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Abstract

Tomographic imaging has a wide range of applications including in medicine and in
industry because of its non-destructive nature. Ideally, accurate images can be retrieved
using high-quality fully sampled computed tomography (CT) scan data. In practice, the
images are reconstructed from noisy subsampled data. One way to acquire good quality
reconstructions is to encode prior information to the reconstruction algorithm.

In this project, we consider the discrete (graph) Ginzburg-Landau (GL) functional
regularisation to express such prior information. We study the use of graph GL regular-
isation in binary image denoising and binary CT image reconstruction. For the binary
image denoising problem, we examine the influence of various graph definitions on the
performance of the graph GL functional. For tomographic image reconstruction problem,
we compare graph GL regularisation with two other well-known methods, total variation
(TV) regularisation and simultaneous iterative reconstruction technique (SIRT), in var-
ious noise levels and downsampled projection settings. Graph GL regularisation shows
good performance with limited and high-noise data. Moreover, we collect our own CT
scan data, and investigate how it might be applied in practical scenarios.
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Notation

Numbers

n Dimension of the 2D image as a vector,
√
n ∈ N

m Dimension of the sinogram as a vector
N Number of images in the dataset
K Number of iterations in proximal gradient descent
LG Lipschitz constant for ∇G
θ Angular increment for CT projections
α Stepsize in proximal gradient descent, hyperparameter
ε Regularisation parameter in graph GL functional, hyperparameter
β Regularisation parameter in GL-3SR, hyperparameter

Functions

F : Rn 7→ R Objective function
R : Rn 7→ R Regularisation function
W : R 7→ R Double-well potential

Matrices/Vectors

K ∈ Rm×n Discrete Radon transform
L ∈ Rn×n Graph Laplacian matrix
L4 ∈ Rn×n 4-regular graph Laplacian matrix
Lp ∈ Rn×n Learned graph Laplacian matrix
v ∈ Rn Noisy image (reshape into 2D when plotting)
ū ∈ {0, 1}n Ground truth (reshape into 2D when plotting)
û ∈ Rn Predicted image (reshape into 2D when plotting)
ûb ∈ {0, 1}n Binary version of the predicted image (reshape into 2D when plotting)
f ∈ Rm Sinogram, also called CT scan measurements (reshape into 2D when plotting)
fδ ∈ Rm Noisy sinogram (reshape into 2D when plotting)
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1 Introduction

Computed tomography (CT) is a technique that generates images of the internal structure
of the object being scanned. Due to its non-invasive nature, tomographic imaging has a
wide range of applications, such as medical imaging at hospitals, luggage security screening
at airports, and flaw detection in industries. In a typical CT scan, an object is placed in
between an X-ray source and an array of detectors. The X-ray source and the detector array
rotate around a fixed axis of the object, and detectors measure the attenuation of X-rays as
they pass through the object from different angles. Parallel-beam and fan-beam are the two
most prevalent types of beam geometry emitted by the X-ray source. Figure 1.1 illustrates
the two geometries.

Figure 1.1: Illustration of beam geometries. Left: parallel-beam geometry. Right: fan-beam geometry
with flat detector.

Following the acquisition of the CT measurements, a tomographic image is generated utilising
certain reconstruction algorithm. Mathematically, the collection of the CT measurements can
be described by Radon transform. Johann Radon originally attempted to reconstruct a real-
valued function of two variables from its line integrals over all angles in [0, 360◦] (Radon,
1986). It is widely acknowledged that his findings laid the groundwork for CT.

In this project, we focus on the reconstruction of discrete binary images. Binary images
consist of pixels with two possible values: 0 for black and 1 for white. Binary CT image
reconstruction is useful when the primary goal is to separate two objects in an image. For
example, in (Meng, Wang, & Xing, 2010), a method for detecting metal objects in CT images
is developed by reconstructing images with pixels where the pixels representing metal have
value 1 and the remaining pixels have value 0.

If we view obtaining the CT measurements as a forward problem, then recovering the un-
derlying ground truth image from the measured data is its inverse problem. As a conse-
quence of limited data and experiment deficiencies, these inverse problems are often ill-posed
(Antil, Di, & Khatri, 2020). Various reconstruction approaches were developed over the years.
They can be classified into three categories: analytical, algebraic and variational approaches.
The analytical approach includes filtered back projection (FBP) (Ramachandran & Lakshmi-
narayanan, 1971). FBP is fast but it needs sufficient data and does not tolerate much noise
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in the CT measurements. The algebraic approaches, e.g. simultaneous iterative reconstruc-
tion technique (SIRT) (Andersen & Kak, 1984), involve discretising the Radon transform and
solve the resulting system iteratively. Such algebraic approaches outperform the analytical
approach when dealing with limited data. However, in some circumstances, we would like
to encode prior information on expected image structures. For instance, one important prior
knowledge in our project is the images being reconstructed consisting 2 pixel values. There-
fore, in this project we focus on CT image reconstruction with the variational approach, as
it employs regularisation to reconstruct the ground truth image, allowing us to incorporate
such prior knowledge.

One popular choice of regularisation terms is the total variation (TV) regularisation(Chambolle
& Lions, 1997). The total variation has been extensively studied (Candès, Romberg, & Tao,
2006; Candes, Romberg, & Tao, 2006) and shows good performance on restoring images
corrupted by Gaussian noise (Rudin, Osher, & Fatemi, 1992). However, the usage of this
regulariser is restricted as it cannot be differentiated. In recent years, Ginzburg-Landau (GL)
functional has been considered as an alternative to the TV functional in the image process-
ing literature, since it is differentiable and it Γ-converges to the total variation functional
(Modica, 1987). Furthermore, by viewing an image as a graph where each node represents
a pixel, the GL functional has been extended to a graphical framework (Bertozzi & Flenner,
2012). It is proved that similar Γ-convergence result holds for the graph GL functional (van
Gennip & Bertozzi, 2012). The graph GL functional consists of a graph Laplacian term and
a double-well potential term, with two wells located at 0 and 1. This makes the graph GL
particularly suitable for our task of reconstructing binary images, as the double-well poten-
tial pushes the pixel values to either 0 or 1. Moreover, since the graph Laplacian matrix in
graph GL functional depends on how the graph is defined, it allows for additional modelling
flexibility.

It is worth mentioning that the graph Laplacian term in the graph GL functional can be
utilised as regularisation on its own. Despite the fact that the graph Laplacian regulariser
is a relatively new prior, many empirical results demonstrate that it is effective in image
denoising (Pang & Cheung, 2017). It can be shown that minimising the graph Laplacian
regulariser results in a smooth graph (Shuman, Narang, Frossard, Ortega, & Vandergheynst,
2013). Additionally, it is proved analytically that the graph Laplacian regulariser converges to
the anisotropic Dirichlet energy (Pang & Cheung, 2017). The graph Laplacian regularisation
offers us an alternative way of interpreting the graph GL regularisation. Consider we want
to recover binary images from CT measurements with the graph Laplacian regulariser. In
contrast to adding constraints on the pixel values such that they have to be binary, a double-
well potential term can be added to the objective function, forcing the pixels values to be in
the two minima of the double-well potential. These two terms, the graph Laplacian regulariser
and the double-well potential, form the graph GL functional.

In this project, we investigate the usage of the graph GL functional as a regulariser. As the
graph GL depends on the choice of the graph Laplacian matrices, we compare the performance
of the proposed model when using various graph Laplacian matrices. This includes the 4-
regular graph Laplacian and a graph Laplacian learned from correlated image data, i.e. we
employ an algorithm to decide how the graph should be defined based on the pixel values in
the data. In this project, such algorithm is chosen to be GL-3SR (Humbert, Le Bars, Oudre,
Kalogeratos, & Vayatis, 2021), where the learned graph Laplacian matrix is sparse. Other
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related graph Laplacian learning methods, which are mostly developed in the graph signal
processing literature, include GL-SigRep (Dong, Thanou, Frossard, & Vandergheynst, 2016)
and DeepGLR (Zeng, Pang, Sun, & Cheung, 2019).

In this project, we begin with considering a simplified model of CT image reconstruction,
where we use the graph GL regularisation to solve image denoising problems. We first find
a suitable minimisation method to solve such optimisation model, then investigate the model
performance with different graph Laplacian matrices on image denoising with two datasets
containing handwritten digits images. Then, we return to the CT image reconstruction prob-
lem, where we compare our proposed model, the graph GL regularisation, with various recon-
struction approaches such as SIRT and TV regularisation. The experiment is carried out in
various number of projections and noise levels with simulated CT measurements for images
of the handwritten number 0. Furthermore, in order to test our model in real world, we made
our own CT scan of a playdough number 0.

The thesis is structured as follows. Section 2 introduces the relevant theories that underpin
our model. The topics covered include the mathematics of CT, the proposed CT image
reconstruction model, i.e. variational approach with graph GL functional as regularisation,
the minimisation methods used to solve the model, and graph Laplacian learning methods.
Section 3 and Section 4 show the results and discussion of the experiments on image denoising
and CT image reconstruction with graph GL regulariser. It is then followed by the conclusions
and possible future work in Section 5.

The experiments were performed a computer running the operating systemMicrosoft Windows
10, with processor 11th Gen Intel(R) Core(TM) i5-11300H @ 3.10GHz and installed RAM
16.0GB. The code is written in Python and can be found on Github https://github.com/

jhwuuu/Image-Reconstruction-with-Graph-GL-Functional.
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2 Methodology

In this section we discuss the theory behind our model. Section 2.1 introduces the mathemat-
ical theory underlying computed tomography. This section is based on (Hansen, Jørgensen, &
Lionheart, 2021) and is inspired by (Tatiana A. Bubba, 2019). Section 2.2 discusses CT image
reconstruction via variational approach, where the image is recovered by solving a minimisa-
tion problem with an objective function consisting of a data-fidelity term and a regularisation
term. The algorithms employed to solve the minimisation problem are also described. Section
2.4 presents the regulariser used in this thesis, the so called graph Ginzburg-Landau func-
tional. Finally, Section 2.6 offers an overview of the experiments carried out in this thesis,
and the assessments used to evaluate the model performance.

2.1 Mathematics of Computed Tomography (CT)

Computed tomography is a non-destructive imaging technique commonly used in healthcare
and industries. It measures the intensity loss of X-ray beams as they pass through the object
being scanned, then a computational algorithm is used to reconstruct the image of the object
based on the X-ray measurements. For simplicity, we introduce the idea of CT using the
parallel-beam geometry. It is important to note that in practice, other beam geometries are
more commonly used.

2.1.1 X-ray and Lambert-Beer Law

First, we provide the formulation for the intensity decay of a single X-ray beam after passing
through an object. This is described by the Lambert-Beer law.

Definition 2.1. (Lambert-Beer law) Consider an X-ray detection setup illustrated in Figure
2.1. Denote I0 the initial intensity of the X-ray beam ℓ, and let I1 be the beam intensity after
traversing an object. Let µ(x) be the X-ray attenuation of the object at the point x on ℓ.
The intensity I1 is of the form

I1 = I0 exp

(
−
∫
ℓ
µ(x)dx

)
. (2.1)

Figure 2.1: Illustration of an X-ray beam intensity detection after passing through an object.

Rearranging (2.1) into line-integral form, we obtain

b = − log
I1
I0

=

∫
ℓ
µ(x)dx.
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The quantity b is called the absorption or projection.

2.1.2 The Radon Transform

Having described the projection for a single X-ray beam, we now present how CT combines
the projections from different angles to reconstruct the object. This is achieved with Radon
transformation.

In the two-dimensional setting, the Radon transform is the integral transform that maps a
function defined in R2 to a function defined on the space of lines in R2.

First, we show how to characterise the lines in the (x1, x2) Cartesian coordinate system. Given
an angle φ, we define the two orthogonal vectors

φ =

(
cosφ
sinφ

)
, φ⊥ =

(
− sinφ
cosφ

)
.

Then, the line that is orthogonal to θ and is located distance s away from the origin, denoted
by Lφ,s, can be expressed as

Lφ,s = {x ∈ R2 | x ·φ = s}, x =

(
x1
x2

)
,

where x · θ = x1 cosφ+ x2 sinφ. Line Lφ,s is depicted in Figure 2.2 (left).

Figure 2.2: Left: Illustration of a line Lφ,s in the (x1, x2) coordinate. Right: The projection g(φ, s) of
an object using parallel X-ray beams at the angle φ described by u(x1, x2).

Moreover, given a fixed φ, the projection along Lφ,s is of the form

g(φ, s) =

∫
Lφ,s

u(x1, x2)dx, s ∈ R.

Figure 2.2 (right) demonstrates an example of the projection g(φ, s) of the object u(x1, x2)
at angle φ, with s restricted to some interval on R.
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Then, the Radon transform of u is defined as the projections at all angles, i.e.

R[u](φ, s) = g(φ, s) =

∫
Lφ,s

u(x1, x2)dx, (φ, s) ∈ [0, 360◦)× R.

This collection of the projections, i.e. the output of the Radon transform g(φ, s) = R[u](φ, s)
for all angles φ, is called the sinogram. Figure 2.3 illustrates a simple image and its sinogram.
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Figure 2.3: Left: A 64× 64 pixel image with two blocks having pixel value 1. Other pixels are of value
0. Right: The resulting sinogram obtained by taking the Radon transform, projections made at every
1◦.

As mentioned in Section 2.1.1, the Lambert-Beer law can be rearranged into the line-integral
form. Therefore, Radon transform and the Lambert-Beer law can be linked by setting

u(x1, x2) = µ(x1, x2),

g(φ, s) = − log

(
Iφ,s
I0

)
,

which gives

Iφ,s = I0 exp

(
−
∫
Lφ,s

µ(x1, x2)dx

)
. (2.2)

Equation (2.2) allows us to characterise X-rays measurements at the detector at any angle
and position.

2.1.3 The Discrete Model

As we are primarily interested in recovering images from their CT scan data, the objects
being reconstructed will now be referred to as images. We have seen how to express X-ray
measurements of an image from all possible angles in theory. In practice, however, we only
have a finite number of angles and detectors. As a consequence, we discretise the images and
the line integrals, and construct a system of equations.

The images are naturally discretised by pixels. We denote u the discrete image and let ui

be the pixel value of the image at pixel i. There are various ways to discretise the Radon
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transform, e.g. by interpolation. In general, suppose there arem detectors in total, the system
can be written as

fi =
n∑

j=1

kijuj , i = 1, ...,m,

where fi = g(φi, si) is the beam intensity detected by detector i, uj denotes the pixel value
of the image u in the j-th pixel (j = 1, ...n), and kij indicates the contribution of pixel j to
detector i. The matrix form of the resulting system is

Ku = f ,

where K ∈ Rm×n is called the discrete Radon transform, u ∈ Rn is a size
√
n ×

√
n image

as a vector (
√
n ∈ N), and f ∈ Rm are the measurements. Finally, we incorporate the error

sources in the discrete model, i.e.

Ku = f + δ = fδ, (2.3)

where δ follows a Gaussian distribution N (0, σ2I). Here σ is the standard deviation of the
Gaussian distribution, and we call σ the noise level.

2.2 Regularised CT Image Reconstruction

Given the CT scan measurements fδ, CT image reconstruction attempts to rebuild the un-
derlying binary image ū (also called the ground truth). However, equation (2.3) can often
be an ill-posed problem, since the system is either overdetermined or underdetermined when
m ̸= n. Accurate CT image reconstruction is also hindered by the noise in fδ. The accu-
racy of the reconstructed image can be increased by adding a regularisation term to equation
(2.3). Moreover, regularisation enables us to incorporate prior knowledge on expected image
structures.

Consider the inverse problem of recovering an image u ∈ {0, 1}n from CT measurements

f δ ≈ Ku,

where u ∈ Rn represents a 2D image in vector form, K ∈ Rm×n is a discrete Radon transform,
and f δ ∈ Rm are the measurements.

To solve the inverse problem, a regularised variational approach is of the form

min
u

F (u) = G(u) +R(u), (2.4)

where

G(u) =
1

2
∥Ku− fδ∥2

is the data fidelity term, and R(u) is the regularisation term.

A common method to solve the minimisation problem (2.4) is proximal gradient descent (Beck,
2017, p. 129). First, we introduce the concept of subgradient.

Definition 2.2. (subgradient) Consider the real vector space Rn. Let R : Rn → (−∞,∞) be
a proper function and let u ∈ dom(R). A vector w ∈ Rn is called a subgradient of R at u if

R(v) ≥ R(u) + ⟨w,v − u⟩, ∀v ∈ Rn.

7



The set of all subgradients of R at u is called the subdifferential of R at u and is denoted by
∂R(u).

Definition 2.3. (stationary point) Let G : Rn → (−∞,∞) be a proper function and let
R : Rn → (−∞,∞) be a proper convex function such that dom(R) ⊆ int(dom(G)). Consider
the problem

min
u∈Rn

F (u) = G(u) +R(u). (2.5)

A point u∗ in which G is differentiable is called a stationary point of (2.5) if

−∇G(u∗) ∈ ∂R(u∗).

u∗ is also called the stationary point of the function F .

The proximal gradient method utilises this relaxation of the concept of stationary point.

Definition 2.4. (proximal mapping) Given a function R : Rn → (−∞,∞), the proximal
mapping of R is the operator given by

proxR(x) = argmin
u∈Rn

{
R(u) +

1

2
∥u− x∥2

}
, ∀x ∈ Rn.

Definition 2.5. (proximal gradient method) Consider the minimisation model

min
x∈Rn

F (u) = G(u) +R(u). (2.6)

Assume

i) G : Rn → (−∞,∞] is proper and closed, dom(G) is convex, dom(R) ⊆ int(dom(G))
and ∇G is LG-Lipschitz over int(dom(G)).

ii) R : Rn → (−∞,∞] is proper closed and convex.

The proximal gradient method is given by Algorithm 1. Here α(k) denotes the stepsize at
iteration k.

Algorithm 1: The proximal gradient method

Initialisation: choose u(0) ∈ int(dom(G)).
1 for k = 0, 1, ... do

2 i) pick α(k) > 0;

3 ii) set u(k+1) = proxα(k)R

(
u(k) − α(k)∇G(u(k)

)
.

4 end

To get the idea behind the proximal gradient method, consider a quadratic approximation Ḡ
of G near u,

G(u) +∇G(u)⊺(v − u) +
1

2α
∥v − u∥2,

which can be considered as a second-order Taylor expansion of G at u but replacing ∇2G
by 1

αI. The motivation to get the next iteration u† of u is to minimise the approximation Ḡ
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instead G while keeping R unchanged, i.e.

u† = argmin
v

G(u) +∇G(u)⊺(v − u) +
1

2α
∥v − u∥2 +R(u)

= argmin
v

αG(u) + α∇G(u)⊺(v − u) +
1

2
∥v − u∥2 + αR(u) (multiply by α)

= argmin
v

α2

2
∥∇G(u)∥2 + α∇G(u)⊺(v − u) +

1

2
∥v − u∥2 + αR(u) (± constant)

= argmin
v

1

2
∥(v − u) + α∇G(u)∥2 + αR(u) (complete square)

= argmin
v

1

2
∥v − (u− α∇G(u)) ∥2 + αR(u)

= proxαR (u− α∇G(u)) .

We give the convergence result when the stepsize α(k) is set to be constant.

Definition 2.6. (convergence of the proximal gradient method) Suppose the assumptions in
Definition 2.5 hold. Denote {u(k)}k≥0 the set of iterations obtained by the proximal gradient
method for solving problem (2.6) with a constant stepsize α ∈ (0, 2

LG
). Then

(a) the sequence {(G+ R)(u(k))}k≥0 is non-increasing. Moreover, (G+ R)(u(k+1)) < (G+
R)(u(k)) if and only if x(k is not a stationary point of (2.6);

(b) 1
α (u− proxαR (u− α∇G(u))) → 0 as k → ∞;

(c) all limit points of the sequence {u(k)}k≥0 are stationary points of problem (2.6).

The gradient of G(u) is
∇G(u) = KH(Ku− f), (2.7)

and the update step of the proximal gradient method with constant stepsize is given by

u(k+1) = proxαR

(
u(k) − αKH(Ku(k) − f)

)
. (2.8)

The procedure of solving (2.4) is summarised in Algorithm 2, where we further break down
equation (2.8) to a two-stage update. The range of the stepsize α in Algorithm 2 is decided
as follows. Since ∇G is Lipschitz continuous, we have

∥∇G(u)−∇G(v)∥ ≤ LG∥u− v∥, ∀u,v ∈ Rn. (2.11)

Substituting the gradient of G (2.7) into (2.11), we obtain

∥KHK(u− v)∥ ≤ ∥KHK∥ · ∥u− v∥, ∀u,v ∈ Rn.

Note that (2.10) can be viewed as an image denoising problem with the same regularisation
term as in (2.4). Therefore, we devote Section 3 to study the image denoising problem (2.10),
to gain better understanding of the proximal operator.
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Algorithm 2: The proximal gradient method with constant stepsize for solving equation
(2.4)

Initialisation: choose u(0) ∈ int(dom(G)). Pick α ∈ (0, 2
∥KHK∥) and K ∈ Z+.

1 for k = 0, 1, ...,K do
2 i) Set

v(k) = u(k) − αKH
(
Ku(k) − f

)
. (2.9)

3 ii) Solve

u(k+1) = proxαR(v
(k)) = argmin

u

1

2α
∥u− v(k)∥2 +R(u). (2.10)

4 end

5 return u(K+1)

2.3 Minimisation Methods

Algorithm 2 exhibits the optimisation problem that needs to be solved. We describe the
minimisation techniques employed in this thesis before discussing the regulariser choices. The
primary method used is Newton-CG method. Cubic regularisation is also briefly discussed.
We denote the iterations of the minimisation methods by ·k, in order to distinguish them from
those of the proximal gradient method ·(k).

2.3.1 Newton-CG

This section is based on (Nocedal & Wright, 1999, p. 165). Newton-CG is an algorithm
designed for large-scale unconstrained optimisation problems. One reason that it is suitable
for large-scale problems is because, by using a modified CG method, it can be implemented
without calculating the inverse of Hessian matrix directly.

Suppose we want to solve
min
u∈Rn

F (u),

where F : Rn 7→ R is smooth. Denote ∇F k the gradient of F at uk, and ∇2F k the Hes-
sian matrix at uk. Suppose ∇2F k is positive definite, the Newton-CG iteration is updated
according to

uk+1 = uk + τkpk,

where τk is the step length and pk is the Newton direction, i.e. pk satisfies

∇2F kpk = −∇F k.

The Newton-CG finds the search direction pk using CG method. Define the residual

rk = ∇2F kpk +∇F k.

Let Bk represent ∇2F k. Denote dj the search directions and zj the sequence of iterates that it
generates. Algorithm 3 shows the Newton-CG method for finding a minimiser of the objective
function F .
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Algorithm 3: The Newton-CG method for finding a local minimiser of F .

Initialisation: choose initial point u0 ∈ int(dom(F )).
1 for k = 0, 1, 2, ... do

2 Define tolerance ηk = min(0.5,
√

∥∇F k∥)∥∇F k∥;
3 Set z0 = 0, r0 = ∇F k,d0 = −r0;
4 for j = 0, 1, 2, ... do
5 if (dj)⊺Bkdj ≤ 0 then
6 if j = 0 then
7 return pk = −∇F k;
8 end
9 else

10 return pk = zj ;
11 end

12 end

13 Set τ j = (rj)⊺rj/(dj)⊺Bkdj ;
14 Set zj+1 = zj + τ jdj ;

15 Set rj+1 = rj + τ jBkdj ;

16 if ∥rj+1∥ < ηk then
17 return pk = zj+1;
18 end
19 Set ωj+1 = (rj+1)⊺rj+1/(rj)⊺rj ;
20 Set dj+1 = −rj+1 + ωj+1dj ;

21 end

22 Set uk+1 = uk + τkpk, where τk satisfies the Wolfe, Goldstein, or Armijo

backtracking condition (using τk = 1 if possible);
23 end

24 return u(K+1)

It is important to note that the CG approach is intended to solve positive definite systems.
This is not always the case for the Hessian matrix of the objective function F in (2.4). In
Algorithm 3 the CG method is modified such that the inner iteration is terminated when
a direction of negative curvature is formed. This ensures the pk found by CG method is
a descent direction. With the usage of the tolerance ηk, the CG iterations can end at an
imprecise solution.

Definition 2.7. (convergence of the Newton-CG method) Suppose that F is twice differen-
tiable and ∇2F (u) is continuous in a neighbourhood of a minimiser u∗. Suppose ∇2F (u∗) is
positive definite. Consider the iteration uk+1 = uk + pk with pk satisfying

∥rk∥ ≤ ηk∥∇F k∥, 0 < ηk < 1, ∀k,

where the sequence {ηk} is called the forcing sequence. Assume that ηk < η for some constant
η ∈ [0, 1). Then, if the starting point u0 is sufficiently near u∗, the sequence {uk} converges
to u∗ and satisfies

∥∇2F (u∗)(uk+1 − u∗)∥ ≤ η̂∥∇2F (u∗)(uk − u∗)∥, (2.12)

for some constant η̂ with η < η̂ < 1.

11



Remark 2.1. In Algorithm 3, the choice of the forcing sequence is min(0.5,
√
∥∇F k∥). This

ensures a superlinear convergence rate.

Remark 2.2. The drawback of the Newton-CG is that when ∇2F k is nearly non-invertible,
the performance of the Newton-CG can be poor, with many iterations and little reduction in
the objective function value.

Remark 2.3. We use the Newton-CG option of the optimizer function implemented in Scipy
package (Virtanen et al., 2020). The maximum number of CG iteration is 20 × n. The
algorithm terminates if after max iteration the value (dj)⊺Bkdj > 3 for all iterations.

2.3.2 Cubic Regularisation

Suppose we need to solve
min
u∈Rn

F (u),

where F has a Lipschitz continuous Hessian, i.e.

∥∇2F (u)−∇2F (v)∥ ≤ L∥v − u∥, ∀u,v ∈ Rn. (2.13)

Then the next iteration uk+1 can be selected as a solution of the following auxiliary problem

uk+1 ∈ argmin
v

ξ2,uk(v), (2.14)

where argmin means to identify a global minimiser, and the auxiliary function ξ2,u is of the
form

ξ2,u(v) = F (u) +∇F (u)⊺(v − u) +
1

2
∇2F (u)(v − u)2 +

L

6
∥v − u∥3.

The idea behind equation (2.14) is that the auxiliary function ξ2,u(v) is an upper second-order
approximation of the objective function F , i.e.

F (v) ≤ ξ2,u(v), ∀v ∈ Rn.

This approach is known as the cubic regularisation of Newton’s method(Nesterov & Polyak,
2006).

Let M be a positive parameter. Define

F̄M (u) = min
v

[
F (u) +∇F (u)⊺(v − u) +

1

2
∇2F (u)(v − u)2 +

M

6
∥v − u∥3

]
.

Let TM (u) be such that

TM (u) ∈ argmin
v

[
F (u) +∇F (u)⊺(v − u) +

1

2
∇2F (u)(v − u)2 +

M

6
∥v − u∥3

]
.

Algorithm 4 describes the cubic regularisation of Newton’s method. Due to the complexity,
we refer to the original work (Nesterov & Polyak, 2006) for the convergence result.
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Algorithm 4: The cubic regularisation of Newton’s method.

Initialisation: choose u0 ∈ int(dom(G)). Pick K ∈ Z+.
1 for k = 0, 1, ...,K do
2 i) Find Mk ∈ [L0, 2L], where L0 ∈ [0, L] is a parameter, such that

F (TMk
(uk)) ≤ F̄Mk

(uk).

3 ii) Set

uk+1 = TMk
(uk).

4 end
5 return uK+1

2.4 The Graph Ginzburg-Landau (GL) functional

We investigate the use of the graph Ginzburg-Landau (GL) functional

R′
gl(u) =

1

2

∑
i,j

wij(ui − uj)
2 +

1

ε

∑
i

W (ui), (2.15)

where W (x) = x2(x− 1)2, x ∈ R is a double-well potential, as a regulariser in this thesis. In
order to accomplish this, we interpret images as undirected, no self-loop graphs G = (V, E),
where the vertex set V consists of all image pixels, and E ∈ V × V is the edge set. The pixel
values of the images are viewed as graph signals residing on the graph.

Remark 2.4. The expression of the graph GL functional shows that it is not convex, therefore
does not satisfy the assumption on R in Definition 2.5. This means that we may not have
guarantee on the convergence of proximal gradient method and Newton-CG. There are many
variations on the proximal gradient method for non-convex R such as (Li & Lin, 2015), but
in this thesis we stick to the standard version described by Algorithm 2.

Remark 2.5. The objective function (2.4) with R′
gl, i.e. F = G+R′

gl, satisfies the assumption
(2.13) in cubic regularisation method when we restrict F on a convex domain, e.g. [−3, 3]n.
Therefore, the solution found by cubic regularisation is the global minimum.

2.4.1 Derivation of the Graph GL Functional

The graph Ginzburg-Landau functional is extended from its continuous version

Fε(u) =
1

2

∫
Ω
|∇u(x)|2dx+

1

ε

∫
Ω
W (u(x))dx,

which was commonly used in physics where it models phase separation and in the image
processing (van Gennip, 2019). To see how we derive the graph GL functional, we first
introduce some notations related to graphs and the non-local derivative.

Definition 2.8. (graph Laplacian) Given a graph G = (V, E), the (combinatorial) graph
Laplacian matrix of the graph is defined as

L = D−W,
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where W is the weight matrix of G,

Wij =

{
wij > 0, if (i, j) ∈ E ,
0, if (i, j) /∈ E ,

and D is the diagonal degree matrix,

Dij =

{∑
j Wij , if i = j,

0, if i ̸= j.

As G is undirected, L is symmetric and positive semi-definite. This means that all eigenvalues
of L are non-negative. Also, 0 is always an eigenvalue of L, with corresponding eigenvector
[1, ..., 1]⊺. The two common normalisations of L are the normalised graph Laplacian

Ln = I−D− 1
2WD− 1

2 ,

and the random-walk graph Laplacian

Lr = I−D−1W.

Note that the first term of R′
gl in (2.15) can be written as

1

2

∑
i,j

wij(ui − uj)
2 = u⊺Lu. (2.16)

This means that using the graph Laplacian term u⊺Lu in the regularisation imposes smooth-
ness to the pixel values—as we can see from the expression, since wij are positive, u

⊺Lu would
only be small when ui and uj with (i, j) ∈ E have similar values.

Definition 2.9. (non-local derivative) Consider Ω ∈ Rn. Let u : Ω → R be a function. Define
the non-local derivative

∂u

∂y
(x) =

u(y)− u(x)

d(x, y)
, x, y ∈ Ω, (2.17)

where d satisfies 0 < d(x, y) ≤ ∞, ∀x, y ∈ Ω.

We can now show how the graph GL functional is derived. The derivation is based on
(Merkurjev, Kostic, & Bertozzi, 2013). It is straightforward to see that the term

∫
ΩW (u(x))dx

can be discretised as
∑

iW (ui). Define the weight function as

w(x, y) =
1

d(x, y)2
,

then the non-local derivative (2.17) can be written as

∂u

∂y
(x) =

√
w(x, y) (u(y)− u(x)) , (2.18)

and the non-local gradient ∇wu(x) : Ω → Ω× Ω is of the form

(∇wu)(x, y) = (u(y)− u(x))
√
w(x, y), x, y ∈ Ω. (2.19)
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Taking the square on both side of (2.19) and taking the integral, we obtain∫
Ω
|∇u|2dx =

∫
Ω×Ω

(u(y)− u(x))2w(x, y)dxdy. (2.20)

Hence, we have derived the discretised GL functional, i.e.

R′
gl(u) =

1

2

∑
i,j

wij(ui − uj)
2 +

1

ε

∑
i

W (ui).

Moreover, R′
gl can be rewritten in a more compact form by using equation (2.16). For conve-

nience, we rescale equation (2.15) and redefine ε and will use

Rgl(u) =
1

2
u⊺Lu+

1

ε

∑
i

W (ui),

as the definition of the graph GL functional in the rest of the thesis.

2.4.2 Choices of Graph Laplacian Matrix

Using the graph GL functional as regularisation has the benefit of allowing for more modelling
flexibility as the graph Laplacian matrix can be customised by the user. Naturally, the choice
of the graph Laplacian matrix L, i.e. how we decide the connectivity of the graph and the
edge weights, will influence the performance of the graph GL functional Rgl as a regulariser.
Here we introduce two graph Laplacian matrices that is used in our experiments.

4-Regular Graph Laplacian

In graph theory, a 4-regular graph means that all nodes in the graph have a degree of 4. Here
we slightly abuse the notation, and view a graph that forms a square mesh as a 4-regular
graph. This means that the nodes on the border of the mesh only have degree 2 or 3.

Figure 2.4: Illustration of a 4-regular graph resides on a 4× 4 pixel image.

The corresponding 4-regular graph Laplacian matrix is obtained by view the images as 4-
regular graphs. Figure 2.4 demonstrates how the graph is defined in this case using a 4 × 4
image. We set the weights to 1 for all edges. This graph Laplacian is denoted by L4.
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Remark 2.6. Research has shown that a normalised graph Laplacian matrix exhibits a
better experiment result than the unnormalised ones (Bertozzi & Flenner, 2012). However,
in this thesis we use the unnormalised version for the 4-regular graph Laplacian L4, as in
our experiment the unnormalised L4 is numerically more stable when solving the model using
Newton-CG.

Learned Graph Laplacian

Having seen how we can define the graph Laplacian from a fixed graph structure, we introduce
a different way, where we use an algorithm to learn the graph structure and edge weights from
a set of correlated images. As discussed in Introduction, such algorithms can be found in many
graph signal processing literature. We employ the GL-3SR method (Humbert et al., 2021),
which is a model that learns the graph Laplacian with a sparse graph structure and smooth
graph signals. The method was initially introduced in graphs signal literature, and had not
been applied to data consists of images. We achieve this by treating image pixel values as
graph signals.

The model learns the graph Laplacian L by learning the eigendecomposition of L, i.e.

L = XΛX⊺,

where each column of X ∈ Rn×n is an eigenvector of L, and Λ ∈ Rn×n is a diagonal matrix
where the diagonal elements are the eigenvalues of L. Denote H the spectral representation
of the images Y, i.e.

H = X⊺Y,

where Y ∈ Rn×N and N is the number of images we use to learn L. Given the images data
Y, the model fit a graph Laplacian matrix by solving

min
H,X,Λ

∥Y −XH∥2F + γ∥Λ1/2H∥2F + β∥H∥S , (2.21)

s.t. (a) X⊺X = In,x1 =
1√
n
1n,

(b) (XΛX⊺)k,ℓ ≤ 0, k ̸= ℓ,

(c) Λ = diag(0, λ2, ..., λn) ⪰ 0,

(d) tr(Λ) = n ∈ R+
∗ ,

where ∥ · ∥F is the Frobenius norm, and ∥ · ∥S should be a norm that induces sparsity. The
paper proposed to use either ℓ2,1 or ℓ2,0 for S.

There are three terms in the objective function (2.21). The first is a data-fidelity term, where
the spectral representation of the images Y is learned. The second term is a frequently used
smoothness regularisation in graph learning (Humbert et al., 2021; Kalofolias, 2016). The
third term is a sparsity regularisation that results in a solution H that is row-sparse. The
second and third term indirectly forces smoothness and sparsity on the learned L, respectively.

The restrictions (a)-(d) are the conditions that a graph Laplacian matrix’s eigenvectors and
eigenvalues should satisfy. Constraints (a) requires that the eigenvectors are of unit length
and the eigenvector corresponding to eigenvalue 0 is 1√

n
[1, ..., 1]⊺. Constraints (b) demands

that the non-diagonal elements in the learned L are negative. Constraints (c) requires that the
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learned L is positive semi-definite, and 0 is an eigenvalue of L. Constraints (d) is proposed in
(Dong et al., 2016) to avoid the trivial solution where the predicted eigenvalues are all zeros.
By putting constraints on X and Λ, the model ensures that the learned matrix L is indeed a
graph Laplacian matrix.

There are two hyperparameters, γ and β in the model. However, in the original paper it is
stated that the choice of γ does not influence on the accuracy. Therefore, we choose a fixed
value γ = 0.001 and leave it out of the hyperparameter tuning process.

We denote the learned graph Laplacian matrix Lp. Note that Lp obtained using the GL-3SR
is normalised.

2.5 Other CT Image Reconstruction Approaches

We present a brief summary of the two CT image reconstruction methods used in our thesis,
TV regularisation and SIRT. We will compare our GL regularisation model to these two
methods on binary CT image reconstruction in Section 4. Details of the two methods can be
found in the references for interested readers.

Total Variation (TV) Regularisation

The reconstruction model with anisotropic TV regularisation (Condat, 2017) is of the form

min
u

1

2
∥Ku− fδ∥2 + 1

µ
Rtv(u), (2.22)

where

Rtv(u) =
1

2

∑
i,j∈V

wij |ui − uj |.

The model can be solved by the Split Bregman method (Goldstein & Osher, 2009).

SIRT

SIRT is an algebraic iterative method (Andersen & Kak, 1984), where the iteration is of the
form

u(k+1) = u(k) +M1K
HM2

(
fδ −Ku(k)

)
,

where M1 ∈ Rn×n and M2 ∈ Rm×m are the diagonal matrices whose diagonal elements are
the inverse of sums of the columns and rows of the discrete Radon transform K, respectively.

2.6 Experiments Overview

Now that we have established our model for CT image reconstruction, i.e.

min
u

1

2
∥Ku− f∥2 + 1

2
u⊺Lu+

1

ε

∑
i

W (ui), (2.23)

this section seeks to provide a summary of the experiments performed in the thesis.

The experiments are divided into two categories, with each category containing two experi-
ments. As we have seen in Algorithm 2, an image denoising problem needs to be solved in
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each iteration. Therefore, the first part of the experiments is related to image denoising using
graph GL regularisation. We consider the model

min
u

1

2α
∥u− v∥2 + 1

2
u⊺Lu+

1

ε

∑
i

W (ui), (2.24)

where v is the noisy image. The parameter α is the stepsize from Algorithm 2, but here
we interpret it as a penalty parameter. We begin by justifying the use of Newton-CG to
solve (2.24), where we can also learn about the graph GL functional’s performance on image
denoising. This experiment is run with simulated 64×64 pixel blob data. Then, we experiment
with the influence of graph Laplacian matrix in (2.24), comparing the model performance in
different noise levels with two graph Laplacian L4 and Lp. This experiment is carried out
with two datasets on handwritten digits, namely MNIST and USPS.

For the second part of the experiments, we return to the binary CT image reconstruction
model (2.23). We investigate the performance of our model with L4 and Lp in various noise
level and projection downsampling settings, using MNIST dataset. We also compare the
reconstruction results from our model to those of TV regularisation and SIRT. Finally, we
scan a number 0 made of playdough. This is a 3D object so we only take the central slice from
the scan. The central slice can be seen as a binary image (playdough and air). We then apply
our model with L4 to reconstruct the binary image, using the measurements of the central
slice as the input data. We also compare the results from various projection downsampling
settings.

Data Preparation

We require binary images to serve as the ground truth, hence we need to convert the images
from MNIST and USPS datasets to binary images. Let u be a

√
n×

√
n pixel colourful image

where its pixels ui ∈ {0, ...P}. The binary image ub is obtained by setting a threshold t and
let

ubi = 1{ui>t}, i = 1, ..., n, t =
P

2
. (2.25)

For image denoising problem (2.24), given the ground truth image ū, the noisy image v is
obtained by

v = ū+ δ, (2.26)

where δ ∼ N (0, σ2I).

For binary CT image reconstruction, given the ground truth image ū, the noisy measurements
fδ are obtained by

fδ = f + δ, (2.27)

where f = Kū are the simulated measurements.

Model Assessments

We use two error metrics to evaluate the performance of the model: Dice score and root-mean-
square error (RMSE). Denote û the optimal solution returned by either (2.24) and (2.23). We
first convert û into a binary image ûb according to (2.25), where we set t = 0.5. The Dice
score is then given by

Dice(ûb, ū) =
2|ûb ∩ ū|
|ûb|+ |ū|

. (2.28)
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The RMSE is given by

RMSE(û, ū) =

√√√√ 1

n

n∑
i=1

(ûi − ūi)2. (2.29)
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3 Results and Discussion on Image Denoising

In this section, we focus on the image denoising model (2.24), which also appears in solving
the CT reconstruction problem in Algorithm 2. In section 3.1, we start by examining the
performance of Newton-CG in solving equation (2.24). In particular, we look into the best
option for the initial guess for Newton-CG. We compare Newton-CG with cubic regularisation
to determine whether the Newton-CG solution is the global minimum of equation (2.24).
Moreover, we provide the denoising results with different noise levels. In section 3.2, we
investigate the influence of replacing the graph Laplacian matrix in (2.24). We test two
distinct graph Laplacian matrices on two datasets, both featuring handwritten digits.

3.1 Blob Images

In this section, we simulate 64× 64 pixel blob images to investigate the use of Newton-CG to
solve the denoising model (2.24). Two initialisation vectors for Newton-CG are assessed. As
mentioned in Section 2, the objective function in (2.24) is not convex. Therefore, we may not
have guarantee on the convergence of Newton-CG method. To establish whether the Newton-
CG method’s result is the global minimum, we also apply cubic regularisation to solve (2.24)
and compare the performance of the two methods.

3.1.1 Initialisation Vectors

An initial guess is required as an input for the Newton-CG method. In this section we
test what would be a good choice for our model. The two initialisation vectors considered
in this project are the noisy image v itself and the zero vector 0. We use the 4-regular
graph Laplacian matrix in equation (2.10), and set the maximum number of iterations for the
Newton-CG method to 200. The experiment carried out is as follows:

1. Generate 40 blob images of size 64 × 64 pixels as ground truth {ūi}40i=1 and add Gaus-
sian noise according to (2.26), with σ = 0.5, to them to obtain the noisy images {vi}40i=1.
Randomly split the data {(vi, ūi)}40i=1 into two sets of equal size {(vi, ūi)train}20i=1 and
{(vi, ūi)test}20i=1. Figure 3.1 illustrates an example of a 64 × 64 pixel blob image ū and
its corresponding v when σ = 0.5.

0

1

(a) Ground truth ū

-1.0

0.0

1.0

2.0

(b) Corresponding noisy image v with σ = 0.5

Figure 3.1: A 64× 64 pixel blob image ū and its noisy version v with noise level σ = 0.5.

2. Perform hyperparameter tuning for (α, ε) using the training set. This process is done for
two initial guesses of Newton-CG, the noisy image itself vi,train and the zero vector 0,
respectively. Denote ûv

i as the solution obtained by using vi,train as the initial guess, and
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û0
i as the solution by using 0 as the initial guess. The solutions are binarised according to

(2.25), where we set t = 0.5. The best combination is selected based on the average Dice
score between the denoised image ûv

i (and û0
i ) and the ground truth ūi, i.e.

1

20

20∑
i=1

Dice((ûv
i )

b, ūi), and
1

20

20∑
i=1

Dice((û0
i )

b, ūi).

If there are multiple combinations of (α, ε) returning the same Dice score, we further com-
pare which pair of combinations has the lowest average RMSE. The parameters are selected
from α ∈ {0.2, 0.4, ..., 2} and ε ∈ {0.02, 0.04, ..., 0.2}. Since we only consider equation (2.24)
as a model on its own, there is no constraint on the value of α.

3. Test the model with the selected (α̂, ε̂) using the test set {(vi, ūi)test}20i=1 for both initial
guesses. The Dice score and RMSE between the denoised image ûv

i (or û0
i ) and the ground

truth ūi are measured. Additionally, we record for each vi whether the Newton-CG is
converged when solving with two initial guesses.

Both initial guesses selected (α̂, ε̂) = (2, 0.2). Table 3.1 demonstrates the test result for
noise level σ = 0.5. Overall, using the noisy image v produces noticeably better results out
of the two initial guesses. The average Dice score and average RMSE of 0 are worse than
those of v. Additionally, only 10 out of 20 solutions are converged when using 0, indicating
unstable performance. It is worth noting that, after discarding the unconverged results, the
performance of 0 is comparable to using the noisy image v as the initial guess. However, 0
requires more iterations to run, whether or not the unconverged cases are included.

Table 3.1: Performance comparison for two initial guesses, tested on N2 = 20 blob images with noise
level σ = 0.5. The parameters (α̂, ε̂) = (2, 0.2) are used for model (2.24).

Initial guess
Measurement Zero vector 0 Noisy image v

Number of successful convergence 10 19

Average number of iterations 71 40

Average number of iterations
(excl. unconverged)

94± 26 41± 11

Dice socre 0.9655± 0.0583 0.9919± 0.0019

Dice score
(excl. unconv.)

0.9916± 0.0033 0.9920± 0.0019

RMSE 0.1333± 0.0862 0.0816± 0.0083

RMSE
(excl. unconverged)

0.0873± 0.0119 0.0812± 0.0084

Figure 3.2 illustrates the error metrics, RMSE and Dice score, for the test data using the two
initial guesses. It is straightforward to see that the unconverged case when using v as initial
guess still yields a high Dice score and a low RMSE, which is not necessarily the case for 0.

Figure 3.3 shows the denoising of the noisy image v shown in Figure 3.1 with model (2.24)
with (α̂, ε̂) = (2, 0.2), using v itself as the initial guess. Figure 3.3a and 3.3b show the denoised
image û and its binary version ûb. Figure 3.3c demonstrates the difference between ûb and
the ground truth ū. It is clear in this figure that the error is from the edge of the blob. This
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Figure 3.2: Error metrics with two initial guesses 0 and v on the N2 = 20 test data. The parameters
(α̂, ε̂) = (2, 0.2) are used for model (2.24).

can be explained by the graph Laplacian term attempting to avoid sharp transitions, i.e. from
0 to 1, in the neighbour pixel values. As a result, rather than having values of 0 or 1, the
pixels on the edge of the blob would have values closer to 0.5 in the solution û. Therefore,
it is difficult for the model to correctly predict the values of pixels on the edge of the blob.
Figure 3.4 demonstrates the corresponding log objective value and log norm of the gradient
of the objective function in each iteration while using Newton-CG to denoise the noisy image
v in Figure 3.1. Newton-CG converged successfully in this example, and the objective values
decrease monotonically. The log norm of the gradient decreases to −10, meaning the solution
found is indeed a stationary point of the objective function.

0.0

0.2
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(c) ûb − ū

Figure 3.3: The denoising result of v in Figure 3.1, obtained using model (2.24) with (α̂, ε̂) = (2, 0.2).
The initial guess v is used for Newton-CG.

3.1.2 Methods Comparison

In order to check if Newton-CG produces the global minimum, we also employ cubic regu-
larisation1 to solve model (2.24) and compare the solutions between the two minimisation
methods.

1The function is implemented by https://github.com/cjones6/cubic reg
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Figure 3.4: Left: log objective value against iteration. Right: log norm of the objective function
gradient against iteration. Values are obtained from the denoising result of v in Figure 3.1, solved by
model (2.24) with (α̂, ε̂) = (2, 0.2). The initial guess v is used for Newton-CG.

The data used are a number of 64 × 64 pixel blob images and their σ = 0.5 noisy version.
The model’s hyperparameters are set to be (α̂, ε̂) = (2, 0.2), which were determined in the
previous section. We use v as initial guess for both Newton-CG and cubic regularisation and
analyse the results in the converged and unconverged cases.

When Newton-CG successfully converges, we discover that Newton-CG and cubic regulari-
sation return almost identical solutions. In this case we conclude that Newton-CG finds the
global minimum of the objective function (2.24).

On the other hand, we collect 10 image pairs (ū,v) where Newton-CG failed to converge.
Table 3.2 lists several statistics we summarised from the solutions given by Newton-CG ûN

and cubic regularisation ûC in this case. All 10 solutions returned by cubic regularisation
ûC are successfully converged. We can see that in the unconverged situation, the solutions
returned by Newton-CG are not stationary points, as the norm of the gradient at ûN are
not closed to 0. However, the Dice score of ûN are considerably close to those of the cubic
regularisation solutions ûC .

Table 3.2: Performance comparison of Newton-CG and cubic regularisation when Newton-CG did not
converge. Statistics are obtained based on 10 unconverged solutions.

Statistic Value

Average norm of the gradient at ûN 15.4038
Average difference in objective value 71.3516
Average difference in RMSE 0.0368
Average difference in Dice score 0.0146

Figure 3.5 exhibit three examples of the objective values in log scale against iterations when
solving (2.24) using both methods. Figure 3.5a shows a case where Newton-CG converges.
Figure 3.5b and 3.5c demonstrate two typical situations where Newton-CG did not converge.
In Figure 3.5b Newton-CG stopped after 5 iterations due to non-positive definite Hessian
matrix. This leads to large value of the norm of the gradient at ûN , and large difference in
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objective values between ûN and ûC . In Figure 3.5c Newton-CG runs more iterations before
the Hessian matrix becoming non-positive definite. Despite the solution ûN is not a stationary
point, the norm of the gradient at ûN is close to 0. The difference in objective values between
ûN and ûC is small in this situation.
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(a) Newton-CG iterations converge. The solutions found by Newton-CG
and cubic regularisation are nearly identical.
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(b) Newton-CG iterations did not converge. The al-
gorithm stopped after 5 iterations.
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(c) Newton-CG iterations did not converge. The al-
gorithm stopped after 11 iterations.

Figure 3.5: Plots of the log objective values of the two methods against iterations. In (a) the solution
found by Newton-CG nearly coincides with that of the cubic regularisation. (b) and (c) are two cases
where Newton-CG did not converge, and the solutions were not stationary points.

In the unconverged case, we conclude that the solution Newton-CG returns is not the global
minimum. However, it can still be useful as we have seen that the Dice score of these solutions
are close to that of the global minimum solutions ûC .

The time needed for both methods to find a solution is listed in Table 3.3. The long hours
needed for solving with 128× 128 pixel images means that cubic regularisation does not scale
well with high dimensional data.

To summarise, Newton-CG is fast and therefore offers more freedom for us in selecting the
image size. Moreover, the solution of Newton-CG provides high Dice score even in the un-
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Table 3.3: Time needed for both methods to return a solution for various image sizes.

Image size
Method 32× 32 64× 64 128× 128

Cubic regularisation ∼ 20s ∼ 7mins ∼ 5 hrs
Newton-CG (converged) < 0.1s < 0.1s < 1s
Newton-CG (unconverged) ∼ 2s ∼ 15s ∼ 6min

converged case. Therefore, for subsequent experiments we stick to Newton-CG with the noisy
image itself as the initial guess.

3.1.3 Denoising with Various Noise Levels

In this section, we evaluate the performance of the proposed model (2.24) when denoising
blob images with various noise levels. We apply the model to blob images with three noise
level σ ∈ {0.15, 0.5, 0.7}. For each noise level, the experiment is carried out based on the
approach laid out in Section 3.1.1, with the only difference being that we only use the noisy
image v as the initial guess.

Table 3.4: Selected hyperparameters (α̂, ε̂) for σ ∈ {0.15, 0.5, 0.7}.

Noise level σ (α̂, ε̂)

0.15 (1,0.1)
0.5 (2,0.2)
0.7 (1.6, 0.2)

0.15 0.5 0.7
Noise level σ

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

RM
SE

0.15 0.5 0.7
Noise level σ

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Di
ce
 S
co
re

Convergence
False
True

Figure 3.6: Left: scatter plot of RMSE and Dice score of the denoised images with three noise levels
σ ∈ {0.15, 0.5, 0.7}, obtained using Newton-CG with v as the initial guess. There are 20 test images
used for each noise level.

Table 3.4 shows the hyperparameter tuning results for three noise levels. Figure 3.6 displays
the image denoising results for three noise levels using the selected hyperparameter values
in Table 3.4. We see that the Dice score decreases as σ increases, and the RMSE grows as
σ increases. This is to be expected, given that the more corrupted an image is, the more
challenging it is to recover all of the pixel values. We also notice that for large noise level,
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there is higher variance in Dice scores and RMSEs. Moreover, the number of unconverged
solutions grows as σ increases. When σ = 0.15, all 20 solutions are converged, whereas there
are two unconverged cases when σ = 0.7. This indicates that it is difficult for Newton-CG to
converge when σ is large.

3.2 Digit Images

Having analysed the performance of the minimisation method Newton-CG and the model
behaviour with various noisy levels, we now look into how the graph Laplacian matrix would
affect model (2.24). We study on the benefit of using two different graph Laplacian matrices.
In particular, we try the graph Laplacian matrix where the connectivity of the nodes and the
edge weights in the graph are not predefined by us, but learned from datasets using GL-3SR.

The denoising model (2.24) is applied to two digit image datasets: MNIST and USPS. The
two digit image datasets were chosen because in each dataset the images of the same digit
have the same label but these images are not identical. This makes them a good choice
for learning the underlying graph structure. Their small image sizes are also advantageous.
This is because the GL-3SR algorithm takes more time to train for a large number of nodes.
Moreover, high dimensionality means that the Newton-CG method is less likely to converge.

3.2.1 MNIST Experiment Description

There are various versions for MNIST with different image sizes. In this section we use the
version with 8× 8 pixel images, where each pixel has an integer value in {0, ..., 16}.

The following steps are taken in this experiment.

0. Select image samples of a digit:
MNIST dataset contains 178 images of the digit 0 in total. We randomly sample N = 170
images of the digit 0 from the dataset.

1. Obtain the ground truth images:
We convert the images of the digit 0 into binary images ūi, i ∈ {0, .., N} according to
equation (2.25), where the threshold t is chosen to be 8. Xb = {ūi}N=170

i=1 will be used as
the ground truth. Figure 3.7 displays four images of digit 0 in the MNIST dataset and the
corresponding binary counterpart.

2. Obtain the noisy images:
We obtain the noisy image set X = {vi}N=170

i=1 by adding Gaussian noise to the ground truth
according to equation (2.26). The noisy images are generated with σ ∈ {0.15, 0.25, 0.3, 0.35}.

3. Tune the hyperparameters:
The noisy images and their ground truth (X,Xb) are split into a training set of sizeN1 = 150
and a test set of size N2 = 20. The hyperparameters that returns the best mean dice score
are selected. If there are multiple hyperparameter combinations that yield the same Dice
score, we then seek which combination has the lowest RMSE. The hyperparameter tuning
process for the denoising model (2.24) with different Laplacian matrices are conducted as
follows.

a) Learned graph Laplacian Lp:
There are three hyperparameters to be tuned: β from GL-3SR algorithm (2.21), α and ε in
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Figure 3.7: Top: four examples of digit 0 images in the MNIST dataset. Bottom: their corresponding
binary images.

the objective function of (2.24). 5-fold cross validation is used to tune the hyperparameters
due to the relatively small data size. We split the training data into 5 folds of the same
size. Each time we use three folds of Xb to learn the graph Laplacian matrix Lp, and apply
the denoising model (2.24) to the remaining two folds of X with various hyperparameter
values. After the best combination of the hyperparameters is selected by cross validation,
we learn the graph Laplacian Lp on the whole N1 = 150 of Xb and test the performance
of the selected hyperparameters on the test data. Note that Lp is learned using only the
ground truth data, not the noisy images. The process is illustrated in Figure 3.8. The
hyperparameters are selected in the ranges α ∈ {0.02, 0.04, 0.06, 0.08} ∪ {0.1, 0.2, ..., 1.9, 2},
ε ∈ {0.01, ..., 0.09} ∪ {0.1, 0.2, ..., 1}, and β ∈ {1, ..., 15}.

b) 4-regular graph Laplacian L4:
There are two hyperparameters to be tuned: α and ε in the objective function (2.24). We
tune the hyperparameters on the N1 = 150 training data and then test them on the test
data. The ranges of α and ε are the same as in a).

4. Test the models:
We test the models with selected hyperparameters (β̂, α̂, ε̂)Lp and (α̂, ε̂)L4 for noise levels
σ ∈ {0.15, 0.25, 0.3, 0.35} on the N2 = 20 test data. The mean Dice score and mean RMSE
are calculated for the chosen hyperparameter combination.

3.2.2 MNIST Experiment Results and Discussion

Figure 3.9 illustrates the unit length eigenvector corresponding to the second smallest eigen-
value of the learned graph Laplacian matrix using all N1 = 150 training data. This figure
shows the type of images that minimises the graph Laplacian term 1

2 ûLpû in the objective
function (2.24).

The parameters selected and the testing result are displayed in Table 3.5. In general, the
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Figure 3.8: 5-fold cross validation for MNIST digit 0.
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Figure 3.9: The unit length eigenvector corresponding to the second small eigenvalue of the learned
graph Laplacian matrix using N1 = 150 images of MNIST digit 0.

model with both graph Laplacian matrices can reduce the noise in the noisy images and
recover most of the pixels in binary images. As shown in Table 3.5, model (2.24) with learned
graph Laplacian matrix Lp yields better denoising results than that of the model with 4-
regular graph Laplacian matrix L4. For σ = 0.15, both models can fully recover the ground
truth binary image. This is not a surprising result, as the average Dice score between the
noisy images Xσ=0.15 and their ground truth Xb

σ=0.15 is 1. This means that the noisy image
can be directly binarised into the ground truth images. In this case, the L4 model gives a
lower RMSE value, although both RMSE values are small. For the σ = 0.25, model L4 does
not improve much on the Dice score, comparing the Dice score from model L4 0.9789 with
the reference Dice score between Xσ=0.25 and Xb

σ=0.25 0.9773, whereas model Lp still recovers
most of the pixels correctly, with a Dice score of 0.9930. For σ ∈ {0.25, 0.3, 0.35}, model Lp

yields better performance since it returns a higher Dice score and a lower RMSE. For all σ,
model Lp is able to reduce RMSE values by more than a half. To sum up, model L5 is more
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Table 3.5: Best combination of parameters and performance comparison of 2 different graph Laplacian
matrices. Tested on N2 = 20 iamges of the digit 0. For reference, the mean RMSE and Dice score
between X and Xb of corresponding σ are shown in the parentheses.

σ = 0.15 σ = 0.25 σ = 0.3 σ = 0.35
(0.1496/1) (0.2520/0.9773) (0.3031/0.9469) (0.3496/0.9336)

L4 Lp L4 Lp L4 Lp L4 Lp

β̂ N.A. 1 N.A. 10 N.A. 3 N.A. 6
α̂ 0.04 0.2 0.08 0.6 0.1 1.6 0.2 1.3
ε̂ 0.03 0.2 1 0.4 0.2 0.3 0.2 0.7
Dice score 1 1 0.9781 0.9875 0.9656 0.9852 0.9469 0.9727
(std) (0) (0) (0.0239) (0.0161) (0.0175) (0.0135) (0.0234) (0.0241)
RMSE 0.0487 0.0515 0.1982 0.1098 0.2016 0.1063 0.2174 0.1578
(std) (0.0053) (0.0060) (0.0206) (0.0413) (0.0244) (0.0500) (0.0276) (0.0426)
Successful
conv. ratio 1 1 1 1 1 1 1 1

able to reduce the noise in the images, and can recover the binary image with higher accuracy.

Noisy L4 Lp
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Figure 3.10: Left: the noisy image v with σ = 0.3 and its binary image, i.e. the ground truth ū.
Middle: the denoised image ûL4

obtained using the proposed model with L4 and its binary version.
Right: the denoised image ûLp

obtained using the proposed model with Lp and its binary version.

Figure 3.10 shows an example of a noisy image v with σ = 0.3 and the denoised image ûL4

and ûLp using the proposed model (2.24) with L4 and Lp, respectively. We can see that
model Lp successfully recovered all the pixel values, and it significantly reduced the noise, by
comparing v̂Lp with the ground truth ū. Model with L4 failed to bring down the noise in v,
and predicted one pixel value wrong in the binarised denoised image.
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3.2.3 USPS Experiment Results and Discussion

However, model Lp does not always has such good performance. To test how well it performs
with higher resolution images and dataset with more variance, we apply model (2.24) on the
USPS dataset.

Created by the U.S. Postal Service, the USPS dataset consists of 16×16 pixel images of hand-
written digits on the envelops. Each pixel is assigned a value in [−1, 1]. There are around
1000 images in the dataset for each digit. The experimentation is similar to what was carried
out with the MNIST dataset, except that the threshold for obtaining binary images is now set
to t = 0. The other difference is that we do not apply cross validation on the USPS dataset
for model Lp, as there are a rather large number of images the digit 0. We randomly select
N = 800 image samples for digit 0, which is split it into 3 sets of size N1 = 500, N2 = 200,
and N3 = 100.

Figure 3.11 displays four images of digit 0 in the USPS dataset and the corresponding binary
counterpart. It can be seen that there are more variations in terms of the position where the
digit resides in the USPS dataset than in the MNIST dataset.
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Figure 3.11: Top: four examples of 16× 16 pixel images of the digit 0 in the USPS dataset. Bottom:
their corresponding binary images.

For the model with learned graph Laplacian Lp, we first fit the graph Laplacian matrix Lp

using GL-3SR with the N1 = 500 learning set, then tune the hyperparameters (β, α, ε) using
the N2 = 200 tuning set. After obtaining the best combination of the hyperparameters, we
test it on the test set of size N3 = 100, with the Lp learned on N1 = 500 learning set. For
model with L4, we perform hyperparameter tuning for (α, ε) on the N2 = 200 tuning set, and
test it on the N3 = 100 test set.

The unit length eigenvector corresponding to the second smallest eigenvalue of the learned
graph Laplacian matrix Lp is demonstrated in Figure 3.12. This shows the shape of 0 that
Lp favours when minimising the graph Laplacian term in model (2.24).
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Figure 3.12: The unit length eigenvector corresponding to the second small eigenvalue of the learned
Laplacian matrix using N1 = 500 USPS images of the digit 0.

Table 3.6: Performance comparison of 2 different approaches. Tested on N3 = 100 images of digit 0.

σ = 0.15 σ = 0.25 σ = 0.3 σ = 0.35
(0.1502/0.9997) (0.2515/0.9760) (0.2987/0.9504) (0.3497/0.9229)
L4 Lp L4 Lp L4 Lp L4 Lp

β̂ N.A. 8 N.A. 12 N.A. 10 N.A. 8
α̂ 0.5 0.2 0.5 0.6 0.4 1 0.4 1.5
ε̂ 0.06 0.2 0.1 0.4 0.1 0.4 0.2 0.4
RMSE 0.0320 0.0637 0.0914 0.1286 0.1215 0.1650 0.1560 0.1980
(st.d) (0.0062) (0.0053) (0.0259) (0.0184) (0.0257) (0.0268) (0.0207) (0.0279)
Dice score 0.9999 0.9998 0.9916 0.9854 0.9825 0.9685 0.9741 0.9524
(st.d) (0.0005) (0.0007) (0.0064) (0.0084) (0.0086) (0.0123) (0.0118) (0.0148)
Successful
conv. ratio 0.99 1 0.95 1 0.97 0.95 1 0.96

Table 3.6 displays hyperparameter values selected and the denoising results with noisy levels
σ ∈ {0.15, 0.25, 0.3, 0.35}. We notice that model (2.24) does not always converge, due to the
larger image size. For each σ, model L4 always has better performance than model Lp, with
lower average RMSEs and higher average Dice scores. For σ = 0.15 and σ = 0.25, model Lp

is more stable, with convergent rate 1 in both case. However, this is not the case for σ = 0.3
and σ = 0.35.

Figure 3.13 demonstrates an example of denoising a noisy image image v with σ = 0.3 in
the USPS dataset using the proposed L4 and Lp models. In this case, model L4 has a better
performance. The noise in v has significantly reduced in the solution ûL4 , and the binarised
denoised image ûb

L4
has only two pixels different than the ground truth ū. Model Lp noticeably

decreased some noise in v, but failed to bring smoothness to the denoised image ûLp . We can
see in the binarised image ûb

Lp
that there are some “holes” in the recovered 0.

From the experiments on the MNIST and USPS datasets, we find that it is not always
beneficial to learn the graph Laplacian matrix from the dataset. When the images in the
dataset exhibit high variance, the 4-regular graph Laplacian matrix can be a better choice for
model (2.24).
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Figure 3.13: Left: the noisy image v with σ = 0.3 and its corresponding ground truth ū. Middle:
the denoised image obtained using the proposed model with L4 and its binary version. Right: the
denoised image obtained using the proposed model with Lp and its binary version. Hyperparameters
are the same as shown in Table 3.6.
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4 Results and Discussion on CT Image Reconstruction

Having discussed the image denoising problem (2.24), we return to the full model (2.23) solved
by Algorithm 2. In Section 4.1 we work with simulated measurements data. We compare the
reconstruction accuracy of GL regularisation,TV regularisation and SIRT in various noise and
projection angle settings. In Section 4.2, we put our suggested graph GL regularisation to the
test using real measurements from the CT scan of a number made of playdough.

4.1 CT Image Reconstruction on MNIST Digits

4.1.1 Experiment Description

In this section, we opt for images of the digit 0 from the 28× 28 pixel MNIST dataset, where
each pixel is assigned an integer value from the set {0, ..., 255}. The ground truth images ū
are obtained using (2.25), with t = 127. Figure 4.1 depicts four examples of the images of 0
in the MNIST dataset and their corresponding binary images.
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1

Figure 4.1: Top: four 28 × 28 pixel images of the digit 0 in the MNIST dataset. Bottom: their
corresponding binary images.

The discrete Radon transform K and the measurements f of ū are generated using ASTRA
Toolbox (Van Aarle et al., 2016). Table 4.1 lists all projection geometries used to obtain the
discrete Radon transform matrix K and the measurements (sinograms) f of the binary images.
As shown in Table 4.1, there are seven parameters needed to define a projection geometry. In
our experiment, we use fan-beam geometry with flat detector, as shown in Figure 1.1 (right).
The number of detectors is set to be 1.5 times the number of pixels on each row/column of
the image. We take the centre of the image as the origin. The distance between the origin
and X-ray source is 100 and the distance between the origin and the detector is 50. The
projection angle is the angle at which we make a projection. The projection angles are varied
in increments of θ from 0◦ to 360◦. For example, when θ = 5◦, projections are made at 72
equally spaced angles of 5◦, 10◦, ...360◦. The projection angle decides the row dimension of
K.
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Table 4.1: The projection geometries used to obtain sinograms.

Parameter Setting

beam flat fan beam
discretisation strip
number of detectors ⌊1.5×

√
n⌋ = 42

detector width 1
projection angle every θ, 2θ,... ∈ (0◦, 360◦]
origin to source dist. 100
origin to detector dist. 50

After the measurements f are acquired, we add noise to it according to (2.27). Figure 4.2
illustrates an example of a binary image ū of the digit 0, its corresponding sinogram f using
the settings listed in Table 4.1 with θ = 20◦, and the noisy version of f , fδ with σ = 1.
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(b) Corresponding sinogram f with
θ = 20◦
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(c) Noisy sinogram fδ with σ = 1

Figure 4.2: An example of a binary image of 0 in the MNIST, its corresponding sinogram, obtained
using θ = 20◦, and the noisy sinogram with noise level σ = 1.

Given the discrete Radon transform K, we take fδ as an input and reconstruct the underlying
binary image of the digit 0. We try out the model in several combinations of projection
angles and noise levels, more specifically, the following 9 scenarios: (θ, σ) ∈ {5◦, 10◦, 20◦} ×
{0.3, 0.07, 1}. We then compare the performance of the four reconstruction models: SIRT,
TV regularisation, and our proposed model, i.e. the graph GL regularisation with L4 and Lp.
The settings of each model are described below.

I SIRT :
We do not perform hyperparameter tuning on this method. The number of iterations is set
to be 30. The computation is done using the built-in SIRT algorithm in ASTRA Toolbox.

II Total variation:
We use the built-in splitbregman algorithm in PyLops (Ravasi & Vasconcelos, 2020) to
solve the model (2.22). We use the default setting in splitbregman for other parameter
values, but treat the regularisation parameter µ as a hyprparameter. We tune µ for µ ∈
{0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 1.5}. Then the best parameter is chosen according to the
average Dice score (2.28) between the reconstructed images and their corresponding ground
truth.

III Graph GL regularisation:
The model is solved by Algorithm 2. We choose K = 2000 for the number of iterations. For
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the model with L4, there are two hyperparameters α and ε. As shown in Section 2.2, the
range of α depends on the discrete Radon transform K, whereas K depends on θ. Table
4.2 displays the dimensions of K used in the experiment, the corresponding range of α, and
a selection of values of α chosen to tune the hyperparameters. Therefore, we search for the
best combination of (α, ε) ∈ Tθ × {0.1, 0.05, 0.01, 0.005}, for θ ∈ {5◦, 10◦, 20◦}, where Tθ is
defined in Table 4.2. For the model with Lp, there is one extra parameter β. Therefore, we
search for the best combination in (β, α, ε) ∈ {5, 10, 15}×Tθ×{0.1, 0.05, 0.01, 0.005}. Again,
the combination of the hyperparameters with the highest average Dice score is selected.

Table 4.2: The dimension of K in three θ values, the corresponding α range and the corresponding
values of α selected to perform hyperparameter tuning.

θ dim(K) α range selected values of α for hyperparameter tuning

5◦ 3024× 784 (0, 4.27× 10−4) T5◦ = {4× 10−4, 1× 10−4, 5× 10−5}
10◦ 1512× 784 (0, 8.44× 10−4) T10◦ = {8× 10−4, 4× 10−4, 1× 10−4}
20◦ 756× 784 (0, 1.62× 10−3) T20◦ = {1× 10−3, 5× 10−4, 1× 10−4}

We sampled N = 900 images of the digit 0 from MNIST dataset. The 900 images are split
into three sets: N1 = 500 images are used to learn the graph Laplacian matrix Lp, N2 = 300
images are used to tune the hyperparameters for TV and graph GL regularisation models,
and the rest N3 = 100 images are used during testing.

4.1.2 Results and Discussion

Table 4.3 lists the hyperparameter tuning result. These are the parameter values used during
testing. The best performance for Lp model is achieved with β = 10, though the outcomes
for all three β values are quite similar with the same (α, ε).

Table 4.3: Parameters selected by the hyperparameter tuning. These are the parameter values used
for MNIST digit 0 CT image reconstruction.

Setting TV: µ̂ L4: (α̂, ε̂) Lp: (β̂, α̂, ε̂)

θ = 5◦, σ = 0.3 1 (0.0004, 0.005) (10, 0.0001, 0.005)
θ = 5◦, σ = 0.7 1 (0.0004, 0.005) (10, 0.0001, 0.005)
θ = 5◦, σ = 1 0.5 (0.0004, 0.01) (10, 0.0001, 0.01)
θ = 10◦, σ = 0.3 1 (0.0001, 0.01) (10, 0.0008, 0.01)
θ = 10◦, σ = 0.7 1 (0.0008, 0.05) (10, 0.0001, 0.01)
θ = 10◦, σ = 1 0.5 (0.0004, 0.01) (10, 0.0004, 0.01)
θ = 20◦, σ = 0.3 1.5 (0.001, 0.05) (10, 0.0005, 0.05)
θ = 20◦, σ = 0.7 1 (0.001, 0.05) (10, 0.0005, 0.01)
θ = 20◦, σ = 1 0.5 (0.0005, 0.01) (10, 0.0005, 0.01)

Table 4.4 and 4.5 exhibit the Dice score and RMSE of the 4 models, respectively. From Table
4.4 we can see that TV, L4 and Lp models have compatible performance, whereas the Dice
score of SIRT is the least satisfactory. When θ = 5◦, TV, L4 and Lp can predict all pixel
values correctly. When θ = 10◦, the Dice score for TV decreases as σ increases. Both L4 and
Lp can still predict all pixel values correctly on average when σ = 0.4 and σ = 0.7. When
θ = 20◦, L4 and Lp have Dice score 1 when σ = 0.3. As σ further increases, the performance
of TV, L4 and Lp methods are similar, with L4 having slightly higher Dice scores than the
other two.
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Table 4.4: Dice score comparison of four different models with (θ, σ) ∈ {5◦, 10◦, 20◦} × {0.3, 0.07, 1}.
Tested on N3 = 100 MNIST digit 0 CT images. Parameter values used for each model is listed in
Table 4.3

(a) θ = 5◦

Method σ = 0.3 σ = 0.7 σ = 1

SIRT 0.9980± 0.0018 0.9971± 0.0022 0.9963± 0.0024
TV 1.0± 0.0 1.0± 0.0 1.0± 0.0002
L4 1.0± 0.0 1.0± 0.0001 1.0± 0.0
Lp 1.0± 0.0 1.0± 0.0 1.0± 0.0

(b) θ = 10◦

Method σ = 0.3 σ = 0.7 σ = 1

SIRT 0.9979± 0.0019 0.9960± 0.0027 0.9935± 0.0029
TV 1.0± 0.0 0.9999± 0.0003 0.9992± 0.0012
L4 1.0± 0.0 1.0± 0.0001 0.9996± 0.0006
Lp 1.0± 0.0 1.0± 0.0001 0.9997± 0.0006

(c) θ = 20◦

Method σ = 0.3 σ = 0.7 σ = 1

SIRT 0.9959± 0.0034 0.9926± 0.0046 0.9881± 0.0049
TV 0.9997± 0.0009 0.9982± 0.0019 0.9949± 0.0033
L4 1.0± 0.0 0.9997± 0.0006 0.9953± 0.0029
Lp 1.0± 0.0 0.9972± 0.0024 0.9952± 0.0029

Table 4.5: RMSE comparison of four different models with (θ, σ) ∈ {5◦, 10◦, 20◦} × {0.3, 0.07, 1}.
Tested on N3 = 100 MNIST digit 0 CT images. Parameter values used for each model is listed in
Table 4.3

(a) θ = 5◦

Method σ = 0.3 σ = 0.7 σ = 1

SIRT 0.1263± 0.0076 0.1333± 0.0072 0.1419± 0.0072
TV 0.0358± 0.0013 0.0761± 0.0024 0.0891± 0.0036
L4 0.0051± 0.0001 0.0117± 0.0019 0.0281± 0.0008
Lp 0.0049± 0.0001 0.0115± 0.0003 0.0281± 0.0008

(b) θ = 10◦

Method σ = 0.3 σ = 0.7 σ = 1

SIRT 0.9979± 0.0019 0.1444± 0.0077 0.1595± 0.007
TV 0.0459± 0.0033 0.0850± 0.0034 0.1000± 0.0058
L4 0.0075± 0.0002 0.0484± 0.0017 0.0274± 0.0076
Lp 0.0068± 0.0002 0.0161± 0.0018 0.0272± 0.0073

(c) θ = 20◦

Method σ = 0.3 σ = 0.7 σ = 1

SIRT 0.1470± 0.0105 0.1662± 0.0098 0.1872± 0.0099
TV 0.0690± 0.0106 0.1054± 0.0106 0.1264± 0.011
L4 0.0221± 0.0008 0.0444± 0.0042 0.0630± 0.0191
Lp 0.0175± 0.0005 0.0460± 0.0204 0.0644± 0.0197
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As for RMSE, it can be seen from Table 4.5 that model L4 and Lp have significantly lower
RMSE values than the other two methods in all (θ, σ) settings. Between model L4 and Lp,
model Lp usually has the lower mean RMSE values, with the exception when (θ, σ) = (20◦, 0.7)
and (20◦, 1).

(a) Ground truth ū (b) SIRT, d = .9962 (c) TV, d = .9962 (d) L4, d = .9962

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(e) Lp, d = .9974

Figure 4.3: An example of CT image reconstruction of a digit 0 image in the MNIST. The top row
consists of the predicted images using each method. The bottom row is the corresponding binary
versions.

Figure 4.3 shows the reconstruction of the ground truth illustrated in Figure 4.2a, with Figure
4.2c, fδ, as our input data. Figure 4.3b and 4.3c indicate that the noise in the solutions from
SIRT and TV are quite large, whereas the solutions given by L4 and Lp, shown in Figure
4.3d and 4.3e are almost identical to their binary counterpart. This result agrees with the
test results shown in Table 4.5.

Figure 4.4 demonstrates the log objective values, log norm of objective gradient, Dice score and
RMSE against proximal gradient descent iterations when solving the reconstruction problem
of Figure 4.2. Note that despite we plotted the log objective values for both L4 and Lp in
Figure 4.4a (left), there is no point in comparing these two. This is because that the two
models use different graph Laplacian matrices, therefore the objective functions are different.
Figure 4.4a (right) suggests that it takes circa 500 iterations for GL regularisation to converge.
It is worth noting that in the RMSEs against iteration plot in Figure 4.4b, the RMSE for
both model increase after around 30 iterations. This seems to indicate a possible overfitting.

Our results show that graph GL regularisation model (2.23) works well in reconstructing
binary CT images. When σ is low and there are adequate projection data, i.e. when θ is
small, our model has comparable performance as TV regularisation. When σ is large and there
are only limited projections, the graph GL regularisation outperforms the TV regularisation.
Comparing between models with L4 and Lp, we find that there is little benefit to use Lp, as
the performance of these two models are nearly identical while it takes a few hours to learn
the Lp matrix. Furthermore, it is worth mentioning that since a large number of iterations are
required for the graph GL algorithm, the time needed for graph GL is significantly longer than
TV and SIRT. For models L4 and Lp, running 2000 iterations to reconstruct a 28× 28 pixel
image takes around 20 seconds. For TV and SIRT, using the same K and fδ, reconstructing
an image of the same size take less than a second.
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(a) Objective values and norm of the gradient at u(k)
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Figure 4.4: Top: objective values and norm of the gradient at u(k) for k ∈ {1, ...2000}, k ∈ Z+ when
using L4 and Lp in the model. The stepsize α is 0.0005. Both plots are plotted in log scale. Bottom:
Dice score and RMSE for u(k) at each iteration.
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4.2 A Real Number (Made of Playdough)

To test how the model performance in practice, we use the micro-CT scanner at CWI to
scan a number 0 made of playdough. The playdough 0 is of the size 10cm×8cm×1.5cm. The
projections are made at every 0.2◦. As our model is designed for reconstructing 2D images, we
use only the data of the central slice from the CT scan. We refer to the data of the central slice
with projections made at every 0.2◦ as the full-sampled data. Figure 4.5 illustrates the central
slice, which is 951×951 pixels in size and is reconstructed by the micro-CT scanner using the
full-sample data. We consider Figure 4.5 as our reference. We observe a big air bubble in the
upper left of the playdough 0. There are also some small air bubbles distributed throughout
the playdough. We want to see if the GL regularisation can recreate the playdough 0 from
subsampled measurements.

Figure 4.5: The central slice of the playdough 0 CT scan, with size 951 × 951 pixels. This image is
reconstructed using the full-sampled data.

Data Processing and Experiment Description

A pre-experiment shows that the reconstructed image using the raw data has pixel values in
the range [−0.03, 0.027]. However, the local minima of the double-well potential in the graph
GL functional is at 0 and 1. Therefore, in order to get the most out of graph GL functional
we first pre-process the raw data. This is done using flexCALC package2.

1. Calculate the scaling factor ψ. We scale the raw data such that the reconstructed image
will have pixel values around 0 and 1. We get the OTSU threshold based on the FBP recon-
struction ûall using the full sampled data, where ûall is obtained using ASTRA Toolbox’s
built-in function. Then we segment the FBP reconstruction using the OTSU threshold to
get a binary image ûb

all. The scaling factor ψ is then set to be

ψ =
1∑

i û
b
all,i

∑
i

ûall,i · 1{ûb
all,i=1}.

Dividing the raw measurements with ψ, we obtain the scaled measurements.

2. To make the dimension size easier for our algorithm to handle, we downsample the image
resolution to 119×119 pixels by binning 8 pixels into 1 pixel. We perform angular sampling

2Implementation retrieved from https://github.com/cicwi/flexCALC
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with the projection angles set at every 1◦ and 3.2◦, respectively. In other words, we down-
sample the number of projections by a factor of 5 and 16, respectively, w.r.t. the original
0.2◦ increment. The discrete Radon transform K is then generated accordingly. Figure
4.6 demonstrates an example of the scaled, downsampled sinogram f δ, with projections are
made at 1◦ (In other words, we downsample the number of projections by a factor of 5).
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Figure 4.6: The scaled and subsampled sinogram of the central slice of the playdough 0, where the
original sinogram is acquired using the micro-CT scanner.

Only the L4 model is used in this experiment, as we cannot learn the graph Laplacian matrix
from images due to the lack of training data. There is also no hyperparameter tuning. We
run Algorithm 2 for K = 9000 iterations. The range of α and values of (α, ε) used are listed
in Table 4.6.

Table 4.6: The dimension of K in the two settings, the corresponding α range, and values of (α, ε)
used.

Angular increment θ dim(K) α range (α, ε) value

1◦ 42959× 14161 (0, 5.19× 10−5) (5× 10−5, 0.03)
3.2◦ 13447× 14161 (0, 1.57× 10−4) (1× 10−4, 0.01)

Results and Discussion

Figure 4.7 illustrate the result of using graph GL regularisation in the two settings. It is clear
from the figure that the playdough 0 is recovered nicely. We can see that in both cases the
air bubble on the top left corner is preserved. The size of the air bubble is much smaller than
that of the original reconstruction in Figure 4.5. This is to be expected as the image size
of our reconstruction is smaller. Comparing Figure 4.7a and 4.7c we find that the solution
in 4.7a is much smoother. This is due to the fact that we have more projections data when
θ = 1◦. The resulting binary images Figure 4.7b and 4.7d are pretty similar, with 4.7b having
a slightly more smooth edge. Figure 4.8 shows the FBP reconstruction on the binned data
with no downsampling on the number of projections (i.e. using projections made on every
0.2◦ to reconstruct a 119 × 119 pixel image). In this case there is no air bubble left in the
segmentation of its reconstruction. Comparing Figure 4.8a and Figure 4.7a, we find that the
zoomed-in image of the reconstruction from our L4 model is similar to that of the FBP model.
This indicates that our model can reconstruct the image with relatively limited data.

The number of iterations K required for our model to converge is much larger in this exper-
iment, comparing to the 2000 iterations used in the experiment in Section 4.1. This can be
explained by the small value of the stepsize α. The large dimension of K also means that our
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Figure 4.7: The reconstructed 119 × 119 pixel images suing L4 model and their binary counterparts
in the two angular sampling cases. Parameter values used in the two cases are listed in Table 4.6.
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(a) û and the zoomed-in image of the red box. No
angular sampling.

0.00

0.20

0.40

0.60

0.80

1.00
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Figure 4.8: The reconstructed 119× 119 pixel images and their binary counterpart using FBP with no
angular sampling.
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model takes substantially longer time to produce a solution than the FBP reconstruction. It
takes a few minutes for our model (2.23) to return a solution for both values of θ during our
experiment.
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5 Conclusions and Future Work

In this thesis, we examined the use of the graph Ginzburg-Landau functional as regularisation
when reconstructing binary images from their CT scans. The experiments were carried out
in two parts.

The first part was to study a reduced CT image reconstruction problem, where the graph
GL regularisation was used in an image denoising problem. We established the feasibility
of using Newton-CG as the minimiser to solve our model. Restricted to the non-convex
objective function, the model were only tested on datasets with small image sizes. Next, the
performance of our model when denoising images of handwritten digit 0 was tested, while we
also studied the benefit of changing the graph Laplacian matrix in the graph GL functional.
We found that the model works well for image denoising tasks. However, the benefit of using
learned graph Laplacian matrices depends on the datasets. More specifically, when the dataset
exhibits large variance in the images, the 4-regular graph Laplacian is a better choice for the
graph GL regularisation.

The second part of the experiments was to investigate the performance of our model on binary
CT image reconstruction, where we compare our model with SIRT and TV regularisation. For
the MNIST dataset, our model outperforms the SIRT in every scenario where we subsampled
projections and added different noise levels. Moreover, our model performs better than TV
regularisation when using high noise data and is comparable to TV regularisation when using
low and medium noise data. These results demonstrate that our model works well with noisy
and subsampled data. However, we should note that our model takes much longer to run than
TV and SIRT. Finally, we developed a way to apply our model to the real-world data through
rescaling in the playdough experiment. The graph GL regularisation successfully preserved
the finer details of the playdough 0 when reconstructing with subsampled data.

Possible future work are listed below.

� Apply minimisation algorithm that does not require convexity of the objective function
to the GL regularisation. In our experiments, Newton-CG works relatively well with low-
resolution images, even without the guarantee of convexity. However, a minimisation on
non-convex models may bring more accurate results.

� Apply the proposed model on high-dimensional data. We have only tested the model with
low-resolution images, due to the fact that the difficulty for Newton-CG to find a global
minimum of the objective function increases as the dimension of the images grows. Hence,
using an alternative minimisation algorithm might enable the model to be used with high-
resolution images. This will broaden the usage of our model, since CT images are often of
high-resolution.

� Develop a method to modify the GL functional such that the model can be extended to
reconstruct non-binary images as well. Non-binary images are advantageous because they
provide us the opportunity to extract additional information from their pixel values. This
would also broaden the functionality of the graph GL regularisation.

� Use self-defined connectivity and edge weights of the graph to decide the graph Laplacian
matrix in the graph GL functional. This can be done by e.g. extracting features from the
images using some feature maps. This would allow us to incorporate more prior information
on the images to the model.
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Appendix A Model Robustness

In this section, we list some additional experiment results that did not make it into the main
thesis, but could potentially demonstrate that the proposed model is robust.

A.1 Image Denoising on Handwritten Digit 6 Images

This section presents the outcome of the same image denoising experiment carried out in
Section 3.2 using both MNIST and USPS datasets, but with handwritten digit 6 images.
Digit 6, unlike digit 0, is not symmetric. Therefore, it could potentially be harder for the
model to denoise. Table A.1 displays the test result on N2 = 20 digit 6 MNIST images. Table
A.2 displays the test result on N2 = 20 digit 6 MNIST images. For MNIST dataset, model
with Lp has better accuracies when σ ∈ {0.25, 0.3, 0.35}. However, for USPS dataset, model
with L4 has better accuracies for all 4 values of σ. These results are identical to those of
the digit 0 images. Hence, we come to the conclusion that our model is stable in terms of
denoising various digits.

Table A.1: Performance comparison of two models with L4 and Lp. Tested on N2 = 20 MNIST the

digit 6 images. For reference, the mean RMSE and Dice score between the noisy images X̂ and their
ground truth Xb of corresponding σ are shown in the parentheses.

σ = 0.15 σ = 0.25 σ = 0.3 σ = 0.35
(0.1509/1) (0.2376/0.9781) (0.3036/0.9539) (0.3421/0.9336)
L4 Lp L4 Lp L4 Lp L4 Lp

β N.A. 2 N.A. 3 N.A. 6 N.A. 3
α 0.04 0.2 0.2 1.1 0.2 0.9 0.2 1.6
ε 0.03 0.2 0.09 0.4 0.2 0.5 0.2 0.4
RMSE 0.0474 0.0586 0.1066 0.0802 0.1789 0.1296 0.1972 0.1365
(st.d) 0.0054 0.0068 0.0427 0.0324 0.0333 0.0508 0.0272 0.0455
Dice score 1 1 0.9875 0.9953 0.9641 0.9820 0.9570 0.9773
(st.d) 0 0 0.0161 0.0112 0.0232 0.0248 0.0214 0.0167
Successful
conv. ratio 1 1 1 1 1 1 1 0.95

Table A.2: Performance comparison of two models with L4 and Lp. Tested on N3 = 100 USPS images

of the digit 6. For reference, the mean RMSE and Dice score between the noisy images X̂ and their
ground truth Xb of corresponding σ are shown in the parentheses.

σ = 0.15 σ = 0.25 σ = 0.3 σ = 0.35
(0.1504/0.9997) (0.2513/0.9771) (0.2991/0.9525) (0.3510/0.9243)
L4 Lp L4 Lp L4 Lp L4 Lp

β N.A. 6 N.A. 12 N.A. 9 N.A. 12
α 0.9 1.1 0.2 1 0.4 0.9 0.4 1.2
ε 0.06 0.2 0.2 0.3 0.1 0.4 0.2 0.4
RMSE 0.0314 0.0404 0.1223 0.1157 0.1153 0.1554 0.1537 0.1903
(st.d) (0.0051) (0.0088) (0.0101) (0.0228) (0.0289) (0.0271) (0.0242) (0.0300)
Dice score 0.9999 0.9999 0.9932 0.9859 0.9843 0.9720 0.9748 0.9553
(st.d) (0.0006) (0.0087) (0.0043) (0.0070) (0.0091) (0.0124) (0.0134) (0.0164)
Successful
conv. ratio 1 0.97 1 1 0.95 0.95 1 0.96

46



A.2 CT Image Reconstruction with Uniform Noise

This section exhibits the results of the same CT image reconstruction experiment carried
out in Section 3.1 using MNIST dataset, but with uniform noise. This means that the noisy
sinograms are of the form

fδ = f + σδ, δ ∼ U [0, 1]n.

Table A.3 and A.4 show the Dice score and RMSE of the 4 models when reconstructing digit
0 images in various projection angle and noise level settings. The projection angles are varied
in increments of θ from 0◦ to 360◦, where θ ∈ {5◦, 10◦, 20◦, 30◦}. The noise levels are chosen
to be σ ∈ {1, 2, 5}.

We can see from Table A.3 that TV regularisation yields a good Dice score when σ = 1 and
σ = 1. However, as σ increases to 5, GL regularisations, both with L4 and Lp, give the
best performance. This holds for all θ values in our experiment. We can see from Table A.3
that GL regularisations output smaller RMSE values when σ = 1 and σ = 2. When σ = 5,
however, it’s usually TV regularisation that has the lowest RMSE values.

With the above analysis, we conclude that our model is stable when changing the Gaussian
noise to uniform noise. Moreover, it outperforms TV regularisation in terms of Dice score
when the noise level is large.

Table A.3: Dice score comparison of four different models. Tested on N3 = 200 sinograms of MNIST
digit 0 images.

(a) θ = 5◦

Method σ = 1 σ = 2 σ = 5

SIRT 0.9978± 0.0018 0.9967± 0.0024 0.9879± 0.0042
TV 1± 0 1± 0 0.9974± 0.0023
L4 1± 0 1± 0 0.9990± 0.0010
Lp 1± 0 1± 0 0.9990± 0.0010

(b) θ = 10◦

Method σ = 1 σ = 2 σ = 5

SIRT 0.9978± 0.0018 0.9961± 0.0025 0.9743± 0.0065
TV 1± 0 1± 0.0001 0.9907± 0.0041
L4 1± 0 1± 0.0002 0.9956± 0.0023
Lp 1± 0 1± 0.0002 0.9957± 0.0022

(c) θ = 20◦

Method σ = 1 σ = 2 σ = 5

SIRT 0.9959± 0.0033 0.9932± 0.0038 0.9476± 0.0104
TV 0.9997± 0.0008 0.9990± 0.0012 0.9832± 0.0051
L4 0.9994± 0.0011 0.9988± 0.0012 0.9892± 0.0049
Lp 0.9996± 0.0009 0.9990± 0.0011 0.9892± 0.0049

(d) θ = 30◦

Method σ = 1 σ = 2 σ = 5

SIRT 0.9874± 0.0072 0.9840± 0.0074 0.9262± 0.0113
TV 0.9951± 0.0056 0.9926± 0.0057 0.9709± 0.0081
L4 0.9947± 0.0053 0.9923± 0.0056 0.9787± 0.0070
Lp 0.9948± 0.0054 0.9926± 0.0056 0.9789± 0.0068
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Table A.4: RMSE comparison of four different models. Tested on N3 = 200 sinograms of MNIST digit
0 images.

(a) θ = 5◦

Method σ = 1 σ = 2 σ = 5

SIRT 0.1285± 0.0074 0.1393± 0.0072 0.1987± 0.0063
TV 0.0418± 0.001 0.0719± 0.0020 0.1498± 0.0065
L4 0.0214± 0.0006 0.0703± 0.0023 0.1629± 0.0138
Lp 0.0208± 0.0005 0.0691± 0.0021 0.1629± 0.0138

(b) θ = 10◦

Method σ = 1 σ = 2 σ = 5

SIRT 0.1330± 0.0076 0.1473± 0.0075 0.2245± 0.0075
TV 0.0500± 0.0030 0.0919± 0.0028 0.1726± 0.0102
L4 0.0444± 0.0028 0.0789± 0.0025 0.1856± 0.0241
Lp 0.0403± 0.0023 0.0670± 0.0022 0.1851± 0.0237

(c) θ = 20◦

Method σ = 1 σ = 2 σ = 5

SIRT 0.1488± 0.0106 0.1672± 0.0096 0.2632± 0.0123
TV 0.0717± 0.0104 0.1064± 0.0077 0.1935± 0.0088
L4 0.0755± 0.0081 0.0947± 0.0158 0.2141± 0.0224
Lp 0.0713± 0.0081 0.0921± 0.0161 0.2138± 0.0222

(d) θ = 30◦

Method σ = 1 σ = 2 σ = 5

SIRT 0.1846± 0.0118 0.1999± 0.0111 0.2849± 0.0109
TV 0.1275± 0.0192 0.1470± 0.0173 0.2181± 0.0141
L4 0.1185± 0.0148 0.1339± 0.0179 0.1463± 0.0203
Lp 0.1158± 0.0150 0.1330± 0.0194 0.1810± 0.0253
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