
Visual Explanations of
Runtime Verification Verdicts

Master Thesis

Edo Mangelaars
Computing Science

Supervisor UU :

Dr. Wishnu Prasetya
Department of Information and Computing Sciences

Supervisor TNO:

Dr. Jacques Verriet
TNO-ESI

Second examinor :
Prof. dr. Gabriele Keller

Department of Information and Computing Sciences

August 2023

Abstract

In runtime verification, the behavior of a program or system is verified by automatically checking a
specification expressed as a property in temporal logic on a finite execution trace. Understanding
why a property is satisfied or violated is crucial in order to identify and repair defects and refine
the specification, but for long traces and complex properties this may be difficult.

Eclipse TRACE4CPS™ is an open-source tool for the visualization and analysis of timed
execution traces, with functionality for verification of real-time properties in a language based
on Metric Temporal Logic (MTL). It uses informative prefix semantics to check whether the
property is true or false, or non-informative if the trace was truncated before a verdict
could definitively be determined. Intermediate values of the checking procedure can be visualized
in the trace view as an explanation of the verdict.

In this thesis, the presentation of the results of runtime verification in TRACE4CPS is improved in
three ways, in order to increase the understandability of verdicts. First, the verification algorithm
of TRACE4CPS is extended using a lattice-based four-valued informative prefix semantics to
determine whether a non-informative property is satisfied or violated so far (still true,
still false). Secondly, the explanation features are extended to allow arbitrary subformulas
of the property and the real-time constraints of the temporal operators to be visualized in an
interactive visual explanation process. Finally, a method for finding the cause of LTL property
violations based on Halpern and Pearl’s definition of causality is extended to find the causes of
timed MTL properties with false or still false verdicts. These are then used to generate
more concise and accurate universal visual explanations of property violations.

Acknowledgements

During the research project for this thesis, which was carried out as a research internship at
TNO, I was fortunate to enjoy the support, guidance and encouragement of two supervisors. I
would like to thank both dr. Wishnu Prasetya at Utrecht University and dr. Jacques Verriet at
TNO-ESI for taking the time to steer me in the right direction, for allowing me the freedom to
pursue my own path, and for giving excellent feedback and advice along the way.

I would also like to thank my colleagues at TNO-ESI for their time and feedback during the
interim evaluation of the visualizations.

Lastly, thanks to dr. Martijn Hendriks for his helpful advice on TRACE4CPS and the MTL
checking algorithm, and to dr. Clemens Dubslaff for the useful pointers to papers and an insightful
discussion about causality in verification.

This research was carried out as part of the ITEA3 18030 MACHINAIDE project under the
responsibility of TNO. The MACHINAIDE research is supported by the Netherlands Organi-
sation for Applied Scientific Research TNO and Netherlands Ministry of Economic Affairs and
Climate.

5

Table of Contents

Acknowledgements 5

1 Introduction 9
1.1 Runtime verification . 9
1.2 Visualization and explanation . 10
1.3 Improving verification feedback of Eclipse TRACE4CPS™ 10

1.3.1 Verdicts . 11
1.3.2 Explanations . 12

1.4 Contribution . 13

2 Background 15
2.1 Runtime verification using temporal logic . 15

2.1.1 Infinite executions – LTL . 16
2.1.2 Finite executions – LTLf . 17
2.1.3 Truncated executions – LTL∓ . 18
2.1.4 Truncated executions – LTL3 . 20
2.1.5 Truncated executions – RV-LTL . 21
2.1.6 Timed executions – MTL . 22
2.1.7 Continuous signals and STL . 24

2.2 Causality . 26
2.2.1 Formalizing causality . 26
2.2.2 HP causality . 27
2.2.3 HP causality for Boolean circuits . 30
2.2.4 Causality in verification . 31

2.3 Verification explanation tools . 33

3 TRACE4CPS 37
3.1 Execution traces . 37
3.2 Trace visualization . 38
3.3 Runtime verification . 39

4 Four-valued verdicts 43
4.1 Four-valued semantics . 43
4.2 TRACE4CPS checking algorithm . 46
4.3 Algorithm for four-valued semantics . 50

4.3.1 Extending the algorithm . 50
4.3.2 Reformulating the algorithm . 52

4.4 Four-valued semantics, redux . 55

5 Interactive visualization of verdicts 57
5.1 TRACE4CPS property explanations . 57
5.2 Explanations of subformulas . 59
5.3 Explanations of real-time intervals . 60

6

6 Causality for property explanation 61
6.1 HP causality for counterexample explanation . 61

6.1.1 Simplified binary causal models . 61
6.1.2 Causality for LTL counterexamples . 62
6.1.3 An approximation algorithm for causality 64

6.2 Causality for trace explanation in TRACE4CPS 66
6.2.1 Causes for LTL formulas with FALSE verdicts 66
6.2.2 Causes for LTL formulas with STILL FALSE verdicts 73
6.2.3 Causes for MTL formulas . 77

6.3 Visual cause explanations . 83

7 Discussion & future work 85
7.1 Four-valued verdicts . 85
7.2 Interactive visualization of verdicts . 87
7.3 Cause explanations . 88

7.3.1 Approximation . 88
7.3.2 Causes for positive verdicts . 89
7.3.3 Alternative notions of causality . 89
7.3.4 Integration of explanation features . 90

7.4 Verification using property-based testing . 91
7.4.1 Four-valued semantics . 92
7.4.2 Causality . 92

8 Conclusion 95

Bibliography 97

7

1 Introduction

As software and computing systems become more ubiquitous – in traditional applications running
on our desktop computers or mobile phones, or embedded in cars, medical systems and power
plants – we increasingly depend on their correctness and reliability. This applies especially
to safety-critical areas, where failures may have serious consequences for human lives and our
environment. At the same time, these systems are becoming increasingly complex: functionality
is distributed across multiple processing units and devices, and we require them to perform more
and more complicated tasks.

One way to ensure reliability of these increasingly complex systems is through formal verification:
the application of mathematically rigorous techniques to prove that a system correctly performs
its intended functions. This can be done, for example, through theorem proving – the use of
mathematical reasoning to obtain a proof of the correctness of a program – or through model
checking – systematically determining whether all possible executions of a program satisfy a
property, usually specified in a logical formula [Baier and Katoen 2008]. This requires that a
program or system is expressed as a model that allows for formal reasoning, either through
model-driven development – where the model is at the center of the development process and
source code, documentation and specifications can be generated from it – or by formulating a
model in parallel to development of the system.

Depending on the industry or application, this may be costly or incompatible with other desired
development practices or tools. Furthermore, verifying a complete model of the behavior of a
system is computationally very expensive, especially in cases where combinatorial explosion in
the number of states that describe a program can occur, requiring more sophisticated techniques
for representing the system or resorting to approximations.

1.1 Runtime verification

An alternative, more lightweight, approach is runtime verification [Leucker and Schallhart 2009].
Instead of verifying whether a specified property holds on all possible executions of a program,
a single execution, or run, is verified. The specification of the desired behavior of a system is
done using the same languages as those used in model checking, but the goal is to detect the
occurrence of a violation of a property in an actual (or simulated) system. This is performed
by a monitor, a device or program that reads a trace and yields a certain verdict [Leucker and
Schallhart 2009]. Checking the live execution of a running system is called online monitoring,
and when we check a recorded execution we speak of offline monitoring. We use the terms
offline and online runtime verification to refer to runtime verification using offline and online
monitoring, respectively.

Of course, when using runtime verification we cannot obtain the same level of confidence in the
correctness of a system as we can with model checking: we can only verify that an error did
not occur in the interval in which a program was monitored or a trace was recorded, but we
cannot be assured of the total absence of errors. In return, however, we gain the possibility to

9

1 Introduction

use formalisms and techniques from the body of knowledge surrounding model checking even
where a full-blown verification solution would be impossible or too expensive.

Another difference between runtime verification and model checking is that, while in model
checking programs are usually modeled as having infinite executions, recorded execution traces
are usually finite. We differentiate between the case where an execution is finite because the
program naturally terminates, or because we were only able to capture part of an execution (e.g.
because of practical constraints in the length of a trace and the amount of memory we have to
store it). This requires us to adapt the semantics of the specification languages used, and to
deal with the possibility that a trace does not contain enough information to obtain a verdict.

1.2 Visualization and explanation

Despite the fact that formal verification enjoys increased applicability with runtime verification,
there are barriers that prevent it from being widely used.

Formulating properties is specialized work. Finding the property that exactly captures the desired
behavior of a program is not easy, and using the languages that are used to specify properties
about programs is a separate skill from programming in general-purpose programming languages.
The expression of properties in these languages requires a high level of insight into how an
execution of a program and a property interact. At minimum, a runtime verification tool allows
a user to check a property on a trace or on a running program, and it returns a verdict on
whether the property holds or not. However, this may not be enough information for the user
to determine whether a fault lies in the system being verified or in the property that is still
being formulated. Often, a runtime verification tool will show at which point in the execution a
property was falsified, but this may still be insufficient when the property is complex [Beer et al.
2012].

When verifying a property, the quality of feedback of runtime verification is important for any
verdict. When given a negative result, a clear explanation can help a user debug the system
being verified, potentially saving a lot of time spent localizing the error in the system. When
given a positive result, explaining how this was determined increases the user’s trust in the
result. Even when the trace does not contain enough information to obtain a verdict there is
often useful information to be obtained from partial results of checking the property.

1.3 Improving verification feedback of Eclipse TRACE4CPS™

Eclipse TRACE4CPS™ is a visualization and analysis tool for the performance engineering
of cyber-physical systems [Hendriks et al. 2023], written in Java as a plug-in for the Eclipse
platform. It was first developed by TNO-ESI (as ESI TRACE), and has recently become an
open-source project hosted by the Eclipse Foundation [Eclipse TRACE4CPS™ 2022].

TRACE4CPS works on execution traces specified in a human-readable file format that can
come from any domain, source or level of abstraction. A trace contains timestamped and user-
annotated events (which have a single timestamp), claims on resources (which have a start and
end timestamp) and continuous signals (which are defined continuously within a time domain).
TRACE4CPS has functions for visualizing traces and analyzing several aspects of performance.
It allows for specifying and checking properties (of both the performance and the behavior of a
system) using ETL, a property specification language based on MTL (a temporal logic for the

10

1.3 Improving verification feedback of Eclipse TRACE4CPS™

Figure 1.1: A screenshot of the results of verification in TRACE4CPS (before)

specification of the behavior of timed systems [Hendriks et al. 2016a]) and STL (a variant of
MTL for continuous-time signals [Hendriks et al. 2023]). Thus, TRACE4CPS can be used as an
offline runtime verification tool.

The goal of the research project of this thesis was to improve the understandability of how the
results of the verification of ETL properties on a trace are presented in TRACE4CPS. Thus, the
central research question is as follows:

RQ0. How can the presentation of runtime verification results be improved to help
the user understand a verdict on an execution trace in TRACE4CPS?

The insights gained by answering this question are expected to be applicable to any application
of runtime verification of temporal properties, but this thesis is focused on the application of
techniques for improving the understandability of verdicts in TRACE4CPS. To further bound
the scope of the project, the research is limited to the verification and feedback of properties
on the discrete parts of traces (events and claims, specified using MTL properties) and we leave
improving the feedback of properties on continuous parts of traces (signals, specified using STL
properties) for future work.

Three areas in which the verification feedback of TRACE4CPS was deemed to be lacking were
identified, which were used to divide the central research questions into three sub-questions.

1.3.1 Verdicts

After checking a property on a trace, the results are presented as a verdict, which can be either
good, meaning that the trace satisfies the property, bad, meaning that the trace violates
the property, or non-informative, which signifies that the trace does not contain enough
information to definitively conclude the satisfaction or violation of the property. The verdicts of
a set of properties are shown in the lower right of Figure 1.1.

11

1 Introduction

The validity of properties on the events and claims in a trace is based on the assumption that
traces are truncated versions (or prefixes) of longer or possibly infinite sequences of events. If the
validity of a property is dependent on the information contained in the unknown continuation
of the trace, the verdict could still become good or bad in the future. For some properties, a
good or bad verdict cannot be reached on any finite prefix of an infinite sequence.

Thus, many practical properties and traces result in non-informative verdicts, which give
the user little useful information on whether the system under verification displays the desired
behavior, even though the trace may contain useful information about the property’s validity.

This leads to the following research question:

RQ1. How can the user, upon receiving a NON-INFORMATIVE verdict, be given
information about the validity of the property so far?

1.3.2 Explanations

When the user double-clicks on the name of a checked MTL property, an explanation of the
property is added to the visualized trace. The explanation is a visualization of the values in a
memoization table that was generated during the checking process. A set of virtual events is
generated corresponding to the events and (the left and right endpoints of) the claims that were
evaluated in order to reach the verdict, and displayed as part of the trace visualization.

This explanation has two characteristics that limit its usefulness.

Firstly, a property specified in ETL is composed of a top-level formula, and can optionally be
factored out into named subformulas. The ETL formula is then translated into an internal
representation of the equivalent MTL formula. The virtual events in the explanation are only
shown for the top-level formula and the named subformulas. If a more detailed explanation is
desired, the user must factor out the property into subformulas, give them names and re-check
the property. This can be a lot of effort and the resulting formulas may not be the most natural
expression of the property.

On the other hand, visualizing the values of all subformulas on all checked events can quickly
become overwhelming. Furthermore, the subformulas of the internal MTL representation of
the property may not correspond to how the property was expressed by the user in ETL, and
showing the intermediate values of a property in terms of this internal representation might be
confusing to for user.

This leads to the next research question:

RQ2. How can all subformulas of an ETL property be explained without becoming
overwhelming?

Secondly, a property explanation often contains many events that are not directly relevant to
the violation or satisfaction of a property. For example, if a property is violated at a time late
in the trace, virtual events for all events leading up to that point are generated even when they
have no impact on the verdict. Determining which events are relevant to the verdict can be
time-consuming, and the irrelevant events can even obscure the actual cause of the verdict.

Furthermore, if a property is a complex combination of conditions, it may be difficult or time-
consuming to determine which of these conditions are responsible for a verdict.

12

1.4 Contribution

To make the property explanations more useful in these situations, we pose the final research
question:

RQ3. How can property explanations clearly explain the cause of the verdict?

1.4 Contribution

Through the process of improving the feedback of verification in TRACE4CPS and answering
the research questions posed in Section 1.3, the following contributions are made in this thesis.

(RQ1 – Chapter 4) A four-valued informative prefix semantics is formulated for timed traces and
MTL formulas that splits the non-informative verdict into a still true and a still false
verdict. The algorithm in TRACE4CPS that computes an informative prefix verdict for a timed
trace and an MTL formula, and generates the truth values used in the property explanations
(developed by Hendriks et al. [2016a]), is extended to simultaneously compute a finite verdict
which is used to decide between still true and still false. The extension preserves the opti-
mizations made in the existing algorithm and the correctness of the intricacies of the informative
prefix semantics, which is checked using property-based testing.

The four-valued semantics for MTL is reformulated as an elegant, directly inductive definition,
rather than one in terms of the strong, weak and finite semantics of MTL, by using the observation
that the four truth values form a lattice. The algorithm expressed in terms of partial order
operations on this lattice is more concise and arguably more natural than the original algorithm,
while maintaining its structure, computational complexity and optimizations.

(RQ2 – Chapter 5) The property explanation functionality in TRACE4CPS is extended so that
visual explanations can be generated for arbitrary subformulas of an ETL property, by creating
a mapping between nodes in the abstract syntax tree of the ETL expression and those of the
MTL formula in the translation procedure from ETL formulas to MTL formulas. An additional
explanation type is created that shows the absolute intervals of constrained temporal operators
as the property is checked on the trace.

A visual representation of the tree structure of the formula, together with the resulting array of
explanation options, supports an interactive process through which the user can develop their
understanding of the verdict.

(RQ3 – Chapter 6) The approximate cause algorithm for LTL from [Beer et al. 2012] is applied to
TRACE4CPS to analyze which events and which attributes/atomic propositions are the cause of
a violation of an LTL property. The algorithm is extended to explain LTL properties containing
a next operator that causes a still false verdict. Finally, the algorithm is modified and
integrated into the MTL checking algorithm to generate cause explanations for MTL properties
with real-time constraints.

A visual explanation feature is developed, based on the approximate cause algorithm, which
offers a clear and concise indication of the reason that a property is violated that is independent
of the structure of the MTL formula.

⋆ ⋆ ⋆

The new features of TRACE4CPS were developed in a fork of the TRACE4CPS code repository,
and can be found at https://gitlab.eclipse.org/edocodes/trace4cps/-/tree/thesis

13

https://gitlab.eclipse.org/edocodes/trace4cps/-/tree/thesis

2 Background

In this chapter, a theoretical background of the subsequent chapters is given, which was gathered
during a literature study at the beginning of the research project, as well as a review of existing
tools in the area of visualization and explanation of verification results.

Section 2.1 introduces a set of logics with which properties of systems can be specified: LTL,
for infinite sequences of states, and some extensions of LTL that capture notions of finite
and truncated traces, and traces with real-time timestamps of states. A combination of MTL
(Section 2.1.6), LTL∓ (Section 2.1.3) and STL (Section 2.1.7) is used in TRACE4CPS to check
properties of traces of timestamped events. RV-LTL (Section 2.1.5) is used in Chapter 4 as
inspiration to formulate a a four-valued logic to provide more detailed verdicts of property
verification in TRACE4CPS.

Section 2.2 presents a theoretical notion of causality which is used in Chapter 6 to add new
functionality to TRACE4CPS to explain why a verdict of property verification was reached.

Finally, Section 2.3 reviews some tools that offer features to visualize or explain the results of
(runtime) verification, which were used as inspiration for the features developed in Chapter 5.

2.1 Runtime verification using temporal logic

To check formal specifications about the behavior of programs or systems, a program or system
is modeled as the set of all possible executions of the program or system [Baier and Katoen
2008].

An execution (or path, or trace) is modeled as an infinite ordered sequence σ = s0, s1, . . . or finite
ordered sequence σ = s0, s1, . . . , sn, where we call a s ∈ Σ a state, and Σ is the set of all states.
We use Σω to denote the set of all infinite sequences, and Σ∗ the set of all finite sequences of
states.

To encode properties, we use a set AP of atomic propositions, such that each s ∈ Σ is labeled with
a subset of the atomic propositions which hold in that state by a labeling function L : Σ→ 2AP .
A property over the set AP is modeled as a (possibly infinite) subset of all possible sequences of
labelings (i.e. a subset of

(
2AP)ω or

(
2AP)∗) that exhibit some specified behavior. A sequence

σ = s0, s1, . . . satisfies a property P if and only if L(s0), L(s1), . . . ∈ P , which is denoted σ |= P .
In this case, P is said to hold on σ. Sometimes, as a shorthand, states in a sequence are identified
with the set of atomic propositions that hold in that state, so that an execution is a sequence in(
2AP)ω or

(
2AP)∗ which satisfies a property P if and only if σ ∈ P .

We can use logical formulas as a compact representation to express properties. A simple example
is an invariant property, which is a property that specifies that all states in a sequence should
fulfil some propositional logic formula. More expressive are formulas in a class of logics called
temporal logic, in which properties can be specified so that properties of states can depend on
those of other states in the sequence. We shall see several temporal logics in this chapter.

15

2 Background

In model checking, a program or system is modeled as a transition system that encodes all possible
executions. A state in such a model can, for example, represent the values of all variables of a
program at some point in time. Using a variety of algorithms, one can efficiently check whether
every execution in the (possibly infinite) set of all sequences generated by the model satisfy a
property [Baier and Katoen 2008].

In contrast, in runtime verification, typically only a single execution is checked, either of a
running system or a recorded trace of a previously run or simulated one. Because this is a
technically much easier problem than model checking, algorithms and techniques can be used
that would be intractible on transition systems [Markey and Schnoebelen 2003].

2.1.1 Infinite executions – LTL

A common temporal logic used for specifying the behavior of systems is LTL, Linear Temporal
Logic [Pnueli 1977]. The syntax of LTL formulas is defined as follows.

Definition 2.1 (Syntax of LTL) [Baier and Katoen 2008]
Let p be an atomic proposition from a set AP. The set of LTL formulas is inductively defined
by the following grammar:

ϕ := true | p | ϕ1 ∧ ϕ2 | ¬ϕ | Xϕ | ϕ1 U ϕ2

The next operator Xϕ, often written as ⃝ϕ, specifies that ϕ should hold in the next state in the
sequence. The until operator ϕ1 U ϕ2 specifies that there is some state (either the current state
or some future state) in which ϕ2 holds, and ϕ1 holds in all states from now until that state.

Using the Boolean connectives ∧ and ¬, the other Boolean connectives can be derived as usual:

false def= ¬true
ϕ1 ∨ ϕ2

def= ¬(¬ϕ1 ∧ ¬ϕ2)
ϕ1 → ϕ2

def= ¬ϕ1 ∨ ϕ2

The until operator can be used to derive the following two very useful temporal operators:

Fϕ def= true U ϕ

Gϕ def= ¬F¬ϕ

The finally operator Fϕ, often written as □ϕ and alternatively called eventually, specifies that
ϕ holds either in the current state or in some future state. The globally operator Gϕ, often
written as □ϕ and alternatively called henceforth, specifies that ϕ holds in all states starting
from the current state.

Finally, two derived operators that are sometimes used are the weak until operator:

ϕ1 W ϕ2
def= (ϕ1 U ϕ2) ∨ Gϕ1

which acts like the until operator, except it does not require that a state be reached where ϕ2
holds, and the release operator:

ϕ1 R ϕ2
def= ¬(¬ϕ1 U ¬ϕ2)

16

2.1 Runtime verification using temporal logic

which specifies that ϕ2 holds up until and including a state where ϕ1 also holds, or ϕ2 always
holds (ϕ1 “releases” ϕ2).

The semantics of LTL are formally specified as follows:

Definition 2.2 (Semantics of LTL on infinite sequences) [Baier and Katoen 2008]
Let σ = s0, s1, . . . be an infinite sequence, ϕ, ϕ1 and ϕ2 LTL formulas, i a position with i ≥ 0,
p ∈ AP an atomic proposition, and let L(sj) be the set of atomic propositions which hold in
state sj , for all j = 0,
σi |= ϕ denotes that σ satisfies a property ϕ starting at position i. |= is inductively defined
as the smallest satisfaction relation such that

σi |= true
σi |= p iff p ∈ L(si)
σi |= ϕ1 ∧ ϕ2 iff σi |= ϕ1 and σi |= ϕ2

σi |= ¬ϕ iff σi ̸|= ϕ

σi |= Xϕ iff σi+1 |= ϕ

σi |= ϕ1 U ϕ2 iff ∃j≥i
[
σj |= ϕ2 and ∀i≤k<j σ

k |= ϕ1
]

We say that a sequence σ satisfies ϕ, denoted by σ |= ϕ, if and only if σ0 |= ϕ.

In propositional logic, conjunction (∧) and disjunction (∨) are called dual because of the following
equivalences:

¬(a ∨ b) ≡ ¬a ∧ ¬b ¬(a ∧ b) ≡ ¬a ∨ ¬b

In LTL, in addition to the propositional connectives, the operators F and G are dual, as well as
the operators U and R, and the operator X is self-dual:

¬F a ≡ G¬a ¬(a U b) ≡ ¬a R ¬b ¬X a ≡ X¬a
¬G a ≡ F¬a ¬(a R b) ≡ ¬a U ¬b

2.1.2 Finite executions – LTLf

In the semantics of LTL given above, it is assumed that executions are infinite. To deal with a
program that may terminate or deadlock the last state can simply be repeated indefinitely [Manna
and Pnueli 1992]. In (offline) runtime verification, however, we inherently deal with finite
sequence, since we only have a finite amount of memory to store a trace recorded from an actual
or simulated execution.1 Even for programs that do not terminate, we would like to not have
to wait until the end of an infinite computation to verify it. Moreover, in an online monitoring
situation, it is useful to have a continuous verdict of the computation so far, rather than having
to wait for a computation to finish.

To deal with this, we can explicitly define our temporal logics on finite executions. The first
logic we will examine, which we will call LTLf , is often called the traditional LTL semantics
over finite paths, and is named FLTL in [Bauer et al. 2008]. In LTLf , sequences are assumed to
1An infinite execution can be stored in a finite amount of memory by representing a repeating pattern as a cycle
of a finite subsequence, but that does not apply when the execution does not come from a model but an actual
system being recorded.

17

2 Background

be finite but maximal. That is, the last state in the sequence represents the actual end of the
computation, so the validity of the property depends entirely on the information that is available
in the sequence.

To extend the previous definition of LTL to finite executions, we need to split the next operator
into two versions [Manna and Pnueli 1992]: a strong version denoted Xϕ and a weak version
denoted Xϕ. The strong version requires that there is a next state and that ϕ holds in that
state, while the weak version holds either when there is no next state or ϕ holds in the next
state.

The until operator is interpreted as a strong operator, so that it is only satisfied if its right
operand is present in the trace. Its formal semantics is updated to account for finite sequences,
and its weak counterpart W is defined as before.

Definition 2.3 (Semantics of LTLf)
Let σ = s0, s1, . . . , sn be a finite, non-empty sequence of length |σ| = n + 1. We use |=f to
denote the satisfaction for LTL on finite sequences. The strong next and until operators for
LTL on finite sequences are defined as follows:

σi |=f Xϕ iff i < n and σi+1 |=f ϕ

σi |=f ϕ1 U ϕ2 iff ∃i≤j≤n
[
σj |=f ϕ2 and ∀i≤k<j σ

k |=f ϕ1
]

The other operators are the same as in Definition 2.2.

The weak next operator can be derived from the strong next operator:

Xϕ def= ¬X¬ϕ

In LTLf , X is no longer self-dual. Instead, X and X are dual (by definition).

To see why splitting the next operator into a strong and a weak version is necessary, consider
the property X¬a. On any infinite sequence, the self-duality of X is valid: X¬a ≡ ¬X a. On
any sequence with a single state, however, X¬a is false, but ¬X a is true, so the equivalence
no longer holds. By separating the strong and weak next operator, we can instead say that
X¬a ≡ ¬X a, which is valid on any finite (as well as any infinite) sequence.

2.1.3 Truncated executions – LTL∓

A finite sequence may not always be maximal, but can also be a truncated version of a longer
or infinite execution. Truncated executions arise naturally in runtime verification, simulation or
bounded model checking, where we may only have recorded or generated an execution up to a
point in order to make verification practical. We say that a truncated path is a finite sequence
that is interpreted as a prefix of an infinite sequence.

Consider the property ϕ = ¬p U init, which specifies that p must not occur before init occurs.
If we have a path in which we encounter p before we have encountered init, we know that ϕ is
violated. However, if we have a path in which we have not yet encountered either p or init, we
do not know if p occurs before init, so we should not conclude that ϕ is satisfied or violated. Yet,
using the semantics of LTLf would give a false verdict for both paths.

To be able to distinguish between these scenarios we use the notion of informative prefixes. If at
the end of a truncated path the evaluation of a formula ϕ is completed, we know the truth value on

18

2.1 Runtime verification using temporal logic

the execution of which the path is a prefix. In this case, we call the path informative [Kupferman
and Vardi 2001].2

When a path is not informative for ϕ, it does not contain all the information necessary to
conclude whether ϕ does or does not hold. This can be because there exist a continuation of
the prefix that satisfies ϕ and a continuation that violates it, but it can also be because the
knowledge of whether a formula can be satisfied or violated in a continuation is not contained
in the path. For example, the formula G true is satisfied by any infinite sequence because it is a
tautology. However, there is no finite sequence that is informative for G true, because the fact
that it holds on any continuation of such a sequence requires knowledge that it is a tautology,
which cannot be gained from the prefix alone.

To allow us to reason about LTL on truncated paths, Eisner et al. [2003] propose a formalism
based on two entwined versions of LTL (together called LTL∓ in [Bauer et al. 2008]) which differ
in what to return when there is doubt about the truth of a formula at the end of a prefix.

In the weak view a property is satisfied when there is doubt: a property holds on a sequence if it
does not contain evidence that the property is violated in the sequence (and thus any extension
of the sequence). In the weak view, the formula F a holds for any finite sequence, and G b holds
only if b holds in every state on the sequence. In the strong view a property is not satisfied when
there is doubt: a property holds on a sequence if it contains all evidence needed to conclude that
the property holds on any extension of the sequence. In the strong view, the formula F a holds
only if a holds at some state in the sequence, and G b does not hold for any finite sequence. The
semantics of LTLf is called the neutral view.

Definition 2.4 (Semantics of LTL∓) [Eisner et al. 2003]
Let σ = s0, s1, . . . , sn be a finite sequence of length |σ| = n+1, p ∈ AP an atomic proposition,
i a position with i ≥ 0, and let L(sj) be the set of atomic propositions that hold at state sj ,
for all j = 0, . . . , n. |=− is the satisfaction relation that corresponds to the weak view, with

σi |=− true
σi |=− p iff i > n or p ∈ L(si)
σi |=− ϕ1 ∧ ϕ2 iff σi |=− ϕ1 and σi |=− ϕ2

σi |=− ¬ϕ iff σi ̸|=+ ϕ

σi |=− Xϕ iff σi+1 |=− ϕ
σi |=− ϕ1 U ϕ2 iff ∃j≥i

[
σj |=− ϕ2 and ∀i≤k<j σ

k |=− ϕ1
]

and |=+ the satisfaction relation that corresponds to the strong view, with

σi |=+ true iff i ≤ n
σi |=+ p iff i ≤ n and p ∈ L(si)
σi |=+ ϕ1 ∧ ϕ2 iff σi |=+ ϕ1 and σi |=+ ϕ2

σi |=+ ¬ϕ iff σi ̸|=− ϕ
σi |=+ Xϕ iff σi+1 |=+ ϕ

σi |=+ ϕ1 U ϕ2 iff ∃j≥i
[
σj |=+ ϕ2 and ∀i≤k<j σ

k |=+ ϕ1
]

2In [Kupferman and Vardi 2001], informative is defined in the context of safety properties, which can only be
violated in finite time, and as such only refers to violations. We use an extended notion of informativeness
that is also symmetrically defined for general LTL formulas when they are satisfied.

19

2 Background

Note that in these definitions for the next and until operators, instead of requiring that the index
j or i+ 1 is smaller than the length of the sequence in which it is used, “overflow” of the indices
is used, combined with the fact that the semantics are defined past the end of the sequence:
given a formula ϕ, a finite sequence σ = s0, . . . , sn, and any j > n, σj |=− ϕ and σj ̸|=+ ϕ.

For example, consider a formula ϕ = true U a and a prefix of length n+ 1 in which a does not
occur. In the weak semantics, there exists a position j ≥ i such that a holds (namely, any j > n)
so ϕ is weakly satisfied. In the strong semantics, a does not hold for any j > n, so ϕ is not
strongly satisfied.

The negation operator switches between the strong and weak semantics, so the semantics form
a coupled dual pair.

These semantics correspond to LTLf as follows:

Proposition 2.5 (Strength relation theorem) [Eisner et al. 2003]
Let ϕ be an LTL formula and σ a non-empty sequence.

σ |=+ ϕ =⇒ σ |=f ϕ and σ |=f ϕ =⇒ σ |=− ϕ

Consequently, a sequence that violates a property in the weak semantics also violates it in the
finite semantics and in the strong semantics. We also have that once a path satisfies a property
in the strong semantics, any finite or infinite extension of that path also satisfies it in the strong
semantics. Dually, once a path violates a property in the weak semantics, any finite or infinite
extension of that path also violates it in the weak semantics. On infinite sequences, the weak,
strong and finite semantics are all equivalent.

2.1.4 Truncated executions – LTL3

An alternative way to reason about truncated sequences is proposed by Bauer et al. [2006] in a
logic called LTL3. Instead of recognizing informative prefixes, like LTL∓, LTL3 is based on the
concept of good and bad prefixes:

Definition 2.6 (Good/bad prefix for LTL) [Kupferman and Vardi 2001]
Let σ = s0, . . . , sn ∈ Σ∗ be a finite sequence of length n+ 1, and ϕ an LTL formula. Given a
sequence σ and σ′, let σ · σ′ denote the sequence that is the concatenation of σ and σ′.

σ is a bad prefix for ϕ def⇐⇒ ∀σ′ ∈ Σω : σ · σ′ |= ϕ

σ is a good prefix for ϕ def⇐⇒ ∀σ′ ∈ Σω : σ · σ′ ̸|= ϕ

In other words, σ is a good prefix if every infinite continuation of σ is true, and a bad prefix
if every infinite continuation of σ is false. Every informative prefix is either good or bad, but
there are good prefixes and bad prefixes that are not informative. Going back to the example in
Section 2.1.3 of the formula ϕ = G true: every finite sequence is a good prefix for ϕ, since ϕ is a
tautology, but not an informative prefix for the reason given before.

LTL3 uses a semantics |=3 which is a function that evaluates a formula and finite sequence to one
of the truth values in B3 = {⊤,⊥, ? }. B3 is defined as a De Morgan lattice with ⊥ ⊑ ? ⊑ ⊤, with
⊥ and ⊤ being complementary to each other, and ? being complementary to itself. The idea of
the semantics of LTL3 is that if every infinite sequence with prefix σ evaluates to the same truth

20

2.1 Runtime verification using temporal logic

value ⊥ or ⊤, then [σ |=3 ϕ] also evaluates to this truth value, and if different continuations of
σ yield different truth values it evaluates to ?.

It is defined formally as follows:

Definition 2.7 (Semantics of LTL3) [Bauer et al. 2008]
Let σ = s0, . . . , sn ∈ Σ∗ be a finite sequence of length n + 1. The truth value of a LTL3
formula ϕ with respect to σ is an element of B3, and is defined as

[σ |=3 ϕ] def=


⊤ if ∀σ′ ∈ Σω : σ · σ′ |= ϕ

⊥ if ∀σ′ ∈ Σω : σ · σ′ ̸|= ϕ

? otherwise

Because LTL3 recognizes all good and bad prefixes, it is able to correctly give a positive or
negative verdict for finite sequences where based on LTL∓ we could only conclude that it is
non-informative.

However, as opposed to the previously defined logics, LTL3’s semantics is not defined in an
inductive manner (that is, by the meaning of its subformulas). The reason for this is as follows.
Consider a proposition p with respect to the empty sequence ϵ. In LTL3, both [ϵ |=3 p] and
[ϵ |=3 ¬p] evaluate to ?. The join of these values is thus ?. However, given the above definition,
[ϵ |=3 p ∨ ¬p] = ⊤, since p ∨ ¬p is a tautology. Bauer et al. [2008] argue that any inductive
definition of LTL3 operating on B3 would not preserve this property.

According to Bartocci et al. [2018], evaluating [σ |=3 ϕ] on a finite sequence σ is a PSPACE-
complete problem. It is implemented in an automata-based monitor procedure in [Bauer et al.
2006].

2.1.5 Truncated executions – RV-LTL

Using a three-valued logic for verdicts on finite sequence, either by saying that a sequence is
non-informative using LTL∓ or by the addition of ? to the set of truth values in LTL3, allows
us to distinguish between a property being satisfied or violated and there not being enough
information to give a definite verdict of a property. Whenever there is a continuation of a finite
sequence that satisfies the property and a continuation that violates it, we give an inconclusive
verdict.

However, there are situations where this is not satisfactory. Consider the following example from
[Bauer et al. 2008] concerning the property G(r → F a), which says that all requests (r) must
be acknowledged (a) eventually. Let rω and aω be the infinite sequences repeating r and a ad
infinitum. For every finite prefix σ, we have that σ · rω ̸|= G(r → F a) and σ · aω |= G(r → F a).
Therefore, in LTL3, [σ |=3 G(r → F a)] = [σ |=3 ¬G(r → F a)] = ? for all finite words σ.

We call such a property non-monitorable. Even if we can never obtain a conclusive result, we
might still want to perform verification using non-monitorable properties. In the case of the
property G(r → F a), for example, we might want to distinguish between a sequence where all
requests have been acknowledged and a sequence where there is a request that has not been
acknowledged yet, even if we do not know if this will change in a continuation of the sequence.

To do this, Bauer et al. [2008] propose a four-valued variant of LTL called RV-LTL (Runtime
Verification-LTL), which uses the syntax of LTLf (with separate weak and strong next operators)

21

2 Background

and draws verdicts from a set of four truth values B4 = {⊤,⊥,⊤p,⊥p}, where ⊤p stands for
presumably true and ⊥p stands for presumably false. B4 forms a De Morgan lattice with with ⊥
and ⊤ being complementary, and the same for ⊥p and ⊤p.

The semantics of RV-LTL is a combination of LTLf and LTL3 where the truth value of LTL3
is taken when it is conclusive, and if LTL3 provides an inconclusive verdict, LTLf is used to
determine whether the property is presumably true or presumably false.

Definition 2.8 (Semantics of RV-LTL) [Bauer et al. 2008]
Let σ = s0, . . . , sn ∈ Σ∗ be a finite sequence, and let |=3 denote the satisfaction relation of
LTL3 and |=f that of LTLf . The truth value of a RV-LTL formula ϕ with respect to σ is an
element of B4 and is defined as

[σ |=RV ϕ] def=


⊤ if [σ |=3 ϕ] = ⊤
⊥ if [σ |=3 ϕ] = ⊥
⊤p if [σ |=3 ϕ] = ? and σ |=f ϕ

⊥p if [σ |=3 ϕ] = ? and σ ̸|=f ϕ

Like |=3, the semantics for |=RV is not defined inductively for the same reason.

2.1.6 Timed executions – MTL

Metric Temporal Logic (MTL) [Koymans 1990], is an extension of LTL in which properties of
timed systems can be specified. A timed system is a system where the correctness of its behavior
is dependent on the timing of events. While in LTL it is possible to write properties about the
(qualitative) relative ordering of events in time, MTL has the ability to specify (quantitative)
real-time constraints. This allows us to express properties such as “A follows B within at most
5 time units”, or “C happens at most once per 2 time units”.

A timed sequence ρ = (s0, t0), (s1, t1), . . . is a sequence of pairs in Σ× T , where Σ is the set of
states, each paired with a timestamp from T , which is some totally ordered time domain such as
(a subset of) N or R. The sequence is ordered by ascending timestamps, so for every i, ti ≤ ti+1.

As before, there is a set AP of atomic propositions and a labeling function L : Σ → 2AP that
assigns to each state s ∈ Σ the atomic propositions that are true in that state.

Definition 2.9 (Syntax of MTL) [Ho et al. 2014]

Let I ⊆ [0,∞) be an interval in T , either of the form [a, b], [a, b), (a, b], or (a, b), and p ∈ AP
an atomic proposition. The set of MTL formulas is inductively defined by the following
grammar:

ϕ := true | p | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 UI ϕ2

The temporal operator ϕ1UI ϕ2 now expresses that ϕ2 holds within some time interval I (relative
to the time of the current state being evaluated), and ϕ1 holds from the current state until then.
Thus, the right side of the operator is constrained by the interval, but the left side is not. The
unconstrained until operator U[0,∞) is abbreviated as U.

22

2.1 Runtime verification using temporal logic

The finally and globally operators can again be derived from until, and now also carry a time
interval:

FI ϕ
def= true UI ϕ

GI ϕ
def= ¬FI ¬ϕ

The notion of a “next” state is not as clear in a timed sequence as in a regular ordered sequence:
there may be multiple states with the same timestamp, and their relative ordering is often not
as relevant in timed systems as it is in non-timed systems. Thus, the next operator is often left
out, but in an application of MTL in which the ordering of states with identical timestamps
is well-defined, the unconstrained next operator or the constrained next operator XI , which
additionally specifies that the next state occurs within the interval I, can be included.

The semantics of MTL for infinite timed sequences is defined as follows [Ho et al. 2014].

Definition 2.10 (Semantics of MTL on infinite sequences) [Ho et al. 2014]

Let ρ = (s0, t0), . . . be an infinite timed sequence, p ∈ AP an atomic proposition, I ⊆ [0,∞)
an interval, ϕ, ϕ1, and ϕ2 MTL formulas, and i a position with i ≥ 0. The satisfaction
relation |= is defined as

ρi |= true
ρi |= p iff p ∈ L(si)
ρi |= ϕ1 ∧ ϕ2 iff ρi |= ϕ1 and ρi |= ϕ2

ρi |= ¬ϕ iff ρi ̸|= ϕ

ρi |= ϕ1 UI ϕ2 iff ∃j≥i
[
ρj |= ϕ2 and tj − ti ∈ I and ∀i≤k<j ρ

k |= ϕ1
]

Weak and strong semantics of MTL, in the same vein as LTL∓, are defined as follows.

Definition 2.11 (Semantics of MTL on truncated sequences) [Ho et al. 2014]

Let ρ = (s0, t0), . . . , (sn, tn) be a finite timed sequence of length n + 1, p ∈ AP an atomic
proposition, I ⊆ [0,∞) an interval of the form [inf(I), sup(I)), ϕ, ϕ1, and ϕ2 MTL formulas,
and i a position with 0 ≤ i ≤ n. The weak satisfaction relation |=− is defined as

ρi |=− true
ρi |=− p iff p ∈ L(si)
ρi |=− ϕ1 ∧ ϕ2 iff ρi |=− ϕ1 and ρi |=− ϕ2

ρi |=− ¬ϕ iff ρi ̸|=+ ϕ

ρi |=− ϕ1 U ϕ2 iff ∃i≤j≤n
[
ρj |=− ϕ2 and tj − ti ∈ I and ∀i≤k<j ρ

k |=− ϕ1
]

or
[
tn − ti < sup(I) and ∀i≤k≤n ρk |=− ϕ1

]

23

2 Background

and the strong satisfaction relation |=+ is defined as

ρi |=+ true
ρi |=+ p iff p ∈ L(si)
ρi |=+ ϕ1 ∧ ϕ2 iff ρi |=+ ϕ1 and ρi |=+ ϕ2

ρi |=+ ¬ϕ iff ρi ̸|=− ϕ
ρi |=+ ϕ1 UI ϕ2 iff ∃i≤j≤n

[
ρj |=+ ϕ2 and tj − ti ∈ I and ∀i≤k<j ρ

k |=+ ϕ1
]

In the second condition of the weak semantics in Definition 2.11, the right endpoint of I is
assumed to be open and finite. The semantics can easily be extended to any open, closed or
half-open intervals: if the right endpoint of I is closed, the expression tn− ti < sup(I) is replaced
by tn − ti ≤ sup(I), and if the upper bound of I is ∞, it is always true.

An LTL formula (assuming it does not contain X) can be expressed in MTL simply by taking
[0,∞) for all intervals. An untimed sequence can be represented as a timed sequence by setting
T = N, and for every state si the timestamp ti = i is the position of the state in the sequence.

A variant of MTL called MITL, Metric Interval Temporal Logic [Alur et al. 1996], is the subset of
MTL where the intervals are required to be non-singleton. That is, the left and right endpoints of
the intervals are required to be distinct so that the interval covers more than a single time point.
This restriction is necessary in order to make some verification algorithms decidable [Ouaknine
and Worrell 2008].

2.1.7 Continuous signals and STL

MTL as defined above has semantics defined on sequences ρ = (s0, t0), (s1, t1), . . . where every
element si ∈ Σ corresponds to a set L(si) ∈ 2AP of atomic propositions that hold at time ti ∈ T .

In the context where the sequence encodes the behavior of a program, we could see (si, ti) as
an event corresponding to a change in the state of the program, and say that the program is in
that state from time ti until the next state change at time ti+1. In this interpretation, a state
really describes the program in the interval on the number line from ti up to ti+1, but because
we only ever evaluate the state at the points in T that occur in the sequence, this is equivalent
to the interpretation that a state relates to a point on the number line. The interpretation of
MTL over sequences of states or events is also called the point-wise semantics [Ouaknine and
Worrell 2008].

An alternative interpretation of MTL, called the continuous semantics [Ouaknine and Worrell
2008], interprets specifications not over a sequence of discrete timed states or events, but contin-
uously over time using a function f : R+ → 2AP mapping every (non-negative real-numbered)
time value t ∈ R+ to the set f(t) of propositions that hold at time t. Given an MTL formula ϕ
over the set of atomic propositions AP, the satisfaction relation f |= ϕ is now defined for every
point on the positive number line with the following rule for the until operator (and the rest
omitted for brevity), where given some t, f t denotes the signal f t(s) = f(t+ s):

f |= ϕ1 UI ϕ2 iff ∃t∈I
[
f t |= ϕ2 and ∀u∈[0,t) fu |= ϕ1

]
Verification of MTL formulas on continuous signals requires different algorithms than that of
sequences, and decision problems involving the continuous semantics are often undecidable
or very complex. One way to solve this is by discretizing the trace through sampling of the

24

2.1 Runtime verification using temporal logic

signal, and using algorithms for verifying discrete-time MTL specifications to obtain a (possibly
incomplete) verdict [Furia and Rossi 2006].

STL, Signal Temporal Logic [Maler and Nickovic 2004], is a temporal logic based on MTL with
continuous semantics for the verification of real-valued continuous signals. Formulas in STL use
the syntax of MTL, with atomic propositions of the form s ≤ x or s ≥ x, with s : R→ R being
a continuous function and x ∈ R a threshold value.

An example property for some signal x is F[0,10)(x ≥ 0.5), which states that at some point within
10 time units the value of x is larger than 0.5.

25

2 Background

2.2 Causality

In runtime verification, we are interested in detecting whether the recorded behavior of a system
violates a specification. However, once we have detected a violation, in order to proceed to fix
the problem or refine the specification we need to understand why the system has violated the
specification. For simple properties and short traces, it might be easy to locate the error and
understand how it arises intuitively. In more complicated situations, however, finding the cause
of a verification result is not trivial.

This section presents a theoretical background for the application of causality to verification.
It is based on a mathematical formulation of causality by Halpern and Pearl [2005], called
HP causality, presented in Section 2.2.2. Section 2.2.3 present some subsequent results on HP
causality. Section 2.2.4 is a short review of how causality is used (formally or informally) in
other areas of verification and software testing.

2.2.1 Formalizing causality

Two notions of causality can be distinguished: type causality (concerning general statements
such as “smoking causes cancer”) and actual causality (focusing on particular events: “the fact
that David smoked like a chimney for 30 years caused him to get cancer last year”) [Halpern
2015]. The latter is where interest in the use of causality in verification has focused.

Finding a good definition for actual causality has proved difficult. Going back to the philosopher
Hume [1739] and more recently Lewis [1973], definitions of causality have involved counterfac-
tuality: statements about situations that run counter to fact. In the sentence “if A had not
happened, B would not have happened”, we would say that B has a counterfactual dependence
on A, and the main definitions of causality are inspired by this relationship. Unfortunately, this
notion is not enough to capture all the subtleties involved with causality, and the literature
concerning causality tells a story of publications attempting to formulate a formal definition
of causality and publications providing counterexamples that are not correctly analyzed by the
definitions.

To see that counterfactual dependence is not enough to define causality, consider the following
story taken from Hall [2004]:

Suzy and Billy both pick up rocks and throw them at a bottle. Suzy’s rock gets there
first, shattering the bottle. Since both throws are perfectly accurate, Billy’s would
have shattered the bottle had it not been preempted by Suzy’s throw.

Here, using naive counterfactual reasoning, one would conclude that Suzy did not cause the
bottle to shatter, since if she had not thrown her rock, the bottle would have shattered anyway.
However, most people would say that Suzy’s throw should be a cause of the bottle shattering
in this situation. Formally analyzing a situation such as this so that it is consistent with our
intuitions depends on how exactly the situation is modeled and how causality itself is formalized,
and no single method and definition has been found that fits all situations.

A definition of causality that is most widely used in the domain of verification is one formulated
by Halpern and Pearl, often shortened to HP causality. It comes in three versions: an original
version described in [Halpern and Pearl 2001], an updated version in the journal version of that
paper [Halpern and Pearl 2005], and a modified version [Halpern 2015]. In the domain of formal
verification, the 2005 updated definition finds the most use, so we will examine it in more detail.

26

2.2 Causality

2.2.2 HP causality

In HP causality, the world is modeled using a collection of variables, divided into exogenous
variables (variables that are determined by factors outside the model, and whose values we must
assume) and endogenous variables (variables within the model whose values are determined by
other endogenous and exogenous variables). How the endogenous variables take their values is
described by a set of structural equations.

Definition 2.12 (Causal model) [Halpern and Pearl 2005]

A causal model M is a pair (S,F).

S is the signature, which is a tuple S = (U ,V,R), where U is the set of exogenous variables,
V is the set of endogenous variables and R is a function that associates every variable with
the range of possible values for that variable.

F encodes the structural equations of the variables in the model. It is a function that
associates every endogenous variable X ∈ V with a function FX such that FX : (×U∈UR(U))×
(×Y ∈V−{X}R(Y)) → R(X). That is, for every endogenous variable X, FX determines the
value of X given the values of the other variables.

The variables in U , which are used to model variables that we need to assume, are assigned
values from a context u⃗ (denoted U ← u⃗).

Given a model M , a vector X⃗ of variables in V, a vector x⃗ of values for the variables in X⃗,
and a context u⃗, we can assign the values x⃗ to X⃗ (denoted X⃗ ← x⃗) to obtain a new causal
model MX⃗←x⃗ where the value of every variable X ∈ X⃗ is set to the corresponding value x ∈ x⃗
by removing the variables X⃗ from V and replacing the occurrences of the variables in X⃗ in F
with the values in x⃗.

The dependencies between the variables inM can be described using a causal network: a directed
graph with nodes corresponding to the variables in V and an arc from one variable to another
if the value of the second variable depends on the value of the first. If the causal network is
a connected directed acyclic graph, then given a context u⃗, there is a unique solution for all
the equations. This corresponds to there being at least one total ordering ⊑ of V such that if
X ⊑ Y , then X is independent of Y (but Y may depend on X). To find the unique solution of
the equations, we simply solve for the variables in the order given by one such ⊑.

The definition of causality is expressed using a structure model in a language of causal formulas
and events.

Definition 2.13 (Causal events and formulas) [Halpern and Pearl 2005]

Let M = (S,F) be a causal model with S = (U ,V,R) a signature.

A primitive event is a formula of the form X = x, for X ∈ V and x ∈ R(X).

A basic causal formula is a formula of the form [Y1 ← y1, . . . , Yk ← yk]η where η is a Boolean
combination of primitive events, Y1, . . . , Yk are endogenous variables in V and yi ∈ R(Yi) for
all i = 1, . . . , k. It is abbreviated [Y⃗ ← y⃗]η, or simply η if k = 0. It holds if η holds in MY⃗←y⃗.
A causal formula is a Boolean combination of basic causal formulas.

We write (M, u⃗) |= ψ if the causal formula ψ is true in the model M given context u⃗.

27

2 Background

To summarize the above, (M, u⃗) |= [Y⃗ ← y⃗](X = x) means that the variable X has value x in
the unique solution to the equations in the model that is obtained by setting the values of the
variables in Y⃗ to y⃗ in the model M given context u⃗.

Using this language, we can formally define what it means for one event to cause another.

As a warm-up, we can express a but-for cause, or a counterfactual dependence of a combination
of events η on an event X = x, using the language of causal models as follows:

Definition 2.14 (But-for cause) [Halpern and Pearl 2005]

X = x is a but-for cause of η in (M, u⃗) if:

– (M, u⃗) |= X = x and (M, u⃗) |= η, and

– There exists a setting x′ such that (M, u⃗) |= [X ← x′]¬η

In other words, X = x is a but-for cause of η if X = x is true and η is true, but if X were set to
some other value x′ then η would not be true.

The definition of an actual cause according to HP causality is as follows:

Definition 2.15 (Cause – updated definition) [Halpern and Pearl 2005]

X⃗ = x⃗ is a cause of η in (M, u⃗) if the following conditions hold:

AC1. (M, u⃗) |= X⃗ = x⃗ and (M, u⃗) |= η.

AC2. There exists a partition of V into disjoint subsets Z⃗ and W⃗ with X⃗ ⊆ Z⃗ and some
setting x⃗ ′ and w⃗ ′ of the variables in X⃗ and W⃗ such that

(a) (M, u⃗) |= [X⃗ ← x⃗ ′, W⃗ ← w⃗ ′]¬η. That is, changing X⃗, W⃗ from x⃗, w⃗ to x⃗ ′, w⃗ ′
changes η from true to false.

(b) Let z⃗ be such that (M, u⃗) |= Z⃗ = z⃗. For all subsets W⃗ ∗ ⊆ W⃗ and Z⃗∗ ⊆ Z⃗ we
have (M, u⃗) |= [X⃗ ← x⃗, W⃗ ∗ ← w⃗ ′, Z⃗∗ ← z⃗]η.3 That is, setting any subset of W⃗
to the values in w⃗ ′ has no effect on η as long as X⃗ has the value x⃗, even if all
the variables in any subset of Z⃗ are set to their original values in the context u⃗.

AC3. X⃗ is minimal, that is, no proper subset of X⃗ satisfies AC2.

The definition can be explained informally as follows, taken from [Halpern and Pearl 2005;
Chockler et al. 2008].

AC1 specifies that A cannot be a cause of B unless both A and B are true. AC3 is a minimality
condition to prevent, for example, Suzy throwing the rock and sneezing from being the cause of
the bottle shattering.

The core of the definition lies in AC2. The variables in Z⃗ should be thought of as describing the
“active causal process” from X⃗ to η: they take part in the propagation of values from X⃗ to η in
the structural equations.

3There is a slight abuse of notation here, since the subset W⃗ ∗ has fewer variables than w⃗ ′ has values. W⃗ ∗ ← w⃗ ′

here means that every W ∈ W⃗ ∗ is assigned the value w ∈ w⃗ ′ corresponding to that variable in W⃗ , and the
values corresponding to the variables not in W⃗ ∗ are ignored, and similarly for Z⃗∗ ← z⃗.

28

2.2 Causality

AC2(a) is reminiscent of a but-for cause, but is more permissive; it allows the dependence of
η on X⃗ to be tested under some special structural contingencies, in which the variables W⃗ are
held constant at some setting w⃗ ′.

AC2(b) is an attempt to counteract the “permissiveness” of AC2(a) with regard to structural
contingencies. Essentially, it ensures that X⃗ alone suffices to bring about the change from η to
¬η; setting W⃗ to w⃗ ′ merely eliminates spurious side effects that tend to mask the action of X⃗.

To illustrate the above definitions, let us look at an example.

Example 2.16 [Halpern and Pearl 2005]

Remember the story about Suzy and Billy from [Hall 2004]:

Suzy and Billy both pick up rocks and throw them at a bottle. Suzy’s rock gets
there first, shattering the bottle. Since both throws are perfectly accurate, Billy’s
would have shattered the bottle had it not been preempted by Suzy’s throw.

We define a model M with five endogenous boolean variables:

• ST for “Suzy throws”
• BT for “Billy throws”
• BH for “Billy’s rock hits the (intact) bottle”
• SH for “Suzy’s rock hits the bottle”
• BS for “Bottle shatters”

We assume that the context contains variables that determine that ST and BT are both
true and that Suzy throws first. We define F such that it encodes the following equations
(considering only the endogenous variables for simplicity):

• SH = ST
• BH = BT ∧ ¬SH
• BS = SH ∨ BH

Now, to determine whether Suzy’s throw (ST = true) is a cause of the bottle shattering
(BS = true), we take X⃗ = {ST}, x⃗ = {true}, and η = (BS = true). We see that (M, u⃗) |=
ST = true ∧ BS = true, so AC1 holds. AC3 is trivial. To satisfy AC2, we choose W⃗ = {BT}
and w⃗ = {false}, and Z⃗ = {ST ,SH ,BH}. If we set both ST and BT to false and solve the
resulting structural equations, we see that BS is no longer true. Both AC2(a) and AC2(b)
hold with this choice of W⃗ and Z⃗, so we conclude that ST = true is a cause for BS = true.

Next, to determine whether Billy’s throw (BT = true) is a cause of the bottle shattering
(BS = true), we take X⃗ = {BT}, x⃗ = {true}, and η = (BS = true). AC1 and AC3
still hold. For, AC2, attempting the symmetric choice of W⃗ = {ST}, w⃗ = {false}, and
Z⃗ = {BT ,BH ,SH}, we see that AC2(b) is violated when we take Z⃗∗ = {BH}. If BH is
kept at its original value of false, we see that even when Suzy’s rock would not hit the bottle,
Billy’s throw does not cause the bottle to shatter. There is no other partition into W⃗ and Z⃗
that does satisfy AC2, so we conclude that BT = true is not a cause for BS = true.

These conclusion are consistent with our intuition that Suzy broke the bottle, and Billy did
not. This example also shows that the choice of how we model the situation is important in
how causality is determined. If we had taken a simpler model with only the variables BT ,
ST , BS , and had no variables that captured the fact that Billy’s rock did not hit an intact
bottle, we would have concluded that both Billy’s and Suzy’s throws had caused the bottle
to shatter.

29

2 Background

The modified definition of Halpern [2015] is simpler, and focuses on variables that are frozen
in their original values, rather than considering all possible contingencies. In some of the
problematic cases that have been raised since the updated definition was published, the modified
definition tends to match people’s intuitions better. However, existing work on the applications
of causality to formal verification has not (yet) been updated to use this new definition.

2.2.3 HP causality for Boolean circuits

HP causality in its full generality is quite subtle, but instances are often able to make assumptions
that result in much simpler definitions.

In [Chockler et al. 2008], an instance of HP causality is presented for Boolean circuits. A Boolean
circuit is a representation of a Boolean propositional formula where the leaves represent atomic
propositions (inputs) and the interior nodes represent the binary operations ¬, ∧, and ∨ (gates).
Without loss of generality, the formulas are assumed to be in positive normal form, so that
negations occur only in the level directly above the leaves.

Let g : {0, 1}n → {0, 1} be a Boolean function on n variables, let C be a Boolean circuit that
computes g, and let X⃗ be the set of variables of C. A truth assignment f to the set X⃗ is a
function f : X⃗ → {0, 1}. The value of a gate w of C under an assignment f is defined as the
value of the function of this gate under the same assignment. For an assignment f and a variable
X, we denote by f̃X the truth assignment that differs from f in the value of X: f̃X(Y) = f(Y)
for all Y ̸= X, and f̃X(X) = ¬f(X). Similarly, for a set Z⃗ ⊆ X⃗, f̃Z⃗ is the truth assignment that
differs from f in the values of variables in Z⃗.

Boolean circuits are a special case of binary causal models, where each gate of the circuit is a
variable of the model (V), and values of inner gates are computed based on values of the inputs
to the circuits and the Boolean functions of the gates (F). A context u⃗ (for U) is a setting to
the input variables of the circuit. For ease of presentation, an explicit notion of criticality is
defined, which captures the notion of counterfactual causal dependence:

Definition 2.17 (Criticality for Boolean circuits) [Chockler et al. 2008]

Consider a Boolean circuit C over the set X⃗ of variables, an assignment f , a variable X ∈ X⃗,
and a gate w of C. We say that X is critical for w under f if f̃X(w) = ¬f(w).

If a variable X is critical for the output gate of a circuit C, changing the value X alone causes
a change in the value of C, and otherwise changing the value of that variable alone does not.
However, it may be the case that changing the value of X together with several other variables
causes a change in the value of C. The definition of a cause can be rewritten for Boolean circuits
as follows:

Definition 2.18 (Causality for Boolean circuits) [Chockler et al. 2008]

Consider a Boolean circuit C over the set X⃗ of variables, an assignment f , a variable X ∈ X⃗,
and a gate w of C. A (possibly empty) set Z⃗ ⊆ X⃗\{X} makes X critical for w if f̃Z⃗(w) = f(w)
and X is critical for w under f̃Z⃗ . (The value of) X is a cause for (the value of) w if there is
some Z⃗ that makes X critical for w.

30

2.2 Causality

Eiter and Lukasiewicz [2002] showed that testing causality in general causal models is ΣP
2 -

complete (ΣP
2 is a superset of NP), and that testing causality in binary causal models is NP-

complete. Chockler et al. [2008] concluded that testing causality in Boolean circuits is NP-
complete too.

2.2.4 Causality in verification

[Beer et al. 2012] presents a method for finding causes for the violation of LTL formulas in
counterexample paths generated by a model checker by formulating the problem as an instance
of HP causality. A cause for the violation of an LTL formula is defined as a state in the path
combined with an atomic proposition in the formula such that some criteria inspired by the
notions of criticality and cause shown in Section 2.2.3 hold. An efficient approximate algorithm
is used to find the approximate set of causes for a single violation of the formula. It is explained
in detail in Section 6.1.

In [Leitner-Fischer and Leue 2013] a method is presented for generating causes for the violation
of LTL-definable safety properties in transition system models, based on a causality definition
inspired by HP causality. Causes in this approach are expressed using a logic called event order
logic, and defined so that they can capture – in addition to the occurrence of events – the
relative ordering and non-occurrence of events. Because of this, the causes found using this
approach are more expressive and often more accurate than those of [Beer et al. 2012], but they
require knowledge of the entire transition system, rather than only a single execution path. The
method is similar in structure to explicit state model checking, and is implemented in the tool
SpinCause [Leitner-Fischer and Leue 2014]. In [Beer et al. 2015] this approach is implemented
using bounded model checking in a SAT-solver. The approach is extended to general LTL
properties in [Caltais et al. 2019].

In [Dubslaff et al. 2022] causes for the satisfaction or violation of functional and non-functional
requirements are expressed as propositional logic formulas representing configurations of features
of configurable software systems. The approach is inspired by HP causality, and generalizes to
arbitrary Boolean functions outside the feature-oriented software engineering domain.

In [Baier et al. 2022] the notions of necessary and sufficient causes for reachability properties
of transition systems, where both causes and effects are (sets of) states in transition systems,
are characterized using LTL. Additionally, quantitative measures of degree of necessity and
sufficiency are defined. These notions of causality (which are orthogonal to HP causality) are
elegantly expressed using the language of LTL, and their quantitative counterparts offer more
flexibility in the selection of good causes. However, the approach is restricted to reachability
properties expressed as a set of states in the transition system, rather than general LTL-definable
properties, and consequently, causes do not directly indicate individual propositions or variables.

Baier et al. [2021] provide an overview of further instances in which causal reasoning is used
in verification. In their view, general principles of causality have been used, often implicitly, in
formal verification for a long time. For example, in program slicing [Harman and Hierons 2001],
an approximation of an actual cause of a software failure is found by deleting those parts of a
program that have no effect on the outcome.

Causality is also a key concept in error localization, the problem of reducing a counterexample
path for ease of debugging [Baier et al. 2021]. For example, in [Zeller 2002] the Delta Debugging
algorithm is used to isolate the relevant states of a program (containing the variables and their
values at some time during execution) that cause a failure. It requires two executions of a

31

2 Background

program, one where the failure occurs and one where it does not, and attempts to isolate a cause
for the failure that is as precise as possible, which they call the cause-effect chain.

In [Ball et al. 2003], [Renieris and Reiss 2003], and [Groce 2004] the cause of an error in a
counterexample path (e.g. from model checking) or a failing test is localized using the existence
of correct sequences or by deriving alternative sequences that do not contain the error.

In [Wang et al. 2006] the cause of an error in a model checking counterexample is explained by
using a weakest pre-condition algorithm to find a minimal set of predicates that explains why
the execution fails.

32

2.3 Verification explanation tools

2.3 Verification explanation tools

A review of tools that visualize or explain results of formal verification is presented.

HyperVis [Horak et al. 2022; Horak et al. 2023] is a tool for visualizing model checking
counterexamples of hyperproperties (properties relating different executions of one model).

The system is specified as logical circuit, and the hyperproperty is specified as an LTL formula
in the form ∀π∀π′(. . .) where π and π′ are execution paths, and a variable v is used as v@π and
v@π′ for its value in either path. HyperVis looks for a counterexample consisting of two paths
π and π′ that together violate the property.

The visualization consist of four interacting parts: the system graph, the trace view, the formula
and the explanation. The system is visualized as a transition graph. The two paths are shown
as two traces with all variables at each time step. A textual explanation of the counterexample
is given that shows which subformulas are violated by which values. The relevant subformulas
and the corresponding causal values given different colors, and the user can hover over the parts
of the formula, explanation, trace and graph to highlight them in each of the four views. The
trace can be filtered to only show the relevant variables, and the system graph can be filtered to
only show the relevant states.

Figure 2.1: HyperVis

RuleBase PE [Beer et al. 1996] is the tool in which the counterexample explanation algorithm
of Beer et al. [2012] is implemented. This algorithm is presented in detail in Section 6.1.

Figure 2.2: Counterexample explanation in RuleBase PE

33

2 Background

MODCHK [Pakonen et al. 2018] is a model checking tool for systems expressed as functional
block diagrams which offers counterexample visualization.

It extends the causality algorithm from RuleBase PE. It shows enhanced atomic causes, by adding
to the atomic causes of Beer et al. [2012] information about where in the formula the propositions
are important. It also allows the user to interactively select counterexample explanations of
subformulas. Clicking on a value annotation of a (sub)formula shows the immediate cause of
that subformula value, allowing the user to iteratively descend to the (enhanced) atomic causes.

Figure 2.3: Two counterexample visualization views of MODCHK

OERITTE is another tool for visualizing and explaining model checking counterexamples of
functional block diagrams. Explanations are given in terms of both the LTL formula and the
model in the form of paths from causes to target values [Ovsiannikova et al. 2021].

Figure 2.4: OERITTE

34

2.3 Verification explanation tools

TemPsy [Dou et al. 2018] is a temporal property specification language based on the temporal
specification patterns of [Dwyer et al. 1999], with a corresponding visualization tool of property
violations. Because the patterns of [Dwyer et al. 1999] are often able to more directly express a
requirement than LTL, violations can be characterized as being due to unexpected occurrences,
non-occurence, or wrong temporal order, etc., depending on the temporal pattern used in the
property. In the visualization tool, each event that violates the property is highlighted and
annotated with the reasons for the violation.

Figure 2.5: TemPsy visualization tool

35

3 TRACE4CPS

TRACE4CPS1 is a tool for the visualization and analysis of execution traces for performance
engineering of cyber-physical systems.

Traces in TRACE4CPS can have discrete elements (events and actions on resources) as well as
continuous elements (real-valued signals over time), and can capture any level of abstraction and
come from any domain. Examples of things that can be captured by the trace format are log
files of software systems, executions of discrete-event simulation models, traces of scopes from
physical machines, paths through a state transition graph in model checking, and performance
logs of the CPU and memory usage of programs.

TRACE4CPS has functions for analyzing several aspects of the performance and behavior of the
system that generated the trace, and allows for checking temporal properties on traces specified
in a property language that combines MTL and STL.

3.1 Execution traces

An execution trace in TRACE4CPS consists of four types of elements [TRACE4CPS User Manual
2021]: events with timestamps, claims of resources with begin and end timestamps, dependencies
between events or claims, and continuous signals. An element of an execution trace has a number
of user-defined attributes with values. A trace is specified in a textual human-readable format
in an ETF file.

A TRACE4CPS trace can be formally described as follows [Hendriks et al. 2023].

Definition 3.1 (Trace in TRACE4CPS) [Hendriks et al. 2023]

Let A be a set of attributes, V be a set of attribute values and M : A ⇀ V be the set of
partial functions from attributes to values. Each element of M is a value assignment to a
subset of attributes. For example, the attribute mapping m ∈M in which an attribute “name”
has value “B” and attribute “id” has value “2” is notated as m = {name 7→ B, id 7→ 2}.

An event is specified by a tuple (t,m) where t ∈ R is the timestamp of the event, and m ∈M
specifies the event’s attributes.

There is a set D of dependencies and a set R of resources, the details of which are not relevant
to the verification process.

A claim of a resource is specified (slightly simplified) by a tuple (t0, t1, r,m), where t0, t1 ∈ R
(with t0 ≤ t1) are the start and end time of the claim, r ∈ R is the resource, and m ∈ M
specifies the claim’s attributes.

1https://www.eclipse.org/trace4cps/

37

https://www.eclipse.org/trace4cps/

3 TRACE4CPS

A claim c = (t0, t1, r, {v 7→ a, . . . }) is associated with two events: (t0, start {v 7→ a, . . . }) and
(t1, end {v 7→ a, . . . }).

A signal is a tuple (f,m) where f : R→ R is a piecewise second-order polynomial over some
domain of the number line (the exact specification of which is out of the scope of this thesis),
and m ∈M specifies the signal’s attributes.

An execution trace is a tuple (E,D,R,C, S) where E is a set of events, D is a set of depen-
dencies, R is a set of resources, C is a set of claims on R, and S is a set of signals. The start
and end events of the claims in C are included in E.

3.2 Trace visualization

Traces are visualized in a Gantt chart, a diagram often used to display production schedules,
where time is on the horizontal axis and the vertical axis is divided into a number of vertical
sections called swimlanes. Events and claims are distributed across the swimlanes, and each
signal is displayed in its own section. An event is displayed as an upwards-pointing arrow at
the timestamp of the event. Claims are displayed as blocks with the left endpoint and the right
endpoint at the times of the start and end timestamps of the claim.

The swimlanes can be defined by the user by specifying a grouping of claims and events. The
user chooses which attributes are used to create groups, and a section is created for each value
(or combination of values) of the chosen attributes. The user can also choose which attributes
are used to decide the colors of the events and claims, so that every event or claim with the
same combination of values for the chosen attributes gets the same color. Trace elements can be
filtered according to user-specified filters over the values of the attributes.

Figure 3.1 shows the visualization of a (part of a) trace from a simulated image-processing system.
It consists of a set of claims where each claim has an attribute id corresponding to the image
being processed, and an attribute name corresponding to one of 7 image processing tasks (named
A through G). Some tasks can be performed concurrently. In the interface of TRACE4CPS, the
trace has been filtered to only show jobs 1, 2, and 3. The first image shows the default view,
where every combination of attribute values is displayed in its own swimlane. In the second
image, the attribute id was selected for coloring and the attribute name for grouping.

Figure 3.1: Visualization of an execution trace. Default view (left) and grouped by name and
colored according to id (right)

38

3.3 Runtime verification

3.3 Runtime verification

Properties in TRACE4CPS are written as formulas in a textual language in an ETL file. A
definition is a named formula, and can be referred to in other formulas, which allows modularity
and reuse of properties. Definitions can be parameterized, and the parameter can be used as an
attribute value. A check is a top-level, named formula that is checked by TRACE4CPS when the
ETL file is selected for verification on a trace. A check can contain a variable that quantifies over
a range of integers, and that variable can be used as a parameter in a reference to a definition
or as an attribute value.

Formulas, checks and definitions follow the following grammars:

Definition 3.2 Syntax of ETL formulas

ϕ := p | not ϕ | if ϕ1 then ϕ2 | (ϕ1 and ϕ2) | (ϕ1 or ϕ2)
| globally ϕ | finally ϕ | during I ϕ | within I ϕ

| until ϕ2 we have that ϕ1 | by I ϕ1 and until then ϕ2

| identifier | identifier (parameter)

where p ∈ AP (atomic propositions are elaborated further on), I ⊆ [0,∞) an open, closed or
half-open interval with the left endpoint in R and the right endpoint in R or if it is open in
the right endpoint in R ∪ {∞}, and identifier refers to the name of a definition.

A definition is specified as follows:

definition := def identifier : ϕ
| def identifier (parameter) : ϕ

and a check as follows:

check := check identifier : ϕ
| check identifier : forall (parameter : a ... b) ϕ

where ϕ is a formula.

There are three types of properties that can be expressed, depending on the type of atomic
propositions used.

MTL. The first are MTL properties, where the atomic properties refer to attributes of events
(including the start and end events corresponding to claims). The set AP of atomic properties is
equal to the set M of attribute mappings. These properties are checked on the set of events E
of a trace. An atomic proposition p ∈ AP holds on an event (ti,mi) if and only if p ⊆ mi. That
is, p holds on (ti,mi) if and only if for every attribute a ∈ A that is defined in p, p(a) = mi(a).

STL. The second type are STL properties, where the atomic properties refer to the values of
signals and are of the form f ≥ x or f ≤ x for a signal f and a threshold value x ∈ R. A signal
is either identified by their attributes or generated by TRACE4CPS. STL formulas are defined
over the entire (continuous) interval in which the signals they refer to are defined, using the
continous semantics of STL.

Mix-TL. The third type are mix-TL properties: properties that combine MTL formulas (over
events) and STL formulas (over signals). In this case, the signals are discretized by sampling

39

3 TRACE4CPS

the signal at the timestamps of the relevant events, plus at a fixed number of points between
the events, and the result is checked using semantics similar to that of MTL.

In this thesis, we focus on MTL properties and consider properties using continuous signals out
of scope.

The properties written in ETL using the syntax of Definition 3.2 are translated to MTL. The
data structure in TRACE4CPS for storing and checking MTL properties follows the following
grammar:

Definition 3.3 (MTL formulas in TRACE4CPS)

ϕ := true | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ϕ1 UI ϕ2

The events are encoded as a sequence ρ = (t0,m0), (t1,m1), . . . where ti ∈ R is the timestamp
and mi ∈M is the attribute mapping of event i. ρ is sorted according to ascending timestamps.
The ordering of two events with the same timestamp is arbitrary.

The weak and strong semantics for MTL as defined in Definition 2.11 are used to obtain a verdict
for a property ϕ on a finite trace ρ as follows:

Definition 3.4 (Informative prefix verdicts for MTL) [Hendriks et al. 2023]

If ρ |=+ ϕ, then ρ is an informative good prefix for ϕ, so the verdict is good. If ρ ̸|=− ϕ, then
ρ is an informative bad prefix for ϕ, so the verdict is bad. Otherwise, ρ is non-informative,
so the verdict is non-informative.

⋆ ⋆ ⋆

An example of a property specified in ETL is the following property, which concerns the image
processing pipeline trace of Figure 3.1. It specifies that a single job may not take longer than 40
milliseconds.

Example 3.5 (Image processing latency)
def processing_starts(i): start {'name'='A', 'id'=i}

def processing_ends(i): end {'name'='G', 'id'=i}

check latency_discrete: forall (i: 0 ... 199)
globally

if processing_starts(i) then
within [0.0, 40.0) ms processing_ends(i)

It is translated internally by TRACE4CPS into a set of MTL properties, with i from 0 to 199:

G
(
(start {name 7→ A, id 7→ i})→ F[0,40)(end {name 7→ G, id 7→ i})

)
Figure 3.2 shows the interface of TRACE4CPS after an ETL file has been verified on a trace.
The Verification panel (on the right in Figure 3.2) shows the verdicts of the properties, and the
quantified property latency_discrete is expanded to show the verdict for each value of i.

40

3.3 Runtime verification

Figure 3.2: Interface of TRACE4CPS after an ETL file has been checked

The algorithm for checking an MTL formula to compute a verdict according to Definition 3.4
(developed by Hendriks et al. [2016a]) is explained in Section 4.2.

Visual explanations for the verdicts, based on the intermediate values calculated by the checking
algorithm, are added to the trace visualization when the user double-clicks on a property in the
Verification panel. These are presented in Section 5.1.

41

4 Four-valued verdicts

When a property is checked on a trace in TRACE4CPS, one of three possible verdicts are
generated: true, false, or non-informative, as described in Definition 3.4. In practice,
because of how the concept of informativeness is defined (see Section 2.1.3), many properties
and traces result in a non-informative verdict. This verdict represents the fact that, based
on the information contained in the trace, the property is not definitively satisfied or violated in
all extension of the trace. However, the user is likely interested in the validity of the property in
the trace so far, but this information can only be determined from the verdict indirectly, or not
at all, depending on the property.

In Section 4.1, a four-valued semantics is formulated with verdicts that can take on of the values
true, still true, still false, and false. Inspired by the four-valued logic of RV-LTL, it
uses the finite semantics of MTL to make a previously non-informative verdict more precise.

Section 4.2 summarizes work by Hendriks et al. [2016b] that forms the basis of the algorithm
in TRACE4CPS that computes the three-valued verdicts. While this algorithm could be used
to obtain a four-valued verdict by first checking the property in the three-valued semantics and
subsequently checking it with an algorithm that uses the finite semantics, this would mean that
the values of the subformulas on events in the trace would not match the four-valued semantics,
which could lead to confusing results in the visual explanations. For this reason, and in the
interest of efficiency, Section 4.3 presents an extended MTL checking algorithm that produces a
verdict in the four-valued semantics directly.

In Section 4.4, insights from the creation of this algorithm are used to provide a more direct,
inductive definition of the four-valued informative prefix semantics for both MTL and LTL.

4.1 Four-valued semantics

Definition 3.4, which defines the (three-valued) informative prefix semantics of MTL, can be
reformulated as follows:

Definition 4.1 (Informative prefix verdicts) Let ρ be a finite timed sequence and ϕ an
MTL formula.

[ρ |=IP3 ϕ] =


⊤ if ρ |=+ ϕ (true)
⊥ if ρ ̸|=− ϕ (false)
? otherwise (non-informative)

To illustrate the limits of a three-valued temporal logic, consider the following two situations.

43

4 Four-valued verdicts

We have the property G(¬error), which says that the proposition error should never occur:

[{¬error}, {¬error}, {¬error} |=IP3 G(¬error)] = ?

and the property F success, which says that eventually success should be reached:

[{¬success}, {¬success}, {¬success} |=IP3 F success] = ?

In the first situation, the verdict is non-informative because no error has occurred but there
could be a future state in which the error does occur. In the second situation, the verdict is
non-informative because succes has not been reached but there could be a future state in
which success is reached.

Both situations have the same verdict, but to a user who wants to perform verification on these
finite sequences, these situations are very different. In the first, nothing has “gone wrong” yet,
otherwise the verdict would have been ⊥, so an non-informative verdict is good news. In the
second, our desired situation has not been reached, otherwise the verdict would have been ⊤, so
an non-informative verdict is bad news.

Using the finite semantics (similar to Definition 2.3) here would result in a true verdict for
the first property and a false verdict for the second. However, this could be seen as too
presumptuous: a sequence that has not satisfied or violated a property yet is different from a
sequence where the validity of a property has been conclusively proven.

The knowledge that the only two possible verdicts for the property G(¬error) are non-informa-
tive and false does give us more information. When we receive a non-informative verdict,
we can deduce that error has not happened yet. Similarly, because the only possible verdicts
for the property F success are non-informative and true, if we receive a non-informative
verdict, we know that success has not happened yet. This level of insight in the semantics of
the verification process, which may not be evident in more complex properties, is ideally not
required of the user of a verification program.

There are also properties where the three-valued informative semantics does not give any useful
information, in the case of non-monitorable properties (see Section 2.1.5). An example is the
formula G(req → F ack), which specifies that every request should eventually be acknowledged.
This property evaluates to non-informative for every possible finite sequence, and does not
give us the ability to distinguish between a sequence where every request has been acknowledged
and one that contains non-acknowledged requests [Bauer et al. 2008].

Because of the tendency of non-informative verdicts to dominate in practice, and the lack of
useful information they offer the user, an extension of the verification functionality of TRACE4-
CPS to return verdicts from the set {true, still true, still false, false} ({⊤,⊤?,⊥?,⊥}) is
presented.

The verdicts true and false follow from the satisfaction in the strong semantics and the
violation in the weak semantics respectively, as before. Inspired by RV-LTL [Bauer et al. 2008]
(Section 2.1.5), non-informative is split into still true and still false by using the validity
according to the finite semantics of MTL (which is analogous to LTLf).

44

4.1 Four-valued semantics

Definition 4.2 (Four-valued informative prefix semantics using |=+, |=−, and |=f)
Let ρ be a finite timed sequence and ϕ an MTL formula.

[ρ |=IP4 ϕ] =


⊤ if ρ |=+ ϕ (true)
⊥ if ρ ̸|=− ϕ (false)
⊤? if ρ ̸|=+ ϕ and ρ |=f ϕ (still true)
⊥? if ρ |=− ϕ and ρ ̸|=f ϕ (still false)

Note that ρ |=f ϕ implies ρ |=− ϕ, and ρ ̸|=f ϕ implies ρ ̸|=+ ϕ (from Proposition 2.5), so
Definition 4.2 covers all combinations of strong, weak and finite verdicts. This is made clear in
the following overview:

|=f ̸|=f

|=− ⊤ —1
|=+

̸|=− —2 —1

|=− ⊤? ⊥?
̸|=+

̸|=− —2 ⊥

1 impossible because ρi |=+ ϕ⇒ ρi |=f ϕ.
2 impossible because ρi |=f ϕ⇒ ρi |=− ϕ

The intuition of the semantics of Definition 4.2 is as follows. ρ is assumed to be a truncated
prefix of a longer sequence. The four-valued verdict is true if ϕ was shown to be satisfied before
the end of ρ, and it is false if ϕ was violated before the end of ρ. If the end of ρ was reached
before the truth value of ϕ could definitively be determined, the verdict is still true if ϕ is
true for now, but it is not certain that it cannot be violated later, and still false if it is not
yet true, but could possibly become true later.

The four-valued informative prefix semantics is similar, but not identical, to that of RV-LTL
(|=RV). Because the informative prefix semantics only evaluate to true and false for informative
prefixes (see Section 2.1.3), rather than all good and bad prefixes (see Definition 2.6), there
are cases where a still true verdict in |=IP4 is too pessimistic or a still false verdict too
optimistic. For example, the formula G(p ∨ ¬p) evaluates to true on every finite sequence in
RV-LTL, because there is no infinite sequence that violates it, and therefore it is satisfied in any
extension of any finite sequence. In contrast, in the semantics given by Definition 4.2, G(p ∨ ¬p)
would be still true for any finite sequence, since the strong semantics evaluates to false if the
truth value of a formula relies on any information beyond the end of the sequence (but it is true
in the finite semantics for any finite sequence). Dually, the property F(p ∧ ¬p) is false for any
finite sequence in RV-LTL, since there is no (finite or infinite) sequence that could satisfy it, but
it is still false in |=IP4.

This means that occasionally, a still true verdict is received even when there is no extension
of the sequence that could violate it, or a still false verdict is received even though there is no
extension that could satisfy it. In our experience, because the still true and still false are
more precise than non-informative, and because we expect formulas containing tautologies
or unsatisfiable formulas to be quite rare in practice, this does not pose a problem.

45

4 Four-valued verdicts

4.2 TRACE4CPS checking algorithm

To see how the MTL checking algorithm in TRACE4CPS can be extended to four-valued verdicts,
let us look at how the current algorithm works.

The definitions of the strong, weak and finite semantics used in the informative prefix algorithm
in TRACE4CPS are as follows. (Colors are used to show the correpondences between conditions
in Definition 4.3 and variables in Algorithm 4.4.)

Definition 4.3 (Strong, weak and finite semantics of MTL) [Hendriks et al. 2016b]
Let ρ = (s0, t0), . . . , (sn, tn) be a finite timed sequence of length n + 1, p ∈ AP an atomic
proposition, I ⊆ [0,∞) an interval of the form [inf(I), sup(I))1, ϕ,ϕ1, ϕ2 MTL formulas,
0 ≤ i ≤ n a position in the sequence.
The strong semantics |=+ is defined as

ρi |=+ true
ρi |=+ p iff p ∈ L(si)
ρi |=+ ϕ1 ∧ ϕ2 iff ρi |=+ ϕ1 and ρi |=+ ϕ2

ρi |=+ ¬ϕ iff ρi ̸|=− ϕ
ρi |=+ ϕ1 UI ϕ2 iff ∃i≤j≤n

[
ρi |=+ ϕ2 and tj − ti ∈ I and ∀i≤k<j ρ

k |=+ ϕ1
]

The weak semantics |=− is defined as

ρi |=− true
ρi |=− p iff p ∈ L(si)
ρi |=− ϕ1 ∧ ϕ2 iff ρi |=− ϕ1 and ρi |=− ϕ2

ρi |=− ¬ϕ iff ρi ̸|=+ ϕ

ρi |=− ϕ1 UI ϕ2 iff
(
∃i≤j≤n

[
ρj |=− ϕ2 and tj − ti ∈ I and ∀i≤k<j ρ

k |=− ϕ1
])

or
(
tn − ti < sup(I) and ∀i≤k≤n ρk |=− ϕ1

)
The finite semantics |=f is defined as

ρi |=f true
ρi |=f p iff p ∈ L(si)
ρi |=f ϕ1 ∧ ϕ2 iff ρi |=f ϕ1 and ρi |=f ϕ2

ρi |=f ¬ϕ iff ρi ̸|=f ϕ

ρi |=f ϕ1 UI ϕ2 iff ∃i≤j≤n
[
ρi |=f ϕ2 and tj − ti ∈ I and ∀i≤k<j ρ

k |= ϕ1
]

Based on these definitions, Hendriks et al. [2016b] present an algorithm that computes a verdict
according to the informative prefix semantics. It is repeated here and explained briefly. For a
full justification and a proof of correctness of this algorithm, see [Hendriks et al. 2016b].

1Here, and in the rest of this chapter, the right endpoint of I is assumed to be open and finite. The semantics
and the algorithms in this chapter can eaily be extended to any open, closed or half-open intervals: if the right
endpoint of I is closed, the expression tn − ti < sup(I) is replaced by tn − ti ≤ sup(I), and if the upper bound
of I is ∞, it is always true.

46

4.2 TRACE4CPS checking algorithm

Algorithm 4.4 shows the three-valued informative prefix algorithm in pseudocode. To compute
[ρ |=IP3 ϕ], it is invoked as getOrCompute(ρ, ϕ, 0).

It operates on verdicts from a lattice B3 = {⊤,⊥, ? }, where ⊥ ⊏ ? ⊏ ⊤. ⊤ and ⊥ are com-
plementary to each other and ? is complementary to itself. The resulting three-valued logic
behaves as expected: ¬3 generalizes ¬:

¬3⊤ = ⊥ ¬3⊥ = ⊤ ¬3? = ?

and ⊓ and ⊔ generalize ∧ and ∨:

⊥ ⊓ ? = ⊥ ⊤ ⊓ ? = ? ⊥ ⊔ ? = ? ⊤ ⊔ ? = ⊤ etc.

The values for each subformula and position in the sequence are memoized in a memoization
table v : Φ×N⇀ {⊤,⊥, ? , undefined} which is initialized to be undefined for every subformula
and position, and which serves as a basis for the property explanation features described in
Chapter 5.

The boolean variables c1, c11, c2, c22, c3 correspond to the conditions for the until operator in the
strong and weak semantics as described in Definition 4.3.

The condition for the strong semantics is computed as follows: ρi |=+ ϕ1 UI ϕ2 holds if and only
if C1(i, n) holds, where, given a trace ρ = (s0, t0), . . . , (sn, tn), C1 is defined as follows:

C1(i,m) = ∃i≤j≤m
[
ρj |=+ ϕ2 ∧ tj − ti ∈ I ∧ C11(i, j)

]
C11(i, j) = ∀i≤k<j

[
ρk |=+ ϕ1

]
The conditions for the weak semantics are similar, except that their negation is calculated, since
we are interested in the case where the formula is false in the weak semantics. The validity of
ϕ1 UI ϕ2 in the weak semantics is a disjunction of two conditions. Consequently, ρi ̸|=− ϕ1 UI ϕ2
holds if and only if both C2(i, n) and C3(i, n) hold, which are defined as follows:

C2(i,m) = ∀i≤j≤m
[
ρj ̸|=− ϕ2 ∨ tj − ti /∈ I ∨ C22(i, j)

]
C22(i, j) = ∃i≤k<j

[
ρk ̸|=− ϕ1

]
C3(i,m) = tn − ti ≥ sup(I) ∨ ∃i≤j≤m

[
ρj ̸|=− ϕ1

]
The variables c11 and c22 are used in the calculation of the values of c1 and c2, but are updated
after c1 and c2, so that the value of c11 used in c1 only represents the states up to but not
including the current position (just as the domain of the universal quantifier in C11 is not
inclusive of j), and the same applies to c22 and c2.

At each iteration of the algorithm, after line 29, c1 ⇔ C1(i, j), c2 ⇔ C2(i, j), and c3 ⇔ C3(i, j),
and after line 31, c11 ⇔ C11(i, j) and c22 ⇔ C22(i, j).

An important difference between the variables for the strong semantics and those for the weak
semantics relies on the fact that the algorithm operates in the three-valued logic of B3. The
variables c1 and c11 compute the strong semantics because in lines 24 and 30, the values of
[ρj |=IP3 ϕ1] and [ρj |=IP3 ϕ2] are compared only against the value ⊤ (of the three possible
values of ⊤, ⊥ and ?). Likewise, c2 and c22 compute (part of) the weak semantics because in
lines 28 and 31, the values of [ρj |=IP3 ϕ1] and [ρj |=IP3 ϕ2] are compared against ⊥. If either
ϕ1 or ϕ2 contains temporal operators, [ρj |=IP3 ϕ1] or [ρj |=IP3 ϕ2] can evaluate evaluates to ?.
In this case, it is possible that neither c1 nor c2 ∧ c3 holds, signifying that the formula ϕ1 UI ϕ2

47

4 Four-valued verdicts

is neither satisfied in the strong semantics nor violated in the weak semantics, resulting in the
value ?.

As an optimization in compute(ρ, ϕ1UI ϕ2, i), if before the end of the loop the value of [ρj |=IP3
ϕ1 UI ϕ2] can already be determined, it is returned early:

• At line 25, when c1 becomes true at some position j, it will remain true. So, ϕ1 UI ϕ2 is
shown to hold in the strong semantics, and ⊤ can be returned early.

• At line 32, when at the last iteration (j = n), or ϕ1 is ⊥ at some state (c22 = true), or we
have reached a state past the interval I (tj − ti ≥ sup(I)), if c2 and c3 are true, they will
remain true. So, ϕ1 UI ϕ2 is shown not to hold in the weak semantics, and ⊥ is returned.

• At line 34, if c1 is false and either c11 is false or we have reached a state past the interval I,
then c1 will remain false. Furthermore, if c2 is false then it will remain false. This implies
that neither ρi |=+ ϕ1 UI ϕ2 nor ρi ̸|=− ϕ1 UI ϕ2 will be satisfied, so ? is returned.

• As a consequence of the first two points, at line 36 after the last iteration, we know that
neither ρi |=+ ϕ1 UI ϕ2 nor ρi ̸|=− ϕ1 UI ϕ2 have been satisfied, so ? is returned.

48

4.2 TRACE4CPS checking algorithm

Algorithm 4.4 (Three-valued informative prefix for MTL) [Hendriks et al. 2016b]
Let ρ = (s0, t0), . . . , (sn, tn) be a finite timed sequence of length n + 1, p ∈ AP an atomic
proposition, I ⊆ [0,∞) an interval of the form [inf(I), sup(I)), ϕ an MTL formula, and i a
position in the sequence such that 0 ≤ i ≤ n.
compute(ρ, ϕ, i) computes [ρi |=IP3 ϕ]. getOrCompute(ρ, ϕ, i) is a wrapper around
compute that performs memoization of the computed values using the memoization table
v : Φ× N⇀ {⊤,⊥, ? , undefined}.
1: v ← undefined for all ϕ, i
2: procedure getOrCompute(ρ, ϕ, i)
3: result ← v(ϕ, i)
4: if result = undefined then
5: result ← compute(ρ, ϕ, i)
6: v ← result
7: return result
8: procedure compute(ρ, true, i)
9: return ⊤

10: procedure compute(ρ, p, i)
11: if p ∈ L(si) then
12: return ⊤
13: else
14: return ⊥

15: procedure compute(ρ,¬ϕ, i)
16: return ¬3getOrCompute(ρ, ϕ, i)
17: procedure compute(ρ, ϕ1 ∧ ϕ2, i)
18: return getOrCompute(ρ, ϕ1, i) ⊓ getOrCompute(ρ, ϕ2, i)
19: procedure compute(ρ, ϕ1 UI ϕ2, i)
20: c1 ← false, c11 ← true
21: c2 ← true, c22 ← false, c3 ← tn − ti ≥ sup(I)
22: for j = i to n do
23: r2 ← getOrCompute(ρ, ϕ2, j)
24: c1 ← c1 ∨ (r2 = ⊤ ∧ tj − ti ∈ I ∧ c11)
25: if c1 then
26: return ⊤
27: r1 ← getOrCompute(ρ, ϕ1, j)
28: c2 ← c2 ∨ (r2 = ⊥ ∨ tj − ti /∈ I ∨ c22)
29: c3 ← c3 ∨ (r1 = ⊥)
30: c11 ← c11 ∧ (r1 = ⊤)
31: c22 ← c22 ∨ (r1 = ⊥)
32: if (j = n ∨ c22 ∨ tj − ti ≥ sup(I)) ∧ c2 ∧ c3 then
33: return ⊥
34: if (¬c11 ∨ tj − ti ≥ sup(I)) ∧ ¬c1 ∧ ¬c2 then
35: return ?
36: return ?

49

4 Four-valued verdicts

4.3 Algorithm for four-valued semantics

4.3.1 Extending the algorithm

In order to compute [ρ |=IP4 ϕ] so that it complies with Definition 4.2, Algorithm 4.4 is modified
so that it operates on truth values from the lattice B4 = {⊤,⊤?,⊥?,⊥}, where ⊥ ⊏ ⊥? ⊏ ⊤? ⊏ ⊤.
⊤ and ⊥ are complementary to each other and ⊤? and ⊥? are complementary (so that ¬4⊤ = ⊥,
¬4⊥ = ⊤, ¬4⊤? = ⊥?, and ¬4⊥? = ⊤?). In the resulting four-valued logic, ¬4 generalizes ¬ and
⊓ and ⊔ again generalize ∧ and ∨ as expected.

Now, instead of returning ?, the algorithm should return either ⊤? or ⊥?, using the finite semantics
to decide between the two. Apart from updating the code for negation and conjunction to operate
on B4 instead of B3, only the case for the until operator needs to be changed, since that is the
only place where a ? can originate. This is not surprising, because a formula consisting only
of non-temporal operators needs to evaluate only a single state. Thus, it cannot depend on
information beyond the end of the sequence, and will therefore always evaluate to either ⊤ or ⊥.

MTL formulas with non-nested until It is instructive to first look at the subset of MTL
formulas where temporal operators are not nested. That is, formulas that can contain any of
the constructs in the syntax of MTL, but in which subformulas of an until operator consist only
of the propositional connectives (∧, ¬, and true) and atomic propositions. In this subset, if we
encounter a subformula of the form ϕ1 UI ϕ2, we know that for any index j, both [ρj |=IP4 ϕ1]
and [ρj |=IP4 ϕ2] will be either ⊤ or ⊥ for the reason given above.

Under this assumption, four possible cases in the evaluation of compute(ρ, ϕ1 UI ϕ2, i) can be
distinguished:

• There is some state at position j which lies in the interval I where ϕ2 holds, and for all
states from i until j (exclusive), ϕ1 holds. The formula is true in the strong semantics, so
⊤ is returned.

• ϕ1 is found not to hold at some state before a state where ϕ2 holds has been found in the
interval I. The formula is false in the weak semantics so ⊥ is returned.

• ϕ2 holds at no state in the interval I and the sequence is not truncated before I ends. The
formula is false in the weak semantics, so ⊥ is returned.

• I extends past the end of the sequence, no state where ϕ2 holds has been found, but ϕ1
holds at every state starting at i. In this case, the formula is false in the strong semantics
and is true in the weak semantics. The formula is false in the finite semantics, since the
finite semantics requires that ϕ2 holds at some state in the prefix, so we return ⊥?.

Thus, a formula of the form ϕ1 UI ϕ2 without nested temporal operators that holds in the finite
semantics will always hold in the strong semantics too. Because B4 is totally ordered, the only
way to obtain a ⊤? from a formula without nested temporal operators is by negating a ⊥?. It
follows that for a formulas without nested temporal operators to evaluate to ⊤?, an until must
occur inside a negation. An example of such a formula is G true = ¬(trueU¬true), which evaluates
to ⊤? on every finite sequence.

The algorithm is easily modified so that it computes [ρ |=IP4 ϕ] for an MTL formula ϕ without
nesting of temporal operators by updating the operators ¬3, ⊓, and ⊔ to use B4 (¬4, ⊓, and
⊔) and replacing every statement where ? is returned in the procedure compute(ρ, ϕ1 UI ϕ2, i)
with one that returns ⊥? instead (at lines 34 and 36 of Algorithm 4.4).

50

4.3 Algorithm for four-valued semantics

All MTL formulas To compute [ρ |=IP4 ϕ] for all MTL formulas, including those with
arbitrary nesting of temporal operators, we can no longer assume that subformulas of an until
operator evaluate to ⊤ or ⊥: [ρ |=IP4 ϕ1 UI ϕ2] can evaluate to any of ⊤, ⊤?, ⊥?, or ⊥.

The cases where ⊤ and ⊥ are returned again stay the same. The cases in Algorithm 4.4
where ? is returned are updated so that either ⊥? or ⊤? are returned, and to decide between
⊤? and ⊥? we use the finite semantics. As with the other variables, we define two conditions
C4 and C44 that correspond to the conditions of the until operator in the finite semantics:
C4(i, n) ⇐⇒ ρi |=f ϕ1 UI ϕ2:

C4(i,m) = ∃i≤j≤m
[
ρj |=f ϕ2 ∧ tj − ti ∈ I ∧ C44(i, j)

]
C44(i, j) = ∀i≤k<j

[
ρk |=f ϕ1

]
In the algorithm we introduce variables c4 and c44 such that after every iteration, c4 = C4(i, j)
and c44 = C44(i, j). This results in the following algorithm (where the parts that have changed
since Algorithm 4.4 are highlighted):

Algorithm 4.5 (Four-valued informative prefix for MTL, version 1)
Let ρ = (s0, t0), . . . , (sn, tn) be a finite timed sequence of length n+ 1, I ⊆ [0,∞) an interval
of the form [inf(I), sup(I)), ϕ1, ϕ2 MTL formulas, and i a position in the sequence such that
0 ≤ i ≤ n.
1: procedure compute(ρ, ϕ1 UI ϕ2, i)
2: c1 ← false, c11 ← true
3: c2 ← true, c22 ← false, c3 ← tn − ti ≥ sup(I)
4: c4 ← false, c44 ← true
5: for j = i to n do
6: r2 ← getOrCompute(ρ, ϕ2, j)
7: c1 ← c1 ∨ (r2 = ⊤ ∧ tj − ti ∈ I ∧ c11)
8: c4 ← c4 ∨ (r2 ∈ {⊤,⊤?} ∧ tj − ti ∈ I ∧ c44)
9: if c1 then

10: return ⊤
11: r1 ← getOrCompute(ρ, ϕ1, j)
12: c2 ← c2 ∨ (r2 = ⊥ ∨ tj − ti /∈ I ∨ c22)
13: c3 ← c3 ∨ (r1 = ⊥)
14: c11 ← c11 ∧ (r1 = ⊤)
15: c22 ← c22 ∨ (r1 = ⊥)
16: c44 ← c44 ∧ (r1 ∈ {⊤,⊤?})
17: if (j = n ∨ c22 ∨ tj − ti ≥ sup(I)) ∧ c2 ∧ c3 then
18: return ⊥
19: if (¬c11 ∨ tj − ti ≥ sup(I)) ∧ ¬c1 ∧ ¬c2 ∧ c4 then
20: return ⊤?
21: if c4 then
22: return ⊤?
23: else
24: return ⊥?

At lines 8 and 16, if the value of r2 or r1 is ⊤ or ⊤?, we know that in the finite semantics it
would have been ⊤.

At line 19, if previously ? would have been returned, we additionally check whether c4 is true.

51

4 Four-valued verdicts

If c4 is true, we know that c4 will not become false later. ϕ1 UI ϕ2 is satisfied in the finite
semantics, so we can return ⊤?. If c4 is not true, we do not yet know if it will become true in a
later iteration, so we simply continue.

At line 21, after the last iteration, we again know that ϕ1 UI ϕ2 is neither satisfied in the strong
semantics nor violated in the weak semantics. We return ⊤? or ⊥? depending on whether it is
satisfied in the finite semantics (c4 is true or false, respectively).

As we have shown, the informative prefix checking algorithm can be extended to the four-valued
semantics in such a way that the structure of the code remains mostly the same. The largest
change to the control flow of the algorithm is in the condition to return ⊤? early, which was
made stricter, resulting in more iterations being made in cases where previously ? would be
returned but where the formula is not (yet) satisfied in the finite semantics. However, this does
not impact the computational complexity of the algorithm in the worst case.

4.3.2 Reformulating the algorithm

In Algorithm 4.5 compute(ρ, ϕ1 UI ϕ2, i) keeps track of 7 variables: two for both the strong
and the finite semantics, and three for the weak semantics. However, there is some redundancy
between these variables. For example, in the cases where c1 is true, c4 is always true, because
ρi |=+ ϕ1UI ϕ2 implies ρi |=f ϕ1UI ϕ2. The variables c1 and c4 are initialized identically, and are
updated almost identically. The only difference is that c1 becomes true if r2 is ⊤, and c4 when
r2 is either ⊤ or ⊤?. The same applies to c11 and c44.

We can replace the boolean variables c1, c11, c2, c22, c3, c4 and c44 by two variables that take
values from B4, and update them by replacing the boolean operations ∧ and ∨ by the partial
order operations that generalize them, ⊓ and ⊔, without losing any information.

We define a variable clr that generalizes c1, c2 and c4 and a variable cl that generalizes c11, c22
and c44, and can also be used to replace c3 (lr and l signifying that they keep track of the results
of both the left and right subformulas and only the left subformula of U, respectively). Let us
again define two conditions that correspond to these variables:

Clr(i,m) = ⊔
i≤j≤m

(
[ρj |=IP4 ϕ2] ⊓ tj − ti ∈ I ⊓ Cl(i, j − 1)

)2
Cl(i,m) = ⊔i≤j≤m[ρj |=IP4 ϕ1]

Note that Clr and Cl closely mirror the conditions C1 and C11, etc., but that Cl is phrased
slightly differently by being inclusive of the position m, because it is also used to cover C3.

Proposition 4.6 (Connection between Clr and strong, finite, and weak semantics)
Let ρ = (s0, t0), . . . , (sn, tn) be a finite timed sequence of length n + 1, ϕ1 and ϕ2 MTL
formulas, I ⊆ [0,∞) an interval of the form [inf(I), sup(I)), and i a position in the sequence
such that 0 ≤ i ≤ n.

ρi |=+ ϕ1 UI ϕ2 ⇐⇒ Clr(i, n) = ⊤
ρi |=f ϕ1 UI ϕ2 ⇐⇒ Clr(i, n) ⊒ ⊤?

ρi |=− ϕ1 UI ϕ2 ⇐⇒ Clr(i, n) ̸= ⊥ or
(
tn − ti < sup(I) and Cl(i, n) ̸= ⊥

)
2In this expression and those that follow, the result of the expression tj − ti ∈ I is assumed to be in B4 by
mapping true to ⊤ and false to ⊥.

52

4.3 Algorithm for four-valued semantics

We initialize the variables with clr ← ⊥ and cl ← ⊤ (the identity elements of ⊔ and ⊓, respec-
tively), and again update cl after clr so that the value of cl used in clr only represents the states
up to but not including the current position. The value of clr is updated in every iteration by a
join operation of clr with the information of the next state, so it is monotonically increasing from
⊥ in the direction of ⊤. The value of cl is updated by a meet operation, so it is monotonically
decreasing from ⊤ in the direction of ⊥.

We can recover the strong and finite conditions c1 and c4 by taking c1 ⇔ [clr = ⊤] and
c4 ⇔ [clr ⊒ ⊤?] (clr is at least ⊤?, equivalent to clr ∈ {⊤,⊤?}). Similarly, we have c11 ⇔ [cl = ⊤]
and c44 ⇔ [cl ⊒ ⊤?].

The weak conditions c2, c22 and c3 (which are the negations of the conditions of the weak
semantics), can also be recovered: c2 ⇔ [clr = ⊥] and c22 ⇔ [cl = ⊥]. In Algorithm 4.4, c3 is
initialized as tn − ti ≥ sup(I) and updated every iteration using c3 ← c3 ∨ (r1 = ⊥). It can be
equivalently written in terms of our new variables as c3 ⇔ (tn − ti ≥ sup(I) ∨ cl = ⊥).

Rewriting Algorithm 4.5 in terms of the variables clr and cl results in the following equivalent
algorithm:

Algorithm 4.7 (Four-valued informative prefix for MTL, version 2)
Let ρ = (s0, t0), . . . , (sn, tn) be a finite timed sequence of length n+ 1, I ⊆ [0,∞) an interval
of the form [inf(I), sup(I)), ϕ,ϕ1, ϕ2 MTL formulas, and i a position in the sequence such
that 0 ≤ i ≤ n.
1: procedure compute(ρ, ϕ1 UI ϕ2, i)
2: clr ← ⊥, cl ← ⊤
3: for j = i to n do
4: r2 ← getOrCompute(ρ, ϕ2, j)
5: clr ← clr ⊔ (r2 ⊓ tj − ti ∈ I ⊓ cl)
6: if clr = ⊤ then
7: return ⊤
8: r1 ← getOrCompute(ρ, ϕ1, j)
9: cl ← cl ⊓ r1

10: if (j = n ∨ cl = ⊥ ∨ tj − ti ≥ sup(I)) ∧ clr = ⊥ ∧ (tn− ti ≥ sup(I) ∨ cl = ⊥) then
11: return ⊥
12: if (cl ⊏ ⊤ ∨ tj − ti ≥ sup(I)) ∧ clr = ⊤? then
13: return ⊤?
14: return clr ⊔ ⊥?

Lines 6 and 10 were obtained by straightforward replacements of the previous conditions with
their equivalents. At line 12, the same applies, but the expression clr ⊏ ⊤ ∧ clr ⊐ ⊥ ∧ clr ⊒ ⊤?
was simplified to clr = ⊤?.

At line 6, if the value of clr is ⊤, we know that it will remain so, because clr is monotonically
increasing. In this case, ϕ1 UI ϕ2 is satisfied in the strong semantics, so ⊤ is returned.

At line 10, if we are at the last iteration, cl = ⊥ or the timestamp of the current state is
past the interval I, we know that the value of clr will not increase anymore, and because cl is
monotonically decreasing, it will never increase. In this case, if the negated condition of the
weak semantics (clr = ⊥ ∧ (tn − ti ≥ sup(I) ∨ cl = ⊥)) holds, it will remain so. Thus, ϕ1 UI ϕ2
is violated in the weak semantics, so ⊥ is returned.

53

4 Four-valued verdicts

At line 12, if the value of cl is smaller than ⊤, it will remain so, because cl is monotonically
decreasing. If this is the case, or it is the case that the timestamp of the current event is past
the interval I, we know (based on line 5) that clr will not become ⊤ if it is not yet ⊤. If the
value of clr is not ⊥ and we know that it will not become ⊤, we know that ϕ1 UI ϕ2 is neither
satisfied in the strong semantics nor violated in the weak semantics. Then, if the value of clr is
⊤?, it will remain so, which means that ϕ1 UI ϕ2 it is satisfied in the finite semantics, and ⊤? is
returned. If the value of clr is smaller than ⊤?, it may still become ⊤? in a later iteration, so we
continue.

At line 14, we return the value of clr joined with ⊥? because of the following:

• If clr = ⊥, then the first condition for the weak semantics of until is false, but the result
of compute should only be ⊥ if the second condition for the weak semantics of until is
also false, in which case compute would have returned at line 11. Thus, ϕ1 UI ϕ2 is not
violated in the weak semantics, but it is violated in the finite semantics, so ⊥? is returned.

• If clr = ⊥?, ϕ1UIϕ2 holds in the weak semantics, but it does not hold in the finite semantics,
so ⊥? is returned.

• If clr = ⊤?, ϕ1 UI ϕ2 holds in the weak semantics, does not hold in the strong semantics,
and holds in the finite semantics, so ⊤? is returned.

• If clr had become ⊤ at any point, compute would have returned at line 7, so line 14 would
not be reached.

By replacing all occurrences of ⊤? and ⊥? in Algorithm 4.7 with ? , an algorithm equivalent to
Algorithm 4.4 can be obtained.

54

4.4 Four-valued semantics, redux

4.4 Four-valued semantics, redux

From Proposition 4.6 and Algorithm 4.7, a concise semantics for [ρ |=IP4 ϕ] that is inductive on
the structure of the subformulas can be extracted:

Definition 4.8 (Four-valued informative prefix semantics, inductively)
Let ρ = (s0, t0), . . . , (sn, tn) be a finite timed sequence of length n + 1, p ∈ AP an atomic
proposition, I ⊆ [0,∞) an interval of the form [inf(I), sup(I)), and i a position in the sequence
such that 0 ≤ i ≤ n.

The truth value of an MTL formula ϕ with respect to ρ is an element of a lattice B4 =
{⊤,⊤?,⊥?,⊥} such that ⊥ ⊏ ⊥? ⊏ ⊤? ⊏ ⊤ and ¬4⊤ = ⊥ and ¬4⊤? = ⊥?, and is defined as

[ρi |=IP4 true] = ⊤

[ρi |=IP4 p] =
{
⊤ if p ∈ L(s0)
⊥ otherwise

[ρi |=IP4 ϕ1 ∧ ϕ2] = [ρi |=IP4 ϕ1] ⊔ [ρi |=IP4 ϕ2]
[ρi |=IP4 ¬ϕ] = ¬4[ρi |=IP4 ϕ]

[ρi |=IP4 ϕ1 UI ϕ2] =


⊥ if C(i, n) = ⊥ and(

tn − ti ≥ sup(I) or
(⊔i≤k≤n[ρk |=IP4 ϕ1]

)
= ⊥

)
C(i, n) ⊔ ⊥? otherwise

where C(i, n) = ⊔
i≤j≤n

(
[ρj |=IP4 ϕ2] ⊓ tj − ti ∈ I ⊓ ⊔i≤k<j [ρk |=IP4 ϕ1]

)
The case for the until operator can also be expressed more concisely as:

[ρi |=IP4 ϕ1 UI ϕ2] = ⊔
i≤j≤n

(
[ρj |=IP4 ϕ2] ⊓ tj − ti ∈ I ⊓ ⊔i≤k<j [ρk |=IP4 ϕ1]

)
⊔

(
tn − ti < sup(I) ⊓

(⊔i≤j≤n[ρj |=IP4 ϕ1]
)
⊓ ⊥?

)
With Definition 4.8 we have a semantics that is equivalent to Definition 4.2, but is expressed as
a single truth function instead of depending on the satisfaction relations of the strong, weak and
finite semantics.

A three-valued informative prefix equivalent to Definition 4.1 can be obtained from Definition 4.8
by replacing B4 with B3 and ⊥? with ?.

55

4 Four-valued verdicts

A four-valued informative prefix semantics for LTL can be obtained from Definition 4.8 by
assuming every I = [0,∞) and defining the truth value for the next operator as follows:

Definition 4.9 (Four-valued informative prefix semantics for LTL)
Let σ = s0, . . . , sn be a finite sequence of length n + 1, and 0 ≤ i ≤ n a position in the
sequence.
The truth value of an LTL formula ϕ with respect to σ is an element of a lattice B4 =
{⊤,⊤?,⊥?,⊥} such that ⊥ ⊏ ⊥? ⊏ ⊤? ⊏ ⊤ and ¬4⊤ = ⊥ and ¬4⊤? = ⊥?, and is defined as

[σi |=IP4 true] = ⊤

[σi |=IP4 p] =
{
⊤ if p ∈ L(s0)
⊥ otherwise

[σi |=IP4 ϕ1 ∧ ϕ2] = [σi |=IP4 ϕ1] ⊔ [σi |=IP4 ϕ2]
[σi |=IP4 ¬ϕ] = ¬4[σi |=IP4 ϕ]

[σi |=IP4 Xϕ] =
{
⊥? if i = n

[σi+1 |=IP4 ϕ] otherwise

[σi |=IP4 ϕ1 U ϕ2] =
{
⊥ if C(i, n) = ⊥ and

(⊔i≤k≤n[σk |=IP4 ϕ1]
)
= ⊥

C(i, n) ⊔ ⊥? otherwise
where C(i, n) = ⊔

i≤j≤n
(
[σj |=IP4 ϕ2] ⊓ ⊔i≤k<j [σk |=IP4 ϕ1]

)

56

5 Interactive visualization of verdicts

In this chapter, several improvements to the visual property explanations of TRACE4CPS are
developed.

Section 5.1 describes the presentation of verdicts and the property explanation features of
TRACE4CPS before the start of this research project.

In Section 5.2, these are extended to allow the explanation of arbitrary subproperties.

In Section 5.3, a visualization of the time intervals of temporal operators that were visited during
the property checking procedure is added.

5.1 TRACE4CPS property explanations

TRACE4CPS’s Verification panel consists of a tree view with nodes that can be expanded and
collapsed. After a set of properties is checked on a trace, the verdicts are shown in the Verification
panel, grouped under three nodes for good, bad, and non-informative.

Properties that consist of a quantification over the domain of a parame-
ter (using forall ...) are grouped by the name of the top-level prop-
erty. In the screenshot on the right, the property latency_discrete
(from Section 3.3), which is quantified over the integers from 0 to 199,
is false for 5 values of the parameter, and non-informative for the
others.

To verify a property, the ETL formula is translated by TRACE4CPS
into an MTL representation. As this MTL formula is checked using
the algorithm described in Section 4.2, a memoization table is used to
keep the computed values for each of the formula’s subproperties on
every event. At the end of the procedure, the table contains values
for all subformula-event pairs that were visited in order to produce a
verdict, and null values for those that were not visited.

When a property (or a property instantiated with a value in the case of a quantified property) is
double-clicked, a property explanation is generated in the form of a set of events corresponding to
the non-null values of the top-level formula and any named definitions in the formula in the mem-
oization table. These events are added to the trace visualization in separate swimlanes, colored
green, red and blue for true, false and non-informative values, respectively. In Figure 5.1, a
portion of the trace visualization is shown after the property latency_discrete(0058), which
has the verdict bad, has been double-clicked.

Because the property explanation is only generated for named (sub)formulas (checks and defini-
tions), it is up to the user to decide how the formula is factored out into definitions so that the
property explanation is most useful.

57

5 Interactive visualization of verdicts

Figure 5.1: Property explanation for latency_discrete(58)

Figure 5.2: Property explanation for order(2)

Consider the property order, which specifies that in the image processing trace, task F may
not start before task B has ended (order_f), and task F may not start before task C has ended
(order_f_strict), and is defined as follows:

Example 5.1 (Ordering of image processing tasks)
def order_f(i): globally

if start {'name'='F', 'id'=i} then
until end {'name'='G', 'id'=i} we have that

not end {'name'='B', 'id'=i}

def order_f_strict(i): globally
if start {'name'='F', 'id'=i} then

until end {'name'='G', 'id'=i} we have that
not end {'name'='C', 'id'=i}

check order: forall (i: 0 ... 199) (order_f(i) and order_f_strict(i))

In Figure 5.2 the property explanation of the property order(2), which has the verdict bad, is
shown. Because every named formula is a temporal formula that, when checked, is evaluated
only on the first event of the trace, the explanation is not very helpful in this case.

58

5.2 Explanations of subformulas

5.2 Explanations of subformulas

To increase the flexibility of property explanations, the ability to generate explanations for
arbitrary subformulas of a property is added.

First, the Verification panel is reordered (shown on the right in Figure 5.3) so that, in the place
of the good, bad, and non-informative nodes, the properties in a file are shown in order,
each with their own verdict. Additionally, the verdicts good and bad are renamed true and
false to be in accordance with the verdicts of the four-valued semantics (true, still true,
still false, false).

Double-clicking a property still generates an explanation of the top-level formula and the defi-
nitions it uses. However, the property can now be expanded to show the tree structure which
corresponds to the abstract syntax tree of the formula,. Double-clicking a node in this formula
tree generates an explanation of the sub-formula corresponding to that node. This is shown in Fig-
ure 5.3 for the node “if ... then” and the node “end {name=C, id=i}” of order_f_strict.
The red arrow in the first of the four explanation swimlanes, together with the green arrow in
the last swimlane, explain the reason that the property order_f_strict is violated: after the
start of task F for job 2 (on which the if ... then subformula is evaluated), the end of task C
occurs, indicating that task F has started before task C has finished executing.

The MTL representation of a formula (which is used to generate the memoization table on
which the explanation is based) may be different from the ETL formula as specified by the user.
For example, a formula of the form globally . . . is represented in MTL as ¬(true U . . .). In
order to generate the correct explanation for a node in the ETL representation of the formula,
a mapping is introduced between ETL formulas and MTL formulas, which is generated during
the translation process from ETL and MTL. The ETL subformulas are shown in the tree in the
Verification panel, and the corresponding MTL subformula is looked up and used to generate
the property explanation.

Figure 5.3: New presentation of verification results of property order, with the trace visualization
with explanations of two subformulas on the left and the Verification panel on the
right

59

5 Interactive visualization of verdicts

5.3 Explanations of real-time intervals

Besides the values of subformulas on events in the trace, the satisfaction of a property also
depends on whether events occur in the intervals defined by the temporal operators with timing
constraints. In ETL, these are represented by formulas of the form during ... (GI), within
... (FI), and by ... and until then ... (UI).

An interval defined in a constrained temporal operator is evaluated relative to each event that a
temporal operator is evaluated on. Thus, it can be difficult to see from the trace visualization
which events occur within an interval.

To help the user understand the concrete timing constraints of properties, an additional expla-
nation feature is added that visualizes the (relative) intervals that were encountered during the
property checking procedure. This is done by adding virtual claims to the trace visualization,
each corresponding to a concrete interval of the selected temporal operator. If a temporal opera-
tor is evaluated on multiple events, claims (colored gray) corresponding to the intervals relative
to each of these events are shown in the same swimlane.

In Figure 5.4, a regular property explanation of the node processing_ends(58) and the new
interval explanation of the node within [0.0, 40.0) ms are both shown in the trace visualiza-
tion.

The combination of these two explanations clearly shows why latency_discrete(58) is false.
At time 486.67, task G ends, which is indicated by the green arrow in the first explanation
swimlane. (Exact timestamps of events and claims are shown in a Properties panel when the
user clicks on them.) However, the interval in the second explanation swimlane shows that the
property requires that the end of task G occurs between time 445.43 and time 485.43. Thus, job
58 ends too late, and latency_discrete(58) is violated.

Finding the right combination of explanations (of subproperties and of temporal intervals)
that illustrates the reason that a given verdict was reached is a matter of trying different
explanations, and gradually adding more detail to the trace visualization as the user develops
their understanding of the verdict. This process is supported by the ability to interactively add
and remove explanations in the trace view, choosing from the nodes in the abstract syntax tree
of the property.

Figure 5.4: Explanation of the subformula processing_ends(58) and the interval of within
[0.0, 40.0) ms ...

.

60

6 Causality for property explanation

In this chapter, the property explanation functionality of TRACE4CPS is extended by using an
algorithm by Beer et al. to find the set of events and attributes that cause the violation of a
property.

Section 6.1 summarizes [Beer et al. 2012], in particular the instance of HP causality and an
approximation algorithm to compute the set of causes according to that definition.

In Section 6.2, the approximate cause algorithm is applied to properties and traces in TRACE-
4CPS, modified to compute correct causes for still false properties and extended to MTL
properties with timing constraints.

In Section 6.3, a new type of visual explanation is developed which uses the approximate cause
algorithm to visualize the cause of a violation of an ETL property in TRACE4CPS.

6.1 HP causality for counterexample explanation

In model checking, a property is checked on a model of a system which represents all possible
executions of the system. If the property is violated, a counterexample path is generated: a single
execution that displays a violation of the property which can be used by the user to understand
how the system violates the property.

Such a counterexample is often lengthy and determining the cause of the property violation is a
time-consuming and error-prone process [Kaleeswaran et al. 2022].

6.1.1 Simplified binary causal models

An instance of HP causality (see Section 2.2.2) is used in [Beer et al. 2012] to identify the causes
of a property violation in a counterexample for a LTL property. To make the connection between
HP causality and the causes for LTL violations clearer, Beer et al. use a simplified definition of
HP causality that is based on Definitions 2.12 to 2.15, but is restricted to binary causal models
(i.e. models where the range of all variables is binary) and assumes there are no dependencies
between the variables.

Definition 6.1 (Simplified binary model) [Beer et al. 2012]

A binary causal model M is a consists of a set V is a set of Boolean variables. A context u⃗ is
a legal assignment for the variables in V.

A primitive event has the form X = x, where X ∈ V is a variable, and x is either true or
false. Given a Boolean function of primitive events η, (M, u⃗) |= [Y⃗ ← y⃗]η means that given
context u⃗, η holds in the model MY⃗←y⃗ in which the value of every variable Y is replaced with
the corresponding value y.

61

6 Causality for property explanation

The notation X⃗ ← ¬⃗x is used to say that the variables in X⃗ are set to their negated values, i.e.
X ← ¬x for every X ∈ X⃗ and x the value of X in (M, u⃗).
A cause in this simplified model is defined as follows:

Definition 6.2 (Cause for simplified binary models) [Beer et al. 2012]
X = x is a cause of η in (M, u⃗) if the following conditions hold:

AC1. (M, u⃗) |= X = x and (M, u⃗) |= η

AC2. There exists a subset W⃗ of V with X /∈ W⃗ and w⃗ the values of W⃗ in (M, u⃗) such
that the following conditions hold:
(a) (M, u⃗) |= [X ← ¬x, W⃗ ← ¬⃗w]¬η. That is, changing the value of X from x

to ¬x and changing the values of all the variables in W⃗ together falsifies η in
(M, u⃗).

(b) For all S⃗ ⊆ W⃗ , with s⃗ denoting the values of S⃗ in (M, u⃗), we have (M, u⃗) |=
[S⃗ ← ¬⃗s]η. That is, changing the values of W⃗ or any subset of W⃗ without
changing the value of X does not falsify η in (M, u⃗).

The notion of criticality, inspired by inspired by Definition 2.17, is defined as follows:

Definition 6.3 (Critical variable for simplified binary models) [Beer et al. 2012]

Let M be a model, u⃗ the current context, and η a Boolean formula. Let (M, u⃗) |= η, and X
be a Boolean variable in M that has the value x in the context u⃗. (X = x) is critical for η in
(M, u⃗) if and only if (M, u⃗) |= [X ← ¬x]¬η.

That is, when changing the value of X to ¬x falsifies η in (M, u⃗), (X = x) is critical.

Intuitively, if there is a counterfactual dependence between X = x and the truth value of η,
we say that X = x is critical for η. X = x is a cause of η in (M, u⃗) if there exists a subset of
variables such that changing their values makes X = x critical for η.

6.1.2 Causality for LTL counterexamples

A counterexample to an LTL formula ϕ is a finite path σ = s0, . . . sn ∈ Σ∗ such that σ ̸|=− ϕ, or
an infinite path σ = u · vω ∈ Σω consisting of a finite prefix u followed by repeated copies of a
finite path v such that σ ̸|=− ϕ, where |=− is the weak satisfaction relation of [Eisner et al. 2003]
(see Section 2.1.3).

In [Beer et al. 2012], counterexamples are generated by a model checker to illustrate the violation
of an LTL property on model of a program. Programs are modeled as transition systems, and
the states s ∈ Σ in the counterexample path correspond to the states in the model. The states
contain values for a set V of Boolean variables, and the set AP of atomic propositions in the
counterexample path has a one-to-one correspondence to the set V of variables: given an atomic
proposition p, σi |= p if and only if the variable v corresponding to p is true in the state si of
the model.

To find the causes of the failure of ϕ on σ, where a cause is a value of a variable v in a state
s along the path σ, Beer et al. [2012] define an instance of HP causality in which a state-value
pair ⟨s, v⟩ is a potential cause for the verdict σ ̸|=− ϕ representing the violation of the property
ϕ on the path σ.

62

6.1 HP causality for counterexample explanation

The following notations are used in the definitions of criticality and causality. Given a pair ⟨s, v⟩
in σ, ⟨ŝ, v⟩ denotes the pair that is derived from ⟨s, v⟩ by switching the value of v in s from
true to false or vice versa. Given a set A of pairs, Â denotes the set that is obtained from A
by replacing each ⟨s, v⟩ ∈ A with ⟨ŝ, v⟩. Given a path σ, a state s on σ, and a variable v, σ⟨ŝ,v⟩
denotes the path derived from σ by switching the value of v in s on σ. Similarly, given a set A
of pairs, σÂ denotes the path obtained by replacing A with Â.

First, the definition of criticality described in Definition 6.3 is adapted to the domain of LTL
counterexamples as follows:

Definition 6.4 (Critical value for LTL) [Beer et al. 2012]

A pair ⟨s, v⟩ is critical for the failure of ϕ on σ if σ ̸|=− ϕ, but σ⟨ŝ,v⟩ |=− ϕ. That is, ⟨s, v⟩ is
critical if switching the value of v in s makes ϕ hold weakly on σ.

Note that in the place of a causal formula η is the violation of temporal formula in the weak
semantics of LTL.

A cause is defined in terms of criticality:

Definition 6.5 (Cause for LTL) [Beer et al. 2012]

Let σ ̸|=− ϕ. A pair ⟨s, v⟩ in σ is a cause for the failure of ϕ on σ if there exists a set of pairs
A such that ⟨s, v⟩ /∈ A, and the following hold:

(a) ⟨s, v⟩ is critical for σÂ ̸|=− ϕ, and

(b) For all S ⊆ A, we have σŜ ̸|=− ϕ.

In other words, a pair ⟨s, v⟩ is a cause if it can be made critical by switching the value of a set of
pairs A, with the condition that no switching of A or any subset of A can itself cause ϕ to hold
on σ. The set A is called a witness set for ⟨s, v⟩, σ, and ϕ, and there can be multiple witness
sets for the same pair, formula and path.

To help find the set of causal state-value pairs, we will later make use of the following defini-
tion:

Definition 6.6 (Negation normal form for LTL)
An LTL formula ϕ is said to be in negation normal form (NNF) if it only uses the Boolean
operators ∨, ∧, the temporal operators G, U, X, and negations are only applied to atomic
propositions.

Every LTL formula can be written as an equivalent formula in NNF. A literal is an LTL formula
that consists either only of an atomic proposition, or the negation of an atomic proposition.

A consequence of the above definition of a cause is that given a formula ϕ in NNF and an atomic
proposition p, if ⟨s, p⟩ is a cause for σ ̸|=− ϕ then there exists a literal l in ϕ (where l is either
p or ¬p) such that s ̸|= l. That is, a pair ⟨s, p⟩ can be a cause only if the corresponding literal
has the value false in s. If σ ̸|=− ϕ and a literal l has the value true in some state, switching its
value to false cannot make ϕ hold on σ.

63

6 Causality for property explanation

6.1.3 An approximation algorithm for causality

Beer et al. [2012] conjecture that computing causality in their framework is ΣP
2 -hard, and hence

intractable for all but short sequences and simple formulas. To remedy this, they present an
approximation algorithm, Algorithm 6.7, which produces an approximation of the causal set
according to the definition above.

The algorithm is based on the observation made earlier that given a formula in negation normal
form, only a false-valued literal can cause the formula to be violated.

Because each subformula ψ of ϕ is evaluated at most once at each state si of the counterexample
σ, the computational complexity of the procedure C is linear in n and in |ϕ|.

The algorithm doesn’t necessarily visit all pairs ⟨s, v⟩ in σ: it computes the causes of the first
failure of ϕ on σ [Beer et al. 2009]. For example, for the formula G a on the path s0, s1, s2
labeled {a}, {¬a}, {¬a}, the algorithm would return the pair ⟨s1, a⟩ only, even though according
to Definition 6.5, the pair ⟨s2, a⟩ should be a cause as well (since it becomes critical if the value
of a is switched in s1).

However, note that a single failure can have many causes that lead up to it. For example, for the
(single) failure of the formula a U b on the path s0, s1, s2 labeled {a}, {a}, {a}, the three causes
{⟨s0, b⟩, ⟨s1, b⟩, ⟨s2, b⟩} are generated.

When restricted to the first failure of ϕ on σ, the set C computed by Algorithm 6.7 over-
approximates the set of causes according to Definition 6.5. For example, consider the unsatisfiable
property ϕ = p ∧ ¬p and a path σ = s0 with L(s0) = ∅. The property is false (σ ̸|=− ϕ), and
⟨s0, p⟩ is given as a cause in C, but if the value of the proposition p were flipped in s0, the
property would still be false, so it is not a cause according to Definition 6.5.

The algorithm was implemented in a tool called RuleBase PE (see Section 2.3), IBM’s formal
verification platform, and user feedback indicated that the visualization of the causal set was
seen as helpful and important.

64

6.1 HP causality for counterexample explanation

Algorithm 6.7 (An approximation of the causal set) [Beer et al. 2012]

Let ϕ be a formula given in NNF, and let σ = s0, s1, . . . , sn be a non-empty counterexample
of length n+ 1 for ϕ. The procedure C produces a set C(σi, ψ), an approximation of the set
of causes for the failure of a (sub)formula ψ (that is in NNF) on a suffix of σ that starts at si.
It is invoked as C(σ0, ϕ) to produce the approximate set of causes for the failure of ϕ on σ.

First, the auxiliary function val(σi, ψ) is defined, which evaluates subformulas of ψ on the
given path. It returns 0 if the subformula fails on the path and 1 otherwise. The value of val
is computed as follows:

val(σi, true) = 1
val(σi,¬true) = 0

val(σi, ϕ) =
{
1 if C(σi, ϕ) = ∅
0 otherwise

To compute the value of C, at each step of the algorithm, when the value of a subformula ψ
on a suffix σj is determined, the value is saved for future use in either C or val so that each
subformula is evaluated at most once in each state. Apart from this detail, the value of C is
computed as follows:

C(σi, true) = ∅
C(σi,¬true) = ∅

C(σi, p) =
{
{⟨si, p⟩} if L(⟨si, p⟩) = 0
∅ otherwise

C(σi,¬p) =
{
{⟨si, p⟩} if L(⟨si, p⟩) = 1
∅ otherwise

C(σi, ϕ1 ∧ ϕ2) = C(σi, ϕ1) ∪ C(σi, ϕ2)

C(σi, ϕ1 ∨ ϕ2) =
{
C(σi, ϕ1) ∪ C(σi, ϕ2) if val(σi, ϕ1) = 0 and val(σi, ϕ2) = 0
∅ otherwise

C(σi,Xϕ) =
{
C(σi+1, ϕ) if i < n

∅ otherwise

C(σi,Gϕ) =


C(σi, ϕ) if val(σi, ϕ) = 0
C(σi+1,Gϕ) if val(σi, ϕ) = 1 and i < n

and val(σi,XGϕ) = 0
∅ otherwise

C(σi, ϕ1 U ϕ2) =



C(σi, ϕ2) ∪ C(σi, ϕ1) if val(σi, ϕ1) = 0 and val(σi, ϕ2) = 0
C(σi, ϕ2) if val(σi, ϕ1) = 1 and val(σi, ϕ2) = 0

and i = n

C(σi, ϕ2) ∪ C(σi+1, ϕ1 U ϕ2) if val(σi, ϕ1) = 1 and val(σi, ϕ2) = 0
and i < n and val(σi,X[ϕ1 U ϕ2]) = 0

∅ otherwise

65

6 Causality for property explanation

6.2 Causality for trace explanation in TRACE4CPS

The approach of Beer et al. described in Section 6.1 concerns the explanation of counterexamples
generated by model checkers. However, it can also be used in the context of runtime verification in
TRACE4CPS to obtain concise explanations of violations of ETL properties on execution traces,
which are often longer and contain more irrelevant information than model checker-generated
counterexample paths.

In Section 6.2.1, the approximate causal set algorithm is implemented in TRACE4CPS for
properties with no timing constraints (i.e. those that can be expressed in LTL).

The algorithm gives expected causes for many, but not all, properties with a still false verdict.
In Section 6.2.2, the algorithm is modified slightly to operate on the finite semantics instead of the
weak semantics of LTL in order to generate correct results for properties that are still false.

Finally, in Section 6.2.3, the explanation functionality is extended to work on MTL properties
with real-time constraints. This was done by adding the cause generation to the (finite) MTL
checking algorithm.

6.2.1 Causes for LTL formulas with FALSE verdicts

In TRACE4CPS, both events in a trace and atomic propositions in an MTL property are attribute
mappings, and an atomic proposition p ∈ M holds on an event s ∈ M if for every attribute
a ∈ A that is specified in s, the value s(a) ∈ V equals the value p(a) of that attribute in p.
Equivalently, s |= p ⇐⇒ p ⊆ s.

As a consequence, given an atomic proposition p = {a0 7→ v0, a1 7→ v1, . . . } with a0, a1, · · · ∈ A
and v0, v1, · · · ∈ V, we can say that s |= p is equivalent to s |= {a0 7→ v0} ∧ {a1 7→ v1} ∧

This gives us the flexibility to decide whether a cause generated by the causal set algorithm
corresponds to the atomic propositions specified in the formula (combined with an event) or to
the values of the individual attributes of an event. Whether decomposing the propositions in a
formula into a conjunction of individual attribute-value pairs makes the resulting explanation
clearer or not depends on the trace and property, so the decision to generate an explanation on
the level of attribute-value pairs or attribute mappings is left to the user.

In the initial implementation of the causal set algorithm, only properties without timing con-
straints (LTL properties, or MTL formulas where the intervals of all temporal operators are
[0,∞)) are supported, and the (four-valued) verdict of the property ϕ on the trace σ is assumed
to be false, so we can assume that both σ ̸|=− ϕ and σ ̸|=f ϕ.

The syntax of LTL properties on which this initial implementation of the algorithm operates
follows the following grammar:

Definition 6.8 (Syntax of LTL in negation normal form with X, U and G)

ϕ := true | ¬true | p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | Xϕ | Gϕ | ϕ1 U ϕ2

The (untimed) next operator Xϕ was not originally a part of the syntax of properties in TRACE-
4CPS (Definition 3.3), but was included in both the syntax of ETL properties and that of the
properties that the causal set algorithm operates on because it is used in algorithm C and in
some example properties from [Beer et al. 2009] and [Beer et al. 2012].

66

6.2 Causality for trace explanation in TRACE4CPS

The globally operator Gϕ is present in the syntax of ETL properties (as globally . . .), but
translated to formulas of the form ¬(true U ϕ) internally in TRACE4CPS. It was included as a
separate form for the causal set algorithm.

A transformation procedure from untimed MTL formulas to formulas according to Definition 6.8
was created by using the following equivalences as transformation rules:

Proposition 6.9 (Equivalences for LTL NNF transformation)

¬¬a ≡ a ¬X a ≡ X¬a (1)
¬(a ∨ b) ≡ a ∧ b ¬(a U b) ≡ (¬b U (¬a ∧ ¬b)) ∨ G¬b (2)
¬(a ∧ b) ≡ a ∨ b ¬G a ≡ true U ¬a (3)
a→ b ≡ ¬a ∨ b

The equivalence for X (1) is valid in the semantics of LTL for infinite sequences, but not for
finite sequences (see Section 2.1.2). However, the formulas for which we are trying to find the
causes are assumed to be violated in the weak semantics. Because in the weak semantics, every
proposition on a state past the end of the sequence is true, the next operator X is equivalent
to the weak next operator X. Therefore, in the formulas and traces on which the algorithm
operates, equivalence (1) is valid.

The equivalence labeled (2) was derived as follows. There are two ways for a formula of the form
aU b to be violated: either b never holds (G¬b), or there is some state before the first occurrence
of b where neither a nor b holds (¬b U (¬a ∧ ¬b)).

Equivalence (3) is included for the sake of completeness, but not actually used in the transfor-
mation: the formulas used by TRACE4CPS do not contain G directly, but Gϕ is encoded as
¬(true U ¬ϕ), which is covered by equivalence (2), and the instances of G generated by the NNF
transformation are already in NNF.

The following two equivalences can optionally be included in the transformation:

¬(true U a) ≡ G(¬a) (4)
¬(¬¬a U b) ≡ ¬(a U b) (5)

These are not strictly necessary to obtain an NNF formula, since they are already covered by
equivalence (2), but by including equivalence (4) as a rule (with higher precedence than (2)),
the generated formulas are shorter, and equivalence (5) (also with higher precedence than (2))
makes sure that equivalence (4) works even when the true part of the formula is obscured by
double negations.

This results in the NNF transformation algorithm shown in Algorithm 6.10.

The approximate cause algorithm described in Section 6.1.3 was then implemented to generate
the approximate set of causes for a violation in the weak semantics of the formulas described
above on a trace. The C and val functions in Algorithm 6.7 were merged into a single C function
which takes a boolean parameter record causes so that causes are only generated when necessary.
The resulting algorithm is described in Algorithm 6.11.

The algorithm memoizes the values of the subformulas, but not the causal sets. This is a trade-off:
it has to compute and keep around fewer unneeded causal sets, but means that in the case of ∨,
G and U it may evaluate a subformula on a state multiple times. This approach was chosen so
that the algorithm is easier to integrate with the MTL checking algorithm later.

67

6 Causality for property explanation

Algorithm 6.10 (NNF transformation for LTL with U and G)

nnf (true) = true
nnf (¬true) = ¬true
nnf (¬¬ϕ) = nnf (ϕ)
nnf (ϕ1 ∨ ϕ2) = nnf (ϕ1) ∨ nnf (ϕ2)
nnf (¬(ϕ1 ∨ ϕ2)) = nnf (¬ϕ1) ∧ nnf (¬ϕ2)
nnf (ϕ1 ∧ ϕ2) = nnf (ϕ1) ∧ nnf (ϕ2)
nnf (¬(ϕ1 ∧ ϕ2)) = nnf (¬ϕ1) ∨ nnf (¬ϕ2)
nnf (ϕ1 → ϕ2) = nnf (¬ϕ1) ∨ nnf (ϕ2)
nnf (¬(ϕ1 → ϕ2)) = nnf (ϕ1) ∧ nnf (¬ϕ2)
nnf (Xϕ1) = X nnf (ϕ1)
nnf (¬Xϕ1) = X nnf (¬ϕ1) (1)
nnf (ϕ1 U ϕ2) = nnf (ϕ1) U nnf (ϕ2)
nnf (¬(true U ϕ)) = G(nnf (¬ϕ)) (4)
nnf (¬(¬¬ϕ1 U ϕ2)) = nnf (¬(ϕ1 U ϕ2)) (5)
nnf (¬(ϕ1 U ϕ2)) = [nnf (¬ϕ2) U (nnf (¬ϕ1) ∧ nnf (¬ϕ2))] ∨ Gnnf (¬ϕ2) (2)

Depending on the user’s preference to view causes as attribute mappings (m) or single
attributes (a), the atomic propositions may be decomposed into conjunctions of atomic
propositions consisting of a single attribute-value pair, as described before:

nnfm(p) = p

nnfm(¬p) = ¬p
nnf a({a0 7→ v0, a1 7→ v1, . . . }) = {a0 7→ v0} ∧ {a1 7→ v1} ∧ . . .
nnf a(¬{a0 7→ v0, a1 7→ v1, . . . }) = ¬{a0 7→ v0} ∨ ¬{a1 7→ v1} ∨ . . .

68

6.2 Causality for trace explanation in TRACE4CPS

Algorithm 6.11 (Approximate causes for LTL with X, U and G)
Let σ = s0, . . . , sn be a finite sequence of length n + 1 and ϕ an LTL formula in negation
normal form. The memoization table val table contains for every pair i, ϕ one of {true, false}
if ϕ was evaluated on σi, or ? otherwise. If record causes = true, C will return the validity of
ϕ on σi and add the causes of a failure of ϕ on σi to causes. If record causes = false, C will
return the validity without adding to causes.

The algorithm is invoked as C(σ0, ϕ, true), and when it returns, causes contains the approxi-
mate set of causes for the failure of ϕ on σ.
1: causes ← ∅
2: val table(i, ϕ)← ? for all i, ϕ
3: procedure C(σi, ϕ, record causes)
4: v ← val table(i, ϕ)
5: if v = ? or record causes then
6: if ϕ = true then
7: v ← true
8: else if ϕ = ¬true then
9: v ← false

10: else if ϕ = p then
11: if p /∈ si then
12: if record causes then
13: causes ← causes ∪ {⟨si, p⟩}
14: v ← false
15: else
16: v ← true
17: else if ϕ = ¬p then
18: if p ∈ si then
19: if record causes then
20: causes ← causes ∪ {⟨si, p⟩}
21: v ← false
22: else
23: v ← true
24: else if ϕ = ϕ1 ∧ ϕ2 then
25: v1 ← C(σi, ϕ1, record causes)
26: v2 ← C(σi, ϕ2, record causes)
27: v ← v1 ∧ v2
28: else if ϕ = ϕ1 ∨ ϕ2 then
29: if ¬C(σi, ϕ1, false) and ¬C(σi, ϕ2, false) then
30: if record causes then
31: C(σi, ϕ1, true)
32: C(σi, ϕ2, true)
33: v ← false
34: else
35: v ← true
36: else if ϕ = Xϕ1 then
37: if i < n then
38: v ← C(σi+1, ϕ1, record causes)
39: else
40: v ← true

69

6 Causality for property explanation

41: else if ϕ = Gϕ1 then
42: v1 ← C(σi, ϕ1, false)
43: if ¬v1 then
44: if record causes then
45: C(σi, ϕ1, true)
46: v ← false
47: else if v1 and i < n and ¬C(σi,Xϕ, false) then
48: if record causes then
49: C(σi+1, ϕ, true)
50: v ← false
51: else
52: v ← true
53: else if ϕ = ϕ1 U ϕ2 then
54: v1 ← C(σi, ϕ1, false)
55: v2 ← C(σi, ϕ2, false)
56: if ¬v1 and ¬v2 then
57: if record causes then
58: C(σi, ϕ2, true)
59: C(σi, ϕ1, true)
60: v ← false
61: else if v1 and ¬v2 and i = n then
62: if record causes then
63: C(σi, ϕ2, true)
64: v ← false
65: else if v1 and ¬v2 and i < n and ¬C(σi,Xϕ, false) then
66: if record causes then
67: C(σi, ϕ2, true)
68: C(σi+1, ϕ, true)
69: v ← false
70: else
71: v ← true
72: val table(i, ϕ)← v
73: return v

⋆ ⋆ ⋆

70

6.2 Causality for trace explanation in TRACE4CPS

A modification to Algorithm 6.11 was made in the cases for G and U in Algorithm 6.7. In the
second condition for a globally formula and the third condition of an until formula, a formula
XGϕ and a formula X[ϕ1Uϕ2] are constructed, respectively, in order to recurse to the next state
to check whether a temporal formula is violated later in the trace.

Looking at Algorithm 6.7, because these expressions are only evaluated when i < n, we know that
the expression C(σi,Xϕ) will evaluate to C(σi+1, ϕ). Thus, the expression val(σi,XGϕ) = 0 can
safely be replaced with val(σi+1,Gϕ) = 0, and val(σi,X[ϕ1Uϕ2]) = 0 with val(σi+1, ϕ1Uϕ2) = 0.

The updated cases for globally and finally formulas in Algorithm 6.7 and Algorithm 6.11 are
shown in Algorithm 6.12, and in pseudocode in Algorithm 6.14 (with the modified expressions
highlighted using boxes).

Algorithm 6.12 (Approximate causes for LTL, modified)
The cases for globally and until are modified as follows:

C(σi,Gϕ) =


C(σi, ϕ) if val(σi, ϕ) = 0
C(σi+1,Gϕ) if val(σi, ϕ) = 1 and i < n

and val(σi+1,Gϕ) = 0
∅ otherwise

C(σi, ϕ1 U ϕ2) =



C(σi, ϕ2) ∪ C(σi, ϕ1) if val(σi, ϕ1) = 0 and val(σi, ϕ2) = 0
C(σi, ϕ2) if val(σi, ϕ1) = 1 and val(σi, ϕ2) = 0

and i = n

C(σi, ϕ2) ∪ C(σi+1, ϕ1 U ϕ2) if val(σi, ϕ1) = 1 and val(σi, ϕ2) = 0
and i < n and val(σi+1, ϕ1 U ϕ2) = 0

∅ otherwise

Property-based testing was used to verify that this results in identical causes being generated
for all LTL properties with relatively high confidence (see Section 7.4).

Not all properties and traces with a false verdict have a cause. The simplest example is the
property ¬true. It is false on any trace, but because there are no atomic propositions whose
value can be flipped in any state in the trace, the set of causes according to Definition 6.5 is
empty, and the approximation algorithm finds no causes either.

However, disregarding those properties that have no causes for violations because of the use
of true, the following proposition was determined to hold with relatively high confidence using
property-based testing.

Proposition 6.13 (Existence of causes for FALSE, LTL)
Let ϕ be an LTL property that does not contain true except as the left side of an U (so that
F and G are allowed), and σ a finite sequence. If σ ̸|=− ϕ, then the approximate causal set
found by Algorithms 6.11 and 6.14 is non-empty.

That is, for such a property, if the verdict is false Algorithms 6.11 and 6.14 always find at
least one causal state-value pair.

Furthermore, for all properties that have either a still true or true verdict, the approximate
causal set generated by Algorithms 6.11 and 6.14 is empty.

71

6 Causality for property explanation

Algorithm 6.14 (Approximate causes for LTL, modified)
1: if ϕ = Gϕ1 then
2: v1 ← C(σi, ϕ1, false)
3: if ¬v1 then
4: if record causes then
5: C(σi, ϕ1, true)
6: v ← false
7: else if v1 and i < n and ¬C(σi+1, ϕ, false) then
8: if record causes then
9: C(σi+1, ϕ, true)

10: v ← false
11: else
12: v ← true
13: else if ϕ = ϕ1 U ϕ2 then
14: v1 ← C(σi, ϕ1, false)
15: v2 ← C(σi, ϕ2, false)
16: if ¬v1 and ¬v2 then
17: if record causes then
18: C(σi, ϕ2, true)
19: C(σi, ϕ1, true)
20: v ← false
21: else if v1 and ¬v2 and i = n then
22: if record causes then
23: C(σi, ϕ2, true)
24: v ← false
25: else if v1 and ¬v2 and i < n and ¬C(σi+1, ϕ, false) then
26: if record causes then
27: C(σi, ϕ2, true)
28: C(σi+1, ϕ, true)
29: v ← false
30: else
31: v ← true

72

6.2 Causality for trace explanation in TRACE4CPS

6.2.2 Causes for LTL formulas with STILL FALSE verdicts

In [Beer et al. 2012], a counterexample to an LTL formula ϕ is a finite path σ = s0, . . . sn such
that σ ̸|=− ϕ, or an infinite path σ = u · vω consisting of a finite prefix u followed by repeated
copies of a finite path v such that σ ̸|=− ϕ. The weak semantics are used so that if ϕ is violated,
assuming σ is a finite path, causes of the violation can always be found at some point in the
sequence. In contrast, if the finite semantics were used, the cause of the violation of ϕ on a finite
path σ such that σ ̸|=f ϕ may be that the sequence is not long enough to satisfy ϕ, which cannot
be expressed as a causal state-value pair.

For example, let ϕ = X a and σ = s0 = {a}. Clearly, σ does not satisfy ϕ in the finite semantics,
because X a requires that there is a next state for a to hold. However, there is no pair ⟨si, v⟩
such that changing the labeling of si (with any other set of states) will make σ satisfy ϕ, so the
set of causes for the violation of ϕ is empty.

Disregarding properties where the cause lies outside the trace or that are unsatisfiable, the causal
set algorithm as defined in Section 6.2.1 generates causes for all properties that are violated in
the weak semantics (and therefore have a false verdict). Furthermore, the cases for G and U
operators in Algorithm 6.11 (Algorithm 6.14) are such that causes are also generated for most
properties that are not violated in the weak semantics but are violated in the finite semantics
(and therefore have a still false verdict). For example, given the property F a on a trace
s0, s1, s2 where each state is labeled L(s) = ∅, the algorithm correctly identifies that switching
the value of a in any of s1, s2 and s3 would satisfy the property.

Nevertheless, there are properties that have a still false verdict for which no causes are found,
yet there are state-value pairs that when flipped would cause the property to be still true or
true. For example, consider the property FX¬a = true U X¬a on the following sequence:

σ = s0, s1 = {a}, {a}

The verdict (in the four-valued semantics) is still false, since it is true in the weak semantics
but false in the finite semantics. The property is not violated in the weak semantics, and no
causes are given by Algorithm 6.11, but if a were false in s1, the verdict would have been true.

To find causes for properties such as this, we first amend Definitions 6.4 and 6.5 to use the finite
semantics instead of the weak semantics:

Definition 6.15 (Critical value for LTLf) [Beer et al. 2012]

A pair ⟨s, v⟩ is critical for the failure of ϕ on σ if σ ̸|=f ϕ, but σ⟨ŝ,v⟩ |=f ϕ. That is, ⟨s, v⟩ is
critical if switching the value of v in s makes ϕ hold on σ in the finite semantics.

Definition 6.16 (Cause for LTLf) [Beer et al. 2012]

Let σ ̸|=f ϕ. A pair ⟨s, v⟩ in σ is a cause for the failure of ϕ on σ if there exists a set of pairs
A such that ⟨s, v⟩ /∈ A, and the following hold:

(a) ⟨s, v⟩ is critical for σÂ ̸|=f ϕ, and

(b) For all S ⊆ A, we have σŜ ̸|=f ϕ

To modify the algorithm so that it approximates Definition 6.16 instead of Definition 6.5, recall
from Section 2.1.2 that in the finite semantics the strong next operator X and weak next

73

6 Causality for property explanation

operator X are distinguished. The weak next operator is usually defined in terms of the strong
next operator (Xϕ def= ¬X¬ϕ), but because this representation is not in negation normal form,
we need to add it as a core operator to the syntax of properties.

This results in the following syntax for LTLf formulas in negation normal form:

Definition 6.17 (Syntax of LTLf in negation normal form with X, X, U and G)

ϕ := true | ¬true | p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | Xϕ | Xϕ | Gϕ | ϕ1 U ϕ2

The semantics for the weak next operator on which we base our algorithm holds no surprises:

σi |=f Xϕ iff i = n or σi+1 |=f ϕ

For LTLf formulas, equivalence (1) of Proposition 6.9 is replaced by the following:

¬X a ≡ X¬a
¬X a ≡ X¬a

Because formulas used by TRACE4CPS do not contain X directly, and instances of X generated
by the NNF transformation are already in NNF, only the first needs to be used in the NNF
transformation algorithm. Thus, in the NNF transformation for LTLf formulas, rule (1) is
replaced by the following rule:

Algorithm 6.18 (NNF transformation for LTLf with U and G)

nnf (¬Xϕ1) = X nnf (¬ϕ1)

The rest is the same as Algorithm 6.10.

Algorithm 6.7 is extended so that the strong next operator receives a special case in the val
function, and a case for the weak next operator is added to C:

Algorithm 6.19 (Approximate causes for LTLf)
The val function receives one special case for the strong next operator:

val(σi, true) = 1
val(σi,¬true) = 0

val(σi,Xϕ) =
{
1 if i < n and C(σi,Xϕ) = ∅
0 otherwise

val(σi, ϕ) =
{
1 if C(σi, ϕ) = ∅
0 otherwise

In C, the case for X is identical to that of X:

C(σi,Xϕ) =
{
C(σi+1, ϕ) if i < n

∅ otherwise

The cases for both the strong and weak next operators were implemented in Algorithm 6.11 (and
Algorithm 6.14) as follows (with modifications highlighted):

74

6.2 Causality for trace explanation in TRACE4CPS

Algorithm 6.20 (Approximate causes for LTLf)
1: if ϕ = Xϕ1 then
2: if i < n then
3: v ← C(σi+1, ϕ1, record causes)
4: else
5: v ← true
6: else if ϕ = Xϕ1 then
7: if i < n then
8: v ← C(σi+1, ϕ1, record causes)
9: else

10: v ← false

With these modifications, if a next operator is evaluated on the last state in a sequence, resulting
in a still false verdict, causes (other than the non-existent successor state of the last state,
which cannot be a cause) are correctly generated.

Let us revisit the example shown earlier of the property FX¬a = true U X¬a on the following
sequence:

σ = s0, s1 = {a}, {a}

The verdict (in the four-valued semantics) is still false, since it is true in the weak semantics
but false in the finite semantics.

When using Algorithm 6.11, no causes were found, but with the modifications in Algorithm 6.20,
⟨s1, a⟩ is correctly identified as a cause in the finite semantics.

To see why the distinction between X and X is important in the generation of causes, consider
the property F¬X a on the σ given above. The verdict is still true: the property is true in
the finite semantics, since ¬X a holds on state s1. When Definition 6.17 is used to transform the
property to negation normal form, the resulting property is true U X¬a. Algorithm 6.20 then
correctly finds that the set of causes is empty.

If the NNF transformation of Algorithm 6.10 were used, which does not distinguish between
X and X, the resulting transformed formula is true U X¬a. With this transformed formula
Algorithm 6.20 would erroneously find ⟨s1, a⟩ as a cause. This is because there is no state that
has a successor state where ¬a holds, so the algorithm determines that if a were true in s1, the
property true U X¬a would have been true.

One might say that spurious causes for properties that are not false or still false are not a
serious problem, but if this property were part of a more complex property that is violated on a
trace for a different reason, the spurious causes could be misleading.

Unfortunately, there are cases where Algorithm 6.20 seemingly under-approximates the set of
causes compared to Algorithm 6.11, because of the combination of the fact that causes can only
involve states in the trace, and that the algorithm returns on the first failure. For example,
consider the property G((XX b) ∧ a) on the sequence σ = s0, s1 labeled {a}, {b}. The verdict is
false. Algorithm 6.11 (for the weak semantics) finds the cause ⟨s1, a⟩. The subformula XX b
depends on a non-existent state s2 beyond the end of the trace when evaluated on both s0 and s1,
so in the weak semantics, it is satisfied in both states. a is violated in s1, so when the algorithm
evaluates s1, the cause ⟨s1, a⟩ is generated.

When Algorithm 6.20 (for the finite semantics) is used, however, no causes are generated. In the
finite semantics, XX b is not satisfied in either s0 or s1, so it causes the formula to be violated

75

6 Causality for property explanation

in state s0. However, there is no state s2 to be a cause so no causes are generated at this point.
Because the algorithm returns on the first failure of the formula, the formula (XX b) ∧ a is not
evaluated on state s1, so no further causes are generated.

Although it is unfortunate that in cases such as this, a cause in the weak semantics is no longer
found in the finite semantics, it is strictly speaking not incorrect, because the violation of a in s1
is not the first failure of the formula. This also means that for Algorithm 6.20, Proposition 6.13
no longer holds in cases where a next operator causes the formula to be violated in the finite
semantics and the formula is also violated in the weak semantics by a different cause. In such a
case, the causes that are generated are less helpful, but we expect this to be quite rare.

Possible solutions for this are discussed in Section 7.3.

76

6.2 Causality for trace explanation in TRACE4CPS

6.2.3 Causes for MTL formulas

The definition of causes for LTL formulas of Definitions 6.5 and 6.16 are defined for LTL formulas,
but can be applied to MTL formulas simply by using the (weak or finite) semantics of MTL.

By using state-value pairs for causes for the failure of an MTL formula, a cause is interpreted
as a value in a state that when flipped (alongside a set of other values and states) causes the
formula to be true as before. For an MTL formula, the set of states that can cause the violation
of a formula depends on the intervals of the temporal operators and the timestamps of the
states. However, similar to how the existence, non-existence, and relative orderings of states are
not considered as possible causes in the paths of Definition 6.5, the timings of events are not
considered as possible causes in this extension. Still, it is worthwhile to extend the approximation
algorithm to timed sequences and MTL properties, as this would still greatly expand the number
of properties in TRACE4CPS for which we can generate causes.

To update the algorithm to compute causes for MTL properties, several modifications must be
made.

The first concerns the NNF transformation of MTL formulas. The equivalences in Proposition 6.9
hold for both MTL and LTL formulas. However, MTL adds the constrained until operator UI ,
which equivalence (2) from Proposition 6.9 does not easily extend to:

¬(a UI b) ̸≡ (¬b UI (¬a ∧ ¬b)) ∨ GI ¬b

To see why, consider the following timed sequence, property and a hypothetical NNF transfor-
mation nnf ′ if the equivalence above were assumed to hold:

ρ = ({b}, 0), (∅, 2), ({b}, 3)
ϕ = ¬(a U[1,4] b)
ϕ′ = nnf ′(ϕ) = (¬b U[1,4] (¬a ∧ ¬b)) ∨ G[1,4] ¬b

The formula ϕ is true on ρ, but ϕ′ is false. The second part of ϕ′ (G[1,4] ¬b) is false as expected,
because b does occur at time 3. The first part of ϕ′ (¬b U[1,4] (¬a ∧ ¬b)) is false, because b does
occur before (¬a ∧ ¬b) occurs. The problem is that a UI b specifies that b should occur within
the interval I, but a should hold on all states before b holds, even those before the interval I.

Several other ways of rewriting a negated timed until-formula into an NNF formula using UI

and GI were tried, but each turned out not to result in an equivalent formula.

To remedy this, we use an alternative negation normal form by introducing the release operator
RI as an element of the core syntax of MTL, which (as you may recall from Section 2.1.1) is
usually defined in terms of the until operator as its dual [Ouaknine and Worrell 2008]:

ϕ1 RI ϕ2
def= ¬(¬ϕ1 UI ¬ϕ2)

The timed release operator ϕ1 RI ϕ2 specifies that either ϕ2 holds until the end of the interval I,
ϕ2 holds up to and including a state within the interval where ϕ1 holds (so at that point both
ϕ1 and ϕ2 hold), or there are no states in the interval I.

To allow RI as a core element of the syntax of MTL, we must define its semantics explicitly,
rather than in terms of another operator. It is given below for the finite semantics, formulated
in two equivalent ways: one that is slightly more intuitive, from [Ouaknine and Worrell 2006],
and the other such that it mirrors the semantics of UI more closely to clearly see the duality.
The semantics of UI is repeated for easy comparison.

77

6 Causality for property explanation

Definition 6.21 (Finite semantics of U and R in MTL) [Ouaknine and Worrell 2006]

Let ρ = (s0, t0), . . . , (sn, tn) be a finite timed sequence, ϕ1 and ϕ2 formulas in MTL, and
I ⊆ [0,∞) an interval.

σi |=f ϕ1 RI ϕ2 iff ∀i≤j≤n, tj−ti ∈ I
[
σj |= ϕ2 or ∃i≤k<j σ

k |= ϕ1
]

⇔ ∀i≤j≤n
[
σj |= ϕ2 or tj − ti /∈ I or ∃i≤k<j σ

k |= ϕ1
]

σi |=f ϕ1 UI ϕ2 iff ∃i≤j≤n
[
σj |= ϕ2 and tj − ti ∈ I and ∀i≤k<j σ

k |= ϕ1
]

Now, we can redefine negation normal form as follows:

Definition 6.22 (Negation normal form for MTL with X)
An MTL formula ϕ is said to be in negation normal form (NNF) if it only uses the Boolean
operators ∨, ∧, the temporal operators UI , RI , X, and X, and negations are only applied to
atomic propositions.

This allows us to rewrite an MTL formula into negation normal form using the following equiva-
lences

¬(a UI b) ≡ ¬a RI ¬b (6)
¬(a RI b) ≡ ¬a UI ¬b

Rules (2), (4), and (5) in Algorithm 6.10 were replaced by transformation rule (6):

Algorithm 6.23 (NNF transformation for MTL with U and R)

nnf (¬(ϕ1 UI ϕ2)) = nnf (¬ϕ1) RI nnf (¬ϕ2) (6)

The rest is the same as in Algorithm 6.18.

A rule for nnf (¬(ϕ1 RI ϕ2)) is not necessary since formulas containing R are only created by the
NNF transformation algorithm, and are already in NNF.

To verify that the introduction of R and the removal of G does not impact the results of the
cause computation, an untimed version of the modified NNF transformation was applied to LTL
formulas, and the C algorithm for LTL formulas was adapted by removing the case for G and
adding the following case for untimed R to Algorithm 6.12:

Algorithm 6.24 (Approximate causes for LTLf with U and R)

C(σi, ϕ1 R ϕ2) =



C(σi, ϕ2) ∪ C(σi, ϕ1) if val(σi, ϕ1) = 0 and val(σi, ϕ2) = 0
C(σi, ϕ2) if val(σi, ϕ1) = 1 and val(σi, ϕ2) = 0
C(σi, ϕ2) ∪ C(σi+1, ϕ1 R ϕ2) if val(σi, ϕ1) = 0 and val(σi, ϕ2) = 1

and i < n and val(σi+1, ϕ1 R ϕ2) = 0
∅ otherwise

It can be explained as follows. If a (sub)formula ϕ = ϕ1 R ϕ2 is explored on σi, there was no
earlier state in which it was already found to be true. It can be false for any the following three
reasons:

78

6.2 Causality for trace explanation in TRACE4CPS

• ϕ1 is false and ϕ2 is false, in which case we add the causes of both ϕ1 and ϕ2 being false
to the causes for the failure of ϕ.

• Only ϕ2 is false, which violates ϕ because ϕ2 is required to hold up until and including the
state where ϕ1 is true, so we add the causes of ϕ2 being false to the causes for the failure
ϕ.

• Only ϕ1 is false, and ϕ is determined to be false at a later state. In this case, ϕ has not
failed yet, but we know that it will, so we add the causes of ϕ1 being false and the causes
of the later violation of ϕ to the causes for the failure of ϕ.

In the case where both ϕ1 and ϕ2 hold, and the case where only ϕ2 holds but we are at the last
state in the sequence, ϕ is not violated so no causes are generated.

This was implemented in the code by removing the case for G and adding the following case to
Algorithm 6.11:

Algorithm 6.25 (Approximate causes for LTLf with U and R)
1: if ϕ = ϕ1 R ϕ2 then
2: v1 ← C(σi, ϕ1, false)
3: v2 ← C(σi, ϕ2, false)
4: if ¬v1 and ¬v2 then
5: if record causes then
6: C(σi, ϕ2, true)
7: C(σi, ϕ1, true)
8: v ← false
9: else if v1 and ¬v2 then

10: if record causes then
11: C(σi, ϕ2, true)
12: v ← false
13: else if ¬v1 and v2 and i < n and ¬C(σi+1, ϕ, false) then
14: if record causes then
15: C(σi, ϕ1, true)
16: C(σi+1, ϕ, true)
17: v ← false
18: else
19: v ← true

Comparing the results of Algorithm 6.25 (with the NNF transformation using R of Algorithm 6.23)
of to those of Algorithm 6.20 (with the NNF transformation using G of Algorithm 6.18) by
examining the causal sets generated for the example LTL properties and sequences from [Beer
et al. 2009] and [Beer et al. 2012], and by using property-based testing (see Section 7.4), it was
determined that they are equivalent as far as we could tell. This offered confidence that this
modification would not cause incorrect results.

⋆ ⋆ ⋆

To generate causes for MTL properties with constrained temporal operators (UI and RI), rather
than extending C with cases for these operators, an alternative approach was taken.

To avoid duplicating functionality between the MTL checking algorithm in TRACE4CPS and
the C algorithm, and to investigate whether a closer integration between the causality analysis

79

6 Causality for property explanation

and the other functionality of TRACE4CPS is possible, the causal set generation is added to
the MTL checking algorithm that computes verdicts in the finite semantics.

First, the release operator is added to the internal syntax of MTL properties, and added to
the MTL checking algorithm so that it follows Definition 6.21. Next, the next and weak next
are added to both the syntax and to the checking algorithm to help in testing whether the
LTL causality algorithm and the MTL causality algorithm are equivalent for LTL properties
containing next operators later.

Finally, the cause generation is added to the algorithm, so that similar to Algorithms 6.11, 6.14
and 6.20, when the procedure for computing the verdict of a formula ϕ on a trace σ returns,
causes contains the approximate causal set for the first failure of ϕ on σ (in the finite semantics).

The resulting algorithm is shown in Algorithm 6.26.

The procedures for until and release are split into an outer and inner procedure: the outer
procedure calles the inner with record causes = false to check whether it is violated, and if so,
calls it again with record causes = true to generate the causes. This corresponds to the behavior
of Algorithms 6.11, 6.14 and 6.20 and is necessary because when compute cause is called for
an until or release formula, it is not yet known if the formula is violated later in the trace (and
thus whether causes should be generated).

⋆ ⋆ ⋆

To see how Algorithm 6.26 analyzes the causes of a property with real-time constraints, we look
at some examples.

First, consider the property ϕ = F[0,2] b, which specifies that b should occur within two time
units from the first event of the trace, and the following timed trace:

σ = s0, s1, s2 = ({a}, 0), ({a}, 1), ({a}, 3)

The verdict is false, because there is no state in which b holds in the interval [0, 2] starting
from s0. (The trace is longer than the interval, so it is also violated in the weak semantics.)
Algorithm 6.26 finds a single cause ⟨s1, b⟩: if b were true in s1, the formula would be true. If the
F in ϕ were unconstrained, ⟨s2, b⟩ could also be considered a cause, but because s2 lies outside
the interval [0, 2], flipping the value of b in s2 would not satisfy ϕ so it is correctly considered
not to be a cause.

When we consider properties with constrained temporal operators, there are more cases in which
Proposition 6.13 does not hold. For example, consider a property ϕ = F[1,2] b and the following
timed trace:

σ = s0, s1 = ({a}, 0), ({b}, 3)

The verdict is false, because while b holds in state s1, it is not in the interval [1, 2]. (The
trace is longer than the interval, so it is also violated in the weak semantics.) In this example,
Algorithm 6.26 finds no causes. For σ to satisfy ϕ, there would have to be a state in the interval
[1, 2] that satisfies b, but because there is no state in the interval [1, 2], there is no value that
could be flipped so that ϕ is satisfied. The fact that Definitions 6.5 and 6.16 do not directly
capture the notion that the timings of the states in σ are what causes the violation of ϕ is
discussed further in Section 7.3.

Nevertheless, we expect that for many MTL properties and traces, the causes that are generated
are still helpful in finding the actual reason for a violation.

80

6.2 Causality for trace explanation in TRACE4CPS

Algorithm 6.26 (MTL checking algorithm with cause generation)
Let ρ = (s0, t0), . . . , (sn, tn) be a finite timed sequence of length n + 1, p ∈ AP an atomic
proposition, I ⊆ [0,∞) an interval of the form [inf(I), sup(I)), ϕ an MTL formula, and i a
position in the sequence such that 0 ≤ i ≤ n.

MTL properties are assumed to have been transformed to negation normal form using Algo-
rithm 6.23. Calling compute cause(ρ, ϕ, 0, true) will compute [ρ |=f ϕ] and add the causes
of the failure of ϕ on ρ to causes. The return value of each call to compute cause is memo-
ized in a memoization table like in Algorithm 4.4, the details of which are elided for clarity
of presentation.
1: causes ← ∅
2: procedure compute cause(ρ, true, i, record causes)
3: return ⊤

4: procedure compute cause(ρ,¬true, i, record causes)
5: return ⊥

6: procedure compute cause(ρ, p, i, record causes)
7: if p ∈ L(si) then
8: return ⊤
9: else

10: if record causes then
11: causes ← causes ∪ ⟨si, p⟩
12: return ⊥

13: procedure compute cause(ρ,¬p, i, record causes)
14: if p ∈ L(si) then
15: if record causes then
16: causes ← causes ∪ ⟨si, p⟩
17: return ⊥
18: else
19: return ⊤

20: procedure compute cause(ρ, ϕ1 ∧ ϕ2, i, record causes)
21: v1 ← compute cause(ρ, ϕ1, i, record causes)
22: v2 ← compute cause(ρ, ϕ2, i, record causes)
23: return v1 ∧ v2
24: procedure compute cause(ρ, ϕ1 ∨ ϕ2, i, record causes)
25: v1 ← compute cause(ρ, ϕ1, i, false)
26: v2 ← compute cause(ρ, ϕ2, i, false)
27: if record causes and v1 = ⊥ and v2 = ⊥ then
28: compute cause(ρ, ϕ1, i, true)
29: compute cause(ρ, ϕ2, i, true)
30: return v1 ∨ v2
31: procedure compute cause(ρ,Xϕ, i, record causes)
32: if i = n then
33: return ⊥
34: else
35: return compute cause(ρ, ϕ, i+ 1, record causes)

81

6 Causality for property explanation

36: procedure compute cause(ρ,Xϕ, i, record causes)
37: if i = n then
38: return ⊤
39: else
40: return compute cause(ρ, ϕ, i+ 1, record causes)
41: procedure compute cause(ρ, ϕ1 UI ϕ2, i, record causes)
42: v ← compute cause inner(ρ, ϕ1 UI ϕ2, i, false)
43: if record causes and v = ⊥ then
44: compute cause inner(ρ, ϕ1 UI ϕ2, i, true)
45: return v

46: procedure compute cause inner(ρ, ϕ1 UI ϕ2, i, record causes)
47: c1 ← false, c11 ← true
48: for j = i to n do
49: r2 ← compute cause(ρ, ϕ2, j, false)
50: c1 ← c1 ∨ (r2 = ⊤ ∧ tj − ti ∈ I ∧ c11)
51: if c1 then
52: return ⊤
53: if record causes and r2 = ⊥ and tj − ti ∈ I then
54: compute cause(ρ, ϕ2, j, true)
55: r1 ← compute cause(ρ, ϕ1, j, false)
56: c11 ← c11 ∧ (r1 = ⊤)
57: if record causes and r1 = ⊥ and tj − ti < sup(I) then
58: compute cause(ρ, ϕ1, j, true)
59: if (¬c11 ∨ j = n ∨ tj − ti ≥ sup(I)) ∧ ¬c1 then
60: return ⊥

61: procedure compute cause(ρ, ϕ1 RI ϕ2, i, record causes)
62: v ← compute cause inner(ρ, ϕ1 RI ϕ2, i, false)
63: if record causes and v = ⊥ then
64: compute cause inner(ρ, ϕ1 RI ϕ2, i, true)
65: return v

66: procedure compute cause inner(ρ, ϕ1 RI ϕ2, i, record causes)
67: c1 ← true, c11 ← false
68: for j = i to n do
69: r1 ← compute cause(ρ, ϕ1, j, false)
70: r2 ← compute cause(ρ, ϕ2, j, false)
71: if record causes and r2 = ⊥ and tj − ti ∈ I then
72: compute cause(ρ, ϕ2, j, true)
73: if r1 = ⊥ then
74: compute cause(ρ, ϕ1, j, true)
75: if record causes and j < n and tj − ti ∈ I and r1 = ⊥ then
76: compute cause(ρ, ϕ1, j, true)
77: c1 ← c1 ∧ (r2 = ⊤ ∨ tj − ti /∈ I ∨ c11)
78: if ¬c1 then
79: return ⊥
80: c11 ← c11 ∨ (r1 = ⊤)
81: if (c11 ∨ j = n ∨ tj − ti ≥ sup(I)) ∧ c1 then
82: return ⊤

82

6.3 Visual cause explanations

6.3 Visual cause explanations

The approximate causal sets generated by Algorithm 6.26 are used to create a new visual
explanation, to add to those described in Chapter 5.

Recall that the definition of a cause of a property violation in Definition 6.16 can be informally
described (in the context of TRACE4CPS) as follows. A cause is the value of an atomic
proposition in an event (i.e. whether an event passes an attribute filter defined in the property,
see Section 3.3), such that if the validity of the atomic proposition on the event were flipped
(that is, it would pass the attribute filter if it currently does not, or not pass if it currently does),
possibly together with a ‘witness set’ of additional events and atomic propositions, the property
would become either true or still true.

Because the approximate causal set does not explicitly construct the witness set, only the causes
themselves can be visualized. Furthermore, because the approximate causal set only explains
the first failure of the property on the trace, it may be that a cause later in the trace is not
explained (which may have the consequence that the explanation is actually clearer, but less
complete).

When the user requests a cause explanation of a property with a false or still false verdict,
a set of events is added to the trace visualization, each corresponding to the combination of an
event and an attribute filter. Optionally, the attribute filters can be decomposed so that a cause
refers to single attribute key-value pair. The explanation events are grouped into swimlanes
according to the attribute filter. The claims that correspond to the causal events can optionally
be highlighted in a blue color.

In Figure 6.1, the visualization of the cause for the violation of latency_discrete(58) (defined
in Example 3.5) has been added to the trace. It explains the cause of the violation of the
requirement that a job takes at most 40 milliseconds as follows:

• The green arrow in the lower swimlane indicates that the event corresponding to the start
of job 58 at time 445.43, which satisfies start {name 7→ A, id 7→ 58}, is a cause. Informally,
if job 58 had not started, it could not have exceeded the latency requirement.

• The red arrows in the other swimlane indicate that all the events in the interval of 40
milliseconds, which do not satisfy end {name 7→ G, id 7→ 58}, are causes, because if any of
them had been the end of job 58, it would have met the latency requirement.

Figure 6.1: Cause explanation for latency_discrete(58)

83

6 Causality for property explanation

Figure 6.2: Cause explanation for order(2)

Note that the event at time 486.67, which corresponds to the end of task G of job 58, is not
indicated as a cause. This is because there is no atomic proposition in the formula such that its
validity on this event would impact the verdict, since it does not occur in the interval defined
by the within operator.

Compared to the old property explanation in Figure 5.1, the cause explanation does not contain
the spurious events leading up to the start of job 58 (between times 0 and 445.43) which do not
contribute to the violation. Thus, it more directly and clearly indicates the point in the trace
where the formula is violated.

It is quite similar to the property explanation in Figure 5.4, which was obtained through a
process of trying different visualizations on different subformulas of the property. The clarity of
the explanations are quite close, and choosing one over the other may come down to personal
preference. However, the fact that the cause explanation was generated in a single click by
the user makes the explanation much more accessible, since it requires less insight into which
subformulas are likely to be informative.

The actual reason that the trace violates the specification – the fact that the end of job 58 occurs
too late – is not captured by the notion of causality that we use here. This is discussed further
in Section 7.3.

In Figure 6.2, the cause explanation of order(2) is shown, from the property order of Exam-
ple 5.1, with highlighting of the causal claims. It indicates the start of task F and the end of
task C as causes for the violation of the property.

Compared to the old property explanation in Figure 5.2 it is much more useful, since it indicates
the actual events that are not ordered according to the specification, instead of simply pointing
at the first event of the trace on which the globally operators of the sub-properties are evaluated.

Compared to the explanation shown in Figure 5.3, it is again more concise, as it does not show
the superfluous events leading up to the start of task F, and is generated in a single click.

84

7 Discussion & future work

We have developed several new features for the presentation and explanation of runtime verifi-
cation results in TRACE4CPS.

In Sections 7.1 to 7.3, the advantages and limitations of the new functionality are discussed, and
possible directions for future research proposed.

In Section 7.4, the use of property-based testing to obtain a certain level of confidence in the
correctness of the approaches is described.

7.1 Four-valued verdicts

In Chapter 4, the set of possible verdicts was expanded from three to four by computing a
verdict according to a four-valued informative prefix semantics, implemented as an extension of
the MTL checking algorithm of TRACE4CPS. The verdict is true if the trace is an informative
good prefix for the property, false if the trace is an informative bad prefix. If the trace is not
informative, the verdict is still true if it finitely satisfies the property, and still false if it
does not.

In the case of the property latency_discrete from Example 3.5, in the three-valued semantics
the verdict is non-informative for every job that meets the maximum latency requirement. In
the four-valued semantics, such a job is given the verdict still true, which is a more helpful
result for the user. At the same time, the assumption that the trace might be extended in a way
that may still satisfy or violate the property is represented by distinguishing still true from
true, which would not be possible if only the finite semantics were used to check this property.

Consider the property reqack, shown in Example 7.1, which specifies that every request event
must eventually be followed by an acknowledgement event:

Example 7.1 (Request-acknowledgement property)
check reqack: globally

if {'event'='req'} then
next finally {'event'='ack'}

When it is checked on any trace in the three-valued semantics, we always receive a non-infor-
mative verdict, because any trace ending with an acknowledgement could be extended with an
unacknowledged request, and any trace ending in an unacknowledged request could be extended
with an acknowledgement. Using the four-valued semantics, a trace in which every request is
acknowledged will result in a still true verdict, and a trace that contains an unacknowledged
request will result in a still false verdict. Thus, even though we cannot be certain of the
verdict in all possible extensions of the trace, the user receives useful information about the
validity of the property on the trace so far.

85

7 Discussion & future work

Restricting ourselves to LTL formulas, the four-valued informative prefix semantics is less precise
than RV-LTL (Section 2.1.5) in the sense that true and false are only returned for traces that
are informative, rather than for all good and bad traces (traces that satisfy a property in all
possible extensions, and traces that violate it in all possible extensions, see Definition 2.6). In
the three-valued informative prefix semantics, where non-informative verdicts already tend
to be overabundant, this means that there are good and bad traces for which which we still
receive a non-informative verdict. (For example, the property G(p ∧ ¬p).) In the four-valued
informative prefix semantics, a non-informative good trace will still result in a still true
verdict rather than true, and a non-informative bad trace in a still false verdict rather than
false, but we have found this level of imprecision to be less bothersome.

Nevertheless, if more precise verdicts are desired, it might be worth exploring whether it is
possible to adapt the automaton-based monitoring approach for the three-valued semantics of
LTL3 and TLTL (timed LTL) in [Bauer et al. 2006] and for the four-valued semantics of RV-LTL
in [Bauer et al. 2008] to (timed) MTL properties. In this case, the advantages of more precise
verdicts would have to be weighed against the increase in computational complexity of this
approach.

Alternatively, the approach for monitoring LTL specifications over finite traces of [Bartocci et al.
2018] could be considered, which is based on a counting semantics which produces one of five
verdicts (true, presumably true, inconclusive, presumably false, false) representing a prediction
of the satisfaction or violation of a formula given a prefix. Another option is the approach
of [Morgenstern et al. 2012], which uses a set of semantics specialized to different classes of
LTL formulas (safety, liveness, persistence and recurrence) and returns verdicts consisting of an
n-tuple of 5-valued truth values (where n is dependent on the complexity of the formula), and
has the property that it converges to the infinite path semantics of LTL. Both options apply to
LTL properties, but it may be possible for them to be adapted to (timed) MTL properties.

Figure 7.1: Visualization of a trace and the property reqack, showing the property tree,
still false verdict and an explanation of the “if ... then” node

86

7.2 Interactive visualization of verdicts

7.2 Interactive visualization of verdicts

In Chapter 5, the visual property explanation features of TRACE4CPS were extended with
a number of new options. The addition of explanations of arbitrary subformulas, and of the
visualization of temporal intervals that were evaluated while checking a timed property, introduces
the possibility of an interactive process of exploring the verdict. While trying out different
explanations of subformulas, the user is free to investigate the validity of subformulas on the
events that led to the verdict, in the order that fits their current level of understanding.

Figure 7.1 shows a screenshot of the Verification panel and a property explanation of the
property reqack of Example 7.1 after the changes made in Chapters 4 and 5. The verdict is
still false instead of non-informative, indicating that there is an unacknowledged request.
A representation of the abstract syntax three of the formula is shown on the right, and each
subformula can be double-clicked to generate an explanation of that subformula. The property
explanation for the node “if ... then” is shown in the trace on the left, which clearly shows
which request is left unacknowledged.

A similar visualization was possible in the unmodified version of TRACE4CPS, but the user
would have had to factor out the “if ... then” subformula into a separate named definition.
Especially for more complicated formulas, the ability to explore any subformula of the property
without changing its ETL expression is more convenient, and allows to property to be expressed
in a way that is most natural.

The tree representation of the formula, combined with the fact that multiple visualizations can be
chosen for any node in this tree depending on the ETL operator it represents, forms a framework
that supports a wealth of potential visualizations that can be added as part of the interactive
explanation process. Due to time constraints and the promise of a more universal explanation
mechanism in the form of the cause explanations of Chapter 6 (discussed in Section 7.3), the
development of further visualizations is left for future work.

As an example, visualizations tailored to specific temporal operators may offer advantages, such
as one for violations of (sub)formulas of the form GI ϕ that shows a continuous indication of the
validity of ϕ: green for the part of I in which ϕ was not yet violated, and red from that point it
was violated. A similar visualization for the satisfaction of a formula FI ϕ would be the reverse:
red before ϕ was satisfied and green from that point on.

Visualizations tailored to specific combinations of temporal operators may offer further possi-
bilities: for example, the violation of a (sub)formula of the form GI(ϕ1 → ϕ2) may be made
clearer by ignoring those events in the interval I in which ϕ1 is false, since the satisfaction of an
implication in which the left side is false can be seen as trivial compared to an implication in
which both the left and right side are true.

The development of a larger set of visualizations can be supported by user research in order to
identify the (combinations of) visualizations that are most helpful in a set of example traces and
properties, and possibly guide the development of a mechanism for automatically selecting the
visualizations that are most likely to be helpful.

87

7 Discussion & future work

7.3 Cause explanations

In Chapter 6, the method of [Beer et al. 2012], extended to timed properties in the finite
semantics, was used to develop a visual explanation of the cause of a property violation that is
often clearer, more concise, and more accessible than the visualizations discussed in Section 7.2.

Figure 7.2a shows the explanation generated for the property reqack of Example 7.1 by the
unmodified version of TRACE4CPS, and Figure 7.2b shows the cause explanation based on
the approximate cause algorithm. Two causes are indicated: the unacknowledged “req” and an
event that follows the request that is not an “ack”. Compared to the old explanation, the cause
explanation indicates the correct time at which the failure occurs (rather than the timestamp of
the event on which the top-level globally formula was evaluated), and multiple possible causes
are offered: if either the request at t = 6 had not happened, or an acknowledgement at t = 7
had happened, the property would have been satisfied.

7.3.1 Approximation

The formal, HP causality-based definition of a cause (Definition 6.5) on which the cause expla-
nations are based can be informally described as follows. An event, in combination with an
atomic proposition (i.e. an attribute filter) defined in the property, is a cause if changing the
validity of the atomic proposition on that event (possibly together with another set of events
and attributes) would satisfy the property.

The causes generated by the algorithm are an approximation in two senses. First, the algorithm
only finds causes for the first failure of a formula on a trace. This means that “fixing” the trace
(or system) using the causes that were given may not be enough to satisfy the formula. This
means that the generated causes are not complete, but may in practice be clearer, since they are
focused on a single failure.

However, it also means that when there are multiple failures of the formula in a trace, the
first failure could potentially mask a more relevant failure later on. More specifically, in the
finite semantics, the violation of a property in both the weak semantics and the finite semantics
(resulting in a false verdict) cannot be distinguished from a violation only in the finite semantics
(resulting in a still false verdict). This could result in only a cause for the still false verdict
being generated even when later in the trace, a cause for the false verdict is present which
might be more relevant to the user.

(a) Old explanation (b) New cause explanation

Figure 7.2: Comparison between the default explanation of TRACE4CPS and the newly devel-
oped cause explanation on the reqack property

88

7.3 Cause explanations

It is not clear whether this poses a problem in practical scenarios, but it might be useful to
extend the algorithm so that causes for all failures of the formula can optionally be generated.
Alternatively, the algorithm could be modified to operate in the four-valued semantics so that,
while generating the cause for a false verdict, if a violation leading to a still false verdict is
encountered, it keeps looking for a violation leading to the false verdict.

At the same time, the algorithm is an overapproximation of the set of causes for the first failure
of a formula. In return, the algorithm has a much lower computational complexity than one that
would compute causes according to the formal definition.

In Chapter 6, examples are given that display both the over- and underapproximation of the
algorithm. It seems that in practice, the overapproximation is small, and the underapproxi-
mation is not necessarily a disadvantage, but this belief has not been tested on a large set of
practical examples. To fully evaluate the cause explanations and the degree to which they are an
approximation, it may again be insightful to perform user research with a large set of example
properties and traces.

7.3.2 Causes for positive verdicts

Cause explanations can be generated for false and still false verdicts. We expect that most
instances in which explanations for verdicts are needed are for violations of a specification,
because a violation indicates a potential bug in the system that generated the trace, in which
case a clear understanding of the violation is helpful in locating and fixing the bug.

However, an explanation of the cause of the satisfaction of a property (i.e. where the verdict
is true or still true) can also be useful. For example, it may be that a formula is trivially
satisfied because it does not correctly express the desired specification. A cause explanation may
help the user gain confidence in the verdict if it confirms the user’s intuition about the specified
behavior.

Simply generating a cause explanation of the violation of the negation of the formula as an
explanation of the satisfaction of the original formula may be useful as a basis for this functionality,
but initial forays into this approach showed that it does not always generate useful results. The
notions of vacuity [Beer et al. 1997] and coverage [Chockler et al. 2008] may be helpful in
identifying formulas that are satisfied for unintended reasons.

7.3.3 Alternative notions of causality

The definition of causes used in our approach means that causes must refer to an event that
occurs in the trace, and the values of the attributes of that event. The algorithm generates
causes for most violated properties, but a property that is violated because a next operator is
evaluted on the last event of the trace (so that the next event does not exist) may not have a
cause that occurs in the trace. To indicate a cause in this situation requires either a notion of
causality that can refer to required events beyond the end of the trace, or perhaps simply some
indication that the cause is a requirement on an event beyond the end of the trace.

Similarly, the causes generated for timed properties, when the real reason for the violation is due
to the timing of events, can sometimes be indirect or in some cases non-existent. This is because
the definition of causes used for timed properties is a straightforward extension of the definition
used by [Beer et al. 2012] to MTL formulas that, while it takes into account the real-time aspects

89

7 Discussion & future work

of the semantics of MTL while evaluating the formula, does not directly capture the timing
of events as possible causes, or consider events that occur outside the intervals of temporal
operators.

In Section 6.2.3 we showed that the set of causes for ({a}, 0), ({b}, 3) ̸|= F[1,2] b is empty, because
there are no states in the interval [1, 2] whose values are directly responsible for the violation of
the property.

In order to formulate the cause of the violation in cases such as the above, and to formulate
more direct causes for formulas that are violated due to the timings of events, a different notion
of causality might be considered that in its counterfactual criteria also allows the possibility of
inserting a new state into the trace or changing the timings of the states (in addition to changing
the values of attributes). In the example above, the timestamp (3) of the state ({b}, 3) could
then be considered a cause. However, the possibilities for changing the trace so that the property
is satisfied would become infinite, so a finite representation of the infinite set of counterfactual
possibilities must be used in order for the approach to be practical.

Alternatively, we could consider the interval [1, 2] to have caused the failure of the property
in the example above, since if the interval were larger, the state ({b}, 3) could have satisfied
the formula. This would shift the focus of causality from considering causes to be events and
their attribute values in the trace to also considering the formula itself to be responsible for its
violation.

More generally, the notion of causality used in this thesis captures the attribute values of states
that exist in the trace, but cannot capture the non-occurrence of events, their relative ordering,
or (directly) the timing of events. In the approach to causality checking in [Leitner-Fischer
and Leue 2013; Beer et al. 2015], in which causes are found in programs modeled as transition
systems, and which uses techniques similar to model checking, a more sophisticated notion of
causality is used so that causes are expressed as formulas in a logic called event order logic which
does directly capture the presence, non-occurrence and relative ordering of events. However, it
is not clear if this approach can be applied to single traces.

7.3.4 Integration of explanation features

The use of negation normal form in the approximate cause algorithm leads to a simpler algorithm,
but also means that in order to find the cause of the violation of an MTL formula which has been
checked using the regular checking algorithm described in Chapter 4, it must first be transformed
and then re-checked using the algorithm extended with cause generation. As a consequence, the
formula that is used to generate the cause explanations does not map directly to the formula as
it is shown in the Verification panel and used to generate the regular property explanations.

It may be beneficial for further integration of the causality analysis with the property checking
and explanation features to develop an algorithm that does not require the transformation to
negation normal form. To do this, some concepts that are presented in [Beer et al. 2009], which
is an earlier version of the paper [Beer et al. 2012] that was used in Chapter 6 might be useful:
the polarity of a subformula (which is positive if the subformula appears under an even number
of negations and negative otherwise) and the notion of being bottom-valued (which is equivalent
to false for a subformula with positive polarity and true for a subformula with negative polarity).

90

7.4 Verification using property-based testing

7.4 Verification using property-based testing

During the research, property-based testing was used to verify (but not prove) the correctness of
the approaches developed in this thesis. Property-based testing is a software testing method in
which a large number of tests is automatically generated. Test cases are randomly drawn from
a distribution over the domain of inputs of the system under test, and the output of the system
is checked using an automatically checkable specification [Claessen and Hughes 2000].

The Java package “junit-quickcheck” [Holser 2020] was used to define generators for MTL
formulas and execution traces, and to generate the test cases in which several assertions were
checked to verify that the developed algorithms fulfill several desired properties.

MTL formulas were generated according to the following grammar, where r ∈ R is a random
number in the range [0, 6]:

ϕ := true | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | ϕ1 UI ϕ2 | Fϕ | Gϕ | Xϕ
p := {e 7→ 1} | {e 7→ 2} | {e 7→ 3}
I := [i, i+ j] | [i, i+ j) | (i, i+ j] | (i, i+ j) | [0,∞)

i, j := 0.0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 5.0 | 6.0 | r

The reason that the numbers i, j used in the endpoints of intervals are chosen from both a set
of constants and from the complete range of (double-precision floating point) real numbers is to
increase the chance that the cases where the endpoints of an interval are exactly the timestamps
of events in the trace are tested.

Formulas of the form ϕ1 RI ϕ2 are not generated directly (and there is no construct in ETL
that directly maps to it), but they are indirectly created using the negation normal form
transformation that uses R.

LTL formulas were generated by restricting the previous grammar so that all intervals are [0,∞).

The length of the generated formulas, defined as the number of nodes in the tree structure that
describes the formula, could be controlled, and ranged from 3 to 20 in the executed tests.

Traces were generated according to the following grammar, with n ranging from 0 to 9:

ρ := s0, . . . , sn

si := ({e 7→ 1}, i) | ({e 7→ 2}, i)

Each test was executed using 2,000,000 generated test cases with the properties specified later in
this section. Although a passed test does not constitute a proof that the system under test fulfills
the specified property, it does give a relatively high level of confidence, under the assumption
that the generated test cases are a representative sample for the entire domain of MTL properties
and traces that TRACE4CPS supports.

The property-based testing approach resulted in several bugs being caught while formulating
the algorithms described in this thesis, and the failing test cases turned out to be very useful in
developing a better understanding of the problems the algorithms were meant to solve.

91

7 Discussion & future work

7.4.1 Four-valued semantics

The correctness of the algorithms developed in Section 4.3 were verified by testing the following
property on every generated MTL formula ϕ and trace ρ:

Proposition 7.2 (Correctness of four-valued informative prefix algorithm)

[ρ |=IP3 ϕ] = ⊤ =⇒ [ρ |=IP4 ϕ] = ⊤,
[ρ |=IP3 ϕ] = ⊥ =⇒ [ρ |=IP4 ϕ] = ⊥,
[ρ |=IP3 ϕ] = ? ∧ ρ |=f ϕ =⇒ [ρ |=IP4 ϕ] = ⊤?,
[ρ |=IP3 ϕ] = ? ∧ ρ ̸|=f ϕ =⇒ [ρ |=IP4 ϕ] = ⊥?

[ρ |=IP3 ϕ] was computed using Algorithm 4.4, which was already present in TRACE4CPS, and
[ρ |=IP4 ϕ] was computed both using both Algorithm 4.5 and Algorithm 4.7, which both passed
this test.

Because of the correctness proof of Algorithm 4.4 given in [Hendriks et al. 2016b], it can be
assumed to conform to Definition 4.1. This means that Proposition 7.2 implies that the two
tested algorithms conform to Definition 4.2.

7.4.2 Causality

Although no automatically checkable correctness criterion for the approximated cause algorithms
of Section 6.2 could be formulated, some desired properties of the algorithms could still be verified.

Let Coriginal(σ, ϕ) be the set of causes returned by Algorithm 6.11 (which corresponds to the C
algorithm of [Beer et al. 2012]), Cmodified(σ, ϕ) those by Algorithm 6.14 (which uses a different
expression to recurse into the next states for the temporal operators), Cfinite(σ, ϕ) those by
Algorithm 6.20 (which finds causes in the finite semantics instead of the weak semantics), CR
those by Algorithm 6.25 (which uses R instead of G in the negation normal form), and CMTL
those by Algorithm 6.26 (which finds causes for (timed) MTL formulas).

Let ϕ be an LTL property generated as describe above, and let σ be a generated trace ρ in which
the timestamps of events are ignored. Let nnf−G be the negation normal form transformation of
Algorithm 6.10, nnf fG that of Algorithm 6.18 and nnf fR that of Algorithm 6.23.

The fact that the modifications made in Algorithm 6.14 do not impact the results of the algorithm
was verified using the following:

Proposition 7.3 (Correctness of modification of C)

Coriginal
(
σ,nnf−G (ϕ)

)
= Cmodified

(
σ,nnf−G (ϕ)

)
Proposition 6.13 was checked using the following:

Proposition 7.4 (Validity of Proposition 6.13)

σ ̸|=− ϕ =⇒ |Coriginal
(
σ,nnf−G (ϕ)

)
| = |Cmodified

(
σ,nnf−G (ϕ)

)
| > 0

92

7.4 Verification using property-based testing

The same property for σ ̸|=f ϕ and Cfinite(σ, ϕ) was determined not to hold by this method,
which is explained in Section 6.2.2.

The validity of the negation normal form transformation using R instead of G for LTL formulas
was verified using the following:

Proposition 7.5 (Correctness of nnf R)

Cfinite
(
nnf fG(σ), ϕ

)
= CR

(
nnf fR(σ), ϕ

)
The correctness of Algorithm 6.26 for LTL formulas (which is a subset of all properties that it
supports) was verified using the following:

Proposition 7.6 (Correctness of MTL cause algorithm (for LTL))

Cfinite
(
σ,nnf fG(ϕ)

)
= CMTL

(
σ,nnf fR(ϕ)

)
Finally, let ψ be an MTL formula generated as above. The correctness of the semantics of the
release operator that was added to the MTL checking algorithm, and of the negation normal form
transformation using R for MTL formulas, was tested using the following:

Proposition 7.7 (Correctness of RI)

ρ |=f ψ ⇐⇒ ρ |=f nnf fR(ψ)

Unfortunately, the correctness of the extension of the approximated cause algorithm to the finite
semantics and to timed properties could not easily be verified using property-based testing, but
a number of test cases were checked manually to see that they are consistent with what was
expected.

93

8 Conclusion

In Section 1.3, the aim of the research presented in this thesis was defined to be the exploration
of several paths towards improving the presentation of the results of runtime verification in
TRACE4CPS.

We posed the following main research question:

RQ0. How can the presentation of runtime verification results be improved to help
the user understand a verdict on an execution trace in TRACE4CPS?

In order to answer this question, it was refined into three sub-questions.

RQ1. How can the user, upon receiving a NON-INFORMATIVE verdict, be given
information about the validity of the property so far?

A four-valued informative prefix semantics was formulated as an extension of the three-valued
informative prefix semantics for MTL on finite traces that splits the non-informative verdict
into two verdicts: still false and still true. In the case that a user checks a property on
a trace where the satisfaction or violation of the property could not be definitively determined,
they are now presented with a verdict that offers useful information regarding the validity of the
property on the finite trace, without being overly optimistic or pessimistic about its validity on
the unknown continuation of the trace.

The informative prefix algorithm with which MTL formulas are checked was extended to use
the four-valued semantics, so that a four-valued verdict is computed in a single execution of
the algorithm, and the property explanations based on the intermediate values produced by the
algorithm use the correct values for subformulas of the property.

Using the observation that the four truth values form a lattice, the algorithm was expressed in
a concise and elegant way in terms of partial order operations on this lattice, and can easily be
implemented in any offline runtime verification application.

RQ2. How can all subformulas of an ETL property be explained without becoming
overwhelming?

After the user checks a property on a trace, they are now presented with a tree representation
of the formula in terms of the ETL syntax in which the property was specified. The user is then
free to generate visual explanations of any subformula of the property (in addition to the existing
explanation of only the top-level formula and any named definitions) that show the validity of
the subformula for all events that it was checked on. Additionally, a type of explanation was
introduced that visualizes the temporal intervals of timed operators in the formula as they were
evaluated on the trace. This helps the user understand how the timing of events relates to the
time constraints of the property.

95

8 Conclusion

These visualizations support an interactive process where the user gains understanding of the
verdict through a series of explanations directed by the user’s level of understanding. The user
can pick one of multiple visualizations on any node in the tree representation of the ETL formula,
which can serve as a basis for future development of new visualizations that can be combined
into explanations tailored to specific (combinations of) ETL constructs.

RQ3. How can property explanations clearly explain the cause of the verdict?

An existing approach that uses an instance of HP causality to explain violations of a property on
a trace was used to create cause explanations, a new type of property explanation that directly
and concisely indicates possible causes of a false or still false verdict. The algorithm was
extended so that cause explanation can also be generated for timed properties (that can be
expressed in MTL).

The cause explanations are a quick way to understand why a false or still false was reached
that is universal in that it is not dependent on the specific structure of the ETL formula. In
cases where the explanation does not directly indicate the cause, such as those where the actual
reason for the violation concerns the absence of events or where the timing of events is such that
they occur outside the intervals specified in the property, they are often a helpful starting point
for the investigation using the other property explanation features.

⋆ ⋆ ⋆

To answer the main research question, we note that the three areas in which contributions were
made in this thesis work together to increase the understandability of verification results.

The four-valued verdicts help the user in determining to what extent the trace meets the
specification, and the intermediate values produced by the extended verification algorithm
(including the distinction between still false and still true) are used in the generation of
the property explanations. The visual cause explanations provide a quick and precise way to focus
the user’s attention on the cause of a property violation. If necessary, this understanding can be
refined interactively with the use of the other visual property explanations of any subformula
and of the temporal intervals.

Ultimately, a deep understanding of the verdict can be used by the user to be more effective in
fixing the defect in the system that has produced the failure, or to refine the specification as
part of the verification process.

Our results, though presented as new functionality in TRACE4CPS, are intended to be useful
for any application of runtime verification using temporal logic. Our hope is that improving the
understandability of verdicts will help in lowering barriers that prevent more widespread use of
formal verification to increase the safety and reliability of software systems.

96

Bibliography
Alur, Rajeev, Tomás Feder, and Thomas A. Henzinger (1996). “The benefits of relaxing punctu-

ality”. In: Journal of the ACM 43.1, pp. 116–146. doi: 10.1145/227595.227602.
Baier, Christel, Clemens Dubslaff, Florian Funke, Simon Jantsch, Rupak Majumdar, Jakob

Piribauer, and Robin Ziemek (2021). “From verification to causality-based explications”.
In: Leibniz International Proceedings in Informatics, LIPIcs 198, 1:1–1:20. doi: 10.4230/
LIPIcs.ICALP.2021.1.

Baier, Christel, Clemens Dubslaff, Florian Funke, Simon Jantsch, Jakob Piribauer, and Robin
Ziemek (2022). “Operational Causality - Necessarily Sufficient and Sufficiently Necessary”.
In: A Journey from Process Algebra via Timed Automata to Model Learning. Vol. 13560
LNCS. Springer, pp. 27–45. doi: 10.1007/978-3-031-15629-8_2.

Baier, Christel and Joost-Pieter Katoen (2008). Principles Of Model Checking. MIT Press. isbn:
9780262026499. url: https://mitpress.mit.edu/9780262026499/principles- of-
model-checking/.

Ball, Thomas, Mayur Naik, and Sriram K. Rajamani (2003). “From symptom to cause: Localizing
errors in counterexample traces”. In: ACM SIGPLAN Notices 38.1, pp. 97–105. doi: 10.
1145/640128.604140.

Bartocci, Ezio, Roderick Bloem, Dejan Nickovic, and Franz Roeck (2018). “A Counting Semantics
for Monitoring LTL Specifications over Finite Traces”. In: Computer Aided Verification. CAV
2018. Vol. 10981 LNCS. Springer, pp. 547–564. doi: 10.1007/978-3-319-96145-3_29.

Bauer, Andreas, Martin Leucker, and Christian Schallhart (2006). “Monitoring of Real-Time
Properties”. In: FSTTCS 2006: Foundations of Software Technology and Theoretical Com-
puter Science. Vol. 4337 LNCS. Springer, pp. 260–272. doi: 10.1007/11944836_25.

Bauer, Andreas, Martin Leucker, and Christian Schallhart (2008). The good, the bad, and the
ugly-but how ugly is ugly? Tech. rep. Institut für Informatik der Technische Universität
München. url: https://mediatum.ub.tum.de/1094622.

Beer, Adrian, Stephan Heidinger, Uwe Kühne, Florian Leitner-Fischer, and Stefan Leue (2015).
“Symbolic causality checking using bounded model checking”. In: Model Checking Software.
SPIN 2015. Vol. 9232 LNCS. Springer, pp. 203–221. doi: 10.1007/978-3-319-23404-5_14.

Beer, Ilan, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard Trefler (2009). “Ex-
plaining counterexamples using causality”. In: CAV 2009: Computer Aided Verification.
Vol. 5643 LNCS. Springer, pp. 94–108. doi: 10.1007/978-3-642-02658-4_11.

Beer, Ilan, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard Trefler (2012). “Ex-
plaining counterexamples using causality”. In: Formal Methods in System Design 40.1, pp. 20–
40. doi: 10.1007/s10703-011-0132-2.

Beer, Ilan, Shoham Ben-David, Cindy Eisner, and Avner Landver (1996). “RuleBase: An industry-
oriented formal verification tool”. In: 33rd Design Automation Conference Proceedings,
pp. 655–660. doi: 10.1109/DAC.1996.545656.

Beer, Ilan, Shoham Ben-David, Cindy Eisner, and Yoav Rodeh (1997). “Efficient detection of
vacuity in ACTL formulas”. In: Computer Aided Verification. CAV 1997. Vol. 1254 LNCS.
Springer, pp. 279–290. doi: 10.1007/3-540-63166-6_28.

97

https://doi.org/10.1145/227595.227602
https://doi.org/10.4230/LIPIcs.ICALP.2021.1
https://doi.org/10.4230/LIPIcs.ICALP.2021.1
https://doi.org/10.1007/978-3-031-15629-8_2
https://mitpress.mit.edu/9780262026499/principles-of-model-checking/
https://mitpress.mit.edu/9780262026499/principles-of-model-checking/
https://doi.org/10.1145/640128.604140
https://doi.org/10.1145/640128.604140
https://doi.org/10.1007/978-3-319-96145-3_29
https://doi.org/10.1007/11944836_25
https://mediatum.ub.tum.de/1094622
https://doi.org/10.1007/978-3-319-23404-5_14
https://doi.org/10.1007/978-3-642-02658-4_11
https://doi.org/10.1007/s10703-011-0132-2
https://doi.org/10.1109/DAC.1996.545656
https://doi.org/10.1007/3-540-63166-6_28

Bibliography

Caltais, Georgiana, Sophie Linnea Guetlein, and Stefan Leue (2019). “Causality for General
LTL-definable Properties”. In: Electronic Proceedings in Theoretical Computer Science 286,
pp. 1–15. doi: 10.4204/EPTCS.286.1.

Chockler, Hana, Joseph Y. Halpern, and Orna Kupferman (2008). “What causes a system to
satisfy a specification?” In: ACM Transactions on Computational Logic 9.3, pp. 1–26. doi:
10.1145/1352582.1352588.

Claessen, Koen and John Hughes (2000). “QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs”. In: ICFP ’00: Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming. ACM, pp. 268–279. doi: 10.1145/351240.351266.

Dou, Wei, Domenico Bianculli, and Lionel Briand (2018). “Model-Driven Trace Diagnostics for
Pattern-based Temporal Specifications”. In: 21st ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, MODELS 2018. ACM, pp. 278–288. doi:
10.1145/3239372.3239396.

Dubslaff, Clemens, Kallistos Weis, Christel Baier, and Sven Apel (2022). “Causality in Con-
figurable Software Systems”. In: ICSE ’22: Proceedings of the 44th International Confer-
ence on Software Engineering. Vol. 2022-May. IEEE Computer Society, pp. 325–337. doi:
10.1145/3510003.3510200.

Dwyer, Matthew B., George S. Avrunin, and James C. Corbett (1999). “Patterns in property
specifications for finite-state verification”. In: Proceedings of the 21st international conference
on Software engineering. ACM, pp. 411–420. doi: 10.1145/302405.302672.

Eclipse TRACE4CPS™ (2022). url: https://projects.eclipse.org/projects/technology.
trace4cps (visited on 2023-01-25).

Eisner, Cindy, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, and David Van
Campenhout (2003). “Reasoning with temporal logic on truncated paths”. In: Computer
Aided Verification. CAV 2003. Vol. 2725 LNCS. Springer, pp. 27–39. doi: 10.1007/978-3-
540-45069-6_3.

Eiter, Thomas and Thomas Lukasiewicz (2002). “Complexity results for structure-based causal-
ity”. In: Artificial Intelligence 142.1, pp. 53–89. doi: 10.1016/S0004-3702(02)00271-0.

Furia, Carlo A. and Matteo Rossi (2006). “Integrating discrete- and continuous-time metric
temporal logics through sampling”. In: Formal Modeling and Analysis of Timed Systems.
FORMATS 2006. Vol. 4202 LNCS. Springer, pp. 215–229. doi: 10.1007/11867340_16.

Groce, Alex (2004). “Error Explanation with Distance Metrics”. In: Tools and Algorithms for the
Construction and Analysis of Systems. TACAS 2004. Vol. 2988 LNCS. Springer, pp. 108–122.
doi: 10.1007/978-3-540-24730-2_8.

Hall, Ned (2004). “Two Concepts of Causation”. In: Causation and Counterfactuals. Ed. by John
Collins, Ned Hall, and L.A. Paul. The MIT Press. Chap. 9, pp. 225–276. doi: 10.7551/
mitpress/1752.003.0010.

Halpern, Joseph Y. (2015). “A Modification of the Halpern-Pearl Definition of Causality”. In:
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
pp. 3022–3033. url: https://www.ijcai.org/Abstract/15/427.

Halpern, Joseph Y. and Judea Pearl (2001). “Causes and Explanations: A Structural-Model
Approach: Part i: Causes”. In: Proceedings of the Seventeenth Conference on Uncertainty in
Artificial Intelligence. UAI’01, pp. 194–202. arXiv: 1301.2275.

Halpern, Joseph Y. and Judea Pearl (2005). “Causes and Explanations: A Structural-Model
Approach. Part I: Causes”. In: The British Journal for the Philosophy of Science 56.4,
pp. 843–887. doi: 10.1093/bjps/axi147.

Harman, Mark and Robert Hierons (2001). “An overview of program slicing”. In: Software Focus
2.3, pp. 85–92. doi: 10.1002/SWF.41.

98

https://doi.org/10.4204/EPTCS.286.1
https://doi.org/10.1145/1352582.1352588
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/3239372.3239396
https://doi.org/10.1145/3510003.3510200
https://doi.org/10.1145/302405.302672
https://projects.eclipse.org/projects/technology.trace4cps
https://projects.eclipse.org/projects/technology.trace4cps
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1016/S0004-3702(02)00271-0
https://doi.org/10.1007/11867340_16
https://doi.org/10.1007/978-3-540-24730-2_8
https://doi.org/10.7551/mitpress/1752.003.0010
https://doi.org/10.7551/mitpress/1752.003.0010
https://www.ijcai.org/Abstract/15/427
https://arxiv.org/abs/1301.2275
https://doi.org/10.1093/bjps/axi147
https://doi.org/10.1002/SWF.41

Hendriks, Martijn, Marc Geilen, Amir R. B. Behrouzian, Twan Basten, Hadi Alizadeh, and
Dip Goswami (2016a). “Checking Metric Temporal Logic with TRACE”. In: 2016 16th
International Conference on Application of Concurrency to System Design (ACSD). IEEE,
pp. 19–24. doi: 10.1109/ACSD.2016.13.

Hendriks, Martijn, Marc Geilen, Amir R. B. Behrouzian, Twan Basten, Hadi Alizadeh, and
Dip Goswami (2016b). Checking Metric Temporal Logic with TRACE. Tech. rep. Eindhoven
University of Technology. url: https://www.es.ele.tue.nl/esreports/esr-2016-
01.pdf.

Hendriks, Martijn, Jacques Verriet, and Twan Basten (2023). “Visualization, Transformation
and Analysis of Execution Traces with the Eclipse TRACE4CPS Trace Tool”. (Working
paper).

Ho, Hsi-Ming, Joël Ouaknine, and James Worrell (2014). “Online Monitoring of Metric Temporal
Logic”. In: Runtime Verification. RV 2014. Vol. 8734 LNCS. Springer, pp. 178–192. doi:
10.1007/978-3-319-11164-3_15.

Holser, Paul (2020). junit-quickcheck. url: https://pholser.github.io/junit-quickcheck/
site/1.0/.

Horak, Tom, Norine Coenen, Niklas Metzger, Christopher Hahn, Tamara Flemisch, Julian
Mendez, Dennis Dimov, Bernd Finkbeiner, and Raimund Dachselt (2022). “Visual Analysis
of Hyperproperties for Understanding Model Checking Results”. In: IEEE Transactions on
Visualization and Computer Graphics 28.1, pp. 357–367. doi: 10.1109/TVCG.2021.3114866.

Horak, Tom, Norine Coenen, Niklas Metzger, Christopher Hahn, Tamara Flemischm, Julián
Méndez, Dennis Dimov, Bernd Finkbeiner, and Raimund Dachselt (2023). HyperVis. url:
https://imld.de/en/research/research-projects/hypervis/ (visited on 2023-02-09).

Hume, David (1739). A Treatise of Human Nature: Being an Attempt to Introduce the Experi-
mental Method of Reasoning into Moral Subjects. Sterling Publishing. isbn: 9780760771723.

Kaleeswaran, Arut Prakash, Arne Nordmann, Thomas Vogel, and Lars Grunske (2022). “A
systematic literature review on counterexample explanation”. In: Information and Software
Technology 145, p. 106800. doi: 10.1016/j.infsof.2021.106800.

Koymans, Ron (1990). “Specifying real-time properties with metric temporal logic”. In: Real-
Time Systems 2.4, pp. 255–299. doi: 10.1007/BF01995674.

Kupferman, Orna and Moshe Y. Vardi (2001). “Model Checking of Safety Properties”. In: Formal
Methods in System Design 19.3, pp. 291–314. doi: 10.1023/A:1011254632723.

Leitner-Fischer, Florian and Stefan Leue (2013). “Causality Checking for Complex System Mod-
els”. In: VMCAI 2013: Verification, Model Checking, and Abstract Interpretation. Vol. 7737
LNCS. Springer, pp. 248–267. doi: 10.1007/978-3-642-35873-9_16.

Leitner-Fischer, Florian and Stefan Leue (2014). “SpinCause: A tool for causality checking”. In:
SPIN 2014: Proceedings of the 2014 International SPIN Symposium on Model Checking of
Software. SPIN 2014. ACM, pp. 117–120. doi: 10.1145/2632362.2632371.

Leucker, Martin and Christian Schallhart (2009). “A brief account of runtime verification”. In:
Journal of Logic and Algebraic Programming 78.5, pp. 293–303. doi: 10.1016/j.jlap.2008.
08.004.

Lewis, David (1973). “Causation”. In: The Journal of Philosophy 70.17, p. 556. doi: 10.2307/
2025310.

Maler, Oded and Dejan Nickovic (2004). “Monitoring Temporal Properties of Continuous Sig-
nals”. In: Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
FORMATS/FTRTFT 2004. Vol. 3253 LNCS. Springer, pp. 152–166. doi: 10.1007/978-3-
540-30206-3_12.

Manna, Zohar and Amir Pnueli (1992). The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer. doi: 10.1007/978-1-4612-0931-7.

99

https://doi.org/10.1109/ACSD.2016.13
https://www.es.ele.tue.nl/esreports/esr-2016-01.pdf
https://www.es.ele.tue.nl/esreports/esr-2016-01.pdf
https://doi.org/10.1007/978-3-319-11164-3_15
https://pholser.github.io/junit-quickcheck/site/1.0/
https://pholser.github.io/junit-quickcheck/site/1.0/
https://doi.org/10.1109/TVCG.2021.3114866
https://imld.de/en/research/research-projects/hypervis/
https://doi.org/10.1016/j.infsof.2021.106800
https://doi.org/10.1007/BF01995674
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1007/978-3-642-35873-9_16
https://doi.org/10.1145/2632362.2632371
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.2307/2025310
https://doi.org/10.2307/2025310
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-1-4612-0931-7

Bibliography

Markey, N. and P. Schnoebelen (2003). “Model Checking a Path”. In: International Conference
on Concurrency Theory. Vol. 2761. Springer, pp. 251–265. doi: 10.1007/978-3-540-45187-
7_17.

Morgenstern, Andreas, Manuel Gesell, and Klaus Schneider (2012). “An Asymptotically Correct
Finite Path Semantics for LTL”. In: Logic for Programming, Artificial Intelligence, and
Reasoning. LPAR 2012. Vol. 7180 LNCS. Springer, pp. 304–319. doi: 10.1007/978-3-642-
28717-6_24.

Ouaknine, Joël and James Worrell (2006). “Safety metric temporal logic is fully decidable”. In:
Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2006. Vol. 3920
LNCS. Springer, pp. 411–425. doi: 10.1007/11691372_27.

Ouaknine, Joël and James Worrell (2008). “Some recent results in metric temporal logic”. In: For-
mal Modeling and Analysis of Timed Systems. FORMATS 2008. Vol. 5215 LNCS. Springer,
pp. 1–13. doi: 10.1007/978-3-540-85778-5_1.

Ovsiannikova, Polina, Igor Buzhinsky, Antti Pakonen, and Valeriy Vyatkin (2021). “Oeritte: User-
Friendly Counterexample Explanation for Model Checking”. In: IEEE Access 9, pp. 61383–
61397. doi: 10.1109/ACCESS.2021.3073459.

Pakonen, Antti, Igor Buzhinsky, and Valeriy Vyatkin (2018). “Counterexample visualization
and explanation for function block diagrams”. In: Proceedings - IEEE 16th International
Conference on Industrial Informatics, INDIN 2018. IEEE, pp. 747–753. doi: 10.1109/INDIN.
2018.8472025.

Pnueli, Amir (1977). “The temporal logic of programs”. In: 18th Annual Symposium on Founda-
tions of Computer Science (SFCS 1977). Vol. 1977-Octob. IEEE, pp. 46–57. doi: 10.1109/
SFCS.1977.32.

Renieris, Manos and Steven P. Reiss (2003). “Fault localization with nearest neighbor queries”.
In: Proceedings - 18th IEEE International Conference on Automated Software Engineering,
ASE 2003, pp. 30–39. doi: 10.1109/ASE.2003.1240292.

TRACE4CPS User Manual (2021). url: https : / / www . eclipse . org / trace4cps / html /
content/manual.html.

Wang, Chao, Zijiang Yang, Franjo Ivančić, and Aarti Gupta (2006). “Whodunit? Causal Analysis
for Counterexamples”. In: Automated Technology for Verification and Analysis. ATVA 2006.
Vol. 4218 LNCS. Springer, pp. 82–95. doi: 10.1007/11901914_9.

Zeller, Andreas (2002). “Isolating cause-effect chains from computer programs”. In: ACM SIG-
SOFT Software Engineering Notes 27.6, pp. 1–10. doi: 10.1145/605466.605468.

100

https://doi.org/10.1007/978-3-540-45187-7_17
https://doi.org/10.1007/978-3-540-45187-7_17
https://doi.org/10.1007/978-3-642-28717-6_24
https://doi.org/10.1007/978-3-642-28717-6_24
https://doi.org/10.1007/11691372_27
https://doi.org/10.1007/978-3-540-85778-5_1
https://doi.org/10.1109/ACCESS.2021.3073459
https://doi.org/10.1109/INDIN.2018.8472025
https://doi.org/10.1109/INDIN.2018.8472025
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/ASE.2003.1240292
https://www.eclipse.org/trace4cps/html/content/manual.html
https://www.eclipse.org/trace4cps/html/content/manual.html
https://doi.org/10.1007/11901914_9
https://doi.org/10.1145/605466.605468

	Acknowledgements
	Introduction
	Runtime verification
	Visualization and explanation
	Improving verification feedback of Eclipse TRACE4CPS™
	Verdicts
	Explanations

	Contribution

	Background
	Runtime verification using temporal logic
	Infinite executions – LTL
	Finite executions – LTLf
	Truncated executions – LTL+/-
	Truncated executions – LTL3
	Truncated executions – RV-LTL
	Timed executions – MTL
	Continuous signals and STL

	Causality
	Formalizing causality
	HP causality
	HP causality for Boolean circuits
	Causality in verification

	Verification explanation tools

	TRACE4CPS
	Execution traces
	Trace visualization
	Runtime verification

	Four-valued verdicts
	Four-valued semantics
	TRACE4CPS checking algorithm
	Algorithm for four-valued semantics
	Extending the algorithm
	Reformulating the algorithm

	Four-valued semantics, redux

	Interactive visualization of verdicts
	TRACE4CPS property explanations
	Explanations of subformulas
	Explanations of real-time intervals

	Causality for property explanation
	HP causality for counterexample explanation
	Simplified binary causal models
	Causality for LTL counterexamples
	An approximation algorithm for causality

	Causality for trace explanation in TRACE4CPS
	Causes for LTL formulas with FALSE verdicts
	Causes for LTL formulas with STILL_FALSE verdicts
	Causes for MTL formulas

	Visual cause explanations

	Discussion & future work
	Four-valued verdicts
	Interactive visualization of verdicts
	Cause explanations
	Approximation
	Causes for positive verdicts
	Alternative notions of causality
	Integration of explanation features

	Verification using property-based testing
	Four-valued semantics
	Causality

	Conclusion
	Bibliography

