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Abstract

Quantum diffusion is a major topic in condensed-matter physics, and the Caldeira-Leggett
model has been one of the most successful approaches to study this phenomenon. Here,
we generalize this model by coupling the bath to the system through a Weyl fractional
derivative. The Weyl fractional Langevin equation is then derived without imposing a non-
Ohmic macroscopic spectral function for the bath. By investigating the short- and long-
time behavior of the mean squared displacement (MSD), we show that this model is able
to describe a large variety of anomalous diffusion. Indeed, we find ballistic, sub-ballistic,
and super-ballistic behavior for short times, whereas for long times we find saturation, and
sub- and super-diffusion.
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Chapter 1

Introduction

Quantum diffusion [1,2,3,4,5,6] has been at the attention of researchers for many years,
posing the fundamental questions on the description of dissipation in open quantum sys-
tems. A more complete understanding of these mechanisms could lead to important break-
throughs in engineering devices that have a better energy efficiency. Despite the existence
of several models, numerous unanswered questions remain. For instance, experimental ev-
idence [7, 8, 9, 10] indicates that diffusion does not always conform to the linear behavior
described by Einstein [11], but instead exhibits a power-law scaling in the mean squared
displacement (MSD), commonly known as anomalous diffusion [12, 13]. One such ex-
ample is quantum diffusion on a fractal [14], where the exponent scales with the fractal
dimension. For readers not familiar with fractals, we provide a short introduction to the
topic in App. A. Typically, models that describe anomalous diffusion assume a different
environment compared to regular diffusion. Our aim here is to achieve a description of
anomalous diffusion within the usual environment using instead a fractional interaction.

In order to build a dissipative model, the environment of a system should be included
in the Hamiltonian, since energy is conserved in quantum mechanics. In the Caldeira-
Leggett model [15,16,17,18,19,20,21], the system of interest, which we will take to be a
single quantum particle, is coupled linearly with a thermal bath that consists of harmonic
oscillators. Although this might seem arbitrary at first, it is a very good approximation for
coupling a system to an in-equilibrium environment, since each degree of freedom of such
an environment must oscillate around a local minimum. The benefit of this approximation
is that the harmonic oscillators can be integrated out exactly, thus leading to an effective
description of the particle. In doing so, one needs to know the spectral function of the bath,
which is given by the imaginary part of the Fourier transform of the retarded dynamical
susceptibility. This spectral function is, however, often difficult to measure experimentally,
and is therefore often assumed to be linear (Ohmic) for simplicity. This assumption on the
reservoir leads to a Langevin equation, which shows linear diffusion. However, more recent
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CHAPTER 1. INTRODUCTION

works [22,23,24,25] have shown that a power-law (non-Ohmic) bath leads to a fractional
Langevin equation, which will typically have colored noise due to the fluctuation-dissipation
theorem, but can also have white noise [23].

In the fractional Langevin equation, the first derivative friction term is replaced by a
fractional derivative [26,27]. These are operators which generalize the order of derivatives
to be not just an integer number, like a first or second derivative, but any real (or even
complex) number. There are, however, many different fractional derivatives, which are not
all equivalent [25,28,29], and this can often lead to different results. The first main ques-
tion then is: which fractional derivative should one use? For this, we have to realize that
fractional derivatives are non-local operators, which means that it is important to specify
the time domain. Refs. [22,23] both use a Caputo derivative, which is only possible if we
have a clear initialization time. Since we are interested in dynamics, the boundaries of the
action are taken from −∞ to +∞, which is an issue if we want to use Caputo derivatives
inside the action. Therefore, we must take the domain of the fractional derivative to be
the same as of the action. Furthermore, one would like to preserve the Fourier transform,
since this has proven to be a powerful mathematical tool in physics. Hence, we would like
a fractional derivative that is compatible with it. Because of these two reasons, we thus
select the Weyl fractional derivative [30,31,32].

In spin-boson models [33, 34, 35], a spin half particle is coupled to a bosonic harmonic
oscillator bath. Although reminiscent of the Caldeira-Leggett model, the spin-boson mod-
els are accessible to study in the fully quantum domain. In Ref. [34], they show that the
effect of a sub-Ohmic bath can be fully characterized by a single effective interaction term.
This term consists of two parts from the interaction and one from the Greens function of
the bath. One of the conclusions from this was that any complexity in interactions can
be described solely by the spectral function of the bath, since that controls this Greens
function. Hence, the interaction term is almost always considered in its most elementary
form: direct linear interaction. Physically, however, this might not be the most appropriate
description of the system of interest. In many systems, the spectral function is known to be
Ohmic. Therefore, we will study the other end of the line: What if the bath is kept to its
most simple form, Ohmic, and the interaction term is complex? Through fractional partial
integration we find that the non-linear power from the spectral function can be transferred
to a fractional derivative in the interaction.

Hence, here we generalize the Caldeira-Leggett model by introducing a Weyl fractional
derivative coupling term and show that it can describe a whole family of anomalous diffu-
sion. Unlike previous works [22,23,25], we derive a fractional Langevin equation without
imposing a non-Ohmic macroscopic spectral function. Motivated by the general velocity de-
pended coupling in Ref. [36], we consider a fractional Weyl derivative to couple the system
to the bath. In order to study the Lagrangian, which will now contain a Weyl fractional
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CHAPTER 1. INTRODUCTION

derivative, we first derive the Weyl fractional Euler-Lagrange equation in analogy with
Ref. [37], but adapted to Weyl fractional derivatives. Then, we are able to derive the Weyl
fractional Langevin equation for an Ohmic bath, which we solve analytically using Fox
H-functions. We calculate the asymptotic behavior of the MSD and show that it is com-
parable to previous results of a non-Ohmic Caldeira-Leggett model [22,38,39,40,41,42].

The outline of this thesis is the following: In Ch. 2 we introduce classical and quantum
Brownian motion. To do this we discuss the Langevin equation and the Caldeira-Leggett
model. Moving on the Ch. 3, which is novel work, we start by introducing the Weyl frac-
tional derivative. Then, we derive the Weyl fractional Langevin equation. Its solution
for the free case is also presented. Next, we investigate the asymptotic behavior of the
MSD by making use of less-known mathematics that is introduced in the various sections
of App. B. In App. C we numerical investigate some properties of fractals. These will be
used in App. D, in which we give a first attempt to derive the fractional Caldeira-Leggett
model. However, this derivation has at least one crucial link missing such that this has to
be investigated further. Finally, we provide a conclusion and outlook.
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Chapter 2

Classical and quantum Brownian
motion

In 1827, the Scottish Botanist Robert Brown observed the random movement of pollen
grains suspended in water [43]. This phenomena is therefore called Brownian motion. It
took almost 80 years for the first microscopic explanation of Brownian motion to be given.
In 1905, Albert Einstein [11] used statistical physics to explain that the random movement
of the pollen particle was due to collisions with the water molecules. In Sec. 2.1.1, we
will describe classical motion by studying the Langevin equation [15, 25, 44]. With the
rise of quantum mechanics in the 20th century, the race to find a quantum version of
Brownian motion was on. The main problem that emerged was to quantize a process that
is dissipative, meaning that energy is not conserved. Quantizing a theory that violates
energy conservation results in many problems, such as non-unitarity. After Einstein’s initial
classical description of Brownian motion, it took another 80 years for a suitable quantum
version of Brownian motion to be developed. This was done by Caldeira and Leggett in
1983 [17], and is therefore named the Caldeira-Leggett model. They proposed a solution
to the violation of energy conservation by embedding the system in a bath of harmonic
oscillators, resulting in energy conservation for the total system. The Caldeira-Leggett
model [15,16,17,18,19,20,21,25] will be discussed in Sec. 2.2.

2.1 Classical Brownian motion: The Langevin equation

2.1.1 The Langevin equation

To derive an equation that describes classical Brownian motion, we start with Newton’s
second law, which is given by

F = M
d2

dt2
Q(t), (2.1)
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CHAPTER 2. CLASSICAL AND QUANTUM BROWNIAN MOTION

where F is the collection of all forces acting on the particle with position Q(t) and mass M .
The force consists of three components, the friction force, −η d

dtQ(t), a force coming from
an external potential, −V ′(Q), and a random force, f(t), resulting from the bombardment
of the particles in the bath.

1 2 3 4 5 6
x

-0.5

0.5

1.

1.5

2.

y

Figure 2.1: The trajectory in the xy-plane of a particle undergoing a Brownian
motion in two dimensions. The initial position and velocity are set to zero.

Combining these terms Eq. (2.1) yields

M
d2

dt2
Q(t) + η

d

dt
Q(t) + V ′(Q) = f(t). (2.2)

One remaining question is: what is the statistics of the random force, f(t)? To be consistent
with the diffusion equation, which is known to describe the time evolution of the probability
density function associated to a Brownian particle, ⟨f(t)⟩ = 0 and ⟨f(t)f(t′)⟩ = 2ηkBTδ(t−
t′), where ⟨·⟩ denotes the ensemble average and the prefactor 2ηkBT was chosen such that
equipartition of the bath holds (since we assume the bath to be in thermal equilibrium).
Here, T is the temperature and kB is the Boltzmann constant. When the time correlation
is proportional to a delta function, the noise is named ”white noise”. Eq. (2.2) is called the
Langevin equation. It will be important throughout this thesis that the Langevin equation
describes classical Brownian motion. Hence, this equation should be recovered in certain
approximations and/or limits.
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CHAPTER 2. CLASSICAL AND QUANTUM BROWNIAN MOTION

2.1.2 Solving the Langevin equation for the free case by Laplace trans-
formation

In the free case, for which V (Q) = 0, we can calculate Q(t) by taking the Laplace transform
on both sides. Using Lem. B.2.2 (see App. B), we obtain

Ms2Q(s)−MsQ(0)−MQ̇(0) + ηsQ(s)− ηQ(0) = F (s), (2.3)

where F (s) = L [f(t); s]. Since we have a translation invariant system, we chose Q(0) = 0,
which gives

Q(s) =
F (s) +MQ̇(0)

s(Ms+ η)
. (2.4)

Next, we use partial fraction to write 1/[s(Ms + η)] = [1/s− 1/(s+ η/M)] /η, thus ob-
taining

Q(s) =
F (s) +MQ̇(0)

η

(
1

s
− 1

s+ η
M

)
. (2.5)

Taking the inverse Laplace transform of the above equation yields

Q(t) = L−1

[
F (s) +MQ̇(0)

η

(
1

s
− 1

s+ η
M

)]

=
1

η
f(t) ∗ L−1

[(
1

s
− 1

s+ η
M

)]
+

MQ̇(0)

η
L−1

[(
1

s
− 1

s+ η
M

)]
=

1

η
f(t) ∗

(
1− e−

η
M

t
)
+

MQ̇(0)

η

(
1− e−

η
M

t
)
, (2.6)

where in the second line we used Eq. (B.13) and in the last line we used Eqs. (B.16) and (B.18).
We can now calculate some observables, e.g. ⟨Q(t)⟩ and ⟨Q(t)2⟩. We will assume that
the bath initially is in equilibrium such that the equipartition theorem holds for it. The
equiparition theorem states that for particles qj , qj′ that are in thermal equilibrium,

⟨qj(0)⟩ = ⟨q̇j(0)⟩ = ⟨q̇j(0)qj′(0)⟩ = 0,

⟨q̇j(0)q̇j′(0)⟩ = kBT
mj

δjj′ ,

⟨qj(0)qj′(0)⟩ = kBT
mjω2

j
δjj′ ,

(2.7)

the averages are taken over the ensemble. Using the equipartition theorem and ⟨f(t)⟩ = 0,
we directly get ⟨Q(t)⟩ = 0. This is what we would expect, since we chose Q(0) = 0 and
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CHAPTER 2. CLASSICAL AND QUANTUM BROWNIAN MOTION

the system is symmetric. For the mean squared displacement, we get

⟨Q(t)2⟩ =

〈[
1

η
f(t) ∗

(
1− e−

η
M

t
)
+

MQ̇(0)

η

(
1− e−

η
M

t
)]2〉

=
1

η2

∫ t

0
dτ

∫ t

0
dτ ′⟨f(τ)f(τ ′)⟩

(
1− e−

η
M

τ
)(

1− e−
η
M

τ ′
)
+

M2⟨Q̇(0)2⟩
η2

(
1− e−

η
M

t
)2

=
2kBT

η

∫ t

0
dτ
(
1− e−

η
M

τ
)2

+
MkBT

η2

(
1− e−

η
M

t
)2

, (2.8)

where in the second line we started looking at Brownian motion, which means that the
system is essentially just one of the particles of the bath, meaning that it is in thermal
equilibrium with the bath. Therefore, we have ⟨f(t)Q̇(0)⟩ = 0 since f(t) is generated by
the bath. In the last line, we used ⟨f(τ)f(τ ′)⟩ = 2ηkBTδ(τ − τ ′) and the equipartition
theorem for the system. Finally, we calculate the integral in Eq. (2.8) to end up with

⟨Q(t)2⟩ = 2kBT

η
t+

4kBTM

η2
e−

η
M

t − kBTM

η2
e−2 η

M
t − 3kBTM

η2

+
MkBT

η2
− 2MkBT

η2
e−

η
M

t +
MkBT

η2
e−2 η

M
t

= −2kBTM

η2
+

2kBT

η
t+

2kBTM

η2
e−

η
M

t. (2.9)

For short times (t≪ η/M), we can Taylor expand the exponential in Eq. (2.9) up to second
order, to get

⟨Q(t)2⟩ ≈ kBT

M
t2, for t≪ η

M
. (2.10)

The long-time behavior (t ≫ η/M) can be calculated by neglecting the exponential in
Eq. (2.9) since it decays rapidly, thus giving us

⟨Q(t)2⟩ ≈ −2kBTM

η2
+

2kBT

η
t, for t≫ η

M
. (2.11)

We can thus conclude that the mean squared displacement in the free case resulting from
the Brownian motion described by Eq. (2.2) yields ballistic behavior (quadratic) for short
times and diffusive behavior (linear) for long times, which we can visually verify in Fig. 2.2.
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1 2 3 4 5

η

M
t

2

4

6

8

η²

kB TM
<Q(t)²>

0. 0.1 0.2 0.3

η

M
t0.

0.02

0.04

0.06

0.08

η²

kB TM
<Q(t)²>

2 e-t + 2 t - 2

t2

2 t - 2

Figure 2.2: The mean squared displacement of a Brownian particle is shown in blue.
The short-and long-time behavior are represented by orange and green dashed lines,
respectively. Here, ⟨Q(t)2⟩ is measured in units of η2/kbTM and the time is measured
in units of η/M .

2.1.3 Solving the Langevin equation for the free case by Fourier trans-
formation

In this section, we take a non-traditional approach to solve the Langevin equation for the
free particle case, namely, we use Fourier transforms. This is done because the next chapter
we use Fourier transforms to solve more difficult equations. Let us begin by finding the
particular solution, Qp(t), of the Langevin equation. This is done by taking the Fourier
transform (2.2) for the case V = 0. We then obtain

Qp(ω) =
f(ω)

−Mω2 + iηω
. (2.12)

Next, we take the inverse Fourier transform of the above equation,

Qp(t) = F−1

[
f(ω)

−Mω2 + iηω
; t

]
=

1

2π
f(t) ∗ F−1

[
1

ω(−Mω + iη)
; t

]
=

(
1

2π

)2

f(t) ∗
{
F−1

[
1

ω
; t

]
∗ F−1

[
1

−Mω + iη
; t

]}
, (2.13)
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where in the second and third lines we used Lem. B.1.4 (see App. B). Now, we interpret
F−1 [1/ω; t] in the positive iϵ-interpretation. The mathematical reason for this is because
we want to get the same result as was obtained using Laplace transforms in the previous
section. A physical interpretation would be that we couple the particle to the bath after
t = 0, such that this part is zero beforehand. This is insured by the Heaviside function,
which arises in the positive iϵ-interpretation. Using Eq. (B.31), we get

F−1

[
1

ω
; t

]
= 2πiΘ(t) (2.14)

The inverse Fourier transform of 1/(−Mω + iη) = 1/[M(−ω + iη/M)] can be directly
calculated by applying the residue theorem (Thm. B.4.1) and Jordan’s lemma (Lem. B.4.1),
where the closing of the contour is done in the same way as in Ex. B.4.1 (noting that
η/M > 0). This gives

F−1

[
1

−Mω + iη
; t

]
= −2πi

M
e−

η
M

tΘ(t). (2.15)

Substituting Eqs. (2.14) and (2.15) into Eq. (2.13), gives

Qp(t) = f(t) ∗
{

1

M

[
Θ(t) ∗ e−

η
M

tΘ(t)
]}

. (2.16)

Finally, we apply Eq. (B.5) to calculate the inner convolution, which yields

Qp(t) = f(t) ∗
(

1

M

∫ t

0
dτe−

η
M

τ

)
=

1

η
f(t) ∗

(
1− e−

η
M

t
)
, (2.17)

where we implicitly assume that t > 0.
The homogeneous part of the solution, Qh(t), is found by solving the homogeneous equation
in Fourier space, namely (

−Mω2 + iηω
)
Q(ω) = 0, (2.18)

which has non-trivial solutions if

ω = 0 or ω =
η

M
i. (2.19)

This means that the homogeneous solution is given by

Qh(t) = F−1
[
Aδ(ω) +Bδ

(
ω − η

M
i
)
; t
]

= A+Be−
η
M

t, (2.20)
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where A and B are determined by initial conditions. Since, Qp(t ≤ 0) = 0, and Q(t) =
Qp(t) +Qh(t), we find

A = Q(0)−B and Q̇(0) = − η

M
B, (2.21)

which, if we take Q(0) = 0, yields {
B = −M

η Q̇(0),

A = M
η Q̇(0).

(2.22)

The full solution to the Langevin equation is the sum of the particular solution and the
homogeneous solution, which is thus given by

Q(t) =
1

η
f(t) ∗

(
1− e−

η
M

t
)
+

M

η
Q̇(0)

(
1− e−

η
M

t
)
, (2.23)

which is exactly the solution, see Eq. (2.6), that we obtained by using the Laplace trans-
form. This justifies the positive iϵ-interpretation used in Eq. (2.14).

2.2 Quantum Brownian motion: the Caldeira-Leggett model

In the Caldeira-Leggett model, we consider a particle with mass M and coordinate Q
coupled linearly to a bath of harmonic oscillators, each with mass mk, frequency ωk and
coordinates qk. A schematic overview of this model can be seen in Fig. 2.3. The Caldeira-
Leggett model is thus described by the Lagrangian

LCL = Lp + Lbath + Lint + LCT , (2.24)

where Lp describes the particle, Lbath accounts for the harmonic oscillators, Lint describes
the linear coupling between the particle and the harmonic oscillators, and LCT is a counter-
term, needed to renormalize the potential to which the particle is subject. Here,

Lp =
1

2
MQ̇2 − V (Q), (2.25)

Lbath =
1

2

N∑
k=1

mk(q̇
2
k − ω2

kq
2
k), (2.26)

Lint = Q
N∑
k=1

Ckqk, (2.27)

LCT = −1

2

N∑
k=1

C2
k

mkω
2
k

Q2. (2.28)
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CHAPTER 2. CLASSICAL AND QUANTUM BROWNIAN MOTION

Figure 2.3: A schematic representation of the Caldeira-Leggett model in which a
particle is coupled to a bath of harmonic oscillators.

It is not immediately clear that this Lagrangian is able to describe Brownian motion. The
justification of this model is given a posteriori, meaning that the Langevin equation will
come out of the equations of motions of this particular Lagrangian. The classical equations
of motions can be found through the Euler-Lagrange equations and are given by

MQ̈ = −V ′(Q) +
N∑
k=1

Ckqk −
N∑
k=1

C2
k

mkω
2
k

Q, (2.29)

mj q̈j = −mjω
2
j qj + CjQ. (2.30)

The goal is to end up with an equation that describes Brownian motion of the particle,
Q, namely the Langevin equation, see Eq. (2.2). Thus, we want to eliminate the bath out
of Eq. (2.29). To achieve this, we first solve Eq. (2.30). Taking the Laplace transform of
Eq. (2.30), which is defined in Sec. B.2 of App. B, gives

qj(s) =
q̇j(0)

s2 + ω2
j

+
sqj(0)

s2 + ω2
j

+
CjQ(s)

mj

(
s2 + ω2

j

)
=

q̇j(0)

s2 + ω2
j

+
sqj(0)

s2 + ω2
j

+
CjQ(s)

mj

(
1

ω2
j

− 1

ω2
j

s2

s2 + ω2
j

)
, (2.31)

where we used Lem. B.2.2 in the first line and in the last line we separated a term that will
cancel the term coming from LCT . Th solution in the time domain is obtained by taking
the inverse Laplace transform of Eq. (2.31), which results in

qj(t) =
q̇j(0)

ωj
sin (ωjt) + qj(0) cos (ωjt) +

CjQ(t)

mjω2
j

− L−1

[
CjQ(s)

mjω2
j

s2

s2 + ω2
j

; t

]
, (2.32)

14



CHAPTER 2. CLASSICAL AND QUANTUM BROWNIAN MOTION

where we used Eqs. (B.20) and (B.21). Next, we use two properties of the inverse Laplace
transform given by Eqs. (B.13) and (B.15), noting that we chose Q(0) = 0 since our system
is translation invariant. This yields

qj(t) =
q̇j(0)

ωj
sin (ωjt) + qj(0) cos (ωjt) +

CjQ(t)

mjω2
j

− d

dt
L−1

[
CjQ(s)

mjω2
j

s

s2 + ω2
j

; t

]

=
q̇j(0)

ωj
sin (ωjt) + qj(0) cos (ωjt) +

CjQ(t)

mjω2
j

− d

dt

[
CjQ(t)

mjω2
j

∗ cos (ωjt)

]
. (2.33)

Inserting the above solution into Eq. (2.29), gives

MQ̈+ V ′(Q) +
N∑
k=1

d

dt

[
C2
kQ(t)

mkω
2
k

∗ cos (ωkt)

]
=

N∑
k=1

Ck

[
q̇k(0)

ωk
sin (ωkt) + qk(0) cos (ωkt)

]
.

(2.34)

To simplify the above equation, we calculate the spectral function of the bath, which is
defined by

J(ω) ≡ ImF
{
−iθ(t− t′)⟨

[
F (t), F (t′)

]
⟩
}

(2.35)

where F (t) is the force exerted by the particle on the harmonic oscillators of the bath. The
spectral function can be more easily calculated as the imaginary part of the dynamical
susceptibility of F (ω) =

∑N
k=1Ckqk(ω). Taking the Fourier transform of equation (2.30)

yields

qj(ω) = −
Cj

mj(ω2 − ω2
j )
Q(ω). (2.36)

The above equation tells us that qj(ω) is a function of Q(ω). The dynamical susceptibility
is thus given by

χB(ω) ≡
∂F (ω)

∂Q(ω)

= −
N∑
k=1

C2
k

mk(ω2 − ω2
k)
. (2.37)

The Caldeira-Leggett spectral function is thus given by

JCL(ω) = Im [χB(ω)]

=
π

2

N∑
k=1

C2
k

mkωk
[δ(ω − ωk)− δ(ω + ωk)]

=
π

2

N∑
k=1

C2
k

mkωk
δ(ω − ωk), (2.38)
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where in the second line we used Eq. (B.43) and in the third line we imposed that physical
frequencies are positive, ω > 0, and ωk > 0 such that δ(ω + ωk) can be dropped. Now, we
can turn our focus back to Eq. (2.34), where we define the friction force as

Ffr ≡
N∑
k=1

d

dt

[
C2
kQ(t)

mkω
2
k

∗ cos (ωkt)

]
. (2.39)

To see why this is a friction force, we insert the Caldeira-Leggett spectral function that is
given by Eq. (2.38) into the above equation, finding

Ffr =
d

dt

{∫ t

0
dτ

∫ ∞

0
dω

N∑
k=1

C2
k

mkω
2
k

δ(ω − ωk) cos[ω(t− τ)]Q(τ)

}

=
2

π

d

dt

{∫ t

0
dτ

∫ ∞

0
dω

JCL(ω)

ω
cos[ω(t− τ)]Q(τ)

}
. (2.40)

To simplify the above expression, we assume an Ohmic bath, which means that the spectral
function can effectively be described by

JCL(ω) =

{
ηω for ω < Ω,

0 for ω > Ω,
(2.41)

where Ω is a high-frequency cut-off (Ω → ∞) and η the macroscopic friction coefficient.
The above function can also be seen in Fig. 2.4. Substituting Eq. (2.41) into Eq. (2.40)
gives

Ffr =
2η

π

d

dt

{∫ t

0
dτ

∫ ∞

0
dω cos[ω(t− τ)]Q(τ)

}
= 2η

d

dt

{∫ t

0
dτδ(t− τ)Q(τ)

}
= ηQ̇(t), (2.42)

where in the first line we used the cosine representation of the delta function and in the
third line we obtain a factor of 1/2 because the the evaluation of the delta function sits
exactly on the boundary1. This justifies our definition of Ffr since this reproduces the
classical form of a friction force under the Ohmic bath assumption. Turning our focus to
the RHS of Eq. (2.34), which we define to be a random white noise force,

f(t) ≡
N∑
k=1

Ck

[
q̇k(0)

ωk
sin (ωkt) + qk(0) cos (ωkt)

]
. (2.43)

1An intuitive way to see why this gives a factor of 1/2 is by considering the following:∫∞
−∞ dxδ(x − x0)g(x) =

∫ x0

−∞ δ(x − x0)g(x) +
∫∞
x0

dxδ(x − x0)g(x). Next, using the delta functions in the

usual way, gives us g(x0) = 2g(x0), such that you get an extra factor of 1/2 when using a delta function on
the boundary.
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1 2 3 4 5
ω

1

2

JCL(ω)

η

Ω

Figure 2.4: The spectral function of an Ohmic bath, which means that for frequencies
lower than a high frequency cut-off, Ω, the spectral function is given by JCL(ω) = ηω
and is zero for frequencies higher than the cut-off. JCL(ω) is measured in units of
1/η and we chose for Ω = 3.

We will show that this is indeed a white noise force by calculating its statistics. To do
this, we assume that the bath is in thermal equilibrium, such that in the classical limit the
equipartition theorem must hold (see Eqs. (2.7)). This implies that ⟨f(t)⟩ = 0. Focusing
our attention to the autocorrelator, we get

⟨f(t)f(t′)⟩ =

〈∑
kk′

CkCk′

[
q̇k(0)

ωk
sin (ωkt) + qk(0) cos (ωkt)

] [
q̇k′(0)

ωk′
sin (ωk′t

′) + qk′(0) cos (ωk′t
′)

]〉

=
∑
kk′

CkCk′

[
1

ωkωk′
⟨q̇k(0)q̇k′(0)⟩ sin(ωkt) sin(ωk′t

′) + ⟨qk(0)qk′(0)⟩ cos(ωkt) cos(ωk′t
′)

+
1

ωk
⟨q̇k(0)qk′(0)⟩ sin(ωkt) cos(ωk′t

′) +
1

ωk′
⟨qk(0)q̇k′(0)⟩ cos(ωkt) sin(ωk′t

′)

]
= kBT

∑
k

C2
k

mkω
2
k

[
sin(ωkt) sin(ωkt

′) + cos(ωkt) cos(ωkt
′)
]
, (2.44)
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where in third line we used Eqs. (2.7). Now, we can use the formula for the cosine of a
difference to get

⟨f(t)f(t′)⟩ = kBT
∑
k

C2
k

mkω
2
k

cos[ωk(t− t′)]

= kBT

∫ ∞

0
dω
∑
k

C2
k

mkω
2
k

cos[ω(t− t′)]

=
2kBT

π

∫ ∞

0
dω

JCL(ω)

ω
cos[ω(t− t′)], (2.45)

where, in the last line, we identified the form of the spectral function, given by Eq. (2.38).
Substituting the macroscopic form of this spectral function in the above equation, just as
for the friction force, yields

⟨f(t)f(t′)⟩ = 2ηkBT

π

∫ ∞

0
dω cos[ω(t− t′)] = 2ηkBTδ(t− t′). (2.46)

Finally, substituting Eqs. (2.42) and (2.43) into Eq. (2.34) gives

MQ̈+ V ′(Q) + ηQ̇ = f(t), (2.47)

with ⟨f(t)⟩ = 0 and ⟨f(t)f(t′)⟩ = 2ηkBTδ(t − t′). Thus, we see that Lagrangian (2.24)
is able to describe Brownian motion since in the semi-classical limit the Euler-Lagrange
equations yield the Langevin equation, see Eq. (2.2).
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Chapter 3

The Caldeira-Leggett model with
Weyl fractional coupling

This chapter consists of original work, developed by us. Here, we generalize the Caldeira-
Leggett model to be able to describe a whole family of anomalous diffusion, in particular
anomalous diffusion in fractals [14, 45]. Unlike previous works [22, 23, 25], we do this
without imposing a non-Ohmic macroscopic spectral function. Motivated by the general
velocity depended coupling in Ref. [36], we consider a fractional derivative coupling to the
bath. However, there are many different fractional derivatives and they are not all equiv-
alent to each other [25, 28, 29]. Therefore, they often lead to different results. The main
question then is: which fractional derivative should we chose? There are two motivations
that resolve this issue. The first is that we are interested in the dynamics of the particle
instead of equilibrium physics of the particle. The boundaries of the action are therefore
taken to be from negative infinity to positive infinity. It is then logical to take the bound-
aries of the fractional derivative to be the same. Another important argument that will
lead to one specific fractional derivative is that we would like to keep the Fourier transform
as a mathematical tool, since in physics this is extremely powerful. Therefore, we would
like a fractional derivative that is compatible with it. Because of these two reasons, we
chose for the Weyl fractional derivative. The definition and some of its properties are in-
troduced in Sec. 3.1. It turns out that every fractional derivative that is Fourier compatible
can be shown to be equivalent to the Weyl fractional derivative (for example the Liouville
fractional derivative in Ref. [25]). To study Lagrangians with Weyl fractional derivatives
in it, we derive the equations of motion for these types of Lagrangians in Sec. 3.2. These
will be called the Weyl fractional Euler-Lagrange equations. This is done in analogy with
Ref. [37], but then for Weyl fractional derivatives instead of the Riemann–Liouville ones.
Finally, in Sec. 3.3, we use the tools developed in the preceding sections to generalize the
Caldeira-Leggett model to a model with Weyl fractional coupling. With this model, we
are able to derive the Weyl fractional Langevin equation, which is solved in Sec. 3.4. The
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asymptotic behavior of the mean square displacement, which is a very important charac-
teristic of (anomalous) diffusion, is discussed in Sec. 3.5.

3.1 The Weyl fractional derivative

Although the Weyl fractional derivative has been mentioned briefly in the literature (see
Refs. [12, 23, 25, 46, 47, 48]), its mathematical exploration has been very limited, as far
as we are aware. In this section, we explore various novel properties and examples, one
of them being a partial integration formula for the Weyl fractional derivative, which turns
out to be of significant importance.

Definition 3.1.1. Let α ∈ R, f ∈ L2(R)1, then

W
+D

α
t f(t) = F−1 {(iω)αF [f(t);ω] ; t} (3.1)

is defined to be the Weyl fractional derivative of order α, where (iω)α is the complex power
function2.

Example 3.1.1. Let us calculate the Weyl fractional derivative of an exponential function.
Let a ∈ C, then

W
+D

α
t e

at = F−1
{
(iω)αF

[
eat;ω

]
; t
}

= F−1 {(iω)αδ(ω + ia); t}
= aαeat (3.2)

Definition 3.1.2. Let α ∈ R, f ∈ L2(R), then

W
−D

α
t f(t) = F−1 {(−iω)αF [f(t);ω] ; t} (3.3)

is called the pseudo Weyl fractional derivative of order α.

Example 3.1.2. Let us calculate the pseudo Weyl fractional derivative of an exponential
function. Let a ∈ C, then

W
−D

α
t e

at = F−1
{
(−iω)αF

[
eat;ω

]
; t
}

= F−1 {(−iω)αδ(ω + ia); t}
= (−a)αeat (3.4)

1Readers familiar with pseudo-differential operators will notice that the Weyl fractional derivative is a
pseudo-differential operator with symbol (iω)α. These operators can be defined on more general spaces
than L2(R) [46]. We will often not be too strict on which functions we apply these operators, as long as
they can make sense in terms of a function or distribution.

2See Sec. B.3 for its definition and some properties.
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Remark 3.1.1. Note that the combination W
−D

α
t

W
+D

α
t f(t) = F−1

{
|ω|2αF [f(t);ω] ; t

}
,

which is known as the fractional Laplacian [49, 50], denoted by (−□t)
2αf(t). Fractional

Laplacians were shown to be relevant to describe the quantum valley Hall effect in graphene [51],
as well as excitations in transition metal dichalcogenides [52, 53]. In particular, α = 1/4,
yields

W

−D
1
4
t

W

+D
1
4
t f(t) =

√
−□tf(t), (3.5)

which is encountered among others in the context of Pseudo QED [54, 55]. This theory
emerges from a projected QED [54] because in 2D systems like graphene, the dynamics of
the electrons is restricted to a 2D plane, whereas the photons intermediate their interactions
in 3D.

Example 3.1.3. The combination presented in Rem. 3.1.1 will often appear when working
with these operators. We thus also calculate this combination acting on an exponential
function. Let a ∈ C, then

W

−D
α
2
t

W

+D
α
2
t eat = F−1

{
|ω|αF

[
eat;ω

]
; t
}

= F−1 {|ω|αδ(ω + ia); t}
= |a|αeat (3.6)

Lemma 3.1.1. The (pseudo) Weyl fractional derivative is a linear operator. Let f, g ∈
L2(R), a, b ∈ C and α ∈ R, then

W
±D

α
t [af(t) + bg(t)] = aW

±D
α
t f(t) + bW

±D
α
t g(t). (3.7)

Proof.

The proof follows immediately from the definition of the (pseudo) Weyl fractional derivative
and linearity of integrals.

Lemma 3.1.2. The (pseudo) Weyl fractional derivative is a real operator, meaning that
for any f ∈ L2(R) and α ∈ R we have[

W
±D

α
t f(t)

]∗
= W

±D
α
t f(t). (3.8)
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Proof.

We have [
W
±D

α
t f(t)

]∗
=

[∫ ∞

−∞
dωeiωt(±iω)α

∫ ∞

−∞

dτ

2π
e−iωτf(τ)

]∗
=

∫ ∞

−∞
dωe−iωt(∓iω)α

∫ ∞

−∞

dτ

2π
eiωτf(τ)

=

∫ ∞

−∞
dωeiωt(±iω)α

∫ ∞

−∞

dτ

2π
e−iωτf(τ)

= W
±D

α
t f(t),

where in the second line we used that ω ∈ R, such that [(iω)α]∗ = (−iω)α and in the third
line we did the substitution ω → −ω.

Lemma 3.1.3. The Weyl fractional derivative and the pseudo Weyl fractional derivative
commute. That is, for f ∈ L2(R) and α, β ∈ R, we have

W

−D
α
t

W

+D
β
t f(t) =

W

+D
β
t

W

−D
α
t f(t). (3.9)

Proof.

By definition, we have
W

−D
α
t

W

+D
β
t f(t) = F−1

{
(−iω)αF

[
W
+D

α
t f(t);ω

]
; t
}

= F−1
{
(−iω)α(iω)βF [f(t);ω] ; t

}
= F−1

{
(iω)βF

[
W
−D

α
t f(t);ω

]
; t
}

=
W

+D
β
t

W

−D
α
t f(t).

Lemma 3.1.4. The (pseudo) Weyl fractional derivative satisfies the semigroup property,
meaning that its orders add up. That is, let f ∈ L2(R) and α, β ∈ R, then

W

±D
β
t

W

±D
α
t f(t) =

W

±D
α+β
t f(t). (3.10)
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Proof.

We directly see that
W

±D
β
t

W

±D
α
t f(t) = F−1

{
(±iω)α(±iω)βF [f(t);ω] ; t

}
= F−1

{
(±iω)α+βF [f(t);ω] ; t

}
=

W

±D
α+β
t f(t).

Lemma 3.1.5. Let f, g ∈ L2(R) and α ∈ R. Then, the (pseudo) Weyl fractional derivative
of a convolution satisfies

g(t) ∗ W
±D

α
t f(t) =

W
±D

α
t g(t) ∗ f(t) =

W
±D

α
t [g(t) ∗ f(t)] . (3.11)

Proof.

We have

F
[
g(t) ∗ W

±D
α
t f(t);ω

]
= F [g(t);ω]F

[
W
±D

α
t f(t);ω

]
= F [g(t);ω] (±iω)αF [f(t);ω]

= F
[
W
±D

α
t g(t);ω

]
F [f(t);ω]

= F
[
W
±D

α
t g(t) ∗ f(t);ω

]
.

Furthermore, we know that

F
{
W
±D

α
t [g(t) ∗ f(t)] ;ω

}
= F [g(t);ω] (±iω)αF [f(t);ω] .

Hence we conclude, by uniqueness of the Fourier transform, that

g(t) ∗ W
±D

α
t f(t) =

W
±D

α
t g(t) ∗ f(t) =

W
±D

α
t [g(t) ∗ f(t)] .

Theorem 3.1.1. (Weyl partial integration) Let f, g ∈ L2(R) and α ∈ R, then the
partial integration formula for the Weyl fractional derivative is given by∫ ∞

−∞
dtg(t)W+D

α
t f(t) =

∫ ∞

−∞
dtf(t)W−D

α
t g(t). (3.12)
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Proof.

We have∫ ∞

−∞
dtg(t)W+D

α
t f(t) =

∫ ∞

−∞
dtg(t)

∫ ∞

−∞
dωeiωt(iω)α

1

2π

∫ ∞

−∞
dτe−iωτf(τ)

=

∫ ∞

−∞
dτf(τ)

∫ ∞

−∞
dωeiωτ (−iω)α 1

2π

∫ ∞

−∞
dte−iωtg(t)

=

∫ ∞

−∞
dtf(t)W−D

α
t g(t),

where, in the second line, we made the substitution ω → −ω and in the last line we re-
named t←→ τ .

Remark 3.1.2. Notice that we needed the pseudo Weyl fractional derivative for this par-
tial integration formula. Since (iω)α is the complex power function, its impossible to get
a partial integration formula with only the Weyl fractional derivative in it. This arises
because, using Thm. B.3.1, we have

(−iω)α = (−1)α(iω)αe2πiαN+ with N+ =

{
−1 if sign(ω) = 1,

0 if sign(ω) = −1.

This means that we would have to split the integral based on the sign of ω, thus not obtaining
the Weyl fractional derivative again.

3.2 The Weyl fractional Euler-Lagrange equation

In the previous section, we were able to derive a partial integration formula for the (pseudo)
Weyl fractional derivatives (see Thm. 3.1.1). This means that now we have the tools needed
to derive the equations of motions of Lagrangians that are dependent on (pseudo) Weyl
fractional derivatives, which will be done in this section. We will call them the Weyl
fractional Euler-Lagrange equations, which are, to the best of our knowledge, not yet
known in the literature.

Theorem 3.2.1. (The Weyl fractional Euler-Lagrange equation)
Consider the following action

S[y] =

∫ ∞

−∞
dtL

(
t, y(t),W+D

α1
t y(t), ...,W+D

αn
t y(t), ...,

W

−D
β1
t y(t), ...,

W

−D
βm
t y(t)

)
, (3.13)
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where y ∈ L2(R), αk
′s, βj

′s ∈ R0 and all αk
′s, βj

′s are different. Minimizing S[y] with
respect to y leads to the Weyl fractional Euler-Lagrange equation, which is given by

∂L

∂y
+

n∑
k=1

W
−D

αk
t

∂L

∂ W
+D

αk
t y

+
m∑
j=1

W

+D
βj

t

∂L

∂
W

−D
βj

t y
= 0. (3.14)

Proof.

Taking a variation of this action gives

δS[y] =

∫ ∞

−∞
dt

∂L

∂y
δy +

n∑
k=1

∂L

∂ W
+D

αk
t y

δW
+D

αk
t y +

m∑
j=1

∂L

∂
W

−D
βj

t y
δ
W

−D
βj

t y

 .

Swapping the order of the variation and the fractional derivatives and applying Thm. 3.1.1,
yields

δS[y] =

∫ ∞

−∞
dt

∂L

∂y
+

n∑
k=1

W
−D

αk
t

∂L

∂ W
+D

αk
t y

+
m∑
j=1

W

+D
βj

t

∂L

∂
W

−D
βj

t y

 δy, ∀δy.

Setting the above equation equal to zero implies

∂L

∂y
+

n∑
k=1

W
−D

αk
t

∂L

∂ W
+D

αk
t y

+

m∑
j=1

W

+D
βj

t

∂L

∂
W

−D
βj

t y
= 0.

Remark 3.2.1. Usually, Lagrangians of the form L
(
y(t), ẏ(t),W+D

α
t y(t)

)
will be consid-

ered. This implies that the fractional Euler-Lagrange equation reduces to

∂L

∂y
− d

dt

∂L

∂ẏ
+ W

−D
α
t

∂L

∂ W
+D

α
t y

= 0. (3.15)

One must be careful with taking the limits α → 0 and α → 1 because overcounting will
happen. It is therefore important to fully understand the proof of Thm. (3.14). This means
that in the limits α→ 0, 1, the last term in Eq. (3.15) should be ignored since it is already
included in the first two terms of Eq. (3.15). In this way, the usual Euler-Lagrange equations
are recovered in the limits α → 0, 1. Note that overcounting is not a problem as soon as
one specifies a Lagrangian explicitly.

Remark 3.2.2. If we have a Lagrangian of the form L
(
t, y(t),W+D

α
t y(t)

)
and we take

α = 1, implying that W
+D

α
t = d/dt and W

−D
α
t = −d/dt, the standard Euler-Lagrange

equation is recovered.
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3.3 Derivation of the Weyl fractional Langevin equation

3.3.1 The fractional Caldeira-Leggett model: fractional system-bath cou-
pling

In our nomenclature the fractional Caldeira-Leggett model, denoted by LFCL, is an exten-
sion of the Caldeira-Leggett model described by the Lagrangian in Eq. (2.24) in which a
modified interaction term is introduced in the Lagrangian. This modification allows the
model to be interpreted as the Caldeira-Leggett model, with the exception that the inter-
action between the particle and the bath is altered by a ’fraction’. The rational behind
this modification is that the particle and the bath remain exactly the same, however the
interaction between them changes. This could be attributed to several external factors,
such as the geometry in which the particle or bath resides. We thus consider

LFCL = Lp + Lbath + Lint + LCT (3.16)

where

Lp =
1

2
MQ̇2 − V (Q), (3.17)

Lbath =
1

2

N∑
k=1

mk(q̇
2
k − ω2

kq
2
k), (3.18)

Lint =
W
+D

α
t Q

N∑
k=1

Ckqk. (3.19)

Here, Q is the coordinate of the system, M is the mass of the system, V (Q) is the potential
that the system undergoes, qk are the bath coordinates (which are subject to a harmonic
potential), each having mass mk, α ∈ R is the order of the fractional derivative and LCT is
the counter-term Lagrangian, which renormalizes the potential and is independent of the
bath coordinates.
LCT is obtained by making sure that the system Q is subject to the potential V and not

some shifted potential. Therefore, we need to impose that ∂L/∂Q
!
= −∂V/∂Q. To do this,

we first set

0 =
∂L

∂qj
= −mjω

2
j qj + Cj

W
+D

α
t Q, (3.20)

because we want the bath to be non-interacting, meaning that no particle of the bath
should feel any potential. This then implies that

qj =
Cj

mjω2
j

W
+D

α
t Q. (3.21)
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Now, we can find the minimum of L with respect to Q, which we want to be at the minimum
of the potential, such that

∂L

∂Q
= −∂V

∂Q
+

∂

∂Q

(
W
+D

α
t Q
) N∑

k=1

Ckqk +
∂LCT

∂Q

!
= −∂V

∂Q
. (3.22)

Upon substituting Eq. (3.21) into Eq. (3.22), we obtain

∂LCT

∂Q
= − ∂

∂Q

(
W
+D

α
t Q
)

W
+D

α
t Q

N∑
k=1

C2
k

mkω
2
k

= −1

2

∂

∂Q

(
W
+D

α
t Q
)2 N∑

k=1

C2
k

mkω
2
k

. (3.23)

Therefore, we choose

LCT = −1

2

N∑
k=1

C2
k

mkω
2
k

(
W
+D

α
t Q
)2

. (3.24)

Now, we can begin studying the equations of motion, starting with the Euler-Lagrange
equations for the bath, which are given by

mj q̈j = −mjω
2
j qj + Cj

W
+D

α
t Q. (3.25)

Taking the Fourier transform of this equation yields the particular solution, qpj (t),

qpj (ω) = −
Cj

mj(ω2 − ω2
j )
(iω)αQ(ω). (3.26)

In real space, this can be written as

qpj (t) = −F
−1

[
Cj

mj(ω2 − ω2
j )
(iω)αQ(ω); t

]

= F−1

{
(iω)αCj

mjω2
j

[
1− ω2

ω2 − ω2
j

]
Q(ω); t

}

=
Cj

mjω2
j

{
W
+D

α
t Q(t)− F−1

[
(iω)α

ω2

ω2 − ω2
j

Q(ω); t

]}

=
Cj

mjω2
j

{
W
+D

α
t Q(t) +

d2

dt2
F−1

[
(iω)α

1

ω2 − ω2
j

Q(ω); t

]}

=
Cj

mjω2
j

{
W
+D

α
t Q(t) +

1

2π

d2

dt2
F−1

[
1

ω2 − ω2
j

; t

]
∗ F−1 [(iω)αQ(ω); t]

}
, (3.27)
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where in the second line we separated a term that will cancel the term coming from LCT

and in the last line we used Lem. B.1.4. We can further simplify the above expression by
making use of

F−1

[
1

ω2 − ω2
j

; t

]
= − 1

2ωj

{
F−1

[
1

ω + ωj
; t

]
− F−1

[
1

ω − ωj
; t

]}
= −2π

ωj
sin(ωjt)Θ(t), (3.28)

where in the last line we interpreted the inverse Fourier integrals in the positive iϵ-
interpretation, which allowed us to use Eq. (B.32). The positive iϵ-interpretation is jus-
tified, since in the limit of α → 0 we would like to recover the usual Caldeira-Leggett
model. The physical justification is the same as in Sec. 2.1.3, namely that the particle is
only put in the bath after time t = 0. Therefore, the interaction term should not have an
impact before t = 0. A Heaviside function, which automatically comes out of the positive
iϵ-interpretation, ensures that the coupling between the bath and the particle occurs after
t = 03. Substituting the above equation into Eq. (3.27) yields

qpj (t) =
Cj

mjω2
j

{
W
+D

α
t Q(t)− 1

ωj

d2

dt2
sin(ωjt)Θ(t) ∗ W

+D
α
t Q(t)

}
=

Cj

mjω2
j

{
W
+D

α
t Q(t)− d

dt

[
cos(ωjt)Θ(t) +

1

ωj
sin(ωjt)δ(t)

]
∗ W

+D
α
t Q(t)

}
=

Cj

mjω2
j

{
W
+D

α
t Q(t)− d

dt
cos(ωjt)Θ(t) ∗ W

+D
α
t Q(t)

}
=

Cj

mjω2
j

{
W
+D

α
t Q(t)− d

dt
W
+D

α
t [cos(ωjt)Θ(t) ∗Q(t)]

}
, (3.29)

where in the second line we acted with a derivative on sin(ωjt)Θ(t) and used the fact that
d/dt[Θ(t)] = δ(t) which results in a term of the form δ(t) sin(ωkt) ∗Q(t) ∼ sin(0) = 0, and
in the last line we used Lem. 3.1.5. The homogeneous part of the solution is given by

qhj (t) = A cos(ωjt) +B sin(ωjt), (3.30)

where A and B are constants determined by initial conditions. Thus, we have

qj(t) = qpj (t) + qhj (t) =
Cj

mjω2
j

{
W
+D

α
t Q(t)− d

dt
W
+D

α
t [cos(ωjt)Θ(t) ∗Q(t)]

}
+A cos(ωjt) +B sin(ωjt),

(3.31)

3The first term in Eq. (3.27) still shows a coupling between the bath and the particle, even for t < 0.
However, this term will exactly cancel the term coming from LCT such that it has no contribution in the
equation of motion of the particle.
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with A and B determined by initial conditions. After this analysis of the equations of
motion for the bath, we can write the Weyl fractional Euler-Lagrange equation for the
system. By applying Eq. (3.15) to Eq. (3.16), with LCT given by Eq. (3.24), we get

MQ̈(t) = −∂V (Q)

∂Q
+

N∑
k=1

[
Ck

W
−D

α
t qk(t)−

C2
k

mkω
2
k

W
−D

α
t

W
+D

α
t Q(t)

]
. (3.32)

Eliminating now the bath coordinates by inserting Eq. (3.31) into (3.32), we obtain

MQ̈(t) +
∂V (Q)

∂Q
= −

N∑
k=1

C2
k

mkω
2
k

d

dt
W
−D

α
t

W
+D

α
t [cos(ωkt)Θ(t) ∗Q(t)]

+ CkA
W
−D

α
t cos(ωkt) + CkB

W
−D

α
t sin(ωkt).

(3.33)

Next, we continue in the same way as we did for the Caldeira-Leggett model. We calculate
the spectral function associated with Lagrangian (3.16). The force coming from the inter-
action term in Fourier space is this time given by F (ω) = (iω)α

∑N
k=1Ckqk(ω). Eq. (3.31)

tells us that qk(ω) is a function of Q(ω). On closer inspection, one sees that only the par-
ticular solution is depended on Q(t), meaning that Eq. (3.26) can be used. The dynamical
susceptibility is thus given by

χB(ω) ≡
∂F (ω)

∂Q(ω)

= −
N∑
k=1

C2
k(iω)

2α

mk(ω2 − ω2
j )
, (3.34)

where we also used the addition property of the complex power function, see Thm. B.3.1.
Writing (iω)2α = |ω|2αe2αiarg(iω) = |ω|2αeαiπsign(ω) = |ω|2α [cos(απ) + i sign(ω) sin(απ)]
yields

χB(ω) = −
N∑
k=1

|ω|2α [cos(απ) + i sign(ω) sin(απ)]
C2
k

mk(ω2 − ω2
j )
. (3.35)

Using Eq. (B.43) and (B.44), the spectral function becomes

J(ω) = Im [χB(ω)] =
π

2
|ω|2α cos(πα)

N∑
k=1

C2
k

mkωk
[δ(ω − ωk)− δ(ω + ωk)]

=
π

2
ω2α cos(πα)

N∑
k=1

C2
k

mkωk
δ(ω − ωk)

= ω2α cos(πα)JCL(ω), (3.36)
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where in the second line we imposed that physical frequencies are positive, ω > 0, and
ωk > 0. In the last line we identified the usual Caldeira-Leggett spectral function given by
Eq. (2.38).

Remark 3.3.1. This already gives a hint that Lagrangian (3.16) will be able to describe
anomalous diffusion without imposing a non-Ohmic macroscopic spectral function, since
the microscopic spectral function has a non-Ohmic prefactor ω2α.

Remark 3.3.2. In the limit of α → 0, which is the limit for the usual Caldeira-Leggett
model, we get the Caldeira-Leggett spectral function.

Returning back to Eq. (3.33), we define the friction force Ffr(t) and the fluctuating force
f(t) by

Ffr(t) ≡
N∑
k=1

C2
k

mkω
2
k

d

dt
W
−D

α
t

W
+D

α
t [cos(ωkt)Θ(t) ∗Q(t)] , (3.37)

f(t) ≡
N∑
k=1

Ck
W
−D

α
t [A cos(ωkt) +B sin(ωkt)] . (3.38)

Remark 3.3.3. Note that in the limit of α→ 0, we get exactly the same friction and fluctu-
ating forces as in the usual Caldeira-Leggett model, which are given by Eq. (2.39) and (2.43),
respectively.

3.3.2 The friction force

Starting with the friction force, we can insert Eq. (2.38) into Eq. (3.37) to get

Ffr =
N∑
k=1

C2
k

mkω
2
k

d

dt
W
−D

α
t

W
+D

α
t [cos(ωkt)Θ(t) ∗Q(t)]

=
d

dt
W
−D

α
t

W
+D

α
t

∫ t

0
dτ

∫ ∞

0
dω

{
1

ω

N∑
k=1

C2
k

mkωk
δ(ω − ωk) cos[ω(t− τ)]Q(τ)

}

=
2

π

d

dt
W
−D

α
t

W
+D

α
t

∫ t

0
dτ

∫ ∞

0
dω

JCL(ω)

ω
cos[ω(t− τ)]Q(τ). (3.39)

To convince ourselves that the above actually is a friction term, we need to gain more
knowledge of JCL(ω). The spectral function tells us how the system reacts to a given
frequency. It is thus logical that JCL(0) = 0. Therefore, we can do a linear taylor approx-
imation of JCL(ω) to get linear behavior. We can thus take the Caldeira-Leggett spectral
function to be Ohmic, which means that this spectral function can effectively be described
as

JCL(ω) =

{
ηω for ω < Ω,

0 for ω > Ω,
(3.40)
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where Ω is a high-frequency cut-off (Ω → ∞) and η the macroscopic friction coefficient.
We then get

Ffr =
2η

π

d

dt
W
−D

α
t

W
+D

α
t

{∫ t

0
dτ

∫ ∞

0
dω cos[ω(t− τ)]Q(τ)

}
= 2η

d

dt
W
−D

α
t

W
+D

α
t

[∫ t

0
dτδ(t− τ)Q(τ)

]
= ηW

−D
α
t

W
+D

α
t Q̇(t), (3.41)

where, like in the calculation for the Caldeira-Leggett friction term, the delta function is
evaluated at the boundary. This gives an extra factor of 1/2. Eq. (3.41) reduces to a
normal friction term in the limit of α→ 0, which is indeed when our model should reduce
to the normal Caldeira-Leggett model.

3.3.3 The fluctuating force

The first step is to determine the constants A and B in Eq. (3.31). This is done by only
coupling the particle coordinate Q(t) to the bath after t = 0, such that A and B can simply
be found by inserting t = 0 in Eq. (3.30). We thus find{

A = qj(0),

B =
q̇j(0)
ωj

.
(3.42)

Inserting this into Eq. (3.38), we get

f(t) =
N∑
k=1

Ck
W
−D

α
t

[
qk(0) cos(ωkt) +

q̇k(0)

ωk
sin(ωkt)

]
. (3.43)

Proceeding analogously to the calculation done in Sec. 2.2, we find that

⟨f(t)⟩ = 0, (3.44)

⟨f(t)f(t′)⟩ = 2ηkBT
W
−D

α
t

W
−D

α
t′δ(t− t′). (3.45)

In practice, Eq. (3.45) should be seen as a distribution defined through the Weyl fractional
partial integration formula, see Thm. 3.1.1. However, we will show that Eq. (3.45) is
actually colored noise. Using the definition of the pseudo Weyl fractional derivative acting
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on the Fourier representation of the delta function, we get

W
−D

α
t

W
−D

α
t′δ(t− t′) =

∫ ∞

−∞

dω

2π
W
−D

α
t e

iωt W
−D

α
t′e

−iωt

=

∫ ∞

−∞

dω

2π
eiω(t−t′)|ω|2α

=
1

2π

∫ ∞

0
dω
[
eiω(t−t′)ω2α + e−iω(t−t′)ω2α

]
=

1

2π

{
M
[
eiω(t−t′); 2α+ 1

]
+M

[
e−iω(t−t′); 2α+ 1

]}
=

1

2π

[
(−i)−2α−1 + i−2α−1

] (
t− t′

)−2α−1
Γ(2α+ 1)

=
sin(πα)Γ(2α+ 1)

π

(
t− t′

)−2α−1
, (3.46)

where in the first line we used the Fourier representation of the delta function, in the
second line we used the result from Ex. 3.1.2, in the fourth line we identified the Mellin
transform of the exponential function and in the fifth line we used Eq. (B.65), justified by
Rem. B.7.3. Note that this representation of colored noise is only valid for (2α + 1) > 0,
which can be deduced from the convergence of the used Mellin transforms, see Eq. (B.65).

3.3.4 The Weyl fractional Langevin equation

Finally, substituting Eqs. (3.41) and (3.43) into Eq. (3.33) yields

MQ̈(t) +
∂V (Q)

∂Q
+ ηW

−D
α
t

W
+D

α
t Q̇(t) = f(t), (3.47)

with ⟨f(t)⟩ = 0 and ⟨f(t)f(t′)⟩ = 2ηkBT
W
−D

α
t

W
−D

α
t′δ(t− t′).

Remark 3.3.4. Note that just by changing the coupling to the bath, we managed to obtain
a modified version of the Langevin equation that we call the Weyl fractional Langevin
equation. There was no need to assume a non-Ohmic bath explicitly.

3.4 Solution of the Weyl fractional Langevin equation for
the free case

The free case of Eq. (3.47) is obtained by setting V = 0, leading to

MQ̈(t) + ηW
−D

α
t

W
+D

α
t Q̇(t) = f(t), (3.48)
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with ⟨f(t)⟩ = 0 and ⟨f(t)f(t′)⟩ = 2ηkBT
W
−D

α
t

W
−D

α
t′δ(t − t′). The particular solution,

Qp(t), of Eq. (3.48) for the case V (Q) = 0 is found by taking the Fourier transform on
both sides of the equation, yielding

Qp(ω) =
f(ω)

−Mω2 + ηiω|ω|2α
. (3.49)

Taking the inverse Fourier transforms gives

Qp(t) = F−1

[
f(ω)

−Mω2 + ηiω|ω|2α
; t

]
=

1

2π
f(t) ∗ F−1

(
1

−Mω2 + ηiω|ω|2α
; t

)
, (3.50)

where in the last line we used Lem. B.1.4.

Remark 3.4.1. When comparing Eq. (3.50) with the particular solution of the normal
Langevin equation, given by Eq. (2.13), we see that the structure of the solution remains the
same. The only difference between the two solutions is the term |ω|2α. Despite its innocent
appearance, including the factor |ω|2α results in the need to understand Secs. B.5, B.6, B.7
and B.8.

Now, we need to find the homogeneous solution, Qh(t). Therefore, we solve the homoge-
neous equation in Fourier space, namely

ω
(
−Mω + ηi|ω|2α

)
= 0. (3.51)

The above equation then implies that either

ω = 0 or that ω = i
η

M
|ω|2α. (3.52)

Eq. (3.52) can be solved by using polar coordinates. We substitute ω = Reiθ with R ∈ R
and 0 ≤ θ < 2π into Eq. (3.52) which gives

Reiθ = i
η

M
R2α. (3.53)

It is clear that the above equation implies that eiθ = i and

R =
η

M
R2α. (3.54)

We solve the above equation by the following anzats: R = (η/M)b. Substituting this anzats
into Eq. (3.54) yields ( η

M

)b
=
( η

M

)2αb+1
, (3.55)
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which implies that

b =
1

1− 2α
. (3.56)

We thus finally obtain that Eq. (3.51) is solved by

ω = 0 or ω = i
( η

M

) 1
1−2α

. (3.57)

This means that

Qh(t) = F−1

{
Aδ(ω) +Bδ

(
ω − i

( η

M

) 1
1−2α

)}
= C +Dexp

[
−t
( η

M

) 1
1−2α

]
(3.58)

where C and D are constants that will be determined later. One could substitute this
solution back into the homogeneous equation and use the result from Ex. 3.1.3 to verify
that this indeed solves the homogeneous equation.

Remark 3.4.2. When we compare Eq. (3.58) with the homogeneous solution in the case of
the normal Langevin, namely Eq. (2.20), we notice that the solution has the same structure,
the only difference is a rescaling of the friction coefficient and of the mass. Since we
obtained the solution given by Eq. (3.58) through an ansatz, it is still uncertain whether it
constitutes the complete homogeneous solution or if there are missing terms in it.

Next, we combine Eqs. (3.50) and (3.58), which gives the full solution, namely

Q(t) = Qp(t) +Qh(t)

=
1

2π
f(t) ∗ F−1

(
1

−Mω2 + ηiω|ω|2α
; t

)
+ C +Dexp

[
−t
( η

M

) 1
1−2α

]
. (3.59)

To determine the constants, C and D, we work in the same way as for the fluctuating
force. We say that the particle coordinate Q(t) is only coupled to the bath for t > 0, such
that we can take f(0) = 0 and ḟ(0) = 0. This implies that C and D are only determined
by the homogeneous part in Eq. (3.59), leading toC = Q(0) + Q̇(0)

(
M
η

) 1
1−2α

,

D = −Q̇(0)
(
M
η

) 1
1−2α

.

(3.60)

Since our system is translation invariant, we can chose for simplicity Q(0) = 0. Eq. (3.59)
then becomes

Q(t) =
f(t)

2π
∗ F−1

(
1

−Mω2 + ηiω|ω|2α
; t

)
+ Q̇(0)

(
M

η

) 1
1−2α

{
1− exp

[
−t
( η

M

) 1
1−2α

]}
.

(3.61)
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Next, we are interested in the mean squared displacement,

〈
Q(t)2

〉
=

〈(
1

2π

∫ t

0
dτf(t− τ)F−1

(
1

−Mω2 + ηiω|ω|2α
; τ

)
+ Q̇(0)

(
M

η

) 1
1−2α

{
1− exp

[
−t
( η

M

) 1
1−2α

]})2〉
. (3.62)

We can now use the linearity of the ensemble averages and the fact that ⟨f(t)Q̇(0)⟩ =
⟨f(t)⟩ = 0, ⟨Q̇(0)2⟩ = kBT/M , and ⟨f(t)f(t′)⟩ = 2ηkBT

W
−D

α
t

W
−D

α
t′δ(t− t′) to obtain

〈
Q(t)2

〉
=

ηkBT

2π2

∫ t

0
dτ

∫ t

0
dτ ′ W−D

α
τ

W
−D

α
τ ′δ
(
τ − τ ′

)
F−1

(
1

−Mω2 + ηiω|ω|2α
; τ

)
×

× F−1

(
1

−Mω2 + ηiω|ω|2α
; τ ′
)
+

kBT

M

(
M

η

) 2
1−2α

{
1− exp

[
−t
( η

M

) 1
1−2α

]}2

.

(3.63)

Next, we can do partial integration of the pseudoWeyl fractional derivatives (see Thm. 3.1.1),
which allows us to use the delta function, thus obtaining

〈
Q(t)2

〉
=

ηkBT

2π2

∫ t

0
dτ

[
W
+D

α
τ F

−1

(
1

−Mω2 + ηiω|ω|2α
; τ

)]2
+

kBT

M

(
M

η

) 2
1−2α

{
1− exp

[
−t
( η

M

) 1
1−2α

]}2

=
ηkBT

2π2

∫ t

0
dτ

{
F−1

[
(iω)α

−Mω2 + ηiω|ω|2α
; τ

]}2

+
kBT

M

(
M

η

) 2
1−2α

{
1− exp

[
−t
( η

M

) 1
1−2α

]}2

, (3.64)

where in the last line we used the definition of the Weyl fractional derivative.

3.5 Asymptotic expansions of the mean squared displace-
ment

The goal of this section is to determine the short-and long-time behavior of the solution
found in the previous section, see Eq. (3.64). To answer this question, we need to under-
stand the asymptotic behavior of the inverse Fourier integral, given by

I(t) ≡ F−1

[
(iω)α

−Mω2 + ηiω|ω|2α
; t

]
=

∫ ∞

−∞
dωeiωt

(iω)α

iηω|ω|2α −Mω2
. (3.65)
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The first instinct that one might have is to discard one of the two terms in the denominator
based on if η/M is either big or small. At first glance this looks similar to the approxima-
tions used in Eq. (2.10) and (2.11). However, this turns out to give wrong results. The key
difference with this approximation and the one we used in Eq. (2.10) and (2.11), is that in
those equations we compared t with η/M . Because of this, it is clear that taking η/M to
be big or small corresponds to short time and long times respectively. In Eq. (3.65), it is
not clear if those limits would still correspond to the same short and long time behavior
since those parameters are not directly compared with t. Because of this we have to use
a different method to find the asymptotic expansions of Eq. (3.65). We chose to derive
an equivalence between this integral and a special function known as the Fox H-function.
This is done because the asymptotic expansions are known for the Fox H-functions. To
achieve this equivalence, we use the following steps:

1. Simplify Eq. (3.65) by using properties of the Fourier transform4.

2. Take the Mellin transform5 of the simplified expression.

3. Write this in a form that is compatible with the definition of the Fox H-function6.

4. Take the inverse Mellin transform.

5. Identify the definition of a specific Fox-H function.

6. Use the known asymptotic expansions of the Fox H-function to get the asymptotic
expansions of the mean squared displacement.

Steps 2-5 are inspired by Ref. [56].

3.5.1 Writing the Fourier integral as a Fox-H function

First, we simplify I(t) as

I(t) = F−1

[
(iω)α

−Mω2 + ηiω|ω|2α
; t

]
=

1

2π
F−1

[
1

ω
; t

]
∗ F−1

[
(iω)α

−Mω + ηi|ω|2α
; t

]
= iΘ(t) ∗ F−1

[
(iω)α

−Mω + ηi|ω|2α
; t

]
≡ iΘ(t) ∗ I ′(t), (3.66)

4See Sec. B.1 of App. B.
5See Sec. B.7 of App. B.
6See Sec. B.8 of App. B.
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where in the second line we used Lem. B.1.4 and in the third line we interpreted this
integral in the positive iϵ-interpretation for the same reason as was done in Eq. (2.14).
Secondly, we take the Mellin transform of I ′(t), which gives

F (s) ≡M
[
I ′(t); s

]
=

∫ ∞

0
dtts−1

∫ ∞

−∞
dωeiωt

(iω)α

iη|ω|2α −Mω

=
1

M
Γ(s)

∫ ∞

−∞
dω

(iω)α (−iω)−s

i η
M |ω|2α − ω

, (3.67)

where in the last line we used the result of Ex. B.7.1, which is allowed (see Rem. B.7.2).
This already gives a restriction on s, namely Re(s) > 0. Next, we apply the definition of
the complex power function together with the fact that ω ∈ R, which results in

F (s) =
1

M
Γ(s)

∫ ∞

−∞
dω
|ω|α−searg(iω)iα−arg(−iω)is

i η
M |ω|2α − ω

=
1

M
Γ(s)

∫ ∞

−∞
dω
|ω|α−seiarg(iω)(α+s)

i η
M |ω|2α − ω

. (3.68)

We can further simplify the above equation by splitting the integral in its positive part
and negative part Doing the substitution ω → −ω in the latter yields

F (s) =
1

M
Γ(s)

[
ei

π
2
(α+s)

∫ ∞

0
dω

ωα−s

i η
M ω2α − ω

+ e−iπ
2
(α+s)

∫ ∞

0
dω

ωα−s

i η
M ω2α + ω

]
=

1

M
Γ(s)

[
e−iπ

2
(α+s)

∫ ∞

0
dω

ωα−s−1

1 + i η
M ω2α−1

− ei
π
2
(α+s)

∫ ∞

0
dω

ωα−s−1

1− i η
M ω2α−1

]
=

Γ(s)

M |2α− 1|

[
e−iπ

2
(α+s)

(
i
η

M

) s−α
2α−1 − ei

π
2
(α+s)

(
−i η

M

) s−α
2α−1

]
Γ

(
α− s

2α− 1

)
Γ

(
1− α− s

2α− 1

)
=

1

M |2α− 1|

( η

M

) s−α
2α−1

[
e
−iπ

2

(
s+ 2α2

2α−1

)
− e

iπ
2

(
s+ 2α2

2α−1

)]
Γ(s)Γ

(
α− s

2α− 1

)
Γ

(
1− α− s

2α− 1

)
= − 2i

M |2α− 1|

( η

M

) s−α
2α−1

sin

[
π

2

(
s+

2α2

2α− 1

)]
Γ(s)Γ

(
α− s

2α− 1

)
Γ

(
1− α− s

2α− 1

)
,

(3.69)

where in the third line we applied the result of Ex. B.7.2 to each term separately, which
we can do because of Rem. B.7.4. However, using this example restricts the values of s
even further. The additional constraint reads 0 < Re [(α− s)/(2α− 1)] < 1. Together
with the previous constraint that we already had, Re(s) > 0, we get three different regions
of convergence that are important to define the inverse Mellin transform (see Def. B.7.2).
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Just like in the definition we call them fundamental strips (FS) and they are given by

FS =


S(0, α) if α > 1,

S(1− α, α) if 1
2 < α < 1,

S(0, 1− α) if α < 1
2 .

(3.70)

Remark 3.5.1. Note that the only two cases that are left out are α = 1/2 and α = 1 both
of which can be easily worked out separately. Therefore we restrict from now on the values
of α ̸= 1/2, 1.

Finally, we use Euler’s reflection formula, which is given by Lem. B.5.1, to get

F (s) = − 2πi

M |2α− 1|

( η

M

) s−α
2α−1

Γ(s)Γ
(

α−s
2α−1

)
Γ
(
1− α−s

2α−1

)
Γ
(

α2

2α−1 + s
2

)
Γ
(
1− α2

2α−1 −
s
2

) . (3.71)

Since the inverse Mellin transform depends on the fundamental strip and the definition
of the Fox H-function is depended on the sign of the factor 2α − 1, we will now split the
calculation in three cases.

The first fundamental strip, S(0, α)

Taking the above fundamental strip to be S(1, α) means that we restrict α > 1, implying
that (2α− 1) > 0. Next, we note that in Def. B.8.1 some parameters have to be positive.
The reason for this is that the contour in Def. B.8.1 has to split the poles in a certain way.
The pole structure for α = 1.23 can be seen in Fig. 3.1. Therefore, we rewrite Eq. (3.71)
into

F (s) = − 2πi

M |2α− 1|

( η

M

) s−α
2α−1

Γ(s)Γ
(
1− α−1

2α−1 −
s

2α−1

)
Γ
(

α−1
2α−1 + s

2α−1

)
Γ
(

α2

2α−1 + s
2

)
Γ
(
1− α2

2α−1 −
s
2

) . (3.72)

Now, we can take the inverse Mellin transform of the above, see Def. B.7.2, which results
in

I ′(t) = M−1 [F (s); t]

=
1

2πi

∫ a+i∞

a−i∞
dsF (s)t−s

= − 2πi

M |2α− 1|

( η

M

)− α
2α−1 1

2πi

∫ a+i∞

a−i∞
ds

[( η

M

) 1
1−2α

t

]−s

×

×
Γ(s)Γ

(
− 1

2α−1 + 2s
2α−1

)
Γ
(
1−

[
−1

2α−1

]
− 2s

2α−1

)
Γ
(
1− α−1

2α−1 −
s

2α−1

)
Γ
(

α−1
2α−1 + s

2α−1

) , (3.73)
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where a ∈ S(0, α). Finally, we identify the following Fox-H function

I ′(t) = − 2πi

M |2α− 1|

( η

M

)− α
2α−1

H21
23

( η

M

) 1
1−2α

t

∣∣∣∣∣∣
(

α−1
2α−1 ,

1
2α−1

)
,
(

α2

2α−1 ,
1
2

)
(0, 1)

(
α−1
2α−1 ,

1
2α−1

)
,
(

α2

2α−1 ,
1
2

)  ,

(3.74)

which can be verified using Def. B.8.1.

The second fundamental strip, S(1− α, α)

This case is very similar to the one we had for the first fundamental strip, the only difference
being that the integration in the inverse Mellin transform is inside the strip S(1 − α, α)
instead of S(0, α). Thus we can safely say that the results from the first fundamental strip
are also valid for the second fundamental strip. Eq. (3.74) is thus valid for all α > 1/2 and
α ̸= 1.

The third fundamental strip, S(0, 1− α)

Finally, we work in the third fundamental strip, S(0, 1 − α), which means that α < 1/2.
Note that this implies that (2α− 1) < 0. In this case we rewrite Eq. (3.71) into

F (s) = − 2πi

M |2α− 1|

( η

M

) s−α
2α−1

Γ(s)Γ
(

α
2α−1 + s

1−2α

)
Γ
(
1− α

2α−1 −
s

1−2α

)
Γ
(

α2

2α−1 + s
2

)
Γ
(
1− α2

2α−1 −
s
2

) . (3.75)

Again this has to do with the pole structure of the gamma functions in the above equation.
Comparing the sub-figures in Fig. 3.1 reveals that the blue and the green poles swapped
their side of the fundamental strip, when going from α > 1/2 to α < 1/2. Next, we take
the inverse Mellin transform of the above equation, with a ∈ S(0, 1− α), which yields

I ′(t) = M−1 [F (s); t]

=
1

2πi

∫ a+i∞

a−i∞
dsF (s)t−s

= − 2πi

M |2α− 1|

( η

M

)− α
2α−1 1

2πi

∫ a+i∞

a−i∞
ds

[( η

M

) 1
1−2α

t

]−s

×

×
Γ(s)Γ

(
α

2α−1 + s
1−2α

)
Γ
(
1− α

2α−1 −
s

1−2α

)
Γ
(

α2

2α−1 + s
2

)
Γ
(
1− α2

2α−1 −
s
2

) . (3.76)
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Using Def. B.8.1, we can now identify a specific Fox-H function, given by

I ′(t) = − 2πi

M |2α− 1|

( η

M

)− α
2α−1

H21
23

( η

M

) 1
1−2α

t

∣∣∣∣∣∣
(

α
2α−1 ,

1
1−2α

)
,
(

α2

2α−1 ,
1
2

)
(0, 1)

(
α

2α−1 ,
1

1−2α

)
,
(

α2

2α−1 ,
1
2

)  .

(3.77)

● Poles of Γ(s)

● Poles of Γ
α-s

2 α-1


● Poles of Γ1 -
α-s

2 α-1


Figure 3.1: The three different fundamental strips of a Mellin transform involving
the shown gamma functions in the legend. (a) the first fundamental strip, (b) the
second and (c) the third. Notice that green poles are on the right of the fundamental
strip in (a) and (b) but on the left and (c).
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3.5.2 The asymptotic expansions of the Fox H-function

What remains is to apply the known asymptotic expansions for the Fox H-function to
Eqs. (3.74) and (3.77). First, we note that in both cases we have µH , αH > 0 such that we
can use Thm. B.8.1 to find the expansions. The short-time behavior is given by

I ′(t)
t→0∼



1 for α > 1,

tα−1 for 1
2 < α < 1,

t
2α2

2α−1 for 1
4 < α < 1

2 ,

t−α for 0 < α ≤ 1
4 ,

t
2α2

2α−1 for α < 0,

(3.78)

and the long-time behavior is

I ′(t)
t→∞∼

{
t−α for α > 1,

tα−1 for α < 1, α ̸= 0.
(3.79)

From now on we will discard the case where α = −1/2, (−1±
√
3)/2, (−3±

√
21)/4. This

is because we want to keep the calculation as simple as possible and therefore do not
want any logarithms while integrating the expansions. We thus have that α ∈ R \ P with
P =

{
(−3−

√
21)/4, (−1−

√
3)/2,−1/2, 0, (−1 +

√
3)/2, (−3 +

√
21)/4, 1/2, 1

}
.

3.5.3 The asymptotic expansions of the mean squared displacement

Recall that the mean squared displacement was given by

〈
Q(t)2

〉
=

ηkBT

2π2

∫ t

0
dτ

{
F−1

[
(iω)α

−Mω2 + ηiω|ω|2α
; τ

]}2

+
kBT

M

(
M

η

) 2
1−2α

{
1− exp

[
−t
( η

M

) 1
1−2α

]}2

, (3.80)

and that the difficult part was understanding the asymptotic expansions of the inverse
Fourier integral. We have managed to understand those expansions. Note that the defini-
tion of I ′(t) links it to the integral given by

I(t) = F−1

[
(iω)α

−Mω2 + ηiω|ω|2α
; t

]
= iΘ(t) ∗ I ′(t)

= i

∫ t

0
dτI ′(τ). (3.81)
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First, we find the short time behavior of I(t) by inserting into Eq. (3.81). For t → 07 we
get

I(t)
t→0∼



t for α > 1,

tα for 1
2 < α < 1,

t
2α2

2α−1
+1 for 1

4 < α < 1
2 ,

t−α+1 for 0 < α ≤ 1
4 ,

t
2α2

2α−1
+1 for α < 0,

(3.82)

with α /∈ P. Finally, we can substitute these asymptotic expansions into Eq. (3.80) and
Taylor expand the exponential factor up to first order, to get the small time behavior of
the MSD, which is given by

〈
Q(t)2

〉 t→0∼

{
t2 for α > −1−

√
5

4 , α /∈ P,

t2α+3 for α < −1−
√
5

4 , α /∈ P.
(3.83)

We can do exactly the same for the long-time behavior except that now we discard the
exponential in Eq. (3.64) because it vanishes as t → ∞. The long-time behavior of the
MSD is

〈
Q(t)2

〉 t→∞∼

{
t−2α+3 for α > 1, α /∈ P,

t2α+1 for α < 1, α /∈ P.
(3.84)

Thus we obtained the asymptotic expansions for the MSD for the solution of the free Weyl
fractional Langevin equation with colored noise, namely Eq. (3.48).

7To calculate the integral over the small time asymptotic expansion of I ′(t), see Eq. (3.81), one has to
technically introduce a small time cut-off since otherwise the evaluation at t = 0 would diverge.

42



Chapter 4

Discussion, conclusion and outlook

In Ch.3, we introduced the Weyl fractional derivative which, due to its properties with the
boundary and Fourier transforms, can be directly used inside the Lagrangian. We did this
by imposing a fractional derivative in the coupling term between the system and bath, which
we called a fractional Caldeira-Leggett model. Doing so required the introduction of the
Weyl fractional Euler-Lagrange equation to derive the equations of motion, which we solved
for the harmonic oscillators using Fourier transforms. We noted that the fractional bath
spectral function could be written in terms of a fractional power prefactor and the original
Caldeira-Leggett spectral function. Inserting the commonly used Ohmic assumption for
the Caldeira-Leggett spectral function, we found an effective spectral function which has
a power law of order 2α+1. This led to a Weyl fractional Langevin equation with colored
noise. We provided the analytical solutions for several quantities in terms of an inverse
Fourier transform, which we could interpret as a Fox H-function with the help of Mellin
transforms. Finally, the asymptotic limits of these solutions were calculated for a wide
range of values. For short times, we found both ballistic and non-ballistic regimes. This
means that, in some cases, friction can dominate the short-time dynamics. For long times
we found everything ranging from sub-, normal-, and super-diffusion, as well as saturation,
which could hint to a relation with glassy physics. Overall, we found a very broad range
of anomalous diffusion.
We are now in a position to compare our results, given by Eqs. (3.83) and (3.84), with
the results of Ref. [22], in which, to the best of our knowledge, a fractional Langevin
equation was investigated for the first time. First, we note that we use the Weyl fractional
derivative, while Ref. [22] used the Caputo fractional derivative. It is known that the
Caputo fractional derivative and Weyl fractional derivatives lead to different results in a
lot of cases. One such example is when the fractional derivative of the exponential function
is calculated. This makes it very interesting to compare the results. The friction force in
Eq. (3.48) is of order 2α + 1, which corresponds to the derivative order from Ref. [22]
(which we will call αL). Therefore, to compare the results, we must make the substitution
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Figure 4.1: The behavior of the MSD for small and large times are shown in terms of
the used parameter in this paper, α, but also in terms of the total friction force order,
αL, which are linked by αL = 2α + 1. Some specific values of α, and in turn αL,
should be ignored in this plot, namely α ∈

{
(−3±

√
21)/4, (−1±

√
3)/2,±1/2, 0, 1

}
.

The light red crosses indicate the values excluded for simplicity while the red crosses
indicate the values for which our calculation did not apply.

α = (αL−1)/2 in Eq. (3.84). Second, we note that Ref. [22] only considered the two cases,
0 < αL < 1 and 1 < αL < 2. For those restrictions, our result from Eq. (3.84) becomes〈

Q(t)2
〉 t→∞∼ tαL , (4.1)

which is exactly what was found in Ref. [22]. It is remarkable that the same result is
obtained for a Caputo derivative instead of Weyl, and derived using completely different
techniques. Moreover, we generalized the result of the Caputo derivative, which in Ref. [22]
was obtained for 0 < αL < 2 (corresponding to −1/2 < α < 1/2), to the entire real line,
except for α = 0, α = ±1/2, α = 1 (corresponding to αL = 0, 1, 2, 3, which are well-known
integer derivative cases) and α = (−3 ±

√
21)/4, α = (−1 ±

√
3)/2, which are cases for

which a logarithm would appear because of integration. We can thus conclude that our
model, given by Eq. (3.16), describes sub-diffusion for −1/2 < α < 0, and super-diffusion
for 0 < α < 1, while 1 < α < 3/2 yields sub-diffusion. Remarkably, when α > 3/2 and
when α < −1/2 we find a negative MSD exponent, which typically indicates saturation
in the MSD [23], possibly describing glassy states. The short-time behavior of the MSD
exhibits the usual ballistic (∼ t2) behavior when α > −(1 +

√
5)/4 ≈ −0.809. However,

when −3/2 < α < −(1+
√
5)/4 we find sub-ballistic behavior, meaning that the MSD goes

as tp, where 0 < p < 2, when t→ 0. In particular, we have that 0 < p < (5−
√
5)/2 ≈ 1.382.

Finally, for α < −3/2, we find super-ballistic behavior of the MSD for t → 0, which in
our words means that the short time behavior goes as a negative exponent. The different
behavior of the MSD for short and long times in terms of the parameter of our model, α,
and the total order of the friction force, αL, is summarized in Fig. 4.1.
When we calculated the spectral function, we were able to identify the regular Caldeira-

44



CHAPTER 4. DISCUSSION, CONCLUSION AND OUTLOOK

Leggett spectral function inside it, but there is some delicate interpretation that needs to
be done here. The spectral function describes the susceptibility of the bath to an external
system in the frequency domain. However, as it turns out, this is not just a property of
the bath, but also depends on the way that you couple to it, which is almost always linear.
This is done because it is typically the lowest-order contribution, and it gives excellent
options to proceed mathematically, with e.g. completing the square. Since baths are
typically thought to be Ohmic (linear in frequency) in this fashion, we believe that the
most likely assumption should be to keep this part identical, and thus retain an Ohmic
JCL(ω) ∼ ω. In turn, this means that the fractional coupling spectral function goes as
J(ω) ∼ ω2α+1, which resulted in a Weyl fractional Langevin equation. The results of the
latter remarkably match with Ref. [22], despite a different definition being used there, and
even expand the domain of available parameters. Previously, this equation has only been
derived using non-Ohmic baths, but this derivation shows that it can also be achieved for
Ohmic baths, as long as the coupling term is changed accordingly. Hence, understanding
the coupling mechanism is as important as understanding the bath properties in order to
describe (anomalous) quantum diffusion.
As we have demonstrated, the Weyl fractional Langevin equation can describe anomalous
diffusion for many different exponents. In experiments of quantum transport on frac-
tals [14], theory of diffusion on confining geometries [57], and random walks [12, 58],
several connections have been made to link either the order of the derivative or the dif-
fusion exponent itself to a fractal dimension. Fractals can exhibit a dimension that is
non-integer, such as the Sierpiński triangle which has a dimension of df ≈ 1.58. Ref. [14]
has shown that the MSD exhibits a regime where the exponent is equal to df . Although
the mechanism for this is still not fully understood, this could be explained by an effect
of the fractal dimension on the interaction between the underlying material and the quan-
tum particle. If we assume that αL = df , then the Weyl fractional Langevin equation
reproduces this result.
Moving forward, an important aspect that requires further investigation is the realization
of a fractional derivative coupling as an effective theory. One way that was explored in this
thesis was in the particular case of a self-similar fractal. An attempt was made in App. D to
derive a fractional Langevin equation, starting from first principles. However, there seems
to be one crucial missing link, namely, how the coupling constants, Ck, can be simplified
in a fractal. Thus, this needs to be explored further. Another potential approach to derive
a fractional coupling to the bath, is to couple the bath to another bath and subsequently
integrate out the intermediate bath degrees of freedom to obtain an effective bath with
the desired fractional derivative coupling. A final method that could result in Eq. (3.16)
is inspired by the projection scheme used in Ref. [54, 55] and the fractal delta function
used in Ref. [59]. In this approach one would project the initial theory down to a fractal,
which could result in a fractional coupling. Furthermore, it is also interesting to explore
quantization for the Weyl fractional derivative further than has already been done in the
literature [48,60,61]. To do this one would first need to develop the Hamiltonian formalism

45



CHAPTER 4. DISCUSSION, CONCLUSION AND OUTLOOK

for these fractional derivatives, which can be inspired by Ref. [62]. After that, one chooses
either for canonical quantization [48], path integral quantization [60] or the less known
Weyl-Wigner quantization [61]. The last is in our opinion the most natural one to use
for the Weyl fractional derivative and therefore the most promising method. Finally, we
believe that it would be interesting to see if previous work [33, 63, 64], that assumes a
non-Ohmic bath, could be reproduced by the approach used in this paper.
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Appendix A

Fractals

The French mathematician, Benôıt Mandelbrot, first used the term ”fractal” in 1975
to describe irregular shapes in nature and mathematics that exhibit self-similarity, e.g.
snowflakes. The word fractal comes from the Greek word ”fractus”, meaning ”fractured”.
In this appendix we give a short and intuitive description of fractals. A mathematical
discussion can be found in Ref. [65].
There are a lot of ways to define formally what the dimension of a geometrical object is
through the Hausdorff measure and the Hausdorff dimension. However, we will take a more
intuitive approach, which is done by working with three different geometrical objects: the
square, the Sierpiński triangle and the Sierpiński carpet. We will define the dimension
of an object from how it changes from one generation to the next. Starting from a given
geometrical object, how many identical copies and at which scale do we have to ’glue’ them
together to obtain the same initial geometrical object? We say that the dimension of that

 

Figure A.1: A snowflake, which can be considered a fractal. Intuitively one can see
that there is a certain symmetry in the snowflake, however it is difficult to pin-point.
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object is determined by

df =
ln(Ncopies)

ln(K)
, (A.1)

where Ncopies is the number of identical copies needed to go from one generation to the
another and K is the corresponding scaling factor. We note that this method does not work
for a general geometric object because the construction is rather specific. We can illustrate
that this intuitive definition works in the case of a square by noting that Ncopies = 4 and
K = 2, which can also be seen in Fig. A.2. According to Eq. (A.1), the dimension of a
square is given by

d =
ln(4)

ln(2)
= 2, (A.2)

which is what one expects. We can apply the same reasoning to the Sierpiński triangle,

 

Figure A.2: The first and second generation of the square. It shows that four copies
are needed and that the scaling factor is 2. This results in a dimension d = 2.

which is depicted in Fig. A.3. We find a dimension given by

df =
ln(3)

ln(2)
≈ 1.58. (A.3)

Note that the dimension turns out to be non-integer. It might seem strange to have a
non-integer dimension. However, this agrees with the intuition that the dimension of the
Sierpiński triangle should be less than the dimension of the square, since it covers less than
the square, but more than a line. Non-integer dimension will be one of the two defining
properties that we will take for a fractal1.

1Some fractals can have integer dimension. Examples include the Smith–Volterra–Cantor set, the Takagi
or Blancmange curve, the Sierpiński tetrahedron, the Julia set, the Dragon curve, ...
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Generation 1 Generation 2 Generation 3 Generation 4

Figure A.3: The first, second, third, and fourth generations of the Sierpiński triangle.
It shows that three copies are needed and that the scaling factor is 2. This results
in a dimension df ≈ 1.58.

Finally, we calculate the dimension of the Sierpiński carpet. From Fig. A.4 we can deduce
that Ncopies = 8 and the scaling factor K = 3. Therefore, we have

df =
ln(8)

ln(3)
≈ 1.89. (A.4)

Now, that we defined the dimension, we move on to a very important symmetry that

Generation 1 Generation 2 Generation 3 Generation 4

Figure A.4: The first, second, third, and fourth generations of the Sierpiński carpet.
It shows that eight copies are needed and that the scaling factor is 3. This results in
a dimension df ≈ 1.89.

fractals have 2: self-similarity. Self-similarity intuitively means that when you zoom into
a part of the fractal, you exactly get that fractal again. This is illustrated in Fig. A.5.
It makes sense that in our sequential approach, used to calculate the dimension, this

2There exist a collection of fractals known as random fractals, which do not have this specific symmetry.
However, we are not interested in these fractals.
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symmetry will only show itself when we go to the infinity generation. However, one can find
approximate self-similarities in the earlier generations, meaning that zooming in doesn’t
result in exactly the same object but in one that is similarly looking. Therefore, we will
refer to a fractal as the infinite generation of its basis geometry.

 

Figure A.5: Self-similarity of the Sierpiński triangle. One can see that zooming in
on the Sierpiński triangle again results in the Sierpiński triangle.

Now, we are at a point where we can give an intuitive definition of a fractal:

A fractal is a geometric object constructed as the infinite generation of an initial geometric
object such that the fractal has non-integer dimension and exhibits self-similarity.
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Appendix B

Mathematical preliminaries

The goal of this appendix is to formalise most of the mathematical knowledge needed
to understand this thesis in detail. Different transforms will be introduced, namely, the
Fourier transform, the Laplace transform and the Mellin transform. These transformations
are covered in sections B.1, B.2 and B.7 respectively. We cover them since they are very
useful and necessary tools throughout this thesis. Using these transforms often results
in divergent integrals. There are many different ways to give meaning to these integrals.
One of the most common ways is by using a particular regularization in combination with
contour integration. These interpretations are not unique and, therefore, we give a brief
summary of some of the different possibilities in Sec. B.4. The examples that are used in
this section are tailored towards this thesis, but also illustrate the differences between the
different interpretations. A short overview of the complex power function and some of its
properties are introduced in Sec. B.3, because understanding the difference between the
real power function and the complex one is crucial in understanding the Weyl fractional
derivative. The Caputo fractional derivative is shortly discussed in Sec. B.9. Finally, some
special functions are briefly discussed in this appendix. The first one is the gamma function,
which is discussed in Sec. B.5. The beta function is covered in Sec. B.6. Lastly, a very
general family of special functions is covered, namely the Fox h-function. This is done in
Sec. B.8.

B.1 The Fourier transform

The fractional Weyl derivative is defined in terms of the Fourier transform, see Def. 3.1.1,
so the Fourier transform stands at the basis of this thesis. Therefore, it is important to
formalise the conventions that we will use. Some important properties that depend on
these conventions are also given.
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Definition B.1.1. Let f ∈ L2(R), then we define the Fourier transform of f to be

F [f(t);ω] =
1

2π

∫ ∞

−∞
dtf(t)e−iωt. (B.1)

Remark B.1.1. F [f(t);ω] will sometimes be denoted by f(ω) even though the Fourier
transform of a function f(t) is not the same function evaluated at a different point.

Definition B.1.2. Let f ∈ L2(R), then we define the inverse Fourier transform of f to be

F−1 [f(ω); t] =

∫ ∞

−∞
dωf(ω)eiωt. (B.2)

The definition of the Fourier transform implies the following property

F

[
dn

dtn
f(t);ω

]
= (iω)nF [f(t);ω] . (B.3)

This property gives an easy way to generalize the derivative to non-integer values. The frac-
tional derivative based on the generalization of this property is called the Weyl fractional
derivative, which is defined in Sec. 3.1.

Definition B.1.3. The convolution of two functions f and g is given by

(f ∗ g) (t) =
∫ ∞

−∞
dτf(t− τ)g(τ). (B.4)

Remark B.1.2. When two functions f and g are only non-zero on [0,∞), then the con-
volution can be rewriten as

(f ∗ g) (t) =
∫ t

0
dτf(t− τ)g(τ). (B.5)

Remark B.1.3. The notation that we will use for the convolution of two functions is going
to be f(t) ∗ g(t).

Lemma B.1.1. Let f, g ∈ L2(R), then the Fourier transform of a convolution is given by

F [f(t) ∗ g(t);ω] = 2πF [f(t);ω]F [g(t);ω] , (B.6)

where the conventions for the Fourier transform are given in Def. B.1.1.

Proof.
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A direct calculation yields

F [f(t) ∗ g(t);ω] = 1

2π

∫ ∞

−∞
dt

∫ ∞

−∞
dτf(t− τ)g(τ)e−iωt

=
1

2π

∫ ∞

−∞
du

∫ ∞

−∞
dτf(u)g(τ)e−iω(u+τ)

= 2πF [f(t);ω]F [g(t);ω] ,

where in the second line we made the substitution t = u+ τ .

A similar property holds for the inverse Fourier transform.

Lemma B.1.2. Let f, g ∈ L2(R), then the inverse Fourier transform of a convolution is
given by

F−1 [f(ω) ∗ g(ω); t] = F−1 [f(ω); t]F−1 [g(ω); t] , (B.7)

where the conventions for the inverse Fourier transform are given in Def. B.1.2.

The proof of Lem. B.1.2 is completely analog to the proof of Lem. B.1.1.

Lemma B.1.3. Let f, g ∈ L2(R), then the Fourier transform of a product is given by

F [f(t)g(t);ω] = F [f(t);ω] ∗ F [g(t);ω] . (B.8)

Proof.

Using the short notation

F [f(t);ω] = F(f),

and the same for the inverse Fourier then gives

F (fg) = F
{
F−1 [F (f)]F−1 [F (g)]

}
.

Next, we can use Lem. B.1.2 to get

F
{
F−1 [F (f)]F−1 [F (g)]

}
= F (f) ∗ F (g) ,

which means that

F [f(t)g(t);ω] = F [f(t);ω] ∗ F [g(t);ω] .

Again, a similar property holds for the inverse Fourier transform.
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Lemma B.1.4. Let f, g ∈ L2(R), then the inverse Fourier transform of a product is given
by

F−1 [f(ω)g(ω); t] =
1

2π
F−1 [f(ω); t] ∗ F−1 [g(ω); t] . (B.9)

The proof of Lem. B.1.4 is completely analog to the proof of Lem. B.1.3.

Remark B.1.4. Notice that the prefactors in Lems. B.1.1, B.1.2, B.1.3 and B.1.4 are
fully determined by the used conventions in the Fourier transform and its inverse.

B.2 The Laplace transform

In this section, we shortly discuss the Laplace transform and some of its properties. We
do this because the Laplace transform is the standard method to solve some differential
equations that come up in this thesis [25,66]. The Laplace transform is often used to solve
fractional differential equations [23,25,67].

Definition B.2.1. Let f be a function defined on the interval [0,∞) and s ∈ C, the

F (s) = L [f(t); s] =

∫ ∞

0
dtf(t)e−st, (B.10)

is defined to be the Laplace transform of f.

Definition B.2.2. The inverse Laplace transform is given by

f(t) = L−1 [F (s); t] =

∫ c+i∞

c−i∞
dsF (s)est, (B.11)

where c ∈ R is chosen such that all singularities of F (s) lie to the left of the line Re(s) = c.

Lemma B.2.1. Let f and g be two functions such that the Laplace transform exists,
denoted by F and G respectively. Then, the Laplace transform satisfies

L [f(t) ∗ g(t); s] = F (s)G(s). (B.12)

Proof.

By definition of the Laplace transform and the convolution of functions only non-zero on
[0,∞), we have

L [f(t) ∗ g(t); s] =
∫ ∞

0
dt

∫ t

0
dτf(t− τ)g(τ)e−st.
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Next, we swap the order of integration, being careful with the integration domains since
they are not indefinite. This yields,

L [f(t) ∗ g(t); s] =
∫ ∞

0
dτ

∫ ∞

τ
f(t− τ)g(τ)e−st

=

∫ ∞

0
dτ

∫ ∞

0
dλf(λ)g(τ)e−s(λ+τ)

= F (s)G(s),

where in the second line we made the substitution t = λ+τ and in the last line we identified
the definition of the Laplace transform twice, therefore completing the proof.

Taking the inverse Laplace transform of Eq. (B.12) directly gives

L−1 [F (s)G(s); t] = f(t) ∗ g(t). (B.13)

Lemma B.2.2. Let n ∈ N and assume that the Laplace transform of the nth derivative of
f exists. Then,

L

[
dn

dtn
f(t); s

]
= snF (s)−

n−1∑
k=0

sn−1−kf (k)(0) (B.14)

Proof.

By definition, we have

L

[
dn

dtn
f(t); s

]
=

∫ ∞

0
dt

dn

dtn
[f(t)]e−st.

Applying repeated integration by parts and assuming that the integrals exist, gives us

L

[
dn

dtn
f(t); s

]
= s

∫ ∞

0
dt

dn−1

dtn−1
[f(t)]e−st − f (n−1)(0)

= s2
∫ ∞

0
dt

dn−2

dtn−2
[f(t)]e−st − f (n−1)(0)− sf (n−2)(0)

= ...

= snF (s)−
n−1∑
k=0

sn−1−kf (k)(0).
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Taking the inverse Laplace transform of Eq. (B.14), directly gives

L−1 [snF (s); t] =
dn

dtn
f(t) +

n−1∑
k=0

f (k)(0) L−1
[
sn−1−k; t

]
. (B.15)

Example B.2.1. Lets look at the Laplace transform of an exponential function with Re(s) >
Re(a), which is given by

L
(
eat; s

)
=

∫ ∞

0
dte(a−s)t =

1

s− a
. (B.16)

When we take a = 0 in the previous example we get

L (1; s) =
1

s
, (B.17)

which also implies that

L−1

(
1

s
; t

)
= 1. (B.18)

Next, we can take a→ ia in the above example, such that

L
(
eiat; s

)
=

1

s− ia
=

s+ ia

s2 + a2
, (B.19)

which by taking the real and imaginary parts implies

L [cos(at); s] =
s

s2 + a2
, (B.20)

L [sin(at); s] =
a

s2 + a2
. (B.21)

B.3 The complex power function

Since the definition of the Weyl fractional derivative involves an imaginary number to the
power of a real number (see Def. 3.1.1), it is important to understand what this exactly
means. We state the definition of the complex power function. Some of its non-trivial
properties are also given, without proof. An extensive and formal discussion of the complex
power function can be found in Ref. [68]. Proofs can also be found in this reference.

Definition B.3.1. The complex logarithm, denoted by Log : C→ C is defined by

Log(z) = ln |z|+ i arg(z). (B.22)
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Remark B.3.1. Notice that this is not a function, since arg(z) = arg(z)+ arg(2πn) with
n ∈ Z. To get a function, one needs to restrict the argument. One possibility is to impose
arg(z) ∈ (−π, π]. This is called the principle argument, which results in the principal value
of Log(z), denoted by Ln(z), which is a well defined function.

Definition B.3.2. Let a, b ∈ C, then

ab = eb Ln(a) (B.23)

is defined to be the complex power function.

Remark B.3.2. In the above definition, we chose for the principal value of the complex
power function. We will just call this the complex power function, but other branches of
Log(z) could also be chosen. When this is done we will explicitly mention it.

Theorem B.3.1. Let z1, z2, a, b ∈ C. The complex power function satisfies the following
properties:

(i) za1z
b
1 = za+b

1 ,

(ii)
za1
zb1

= za−b
1 ,

(iii) za1z
−a
1 = 1,

(iv) (za1)
b = zab1 e2πibNa,

(v) (z1z2)
a = za1z

a
2e

2πiaN+,

(vi)
(
z1
z2

)a
=

za1
za2
e2πiaN−,

where Na ≡ ⌊1/2− Im [ Ln(az1)] /(2π)⌋, with ⌊·⌋ the floor function,

and N± ≡


−1, if arg(z1)± arg(z2) > π,

0, if− π < arg(z1)± arg(z2) ≤ π,

1, if arg(z1)± arg(z2) ≤ −π.

-π π

1 0 -1N±:

x±

Figure B.1: Let x± = arg(z1) + arg(z2). Where N± is non-zero, the complex power
function definitely has non-trivial properties.
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B.4 Complex analysis: contour integration

In this section, we build the necessary knowledge to understand divergent integrals in
certain interpretations that are often used by physicists and mathematicians. The difference
between those interpretations are emphasised by the use of examples. For mathematical
details we reference the reader to Refs. [69,70,71].

Theorem B.4.1. (The residue theorem) Suppose a function f is analytic in a simply
connected domain D, except for isolated singularities at z1, z2, ... , zm. Let γ be a regular
closed curve in D which does not intersect any of the singularities, then∮

γ
dzf(z) = 2πi

m∑
k=1

Res(f ; zk). (B.24)

A proof of the above theorem is out of the scope of this thesis, however one can be found in
Ref. [69]. Thm. B.4.1 allows us to make sense of integrals over the real line, which would
not make sense otherwise. This will become more clear in later examples. To work out
these examples we first need to introduce Jordan’s lemma.

Lemma B.4.1. (Jordan’s lemma) Suppose that

(i) a function f(z) is analytic at all points in the upper half plane, Im(z) ≥ 0, that are
exterior to a circle of radius |z| = R0,

(ii) CR denotes a semicircle parameterized by z = Reiθ with 0 ≤ θ ≤ π and R > R0,

(iii) for all points on CR, there exists a positive constant MR such that |f(z)| ≤ Mr and
limR→∞MR = 0,

then, for every positive constant a, we have

lim
R→∞

∫
CR

dzf(z)eiaz = 0 (B.25)

For a proof, see Ref. [69].

Remark B.4.1. Jordan’s lemma (Lem. B.4.1) can be modified in such a way that it also
holds for a < 0. This is done by in the first condition swapping Im(z) ≥ 0 with Im(z) ≤ 0.
The sign of the constant, a, will thus dictate if we chose the upper semi-circle or the lower
semi-circle.

With the residue theorem and Jordan’s lemma, we can already give a meaning to divergent
real integrals. Unfortunately, these are not unique and thus depend in the context and
we will therefore refer to these meanings as interpretations. The first interpretation will
be called the positive iϵ-interpretation. Here, one would move the pole to the upper half
of the imaginary plane by adding an small imaginary part to the pole. This then allows
one to use the residue theorem and Jordan’s lemma to give a meaning to the real integral.
Finally, one would take the imaginary part to zero.
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Example B.4.1. Consider the following integral:

I(t) = F−1

[
1

ω
; t

]
=

∫ ∞

−∞
dω

1

ω
eiωt. (B.26)

One can check that the above integral diverges. We can however give meaning to this
integral in the positive iϵ-interpretation. First, we do the substitution 1/ω → 1/(ω − iϵ),
where at the end of the calculation we will take ϵ→ 0. For t > 0, we consider the contour
depicted in Fig. B.2. We call the closed contour, C, and the semi-circle contour, CR.

iϵ

t > 0

Re(z)

Im(z)

Figure B.2: the pole structure of the function 1/(z − iϵ) is depicted in the above
figure. This is the positive iϵ-interpretation of the integral in Eq. (B.26). Note that
the shown contour is only chosen for t > 0.

Thus, for t > 0 we get∮
C

dz
1

z − iϵ
eizt =

∫
CR

dz
1

z − iϵ
eizt +

∫ ∞

−∞
dz

1

z − iϵ
eizt. (B.27)

Next, we can apply Lem. B.4.1, which says that the integral over CR has no contribution
for t > 0. Moreover, we can also use the Thm. B.4.1 to simplify the left side of Eq. (B.27).
This then yields

2πie−ϵt =

∫ ∞

−∞
dz

1

z − iϵ
eizt. (B.28)

Finally, we take ϵ→ 0, which gives

I(t) =

∫ ∞

−∞
dz

1

z
eizt, for t > 0

= 2πi. (B.29)
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The final step in this interpretation is to repeat the above steps for t < 0 but this time by
closing the contour from the bottom (because of Rem. B.4.1). This then yields

I(t) = 0, for t < 0, (B.30)

which combined with Eq. (B.29), gives

I(t) =

∫ ∞

−∞
dz

1

z
eizt = Θ(t)2πi, (B.31)

where Θ(t) is the Heaviside step function.

Remark B.4.2. Note that the choice of adding iϵ to the pole resulted in Θ(t). We could
have also subtracted iϵ, which would have resulted in Θ(−t). This interpretation we will
call the negative iϵ-interpretation.

Remark B.4.3. Ex. B.4.1 can be easily extended to give

F−1

[
1

ω − b
; t

]
= Θ(t)2πieibt, (B.32)

for b ∈ R.

The iϵ-interpretations are interpretations which are mainly used in physics. Mathemati-
cians usually prefer the Cauchy principal value as an interpretation for divergent real
integrals. For this interpretation we will state a modified version of the residue theorem.

Theorem B.4.2. Let D be the region enclosed by a closed piecewise path γ. If a function,
f , is analytical on γ and D, except at finitely many singular points z1, z2, ... , zm in the
interior of D and at finitely many poles p1, ... , pk of order 1 which are located on γ. Also,
assume that γ has a tangent line on each pole pi, then

PV

∮
γ
dzf(z) = 2πi

m∑
i=1

Res(f ; zi) + πi
k∑

i=1

Res(f ; pi) (B.33)

For a proof we refer the reader to Ref. [70].

Remark B.4.4. We will not be strict on writing ’PV’ in front of an integral when we use
the Cauchy principal value interpretation of it. We will, however, always state it in words
when we use this, just like we will do when we use any of the iϵ-interpretations.

Example B.4.2. We will calculate the Cauchy principal value of the following integral

F−1

[
1

ω
; t

]
, (B.34)
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t

-πi

0

2πi

πi

PV

+iϵ

-iϵ

Figure B.3: The principal value of an integral keeps the symmetry around, t = 0,
unlike the positive or negative iϵ-interpretations, which are zero for negative and
positive times respectively.

which is the same as in Ex. B.4.1. Following exactly the same steps as in Ex. B.4.1 but
using the modified residue theorem (Thm. B.4.2) yields for all t

F−1

[
1

ω
; t

]
= πisign(t), (B.35)

where the extra minus sign for t < 0 comes from the negative orientation of the contour
(the lower half semi-circle).

Remark B.4.5. Note that, in the Cauchy principal value interpretation, we have a value
that is non-zero for all t. Also, the Cauchy principal value and the positive iϵ-interpretation
differ by a factor of 1/2 for t > 0. The choice of interpretation has to be motivated by
physical arguments or mathematical arguments. One of which can be the need to keep a
symmetry around t = 0. The differences between the principal value and the positive and
negative iϵ- interpretations are also visually depicted in Fig. B.3.

Complex analysis will also allow us to find different representations of the Dirac delta
function. To do this, we will give a more concrete meaning to the Dirac delta function.

Definition B.4.1. Let ϕ ∈ S(R), be a function in a suitable space, S. This space will be
chosen based on the context1. Then we define the Dirac delta function, δ(x−x0), associated
with S(R) such that for all ϕ ∈ S(R), we have that∫ ∞

−∞
dxδ(x− x0)ϕ(x) = ϕ(x0). (B.36)

In this definition the delta function is a distribution and ϕ is called a test function.

1In this thesis we will not be strict on defining the space when we use this definition of the delta function.
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Remark B.4.6. The above definition can be extended to include integrals over complex
values. For example this is done in Ref. [71].

Remark B.4.7. Many different functions can satisfy Def. B.4.1. This means that the
delta function is not unique. Therefore, we refer to different representations of the delta
function.

An important representation of the delta function will be derived in the example below by
interpreting certain integrals as their Cauchy principal value.

Example B.4.3. We will show that

1

ω2 − ω2
j

=
πi

2ωj
[δ(ω + ωj)− δ(ω − ωj)] . (B.37)

The first step will be to partial fraction the left side of Eq. (B.37) as

1

ω2 − ω2
j

= − 1

2ωj

(
1

ω + ωj
− 1

ω − ωj

)
. (B.38)

Next, we can check if each of the above terms satisfy Def. B.4.1. Let ϕ(ω) be a suitable
test function such that a closed negatively oriented contour, C−, can be constructed that
satisfies ∫ ∞

−∞
dω

ϕ(ω)

ω ± ωj
=

∮
C−

dz
ϕ(z)

z ± ωj

= −
∮
C+

dz
ϕ(z)

z ± ωj
. (B.39)

Next, we assume that these test functions don’t have any singularities inside the closed
contour, allowing us to use Thm. B.4.2, which then yields∫ ∞

−∞
dω

ϕ(ω)

ω ± ωj
= −πiϕ(∓ωj). (B.40)

This means that, for these test functions and in the principal value interpretation, we have

1

ω ± ωj
= −πiδ(ω ± ωj), (B.41)

which, when used in Eq. (B.38), yields

1

ω2 − ω2
j

=
πi

2ωj
[δ(ω + ωj)− δ(ω − ωj)] . (B.42)
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Remark B.4.8. The above example immediately gives the following properties

Im

(
1

ω2 − ω2
j

)
=

π

2ωj
[δ(ω + ωj)− δ(ω − ωj)] , (B.43)

Im

(
i

ω2 − ω2
j

)
= 0. (B.44)

B.5 The gamma function

The gamma function is one of the most important special functions. It is not surprising
that, in our case, the gamma function will also be useful. Thus, we give an overview of
the definition and some of its properties in this section, which are based on Refs. [72,73].
In this thesis, the main use of the gamma function is to understand the beta and Fox-H
functions, which are in its turn essential to understand the asymptotic behavior of the
inverse Fourier integral given by Eq. (3.65).

Definition B.5.1. Let z ∈ C with Re(z) > 0, then we define

Γ(z) =

∫ ∞

0
dx xz−1e−x, (B.45)

which is called the gamma function and converges absolutely.

Example B.5.1.

Γ(1) =

∫ ∞

0
dxe−x

= 1. (B.46)

Theorem B.5.1. The gamma function satisfies the reduction formula, namely

Γ(z + 1) = zΓ(z). (B.47)

Proof.

We have

Γ(z + 1) =

∫ ∞

0
dx xze−x

=
[
−xze−x

]∞
0

+ z

∫ ∞

0
dx xz−1e−x

= zΓ(z),

where in the second we applied partial integration and in the third line we noticed that
the first term vanishes.
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Combining Ex. B.5.1 with Thm. B.5.1 allows one to easily apply induction to proof, such
that for positive integers, n > 0, we have

Γ(n) = (n− 1)! . (B.48)

Remark B.5.1. The gamma function is only defined for Re(z) > 0. However, Thm. B.5.1
allows us to uniquely extend the definition of the gamma function to Re(z) ≤ 0. The gamma
function for all complex arguments can be seen in Fig. B.4.

arg(Γ(z))

-π

-π /2

0

π /2

π

Figure B.4: The plot shows the norm of the gamma function, Γ(z), plotted in function
of the real and imaginary parts of its input, z. The plot is color coded based on the
argument of the output, arg[Γ(z)]. Poles can be seen at negative integer values for
z.

The gamma function is a meromorphic2 function, which means that the function is an-
alytical on its domain except at isolated points. The poles of the gamma functions are
located at Γ(z) such that z ∈ −N3. The pole structure of the gamma function will be
important to calculate integrals of gamma functions, which will be done in later sections.
Another notable property is that the Gamma function has no zeros on C. This means that
the reciprocal gamma function,

f(z) =
1

Γ(z)
, (B.49)

2A meromorphic function, is a function that is holomorphic except at isolated points.
3In this thesis the symbol, N, will mean the set {0, 1, ..., n, ...}.
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has no poles and has zeros for z ∈ −N. This can also be seen in Fig. B.5. The analytic

arg 1

Γ(z)


-π

-π /2

0

π /2

π

Figure B.5: The plot shows the norm of the reciprocal gamma function, 1/Γ(z),
plotted as a function of the real and imaginary parts of, z. The plot is color coded
based on the argument of the output, arg[1/Γ(z)]. Notice that there are no poles
visible in the plot.

structure of the gamma function and its reciprocal will be crucial when calculating integrals
over gamma functions with complex analysis.

Example B.5.2. Let’s calculate the sum of the residues of a function, f(z), that is analytic
on C multiplied by a gamma function, Γ(z). We know that the poles are given by

z = −ν, where ν ∈ N. (B.50)
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This means that∑
j

Res [Γ(z)f(z); zj ] =

∞∑
ν=0

f(−ν) lim
z→−ν

(z + ν)Γ(z)

=

∞∑
ν=0

f(−ν) lim
z→−ν

(z + ν)
z(z + 1)...(z + ν)

z(z + 1)...(z + ν)
Γ(z)

=
∞∑
ν=0

f(−ν) lim
z→−ν

(z + ν)
Γ(z + ν + 1)

z(z + 1)...(z + ν)

=
∞∑
ν=0

f(−ν) lim
z→−ν

Γ(z + ν + 1)

z(z + 1)...(z + ν − 1)

=

∞∑
ν=0

f(−ν) Γ(1)

ν!(−1)ν

=
∞∑
ν=0

f(−ν)(−1)
ν

ν!
, (B.51)

where in the second line we multiplied by unity, in the third line we repeatedly applied
Thm. B.5.1 and in the last line we used the result from Ex. B.5.1.

Example B.5.3. The above example can now easily be generalised for a gamma function
of the form, Γ(a+ bz), with a, b ∈ C, by making use of the substitution z̃ = a+ bz and then
working out the example in the same way. This yields∑

j

Res [Γ(a+ bz)f(z); zj ] =
∞∑
ν=0

lim
z̃→−ν

(z̃ + ν)Γ(z̃)f

(
z̃ − a

b

)

=
∞∑
ν=0

f

(
−ν − a

b

)
(−1)ν

ν!
(B.52)

Finally, one last useful formula relating gamma functions and the sine, is known as Euler’s
reflection formula, and can be found in the lemma below.

Lemma B.5.1. (Euler’s reflection formula) Let z ∈ C \ Z, then

Γ(z)Γ(1− z) =
π

sin(πz)
. (B.53)

A proof is most easily obtained by using a different definition of the gamma function. A
full proof can be found in Ref. [72].

Remark B.5.2. Taking z → (1/2−z) in Lem. B.5.1 and using the fact that sin (π/2− x) =
cos(x), yields

Γ

(
1

2
− z

)
Γ

(
1

2
+ z

)
=

π

cos(πz)
. (B.54)
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B.6 The beta function

A short introduction to the beta function is needed to compute a certain Mellin transform,
which we will come back to in a later section. For this section, we mainly followed Ref. [73].

Definition B.6.1. Let z1, z2 ∈ C with Re(z1), Re(z2) > 0, then we define the beta function
as

B(z1, z2) =

∫ 1

0
dt (1− t)z2−1 tz1−1. (B.55)

Remark B.6.1. Applying the definition of the convolution (see Def. B.1.3), to the func-
tions f(t) = tz1−1 and g(t) = tz2−1 on the interval [0, 1], gives

(f ∗ g) (t) =
∫ 1

0
dτ (t− τ)z1−1 τ z2−1. (B.56)

Evaluating the above convolution at the point t = 1, yields

(f ∗ g) (1) =
∫ 1

0
dτ (1− τ)z1−1 τ z2−1

= B(z1, z2). (B.57)

Thus the beta function has the structure of a convolution.

Remark B.6.2. By making a simple substitution, u = 1 − t, in Def. B.6.1, one can see
that

B(z1, z2) = B(z2, z1). (B.58)

Starting from Def. B.6.1, we can derive a useful representation of the beta function. By
definition, we have

B(z1, z2) =

∫ 1

0
dt (1− t)z2−1 tz1−1

=

∫ ∞

0
du

uz1−1

(1 + u)z1+z2
, (B.59)

where in the second line we made the substitution u+ 1 = 1/(1− t).

Theorem B.6.1. Let z1, z2 ∈ C with Re(z1), Re(z2) > 0, then

B(z1, z2) =
Γ(z1)Γ(z2)

Γ(z1 + z2)
. (B.60)
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Proof.

By definition of the gamma function we have

Γ(z1)Γ(z2) =

∫ ∞

0
ds

∫ ∞

0
dte−(t+s)tz1−1sz2−1.

Next, we do the change of variables, t = xy and s = x(1−y). This implies that 0 < x <∞
and 0 < y < 1. The Jacobian of this transformation is given by

J = det

(
y x

1− y −x

)
= −x.

Since x > 0 we have that |J | = x, such that dtds = xdxdy. Putting things together gives

Γ(z1)Γ(z2) =

∫ ∞

0
dxe−xxz1+z2−1

∫ 1

0
dy(1− y)z2−1yz1−1

= Γ(z1 + z2)B(z1, z2),

where in the last line we used the definitions of the gamma function and the beta function.

Remark B.6.3. Thm. B.6.1 relates the beta function and the gamma function, implying
that the beta function has a rich singular structure which can also be observed in Fig. B.6.
This theorem together with Rem. B.5.1 implies that we can uniquely extend the beta function
to z ∈ C such that Re(z) < 0.

Applying Thm. B.6.1 for the case z = z1 = 1− z2 and using Ex. B.5.1, gives

B(z, 1− z) = Γ(z)Γ(1− z). (B.61)

Which, using Eq. (B.60), yields∫ ∞

0
du

uz−1

(1 + u)
= Γ(z)Γ(1− z). (B.62)

The above equation will be helpful in later sections.

B.7 The Mellin transform

To calculate asymptotic behavior of certain very difficult Fourier integrals, we linked the
Fourier integral to a Fox-H function. This is done in Sec. 3.5. The derivation of this requires
the use of the Mellin transform. The Mellin transform also allowed us to find a very useful
representation of colored noise, given in Eq. (3.46). We mainly used Refs. [74,75], however
we took a more physics approach to the topic and were therefore a little less formal than
those references. An important example that is used in Sec. 3.5 is also included.
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|Beta(x,y)|

0

10

20

30

40

Figure B.6: The plot shows the norm of the beta function, B(x, y), plotted in function
of real inputs, x and y. The plot is color coded based on the norm of the beta function
to emphasize the singular behavior of this function.

Definition B.7.1. Let f(t) be a function defined on the positive real axis 0 < t <∞. The
Mellin transformation of the function f , is defined by

M [f(t); s] =

∫ ∞

0
dtf(t)ts−1. (B.63)

Remark B.7.1. In general, the integral does exist only for complex values of s = a + ib
such that a1 < a < a2, where a1 and a2 depend on the function f(t) to transform. This
introduces what is called the strip of definition of the Mellin transform that will be denoted
by S(a1, a2). In some cases, this strip may extend to a half-plane (a1 = −∞ or a2 = ∞)
or to the whole complex s-plane ( a1 = −∞ and a2 =∞).

Example B.7.1. The Mellin transform of the exponential function,

f(t) = e−at, for a > 0, (B.64)
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is given by

M [f(t); s] =

∫ ∞

0
dte−atts−1

= a−s

∫ ∞

0
dte−tts−1

= a−sΓ(s), (B.65)

where in the second line we did the substitution at → t and in the last line we identified
the gamma function based on Def. B.5.1. Note that this Mellin transform only holds for
Re(s) > 0.

Remark B.7.2. In Ex. B.7.1, we considered a > 0. We would like to consider more
general values of the form, Re(a) > 0. The calculations is to involved to do it here but
for a conformation that this is allowed we refer the reader to equation 1 of page 312 in
Ref. [76]. In Fig. B.7, one can see the Mellin transform of the exponential function for
different values of the parameter a, which satisfies Re(a) > 0.

Remark B.7.3. The above remark only states that Re(a) > 0. However, one could show
that it also holds Re(a) = 0. This is done by first regularizing the function, e−ibt →
e−(ibt+δt) for b ∈ R and δ > 0. Then one would be able to use the result from Ex. B.7.1
together with Rem. B.7.2. Finally, one can safely take δ → 0.
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arg(Γ(z) (-3)-z)

-π

-π /2

0

π /2

π

(a) For this plot a = −3 was chosen.

arg(Γ(z) (5.89  + 3)-z)

-π

-π /2

0

π /2

π

(b) For this plot a = 5.89i+ 3 was chosen.

arg(Γ(z) 1.58-z)

-π

-π /2

0

π /2

π

(c) For this plot a = 1.58 was chosen.

arg(Γ(z) 3-z)

-π

-π /2

0

π /2

π

(d) For this plot a = 3 was chosen.

Figure B.7: Plots of the Mellin transform of the exponential function, e−at, which is
given by a−sΓ(s), for different values of the parameter a. Notice that we also showed
one plot for a negative value of a, which is totally different than the other plots. This
is also a numerical indicator that the real part of a, Re(a), has to be greater than or
equal to 0. The range of each subplot varies to make the output in that specific case
more clearly, however one should keep that in mind when comparing all the subplots.
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Example B.7.2. In this example, we calculate the Mellin transform of a more difficult
function, M [f(ω); s], with the function given by

f(ω) =
1

1 + cωa
, for a ∈ R \ {0}, c > 0, (B.66)

where we already anticipated that we will use this example to calculate a Fourier type integral
(therefore using ω as the initial variable instead of t). The function, f(ω), for different
values of a, can be seen in Fig. B.8. Starting with Eq. (B.62), for the case z = s/a, gives

5 10 15
ω

0.2

0.4

0.6

0.8

f (ω )

a

-1.

-0.6

-0.2

0.2

0.6

1.

1.4

1.8

2.2

2.6

3.

Figure B.8: The plot shows values of the function, f(ω) = 1/(1 + 3ωa), for different
values of the parameter, a, ranging from −1 to 3.

∫ ∞

0
du

u
s
a
−1

1 + u
= Γ

(s
a

)
Γ
(
1− s

a

)
. (B.67)

Next, we do the substitution u = cωa on the left side, which results in∫ ∞

0
dω

ωs−1

1 + cωa
=

1

|a|
c−

s
aΓ
(s
a

)
Γ
(
1− s

a

)
, (B.68)

where the absolute value of a comes from the case for which a < 0. Finally, we can identify
the Mellin transform of the function f(ω) on the left side of Eq. (B.68). We conclude that

M [f(ω); s] =
1

|a|
c−

s
aΓ
(s
a

)
Γ
(
1− s

a

)
. (B.69)

Note that this Mellin transform only holds for 0 < Re(s/a) < 1.

Remark B.7.4. Similar to Ex. B.7.1, we would like to relax the restrictions on the pa-
rameter, c. This time, we refer to equation (30) on page 311 of Ref. [76]. We can thus
take c ∈ C \ (−∞, 0].
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arg(g(z))
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-π /2
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π

(a) For this plot a = 3 and c = 10i were chosen.

arg(g(z))

-π

-π /2

0

π /2

π

(b) For this plot a = 0.3 and c = i were chosen.

arg(g(z))

-π

-π /2

0

π /2

π

(c) For this plot a = 0.9 and c = i were chosen.

arg(g(z))

-π

-π /2

0

π /2

π

(d) For this plot a = 1.58 and c = i were chosen.

Figure B.9: Plots of the Mellin transform of the exponential function, 1/(1 + cωa),
which is given by c−

s
aΓ (s/a) Γ (1− s/a) /|a|, for different values of the parameters a

and c. Notice that the parameter a, determines the singularity spacing. The range
of each subplot varies to make the output in that specific case more clearly, however
one should keep that in mind when comparing all the subplots.
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Definition B.7.2. The inverse Mellin transform of a function, F (s), defined on a strip
S(a1, a2), is given by

f(t) = M−1 [F (s); t] =
1

2πi

∫ a+i∞

a−i∞
dsF (s)t−s, (B.70)

where a1 < a < a2.

-5 5
Re(s)

-0.5

0.5

Im(s)

Fundamental strip

a1 a a2

Figure B.10: We chose a1 = 1.3, a = 2.7 and a1 = 3.9. This means that the
fundamental strip in the figure is S(1.3, 2.7).

B.8 The Fox H-function

The last appendix involves the Fox H-function, were we mainly used Refs. [77, 78, 79].
As stated before, the usefulness of the Fox H-function is that there are known asymptotic
expansions. Therefore, when we derive an equality between a Fourier integral and a Fox-H
function, we also find the asymptotic expansions of that Fourier integral (see Sec. 3.5).

Definition B.8.1. Let m,n, p, q ∈ N with 0 ≤ n ≤ p and 1 ≤ m ≤ q, Ai, Bj ∈
R+, ai, bj ∈ C for i = 1, ..., p and j = 1, ..., q. The Fox H-function with parameters
m,n, p, q, ai, Ai, bj , Bj and argument z ̸= 0 is defined by

Hm,n
p,q

[
z

∣∣∣∣ (a1, A1) , ..., (ap, Ap)
(b1, B1) , ..., (bq, Bq)

]
=

1

2πi

∫
L
dsΥ(s)z−s, (B.71)

where z−s is not necessarily the principal value complex power function and Υ(s) is given
by

Υ(s) =

∏m
j=1 Γ(bj +Bjs)

∏n
k=1 Γ(1− ak −Aks)∏q

j′=m+1 Γ(1− bj′ −Bj′s)
∏p

k′=n+1 Γ(ak′ +Ak′s)
,
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where an empty product is always interpreted as unity and L is a suitable contour which
separates the poles of the two factors in the numerator of Υ(s) 4.

Remark B.8.1. We will also denote the Fox H-function as

Hm,n
p,q (z) ≡ Hm,n

p,q

[
z

∣∣∣∣ (a1, A1) , ..., (ap, Ap)
(b1, B1) , ..., (bq, Bq)

]
(B.72)

when the specifications of the parameters, ai, Ai, bj , Bj, is not necessary.

Example B.8.1. In this example, we will express the exponential function in terms of a
Fox H-function. We will show that

e−z = H1,0
0,1

[
z

∣∣∣∣ (0, 1)
]

(B.73)

for |arg(z) < π
2 | and z ̸= 0. We can prove the above relation by using Def. B.8.1 on the

right hand side, which gives

H1,0
0,1

[
z

∣∣∣∣ (0, 1)
]
=

1

2πi

∫
L
dsΓ(s)z−s. (B.74)

Now, we choose the contour L to be the vertical line, Re(s) = γ, γ > 0, which lies to the
right of the poles of Γ(z). Thus, we have

H1,0
0,1

[
z

∣∣∣∣ (0, 1)
]
=

1

2πi

∫ γ+i∞

γ−i∞
dsΓ(s)z−s. (B.75)

Next, we assume that we can close the contour such that it picks up all the poles of the
gamma function5. Using the residue theorem and Eq. (B.51), yields

H1,0
0,1

[
z

∣∣∣∣ (0, 1)
]
=

∞∑
ν=0

zν
(−1)ν

ν!

= e−z. (B.76)

Some quantities that will be important to determine the asymptotic behavior of Fox-H

4For more information about the contour, L, we refer the reader to Ref. [77].
5A more formal treatment of this example can be found in Ref. [80]. In the same reference, more

advanced integrals can also be found.
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functions are defined as

µH ≡
q∑

j=1

Bj −
p∑

j=1

Aj , (B.77)

δH ≡
q∑

j=1

bj −
p∑

j=1

aj +
p− q

2
, (B.78)

αH ≡
n∑

j=1

Aj −
p∑

j=n+1

Aj +

m∑
j=1

Bj −
q∑

j=m+1

Bj . (B.79)

These quantities will be important to determine the asymptotic behavior of Fox H-functions
as the theorem below shows.

Theorem B.8.1. Let αH , µH and δH be like defined in Eqs. (B.79), (B.77) and (B.78)
respectively. Assume that the conditions on the parameters of the Fox H-function, given in
Def. B.8.1, are satisfied. Then the following expansions hold:

(i) If µH ≥ 0 or µH < 0, αH > 0 and |arg(z)| < 1
2παH then the Fox H-function has

either the asymptotic expansions at zero given by

Hm,n
p,q (z) = O(zc), |z| → 0, or

Hm,n
p,q (z) = O

(
zc |ln(z)|N−1

)
, |z| → 0, (B.80)

with c = min1≤j≤m

[
Re(bj)
Bj

]
and N is the order of the poles of Γ(bj + Bjs) to which

some other poles of another gamma function Γ(bl+Bls) with 1 ≤ j ≤ m and 1 ≤ l ≤
m could coincide.

(ii) If µH < 0, αH = 0, then the asymptotic expansion near zero becomes

Hm,n
p,q (z) = O(zσ), |z| → 0, |arg(z)| ≤ ϵ̃, (B.81)

where σ = min1≤j≤m

[
Re(bj)
Bj

, Re(δH)+1/2
µH

]
and ϵ̃ is a constant such that

0 < ϵ̃ < π
2 min1≤j≤m;m+1≤k≤q (Aj , Bk).

(iii) If µH ≤ 0 or µH > 0 and αH > 0, then the Fox H-function has either the asymptotic
expansion at infinity given by

Hm,n
p,q (z) = O(zd), |z| → ∞, or

Hm,n
p,q (z) = O(zd |ln(z)|M−1), |z| → ∞, (B.82)

with d = min1≤j≤n

[
Re(aj)−1

Aj

]
and M is the order of the poles Γ (1− ak −Aks) to

which some of the poles of Γ (1− al −Als) with 1 ≤ j ≤ n and 1 ≤ l ≤ n could
coincide.
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(iv) If µH > 0 and αH = 0, then

Hm,n
p,q (z) = O(zρ), |z| → ∞, |arg(z)| ≤ ϵ, (B.83)

where ρ = max1≤j≤n

[
Re(aj)−1

Aj
, Re(δH)+1/2

µH

]
and ϵ is a constant such that

0 < ϵ < π
2 minn+1≤j≤p;1≤k≤m (Aj , Bk).

B.9 The Caputo fractional derivative

In App. C, a Caputo fractional derivative is needed. This is not the fractional derivative
that is mainly used in this thesis. Therefore, we will be brief in this discussion. We follow
Ref. [25], where more details can be found.

Definition B.9.1. Let α ∈ R \ Z, b < t and n − 1 < α < n with n ∈ Z. The Caputo
fractional derivative is given by

C
bD

α
t f(t) =

1

Γ(n− α)

∫ t

b
dτ

f (n)(τ)

(t− τ)α−n−1
, (B.84)

where f (n)(t) denotes the nth order derivative.

Remark B.9.1. Notice, that the Caputo fractional derivative depends on the lower bound,
b. This is in contrast with the Weyl fractional derivative which has a lower bound of −∞.

It turns out that the Caputo fractional derivative works well with Taylor series.

Example B.9.1. Assuming that ν > n, we have

C
bD

α
t (t− b)ν =

1

Γ(n− α)

∫ t

a
dτ

Γ(ν + 1)

Γ(ν − n+ 1)
(τ − b)ν−n(t− τ)−α+n−1, (B.85)

where we calculated the nth order derivative. Next, we make the substitution: τ = b+z(t−b),
which results in

C
bD

α
t (t− b)ν =

Γ(ν + 1)

Γ(n− α)Γ(ν − n+ 1)

∫ 1

0
dz [z(t− b)]ν−n [(1− z)(t− b)]−α+n−1 (t− b)

=
Γ(ν + 1)

Γ(n− α)Γ(ν − n+ 1)
(t− b)ν−α

∫ 1

0
dz zν−n(1− z)−α+n−1

=
Γ(ν + 1)

Γ(n− α)Γ(ν − n+ 1)
(t− b)ν−αB(ν − n+ 1, n− α)

=
Γ(ν + 1)

Γ(ν − α+ 1)
(t− b)ν−α, (B.86)

where in the third line we identified the definition of the beta function, see Def. B.6.1, and
in the last line we applied Eq. (B.61).
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The previous example allows one to calculate the caputo derivative of any function that
is Taylor expandable. To illustrate the difference between the Weyl fractional derivative
and the Caputo fractional derivative, we investigate what happens when we apply the
Caputo fractional derivative on the exponential. Recalling that the exponential was an
eigenfunction of the Weyl fractional derivative, as was shown in Ex. 3.1.1.

Example B.9.2. First, we note that we will work with lower bound of the Caputo fractional
derivative to be zero such that we can easily compare the result with the result obtained by
using the Weyl fractional derivative. For 0 < α < 1, we have that

C
0D

α
t e

at =
∞∑
ν=0

1

ν!
C
0D

α
t t

ν

=
∞∑
ν=1

(at)ν−α

Γ(ν − α+ 1)
, (B.87)

which clearly is not the exponential function anymore. It is a Mittag-Leffler function [81,
82]. We thus conclude that the exponential function is not an eigenfunction of the Caputo
fractional derivative.
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Appendix C

Numerical study of fractals

In this appendix we will justify numerically the assumption made in Eq. (D.2). Namely,
that labeling the points of a fractal, k, based on the ordered distances to the origin, Rk,
results in

k =

(
Rk

a

)df

, (C.1)

where df is the fractal dimension and a is the lattice spacing. First, we generate the points
of a fractal, then we order those points based on the distance to the origin. Then, we make
a log-log plot to see if we actually have a power relation between the labels and the distance
to the origin. Finally, we fit the log-log plot by a linear function, which then returns the
parameters in which we are interested. We fitted ln(Rk) in terms of ln(k), which resulted
in

ln(Rk) = p1 ln(k) + p2

= ln (ep2kp1) , (C.2)

where p1 and p2 are the parameters of the fit. This implies that

k =

(
Rk

ep2

) 1
p1

. (C.3)

Comparing the above equation with Eq. (C.1), yields

df =
1

p1
and a = ep2 . (C.4)

These are the relations that will be justified from the numerical results.
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First, we check the above assumption in the case of a two-dimensional lattice, namely,
a triangular lattice. The results are depicted in Fig. C.1. The dimension becomes

d =
1

p1
= 1.981, (C.5)

which is of course very close to the dimension of the triangular lattice, which is two. For
the lattice spacing, which was set to be 0.00391 in the simulation, the numerical result
yielded

a = ep2 = 0.00406. (C.6)

(a) (b)

Figure C.1: (a) shows the points of a triangular lattice. The lattice spacing is 0.00391.
(b) is a log-log plot of Rk in terms of k. A fit is shown in the same figure.

Next, we did the same investigation for the Sierpiński triangle, which has a fractal dimen-
sion, df ≈ 1.585 and the lattice spacing was kept the same as for the triangular lattice,
0.00391. The results of the fit are

df =
1

p1
= 1.589 and a = ep2 = 0.00203, (C.7)

which can also be seen in Fig. C.2. Notice that the lattice spacing is almost half of what it
should be. This is because we calculated the lattice spacing numerically as the minimum
distance between the points. However, the first hole that appears in the first generation of
the Sierpiński triangle is not a real hole when using a triangular lattice basis. This can be
observed in Fig C.3.
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(a) (b)

Figure C.2: (a) shows the points of a Sierpiński triangle of generation 8. The lattice
spacing is 0.00391. (b) depicts the log-log plot of Rk in terms of k. A fit is also
shown in the same figure.

 

Figure C.3: The lattice of the first generation Sierpiński triangle. Notice that this is
the same as the triangular lattice. This means that the minimum distance between
the points is not the lattice constant but half of it.
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This means that the minimum distance between two points is half the size of the fractal’s
unit triangle. Hence, we find a factor of two difference. Note that Eq. (C.1) still holds.
The dimension is very close to the actual fractal dimension of the Sierpiński triangle.
Finally, we did the same experiment for the Sierpiński carpet, which has a fractal dimension
of approximately 1.893 and the lattice spacing was chosen to be 0.000647. The results are
shown in Fig. C.4. The fit gives

df =
1

p1
= 1.871 and ep2 = 0.000346. (C.8)

The lattice spacing, resulting from the fit, is again around half of what is expected. The
explanation is the same as for the Sierpiński triangle. The fractal dimension is again very
close to what the fractal dimension of the Sierpiński carpet is. We can thus conclude that
the relation, given by Eq. (C.1) is the correct one, up to potentially a factor of two. This
could be verified by using a different (symmetry in the) lattice, such as a honeycomb lattice,
where there is no mixing between fractal holes and lattice holes.

(a) (b)

Figure C.4: (a) shows the points of a Sierpiński carpet of generation 7. The lattice
spacing is 0.000647. (b) depicts the log-log plot of Rk in terms of k. A fit is shown
in the same figure.
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Appendix D

The Caldeira-Leggett model on a
fractal

In this appendix, we give a first attempt to derive the fractional Caldeira-Leggett model
from a physical point of view. We do this by focussing on anomalous diffusion on frac-
tals [14]. We believe that our approach is one that could work. However, we need to make
an inelegant and non-intuitive assumption, which makes this approach incomplete.

We consider the Caldeira-Leggett model, which is described by the Lagrangian

L =
1

2
MQ̇2 − V (Q) +

1

2

N∑
k=1

mk(q̇
2
k − ω2

kq
2
k) +Q

N∑
k=1

Ckqk −
1

2

N∑
k=1

C2
k

mkω
2
k

Q2, (D.1)

where all the parameters are the same as in Sec. 2.2.
Next, we will apply the knowledge of the fractal geometry to the microscopic quantities,
mk, ωk, and Ck. To achieve this, we place the oscillators in the fractal. The intuition for
this is that we will integrate out the oscillators such that the particle can only move in the
fractal. Now, we label the oscillators in order of their distance to the origin. When this is
done for a self-similar fractal, one gets a relation between the distances of the oscillator to
the origin, Rk, and the label of the oscillators, k, which is given by

k =

(
Rk

a

)df

, (D.2)

with a > 0 defining the lattice spacing. The justification for this relation can be found in
App. C. Next, we need to find relations between the other microscopic quantities and Rk.
Let us start with the mass of the oscillators, mk. We note that when the particle just enters
the fractal on the edge it essentially sees a 2D geometry. However, when it moves into the
bulk it starts to see larger and larger holes. This results in a lowering of the average mass
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of an oscillator when we go further inside the bulk of the fractal. This indicates that the
relation between these should have a negative exponent. From Ref. [83], we know that the
lacunarity of a perfect fractal, Λ(r), is approximately given by

Λ(r) = λ
( r
L

)df−dE
, (D.3)

where r is the scale at which one is observing the system1, λ is called the lacunarity param-
eter, L is the size of the fractal, and dE is the Euclidean dimension of the embedding space.
In the same reference, a link between the lacunarity and the relative mass fluctuations at
scale r is given by

Var[m(r)]

⟨m⟩2
= Λ(r)− 1, (D.4)

where Var[m(r)] stands for the variance of the mass at scale r, thus having a unit of mass
squared, and ⟨m⟩ the average mass of a single oscillator in the whole fractal, which is by
definition independent from the scale. We can then write

mk = ⟨m⟩+ δmk(r)

= ⟨m⟩+ Var[m(r)]

⟨m⟩
= ⟨m⟩Λ(r). (D.5)

Now, we note that in the bulk of the fractal, r and Rk are essentially the same, such that
we obtain

mk = ⟨m⟩Λ(Rk)

= ⟨m⟩λ
(
Rk

L

)df−dE

, (D.6)

where in the last line we used Eq. (D.3). Next, we see that a relation between the coupling
constant, Ck, and mk, and ωk can be obtained by looking at the dimensions in Eq. (D.1),
which imply that

[Ck] =
force

distance
. (D.7)

Dimensional analysis of Newton’s second law gives

force = mass · distance
time2

= mass · distance · frequency2. (D.8)

1For example a ball of radius r.
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Thus, we can rewrite Ck as

Ck = C̃mkω
2
k. (D.9)

where C̃ is a dimensionless constant. However, since we only used dimensional analysis, C̃
can still depend on k. Therefore, we take the general form

Ck = Cmkω
2
k

(ωk

ω̃

)b
, (D.10)

where C is independent of k, b is a real number, and ω̃ is a constant that has units of
frequency. Finally, we turn our attention towards ωk. We assume that the bath is in
equilibrium, meaning that we can use the equipartition theorem (Eqs. 2.7), which states

mkω
2
kR

2
k = kBT. (D.11)

Hence, we get for ωk

ωk =

√
kBT

mk

1

Rk
. (D.12)

To summarize, by using the properties of fractals, we were able to write the microscopic
bath quantities as a set of implicit functions of k, namely

k =
(
Rk
a

)df
,

Ck = Cmkω
2
k

(
ωk
ω̃

)b
,

mk = ⟨m⟩λ
(
Rk
L

)df−dE
,

ωk =
√

kBT
mk

1
Rk

.

(D.13)

The only remaining question is what the measure should become. This can be solved by
considering

∆k ≡ kprevious − knext, (D.14)

where knext is the label of the next oscillator. This is defined because we ordered the oscil-
lators based on their distance to the origin. ∆k is just a number, which in the continuum
limit will go to unity. Thus, 1→ dk. Taking the differential of Eq. (D.2), gives

dk = a−dfdfR
df−1
k dRk. (D.15)

It will be more useful to write dk in terms of dωk, since in the Caldeira-Leggett model (see
Sec. 2.2) delta functions of the form δ(ω−ωk) were used. To achieve this, we first derive a
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relation between Rk and ωk, which is done by inserting Eq. (D.6) into Eq. (D.12), yielding

Rk =

√kBTLdf−dE

⟨m⟩λ

 2
2+df−dE

ω
−2

2+df−dE

k

≡
(
B

ωk

) 2
2+df−dE

, (D.16)

with B ≡
√

kBTL
df−dE

⟨m⟩λ . This equation implies that

dRk = − 2

2 + df − dE

(
B

ωk

) 2
2+df−dE

ω−1
k dωk. (D.17)

Remark D.0.1. From Eq. (D.12), we see that, if k goes from 0 to∞, then ωk goes from∞
to 0. This gives an extra minus sign when going from k to ωk under the integral, canceling
the minus sign that appears in Eq. (D.17).

Substituting Eqs. (D.16) and (D.17) into Eq. (D.15) gives

dk = −
2dfa

−df

2 + df − dE

(
B

ωk

) 2df
2+df−dE

ω−1
k dωk. (D.18)

Recall that the spectral function in the Caldeira-Leggett model was given by

JCL(ω) =
π

2

∑
k

C2
k

mkωk
δ(ω − ωk). (D.19)

Now, we apply the continuum limit of the sum, to get

Jf (ω) =
π

2

∫ ∞

0
dk

C2
k

mkωk
δ(ω − ωk), (D.20)

where we swapped the subscript, CL, by f , which stands for fractal. Using Eq. (D.10), we
can write

C2
k

mkωk
= C2mkω

3
k

(ωk

ω̃

)2b
=

C2⟨m⟩λB
2(df−dE)

2+df−dE

ω̃2bLdf−dE
ω

−2df+2dE
2+df−dE

+3+2b

≡ Kω
−2df+2dE
2+df−dE

+3+2b
(D.21)
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withK ≡ C2⟨m⟩λB
2(df−dE)

2+df−dE /(ω̃2bLdf−dE ). In the second line we substituted Eqs. (D.6) and (D.16).
Substituting the above result and Eq. (D.18) together with the extra minus sign explained
in Rem. D.0.1 yields

Jf (ω) = K
πdfa

−df

2 + df − dE
B

2df
2+df−dE

∫ ∞

0
dωkω

−4df+dE
2+df−dE

+2+2b

k δ(ω − ωk)

= K
πdfa

−df

2 + df − dE
B

2df
2+df−dE ω

−4df+dE
2+df−dE

+2+2b
. (D.22)

We first note that when we take b = 0, we do not get the result that is given in the

experiments [14]. However, we can choose 2b = −−4df+dE
2+df−dE

− 2 +
2df
dE

, such that

Jf (ω) = K
πdfa

−df

2 + df − dE
B

2df
2+df−dE ω

2df
dE , (D.23)

which does reproduce the results of the experiment. However, we are unable to justify this
choice at the moment. This is the missing link in the derivation.
Finally, we will show that the spectral function of the previous section will lead to a Caputo
fractional derivative (see Sec. B.9) Langevin equation with colored noise. We can directly
start with

Ffr =
2

π

d

dt

{∫ t

0
dτ

∫ ∞

0
dω

Jf (ω)

ω
cos[ω(t− τ)]Q(τ)

}
, (D.24)

which is a known result in the Caldeira-Legget model. It is known (see Ref. [25]) that a
spectral function of the form Eq. (D.23) leads to a friction form

Ffr = η̃
C

0D
2df/dE
t . (D.25)

Turning our focus to the fluctuating force, which in the Caldeira-Leggett model has statis-
tics given by

⟨f(t)⟩ = 0, (D.26)

⟨f(t)f(t′)⟩ = 2kBT

π

∫ ∞

0
dω

Jf (ω)

ω
cos[ω(t− t′)]. (D.27)

Substituting a non-Ohmic spectral function, such as Eq. (D.23), yields colored noise of the
form (Ref. [25])

⟨f(t)f(t′)⟩ = H(t− t′)−2df/dE , (D.28)
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where H is a specific constant. Thus, we have that

−MQ̈(t) + η̃
C

0D
2df/dE
t Q(t) +

∂V (Q)

∂Q
= f(t), (D.29)

with ⟨f(t)⟩ = 0 and ⟨f(t)f(t′)⟩ = H(t − t′)−2df/dE . Now, we know that, in the free case,
this leads to a long-time behavior of the mean squared displacement given by〈

Q(t)2
〉 t→∞∼ t2df/dE , (D.30)

which justified our claim that with our specific assumptions one could explain the experi-
ments in Ref. [14].
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bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der Physik,
322(8):549–560, 1905.

[12] Ralf Metzler and Joseph Klafter. The random walk’s guide to anomalous diffusion: a
fractional dynamics approach. Physics Reports, 339(1):1–77, 2000.

[13] Wen Chen. Time–space fabric underlying anomalous diffusion. Chaos, Solitons &
Fractals, 28(4):923–929, 2006.

[14] Xiao-Yun Xu, Xiao-Wei Wang, Dan-Yang Chen, C. Morais Smith, and Xian-Min Jin.
Quantum transport in fractal networks. Nature Photonics, 15(9):703–710, 2021.

[15] A. O. Caldeira. An Introduction to Macroscopic Quantum Phenomena and Quantum
Dissipation. Cambridge University Press, 2014.

[16] Ulrich Weiss. Quantum dissipative systems. World Scientific, 2012.

[17] A.O Caldeira and A.J Leggett. Quantum tunnelling in a dissipative system. Annals
of Physics, 149(2):374–456, 1983.

[18] L. Ferialdi. Dissipation in the Caldeira-Leggett model. Phys. Rev. A, 95:052109, May
2017.

[19] Anthony J Leggett, SDAFMGA Chakravarty, Alan T Dorsey, Matthew PA Fisher,
Anupam Garg, and Wilhelm Zwerger. Dynamics of the dissipative two-state system.
Reviews of Modern Physics, 59(1):1, 1987.

[20] Amir O Caldeira and Anthony J Leggett. Influence of dissipation on quantum tun-
neling in macroscopic systems. Physical Review Letters, 46(4):211, 1981.

[21] L Ferialdi. Dissipation in the Caldeira-Leggett model. Physical Review A,
95(5):052109, 2017.

[22] Eric Lutz. Fractional Langevin equation. Phys. Rev. E, 64:051106, Oct 2001.

[23] R. C. Verstraten, R. F. Ozela, and C. Morais Smith. Time glass: A fractional calculus
approach. Phys. Rev. B, 103:L180301, May 2021.

[24] Stanislav Burov and Eli Barkai. Critical exponent of the fractional Langevin equation.
Physical review letters, 100(7):070601, 2008.

[25] R. C. Verstraten. The fractional Langevin equation. Master’s thesis, Utrecht Univer-
sity, Heidelberglaan 8, 3584 CS Utrecht, 2020.

[26] Keith Oldham and Jerome Spanier. The fractional calculus theory and applications
of differentiation and integration to arbitrary order. Elsevier, 1974.

90



BIBLIOGRAPHY

[27] Francesco Mainardi. Fractional calculus: Theory and applications, 2018.
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