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Lay summary

There are some problems that computers cannot solve. This is true not
only for many societal and practical problems, it has in fact been proven
for mathematical problems. Turing showed in 1936 that some mathemat-
ical problems are so hard that computers can never solve them. In the
same paper, he described the Turing machine model for computers and the
halting problem, which can not be solved on these machines.

Figure 1: Alan Turing

Our current computers are as powerful as
the Turing machines and the Turing machine
model is still widely used in computer science
to describe what computers can and cannot
solve. It is often assumed that this means that
computers can never solve the halting problem,
but this is only the case if no computers can
be made that are more powerful than Turing
machines.

Luckily, there is some hope that this might be
possible. The Turing machine model is based
on classical intuitions of how our universe
works. But the new physical theories of the
20th-century—quantum mechanics and gen-
eral relativity—have shown that universe fun-
damentally behaves differently from how it seems to work in ordinary
situations.

It may be possible to use this behaviour to create computers that are more
powerful than Turing machines. Researchers in the field of quantum com-
putation have made great progress in the last three decades in describing
computers that could harness quantum effects for computation. These com-
puters have the potential to solve certain problems much more efficiently
than current computers. But it turns out that these computers cannot solve
any new problems, which means they also cannot solve the halting prob-
lem.

However, the effects of general relativity are potentially even more power-
ful. In this theory, matter can curve spacetime. This might make it possible
to travel back in time through a time loop when the spacetime is properly
curved. In 2016, Aaronson et al. showed that under certain assumptions
about these time loops, it would be possible to create a computer that is
stronger than a Turing machine. Such a computer could solve the halting
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problem, which is impossible on our current computers.

But even these computers still would be unable to solve many problems.
Aaronson et al. also showed that these computers cannot solve any problem
that is harder than the halting problem. Does this mean that these harder
problems are in fact impossible to solve?

Figure 2: Illustration of
two time loops within
each other

In this thesis, I argue that much harder prob-
lems can be solved on computers in certain
situations. I show that what problems a com-
puter can solve depends on how many time
loops are in the universe and how these time
loops are connected. With every time loop that
is appropriately placed into another time loop,
it becomes possible to make an even stronger
computer that can solve even more and harder
problems. When it is possible to create more
time loops during the calculation of a com-
puter, it would be possible to solve a huge
amount of harder and harder problems that are
all impossible to solve with our current com-
puters.

This thesis gives more information about what
can and cannot be calculated in our universe under what conditions. It
shows that our current computers might not be the most powerful com-
puters that can exist. It also shows how the power of a computer is related
to how many time loops it has access to. And it once again emphasises
that physical laws are highly relevant to computational questions. After all,
computation is always a physical process as well as a mathematical one.
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1 | Introduction

“Well, then,” I said, “either I am a lunatic, or something just as
awful has happened. Now tell me, honest and true, where am I?”

A Connecticut Yankee in King Arthur’s Court
MA R K TWA I N

Nowadays, our computers seem to be able to do almost anything. A tiny
smartphone in your pocket can calculate, communicate over the inter-
net, convert speech to text and even generate pictures based on a textual
prompt. However, already before the first digital computer was created,
it was known that there are some mathematical problems that computers
cannot solve. This was shown by Turing in 1936 and applies to all of our
everyday computers.

All our current computers—phones, laptops, servers, supercomputers—are
classical computers, based on the architecture described by von Neumann
in 1945. But these are not the only type of computers that are possible. In
the 1980s the field of quantum computing emerged, and it has gained trac-
tion over the last decades. This may result in usable quantum computers
in the future, which could solve certain problems exponentially faster than
our current computers. But sadly, these quantum computers would not be
able to solve any new mathematical problems, that our current computers
cannot solve [1].

Let us not give up hope on these problems yet however! Apart from quan-
tum mechanics, another physical theory has revolutionised our ideas about
the world. General relativity has taught us that space and time are inter-
connected and that this spacetime is curved by matter and energy. What
implications does this other theory have for computing?

It turns out that in general relativity, there is the possibility of spacetime
curving so much that it loops, potentially allowing for time travel to the
past. Aaronson et al. have shown that under one model of these loops,
computers could solve some of these problems that our current computers
are fundamentally unable to solve [2]. At last there is hope that these
problems can be solved after all, even if this would require exotic spacetime
curvature.

But in this model that Aaronson et al. use, there are again limits to compu-
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tation. Some of the problems that can be formulated are still unsolvable by
these computers, even if they have access to these time loops. In this thesis
I show that with the appropriate spacetime configuration, it is possible to
solve even more problems. All that is needed for this, is for there to be
more time loops in the time loops.

In this chapter I will give a very brief background of the theories needed to
understand my result. In Chapter 2 more background on time travel and
hypercomputing will be given. Then in Chapter 3 I will introduce a physical
model that forms the basis for the rest of my research, on which I will build
a computational model in Chapter 4. In Chapter 5 the computational power
of this model will be proven. And lastly in Chapter 6 I will give a conditional
result on the limits of computation in my models, indicating what problems
still cannot be solved.

1.1 Background

My thesis builds on research in computer science as well as in the (phi-
losophy of) physics. So to understand the research, some knowledge is
required of both fields. In this section, I will give a short introduction to
the concepts that are most important to my thesis.

1.1.1 Computability theory

One of the questions in computer science is the question of what problems
can and can not be solved by a computer. For this, we need a model of
computation, the Turing machine. Using the Turing machine and related
oracle machines, we can establish a hierarchy of computable problems. The
introduction to these concepts in this section should be enough to follow
the argumentation in this thesis, for a more comprehensive introduction to
computability theory, I refer the reader to the book “Turing Computability:
Theory and Applications” by Soare [3].

Turing machines

Turing machines were introduced by Turing in 1936 in his famous paper
“On computable numbers, with an application to the Entscheidungsprob-
lem” [4]. In the previous years, Church, Kleene and Gödel had been trying
to find a formal definition to fit the intuitive concept of intuitively com-
putable. Church and Kleene had focused their efforts on formal recursive
functions that could be defined, but it was hard to connect these mathe-
matical models to the process of computing [3, p. 228–35]. The Turing
machine however was more similar to a physical machine, inspired by a
mechanical typewriter, and Turing gave a strong argument why it could
compute everything that was intuitively computable.

1. INTRODUCTION 2



Figure 1.1: Turing machine with finite state machine head, infinite tape
and symbols on the tape

A Turing machine has an infinite tape subdivided into cells. On each cell,
there can be a symbol from a finite alphabet. We can imagine this as
an infinitely long piece of paper, divided horizontally into squares. The
machine has a reading head that can move over this tape, one square left
or right at each step. The machine also has a finite set of internal states.
At each step, it reads the square of the tape under the reading head and
based on its internal state and the square it reads, it writes a symbol on
the square under the reading head and moves left or right.

A Turing machine also has a specific internal state designated as an initial
and one as a halting state. This means that the machine always start in the
initial state and is done when it reaches the halting state. It can then be
considered to have outputted or returned whatever is on (a specific part
of) the infinite tape.

Formally, this means a Turing machine is defined by an alphabet of symbols
A, a set of internal states S, including one sinitial ∈ S and one shalting ∈
S, and a partial function t : A × S → A × S × {L,R}. The machine then
in each step reads the symbol under the reading head a and transitions
based on that and its current internal state s using t(a, s). It then writes
the symbol returned by t, moves to the internal state returned by t and
moves left or right based on t. It keeps doing this until it reaches shalting.

Turing argued that this machine can do anything that is intuitively com-
putable. In 1936 there were no digital computers yet, so the main intuition
of computing was a person following a defined set of steps to compute a re-
sult. Turing argued that such a person would be able to compute the same
things as a Turing machine. They would have a finite amount of internal
states (or they would become so close they would be indistinguishable),
they would only be able to recognise a finite number of different symbols
in action, and they would only be able to read and move through their
notes at a finite speed [4, p. 74–77]. But Turing also pointed out that any
computing machine would have the same limitations [4, p. 79].

Turing proved that there are some problems that a Turing machine cannot
compute. For example, the halting problem cannot be computed by a Turing
machine. The halting problem is the problem of whether any given Turing
machine always eventually reaches a halting state. It is easy to see that
this is not computable on a Turing machine by contradiction. Imagine a
Turing machine H exists that could tell whether a machine halts. Now we
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construct a Turing machine C that runs H on itself and stays in a non-
halting state forever if it returns true and halts if it returns false. We should
be able to construct this machine if H exists, but its output on C would
always be wrong. If it returns true, it in fact does not halt and if it returns
false, it does. So H cannot exist and the halting problem is not computable
on a Turing machine.

Turing convincingly argued that this model formalised the intuitive concept
of computation and the Turing machine is still the most used model to
reason about computation. Other models, like the lambda-calculus, have
been shown to be able to compute exactly the same problems as the Turing
machine. In the context of this thesis, it is important to understand that
Turing’s demonstration that the Turing machine can compute anything
that is computable, relies on the fact that the tape behaves according to
Newtonian mechanics. When considering general relativity and quantum
mechanics, which have superseded Newtonian mechanics, this no longer
holds. This is why I will use a different model of computation in this setting.

Oracle machines

Turing machines are one way to judge the computability of problems. Can
the problem be solved in finite steps by a Turing machine? Then we call it
computable and otherwise we do not. But in this thesis I will go beyond
that and for this we need a hierarchy of computability. To construct this
hierarchy, we will use oracle machines.

Oracle machines were originally introduced by Turing [5, p. 173] as an
aside in his PhD thesis. But it was Post, who later used these oracle ma-
chines to create a hierarchy of computability [3, p. 243–45].

Oracle machines are like Turing machines, with the addition that they have
access to an oracle. An oracle can solve a specific problem, for example
one might have a prime oracle, that can tell for any number whether it is a
prime. The oracle machine with a prime oracle could then query this oracle
at any step to see if a number is a prime.

But a Turing machine can already compute whether a number is a prime,
so oracle machines only get interesting when they have an oracle for a
non-computable problem. For example, one could have an oracle machine
with a halting oracle. That machine could solve the halting problem, by
simply using its oracle, so that machine would be more powerful than a
Turing machine.

Turing degrees

In the theory of Turing degrees, sets of natural numbers represent decision
problems. To construct a set of natural numbers for a decision problem,
we encode each instance of the problem as a natural number. Then the set
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representing the problem is all the numbers that represent Y E S-instances
of the problem. The theory of Turing degrees describes what decision prob-
lems oracle machines can decide.

Each decision problem has a corresponding Turing degree, which is a set
of decision problems that have the same level of computability. This means
that all the decision problems are Turing equivalent, they can be decided
on the same oracle Turing machine.

Definition 1 (Turing reducibility) Decision problem A is Turing reducible
(notated A ⩽T B) to decision problem B iff A can be decided by an oracle
machine with an oracle for problem B.

Definition 2 (Turing equivalence) Decision problems A and B are Turing
equivalent (notated A ≡T B) iff A ⩽T B and B ⩽T A.

Definition 3 (Turing degree) A Turing degree a is a set of decision prob-
lems, such that for each problem A and B in a it holds that A ≡T B. The
Turing degree of a problem C is notated as [C].

Definition 4 (Partial order on Turing degrees) A Turing degree [A] is
less than a Turing degree [B] (notated [A] ⩽ [B]) iff A ⩽T B.

This partial order gives us our first Turing degree, which we will call 0.
It is the least element in the set of all Turing degrees and it contains all
problems that are decidable on a Turing machine without an oracle. In
other words, 0 is the set of computable problems. We can derive higher
sets from 0 using Turing jumps.

Definition 5 (Turing jump) The Turing jump from Turing degree [A]
(notated [A] ′) is the set of problems Turing equivalent to the corresponding
halting problem of A. Multiple subsequent Turing jumps are notated as
[A](n). For example [A] ′′′ can equivalently be written as [A](3).

Definition 6 (Corresponding halting problem) The corresponding halt-
ing problem of problem A is the problem of deciding whether a given oracle
Turing machine with an A oracle will halt.

Turing’s logic about the uncomputability of halting problems holds for
oracle machines as well. So the halting problem of a problem always has
a strictly larger Turing degree. So the Turing degree after a Turing jump is
strictly larger. To easily refer to specific halting problems, I will sometimes
call the halting problem of a problem in 0(n−1) the nth halting problem

1.1.2 General relativity

General relativity is a physical theory published by Einstein in 1915. It
generalises special relativity and is our current best theory of gravity. In
the theory, spacetime can be curved and this curvature is influenced by the
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energy and matter that is present at each spacetime location. The spacetime
structure is given by solutions of Einstein’s field equations.

In 1949, Gödel found a solution of Einstein’s equations in which the space-
time curves so much, that it forms a loop or closed timelike curve (C T C

from now on). This loop could potentially allow an observer to travel to
the past.

This possibility of C T Cs showing up in general relativity plays a central
role in this thesis. It is these C T Cs that could potentially give computers
more computational power. However, it is unclear whether the situations
in which these situations would show up are possible. One proposal for a
situation that could create C T Cs however, are Kerr black holes as proposed
by Etesi and Nemiti [6], which seems to be a quite physically realistic
situation.

1.1.3 Quantum mechanics

General relativity does not describe all of our observations correctly, when
systems are very small we observe quantum interference and other quan-
tum effects. These are described by the theory of quantum mechanics. It is
highly likely that a C T C, if it exists, will also exhibit these quantum effects.
And in the physical model by Deutsch that I use in this thesis the states
and the interactions in the C T C are described quantum mechanically.

I will not give a full introduction to quantum mechanics here, for a thor-
ough introduction one can read any introductory physics textbook, for
example Griffiths [7]. Or to the reader who wants a shorter, more philo-
sophical introduction, I can recommend the Stanford Encyclopedia entry
on quantum mechanics [8].

In quantum mechanics, the state of a system is described by a unit vector in
a complex Hilbert space. A Hilbert space is a vector space that is complete
in the norm defined by an inner product. The Hilbert space that the states
are in depends on the system that we want to describe the state of. It may
be a finite-dimensional or infinite-dimensional Hilbert space.

The observables we see in the classical world, like position and momentum,
are not always defined completely by the quantum state. For example, a
particle might be in a superposition of being in location a and b. If the
quantum state of the particle at location a would be |a⟩ and at location b
|b⟩ then it could be in a superposition like:

1√
2
(|a⟩+ |b⟩) (1.1)

In an experiment we would then have a 50% chance of observing the
particle in location a and a 50% chance of observing it at location b. How
we should interpret the state of the particle before we observe it is a major
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subject of debate.

An important feature of quantum mechanics that I will use is that all evo-
lution, except collapse in some interpretations of quantum mechanics, is
unitary. This means that all evolutions can be described by a unitary op-
erator. A unitary operator is linear, bounded and its adjoint reverses its
effects.

1.1.4 Time travel

So in general relativity C T Cs can show up that could allow for time travel
to the past. But in these situations quantum mechanical effects could show
up as well. The problem is that at this time, we do not know how to unify
general relativity and quantum mechanics in one theory. This makes it
impossible to know for sure how systems behave in which both theories are
important. That makes it hard to reason about time travel and computation
with time travel.

However, in 1991, Deutsch [9] published a model of how C T Cs could
be expected to work. He proposed that we should take the C T Cs from
solutions of general relativity, but describe the interactions and states of
the systems quantum mechanically. This is a

1.2 Research questions

In this thesis, I generalise the work that was done by Aaronson et al. [2].
They showed what is computable on a computer that has access to a single
C T C. But in this thesis, I investigate whether this is the limit of computation
in C T Cs. I consider a spacetime model with multiple C T Cs nested within
each other and investigate how this affects the computational power in
those spacetimes. In general, the question I will try to answer is “Given any
n ∈ N, what is the computational power of a universe with n nested C T Cs?”.

1.3 Relevance

The basis of my research in this thesis is very theoretical. It is unclear
whether C T Cs are physically possible at all and how exactly they would
behave. And if they can exist, it is highly unlikely we will be able to create
our own C T Cs, let alone harness them for computation. But I think this
research is still highly relevant, to computer science, physics, and philoso-
phy.

To physics, because understanding the computational properties of dif-
ferent spacetime models and possible laws of nature will help us better
understand how the universe would behave under these circumstances.
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This computational exploration of nested C T Cs gives a glimpse into how
the nesting of these C T Cs affects their behaviour. This research also raises
the question if there are any physically realistic models in which nested
C T Cs could show up in general relativity. And people who are committed
to a strong version of the Church-Turing thesis might take this research as
another reason to consider C T Cs to be fundamentally impossible.

To computer science, because it explores computational concepts under a
different computational model, that might be more physically realistic than
the standard Turing machine model. Furthermore, exploring algorithms
in such an unorthodox setting might give us insights into new interesting
techniques for algorithms and proofs in classical computational theory. It
also connects the theory of Turing degrees to a potentially physically real-
isable model of computation in an interesting way. And lastly this research
should be a welcome reminder that in the end computation is a physical
process, so computer scientists should keep an eye on developments in our
understanding of physics.

To philosophy, because it explores what kind of problems could be com-
putable. If one subscribes to a materialist view, this has consequences
for what can be known in general. In a materialist view, one might con-
clude based on a strong version of the Church-Turing thesis that problems
like Hilbert’s ten problems are fundamentally unsolvable. A constructivist
might even believe that problems such as that might never have a truth
value. But if C T Cs are possible this research shows how we can stretch
those limits and more problems can become in principle solvable.

1. INTRODUCTION 8



2 | Time travel and
hypercomputation

If my calculations are correct, when this baby hits 88 miles per
hour. . . you’re gonna see some serious shit!

Dr. Emmett Brown, Back To The Future (1985)

In this chapter, I will discuss time travel and how it connects to hypercom-
putation. I will first discuss previous work on time travel and its logical and
philosophical consequences. Then I will introduce the fields of supertasks
and hypercomputation, and discuss how these are connected. Lastly, I will
discuss different proposals for using time travel to enable supertasks and
hypercomputation.

2.1 Time travel

Time travel is a popular science fiction trope and is often dismissed as
an impossible fantasy. But a close look at our best fundamental physical
theories shows that many forms of time travel might not be impossible. For
example, forward time travel, in the sense that an observer could go far
into the earth’s future in a for them subjectively short time, is possible in
the framework of special and general relativity.

The standard example for such forward time travel in special relativity is
of a twin, Alex and Brett. Alex remains on earth, while Brett takes a trip
on a spaceship travelling far away from earth and then back, as illustrated
in Figure 2.1. If Brett travelled there and back with sufficient speed, they
would have aged much less than Alex. This is because when an observer
travels close to the speed of light, time dilation occurs, causing the time to
pass differently for the twins.

This scenario is called the twin paradox because for many people it is
initially surprising that Alex ages faster than Brett. It might seem that Brett
will also see Alex as travelling very fast relative to them, so Alex must have
aged less as well. But in fact, to make the round trip, Brett accelerates,
so they are not in an inertial frame. This is what causes the asymmetry
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Figure 2.1: The situation in the twin paradox

between Alex and Brett, so the twin paradox is not a paradox in the usual
sense [10].

But that is just time travel to the future, and is as discussed, non-controversially
explainable in the framework of relativity. Time travel to the past however
is very different. With time travel into the past, I mean a scenario in which
an observer could keep going into their relative future, experiencing time
as normal, but end up back in time. More specifically, they could end back
up on the same spacelike hypersurface, in essence experiencing the same
time twice.

In science fiction stories this is accomplished by fancy time machines,
maybe a DeLorean or a phone booth. In this thesis, I will consider back-
wards time travel (which I will just call time travel from here on) more
abstractly as travelling through a closed timelike curve (C T C). C T Cs are
loops in spacetime, parts of spacetime through which an observer could
travel to their relative future, but end up to the past of some point in time
where they started from. If such C T Cs are present and an observer can
follow this loop, then time travel is possible.

In special relativity, this is not possible, as normal Minkowski spacetime
does not contain C T Cs. However, in general relativity, matter can curve
the spacetime. And already in 1949 Gödel [11] found the first solution of
Einstein’s general relativity in which C T Cs were present.

Whether C T Cs are actually physically possible is impossible to say right
now. The possibility and stability of C T Cs depends on fundamental facts of
nature that are not solely described by general relativity but are affected by
domains currently described by quantum mechanics. We do not know how
to combine general relativity with quantum mechanics, and as they are now
the theories are fundamentally incompatible. So to understand how the
universe would actually behave in situations that might result in C T Cs we
need a theory of quantum gravity and this is one of the big open problems
in physics. But since we do not have a consensus on quantum gravity
yet, we cannot say whether it is physically possible for C T Cs to form and
whether such C T Cs if formed would be stable under small perturbations.

2. TIME TRAVEL AND
HYPERCOMPUTATION
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2.1.1 The grandfather paradox

A separate problem that long has made time travel seem impossible is that
paradoxes seem to pop up whenever backward time travel is introduced.
Usually, we consider causation to only act forward in time, but if observers
or information can be transported backward in time, causation seems to
be affected as well. This seems to cause paradoxes when we try to imagine
how time travel would work.

The most famous of these is the grandfather paradox. In this a time traveller
attempts to prevent their own birth. They travel back in time to kill their
grandfather, before their grandfather has the chance to conceive one of
their parents. For the science fiction enthusiasts, this is a bit like the plot
of Back to the Future, where Marty accidentally stops his parents from
conceiving him. In the movie, the inherent paradox is ignored and he just
slowly fades from family photographs. However, this kind of situation leads
to real philosophical issues.

Imagine that the time traveller succeeds in killing their grandfather and
thus preventing their conception. Then they could not have travelled back
in time to kill their grandfather at all. Which means they would not have
prevented their conception, so could have travelled back in time. So there
seems to be a contradiction when the time traveller succeeds in killing
their grandfather. But how is this possible? What stops the time traveller
from succeeding? Is fate, or some other phenomenon stopping the time
traveller? We know of no such mechanism.

And these contradictions do not only show up with murderous time trav-
ellers, simple objects can cause similar problems when time travelling.
Anything that can affect the past could create such a problem. An example
is Polchinski’s paradox, in which a ball is sent through a C T C such that it
knocks itself of the path of the C T C, as illustrated in Figure 2.2.

David Lewis [12, p. 150] points out that the time traveller in the grand-
father paradox could fail for some commonplace reason, like just missing
their shot or having a heart attack just before their final assault. When
we think of the universe as a block universe—where the past, present and
future are equally real—it is no more surprising that the time traveller
cannot kill their grandfather than it is that I could not score a goal in the
soccer match yesterday. For the time traveller because their grandfather
was alive later in time and for me because we lost the game without scoring
any goals. In both cases, the outcome of the action is determined by the
future which is already fixed. The difference which makes the grandfather
paradox seem less palatable is that there we usually do not have direct
knowledge of the future. Usually, our knowledge about the future stems
from our knowledge about the past and present, so it does not put any
extra constraints on our expectations about events.

But how is the universe consistent then? It does not seem that the laws of
nature that we know, both from general relativity and quantum mechanics,
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Figure 2.2: Illustration of Polchinski’s paradox by
BrightRoundCircle used under CC-BY-SA 4.0

are enough to force it to be consistent. It seems relatively easy to set up a
situation where the universe could end up inconsistent when following the
laws of nature. For example, imagine using a time machine to send back in
time a bomb that destroys your lab before you can finish building the time
machine. Do the initial conditions just always happen to be such that you
are prevented from causing these contradictions for some mundane reason?
This would seem to put non-physical constraints on the situations in which
C T Cs can be constructed, seemingly requiring the initial conditions of the
universe to be just so, such that paradoxes cannot occur. And even if we
accept this assumption, it might forbid almost all time machines, since
(possibly small) inconsistencies would occur in almost any circumstance
with time machines.

In 1991, David Deutsch published a paper [9] that gave a different solution
to this problem. He proposed a model of C T Cs that takes quantum mechan-
ical effects into account. He took a curved spacetime with C T Cs as follows
from some solutions to general relativity and used quantum mechanics to
describe the states and interactions of particles in such a spacetime. On this
model, he then postulated a condition of causal consistency. This simply
requires the quantum state of the C T C to be consistent. He proved that
every quantum interaction between the degrees of freedom outside and
inside the C T C has such a consistent solution, no matter what the initial
conditions are outside the C T C. The following definition is adapted from
Aaronson and Watrous.

Definition 7 (Causal consistency) A C T C is causally consistent if the
evolution operator in the C T C maps the state of the initial hypersurface
back to that same state. [13, p. 2]

The advantage of this consistency condition is that it reduces the amount
of constraints on the past of the C T C. Of course, the conditions would
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still need to be such towards the past of the C T C that a C T C emerges,
according to whatever laws of physics, be it general relativity or another
theory that supersedes it. But apart from these constraints imposed by
physical laws, there would not be any extra constraints needed to prevent
paradoxes, since every possible initial quantum state in a given space-
time configuration leads to a consistent solution. So if we someday find a
procedure to create a C T C and Deutsch’s proposal turns out to be correct,
then we could use this procedure in any appropriate place without any
extra rules being necessary to prevent paradoxes.

2.2 Hypercomputation

This thesis is about the consequences that time travel using Deutschian
C T Cs has on computation. Specifically, a computer that can use a C T C can
compute more things than an ordinary computer. The field of hypercom-
putation studies all such computational models that are stronger than the
Turing machines. In this section, I will introduce the field of hypercompu-
tation and relate it to C T Cs.

2.2.1 Church-Turing thesis

Nowadays, the computational model of the Turing machine is the most used
model for reasoning about the decidability of computational problems. This
model was introduced by Turing in 1936 in his paper On Computable Num-
bers, with an Application to the Entscheidungsproblem [4]. He introduced
the Turing machine as a way of describing what kind of functions can be
computed mechanically and used it to show that the Entscheidungsprob-
lem is uncomputable. Not much later, it was shown that Turing machines
and the λ-calculus can both compute exactly the same functions, which
are the general recursive functions. This led to the thesis that a function
can be effectively computed if and only if it can be computed on a Turing
machine, or equivalently in the λ-calculus or if it is a general recursive
function. This is called the Church-Turing thesis after Alonzo Church and
Alan Turing.

This thesis is often used as a definition of computability and a large part of
the field of computability is built around the model of Turing machines. But
it also challenged scientists to formulate different models of computation
that could compute things that Turing machines could not. The field of
hypercomputation discusses these models. The ultimate goal would be
a stronger model of computation that is still physically realisable. This
would make it possible to create a computer that can solve problems that
are fundamentally impossible to solve on ordinary computers.
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2.2.2 Supertasks

One way of creating a stronger computational model is by giving the Turing
machine an infinite amount of steps to execute. This concept borrows
from the literature on supertasks. A supertask is a task that has an infinite
amount of steps, but of which the result can still be had in finite time in
some sense. A classic example of a supertask is the Zeno walk, where the
runner needs to first run 1

2 of the track, then 1
4 , then 1

8 , et ceteris to finish
their run. The runner will of course finish, even though there is no final
step. The apparent paradox is solved by considering the limit of the steps.

However, it gets trickier when a supertask does not have a limit. In the
thought experiment of Thomson’s lamp, we consider a lamp that is off. We
switch it on after 1 minute. After 1

2 minutes we turn it off. And then after 1
4

minute we turn it back on. We keep accelerating this indefinitely. Now the
question is, is the lamp on or off after 2 minutes? Neither it being on nor
off seems possible because after each time it is off, there will be a time it is
on and vice versa. Thomson [14] took this as proof that such a supertask
is impossible. But Benacerraf [15] pointed out that Thomson’s story only
describes the state before the two-minute mark, so it is incomplete for
questions about the state after two minutes. So when we use a supertask
for computation we need to be careful that all the elements used for the
computation are properly defined.

Tasks that speed up indefinitely are problematic to implement physically. It
would usually mean that the speed of the elements of the system needs to
grow unboundedly, but according to special relativity nothing can exceed
the speed of light. However, the curvature of spacetime in general relativity
leaves open the possibility for infinite amounts of time to be available
before a certain point in spacetime. That would allow us to perform a
supertask before a certain point in time, without needing to speed up the
process indefinitely. In 1992, Hogarth [16] introduced the idea of using
such spacetimes in general relativity to perform supertasks. We call such
spacetimes Malament-Hogarth spacetimes, named after Mark Hogarth and
David Malament, with whom Hogarth corresponded about the idea.

Definition 8 A spacetime is Malament-Hogarth iff there is a future-oriented
endless timelike worldline λ with a start point p and there exists a point
q, with a backwards light cone which contains λ. [17, p. 126]

In such a Malament-Hogarth spacetime (MH-spacetime from here on), one
could for example solve the halting problem in finite time. One would start
at point p and send a computer that runs the given program into λ, with
instructions to send a signal to q if it ever halts. Now the observer can just
travel to q in finite time and receive either a signal or no signal, which
tells them if the computation halted. The problem that we encounter in
the thought experiment of Thomson’s lamp does not occur here, since our
computation does not depend on some final state of the computer in λ.
Hogarth [17] also showed that different MH-spacetimes can have different
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computational properties. By having nested MH-spacetime-like regions
within the infinite part of an MH-spacetime even more problems can be
computed.

MH-spacetimes are not as exotic as they may seem, our best understanding
of rotating black holes suggests that these create an MH-spacetime. Rotat-
ing black holes are represented by a Kerr-Newman spacetime that has the
MH property. Etesi and Nemeti [6, p. 354–8] show that an observer falling
into the rotating black hole at an appropriate speed and angle can in finite
time receive the result of an infinite computation of an orbiting computer.

The halting problem could for example be solved for the observer in finite
time. The orbiting computer would run the program until it halts, or forever.
If it halts, it sends a signal to the falling observer. If the computer ever halts,
the observer receives a signal in finite time, so in finite time the observer
will know whether the machine ever halts. The drawback for the observer
is that they have to cross the inner horizon of the black hole, from which
they never emerge. In a sense, the knowledge from this type of supertask
is censored behind an event horizon by the universe.

2.2.3 C T Cs

Any spacetime that contains a C T C is an MH-spacetime since we can fit
an endless timeline λ in the C T C. But the supertasks proposed for MH-
spacetimes by most authors, do not necessarily work for C T Cs. Often a
supertask is simply done in an MH-spacetime by doing it in λ where there
is infinite time. However, although there is an infinite timeline through the
C T C, there has to be consistency conditions on this C T C, because there is
only one spacetime there. So in a C T C, we cannot simply run a computer
in a C T C for infinite time. But C T Cs are a very interesting case because
they can be finite but still allow non-Turing behaviour.

If Deutsch’s consistency condition on C T Cs is assumed, Aaronson and Wa-
trous [13] have shown the computational power of C T Cs that are limited
in storage space to an amount of bits that is polynomial in the input size.
They have shown that in such a C T C a computer can exactly solve the
problems in P S PA C E in polynomial time compared to the input size. These
problems can also be solved on normal Turing machines, but in exponential
time compared to the input. In 2016, Aaronson et al. showed that there are
also new problems that become computable with such C T Cs. They showed
how the halting problem, and all problems Turing reducible to it, can be
decided with access to C T Cs [2]. This means that there are strictly more
problems that can be solved in a universe with C T Cs than in a universe
without.

However, Aaronson et al. also showed that in Deutsch’s model of one C T C

with causal consistency, no problem that is not Turing reducible to the
halting problem can be decided. This is because the C T C can be simu-
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lated using a Turing machine with a halting oracle. But I will show that
with multiple C T Cs branching off from each other, even more becomes
decidable.

2.2.4 Hypercomputation using time travel

Time travel could also be used to make hypercomputation possible. This
could be done in three main ways. The computer can loop through the C T C

forever, at a slightly different location in the C T C region each time, so that it
can calculate forever in finite time seen from outside the C T C region. Or the
time travel can be used to send the result of an arbitrarily long computation
back in time. Or lastly, the computer can use information sent back in
time in such a way that a consistency condition results in information
being produced that cannot normally be (efficiently) computed. This last
approach is how I approach hypercomputation in this thesis, but I will
explain the other two approaches here.

Andreka et al. [18, p.4–8] give a description of the first approach, to send
the computer through the C T C region infinitely often, in section 3 of their
paper. This could allow the computer to compute for an arbitrarily long
time. The halting problem could then be solved by letting the computer
run until it finds that the machine halts. If the machine does halt, a signal
is sent to the future of the C T C region. If it does not halt, no signal is ever
sent. So at some fixed point in spacetime after the C T C region, an observer
will either observe such a signal or not. If they do receive a signal they
know the machine halts, if they do not, the machine does not halt.

The C T C region is the region of space through which many worldlines go
that form closed timelike curves. If it is then possible to send the computer
back in time, close to its older version, it can loop back in time again in a
slightly different worldline. There would need to at least be infinite space in
this C T C region for hypercomputation to be possible, because to solve these
problems the computer needs to potentially be able to compute forever.
This setup is illustrated in Figure 2.3 taken from their paper.

However, actually implementing hypercomputation in such a setting is
complicated by the need to avoid the creation of black holes. As the hy-
percomputation is being done by the computer, it might need an arbitrary
amount of storage space, which increases the mass of the computer. To
make sure that the machine does not collapse into a black hole it needs to
grow appropriately large. It also needs to be an appropriate distance from
previous and future instances of itself. Because the computer can keep
growing in size, the distance between its instances might keep growing
and consequently the speed with which the machine moves through the
space in the C T C might keep increasing. However, the speed of the com-
puter is bounded by the speed of light, so it might not be possible to keep
different versions of the computer far enough from each other. This makes
it unclear if it is even possible to use this setup for hypercomputation.
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Figure 2.3: Illustration of hypercomputation by sending a
computer in the C T C region by Andreka et al. [18]

This is why Andreka et al. propose to use the second way of hypercom-
puting using time travel: sending the result back in time. They propose
that the computer calculates forever in the chronology respecting part of
the spacetime, but uses the C T C to send back a signal if it finds a result.
Here again, it is crucial that the result of an arbitrarily long computation
can be received at a fixed time. For this the C T C does not need to go back
arbitrarily far in time however, it is enough for there to be C T Cs that go
back a fixed amount of time departing from every time that the computer
is working. The signal could then be sent through the C T C multiple times,
repeated back through the C T C whenever it is received to send it further
back in time. Until the signal eventually reaches back to the start of the
computation [18, p. 8–11]. This setup is illustrated in Figure 2.4 taken
from their paper.

They conjecture that such a C T C could be created by accelerating one
mouth of a wormhole. This would have the same relativistic effect as in
the twin paradox, such that the wormhole could be used to send a signal
back in time. If this wormhole could then exist forever, it could be used for
the hypercomputation Andreka et al. propose.

2.2.5 Fast computation using C T Cs

The consistency conditions that C T Cs impose seem to quite clearly make
possible fast computation of hard problems by sending information back
in time. For example, NP is a complexity class of problems for which
a solution can be verified in polynomial time. Although it has not been
proven, it is commonly thought that some problems in NP cannot be solved
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Figure 2.4: Illustration of hypercomputation by sending a
result back in time through a C T C by Andreka et al. [18]

in polynomial time on a Turing machine.

However, if a Turing machine can send information back in time, it could
take a possible solution that was sent back in time, verify it in polynomial
time and cause a contradiction if it was not a solution. It is then concluded
that the machine must immediately receive the solution for the universe
to be consistent. With an algorithm like Algorithm 2.1 any problem in NP
could then be solved in polynomial time on a Turing machine with a C T C.

Algorithm 2.1 Solving a problem in NP in polynomial time with a
sendBack instruction to send something back in time, and receive to
receive it.

1: possibleSolution← receive()
2: if isSolution(possibleSolution) then
3: sendBack(possibleSolution)
4: else
5: sendBack(nextPossibleSolution(possibleSolution))
6: end if
7: return possibleSolution

This assumes that the C T Cs would work classically, in the sense that they
are not probabilistic, nor quantum. As discussed before, this is a problem-
atic definition of C T Cs, since it is hard to avoid paradoxes. For example,
what would happen when we run Algorithm 2.1 on a problem that has no
solution?

It can be quite complicated to correctly reason about computing using such
consistency conditions. Even in established literature mistakes about the
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workings of such consistency conditions are made. For example, Brun [19]
published a paper using this method to solve hard problems. He gives
an algorithm for factoring large numbers, which I have adapted to my
pseudocode style in Algorithm 2.2.

Algorithm 2.2 Brun’s algorithm for factoring large numbers (that does not
work correctly).

1: N← input()
2: p← receive()
3: if p ⩽ 1 or N mod p ̸= 0 then
4: p← 2
5: while N mod p ̸= 0 and p ⩽

√
N do

6: p← p + 1
7: end while
8: if p >

√
N then

9: p← N
10: end if
11: end if
12: sendBack(p)
13: return p

The idea of the algorithm is that if the received p is not a factor of N, a
factor of N is searched for by lines 3–11. But this factor is then sent back.
So no matter what happens, the algorithm always sends back a factor of
N in time. So it must receive a factor of N as well. And since the p that
is received is immediately a factor of N, no computational work has to be
done in the loop and the algorithm runs in constant time.

But there is a problem here: nothing forces the algorithm to return the
smallest factor of the given number. It can in fact always consistently return
N itself. This is indeed always a factor of N, but that can also be accom-
plished in constant time on a normal computer by the statement return
N.

The fallacy here is that Brun seems to think about the program as if the
counterfactual calculations that enforce the consistent solution actually
happen. If p did indeed start as a random number, but then be forced by
the loop to be a factor, which is sent back in time after which the loop
does not need to run, the algorithm would work correctly. But this is not
the right way to think about C T Cs, because only one thing happens in
the C T C. The counterfactual situation that the inner loop is run does not
actually ever happen. In fact, it does not matter what we put between lines
3 and 11, as long as the algorithm sends a different p back from the one it
received.

This fallacy is important to keep in mind while reading this thesis, as con-
sistency conditions are a powerful instrument, but need to be correctly
applied. And this fallacy is so easy to make, that I found that when Ghosh
et al. [20] tried to point out and correct this mistake in Brun’s article, they
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end up making exactly the same mistake again. They greatly expand Brun’s
algorithm with extra flag registers supposed to keep track of whether the
loop has been run, but still overlook the important fact that this counter-
factual loop will in fact never run.*

For Deutschian C T Cs however, Aaronson and Watrous [13] have thor-
oughly shown that both classical Turing machines and quantum Turing
machines can exactly solve the problems in P S PA C E using just a poly-
nomial amount of bits. This includes all problems in NP and gives the
interesting result that for complexity theory, quantum computers and clas-
sical computers are equivalent when they have access to a C T C. This also
turns out to be the case for computability theory as Aaronson et al. [2]
showed later.

*Algorithm 3 in the paper by Ghosh et al. can still always return N with an appropriate
f flag. For example, f=1 p=4 is consistent for input N=4.
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3 | Physical model

The Snake That Eats Its Own Tail, Forever and Ever. I know
where I came from — but where did all you zombies come from?

"’—All You Zombies—’"
RO B E R T A. HE I N L E I N

Before I can discuss what the computational properties of nested C T Cs are,
I first need to explain what physical model I am considering. For this, I will
first explain what physical model Deutsch [9] considers in his paper and
what kind of different spacetime models it can represent. Then I will point
out what kind of spacetimes are excluded by Deutsch’s model. Lastly, I will
explain the physical model that I will be using, and how it can represent
these spacetimes that Deutsch does not consider.

3.1 Deutsch’s model of computation in C T Cs

C T Cs show up in some solutions of the equations of general relativity, but
Deutsch points out that these solutions usually have features that require
the incorporation of quantum mechanics. How quantum mechanics and
general relativity would interact in these situations would require a work-
ing theory of quantum gravity, which we as yet lack. But in the meantime,
we can consider the quantum mechanical interactions of particles through
causality-violating worldlines. So Deutsch chooses to analyse the C T Cs
using a simple quantum mechanical model.

In this model, the movement of the particles is approximated as classical
movement through curved worldlines. This means that some particles can
move through the C T Cs, while others simply move normally in the space-
time, without looping. The internal degrees of freedom of the particles are
treated quantum mechanically. For convenience, we can assume that every
particle has one internal degree of freedom, for example spin-1

2 . This way
each particle can represent one qubit.

21



3.1.1 Interpreting quantum mechanics

Quantum mechanics describes a world that is very different from the clas-
sical world we are used to. Particles can be in superpositions of different
positions or internal states, something we never experience in the macro-
scopic world. This discrepancy calls for explanation, which is provided by
the different interpretations of quantum mechanics. Each of the different
interpretations are empirically equivalent for the experiments we have
been able to do so far, since otherwise the non-conforming interpretations
would already have been disproven. However, the behaviour of the C T Cs
as proposed by David Deutsch would differ significantly in the different
interpretations.

This is because Deutsch’s model tries to ensure the consistency of the C T Cs.
The C T Cs loop back to the same point in spacetime, allowing events in the
future of a point to affect the state in that point. But for the model to be
consistent, every point in spacetime can only have one state. In Deutsch’s
model, this state is a quantum state, but the different interpretations dis-
agree on what exactly this quantum state is and how it evolves. To see how
this works, we can look at a quantum version of the grandfather paradox,
as Deutsch [9, p. 3202–3] does with paradox 1 in his paper.*

Take the scenario of two qubits interacting in a measurement gate that has
the following action on the two qubits:

|x⟩ |y⟩ ⇒ |y⟩ |x⊕ y⟩ (3.1)

Here |x⟩ and |y⟩ are the states of qubits, and ⊕ takes the two bits and
computes its exclusive or: 0 if x and y are both 1 or 0 and 1 otherwise. The
left side of the ket on the right side of the arrow then becomes the input
for the |y⟩ on the left side. See Figure 3.1 for an illustration.

Since |x⊕ y⟩ becomes the input |y⟩, this configuration imposes the consis-
tency condition that |x⊕ y⟩ = |y⟩. If |x⟩ and |y⟩ were classical bits, this
would cause a problem when |x⟩ is 1, since (1 ⊕ y) ̸= y. However, if we
take |x⟩ and |y⟩ to represent qubits, this problem disappears and there are
consistent values for any initial |x⟩. For example, if |x⟩ = |1⟩, a consistent
value of |y⟩ is 1√

2
(|1⟩+ |0⟩).

So far this could all work for the different interpretations of quantum me-
chanics, but it becomes problematic when real observables are added to
the states.

For example, let us now consider the Grandfather paradox quantum me-
chanically. We examine the state at the time just after when the time trav-
eller plans to kill their grandfather. Let us say the state of the world is

*The following explanation is based on Deutsch’s explanation in his paper, but slightly
altered to make it easier to understand for people with less background in quantum
mechanics
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Figure 3.1: Illustration of the flow of qubits in Deutsch’s paradox. The
square box represents the measurement gate.

|alive⟩ if the time traveller did not travel back in time and kill their grand-
father and |dead⟩ if they did travel back in time and kill their grandfather.
The evolution around the C T C is then:

U(|ϕ⟩) =

{
|dead⟩ if |ϕ⟩ = |alive⟩
|alive⟩ if |ϕ⟩ = |dead⟩

(3.2)

Because if the time traveller travels back in time to kill their grandfather,
they are never born and cannot travel back in time to kill their grandfather,
so the state changes to |alive⟩. On the other hand, if the time traveller does
not travel back in time, they are born, so they can travel back in time to
kill their grandfather, changing the state to |dead⟩. Now the only possible
state that is consistent will be one that remains the same after U. So we
solve for:

U(|solution⟩) = |solution⟩ (3.3)

Which gives us (renormalised):

|solution⟩ = 1√
2
(|alive⟩+ |dead⟩) (3.4)

So the quantum state is in a superposition of the grandfather being killed by
the time traveller and there being no time traveller to kill the grandfather.
In the many worlds interpretation, observables can be multivalued, so
this quantum state can remain in superposition. This means that in one
world the grandfather is killed by the time traveller, corresponding to the
part |dead⟩ of the full quantum state. In this world, the time traveller
that travelled back in time lives on in their grandfathers’ time, but a young
version of the time traveller is never born, since their grandfather was killed
before their parents were conceived. In the other world, the grandfather
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is not killed by the time traveller, corresponding to the part |alive⟩ of the
full quantum state. In this world, the young time traveller is born to travel
back in time later. But crucially, they do not travel back to the past of the
same world, but to that different world of |dead⟩. In this sense the time
travel that C T Cs allow to happen also allow observers to travel between
the different worlds of the many worlds interpretation.

However, in all other interpretations, observables like whether the grand-
father is killed must be single-valued. And this means that the grandfather
needs to be either dead or alive, but cannot be both. So the consistency
condition (3.3) cannot be satisfied. This holds for collapse theories—both
dynamical collapse and collapse on measurement—, hidden variable theo-
ries and statistical interpretation. So in these interpretations, something,
statistical flukes or other interventional mechanisms, need to prevent such
a situation in which a time traveller kills their grandfather from happening.

And this is not only the case for this paradox, but for all paradoxes with
C T Cs. Deutsch [9, p. 43–44] shows that when the quantum state develops
unitarily and the observables are multivalued, there is always at least one
possible quantum state at every point that remains the same throughout a
loop through the C T C for any initial condition, as long as the space in the
C T C is finite. This means that in the many world interpretations C T Cs can
behave consistently with any initial conditions, but in the other interpre-
tations this is impossible. These consistency problems would also rule out
many other situations that could be paradoxical in these interpretations.
So in this physical model, and in the rest of my thesis, we will assume the
many worlds interpretation as a given, as Deutsch does as well.

3.1.2 Deutsch’s consistency condition

To analyse what happens to the states when causality-violating regions
like C T Cs are involved, Deutsch stipulates the causal consistency condition,
as stated in Definition 7. The consistency condition has to hold on every
spacelike hypersurface, there can be only one quantum mechanical state at
each point in time. For causality-respecting regions this is obvious and does
not cause any surprising effects, all states are simply determined by their
neighbouring states. However, in a C T C, a solution needs to be found that
respects the dynamics of the region and gives a consistent solution when
it loops back. This means that the state needs to be a fixed point solution
of the evolution of the C T C and this causes the surprising computational
behaviour of the C T Cs.

3.1.3 Interacting particles

An important feature of Deutsch’s model is that the particles under con-
sideration are split into two groups. One group of particles that travels
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over the causality-respecting timeline. And another group that travels only
through the C T C. So there are no particles travelling from the causality-
respecting part to the C T C or vice versa.

However, the particles can interact through quantum gates that take the
internal degrees of freedom of the incoming particles and transform their
internal degrees of freedom appropriately. This way information can still
be exchanged between the C T C and causality-respecting part of the world.
Also within the C T C and within the causality-respecting timeline the par-
ticles in the same group may interact through quantum gates. In this way
the quantum gates allow one to create any quantum computer in Deutsch’s
model.

3.1.4 Computational universality

This model of C T Cs is restricted from a full consideration of C T Cs in four
main ways. Firstly, the spacetime structure of the C T Cs is assumed. This
is because there is no functional physical theory that combines quantum
mechanics and general relativity. Such a theory is required to give a full
explanation of the spacetime structure and the behaviour of a C T C. But I
think this restriction is justified because this theory is simply not available.
And the model is a reasonable guess of the behaviour of a C T C as relevant
for a computation.

Secondly, only the internal degrees of freedom are being considered quan-
tum mechanically. To be more general, all degrees of freedom of the par-
ticles should be considered quantum mechanically. However, for the com-
putational properties, I think this restriction is justified as well, since this
is also done in the standard gate-based models of quantum computation.
Those are also supposed to capture the full computational properties of an
ordinary quantum mechanical system, so the conclusion that the same can
be done in when C T Cs are present is reasonable.

Thirdly, as mentioned in the previous subsection, particles cannot travel
between the C T C and causality-respecting timeline. In reality, this should
be possible for a C T C, because the C T C is connected to the causality-
respecting region in spacetime. However, Deutsch shows that such inter-
change is not computationally relevant by showing its denotational equiv-
alence. I will explain this argumentation in the next subsection.

Lastly, the model only has a single C T C. Deutsch claims that his model is
computationally universal in the sense that a computer in his model can
simulate all other computers in all other spacetime models. If this is the
case, then any computational properties of Deutsch’s model are also true
for all other spacetimes. I will show later in this thesis that this is not the
case. When C T Cs are nested within each other in the spacetime, computers
can be constructed that cannot be simulated by computers in Deutsch’s
model. However, for any spacetime in which the C T Cs are not nested his
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argument is reasonable.

3.1.5 Denotational equivalence

Deutsch attempts to show that his simple model can simulate all other
spacetimes without nested C T Cs in the following sense. Consider two sys-
tems that are both of bounded extension between two spacelike hypersur-
faces. They are denotationally equivalent if they have the same function
between the states of their starting spacelike hypersurface to their end,
given a one-to-one correspondence between states in one system to the
other system. We say that Deutsch’s model can simulate a spacetime models
if and only if for any system in such a spacetime model, one can construct
an instantiation of Deutsch’s model that is denotationally equivalent to
that system.

To show this, Deutsch defines some denotationally trivial transformations
of systems. These are transformations of the system into another denota-
tionally equivalent system. For example, a system in which particles have
more internal degrees of freedom can be transformed in a denotationally
trivial way into a system with multiple particles with one internal degree
of freedom representing each original particle. In the same way, positional
properties can be represented in the system.

And Deutsch claims that all systems with multiple C T Cs can be transformed
into a denotationally trivial way to a system with just one C T C. For non
nested C T Cs this is indeed the case: we make a big single C T C from the
start of the last C T C all the way back to the end of the first C T C. Then
every particle that goes through the original C T Cs can be rerouted through
the main C T C, not interacting with any of the other particles during the
times that they would not have travelled in the original system.

3.2 Nested C T Cs

I propose a physical model that can represent more spacetimes than Deutsch’s
model. Instead of just one C T C, there can be any amount of C T Cs in my
model. Only one of the C T Cs however is allowed to have a starting point
directly in the causality-respecting region. The other C T Cs all have a start-
ing point from another C T C, but only one per C T C. This means that there
is a straight nesting of C T Cs, such that when n C T Cs are in the model,
they are also nested exactly n levels deep.

In Figure 3.2 I illustrate how the spacetime would be connected in my
model. In Figure 3.2a I have sketched the spacetime connections of one
C T C. The straight arrow going up represents the causality-respecting part
of the spacetime. The illustration should be read with time going forward
following the arrows. Then the loop back represents the C T C. The idea is
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(a) One C T C (b) Two nested C T Cs (c) Many nested C T Cs

Figure 3.2: Schematic illustration of the spacetimes of my model

(a) Two stacks of C T Cs (b) Bridge (c) Ladder

Figure 3.3: Spacetime models not allowed in my model

that a particle could either follow the straight line into the future, or could
loop back by following the C T C.

In Figure 3.2b a nested C T C is added to the spacetime. This C T C has to
depart from the original C T C, so that the nesting is exactly 2 levels deep.
The second loop is drawn counter-clockwise, because it loops back com-
pared to the local chronology in the first C T C. If it were drawn clockwise,
it would only give another equivalent way for a particle to travel into the
local future. In Figure 3.2c I show how this extends to adding an arbitrary
amount of C T Cs. Every extra C T C needs to be added departing from the
last C T C.

Like in Deutsch’s model, particles are still restricted to one C T C or to the
causality-respecting timeline. So the particles cannot travel between the
different C T Cs. However, information can still be exchanged between par-
ticles in different C T Cs using quantum gates at the intersection of different
C T Cs.

This requirement of only direct nesting of C T Cs keeps my model simple. As
I will show later when discussing the computational model arising from this
physical model, the computational properties of a spacetime only depend
on the deepest level of C T C nesting present. However, a lot of spacetime
models are excluded. In Figure 3.3 I illustrate what kind of spacetimes are
excluded. In the subsection on computational universality, I will discuss
how these can be reduced to my simple model.
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3.2.1 Consistency conditions

In this model of nested C T Cs, Deutsch’s consistency condition still has to
hold everywhere. This means on every spacelike hypersurface there can
only be one quantum state. The complexity of this condition does not
change as we nest C T Cs, but the computational consequences do. This is
because for every C T C the universe must find a fixed point of a formula of
the following form to fulfil the consistency condition:

E(|ρ⟩) = |ρ⟩ (3.5)

Here E is the evolution function of that C T C. However, for all but the
deepest C T C, E is not simply a normal quantum mechanical evolution. The
evolution of these C T Cs depends on the behaviour of the C T C that departs
from within it. And this nested C T C once again has a consistency condition
and a formula for which it has to find a fixed point. So a consistent solution
for a set of nested C T Cs is not just one fixed point solution, but an entire
chain of fixed point solutions from the deepest C T C to the outer C T C. And
all these solutions have to match, such that the deeper solutions are part
of the evolution function of the outer solutions.

It is this chaining of the consistency conditions that results in additional
computational powers. It might seem like a problem to find such a solution,
and of course on ordinary Turing machines it is, since this is a hypercom-
putational model. However, in the chapter on computational limits, I will
show that it is possible to find these solutions with the appropriate (halting)
oracle.

3.2.2 Retrospective constraints of nested C T Cs

Under Deutsch’s consistency condition, nested C T Cs, like single C T Cs, do
not put any constraints on initial conditions as long as the space in the
C T C is finite. There is always a solution for the quantum state in the C T Cs
that satisfies Deutsch’s consistency condition. This means there is no way
to create paradoxical situations where consistency is impossible like the
grandfather paradox, in my model.

To show this, I show that Deutsch’s proof for this lack of retrospective
constraints for one C T C also applies to many nested C T C. Deutsch proofs
that there is always a solution for ρ̂2 for any given initial state ρ̂1 and
unitary operator U for the following formula.

Tr1[U(ρ̂1 ⊗ ρ̂2)U
†] = ρ̂2 (3.6)

In the model of nested C T Cs the state is still described by density operators,
and the evolution is still unitary. Even if within a specific C T C there is
another nested C T C, the behaviour within that C T C is still unitary. That
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means that Deutsch’s argumentation still holds: there will always be a
solution for ρ̂2 in instantiations of (3.6) for nested C T Cs for any initial
state. So also in the nested C T C model no retrospective constraints are
imposed by the C T Cs as long as all the C T Cs have finite space.

However, when the state can be infinitely large, unitary operations do not
always have a consistent fixed point. If for example all states |n⟩ for n ∈ N
are valid and the mapping |n⟩ ⇒ |n+ 1⟩ happens in the C T C, then there
is no consistent solution for that C T C, no matter the initial conditions. This
is why Aaronson et al. [2, p. 9] have as an assumption that all C T Cs with
infinite state space that can exist do in fact have a consistent solution. I
assume the same for nested C T C and will make this more explicit in the
next chapter.

3.2.3 Computational universality

My model includes Deutsch’s model of C T Cs, so can at least simulate all
systems that Deutsch’s model can. But there are more denotationally trivial
transformations that we can use to transform spacetime models that are
excluded to our model. For example, two stacks of nested C T Cs of depth
n and m can be denotationally trivially transformed into a single stack
of max(n,m). The particles that travel through the smallest stack are
redirected to the same depth on the larger stack but kept separated so that
the two sets of particles do not interact. The time order that exists between
the two stacks can be represented by letting the particles of the first stack
affect the particles of the second stack in the region between the entrance
and exit of the outer C T C of the final stack. For example, the two stacks
of Figure 3.3a can be transformed into the singles stack of Figure 3.2b.

When it is not the causality-respecting region (the straight line), that has
two stacks of nested C T Cs, we can use the exact same transformation. It
does not matter for the transformation whether the stacks branch off from
a C T C or causality-respecting spacetime. And we can apply this transfor-
mation as many times as needed, such that we can transform any set of
nested stacks of C T Cs to a single stack of C T Cs with the same depth as
the deepest-nested C T C. For example, we can transform Figure 3.4a into
Figure 3.4b in a denotationally trivial way.

The bridges (Figure 3.3b) and the ladders (Figure 3.3c) are more com-
plicated. They cause the solutions of different stacks of nested C T Cs to
become dependent on each other. I think this can be transformed into my
model, but I am not sure what depth of nesting is needed. It is not clear if
we need to consider these spacetime models, as I do not know of any way
this kind of spacetime models could satisfy Einstein’s equations of general
relativity. But more research is needed to answer these questions.
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(a) A spacetime model that is not al-
lowed

(b) Denotationally equivalent but al-
lowed

Figure 3.4: How a complicated spacetime model can be represented in my
model
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4 | Computational model

Memory is a strange thing. It does not work like I thought it did.
We are so bound by time. By its order. . . But now I’m not so sure
I believe in beginnings and endings.

Dr. Louise Banks, Arrival (2016)

In this section, I will introduce a computational model for computation in
nested C T Cs. This model is based on Aaronson et al.’s [2, p. 9–10] model
for computation in C T Cs. I call this model T M N C for Turing Machine in
Nested C T Cs. I will first introduce Aaronson et al.’s model. Then I will
define the T M N C and explain how it differs from their model to represent
multiple nested C T Cs.

4.1 Aaronson et al.’s TMCTC model

Aaronson et al. [2, p. 9–10] introduce the TMCTC model for a Turing ma-
chine with access to a C T C in section 3 of their paper. This model has two
tapes: a causality respecting tape RCR and a closed timelike tape RCTC.
Both tapes are unrestricted in size, but only a finite part of it can be writ-
ten to in finite time, so the state of the TMCTC can be represented by the
ordered tuple (x,y), where x is the content of RCR and y is the content of
RCTC. The input is always present on the RCR when the machine starts.

The TMCTC can move over these tapes and through its finite set of internal
states like an ordinary Turing machine. But it is also probabilistic, in the
sense that it can make random steps. It has a special instruction that sets a
square on the tape to either 0 or 1 with 1

2 probability for each option. The
instructions of the machine can alter both tapes, and they require that this
always results in the machine halting in finite steps with probability 1.

As a result, the TMCTC gives a probabilistic mapping over RCTC if we ignore
its effects on RCR. They require that this mapping has at least one fixed
point for every input on RCR. This requirement is necessary because for an
infinite C T C there might not always be a consistent fixed point, as discussed
in the previous chapter. To uphold the consistency condition on the C T C,
the TMCTC will always have such a fixed point on the RCTC tape.
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Furthermore, it is required that all the fixed points over RCTC for a given
input agree on either rejecting or accepting. A certain halting state of the
TMCTC is defined to be either rejecting or accepting if it rejects or accepts
respectively with a chance of 2

3 or higher.

4.2 The T M N C model

For modelling computation in nested C T C, I will now introduce the T M N C

model. In many ways, it is similar to the TMCTC, but it is expanded to model
computation in nested C T Cs. It is instantiated with a specific depth d > 0
that corresponds to the degree to which C T Cs are nested in the spacetime
it uses. So a T M N C of depth 1 models the same spacetime that Deutsch
describes and that Aaronson et al. model in the TMCTC. A T M N C of depth 2
uses a spacetime with two C T Cs, one originating from the linear spacetime
and one originating from within the first C T C. A T M N C of depth 3 will
add another C T C originating from the second C T C and so forth.

The reason the T M N C has a parameter for the depth of nesting of the C T Cs
is that this influences what problems are computable. By specifying the
depth as a parameter, I can be more specific about what problems can be
solved in what spacetimes. Of course, the model can also be considered
as a whole, for any depth parameter. Then it has the power of all possible
models.

Like the TMCTC, the T M N C has multiple tapes for multiple spacetime re-
gions. In my physical model there are multiple C T Cs, each with its own
set of particles travelling through it. In the T M N C this is represented by
each C T C and the causality-respecting worldline having its own set of
tapes. These tapes represent the data contained in the internal degrees of
freedom of the particles in that C T C or worldline.

4.3 T M N C state and actions

In our physical model from the previous chapter, there are particles trav-
elling around worldlines in different C T Cs. Every C T C and the causality-
respecting region have a distinct set of particles that travel through it.
Each of the particles have an internal state and can interact when they
pass through the same gate.

The TMCTC represents computation in one C T C and has two tapes for this,
one representing data in the causality respecting region of the spacetime
and one representing data in the C T C region. The T M N C however can
have many nested C T Cs and the data in each of these C T Cs needs to be
treated differently, which is why has a separate set of tapes for each C T C.

The T M N C does not just have one tape for each C T C, but a fixed amount of
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tapes for each C T C region and one set for the causality respecting region.
This makes discussing some of the algorithms in this thesis easier, but does
not change the power of the C T C and is only for convenience. It does
not change the power, because all the information of a set of tapes can
be represented on a single tape by interspersing the data. This does not
change the computational power of our T M N C, just as it does not change
the computational power of an ordinary Turing machine [21, p. 5–6].

Furthermore, just like the TMCTC, the T M N C is a probabilistic machine.
Probabilistic Turing machines are not any stronger than normal Turing
machines, since there is a variant of a non-deterministic Turing machine,
which also decides the same problems as a normal Turing machine [22, p.
248].

It is important to note that our T M N C needs to be instantiated with a spe-
cific depth to result in an actual computational model, this is because each
depth of C T Cs has a distinctly different computational behaviour. I will
first describe the tapes and actions that a T M N C has access to, then I will
introduce the consistency condition that results in the extra computational
power.

A T M N C has a depth d, larger than 0, depending on what spacetime the
T M N C it is representing computation in. The depth corresponds to the
number to which the C T Cs in the spacetime are nested. This parameter d
affects the computational power, but the T M N C also has a second parame-
ter k that does not affect the computational power. k is an integer larger
than 0, that determines the amount of tapes that the T M N C has for each
depth.

So a T M N C has k · (d + 1) tapes, k tapes for every C T C and another k
tapes for the causality-respecting region. All the tapes share the same finite
alphabet, usually {0, 1, #}.

The state of a T M N C has one extra element, an integer c between 1 and d.
This represents in which part of the spacetime the current computations
are happening. It is important to keep track of this, because the changes of
the c state will be used to determine the consistency conditions that have
to hold over the tapes as I will explain later.

The value of c starts at 1 and can be incremented or decremented in a
special machine step. However, once c has been decremented, it cannot be
incremented anymore and the machine can only halt when c = 1. These
restrictions are necessary to make sure that the T M N C can be implemented
in a spacetime with only d nested C T Cs.

When writing algorithms for the T M N C we refer to the different tapes using
a number and a letter, for example 3b. The number refers to the depth of
the C T C that the tape represents. The letter distinguishes different tapes
at the same depth. The number we use to refer to the depth however, will
depend on the current depth of the machine.

I have chosen to keep the number of the tape not static, but changing with
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the current c of the machine. This will make it much easier to formulate sub
algorithms that can then be run with any current value of c. To be precise,
the number is tapeDepth − c + 1. The letter is simply an alphabetical
enumeration of the different tapes with the same depth. So if k = 3,
then for a T M N C of depth 2 at current depth 1, we would have the tapes
{0a, 0b, 0c, 1a, 1b, 1c, 2a, 2b, 2c}. Tape 0b is the second tape for depth 0
and 2a is the first tape of depth 2. In some situations, some tapes might
have a negative number, but we usually do not need to refer to these tapes,
although it is of course possible.

4.4 Consistency condition

The tapes of any depth higher than 0 represent data in a C T C. Incrementing
c to that number represents the start of that C T C and decrementing to
below that number represents exiting it. So, since the quantum state needs
to be the same at the start and the end of the C T C according to Deutsch’s
causal consistency, the probability distribution of the tape determined by
the quantum state at the start and the end needs to be the same as well.
So we postulate a consistency condition on all the tapes corresponding to
a depth higher than 0.

Definition 9 (Tape consistency) A tape is tape consistent iff the probability
distribution over its contents when the current depth of the machine first is
equal to the corresponding depth is the same as the probability distribution
over its contents when the machine last has c set to the corresponding
depth.

This consistency condition is similar to the consistency condition that
Aaronson et al. postulate on the TMCTC, but at different times in the compu-
tation for the different C T Cs. This is what gives the T M N C its hypercompu-
tational powers. The higher the depth of the T M N C, the more consistency
conditions apply and the more computational power, as I will show. This
consistency condition is satisfied by nature as a matter of necessity, since
without it the corresponding spacetime would be inconsistent. So all tapes
that correspond to data in a C T C region will always be tape-consistent.

What the probability distributions that satisfy these conditions are de-
pends on the input that the T M N C gets on the tapes corresponding to
the causality-respecting worldline. The tape consistency condition has to
hold for each possible input.

If there are multiple possible probability distributions over the tape, we
cannot assume that nature will pick one particular one, only that it will
pick one. When designing algorithms for the T M N C we need to make sure
that all the possible solutions give us the expected result.
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4.5 Halting and deciding

Because the T M N C is a probabilistic model, halting and deciding need to
defined slightly differently from a Turing machine. I define it the same way
Aaronson et al. do for their TMCTC.

Definition 10 (Halting) A T M N C halts iff for every ϵ > 0 the T M N C will
have halted with a probability 1 − ϵ at some time t.

The accepting and rejecting definitions work with an error margin of 1
3 , as

Aaronson et al. do as well for their model. Many algorithms will not need
any error margin and can give the result without any errors.

Definition 11 (Accepting) A T M N C accepts a certain input iff for every
possible situation satisfying tape consistency the chance of the machine
accepting is larger than 2

3 .

Definition 12 (Rejecting) A T M N C rejects a certain input iff for every
possible situation satisfying tape consistency the chance of the machine
rejecting is larger than 2

3 .

Definition 13 (Deciding) A T M N C decides a language L iff it accepts
every x ∈ L and rejects every x /∈ L.

4.6 Restrictions on the model

Aaronson et al. put three restrictions on their TMCTC. That it always halts,
that there is always a fixed point for the RCTC and that the fixed points for
a given input all agree on accepting and rejecting. The first restriction also
applies directly to the T M N C.

The second restriction is expanded to cover all the tapes representing data
in a C T C region. That is, a T M N C has to be defined such that every tape
representing data in a C T C region has at least one tape-consistent solution
for each input. The last restriction only needs to be rephrased for the T M N C:
all different tape-consistent solutions of all the tapes need to agree on either
rejecting or accepting for each input.

4.7 Connection to physical model

Of course this computational model is meant to represent computation
in the physical model from the previous chapter. The relation between a
T M N C and a world with nested C T Cs should be like the relation between
a Turing machine and the (classical) macroscopic world as we know it.
Just like one can imagine a little machine writing on and shifting a long
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paper tape, you should also be able to imagine some form of computer that
implements the T M N C. Different tapes of the T M N C would follow different
depths of C T Cs, corresponding to the depth of the tape. This physical
travelling of the tape back in time allows enforcing the tape consistency
from Deutsch’s consistency condition. From this I think it is clear that the
T M N C could be implemented in my physical model.

4.8 Infiniteness of tapes

As mentioned before, the T M N C has infinitely long tapes it can read or write
on. However, for an actual computer to be able to save an infinite amount
of data, like on the infinite tapes, it would need to have infinite mass. To not
collapse into a black hole, this would also need infinite space. It is hard to
imagine an actual computer that is infinitely large, this would require huge
resources and infinite space to create. In the case of the T M N C, if it needs
information from the entire infinite tape, the C T Cs would also need to
have infinite space to house the C T C tapes. This seems like a problematic
requirement.

On the other hand, Turing machines have infinite tapes as well. It is com-
mon practice in computability theory to not limit the tape size. This way
the computability of a problem does not depend on how big or complicated
the problem instance is, but only on whether the problem is fundamentally
solvable.

There is an important difference between Turing machines and T M N Cs
regarding this though. Turing machines can only affect a finite part of the
infinite tape in finite time. This is because each step can only write on
one cell and only finite steps can be executed in finite time. For T M N Cs
however, this is not the case.

A T M N C creates probability distributions over its tapes, and those distri-
butions might have weight on changes on the entirety of the infinite tapes.
Take for example a T M N C of depth 1, that in its loop walks the tape to the
right until it reaches something that is not a ’1’ and then adds another ’1’
with 50% probability. This has a consistent probability distribution on the
C T C tape, but that distribution extends all the way to infinity, even though
the machine has run for a finite time.

If we run this machine in a single world however, it will give us back a
finite tape with a certain amount of ’1’s on it. Probably the amount of ’1’s
will be very small, as the probability distribution falls of exponentially for
longer strings of ’1’. So how should we interpret this? Is there a problem
with infinity here or not?

In a many worlds interpretation of this situation each of the parts of the
probability distribution is a world. In each of these worlds only a finite part
of the tape is affected. So no infinitely large computer is needed. However,
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what is needed for the computer to behave correctly is for the machine
to be able to grow arbitrarily large. There can be no restriction in space,
otherwise the machine would not behave as we expect it to and the final
probability distribution will be affected. And this change in probability
distribution can also change the result of the T M N C.

In classical computability theory we have such problems as well. The prob-
lem of whether a number is a prime is only solvable for any number on
a normal computer if that computer can be arbitrarily large. If there is a
maximum size of the computer then it would not be able to find the solu-
tion for a really large number, of which the representation does not fit into
the computer memory.

The situation in this case is slightly different though, because the machine
might need to be able to grow infinitely large for a finite problem instance.
I will show in Chapter 5 that to give a negative answer to a halting problem
instance, we need a probability distribution over the entire infinite tapes in
the C T Cs. This means that unrestricted growth of the machine is needed
for any of the problem instances, so the connection between the theory and
the practical implementations might be lost. In our classical computability
theory it is known that the Turing machine has an infinite tape, but that
any finite problem instance of a solvable problem only needs finite space.
In the T M N C this is no longer the case, even for simple problem instances,
the machine needs to be able to grow unrestrictedly large.

But once again the expected size of the machine does not grow large at
all. It remains finite and very small. It is just required that nothing re-
stricts it from growing larger and larger in worlds with smaller and smaller
magnitudes in the universal wave function. Furthermore, this is a gen-
eral problem that any proposal for hypercomputation has. All proposals I
know of for hypercomputation in general relativity require the unrestricted
growth of the machine, simply because to solve these uncomputable prob-
lems infinite space is required. For example, Andreka et al. [18] propose to
let a computer calculate infinitely into the future and send the result back
in time. This requires that the machine can grow arbitrarily large in the
future, they do not consider this a fundamental problem. It even requires
that the machine survives forever, while the T M N C only uses finite time.

When considering the physical realisability of this computational model,
this arbitrary growth is something to take into account. But the model
does not make any more exotic assumptions than other hypercomputation
models. In fact, because the machine always remains finitely sized and
halts in finite time, it uses a lot less resources than proposals in which the
Turing machine is simply made to calculate forever.
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5 | Computational properties

And what if you could go back in time and take all those hours
of pain and darkness and replace them with something better?

Gretchen, Donny Darko (2001)

In this chapter, I will first introduce the theory of Turing degrees to reason
about computability. Then, I will discuss the computational properties of
the T M N C model that was introduced in the previous chapter. Specifically,
I will prove Theorem 1. To show this, I will show that an algorithm for
solving multiple dth halting problems on a T M N C of depth d exists. Later
in the chapter, I will use this algorithm to show that all problems that all
problems with Turing degree 0(d) are decidable by a T M N C of depth d. I
will use the theory of Turing degrees I introduced in Section 1.1.

Theorem 1 (Computational power of T M N Cs) A T M N C of depth d can
decide all problems with Turing degree 0(d).

5.1 Solving multiple dth halting problems

Definition 14 The problem of solving multiple dth halting problems is as
follows:
Given: a list of n descriptions of oracle Turing machines with a (d− 1)th
halting problem oracle, where n > 0
Output: for each of these oracle Turing machines whether they would halt
on an empty output.

In this section, I will proof Lemma 1. I will use a k of 3, so the T M N C will
have three tapes for each depth.

Lemma 1 For any d > 0 there exists an algorithm on a T M N C of depth d
that can solve multiple dth halting problems.

This algorithm differs for each of the possible depths a T M N C can have,
because the problem differs for each possible depth. So to give an algorithm
for each of the possible depths a T M N C can have, I will use induction. The
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base case is that an algorithm exists for a T M N C with depth d = 1 to solve
multiple 1th halting problems, which are ordinary halting problems. In the
induction hypothesis I proof that an algorithm exists for solving multiple
(d+1)th halting problems on a T M N C of depth (d+1), given an algorithm
for a T M N C of depth d which solves multiple dth halting problems.

5.1.1 The base case

I will now proof the base case of Lemma 1, as given in Proposition 1. To do
this, I will give such an algorithm here. The algorithm is based largely on
the algorithm given by Aaronson et al. [2, p. 12–14] for solving problems
reducible to the halting problem in one C T C, but adapted to the T M N C

model I have defined. This is because this claim is the same as the result
of Aaronson et al., just for a more general model.

Proposition 1 (Base case) There exists an algorithm for a T M N C of depth
1 that can solve multiple 1th halting problems.

Let us assume that the n descriptions of the Turing machines we are to de-
termine the halting for are given as a list on tape 0b. For each of the Turing
machines, we can simulate their machine steps on our T M N C using the
behaviour that it shares with a Turing machine. As such, given a transcript
of a Turing machine, we can determine if it correctly describes how the
Turing machine would run by simulating the steps. We can also check if
the Turing machine halts at the end of the transcript, again by simulating.

We use this fact and a transcript on tape 1a, which has a consistency condi-
tion, to create a probability distribution over transcripts on tape 1a that is
distinctly different for each Turing machine that halts, than for those that
do not halt. The algorithm is given in pseudocode in Algorithm 5.1.

This algorithm works because it forces each part of tape 1a into a different
fixed point whether each Turing machine given halts or not. And the parts
of tape 0b are then correspondingly forced to have the correct result. For
each machine, if it does not halt, the fixed point of its part of tape 1a is an
infinite distribution of valid execution histories of the machine of length l.
But each history with length l has a probability of 2−l, so the length of the
history on part j of tape 1a is almost always very short. The result on part
j of tape 0b however will then always be “LOOP”. If the machine does halt
however, then the corresponding fixed point is simply the halting history
with probability 1 and on tape 0b it will always record “HALT”.

Since Algorithm 5.1 solves multiple 1th halting problems on a T M N C of
depth 1, we have proven Proposition 1. ■
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Algorithm 5.1 Solving multiple halting problems with depth 1

Require: There are n descriptions of Turing machines on tape 0b
1: for each Turing machine description T on part j of tape 0b do
2: t← transcript of T on part j of tape 1a
3: if t is a valid transcript of T then
4: if t is a halting transcript then
5: write “HALT” to part j of tape 1c
6: else
7: if random() < 0.5 then
8: write only the first step of t to part j of tape 1a
9: else

10: add one more step of T to t
11: write t to part j of tape 1a
12: end if
13: write “LOOP” to part j of tape 0c
14: end if
15: else
16: write the first step of T to part j of tape 1a
17: write “LOOP” to part j of tape 0c
18: end if
19: end for
Ensure: Tape 0c has for each of the n descriptions whether they halt on

empty input

5.1.2 The induction case

Proposition 2 (Induction case) There exists an algorithm for a T M N C of
depth (d+ 1) that can solve multiple (d+ 1)th halting problems.

Definition 15 (Induction hypothesis) There exists an algorithm for a
T M N C of depth d that can solve multiple dth halting problems.

For the induction step, we now want to prove that Proposition 2 holds given
induction hypothesis (Definition 15). The solution is given in Algorithm
5.2.

Just like in the base case, we try to simulate the oracle Turing machines
from our input. For the normal machine steps, we can simply use our T M N C

as before. However, when the machines consult their dth halting oracles,
it becomes more complicated, since our T M N C does not have access to
such an oracle. However, our induction hypothesis tells us that there is an
algorithm that solves multiple dth halting problems on a T M N C of one
lower depth. So, we simply save up these dth halting problems and solve
them all collectively.

Apart from that, the algorithm works similarly to Algorithm 5.1. It again
induces a probability distribution on tape 1a that gives short non-halting
histories for non-halting oracle Turing machines and halting histories for
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halting oracle Turing machines. The algorithm is formulated in pseudocode
in Algorithm 5.2.

Algorithm 5.2 Solving multiple (d+ 1)th halting problems with T M N C of
depth d+ 1

Require: There are n descriptions of Turing machines with a dth halting
oracle on tape 0b

1: for each machine description T on part j of tape 0b do
2: loop
3: t← transcript of T on part j of tape 1a
4: {For validTranscript, see Algorithm 5.3}
5: if validTranscript(t, T , j) then
6: if t is a halting transcript then
7: write “HALT” to part j of tape 0c
8: else
9: if random() < 0.5 then

10: write only the first step of t to part j of tape 1a
11: else
12: add one more step of T to t
13: write t to part j of tape 1a
14: end if
15: write “LOOP” to part j of tape 0c
16: end if
17: else
18: write the first step of T to part j of tape 1a
19: write “LOOP” to part j of tape 0c
20: end if
21: end loop
22: end for
23: increment the current depth
24: run the algorithm from the induction hypothesis
25: decrement the current depth
Ensure: Tape 0c has for each of the n descriptions whether they halt on

empty input

The validTranscript function defined in Algorithm 5.3 determines whether
the transcript of the Turing machine on the tape is valid. For this, it needs
to simulate the oracle calls as well. It does this by putting the requests on
tape 1b and assume that tape 1c contains the results. Running the algo-
rithm from the induction hypothesis makes sure that the correct results
are on tape 1c. The consistency condition on tape 1c makes sure that this
result is already present when validTranscript is run.
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Algorithm 5.3 validTranscript function

Require: A transcript t for an oracle Turing machine T , numbered j
1: state← initial state
2: for each step in t do
3: s, state← simulate next step from state

4: if s is oracle query then
5: put the query on part j of tape 1b
6: assume the result of the query is what is on part j of tape 1c
7: end if
8: if s ̸= step then
9: return false

10: end if
11: end for
12: return true

5.1.3 Induction result

By giving a base case and the induction step, we have shown in this section
that on every T M N C of depth n, where n is a natural number larger or
equal to 1, there exists an algorithm that given multiple oracle Turing
machines with a (n− 1)th halting oracle, it can correctly decide for each
of these machines whether they halt. So we have proven Proposition 2. ■

Given the proof of the base case and the induction case, we can conclude
that Lemma 1 holds. □

5.2 Solving the halting problems

Now we can show that any T M N C of depth d can solve the dth halting
problem. To do this, we simply call the corresponding algorithm given in
the previous section with a singleton list of just the oracle machine we
want to determine the halting of. The result is then extracted from the
singleton list that is in the output.

5.3 Solving problems with Turing degree 0(d) or
lower

But we can extend our result beyond just solving the halting problem. A
T M N C of depth d can solve any problem that is Turing reducible to a dth
halting problem. That means, that we can solve all the problems in 0(d)

and in any Turing degree lower than 0(d). To show this, we again make use
of the algorithm for solving multiple dth halting problems. The algorithm
for solving a problem P given an oracle Turing machine that solves P using
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a dth halting oracle is given in Algorithm 5.4.

Algorithm 5.4 Solving problem P, where P is Turing reducible to dth
halting on a T M N C of depth d

1: j← 0
2: state← initial state of T
3: while state is not halting do
4: step← next step of T from state

5: if step consults the oracle then
6: write the queried machine to part j of tape 0b.
7: state← step applied to state with oracle returning what is on

part j of tape 0c
8: j← j+ 1
9: else

10: state← next state after simulating step
11: end if
12: end while
13: run solving multiple halting problems {Algorithm 5.1 and Algo-

rithm 5.2}
14: return isAccepting(state)

Because our T M N C model of depth d is realisable in a space-time with d
C T Cs nested within each other, this result implies that in such a space-time
we can solve any problem with a Turing degree of 0(d) or lower.
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6 | Computational limits

Do you now understand why I say the future and the past are
the same? We cannot change either, but we can know both more
fully.

The Merchant and the Alchemist’s Gate
TE D CH I A N G

In the previous chapter, I have shown what is computable in spacetimes
with different nestings of C T Cs. I have given an algorithm that can solve
problems Turing reducible to different levels of halting problems, depend-
ing on the depth of the nesting of the C T Cs. But I have not shown that this
is all that can be computed in such spacetimes. In principle, there might be
an algorithm that can solve even more problems that can be run in these
spacetimes. In this chapter, I will try to show that this is in fact all that can
be computed in these spacetimes.

I will prove this based on the proof that Aaronson et al. [2, p. 16–21] give
for the computational limits of a single C T C. I use this as the base case of
my proof. However, when working on my proof, I realised that there is a
problem with their proof. I will explain this problem here first, but then
assume that it can be solved for the rest of my proof. So my proof only
holds if Aaronson et al.’s proof is fixed in a satisfactory way.

6.1 Problem in Aaronson et al.’s proof

First I will give a short introduction to how the proof in section 5 of their
paper works. They want to show that in a spacetime with one C T C nothing
more can be computed than the problems that are Turing reducible to the
halting problem. So they attempt to simulate a computer with access to a
C T C with just an oracle Turing machine with access to a halting oracle.

If this is indeed possible, then all problems that can be solved in a C T C

are Turing reducible to the halting problem. The Turing reduction would
simply be to run the simulation of the C T C on the oracle machine and
solve the problem that way. So if an algorithm to simulate a computer in a
C T C on an oracle machine with just a halting oracle exists, then nothing
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more indeed can be computed in these spacetimes.

The tricky part of simulating the C T C is finding an approximation of the
fixed point of the evolution of the dynamics in the C T C. We know that a
fixed point exists, and that to fulfil Deutsch’s consistency condition the C T C

must be in that fixed point state. To successfully predict if a computer in a
C T C accepts or rejects, we need to approximate the real fixed point closely
in terms of trace distance. The trace distance is the largest measurable
difference between two quantum states, so if we are close enough in this
sense, the measured result will be close enough as well.

To find this approximation, they dovetail over all possible quantum states
in finite-dimensional truncations of the real Hilbert space. For each of these
states, they then check using the halting oracle if it is an almost fixed point
of the quantum evolution in the C T C.

Definition 16 (Almost fixed point) A value σ is an almost fixed point of
the function $ with an error of ϵ iff for all k > 0 it holds that |$k(σ)−σ| < ϵ.
So repeated application of the function never takes the value further than
ϵ away from the original value.

They prove that if a quantum state is an almost fixed point of error ϵ in
terms of Euclidean distance, then it is also within ϵ from the real fixed
point ρ in terms of Euclidean distance. But of course, they want to be close
in terms of trace distance, so they need to convert the Euclidean distance
to trace distance. They do this in Proposition 9 using the “Almost As Good
As New Lemma”. Here however, the trace distance turns out to be up to
a factor 2k/4 larger than the Euclidean distance, where k is the amount
of dimensions of the Hilbert space of the approximation, which will be
problematic for the proof.

To compensate for this difference between the Euclidean and trace dis-
tance, in the proof they are forced to search for a quantum state that is an
almost fixed point with an error that decreases exponentially with k. But
for the algorithm to work, such an almost fixed point needs to exist, which
means that there also needs to be a quantum state on a finite-dimensional
truncation of the Hilbert space that is as close as that error to the real fixed
point. So they assume that we can always find a k and σ ∈Mk such that:

∥σ− ρ∥tr ⩽
1

2k+12
(6.1)

However, this is not true. It is given that a fixed point ρ exists, but it exists
in the infinite-dimensional Hilbert space M with basis {0, 1}∗. The σ’s we
consider are all in a Hilbert spaceMk with basis {0, 1}k. And ρ might have
its support divided over the different vectors in its basis, such that no σ is
close enough in trace distance, if the support on the vectors representing
tapes of length decreases exponentially based on the length it represents.
This way it might be further than 1

2k+12 away, no matter how big we make
k.
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An example of a machine in a C T C where ρ is like this is the following. It
enters the C T C and then it checks if at the start of the tape is a 1. If there
is it moves 5 spaces to the right and repeats, until it finds an unwritten
part of the tape. Then with 1

2 probability it writes a 1. The fixed point of
this machine is a probability distribution with the chance of a written part
of the tape of length 5n to be 1

2n . So no approximation only considering
tapes of length up to k will ever be closer than 1

2k+12 .

I have tried to fix this problem, but it is not easy to solve since for vectors
in infinite dimensional Hilbert spaces the bound between the trace and
Euclidean distances has an exponential factor. So to get rid of this expo-
nential factor, the proof needs to stay away from Euclidean distances. It is
then however not clear how to prove that any almost fixed point is close
to a real fixed point.

I have discussed this problem with the authors, but we have not found a
solution yet. Scott Aaronson’s PhD student Sabee Grewal has attempted
to fix the proof, but not succeeded yet. Just recently in the last few weeks
of my thesis, Scott Aaronson has proposed a different way of proofing the
limits of computation of C T Cs for classical computers. This proof does not
require switching between L1 and L2 norms and the hope is that this can
be adapted to the quantum case with appeals only to the trace distance.

Because this new proof idea comes late in my thesis planning, I sadly do
not have the time to develop this idea into a new version of my proof. But I
am hopeful that this will indeed turn out to give us a proof for the original
statement in Aaronson et al.’s paper. If so, my extension of the proof here
should work to extend that fixed proof, so that it is clear that my result is
valid as well.

So I will now proceed as if the original proof of Aaronson et al. works, in
the hope that it can be in fact be fixed.

6.2 Proof for nested C T Cs

I want to prove that a computer in a set ofn nested C T Cs can exactly decide
the problems that are decidable on an oracle machine with a halting-n
oracle. I have already shown that such a computer can at least decide the
problems decidable on an oracle machine with a halting-n oracle, so in this
part I just want to show that such a computer can solve no more problems
than those that can be solved using an oracle machine with a halting-n
oracle. I will do this, by showing that an oracle machine with a halting-n
oracle can always simulate a set of n nestedC T Cs.

Definition 17 (Halting-1 oracle) An oracle for the normal halting prob-
lem.

Definition 18 (Halting-n oracle) An oracle for the halting problem of
machines with a halting-(n− 1) oracle.
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Because I want my argument to hold for any number of nestedC T Cs, I will
use induction. The induction hypothesis will be that:

Definition 19 (Induction hypothesis) The fixed point state of n − 1
nestedC T Cs can always be approximated to any required precision ϵ > 0
in finite steps on an oracle machine with an halting-(n− 1) oracle. Such
that:

∥σ− ρ∥tr < ϵ (6.2)

Where σ is the approximation returned by the oracle machine and ρ is a
true fixed point.

6.3 Base case

The base case is very similar to what Aaronson et al. [2] prove in section
5, but a bit more generalised. What we want to prove is the following:

Theorem 2 (Base case) The fixed point of a singleC T C can be approxi-
mated to any required precision ϵ > 0 in trace distance in finite steps on
an oracle machine with a halting-1 oracle.

The difference from Aaronson et al.́s proof is that we want to be able to
approximate to any given accuracy, not just a fixed accuracy that is enough
for answering yes-no questions. Whether this follows directly depends on
how the proof by Aaronson et al. is fixed, but if the new proof direction
that Aaronson suggested works, this will be true.

When we simulate a C T C, we are given a superoperator $ that implements
the unitary evolution of the C T C. This superoperator can be simulated on
a normal Turing machine, because it does not contain any nested C T Cs.
This can be done by dovetailing over closer and closer approximations to
all possible mixed states. For this, I will use theMk definition of Aaronson
et al. [2, p. 20].

{0, 1}∗ is taken as the basis of the Hilbert space where the real fixed point
ρ is in. Then one can approximate that with truncated Hilbert spaces Mk

for k > 0, which are k-dimensional truncations with {0, 1}k as basis. I use
the following algorithm, based on the algorithm from Aaronson et al.:

Now to prove our base case, we have to prove two things:

1. That Algorithm 6.1 always finds such a σ and halts.

2. That any such σ that Algorithm 6.1 returns conforms to (6.2).

For the first point, that the algorithm always halts, we can use the same
proof as Aaronson et al. (assuming it can be fixed). □

To fix Aaronson et al.’s proof, they will need to get rid of the factor k in
the conversion from the error of the almost fixed point to how far away it
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Algorithm 6.1 Finding an approximation of the fixed point of one C T C

for each k > 0 and σ ∈Mk do
Use the halting-1 oracle to check whether there exists a t > 0 such
that:

∥σ− $t(σ)∥tr > ϵ (6.3)

if no such t exists then
return σ

end if
end for

Figure 6.1: A schematic illustration of the quantum interactions of a C T C

is from the fixed point. If this is done, that proof can also be used directly
here to show that this slightly altered algorithm gives the right approximate
fixed point.

6.4 Induction step

Now it is time to go beyond what Aaronson et al. have done and see what
happens when a nested C T C is added.

Again we want to find the fixed point of a C T C. But this time, our C T C

has nested C T Cs in it. If we only look at the deepest C T C and consider
the C T C it is nested in as locally straight spacetime, our system looks like
Figure 6.1. In this figure,U1 andU2 are superoperators representing some
unitary evolution. All the labels in blue represent some quantum state at
that point. From this figure it is clear that the nested C T C puts the following
constraint on the system:

U2(PR(U1(ϕ⊗ ρ))) = ρ (6.4)
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Where PR discards the left side of the tensor product. We are guaranteed
that for any initial state ϕ of our system, this has a solution for ρ. We will
call this solution ρϕ. The true superoperator that describes the unitary
evolution of our system and maps ϕ to ψ is then:

$(ϕ) = PL(U1(ϕ⊗ ρϕ)) (6.5)

If we could run this function on our oracle machine with a Halting-(n −
1) oracle, we could just use the same algorithm and we would be done.
However, the induction hypothesis does not give us ρϕ, instead it promises
us a σϕ that is arbitrarily close to ρϕ. However, we can simulate U1 to any
level of precision, and superoperators cannot increase trace distance. So
with σϕ we can create an approximation function A(state, max error) such
that for any ϕ:

∥A(ϕ, c) − $(ϕ)∥tr ⩽ c (6.6)

And this A can be decided on the oracle machine with a Halting-(n − 1)
oracle, because the σϕ is given by the induction hypothesis and U1 is a
normal unitary evolution that can be simulated on any Turing machine. So
on our oracle machine with a Halting-n oracle, we can use the following
algorithm for any required accuracy c > 0:

Algorithm 6.2 Induction step

for each k > 0 and σ ∈Mk do
Use the halting-n oracle to check whether there exists a t > 0 such
that:

∥σ−At(σ,
c

3t
)∥tr > c (6.7)

if no such t exists then
return σ

end if
end for

Now to prove our induction step, we have to prove two things:

1. That Algorithm 6.2 always find such a σ and halts.

2. That any such σ that Algorithm 6.2 returns conforms to (6.2).

6.4.1 Algorithm always halts

We are promised that $ always has a fixed point ρ. So we can always choose
a high enough k > 0, such that there exists a σ ∈Mk for which it holds
that:
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∥σ− ρ∥tr ⩽
c

3
(6.8)

From triangle inequalities it follows that for any t > 0:

∥At(ρ,
c

3t
) − ρ∥tr ⩽

c

3
(6.9)

Now it is clear that:

∥At(σ,
c

3t
) − ρ∥tr

⩽ ∥At(σ,
c

3t
) −At(ρ,

c

3t
)∥tr + ∥At(ρ,

c

3t
) − ρ∥tr (6.10)

⩽ ∥σ− ρ∥tr +
c

3
(6.11)

⩽
2c
3

(6.12)

Here (6.10) holds because of the triangle inequality. (6.11) holds because
superoperators cannot increase trace distance and because of (6.9).

Using another triangle inequality, we can see that for all t > 0:

∥σ−At(σ,
c

3t
)∥tr

⩽ ∥σ− ρ∥tr + ∥ρ−At(σ,
c

3t
)∥tr

⩽
c

3
+

2c
3

= c (6.13)

So clearly, Algorithm 6.2 will halt when it encounters this σ, if not sooner.
□

6.4.2 Algorithm is correct

Now we need to show that if for some state σ it holds for all t > 0 that
∥σ−At(σ, c

3t)∥tr ⩽ c, it also holds for all t > 0 and some constant d > 0
that:

∥$t(σ) − σ∥tr ⩽ d · c (6.14)

So that σ is an almost fixed point of $. By the same reasoning as in the
base case, it would then imply that ∥σ− ρ∥tr ⩽ ϵ for any arbitrarily low
ϵ > 0 by decreasing c.

First I will proof the following proposition about A.
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Proposition 3 For any t > 0, m > 0 it holds that:

∥At(σ,m) − $t(σ)∥tr ⩽ m · t (6.15)

Proof. I will proceed by induction over t. If t = 1, then by definition:

∥A(σ,m) − $(σ)∥tr ⩽ m (6.16)

If t = n, then:

∥A(A(n−1)(σ,
m

n
),m) − $($(n−1)(σ))∥tr

⩽ ∥A(A(n−1)(σ,m),m) − $(A(n−1)(σ,m))∥tr
+∥$(A(n−1)(σ,m)) − $($(n−1)(σ))∥tr (6.17)

⩽ m+m · (n− 1) = m · n (6.18)

Where (6.17) follows from the triangle inequality and (6.18) follows from
the induction hypothesis. ■

Now we can proceed with the correctness proof with a triangle inequality:

∥$t(σ) − σ∥tr
⩽ ∥$t(σ) −At(σ,

c

3t
)∥tr + ∥At(σ,

c

3t
) − σ∥tr

⩽
c

3
+ c ⩽ 2c (6.19)

So (6.14) holds for d = 2, and we can use the method from the base case
(that is not done yet) to prove our induction step. □.

6.5 Completing the induction

If the proof of the base case and the induction step are correct, we have
proven our claim. Then we know that the computational strength of nested
C T Cs exactly as our upper bound is equal to our lower bound. However,
this is of course reliant on Aaronson et al.’s proof being fixed.
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7 | Conclusion

Hij stond in het laboratorium van dr. Simiak. De vrouw met de
mooie grijze ogen was zijn moeder. De stank in zijn neus was de
geur van een half gesmolten materietransmitter. En de man die
hem zacht op een stoel neerdrukte, was zijn bloedeigen vader.
Het mes viel uit zijn krachteloze hand en bleef trillend in de
vloer steken.
Rudolf van Amstelveen was teruggekeerd in zijn eigen eeuw.

Kruistocht in Spijkerbroek
TH E A BE C K M A N

In this thesis, I have researched what the computational powers are of a
system with nested C T Cs that behave according to Deutsch’s model. I have
proposed how the nesting of C T Cs would work in his model. Then I have
proposed a computational model in this physical model to describe how
computation would work in this setting.

I have investigated the computational powers of this model, the T M N C. I
have concluded that a T M N C in a spacetime with n nested C T Cs can solve
all problems of Turing degree 0n. I have shown this by giving an algorithm
that can solve the halting problem corresponding to that Turing degree,
for any depth of nesting. If the T M N C is not restricted in the number of
nested C T Cs, it follows that it can solve the problems of any Turing degree
reachable through Turing jumps from the computable problems.

I have also given a conditional result on what cannot be computed in this
setting. To do this, I have attempted to find the corresponding consistent
states of the C T Cs using oracle machines, as Aaronson et al. have done
for the case of one C T C. However, I found a problem in the proof that
Aaronson et al. give, and neither I nor them have been able to solve this
yet. My proof for the limits only works if their proof can be fixed.

If this is the case, however, I show that the a T M N C in n nested C T Cs
cannot compute anything more than the problems of Turing degree 0n.
This would mean that my proof is tight, in the sense that I show exactly
what can and cannot be computed by computers in C T Cs.
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7.1 Future research

Research in the computational powers of computers in C T Cs still needs
a lot of work. Firstly, it should be investigated if Aaronson et al.’s proof
can be fixed. If it cannot be fixed, then future research should try to find a
different bound on the computational power, or attempt to show that one
can actually compute more in C T Cs.

It also would be interesting to investigate what the computational powers
of more exotic spacetime structures would be. For example, how would
the bridges and ladders from Chapter 3 affect the computational powers?

The computational complexity of nested C T Cs is also still an open question.
I believe that as long as the nested C T Cs all have polynomial size relative
to the input, more than P S PA C E can still not be computed, but this remains
to be proven.

More research on the physical side of computation is needed as well. Are
C T Cs in fact physically possible? And is it possible for C T Cs to nest within
each other? Under what conditions would this be possible?
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