this project, a hyperparameter grid search was performed for each
algorithm. This is implemented by manually setting a grid with possible values for different (with
the caret::train function), thus forming a grid. Each possible combination of hyperparameters
is then tested on the training set, of which one combination will facilitate a best-performing
model. The grid search was opted for as hyperparameters as the grid can be set manually, and
is computationally efficient in comparison with other hyperparameter tuning methods like genetic
algorithms. Since the hyperparameters differ with each algorithm, they are elaborated on in their
respective sections.

3.2.1.2 Class weights

Class weights were chosen as the first method to account for the imbalanced data. They
assign higher weights to the minority class, and lower weights to the majority class, aiming
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to improve performance on the minority class. Inverse class weights were calculated for each
dependent variable, of which a formula is listed below. They were not utilised for the Adaptive
Boosting algorithm, since weighting of the classes is inherent to the algorithm itself. While tuning
of the class weights is possible and offers a more refined way to calculate these weights, this is very
computationally heavy, and could not be realised because of time constraints.

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 1
𝑁𝑐𝑙𝑎𝑠𝑠

3.2.1.3 Threshold tuning

Threshold tuning is the second technique used in to account for imbalanced data. In classi-
fication, an algorithmic model will assign probabilities to each class, using a threshold to ultimately
predict a class label. While the standard is a threshold of 0.5, this threshold can be optimised
with tuning. In the scope of the project, thresholds ranging from 0.05 to 0.5 (with intervals of
0.05) were used on the ‘missing’ class. For instance, if the model makes a prediction of 0.32 for the
value to be ‘missing’, and the current threshold tested is 0.2, the model will predict the value to
be ‘missing’. Naturally, if a standard threshold had been applied, this prediction would have been
‘present’. Threshold tuning was performed only on the training sets, and the optimal threshold
was consequently used for the predictions on the unseen test set.

The hyperparameter grid search and class weights models were both validated by k-fold cross-
validation. This process cuts the data in an given amount of sections, training a model on all
sections except one, and testing in it on the section that was left out. Cross-validation was opted
for as it prevents the given methods from overfitting. All of the tuning methods were evaluated
on balanced accuracy (for the grid search and class weights models, this was implemented with
the metric argument in trainControl). The stratified variant was applied to prevent the folds
from having too few data points of the ‘missing’ class, and the data was divided in 5 folds for each
instance of cross-validation.

Generally, two or three versions (for each algorithm and for each dependent variable) were tested
at the same time. Threshold tuning was then applied on the best-performing model (which was
evaluated with the balanced accuracy and MCC). If another threshold than 0.5 was calculated, new
predictions were made. While this does not inherently change the structure of the model (or the
importance of the variables), it does inform whether a model would perform better with a different
threshold.

3.2.2 Algorithmic models
3.2.2.1 Random Forest

The Random Forest is an ensemble learning algorithm that combines multiple decision trees
to create a powerful predictive model. Each decision tree in the random forest is trained on a
random subset of the training data (on rows as well of columns of the data), and the final prediction
is obtained by aggregating the predictions of all individual trees. Regarding classification, this
aggregation is done by taking the majority vote. Moreover, since each tree is trained on a different
subset of the data, the algorithm is less prone to overfitting. The Random Forest has been shown

12



to be well-suited for classification tasks as well as having the ability to handle large data sets with
high dimensionality (Speiser, Miller, Tooze & Ip, 2019), and for these reasons, the algorithm was
selected for the analyses.

The randomForest package was used for the baseline model. Then, the caret package with mod-
ule ranger was used to tune hyperparameters with a grid search. The mtry, splitrule and
min.node.size hyperparameters were tuned. mtry determines the number of variables randomly
selected as candidates at each split point in a decision tree. Generally, larger values of mtry can
improve the model’s ability to capture complex relationships, but may consequently increase the
risk of overfitting. In the grid search, mtry was tested for values 1, 5 and 15. The splitrule hy-
perparameter determines the criterion used for making splits in a decision tree. The caret package
supports two commonly used split rules, “Gini” and “Extra trees”. The “Gini” split rule, also known
as Gini impurity, measures the impurity or homogeneity of a node based on the class distribution
of the training samples. It aims to minimize the probability of misclassifying a randomly chosen
sample. The “Extra trees” split rule, short for extremely randomized trees, is a variant of random
forests that introduces additional randomness to the split point selection process. This results in
faster training times but may also increase the tree’s variability. Both methods were included in the
grid search. Lastly, the min.node.size hyperparameter specifies the minimum number of samples
required to create a terminal node (leaf) in a decision tree. When growing a tree, if the number
of samples in a node falls below min.node.size, further splitting is not allowed, and the node
becomes a leaf node. Increasing results in smaller trees with more generalization and smoother
decision boundaries. Conversely, decreasing allows trees to capture more specific patterns and can
lead to more complex models. For min.node.size, values 1, 5 and 10 were tested. A standard
ntree of 500 was used and was left unchanged, as the ranger module does not support tuning of
this hyperparameter (Kuhn et al., 2020).

Three versions of the Random Forest algorithm were implemented: A base version, a parameter
tuned version and one with class weights and parameter tuning. Predictions on the test set were
made at the same time for all three versions. Threshold tuning on the training sets was applied
on all of the parameter tuned versions, as those performed best for each independent variable.
Subsequently, new predictions were made with the optimal thresholds.

3.2.2.2 Neural Networks

Neural Networks are a class of deep learning models inspired by the structure and function-
ing of the human brain, hence the name. They consist of interconnected nodes, called neurons,
which are organized in layers. Each neuron applies a mathematical transformation to its inputs
and passes the result to the next layer until the final output is generated.

In order to run the analyses, categorical variables were one-hot encoded. Implementing the base
version of the Neural Networks algorithm was done with the nnet package. The caret package
(module nnet) was used to tune the size and decay parameters with a grid search. size determines
the number of neurons in the neural network. Increasing the size value adds more neurons to the
network, which can increase its capacity to learn complex patterns and relationships in the data,
with the added risk of overfitting. Decreasing therefore leads to reduced performance, but less
chance of overfitting. For size, values 5, 10, 20 and 50 were tested. The decay hyperparameter
controls the weight decay applied. Weight decay is a regularization technique that introduces a
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penalty term to the loss function during training to prevent overfitting. Increasing this penalty
thus leads to a bigger chance of underfitting (the opposite of overfitting, where the model does not
capture the complexities of the data). Values 0 (essentially no penalty), 0.001, 0.01 and 0.1 were
included in the grid for decay.

A base model, a parameter tuned version and a version with inverse class weights and parameter
tuning were implemented for the Neural Networks algorithm: Predictions on the test set were made
at the same time for all three versions. Threshold tuning on the training sets was applied on the
models that had inverse class weights and parameter tuning. For three of those, another optimal
threshold than the standard 0.5 was calculated. These were models for clusters 1, 5 and 7, and
for all three, the optimal threshold on the training data was 0.45. Naturally, new predictions with
these threshold were made on the test set.

3.2.2.3 XGBoost Regression

The XGBoost Regression algorithm (short for Extreme Gradient Boosting) constructs an
ensemble of weak prediction models in a sequential manner. New models are trained to correct
the errors made by the previous ones, gradually improving the final prediction accuracy. It has
been shown to excel in efficiency and performance (Ramraj, Uzir, Sunil & Banerjee, 2016), and
was therefore selected for the analyses.

In order to run the analyses, categorical variables were one-hot encoded. The xgboost package
was used to perform the analyses for the base models. Again, the grid search was realised with
caret package (module xgbTree). The XGBoost algorithm has a lot of hyperparameters: the
nrounds, max_depth, eta, gamma, colsample_bytree, min_child_weight and subsample were all
included in the grid. The nrounds hyperparameter determines the number of boosting rounds or
iterations performed during the training process. Each boosting round adds a new decision tree to
the ensemble, gradually improving the model’s predictive performance. For nrounds, values 100,
200 and 300 were opted for. max_depth controls the maximum depth of an individual decision
tree within the ensemble, and values 3, 6 and 9 were included. Generally, for both nrounds and
max_depth, as their values increase, the chance of overfitting also increases, while performance also
improves.

The eta hyperparameter, also known as the learning rate, determines the step size at each boosting
iteration, controlling the contribution of each tree to the overall ensemble. Values 0.1, 0.3 and
0.5 were opted for. gamma controls the minimum loss reduction required to make a further par-
tition on a leaf node of the tree, while min_child_weight defines the minimum sum of instance
weights required in a leaf node. For these hyperparameters, values 0, 0.1, 0.2 and 1, 3 and 5
were used respectively. Contradicting the first two hyperparameters, as values for eta, gamma and
min_child_weight increase, the chance of overfitting is reduced. This will negatively affect the
performance, though.

Finally, colsample_bytree determines the fraction of variables to be randomly sampled for each
tree, whereas the subsample hyperparameter controls the fraction of training samples to be used
for each boosting iteration. Values 0.6, 0.8 and 1 were included for both of them. As a general rule,
setting their values beneath 1 leads to a decrease in overfitting, and improves generalisation.

Unfortunately, a version with inverse class weights could not be implemented due to an unresolved
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error. Two versions of the XGBoost algorithm were thus tested: A base version and a parameter
tuned version. For both versions, predictions on the test set were made at the same time. Threshold
tuning on the training sets was applied on all of the parameter tuned versions, as those performed
best for each independent variable. For all 10 models, a better optimal threshold than 0.5 was
calculated, and new predictions were made using these improved thresholds.

3.2.2.4 Adaptive Boosting

Adaptive Boosting, also called AdaBoost, combines multiple weak classifiers to construct a
strong classifier. Assigning weights to each training sample in subsequent iterations, the misclas-
sified samples are emphasised to improve classification accuracy. Research has demonstrated its
effectiveness (Margineantu & Dietterich, 1997; Feng et al., 2020), and as it is designed to handle
class imbalance, the algorithm was selected for the analyses.

The baseline models for the Adaptive Boosting algorithm were implemented with package adabag.
Tuning of hyperparameters mfinal, maxdepth and coeflearn was done along a grid with the caret
package (module AdaBoost.M1). mfinal determines the maximum number of weak classifiers to
be combined in the final ensemble, whereas the maxdepth hyperparameter specifies the maximum
depth or complexity of the weak classifiers used in the ensemble. Increasing both of them can
result in a more complex model. However, this also increases the risk of overfitting, especially if the
dataset is small. For mfinal, values 50, 100 and 150 were included, whereas the values of maxdepth
consisted of 2, 3 and 4.

Lastly, the coeflearn hyperparameter specifies which learning method is used in AdaBoost. caret
supports three methods: Freund’s, Breiman’s, and Zhu’s. Freund’s method increases the weights
of misclassified samples in each iteration, effectively making the subsequent weak classifiers focus
more on these difficult samples. The weights are updated using an exponential function. Breiman’s
method, on the other hand, modifies the weight update formula to be based on the misclassification
rate rather than the exponential function used in Freund’s method. The weights of the misclassified
samples are increased, but the increase is proportional to the misclassification rate. To conclude,
Zhu’s method incorporates the concept of cost-sensitive learning.

Two versions of the Adaptive Boosting algorithm were implemented: A base version and a parameter
tuned version. Predictions on the test set were made at the same time for both versions. Threshold
tuning on the training sets was applied on all of the parameter tuned versions, as those performed
best for each independent variable. Subsequently, new predictions were made with the optimal
thresholds.

4 Results
4.1 Best-performing models
The balanced accuracy metric was chosen to evaluate which version of the model performed best.
A best-performing model was selected per target, per algorithm. Results are listed below in table 3,
accompanied with their specificity, sensitivity, F1-score, balanced accuracy and the MCC. Results
of all versions can be viewed in appendix B. Please note that for legibility, the dummy indicator
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was removed from the variables in the Target column. As mentioned in the Methodology section,
the variables themselves were not the target variables, but the missingness of those variables.

Table 3: Best model results

Cl. Target Model Version Sens. Spec. F1 Bal.
Acc MCC

1 welloff Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.022 0.997 0.041 0.509 0.080

1 welloff Neural
Networks

Parameter tuned +
Class weights +
Threshold tuned

0.662 0.635 0.292 0.648 0.192

1 welloff
XGBoost
Regres-
sion

Parameter tuned +
Threshold tuned 0.403 0.883 0.346 0.643 0.253

1 welloff Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.610 0.697 0.305 0.653 0.205

2 helptch Random
Forest Base 0.000 1.000 NA 0.500 0.000

2 helptch Neural
Networks

Parameter tuned +
Class weights 0.644 0.685 0.324 0.664 0.223

2 helptch
XGBoost
Regres-
sion

Parameter tuned +
Threshold tuned 0.576 0.866 0.448 0.721 0.367

2 helptch Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.667 0.753 0.382 0.710 0.298

3 alrisk Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.052 0.998 0.098 0.525 0.188

3 alrisk Neural
Networks

Parameter tuned +
Class weights 0.709 0.771 0.407 0.740 0.339

3 alrisk
XGBoost
Regres-
sion

Parameter tuned +
Threshold tuned 0.759 0.963 0.743 0.861 0.710

3 alrisk Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.891 0.844 0.576 0.868 0.548

4 schdrg Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.266 0.990 0.401 0.628 0.427

4 schdrg Neural
Networks

Parameter tuned +
Class weights 0.742 0.809 0.500 0.776 0.426

4 schdrg
XGBoost
Regres-
sion

Parameter tuned +
Threshold tuned 0.782 0.945 0.731 0.863 0.688
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Table 3: Best model results (continued)

Cl. Target Model Version Sens. Spec. F1 Bal.
Acc MCC

4 schdrg Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.871 0.774 0.524 0.822 0.474

5 likeskl Random
Forest Base 0.000 1.000 NA 0.500 0.000

5 likeskl Neural
Networks

Parameter tuned +
Class weights +
Threshold tuned

0.708 0.708 0.338 0.708 0.271

5 likeskl
XGBoost
Regres-
sion

Parameter tuned +
Threshold tuned 0.771 0.966 0.749 0.869 0.718

5 likeskl Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.884 0.850 0.560 0.867 0.537

6 Truant1 Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.153 0.993 0.255 0.573 0.309

6 Truant1 Neural
Networks

Parameter tuned +
Class weights 0.664 0.736 0.390 0.700 0.291

6 Truant1
XGBoost
Regres-
sion

Parameter tuned +
Threshold tuned 0.755 0.911 0.645 0.833 0.591

6 Truant1 Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.831 0.755 0.483 0.793 0.425

7 somatic Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.290 0.965 0.392 0.627 0.352

7 somatic Neural
Networks

Parameter tuned +
Class weights +
Threshold tuned

0.712 0.690 0.419 0.701 0.302

7 somatic
XGBoost
Regres-
sion

Parameter tuned +
Threshold tuned 0.631 0.884 0.558 0.757 0.470

7 somatic Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.810 0.729 0.493 0.769 0.408

8 dadscore2 Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.521 0.958 0.569 0.739 0.519

8 dadscore2 Neural
Networks

Parameter tuned +
Class weights 0.660 0.867 0.499 0.763 0.430
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Table 3: Best model results (continued)

Cl. Target Model Version Sens. Spec. F1 Bal.
Acc MCC

8 dadscore2
XGBoost
Regres-
sion

Parameter tuned +
Threshold tuned 0.740 0.909 0.613 0.825 0.562

8 dadscore2 Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.636 0.919 0.570 0.778 0.509

9 nothin2 Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.211 0.983 0.314 0.597 0.317

9 nothin2 Neural
Networks

Parameter tuned +
Class weights 0.687 0.779 0.405 0.733 0.333

9 nothin2
XGBoost
Regres-
sion

Parameter tuned +
Threshold tuned 0.744 0.923 0.635 0.833 0.588

9 nothin2 Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.808 0.773 0.453 0.791 0.406

10 withfrev2 Random
Forest Base 0.000 1.000 NA 0.500 0.000

10 withfrev2 Neural
Networks

Parameter tuned +
Class weights 0.646 0.758 0.378 0.702 0.290

10 withfrev2
XGBoost
Regres-
sion

Parameter tuned +
Threshold tuned 0.607 0.939 0.591 0.773 0.533

10 withfrev2 Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.780 0.772 0.451 0.776 0.393

4.2 Variable importance
The variable importance for each best-performing model version was calculated with the varImp
function of the caret package. The absolute importance coefficient was recorded as well as the
relative importance. The relative importance is scored on a scale from 0 to 100, where 100 indicates
the variable is the most important compared to the other variables in the model. The 5 most im-
portant variables per dependent variable were listed for comprehensibility. Full results are available
in the aforementioned GitHub repository.
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4.2.1 Random Forest
For the Random Forest models, the variable importance was calculated with the permutation
method in caret. Results are listed below in tables 4 and 5.

Table 4: RF importance

Cl. Variable Target Imp.
Scaled

Imp.
Raw

1 hpcclass welloff 100.0000 0.0048
1 hpbclass welloff 97.8409 0.0047
1 drinkloc welloff 83.6689 0.0040
1 aldecs welloff 72.8403 0.0035
1 drgdecs welloff 70.3123 0.0034
2 drgrisk helptch 100.0000 0.0041
2 hpcclass helptch 90.8801 0.0037
2 aldecs helptch 89.6040 0.0037
2 hpbclass helptch 88.2251 0.0036
2 prosoc1 helptch 86.3743 0.0035
3 hpcclass alrisk 100.0000 0.0191
3 hpbclass alrisk 99.8380 0.0191
3 conduct2 alrisk 65.7974 0.0126
3 ssteals alrisk 57.9089 0.0110
3 prosoc1 alrisk 56.4673 0.0108
4 drgdecs schdrg 100.0000 0.0237
4 allife schdrg 92.9151 0.0220
4 aldecs schdrg 89.1038 0.0211
4 drglife schdrg 88.0552 0.0209
4 drgrisk schdrg 73.0136 0.0173
5 aldecs likeskl 100.0000 0.0071
5 drgdecs likeskl 98.9137 0.0070
5 prosoc1 likeskl 94.3519 0.0067
5 drglife likeskl 93.5537 0.0066
5 allife likeskl 91.4686 0.0065

Table 5: RF importance (cont.)

Cl. Variable Target Imp.
Scaled

Imp.
Raw

6 aldecs Truant1 100.0000 0.0207
6 drglife Truant1 92.4481 0.0191
6 drgdecs Truant1 75.7765 0.0157
6 drgrisk Truant1 74.5867 0.0154
6 hpbclass Truant1 70.5412 0.0146
7 drglife somatic 100.0000 0.0226
7 drgrisk somatic 99.0952 0.0224
7 aldecs somatic 98.8711 0.0223
7 drgdecs somatic 97.9989 0.0221
7 allife somatic 81.9534 0.0185
8 talkpa dadscore2 100.0000 0.0344
8 smkdad dadscore2 34.4578 0.0119
8 famstat2 dadscore2 17.7902 0.0061
8 drinkloc dadscore2 15.1372 0.0052
8 noclubs dadscore2 11.3464 0.0039
9 aldecs nothin2 100.0000 0.0096
9 drgdecs nothin2 89.8904 0.0087
9 alrisk nothin2 77.2231 0.0074
9 peerviews nothin2 73.3547 0.0071
9 drgrisk nothin2 72.6432 0.0070

10 prosoc1 withfrev2 100.0000 0.0134
10 drglife withfrev2 75.8245 0.0102
10 hpbclass withfrev2 72.6262 0.0098
10 prosoc2 withfrev2 70.5576 0.0095
10 hpcclass withfrev2 70.0593 0.0094
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4.2.2 Neural Networks
For the Neural Network models, caret calculates variable importance based on a method by Gevrey
et al (2003). As categorical variables had to be one-hot encoded to be compatible for the caret
package, interpreting their importance is tricky, as they cannot simply be added up. Unfortunately,
due to time constraints, a more primitive method was applied: Of all the categories, the highest
importance was taken, and selected to represent the whole variable. Results are listed below in
tables 6 and 7.

Table 6: NN importance

Cl. Variable Target Imp.
Scaled

Imp.
Raw

1 drinkloc welloff 100.0000 0.7801
1 sex welloff 94.4777 0.7384
1 numeffects welloff 87.9064 0.6888
1 glueok welloff 78.6499 0.6189
1 wwconf welloff 69.3243 0.5485
2 numeffects helptch 100.0000 0.9357
2 drinkloc helptch 90.6396 0.8504
2 peerviews helptch 62.3272 0.5926
2 hpcclass helptch 59.5394 0.5673
2 subuse2 helptch 53.4200 0.5115
3 skind alrisk 100.0000 0.8292
3 shelpout alrisk 87.0087 0.7242
3 sex alrisk 83.1660 0.6932
3 kind alrisk 80.4960 0.6716
3 prosoc1 alrisk 76.2686 0.6375
4 drgdecs schdrg 100.0000 0.6952
4 skind schdrg 97.9256 0.6814
4 drgrisk schdrg 93.1948 0.6498
4 kind schdrg 93.0555 0.6489
4 peerviews schdrg 91.8574 0.6409
5 drgdecs likeskl 100.0000 1.2532
5 peerviews likeskl 75.7519 0.9542
5 allife likeskl 74.0940 0.9338
5 kind likeskl 73.5063 0.9265
5 stantrum likeskl 64.8755 0.8201

Table 7: NN importance (cont.)

Cl. Variable Target Imp.
Scaled

Imp.
Raw

6 drgdecs Truant1 100.0000 0.8359
6 peerviews Truant1 87.6048 0.7358
6 drglife Truant1 84.9691 0.7146
6 drinkloc Truant1 82.4473 0.6942
6 sshares Truant1 78.4471 0.6619
7 drgdecs somatic 100.0000 1.0438
7 alrisk somatic 83.1354 0.8732
7 aldecs somatic 83.0428 0.8723
7 drglife somatic 82.8403 0.8702
7 peerviews somatic 78.4500 0.8258
8 talkpa dadscore2 100.0000 1.7486
8 drinkloc dadscore2 46.0169 0.8182
8 smkdad dadscore2 44.7720 0.7968
8 famstat2 dadscore2 35.9351 0.6444
8 sex dadscore2 30.5307 0.5513
9 numeffects nothin2 100.0000 0.7979
9 subuse2 nothin2 66.8763 0.5465
9 concert2 nothin2 66.2959 0.5421
9 sex nothin2 65.7385 0.5379
9 talkma nothin2 63.8742 0.5238

10 sex withfrev2 100.0000 0.6145
10 stimulants2 withfrev2 92.5828 0.5712
10 concert2 withfrev2 91.3424 0.5639
10 exclax withfrev2 90.3690 0.5582
10 frhouse2 withfrev2 83.2343 0.5165
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4.2.3 XGBoost Regression
For the XGBoost Regression models, the caret package uses the Gain method to calculate variable
importance. Like the Neural Networks, categorical variables had to be one-hot encoded. The same
method was applied to aggregate the importance. Results are listed below in tables 8 and 9.

Table 8: XG importance

Cl. Variable Target Imp.
Scaled

Imp.
Raw

1 emotion1 welloff 100.0000 6.3278
1 hyper1 welloff 87.3227 5.5256
1 drinkloc welloff 71.2328 4.5075
1 prosoc1 welloff 63.5728 4.0228
1 whnlvskl welloff 48.6688 3.0797
2 emotion1 helptch 100.0000 4.8899
2 prosoc1 helptch 85.8060 4.1958
2 hyper1 helptch 84.4213 4.1281
2 oldbest helptch 60.2818 2.9477
2 whnlvskl helptch 59.6249 2.9156
3 kind alrisk 100.0000 6.4310
3 schsm alrisk 94.7004 6.0902
3 prosoc1 alrisk 91.5196 5.8856
3 shares alrisk 81.2118 5.2227
3 emotion1 alrisk 72.2302 4.6451
4 avoiddrg schdrg 100.0000 5.2717
4 prosoc2 schdrg 95.7463 5.0475
4 prosoc1 schdrg 94.3147 4.9720
4 kind schdrg 91.0334 4.7990
4 hyper1 schdrg 74.5794 3.9316
5 prosoc1 likeskl 100.0000 6.1727
5 lies likeskl 96.5622 5.9605
5 hyper1 likeskl 68.6067 4.2349
5 emotion1 likeskl 56.4535 3.4847
5 prosoc2 likeskl 54.6596 3.3739

Table 9: XG importance (cont.)

Cl. Variable Target Imp.
Scaled

Imp.
Raw

6 schsm Truant1 100.0000 5.1284
6 prosoc1 Truant1 95.6368 4.9046
6 emotion1 Truant1 79.1009 4.0566
6 shelpout Truant1 75.4946 3.8716
6 ssomatic Truant1 75.3153 3.8624
7 drglife somatic 100.0000 6.5682
7 allife somatic 94.4637 6.2046
7 hpbclass somatic 90.1272 5.9197
7 sayno somatic 80.1540 5.2647
7 drgrisk somatic 69.8938 4.5908
8 talkpa dadscore2 100.0000 18.3981
8 hyper1 dadscore2 25.1342 4.6242
8 drinkloc dadscore2 20.9098 3.8470
8 emotion1 dadscore2 20.0059 3.6807
8 famstat2 dadscore2 18.0991 3.3299
9 afraid nothin2 100.0000 8.3406
9 hyper1 nothin2 66.2195 5.5231
9 emotion1 nothin2 63.4920 5.2956
9 drgrisk nothin2 40.9123 3.4123
9 hpcclass nothin2 36.7574 3.0658

10 schdrg withfrev2 100.0000 6.5038
10 emotion1 withfrev2 71.3415 4.6399
10 emotion2 withfrev2 70.5429 4.5879
10 prosoc1 withfrev2 68.7499 4.4713
10 safraid withfrev2 52.1908 3.3944
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4.2.4 Adaptive Boosting
For the Adaptive Boosting models, the caret package uses the Gini method to calculate variable
importance. Results are listed below in tables 10 and 11.

Table 10: AB importance

Cl. Variable Target Imp.
Scaled

Imp.
Raw

1 smcost welloff 100.0000 0.0518
1 hpbclass welloff 45.6591 0.0236
1 alevr welloff 19.8455 0.0103
1 shelpout welloff 18.8146 0.0097
1 sports welloff 15.9656 0.0083
2 afraid helptch 100.0000 0.0491
2 smcost helptch 89.4970 0.0440
2 canok helptch 42.1529 0.0207
2 candang helptch 26.2294 0.0129
2 hpcclass helptch 26.2023 0.0129
3 sshares alrisk 100.0000 0.0531
3 afraid alrisk 84.0927 0.0447
3 lies alrisk 65.5940 0.0348
3 kind alrisk 59.9066 0.0318
3 steals alrisk 49.6581 0.0264
4 sshares schdrg 100.0000 0.0581
4 hpbclass schdrg 64.8672 0.0377
4 stantrum schdrg 45.9804 0.0267
4 helpout schdrg 45.6193 0.0265
4 drgdecs schdrg 43.2618 0.0251
5 skind likeskl 100.0000 0.0685
5 schdrg likeskl 84.0167 0.0575
5 shares likeskl 78.1317 0.0535
5 sshares likeskl 65.7782 0.0450
5 kind likeskl 64.1871 0.0439

Table 11: AB importance (cont.)

Cl. Variable Target Imp.
Scaled

Imp.
Raw

6 hpbclass Truant1 100.0000 0.0444
6 somatic Truant1 94.8018 0.0421
6 stantrum Truant1 78.2973 0.0348
6 smcost Truant1 58.8714 0.0262
6 sloner Truant1 52.8585 0.0235
7 smcost somatic 100.0000 0.0444
7 schsm somatic 50.3118 0.0223
7 hpcclass somatic 40.3213 0.0179
7 schdrg somatic 38.4403 0.0171
7 drgdecs somatic 25.9766 0.0115
8 talkpa dadscore2 100.0000 0.3032
8 smcost dadscore2 9.8598 0.0299
8 hpcclass dadscore2 8.0627 0.0244
8 smkdad dadscore2 7.2363 0.0219
8 famstat2 dadscore2 5.9603 0.0181
9 drgdecs nothin2 100.0000 0.0447
9 ssomatic nothin2 87.8766 0.0393
9 bullied nothin2 69.9896 0.0313
9 smcost nothin2 53.4021 0.0239
9 ssteals nothin2 41.2336 0.0184

10 kind withfrev2 100.0000 0.0556
10 shelpout withfrev2 59.7225 0.0332
10 schsm withfrev2 54.6027 0.0304
10 alrisk withfrev2 51.0458 0.0284
10 smcost withfrev2 48.8034 0.0272
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4.2.5 Overall variable importance
For each dependent variable, the mean of the importance score was calculated across each algorithm,
resulting in the overall most important variables. The Random Forest algorithm was excluded from
this calculation, as performance was very poor on each dependent variable. The result is below in
table 12 and 13.

Table 12: Overall importance

Cl. Target Variable Mean
Imp.

(scaled)
1 welloff drinkloc 60.16
1 welloff smcost 56.95
1 welloff emotion1 48.28
1 welloff hyper1 48.10
1 welloff prosoc1 37.61
2 helptch smcost 65.22
2 helptch afraid 48.55
2 helptch drinkloc 47.39
2 helptch emotion1 44.58
2 helptch prosoc1 43.73
3 alrisk kind 80.13
3 alrisk sshares 68.14
3 alrisk prosoc1 58.08
3 alrisk schsm 53.69
3 alrisk helpout 47.36
4 schdrg sshares 68.69
4 schdrg hpbclass 67.38
4 schdrg kind 62.41
4 schdrg drgdecs 61.02
4 schdrg drglife 56.66
5 likeskl skind 50.71
5 likeskl kind 48.47
5 likeskl drgdecs 47.70
5 likeskl prosoc1 47.07
5 likeskl shares 46.72

Table 13: Overall importance (cont.)

Cl. Target Variable Mean
Imp.

(scaled)
6 Truant1 drgdecs 62.30
6 Truant1 schsm 51.26
6 Truant1 hpbclass 49.78
6 Truant1 whnlvskl 48.84
6 Truant1 afraid 48.58
7 somatic drglife 67.01
7 somatic allife 61.90
7 somatic smcost 56.10
7 somatic avoiddrg 52.28
7 somatic drgrisk 51.78
8 dadscore2 talkpa 100.00
8 dadscore2 drinkloc 22.94
8 dadscore2 famstat2 20.00
8 dadscore2 smkdad 19.67
8 dadscore2 hyper1 14.52
9 nothin2 drgdecs 57.59
9 nothin2 afraid 45.40
9 nothin2 ssomatic 42.52
9 nothin2 numeffects 37.94
9 nothin2 hpcclass 36.32

10 withfrev2 kind 59.36
10 withfrev2 schdrg 54.43
10 withfrev2 sex 51.00
10 withfrev2 schsm 45.99
10 withfrev2 shelpout 43.78

Since the raw variable names are hard to interpret, definitions of all important variables are given
for each cluster. Explanations are not repeated for legibility.

Cluster 1, which conveyed the missingness in the question “How well off would you say your fam-
ily/the people you live with are?”, was associated with the variables drinkloc, smcost, emotion1,
hyper1, and prosoc1. The variable drinkloc holds information about the number of locations
where the adolescent drinks, smcost about how much the adolescent thinks a pack of cigarettes
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costs, emotion1 about the emotional symptoms score of the adolescent, hyper1 about the hyper-
activity score of the adolescent, and prosoc1 about prosocial behaviour.

Next was cluster 2, signifying the missingness in the multiple options to the question “If you wanted
information about drugs, who/where would you go to?”. This was associated with the variables
smcost, afraid, drinkloc, emotion1, and prosoc1. The variable afraid holds information about
the statement “I have many fears, I am easily scared”.

Then, cluster 3, which consisted of the missingness in questions about the subject How much
information school has provided the adolescent about alcohol/drugs, according to the adolescent, was
associated with the variables, kind, sshares, prosoc1, schsm, and helpout. The variable kind
holds information about whether the adolescent feels like they are kind to younger children, sshares
about whether the adolescent usually shares with others, schsm about whether the adolescent feels
like their school has provided them with knowledge about smoking, and helpout about volunteering
activities of the adolescent.

Cluster 4, which consisted of the missingness in questions about the subject How much ad-
vice/support school has provided the adolescent about alcohol/drugs, according to the adolescent,
was associated with the variables sshares, hpbclass, kind, drgdecs, and drglife. The variable
hpbclass holds information about whether the adolescent thinks the statement “Injecting drugs
can lead to Hepatitis B” is true, drgdecs whether the adolescent believes the ability to make
decisions can be affected by taking drugs, and drglife about whether they believe taking drugs
has effect on other areas of their life.

Next was cluster 5, which represented the missingness in questions about the subject How much the
adolescent is enjoying school, was associated with the variables skind, kind, drgdecs, prosoc1,
and shares. The variable skind holds information about whether the adolescent believes they are
kind to others.

Cluster 6, which consisted of the missingness in the question “In the past year, how many times did
you skip or skive school?”, was associated with the variables drgdecs, schsm, hpbclass, whnlvskl,
and afraid. The variable whnlvskl holds information about what the adolescent will likely be doing
after they have finished school.

Cluster 7 followed, which described the missingness in the “Strengths & Difficulties” questionnaire,
was associated with the variables drglife, allife, smcost, avoiddrg, and drgrisk. The variable
allife holds information about whether they believe alcohol has effect on other areas of their life,
avoiddrg about how confident the adolescent feels about being able to avoid drugs, and drgrisk
about how much the adolescent has learned in school about the risks of drugs.

Next was cluster 8, which represented the missingness in questions about the subject How much
the parental figures know about them and their activies, according to the adolescent, was associated
with the variables talkpa, drinkloc, famstat2, smkdad, and hyper1. The variable talkpa holds
information about the likelihood of the adolescent speaking to their father/carer if worried about
something, famstat2 about family status (if both parents are present in their life), and smkdad
about whether their dad smokes.

Cluster 9, which consisted of the missingness in the question whether the adolescent does nothing
in their free time, was associated with the variables drgdrecs, afraid, ssomatic, numeffects,
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and hpcclass. The variable ssomatic holds information about whether the adolescent regularly
experiences headaches, stomach-aches or sickness.

Finally, cluster 10 consisted of the missingness in question “How much evenings the adolescent
spends with friends in a typical week”, was associated with the variables kind, schdrg, sex, schsm,
and shelpout. The variable sex is about the sex of the adolescent.

5 Discussion
The project set out to determine whether variables were able to consistently predict item non-
response in Scottish adolescents through multiverse modelling. Multiverse modelling was imple-
mented by using four different algorithmic models, along with different tuned versions for each of
those models. While the performance of the models was relevant, the individual variable importance
was at the core of the project.

Overall, every algorithm except for the Random Forest performed decent, depending on the target
variable. The Random Forest models had a poor performance on every target variable. Because of
this reason, variables of those models were not taken into account for the overall variable importance.
With the results, three notable discoveries were made: First, the variables that belonged to the
“Strengths and Difficulties” questionnaire were associated with missingness in several dependent
variables, since the variables emotion1, afraid, prosoc1, hyper1, and sshares are shown to be
important variables in multiple clusters. The second notable finding is regarding cluster 7, which
represented the missingness on the questionnaire itself. The five most important variables were
all regarding alcohol and drugs. Lastly, missingness in dadscore2 (cluster 8), which contained
information about how much the adolescent thought their parents knew of them and their activities,
was strongly associated with talkpa. This variable pertains to the likelihood of the adolescent
speaking to their father/carer if they are worried about something, and was the most important
association with missingness in dadscore for all four models.

A minor limitation of the project is the generalisibility of the results. Since the data only contains
information about Scottish adolescents, the results might not apply to other age groups, or other
nationalities for that matter. Referring to these results should thus not be done without discretion.
A second limitation is related to the optimisation of the hyperparameters of the algorithmic models.
The grid search was opted for since this is supported by the caret package in R, and requires manual
implementation. However, this approach is limiting, as only a restricted amount of combinations
of hyperparameters is tested. Other approaches to tune hyperparameters, like the Artifical Bee
Colony algorithm (ABC), or genetic algorithms, search for optimal hyperparameters in a more
complex manner, and may thus be the better option (Karaboga, Gorkemli, Ozturk & Karaboga,
2014; Alibrahim & Ludwig, 2021). Additionally, the preprocessing steps could be perceived as a
limitation. In hindsight, they were too harsh, which might have impeded the process. It would
have been informing to run the analyses again with minimal preprocessing, and to examine whether
results would have differed significantly. Although this could unfortunately not happen due to time
constraints, it is certainly valuable to take into account for future research. A final limitation is
the mediocre quality of the results. This have been caused by the class imbalance of the data.
Notably, all of the baseline versions of the models experienced difficulty with this, as every one of
them predicted all of the unseen data as ‘present’, essentially not being able to discern what could
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detect a value to be missing. Naturally, the balanced accuracies of these models were consistently
circa 0.5.

Furthermore, it should be emphasised that while the imbalance of the data may have been the
cause (or one of the causes) of the mediocre results, this should not be interpreted as a warning to
future endeavors. A considerable amount of public data in the social sciences, especially surveys
stored in national databases (like the LISS panel or data of the UK Data Service), will typically not
contain variables with more than 15% missingness. This data should not be viewed as less relevant,
as overlooking this missingness could prevent insights about crucial variables from happening. A
different recommendation is concerning the two tuning methods (class weights and threshold tuning)
that were used in the project to account for the imbalanced data. These two are both algorithm-
based, meaning they only tweak how the selected algorithms operate. Various other sampling
methods, like oversampling or SMOTE, address the imbalance problem by focussing on the data
instead. It would be worthwile for future research to also make use of these approaches, though
implementing these could result in biased results if done without discretion (Vandewiele et al., 2021).
As a final recommendation, researchers should not hesitate to opt for smaller data sets to analyse.
While a large data set can allow for greater generalisibility and statistical power (Wolf, Harrington,
Clark & Miller, 2013), it significantly slowed down the progress of this project, especially with
the more complex algorithms (like Neural Networks and XGBoost Regression). Considering this
was more of an exploratory analysis (which does not aim to establish causality), the project would
have benefited from analysing a smaller amount of data. Especially when more variables might be
examined as the dependent variable, it would be more efficient to analyse multiple different smaller
data sets instead of one larger one. This is also more in line with the principles of multiverse analysis
(Steegen et al., 2016). Moreover, a smaller data set would have also allowed for the sophisticated
hyperparameter tuning practices mentioned earlier.

The closing point of discussion is on two ethical concerns. First is the possible harm of using machine
learning algorithms, or rather, what amount of influence their results should be granted. If a certain
variable can consistently predict missingness (in other variables) through exploratory analyses like
this project, this does not automatically mean they hold any causal property. This is a common
pitfall in data science, but domain knowledge is necessary to certify findings made with machine
learning algorithms (Grimmer, 2015; Suresh & Guttag, 2019). The second ethical consideration
expands on the first one, and is regarding the possible consequences of the common knowledge base
mentioned in the introduction, and the inferences made in research on these patterns in general.
As research on these non-response patterns continues, certain conclusions could be taken out of
context, which might slowly bring forth stigmas. To illustrate an exaggerated example, if a specific
demographic is consistently shown to exhibit non-response, this could develop into a persistent
association with this demographic. This association might in turn deter future researchers from
making an effort to include this demographic. Since the goal is to scientifically find evidence for
these patterns, the intention of this example is not to suggest that these findings should not be
reported; the key is how they are reported. Ultimately, the point that should be emphasised is the
importance of inclusive data collection, instead of facilitating singular associations that can easily
be taken out of context. Of course, how people (or society as a whole) will interpret these results
is out of the hands of the researchers to a certain extent. Nonetheless, the obligation of scientific
research to communicate findings in a responsible manner should not cease to be reiterated.
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5.1 Conclusion
While the project was exploratory, it could be a significant step in determining what variables might
be associated with variables regarding mental health, and alcohol and drug use among adolescents.
A relevant discovery was made, given that the variables belonging to the mental health questionnaire
were associated with missingness in several dependent variables. Future research could consider to
include mental health constructs, and perform confirmatory analyses to determine whether they
might belong to true response models of other variables.

Additionally, although its limitations were discussed earlier, machine learning is excellent for these
types of projects, and necessary to enrich the common knowledge base. The practice of multiverse
analysis is advised to ensure transparency and reliability of the findings. It is worth emphasising
for future projects that if a variable cannot be predicted well by multiple algorithms, this could
also lead to a meaningful finding. The variables that the algorithms were trained with are possibly
not associated with missingness in that variable, which is relevant in uncovering the true response
model as well.

In conclusion, missing data is ubiquitous, and should be addressed with the right methods in
order to prevent harmful biases in the data. Biased data could lead to inaccurate conclusions,
which (especially in the social sciences) could have detrimental consequences. Since knowledge on
response mechanisms allows future projects to better implement these methods, research on them
remains highly relevant.
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6.1 Appendix A
Appendix A contains information about the data used in the project, and where it can be retrieved.

The data was provided by the UK Data Service, of which the general site can be found with this
link: https://ukdataservice.ac.uk/

To gain access to the data, an e-mail has to be sent to the UK Data Service stating your intentions
with the data, and which institute you belong to. Note that if the goal of the project is commercial,
the UK Data Service may decide to refrain from sharing the data. The link to the specific data
set can be found here: http://doi.org/10.5255/UKDA-SN-8615-1 (This reference is also included
in the reference list)
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6.2 Appendix B
Appendix B contains information about the model performance of all the versions of each algo-
rithms.

Table 14: All results

Target Model Version Sens. Spec. F1 Bal.
Acc MCC

welloff Random
Forest Base 0.001 1.000 0.003 0.501 0.034

helptch Random
Forest Base 0.000 1.000 NA 0.500 0.000

alrisk Random
Forest Base 0.000 1.000 NA 0.500 0.000

schdrg Random
Forest Base 0.005 1.000 0.011 0.503 0.068

likeskl Random
Forest Base 0.000 1.000 NA 0.500 0.000

Truant1 Random
Forest Base 0.000 1.000 NA 0.500 0.000

somatic Random
Forest Base 0.036 0.998 0.069 0.517 0.151

dadscore2 Random
Forest Base 0.343 0.987 0.476 0.665 0.479

nothin2 Random
Forest Base 0.000 1.000 NA 0.500 0.000

withfrev2 Random
Forest Base 0.000 1.000 NA 0.500 0.000

welloff Random
Forest Parameter tuned 0.001 1.000 0.003 0.501 0.034

helptch Random
Forest Parameter tuned 0.000 1.000 NA 0.500 0.000

alrisk Random
Forest Parameter tuned 0.007 1.000 0.015 0.504 0.074

schdrg Random
Forest Parameter tuned 0.063 1.000 0.117 0.531 0.226

likeskl Random
Forest Parameter tuned 0.000 1.000 NA 0.500 0.000

Truant1 Random
Forest Parameter tuned 0.007 1.000 0.013 0.503 0.075

somatic Random
Forest Parameter tuned 0.094 0.995 0.167 0.545 0.239

dadscore2 Random
Forest Parameter tuned 0.414 0.979 0.529 0.697 0.509
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Table 14: All results (continued)

Target Model Version Sens. Spec. F1 Bal.
Acc MCC

nothin2 Random
Forest Parameter tuned 0.000 1.000 NA 0.500 0.000

withfrev2 Random
Forest Parameter tuned 0.000 1.000 NA 0.500 0.000

welloff Random
Forest

Parameter tuned +
Class weights 0.001 1.000 0.003 0.501 0.034

helptch Random
Forest

Parameter tuned +
Class weights 0.000 1.000 NA 0.500 0.000

alrisk Random
Forest

Parameter tuned +
Class weights 0.000 1.000 NA 0.500 0.000

schdrg Random
Forest

Parameter tuned +
Class weights 0.031 1.000 0.060 0.515 0.156

likeskl Random
Forest

Parameter tuned +
Class weights 0.000 1.000 NA 0.500 0.000

Truant1 Random
Forest

Parameter tuned +
Class weights 0.005 1.000 0.011 0.503 0.069

somatic Random
Forest

Parameter tuned +
Class weights 0.081 0.996 0.147 0.538 0.222

dadscore2 Random
Forest

Parameter tuned +
Class weights 0.398 0.983 0.521 0.690 0.508

nothin2 Random
Forest

Parameter tuned +
Class weights 0.000 1.000 NA 0.500 0.000

withfrev2 Random
Forest

Parameter tuned +
Class weights 0.000 1.000 NA 0.500 0.000

welloff Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.022 0.997 0.041 0.509 0.080

helptch Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.001 0.999 0.002 0.500 0.007

alrisk Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.052 0.998 0.098 0.525 0.188

schdrg Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.266 0.990 0.401 0.628 0.427

likeskl Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.000 1.000 NA 0.500 0.000
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Table 14: All results (continued)

Target Model Version Sens. Spec. F1 Bal.
Acc MCC

Truant1 Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.153 0.993 0.255 0.573 0.309

somatic Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.290 0.965 0.392 0.627 0.352

dadscore2 Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.521 0.958 0.569 0.739 0.519

nothin2 Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.211 0.983 0.314 0.597 0.317

withfrev2 Random
Forest

Parameter tuned +
Class weights +
Threshold tuned

0.000 1.000 NA 0.500 0.000

welloff Neural
Networks Base 0.000 1.000 NA 0.500 0.000

helptch Neural
Networks Base 0.000 1.000 NA 0.500 0.000

alrisk Neural
Networks Base 0.268 0.924 0.290 0.596 0.207

schdrg Neural
Networks Base 0.000 1.000 NA 0.500 0.000

likeskl Neural
Networks Base 0.000 1.000 NA 0.500 0.000

Truant1 Neural
Networks Base 0.000 1.000 NA 0.500 0.000

somatic Neural
Networks Base 0.000 1.000 NA 0.500 0.000

dadscore2 Neural
Networks Base 0.340 0.975 0.447 0.658 0.422

nothin2 Neural
Networks Base 0.148 0.968 0.213 0.558 0.179

withfrev2 Neural
Networks Base 0.000 1.000 NA 0.500 0.000

welloff Neural
Networks Parameter tuned 0.177 0.937 0.212 0.557 0.137

helptch Neural
Networks Parameter tuned 0.265 0.921 0.286 0.593 0.199
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Table 14: All results (continued)

Target Model Version Sens. Spec. F1 Bal.
Acc MCC

alrisk Neural
Networks Parameter tuned 0.457 0.967 0.535 0.712 0.495

schdrg Neural
Networks Parameter tuned 0.432 0.958 0.507 0.695 0.454

likeskl Neural
Networks Parameter tuned 0.424 0.952 0.462 0.688 0.407

Truant1 Neural
Networks Parameter tuned 0.378 0.944 0.433 0.661 0.366

somatic Neural
Networks Parameter tuned 0.371 0.921 0.412 0.646 0.320

dadscore2 Neural
Networks Parameter tuned 0.472 0.955 0.522 0.713 0.469

nothin2 Neural
Networks Parameter tuned 0.379 0.958 0.444 0.668 0.394

withfrev2 Neural
Networks Parameter tuned 0.332 0.949 0.389 0.641 0.328

welloff Neural
Networks

Parameter tuned +
Class weights 0.591 0.698 0.297 0.644 0.193

helptch Neural
Networks

Parameter tuned +
Class weights 0.644 0.685 0.324 0.664 0.223

alrisk Neural
Networks

Parameter tuned +
Class weights 0.709 0.771 0.407 0.740 0.339

schdrg Neural
Networks

Parameter tuned +
Class weights 0.742 0.809 0.500 0.776 0.426

likeskl Neural
Networks

Parameter tuned +
Class weights 0.652 0.760 0.354 0.706 0.281

Truant1 Neural
Networks

Parameter tuned +
Class weights 0.664 0.736 0.390 0.700 0.291

somatic Neural
Networks

Parameter tuned +
Class weights 0.647 0.746 0.428 0.697 0.307

dadscore2 Neural
Networks

Parameter tuned +
Class weights 0.660 0.867 0.499 0.763 0.430

nothin2 Neural
Networks

Parameter tuned +
Class weights 0.687 0.779 0.405 0.733 0.333

withfrev2 Neural
Networks

Parameter tuned +
Class weights 0.646 0.758 0.378 0.702 0.290

welloff Neural
Networks

Parameter tuned +
Class weights +
Threshold tuned

0.662 0.635 0.292 0.648 0.192
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Table 14: All results (continued)

Target Model Version Sens. Spec. F1 Bal.
Acc MCC

likeskl Neural
Networks

Parameter tuned +
Class weights +
Threshold tuned

0.708 0.708 0.338 0.708 0.271

somatic Neural
Networks

Parameter tuned +
Class weights +
Threshold tuned

0.712 0.690 0.419 0.701 0.302

welloff XGBoost
Regression Base 0.134 0.976 0.203 0.555 0.188

helptch XGBoost
Regression Base 0.283 0.977 0.389 0.630 0.371

alrisk XGBoost
Regression Base 0.554 0.980 0.647 0.767 0.621

schdrg XGBoost
Regression Base 0.586 0.978 0.679 0.782 0.648

likeskl XGBoost
Regression Base 0.544 0.975 0.618 0.759 0.587

Truant1 XGBoost
Regression Base 0.499 0.974 0.597 0.736 0.562

somatic XGBoost
Regression Base 0.422 0.968 0.528 0.695 0.486

dadscore2 XGBoost
Regression Base 0.462 0.971 0.550 0.716 0.514

nothin2 XGBoost
Regression Base 0.406 0.980 0.521 0.693 0.502

withfrev2 XGBoost
Regression Base 0.417 0.975 0.520 0.696 0.492

welloff XGBoost
Regression Parameter tuned 0.221 0.968 0.299 0.594 0.264

helptch XGBoost
Regression Parameter tuned 0.338 0.965 0.423 0.652 0.382

alrisk XGBoost
Regression Parameter tuned 0.672 0.977 0.728 0.825 0.699

schdrg XGBoost
Regression Parameter tuned 0.622 0.977 0.704 0.800 0.673

likeskl XGBoost
Regression Parameter tuned 0.639 0.981 0.709 0.810 0.684

Truant1 XGBoost
Regression Parameter tuned 0.560 0.976 0.651 0.768 0.618

somatic XGBoost
Regression Parameter tuned 0.482 0.947 0.545 0.715 0.480
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Table 14: All results (continued)

Target Model Version Sens. Spec. F1 Bal.
Acc MCC

dadscore2 XGBoost
Regression Parameter tuned 0.491 0.968 0.569 0.730 0.530

nothin2 XGBoost
Regression Parameter tuned 0.505 0.979 0.605 0.742 0.580

withfrev2 XGBoost
Regression Parameter tuned 0.510 0.969 0.586 0.739 0.547

welloff XGBoost
Regression

Parameter tuned +
Threshold tuned 0.403 0.883 0.346 0.643 0.253

helptch XGBoost
Regression

Parameter tuned +
Threshold tuned 0.576 0.866 0.448 0.721 0.367

alrisk XGBoost
Regression

Parameter tuned +
Threshold tuned 0.759 0.963 0.743 0.861 0.710

schdrg XGBoost
Regression

Parameter tuned +
Threshold tuned 0.782 0.945 0.731 0.863 0.688

likeskl XGBoost
Regression

Parameter tuned +
Threshold tuned 0.771 0.966 0.749 0.869 0.718

Truant1 XGBoost
Regression

Parameter tuned +
Threshold tuned 0.755 0.911 0.645 0.833 0.591

somatic XGBoost
Regression

Parameter tuned +
Threshold tuned 0.631 0.884 0.558 0.757 0.470

dadscore2 XGBoost
Regression

Parameter tuned +
Threshold tuned 0.740 0.909 0.613 0.825 0.562

nothin2 XGBoost
Regression

Parameter tuned +
Threshold tuned 0.744 0.923 0.635 0.833 0.588

withfrev2 XGBoost
Regression

Parameter tuned +
Threshold tuned 0.607 0.939 0.591 0.773 0.533

welloff Adaptive
Boosting Base 0.119 0.981 0.188 0.550 0.185

helptch Adaptive
Boosting Base 0.205 0.981 0.304 0.593 0.301

alrisk Adaptive
Boosting Base 0.620 0.981 0.702 0.801 0.676

schdrg Adaptive
Boosting Base 0.542 0.977 0.642 0.759 0.611

likeskl Adaptive
Boosting Base 0.559 0.981 0.649 0.770 0.625

Truant1 Adaptive
Boosting Base 0.470 0.978 0.581 0.724 0.554

somatic Adaptive
Boosting Base 0.400 0.971 0.513 0.685 0.476
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Table 14: All results (continued)

Target Model Version Sens. Spec. F1 Bal.
Acc MCC

dadscore2 Adaptive
Boosting Base 0.400 0.974 0.503 0.687 0.474

nothin2 Adaptive
Boosting Base 0.444 0.984 0.566 0.714 0.551

withfrev2 Adaptive
Boosting Base 0.436 0.976 0.541 0.706 0.513

welloff Adaptive
Boosting Parameter tuned 0.184 0.959 0.244 0.571 0.195

helptch Adaptive
Boosting Parameter tuned 0.263 0.967 0.349 0.615 0.313

alrisk Adaptive
Boosting Parameter tuned 0.596 0.974 0.662 0.785 0.629

schdrg Adaptive
Boosting Parameter tuned 0.557 0.972 0.641 0.764 0.603

likeskl Adaptive
Boosting Parameter tuned 0.566 0.978 0.647 0.772 0.620

Truant1 Adaptive
Boosting Parameter tuned 0.514 0.966 0.591 0.740 0.547

somatic Adaptive
Boosting Parameter tuned 0.459 0.962 0.550 0.710 0.500

dadscore2 Adaptive
Boosting Parameter tuned 0.422 0.974 0.523 0.698 0.494

nothin2 Adaptive
Boosting Parameter tuned 0.446 0.971 0.535 0.709 0.500

withfrev2 Adaptive
Boosting Parameter tuned 0.445 0.970 0.535 0.708 0.498

welloff Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.610 0.697 0.305 0.653 0.205

helptch Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.667 0.753 0.382 0.710 0.298

alrisk Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.891 0.844 0.576 0.868 0.548

schdrg Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.871 0.774 0.524 0.822 0.474

likeskl Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.884 0.850 0.560 0.867 0.537

Truant1 Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.831 0.755 0.483 0.793 0.425

somatic Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.810 0.729 0.493 0.769 0.408
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Table 14: All results (continued)

Target Model Version Sens. Spec. F1 Bal.
Acc MCC

dadscore2 Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.636 0.919 0.570 0.778 0.509

nothin2 Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.808 0.773 0.453 0.791 0.406

withfrev2 Adaptive
Boosting

Parameter tuned +
Threshold tuned 0.780 0.772 0.451 0.776 0.393
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