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ABSTRACT

Comparison of Acoustic Feature Representation Methods for

Apparent Personality Recognition

This thesis examines the performance of Fisher Vector representations in clas-

sifying personality traits from audio. The Chalearn LAP First Impression dataset is

used, which is a multimodal dataset. The audio modality of the dataset is focused on,

and different audio feature extraction methods, including wav2vec 2.0, openSMILE,

and public dimensional emotion model (PDEM), are studied for their performance on

the classification task. Different encoding approaches, such as Fisher Vector, are also

studied to see how they affect the performance of the classifier. The results of this

thesis suggest that Fisher Vector representations are not the best choice for classifying

personality traits from audio for the certain dataset. However, other feature extraction

methods, such as openSMILE LLDs and PDEM, can achieve good performance on this

task. The thesis also provides some insights into the selection of parameters for feature

engineering and the interpretability of Fisher Vector representations.
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1. Introduction

1.1. Motivation and Problem Statement

It is crucial to have a thorough understanding of a candidate before they join a

company. In addition to professional skills, the candidate’s personality is also essential

for their future career development, work environment, and the overall interests of the

company. Therefore, more and more companies are introducing personality tests to

determine whether candidates are suitable for the current job. However, it is very

difficult to reach a convincing level through a test with a few questions. Common

personality models include the MBTI (Myers-Briggs Type Indicator) [2], Big Five Per-

sonality Model [3], 16PF (The Sixteen Personality Factor Questionnaire) [4] and EPQ

(Eysenck Personality Questionnaire) [5]. Therefore, employers increasingly hope for a

more objective, standardized, and data-driven personality assessment of the metrics of

the personality test. Machine learning offers a good opportunity here.

Moreover, recognizing personality traits or impressions can aid interpretable au-

tomatic recognition of mood disorders, such as depression and bipolar disorder. Lit-

erature works in social and medial sciences have shown strong correlations between

mood and personality traits and mood disorders. Multiple studies, including [6–10],

have reviewed the association of personality traits with mood disorders, such as major

depressive disorder (MDD). This meta-analysis indicated a strong connection between

some mental illnesses and personality, of which all disorders had a configuration of low

Conscientiousness and high Neuroticism. Out of all the disorders, MDD seemed to

have the strongest correlation with the Neuroticism factor. An analysis by [11] con-

cluded a common five-factor configuration of high Neuroticism, low Conscientiousness,

low Agreeableness, and low Extraversion for almost all disorders. Mood disorders, such

as depression and bipolar disorder, were associated with a significantly larger negative

effect size of Extraversion in comparison with the rest of the mental disorders.
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Recognizing human personality traits with machine learning requires knowledge

of image recognition, acoustics, natural language processing, affective computing, com-

putational linguistics, computational paralinguistics, and other related fields [12]. In

multiple state-of-the-art studies, multimodal models were found to outperform single

modality models for personality five-dimensional recognition [13, 14]. The best per-

forming system was based on audio and video modalities, followed by video only and

audio only.

The European Union is the region with the strictest regulations regarding per-

sonal data in the world [15]. Personality recognition activities in Europe are subject to

controls on the collection of personal data. Therefore, within the EU, the availability of

data is particularly limited. It is necessary to reconsider improved methods to conduct

experiments in a single modal situation.

1.2. Research Objectives

In this thesis, I will examine the performance of Fisher Vector representations

in classifying personality traits from audio. I will be using the Chalearn Lapfi First

Impression dataset, which is a multimodal dataset. I will focus on the audio modality

only of the dataset and study how different audio feature extraction methods, includ-

ing wav2vec 2.0, openSMILE, and public dimensional emotion model (PDEM) [16],

perform on the classification task. I will also study different encoding approaches, such

as Fisher Vector, to see how they affect the performance of the classifier

I will tackle the following research questions:

• Question 1: Concerning the apparent personality trait recognition task via Big

Five personality traits, is there a significant difference in terms of test set accuracy

performance between baseline (Interspeech 2013 Computational Paralinguistics

ChallengE Setting) acoustic features and other feature representations?

– Sub-question 1.1: Is there a significant difference in terms of test set accuracy
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performance between baseline acoustic features and FV representation of the

same set of openSMILE low-level descriptors (LLDs)?

– Sub-question 1.2: Is there a significant difference in terms of test set accu-

racy performance between FV representations of the original (uncompressed)

and the compressed (averaged per 5 consecutive, non-overlapping frames)

Wav2Vec2 LLDs?

– Sub-question 1.3: Is there a significant difference in terms of test set accu-

racy performance between functional representation via mean and standard

deviation summarization of the Wav2Vec2 LLDs and their FV representa-

tion?

– Sub-question 1.4: Is there a significant difference in terms of test set accuracy

performance between baseline acoustic features and the FV representation

of Wav2Vec2 LLDs?

– Sub-question 1.5: Is there a significant difference in terms of test set accuracy

performance between baseline acoustic features and acoustic embeddings

from the public dimensional emotion model (PDEM)?

• Question 2: Concerning the apparent personality trait recognition task via Big

Five personality traits, is there a significant difference in terms of test set accuracy

performance between baseline acoustic features and indirect modeling via intel-

ligible emotion primitive features (arousal, valence, and dominance) extracted

from public dimensional emotion model (PDEM)?

We will use McNemar’s test [17] for statistical significance analysis to answer the

research (sub)-questions.
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2. Background and Literature Review

2.1. Background on Acoustic Features

2.1.1. Paralinguistics

Paralinguistics is a study of the semantic impact of vocal features or changes [18].

The scope of paralinguistics includes the nuances of meaning given by variations in

voice, intonation, stress, and rhythm. Paralanguage can be expressed intentionally or

unintentionally.

Some of the most common acoustic features used in paralinguistics [19] include:

pitch, loudness, tempo, and rhythm. In addition to these four basic acoustic features,

there are a number of other features that can be used in paralinguistics, such as: jitter,

shimme and Voice quality.

2.1.2. openSMILE 3.0

openSMILE 3.0 [20] is a powerful and versatile open-source toolkit for audio

feature extraction and classification. openSMILE needs to configure the config file first

and use the config to extract audio features. It is mainly used in speech recognition,

affective computing, and music information acquisition.

2.1.3. Low-level descriptors (LLDs)

For audio signals, Low-level descriptors (LLDs) [21] are features that are extracted

directly from the raw data of audio signals. They are regarded as the basis for higher-

level features. Some LLDs include:

• Spectral features: These describe the frequency content of the signal. For ex-
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ample, the spectral centroid is the average frequency of the signal, and the

spectral spread is the range of frequencies present.

• Temporal features: These describe how the signal changes over time. For exam-

ple, the zero crossing rate is the number of times the signal crosses the zero

axis per second, and the energy is the average power of the signal.

• Timbral features: These describe the quality of the sound. For example, the har-

monicity is the ratio of the harmonic frequencies to the fundamental frequency,

and the roughness is a measure of the smoothness of the sound.

2.1.4. The INTERSPEECH 2013 Computational Paralinguistics Challenge

THE INTERSPEECH is a worldwide paralinguistics challenge that aims to pro-

mote research in the field of computational paralinguistics. The INTERSPEECH 2013

Computational Paralinguistics Challenge(ComparE) consists of four tasks [22]:

• Social Signal Recognition: Recognize social signals in speech, such as head

nods and body language.

• Conflict Recognition: Recognize conflicts in speech, such as arguments and

debates.

• Emotion Recognition: Recognizes emotions in speech, such as happiness, sad-

ness, and anger.

• Autism Spectrum Disorder (ASD) Recognition: Recognizes ASD features in

speech, such as monotone intonation and speech repetition.

The feature set used for the InterSpeech 2013 ComparE Challenge has a total of

6373 global features and also contains 130-dimensional LLDs with temporal

feature dimensions.
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2.1.5. Wav2vec 2.0

Wav2Vec2.0 is a pre-trained model proposed by Facebook AI Research (FAIR) in

2020. It is a general-purpose feature extractor that can be used for a variety of speech

tasks, including speech recognition, speech synthesis, and speaker recognition [23].

The encoder of Wav2Vec2.0 is a transformer network. The base version of

Wav2Vec2.0 has 12 transformer layers, while the large version has 24 transformer layers.

The positional encoding used in Wav2Vec2.0 is a convolutional layer.

Figure 2.1: Framework for wav2vec2, adopted from [1].

2.1.6. Fisher Vector Representation

Fisher Vector [24] is a coding method that enables normalization for unequal

feature matrices. For a segment of the speech signal, MFCC features can be extracted

on each frame. The unequal length of each speech signal results in an unequal total

number of frames per speech segment. When the features are fed into the network

for speech recognition, the features are generally normalized into a feature matrix of

uniform size. Fisher Vector is the conventional means of processing. Fisher Vector is

obtained by taking partial derivatives of multiple Gaussian distributions with respect

to weights, means, and variances.
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Fisher vectors are a type of feature representation that are used in computer

vision and machine learning. They are based on the Fisher information matrix, which

is a measure of the local variance of a distribution.

Fisher vector (FV) is a superframe encoding that quantifies the gradient of back-

ground model parameters with respect to data. Given a parameterized probability

model θ, the expected Fisher information matrix F (θ) is the expectation of the second

derivative of the log likelihood with respect to θ:

Fisher information matrix: F (θ) = −E[
∂2 log p(X|θ)

∂θ2
]. (2.1)

2.1.7. Public Dimensional Emotion Model

Public Dimensional Emotion Model comes from the papar named Dawn of the

transformer era in speech emotion recognition: closing the valence gap by Johannes

Wagner et al [16]. They presented this model when proposing an online expecta-

tion maximization algorithm to jointly estimate the parameters of the code as well

as the parameters of the neural network. They developed an unsupervised partial

detection method that combines Fisher Vector Encoding (FVE) with Convolutional

Neural Networks (CNN) that can improve the recognition rate. The architecture of

Wav2Vec2consists of two main parts: convolutional neural network (CNN) and trans-

former. During the training process, the CNN part is used to extract the features of the

speech signal, and the input raw audio data is converted into a log-Mel spectrogram

as the input to the transformer. The CNN uses a 14-layer architecture. The basic

architecture of the transformer part consists of 12 transformer layers, each with 1024

hidden units and a parametric number of 317 M. The transformer model is pre-trained

by self-supervision.
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Figure 2.2: Pipeline of Public Dimensional Emotion Model

2.2. Background on Affective Constructs

2.2.1. The Big Five Model

The Big-Five model, proposed by the famous American psychologist McCrae et

al [25], is widely used to describe human personality. The model describes human

personality through the following five dimensions, with specific characteristics.

1. Openness (O): artistry, curiosity, imagination, insight, originality, etc.

2. Conscientiousness (C): efficiency, organization, planning, reliability, responsibil-

ity, organization, planning, reliability, responsibility, thoroughness, etc.

3. Extroversion (E): positive, confident, energetic, outgoing, talkative, energetic,

outgoing, talkative, etc.

4. Agreeableness (A): appreciative, kind, generous, tolerant, compassionate, gen-

erosity, tolerance, compassion, trust in others, etc.

5. Neuroticism (N): anxiety, self-pity, nervousness, sensitivity, instability, etc.

The Big Five Model is widely used in psychology and is considered to be a reliable

and valid measure of personality. It is often used in research and in a variety of profes-
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sional settings, including education, career counselling, and leadership development.

2.3. Personality Datasets

In recent years, researchers have created a number of personality recognition

databases. Some of these representative databases are shown in Table 2.1. Here, we see

the dominance of the western languages (mainly English), and that all corpora contain

audio and video modalities while four of them include the text modality, namely the

speech transcriptions. While UDIVA [26] (also collected by the ChaLearn team) has

the largest FI corpus in terms of total duration, ChaLearn FI corpus [14] used in this

thesis features the largest number of subjects and video clips.

Table 2.1: Overview of Publicly Available Multimodal Personality Trait and Impression

Corpora.

Corpus Modalities Conditions Language Evaluation # Subjects Duration, h

ELEA [27] A, V Office French, English Self 148 10

Hire Me [28] A, V Office English Self 62 11

YouTube vlogs [29] A, V In-the-Wild English Third-party 442 48

JOKER [30] A, V Office English Self 37 8

MHHRI [31] A, V Office English Self, familiar 18 6

ChaLearn FI V2 [14] A, V, T In-the-Wild English Third-party 3060 41

MULTISIMO [32] A, V, T Office English Self, familiar 49 4

UDIVA [26] A, V, T Office Spanish, Catalan, English Self, familiar 147 90

RoomReader [33] A, V, T In-the-Wild English Self, familiar 118 8

2.4. Related Work on ChaLearn First Impression Corpus

The Chalearn LAP First Impressions dataset is a collection of 10,000 short videos

(average duration 15s) of people facing and speaking in English to a camera. The videos

are split into training, validation and test sets with a 3:1:1 ratio. People in videos show

different gender, age, nationality, and ethnicity [34].

The videos are labeled with personality traits variables, including Extraversion,

Agreeableness, Conscientiousness, Neuroticism and Openness. The annotations were

generated using Amazon Mechanical Turk (AMT) and a principled procedure was
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adopted to guarantee the reliability of labels.

In addition to the personality traits, the dataset also includes transcriptions of

all words in the video clips and annotations indicating whether the person should be

invited or not to a job interview. The labels for gender and ethnicity are also available

for the First Impressions dataset. The labels were made available by Heysem Kaya

and Albert Ali Salah.

In the Personality Trait challenge, we see that most approaches in the chal-

lenge utilized both audio and video modalities. The audio was often represented us-

ing handcrafted spectral features, but one team used a residual network [35]. For the

video, convolutional neural networks were commonly used to learn representations. The

modalities were usually fused together before being fed to regression methods like fully

connected neural networks or Support Vector Regressors. One team included temporal

structure by partitioning video sequences and feeding the learned audio-video represen-

tation to a recurrent Long Short Term Memory layer [36]. Many teams made semantic

assumptions about the data by separating the face from the background, often through

preprocessing techniques like face frontalisation. However, the NJU-LAMDA [37] did

not make any semantic separation of the content. Pretrained deep models fine-tuned

on the challenge dataset were commonly used. The winning team NJU-LAMDA [37]

proposed two separate models for still images and audio and employed a two-step late

fusion. The team evolgen [36] used a multimodal LSTM architecture to maintain tem-

poral structure. DCC used separate auditory and visual streams with deep residual

networks for each, followed by an audiovisual stream.

2.5. Audio-Based Personality Trait Recognition

Early audio features for automatic personality trait recognition were hand-crafted

low-level descriptive features, such as prosody, voice quality, and spectral features.

Mohammadi and Vinciarelli [38] used logistic regression to detect audio clips whether

exceeded the average score for each of the Big-five personality traits after extracting
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features of LLDs. An et al. [39] extracted 6,373 acoustic–prosodic features from audio

clips and used them as input to a support vector machine (SVM) classifier to identify

the Big Five personality traits. Carbonneau et al. [40] learned a discriminating feature

dictionary from patches in the speech spectrograms, which were then used by an SVM

classifier to classify the Big Five personality traits.
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3. Methodology

For RQ1, I will explore the predictive performance of different acoustic feature

representations for classifying Big Five personality trait impressions. The feature repre-

sentations will include different LLDs (including traditional MFCC and state-of-the-art

Wav2Vec2) and utterance representations (such as simple functionals and the Fisher

Vectors). As shown in the figure below, first I will process the ChaLearn LAP-FI

dataset, extract acoustic features and select them. At this stage, the tools for process-

ing audio and the features selected are changeable. After that, the affective prediction

model will be trained with these features.

Figure 3.1: Flowchart of the FV representation based framework.

I will mainly compare the Wav2Vec2signal representation with Fisher vector en-

coding and a standard set of openSMILE features.

Combining the Wav2Vec2 signal representation with Fisher Vector (FV) encoding

can take advantage of the strengths of both methods. The idea behind this combination

is to use Wav2Vec2 to learn a set of fixed-dimensional representations (vectors) of

audio segments that capture the underlying semantics of the audio signal, and then

use the FV encoding to further compact and enhance the information in the Wav2Vec2
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representations.

At the same time, we also used the LLDs extracted from the configuration of

INERSPEECH 2013 ComparE to train the GMMmodel to generate the Fisher Vectors.

For Public Dimensional Emotion Model (PDEM), I not only extracted the fi-

nal output, which is the intelligent emotion primitive features (arousal, valence, and

dominance), but I also extracted its hidden states to be used as embedding for the

classification task.

Figure 3.2: Flowchart of the representations from PDEM model.

3.1. Data Normalization

In data analysis, the different sources of data usually lead to the difference in the

scale of the data. In order to make these data comparable, we need to introduce data

preprocessing techniques to eliminate these differences. Normalization is to subtract

by the minimum value divided by the variable range.

Z-Score normalization is a common method of data processing. It enables data

of different scales to be transformed into a certain range for comparison. The range

sets the mean is 0 and the standard deviation is 1. This can help to improve the

performance like classifying and prevent over-fitting.
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To z-score normalize a value x, we should first subtract the mean µ of the training

data from x. Then we need to divide the resulting value by the standard deviation σ

of the data. This will give us a new value, z(x), which has a mean of 0 and a standard

deviation of 1.

Z-score normalization: z(x) =
x− µ

σ
(3.1)

Z-score normalization can help to improve the performance of machine learning

algorithms by making the data more consistent. This can help the algorithm to learn

more effectively and to avoid over-fitting the training data.

In this experiment, I will use two data preprocessing methods, including Z-Score

Normalization and L2 Normalization before doing the classification.

The first way is to only use Z-Score Normalization. Then I will combine Z-Score

Normalization and L2 Normalization. Finally, the result with the higher accuracy of

two methods on the test set will be taken.
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4. Experimental Validation

In this chapter, I will first start by describing my pre-feature extraction and

processing, dataset processing, and model training process in Sec. 6.1. Then I will

present the results of all models trained for ChaLearn LAPFI First Impression Dataset

Recognition in Sec. 6.2. In Sec. 6.3 I will discuss the performance of different models on

personality recognition performances. For the sake of brevity and consistency, coding

convention used for the generated feature sets as well as in the subsequent tables

showing experimental results is in Table 4.1.

Model and Parameter Names Alias

Wav2Vec Uncompressed PCA400 GMM50 W2VU FV PCA400 GMM50

Wav2Vec Compressed PCA300 GMM50 W2VC FV PCA300 GMM50

Wav2Vec Compressed PCA400 GMM50 W2VC FV PCA400 GMM50

Wav2Vec Mean+Standard Deviation W2V2 MS

OpenSMILE 130-dimensional Feature LLDs IS13 LLD MS

OpenSMILE 6373-dimensional Functionals (Baseline) IS13 FUN

Public Dimensional Emotion Model VAD PDEM-VAD

Public Dimensional Emotion Model Embeddings PDEM-EBD

Valence Arousal Dominance VAD

Average AVG

Embedding EBD

Openness OPEN

Conscientiousness CONS

Extraversion EXTR

Agreeableness AGRE

Neuroticism NEUR

Table 4.1: Model, Parameter Names and Their Corresponding Alias.



16

4.1. Experiment Setup and Results

I used the ChaLearn Looking at People (LAP) FI First Impression Dataset [14]

to run different training on the big five dimensions of Openness, Conscientiousness,

Extroversion, Agreeableness, and Neuroticism. The dataset consists of 10000 video

clips average about 15 seconds in length. The dataset is divided into a training set of

6000 audios, a validation set of 2000 audios and a test set of 2000 audios. The original

labels of each dimension cover a range from 0 to 1, which I binarized into 0 or 1 based

on average of each dimension to do binary classification.

For the extraction of Wav2Vec2 LLDs, I obtain 768-dimensional embeddings from

32 ms of raw audio (waveform) with 10 ms steps. This process gives a time-sequenced

set of LLDs for the whole clip. For each 15-second audio clip from ChaLearn FI corpus,

this generates a sequence of approximately 1530 LLDs. To avoid memory issues in FV

modeling, first, I subsample these taking one every 10 LLDs. Then these subsamples

are combined into one large feature matrix. After that, I pre-train this feature matrix

to generate the respective PCA model and GMM models. The PCA model is used to

reduce the decorrelate and dimensionality of the original acoustic LLDs. After that,

the PCA-reduced data per audio clip and the trained GMM model together used to

generate the corresponding Fisher Vector features used for classification.

I used features extracted by openSMILE using a standard feature configuration

used in the INTERSPEECH 2013 Computational Paralinguistics Challenge [41] as

the baseline for my experiments. This contains 130 LLDs (65 raw and 65 temporal

derivatives) that are summarized by 54 functionals, which in total yield 6373 functional

features representing an audio utterance. For comparison under controlled settings, I

also used the 130-dimensional LLDs from the same openSMILE configuration for FV

representation. As shown earlier in Figure 3.1, FV representation for Wav2Vec2 follows

similar steps.

Also, I used an external pre-training model Public Dimensional Emotion Model
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as a reference. It extracts Valence, Arousal and Dominance (VAD) emotion primitives.

4.1.1. Fisher Vector vs. Baseline Functionals on openSMILE LLDs

To answer research sub-question 1 (RSQ1), we compared IS13 FUN (baseline) fea-

tures with the FV representation of the same set of LLDs, namely, IS 13LLD FV. The

results are shown in Table 4.2. In terms of validation set accuracy, the IS 13LLD FV

encoding achieves a validation accuracy of 69.40% for OPEN, 70.90% for CONS, 68.80%

for EXTR, 63.95% for AGRE, and 69.45% for NEUR. The average validation accuracy

across all emotion dimensions is 68.50%. On the other hand, the IS13FUN encoding

achieves slightly lower validation accuracy, with scores of 69.05% for OPEN, 67.55%

for CONS, 68.15% for EXTR, 62.15% for AGRE, and 67.65% for NEUR. The average

validation accuracy for this encoding is 66.91%. In terms of test set accuracy, the

IS13 LLD FV encoding achieves accuracies of 70.85% for OPEN, 69.15% for CONS,

69.35% for EXTR, 64.70% for AGRE, and 70.60% for NEUR. The average test accu-

racy for this encoding is 68.93%. Similarly, the IS 13 FUN encoding achieves accuracies

of 68.70% for OPEN, 70.00% for CONS, 69.30% for EXTR, 64.50% for AGRE, and

69.05% for NEUR on the test set. The average test accuracy for this encoding is

68.31%. Among the encoding techniques, the IS 13 LLD FV encoding achieves higher

accuracy on both the validation and test sets, compared to the IS 13 FUN encoding.

It demonstrates the state-of-the-art level of classification in this evaluation.

Validation Set OPEN CONS EXTR AGRE NEUR AVG

IS113 LLD FV 69.40 70.90 68.80 63.95 69.45 68.50

IS13 FUN 69.05 67.55 68.15 62.15 67.65 66.91

Test Set OPEN CONS EXTR AGRE NEUR AVG

IS13 LLD FV 70.85 69.15 69.35 64.70 70.60 68.93

IS13 FUN 68.70 70.00 69.30 64.50 69.05 68.31

Table 4.2: Validation and test set accuracy (%) performance of different encoding on

openSMILE.
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4.1.2. Effect of Wav2vec2 LLD Compression in FV Modeling

The classification results comparing compression options for Wav2Vec2 embed-

dings are shown in Table 4.3. The W2VU FV PCA400 GMM50 model demonstrated

superior accuracy in predicting the various personality dimensions, particularly ex-

celling in the Neuroticism dimension. However, it had the least accurate predictions

in the Agreeableness dimension. On the other hand, the W2VC FV PCA400 GMM50

model had slightly lower accuracy scores overall compared to theW2VU FV PCA400 GMM50

model. However, it showcased more consistent performance across all personality di-

mensions. In summary, the W2VU FV PCA400 GMM50 model displayed higher accu-

racy in most dimensions except for Agreeableness, while theW2VC FV PCA400 GMM50

model depicted more stable performance overall across the personality dimensions.

Validation set OPEN CONS EXTR AGRE NEUR AVG

W2VU FV PCA400 GMM50 64.55 67.15 65.45 59.35 66.60 64.62

W2VC FV PCA400 GMM50 63.45 66.80 63.70 61.50 64.75 64.04

Test set OPEN CONS EXTR AGRE NEUR AVG

W2VU FV PCA400 GMM50 66.15 68.88 65.75 62.50 66.95 66.05

W2VC FV PCA400 GMM50 65.55 68.80 64.10 63.35 66.70 65.70

Table 4.3: Validation and test set accuracy (%) performance of compressed and un-

compressed Wav2Vec2 LLDs with FV encoding.

4.1.3. Fisher Vector vs. Mean+Std. Functionals on Wav2Vec2

Table 4.4 represents the performance evaluation results for two different ut-

terance representation methods, namely FV and simple functionals (mean + std.),

applied on Wav2Vec2 LLDs. Each row represents a specific trait model, including

W2VU FV PCA400 GMM50 and W2V2 MS. The columns display the validation accu-

racy and test accuracy. Based on the validation accuracy, theW2VU FV PCA400 GMM50

and W2V2MS models have varying performance across different personality trait di-

mensions. The W2V2MS model performs better in the OPEN, CONS, and EXTR
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trait dimensions, with validation accuracies of 65.50%, 68.85%, and 65.20% respec-

tively. In the AGRE and NEUR emotion dimensions, the W2VU FV PCA400 GMM50

model has slightly higher performance. Overall, the average accuracy indicates that

the W2V2MS model has better performance, with an average accuracy of 65.66%. In

terms of test accuracy, the performance trends of the two models across different trait

dimensions are similar to the validation accuracy. The W2VU FV PCA400 GMM50

model has slightly higher test accuracies in the OPEN and AGRE emotion dimensions

compared to the W2V2 MS model. However, the W2V2 MS model performs slightly

better in the CONS, EXTR, and NEUR emotion dimensions. Overall, the average

accuracy indicates that the W2V2 MS model has slightly better performance on the

test set, with an average accuracy of 66.19%. In conclusion, the W2V2 MS model

shows relatively better performance on this dataset, with a higher average accuracy.

The overall results show that the high-dimensional and computationally complex FV

representation performs either on par with or (mostly) poorer compared to a simple

use of two functionals on Wav2Vec2.

Validation Set OPEN CONS EXTR AGRE NEUR AVG

W2VU FV PCA400 GMM50 64.55 67.15 65.45 59.35 66.60 64.62

W2V2 MS 64.50 65.90 65.20 61.95 67.20 64.95

Test Set OPEN CONS EXTR AGRE NEUR AVG

W2VU FV PCA400 GMM50 66.15 68.88 65.75 62.50 66.95 66.05

W2V2 MS 66.15 69.30 65.35 63.65 67.55 66.40

Table 4.4: Validation and test set accuracy (%) performance of Fisher Vector vs.

mean+std. functionals on Wav2Vec2.

4.1.4. Wav2Vec2 Fisher Vector vs. openSMILE Baseline

Table 4.5 presents the validation and test set accuracy performance of different en-

coding techniques, including W2VU FV PCA400 GMM50, W2V2 MS, and IS13 FUN,

on the Wav2vec vs Baseline task. In terms of validation set accuracy, the

W2VU FV PCA400 GMM50 encoding achieves a validation accuracy of 64.55% for

OPEN, 67.15% for CONS, 65.45% for EXTR, 59.35% for AGRE, and 66.60% for
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NEUR. The average validation accuracy across all emotion dimensions is 64.62%.

The W2V2MS encoding performs slightly better, with validation accuracies of 65.50%

for OPEN, 68.85% for CONS, 65.20% for EXTR, 62.25% for AGRE, and 66.50% for

NEUR. The average validation accuracy for this encoding is 65.66%. The IS13FUN

encoding achieves a higher validation accuracy compared to the two Wav2vec encod-

ings, with scores of 69.05% for Based on these results, it appears that IS13 FUN

performs the best in terms of accuracy scores for most dimensions on both the val-

idation and testing sets. W2V2 MS also demonstrates fairly high accuracy scores,

while W2VU FV PCA400 GMM50 has relatively lower scores. It is seen that the com-

bination of fisher vector, Chalearn LAP-FI and Wav2vec is not suitable for binary

classification.

Validation Set OPEN CONS EXTR AGRE NEUR AVG

W2VU FV PCA400 GMM50 64.55 67.15 65.45 59.35 66.60 64.62

W2V2 MS 64.50 65.90 65.20 61.95 67.20 64.95

IS13 FUN 69.05 67.55 68.15 62.15 67.65 66.91

Test Set OPEN CONS EXTR AGRE NEUR AVG

W2VU FV PCA400 GMM50 66.15 68.88 65.75 62.50 66.95 66.05

W2V2 MS 66.15 69.30 65.35 63.65 67.55 66.40

IS13 FUN 68.70 70.00 69.30 64.50 69.05 68.31

Table 4.5: Validation and test set accuracy (%) performance of different encoding on

Wav2vec vs. Baseline.

4.1.5. Public Dimensional Emotion Model vs. openSMILE Features

In terms of validation accuracy, the performance of the models varies across dif-

ferent emotion dimensions. Among them, the PDEM-EBD model achieves the highest

validation accuracy in the OPEN and AGRE emotion dimensions, with accuracies of

70.60% and 71.80% respectively. For the EXTR and CONS emotion dimensions, the

PDEM-EBD and PDEM-VAD models perform equally well. In the NEUR emotion

dimension, the PDEM-EBD and IS113LLDFV models have similar performance. Re-
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garding the test accuracy, the results follow a similar trend as the validation accuracy.

The PDEM-EBD model still performs the best in the OPEN and AGRE emotion di-

mensions, with test accuracies of 70.10% and 71.80% respectively. For the EXTR

and CONS emotion dimensions, the PDEM-EBD and IS13FUN models have similar

performance. In the NEUR emotion dimension, the PDEM-EBD and IS13FUN mod-

els perform equally well. Overall, the PDEM-EBD model demonstrates the highest

performance across multiple emotion dimensions, with relatively high test accuracy.

Validation Set OPEN CONS EXTR AGRE NEUR AVG

IS113 LLD FV 69.40 70.90 68.80 63.95 69.45 68.50

IS13 FUN 69.05 67.55 68.15 62.15 67.65 66.91

PDEM-VAD 65.30 64.35 66.60 60.40 67.10 64.75

PDEM-EBD 70.60 71.20 70.80 65.40 70.75 69.75

Test Set OPEN CONS EXTR AGRE NEUR AVG

IS13 LLD FV 70.85 69.15 69.35 64.70 70.60 68.93

IS13 FUN 68.70 70.00 69.30 64.50 69.05 68.31

PDEM-VAD 65.00 63.10 64.90 60.45 67.00 64.09

PDEM-EBD 70.10 72.05 71.25 65.60 71.80 70.16

Table 4.6: Validation and test set accuracy (%) performance of different features from

PDEM and openSMILE.

4.2. Statistical tests

As the results of the different feature sets are discussed, now I will use McNemar’s

test to compare systems in each personality trait to answer my research questions. The

tables provide an overview of the statistical tests performed for each personality trait,

including Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism.
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Comparison for Openness p χ2 Opponent Test

RSQ1- Baseline vs. IS13 LLD FV <0.05 15.84 70.85

RSQ2- CONP vs. UNCONP <0.05 34.40 66.15

RSQ3- W2V2 MS vs. Wav2Vec2 FV 0.668 0.1875 66.15

RSQ4- Baseline vs. Wav2Vec2 FV <0.05 24.43 66.15

RSQ5- Baseline vs. PDEM-EBD <0.05 19.00 70.10

RQ2- Baseline vs. PDEM-VAD <0.05 12.34 65.00

Table 4.7: Overview of statistical tests performed for Openness with the corresponding

test set accuracy (%) performances. The baseline (IS13 FUN) test performance for

this dimension is 68.70%.

Comparison for Conscientiousness p χ2 Opponent Test

RSQ1- Baseline vs. IS13 LLD FV <0.05 20.75 70.90

RSQ2- CONP vs. UNCONP 0.059 3.58 68.80

RSQ3- W2V2 MS vs. Wav2Vec2 FV <0.05 11.42 68.88

RSQ4- Baseline vs. Wav2Vec2 FV 0.257 1.14 68.88

RSQ5- Baseline vs. PDEM-EBD <0.05 19.00 71.20

RQ2- Baseline vs. PDEM-VAD <0.05 12.34 64.35

Table 4.8: Overview of statistical tests performed for Conscientiousness with the cor-

responding test set accuracy (%) performances. The baseline (IS13 FUN) test perfor-

mance for this dimension is 70.00%.

4.3. Discussion

NOw, I will answer the question proposed at the beginning. Question 1: Concern-

ing the apparent personality trait recognition task via Big Five personality traits, is

there a significant difference in terms of test set accuracy performance between baseline

(Interspeech 2013 Computational Paralinguistics ChallengE Setting) acoustic features

and other feature representations?

• Sub-question 1.1: Is there a significant difference in terms of test set accuracy
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Comparison for Extraversion p χ2 Opponent Test

RSQ1- Baseline vs. IS13 LLD FV 0.611 0.26 69.35

RSQ2- CONP vs. UNCONP 0.328 0.9575 64.10

RSQ3- W2V2 MS vs. Wav2Vec2 FV 0.1 1.106 65.75

RSQ4- Baseline vs. Wav2Vec2 FV <0.05 12.54 65.75

RSQ5- Baseline vs. PDEM-EBD 0.552 0.36 71.25

RQ2- Baseline vs. PDEM-VAD <0.05 7.32 64.90

Table 4.9: Overview of statistical tests performed for Extraversion with the correspond-

ing test set accuracy (%) performances. The baseline (IS13 FUN) test performance for

this dimension is 69.30%.

Comparison for Agreeableness p χ2 Opponent Test

RSQ1- Baseline vs. IS13 LLD FV 0.602 0.28 64.70

RSQ2- CONP vs. UNCONP 0.102 2.94 62.50

RSQ3- W2V2 MS vs. Wav2Vec2 FV <0.05 17.191 63.75

RSQ4- Baseline vs. Wav2Vec2 FV 0.809 0.06 63.75

RSQ5- Baseline vs. PDEM-EBD 0.436 0.62 65.60

RQ2- Baseline vs. PDEM-VAD 0.153 2.03 60.45

Table 4.10: Overview of statistical tests performed for Agreeableness with the corre-

sponding test set accuracy (%) performances. The baseline (IS13 FUN) test perfor-

mance for this dimension is 64.50%.

performance between baseline acoustic features and FV representation of the

same set of openSMILE low-level descriptors (LLDs)?

OpenSmile LLD fisher vector is slightly better than Baseline in terms of average

performance. where there is a statistically significant advantage in Openness,

Conscienciousness.

• Sub-question 1.2: Is there a significant difference in terms of test set accu-

racy performance between FV representations of the original (uncompressed) and

the compressed (averaged per 5 consecutive, non-overlapping frames) Wav2Vec2

LLDs?
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Comparison for Neuroticism p χ2 Opponent Test

RSQ1- Baseline vs. IS13 LLD FV 0.63 0.22 70.60

RSQ2- CONP vs. UNCONP <0.05 5.33 66.70

RSQ3- W2V2 MS vs. Wav2Vec2 FV <0.05 2.463 66.95

RSQ4- Baseline vs. Wav2Vec2 FV <0.05 6.65 66.95

RSQ5- Baseline vs. PDEM-EBD <0.05 23.27 71.80

RQ2- Baseline vs. PDEM-VAD <0.05 4.29 67.00

Table 4.11: Overview of statistical tests performed for Neuroticisms with the corre-

sponding test set accuracy (%) performances. The baseline (IS13 FUN) test perfor-

mance for this dimension is 69.05%.

There is not much difference in average performance between the two classifiers

used with or without compression of training data. Only on Openness, Uncom-

pressed Model performs slightly better.

• Sub-question 1.3: Is there a significant difference in terms of test set accuracy

performance between functional representation via mean and standard deviation

summarization of the Wav2Vec2 LLDs and their FV representation?

There is not much difference in average performance between the two classifiers.

However, for Conscienciousness, Agreebleness and Neuroticism, Wav2vec vectors

perform not as good as mean and standard deviation summarization. In other

personality dimensions, there is no significant difference.

• Sub-question 1.4: Is there a significant difference in terms of test set accuracy

performance between baseline acoustic features and the FV representation of

Wav2Vec2 LLDs?

There is a significant difference in terms of test set accuracy performance between

baseline acoustic features and the FV representation of Wav2Vec2 LLDs. The

FV representation of Wav2Vec2 LLDs outperforms the baseline acoustic features

in all five personality traits, with statistically significant differences in Openness,

Conscientiousness, Agreebleness and Neuroticism.

• Sub-question 1.5: Is there a significant difference in terms of test set accuracy

performance between baseline acoustic features and acoustic embeddings from
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the public dimensional emotion model (PDEM)?

There is a significant difference in terms of test set accuracy performance between

baseline acoustic features and acoustic embeddings from the public dimensional

emotion model (PDEM). The PDEM acoustic embeddings outperform the base-

line acoustic features in all five personality traits, with statistically significant

differences in Openness, Conscientiousness and Neuroticism.

• Question 2: Concerning the apparent personality trait recognition task via Big

Five personality traits, is there a significant difference in terms of test set accuracy

performance between baseline acoustic features and indirect modeling via intel-

ligible emotion primitive features (arousal, valence, and dominance) extracted

from public dimensional emotion model (PDEM)?

For every trait except agreeableness, PDEM is statistically significantly better.

The average performance of PDEM is much better.
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5. Conclusion

This thesis focuses on several audio feature engineering methods, mainly on fisher

vector, to predict the personality five dimensions. Based on my experimental results,

for Chalearn Lapfi First Impression audio data and Wav2vec specialization extraction,

the performance using fisher vector did not meet expectations. For Chalearn lapfi’s

single-modal audio divergence, openSMILE low level discriptors(LLDs) based on Inter-

Speech 2013 configuration, and fisher-vector-based embeddings extracted by external

model Personal dimensional emotion modal can reach the state-of-the-art level. Mean-

while, this thesis also explores the differences in the selection of parameters in some

feature engineering practical experience. Also, I explore whether it can be used as an

interpretable for the mood prediction of personality five-dimensional model based on

valence, arousal and dominance model.

5.1. Limitations and future work

The one of methods I tested which should be the main breakthrough, combing

Fisher Vectors and SVM performed well on other datasets [42], but not on this the cur-

rent data set Chalearn Lap FI. This suggests that the combination of these techniques

may not be universally applicable and that further research is needed to understand

the factors that contribute to its performance.

One possible explanation for the poor performance on this dataset is the Fisher

Vector technique may not be well-suited for this particular dataset, as it is designed

for tasks such as image classification, where the features are more evenly distributed.

Despite the poor performance of this dataset, we believe that the method we

tested has the potential to be a powerful tool for classification. Further research is

needed to address the limitations that we have identified and to improve its performance

on a wider range of datasets.
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This project is a pre-task for a large project aimed at finding an interpretable

machine learning intermediate feature to address the diagnosis of mood disorders and

depression. However, existing automated depression severity prediction methods often

rely on deep learning and black-box models that lack explanatory and interpretable

considerations. In order to meet clinicians’ needs to understand the decision-making

process of models, we need to build interpretable models with competitive performance.

Therefore, we introduce the Big Five personality traits as an interpretable intermedi-

ate. After finding the intermediate, more in-depth analyses and explorations can be

conducted to understand the relationship between these traits and depression. Further

empirical research could lead to a better understanding of the role of these features in

the diagnosis of depression and validate their predictive power for depression. Beyond

depression diagnosis, extending the application of these intermediate traits to other

mental health domains or medical treatments. For example, explore potential applica-

tions of intermediate features in the diagnosis of anxiety disorders, schizophrenia, or

other mental health problems. Algorithms and models can be further improved for in-

termediate features to increase their performance and accuracy. This may include the

use of more advanced machine learning methods, model integration or deep learning

techniques to further optimise the diagnosis of depression.
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