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Abstract.

Deep mixing events (DMEs) are an important aspect of the ecosystem in Lake Garda. To predict when DMEs will happen in

the future, especially when considering climate change, a hydrodynamical model is used (such as Delft3D). The input for such

models has to be atmospheric forcing with a high resolution. The northern part of Lake Garda lies between high mountain

ranges, where high-resolution observational atmospheric data is inaccessible due to sparse observational posts. Therefore, data5

from the models of the National Centers for Environmental Prediction’s Global Forecasting System (NCEP GFS) for present-

day, and EC Earth (future climate scenarios model) are needed. These datasets, however, have too low of a resolution compared

to the lake size. NCEP has a resolution of 0.25◦ (17 km in width and 27 km in height), and EC Earth has a 25 km resolution.

Both datasets need to be dynamically downscaled, normally with a hydrodynamical model such as the Weather Research and

Forecasting (WRF) to 3 km or 4 km resolution. This, however, takes a lot of time; here, neural networks could prove to be very10

useful. After a long time training the network (just under two weeks), downscaling new data takes significantly less time (a

couple of minutes). For the Lake Garda region, two different neural networks (Generative Adversarial Networks or GANs) will

be trained using the work of van Rijk (2022), who based his work on Stengel et al. (2020). The first neural network will use

training data from 2017 until May 2018, while the second network will use training data until 2020. The test data is from 2021,

and all data consists of the following variables: 2 m above surface temperature (T2m) and 10 m above surface wind velocity15

(U10m and V10m). With the second neural network, a future test dataset will be downscaled from EC Earth 25 km resolution

to a 3 km resolution and compared to WRF 4 km. The validation metrics of the generated super-resolution, when compared

to the WRF data, are the root mean squared error (RMSE) and the structural similarity index measure (SSIM). Improvements

to both SSIM and RMSE for all variables are observed with more training, though they do not improve at the same rate. For

future data, both are worse than the present-day data.20
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1 Introduction

Climate change leads to changes in the thermal structures of lakes, which are led by atmospheric changes (Råman Vinnå et al.,

2021). Therefore, it is important to study these atmospheric changes to know what will happen in lakes.

A lake is dependent on deep mixing events for the preservation of its ecosystem. Deep mixing events (DMEs) are occasions

where the water in a lake is mixed, meaning the rich nutrients, which are often at the bottom of a lake, will be transported25

towards the surface. Then oxygen will be transported from the surface towards the bottom. For deep lakes, this is especially

crucial, because the regular circulation will not provide this mixing. (Biemond et al., 2021)

Figure 1. Lake Garda 1

In the case of Lake Garda (see Figure 1), these mixing events only happen every few

years, meaning this lake is oligomictic. In the work of Biemond et al. (2021), the mecha-

nisms of creating DMEs are explained. This paper concludes that thermocline tilting and30

turbulent cooling can lead to deep mixing.

To predict DMEs, small-scale atmospheric data is needed to force the hydrodynamic

models. Lake Garda is at its smallest part 3 km wide with a length of 30 km, and in

the shallow sub-basin a maximum of 13 km wide and 20 km in length. Atmospheric

data with a smaller scale is needed to force a hydrodynamical model, such as Delft3D.35

(Amadori et al., 2021)

Most atmospheric data is available from satellites as observations around Lake Garda are

sparse. (Amadori et al., 2021) This is mostly due to the increasingly complex topography

(mountains) in the north. However, satellite data do not have the preferred grid resolution

to use as a boundary condition for hydrodynamical models.40

Data from the National Centers for Environmental Prediction’s Global Forecasting Sys-

tem (NCEP GFS, from now on called NCEP) is, for example, on a 0.25◦ by 0.25◦

global latitude-longitude grid (National Centers for Environmental Prediction, National

Weather Service, NOAA, U.S. Department of Commerce, 2015). To downscale this data,

the Weather Research and Forecasting (WRF) model can be used. This model uses dy-45

namical methods to downscale data. More information on the WRF model can be found

in Giovannini et al. (2014).

However, dynamical downscaling can take a long time because it is computationally expensive. (Glotter et al., 2014)

Here, machine learning can play an important role.

Machine learning models can do this downscaling faster than dynamically downscaling models after training the machine50

learning model. This training of the machine learning models can take some time, but afterward, the downscaling of the de-

sired data can be done significantly faster in contrast to the WRF model. (van Rijk, 2022)

Now, the question arises of how accurate these downscaled data are compared to the WRF data. It would also be useful to in-

vestigate whether future data (to predict DMEs) can be successfully downscaled with an existing model trained on present-day
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data. It will be the topic of this paper.55

Data from NCEP and WRF is utilized to train a machine learning model based on the following paper: Stengel et al. (2020).

They used Generative Adversarial Networks (GANs) to downscale global resolution data to high-resolution data (downscaling

of factor 50). The atmospheric data that will be downscaled consists of temperature and wind velocity.

The neural network architecture from Stengel et al. (2020) will be applied to Lake Garda to investigate the difference between

using downscaling based on the physical relations compared to machine learning based models. It is done by training present60

data and testing present-day and future data. Preliminary work was done earlier by van Rijk (2022), who used and changed the

code of Stengel et al. (2020).

A difference compared to the work of Stengel et al. (2020) is the fact that Stengel et al. (2020) used extrapolated data for their

training resolution. So, they use high resolution data and upscale this data for the training of their model. For this paper, the

training data is already dynamically downscaled instead because for Lake Garda these datasets are available.65

2 Methods & Data

2.1 Training

The method used for data downscaling is based on Single-Image Super Resolution in the machine learning world. In this case,

a GAN will be downscaling a low-resolution (LR) picture to a high-resolution (HR) picture. Because atmospheric data can

be complex, this downscaling is not done in one step. So, just like in Stengel et al. (2020) and van Rijk (2022), a middle step70

of downscaling is used, which results in mid-resolution (MR) data. It ensures a deep neural network model, thus leading to

a resolution with better small-scale phenomena. A dataset of 9km and 3km resolution is needed for the training part of this

model because the original data will be at a resolution of 18km. The first downscaling step of LR to MR has a factor of 2, and

the second downscaling step of MR to HR has a factor of 3, see Figure 2.

For temperature and wind velocity, two different GANs are trained. These differ in specific variables for the GANs, such as75

alpha (a tuning variable for the adversarial part of the network), dropout rate, and number of epochs.

The model training is done on a server of the HPC facility of the Utrecht Bioinformatics Community (UBC). Their GPUs are

used, which makes the training and testing of models and data go faster compared to when a CPU is used.

More information about the GANs can be found in Appendix A.

The validation metrics of the generated super-resolution (SR), when compared to the WRF data, are the root mean squared80

error (RMSE) and the structural similarity index measure (SSIM).

2.2 WRF & NCEP

The WRF dataset is a dynamically downscaled dataset by Giovannini et al. (2014) where the NCEP GFS dataset is used as a

boundary condition.

For Section 3.1, the training dataset will be shorter in size than for Section 3.2. For Section 3.1, the temporal range of the85
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Figure 2. Process of downscaling. The domain is 45.2917178-46.108105◦N and 10.100739-11.273682◦W. Number of pixels for LR = 5x5,

MR = 10x10 and HR = 30x30.

Source NCEP GFS EC Earth WRF WRF WRF

Spatial Resolution 0.25◦ 25km 9km 4km 3km

Temporal Resolution 3 hours 3 hours 3hours 3 hours 3hours

Training Size 11688 - 11668 - 11668

Test Size 2920 2920 2920 2920 2920
Table 1. Specifics of the datasets for the variables for Section 3.2 and 3.3

training data is from 1-1-2017 until 31-5-2018, while for Section 3.2 the training data ranges from 1-1-2017 until 31-12-2020.

In Table 1 the characteristics of the datasets of NCEP GFS and WRF can be found. The difference between this dataset and

the one used for Section 3.1 is that the training size is smaller (4128). There is also a difference in the boundaries of the WRF

datasets and the spatial resolution for the standard test case and the more time case. The domain for the training with more

years lies between 45.2917178-46.108105 degrees North and 10.100739-11.273682 degrees West. For the standard test case,90

the area of downscaling is the same as for van Rijk (2022), with a pixel spatial resolution of 96x96 (HR), 32x32 (MR), and

16x16 (LR). For the case of training with more years, the pixel spatial resolutions are 30x30 (HR), 10x10 (MR), and 5x5 (LR).

The variables of all these datasets are the 2 meters above the surface air temperature (T2m in Kelvin (K)) and the 10 meters

above the surface wind velocity components (U10m and V10m both in meters per second (m/s)).

The data from NCEP GFS can be downloaded from the National Centers for Environmental Prediction, National Weather95

Service, NOAA, U.S. Department of Commerce (2015) website. The dataset of NCEP has the boundaries as van Rijk (2022).

2.3 Future Data

For the future data test case, with the same variables as before (T2m, U10m, V10m), data from the EC Earth model is used as

input (LR data). The work of Davini et al. (2017) explains more about the EC Earth model. The validation test data is WRF

data, but this time at a 4km scale. The WRF 4km data domain is 10.437653 - 10.961456◦W and 45.419144 - 45.998722◦N.100

The WRF 4km has a pixel resolution of 17x11. The super-resolution will be interpolated towards a 4km resolution, while the

super-resolution itself will be at a 3km resolution after the downscaling of the EC Earth data. The future year data that will be

explored is 2041. The climate scenario under which the EC Earth data was created is RCP8.5 (Smolders, 2022). The grid of

the EC Earth data set is 44-48◦N and 8-14◦W with 3-hour temporal resolution. The spatial resolution is 25km. Other specifics
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can be found in Table 1. Napoli et al. (2022) dynamically downscaled the EC Earth data to 4km using WRF, which is used here105

as validation for the future test case.

3 Results

The results are divided into 3 sections: a standard test case reproducing the work of van Rijk (2022); a case with more training

data; and a case where the model of more training (3.6 years extra compared to the standard test case) data is used to test a

future dataset.110

3.1 Standard test case

In the standard test case, the following results are displaying for each variable: the RMSE and SSIM for the training and test

data in space and time, and the best and worst sSR of the test data. For this case, the training data is from 2017 until May 2018,

and the test data is from 2021. The results contain only the last step of downscaling (from MR to HR).

3.1.1 T2m115
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Figure 3. SSIM (upper two figures) and RMSE (lower two figures) for the T2m. The two figures on the left display the SSIM and RSME

over time for the training and test data. The two figures on the right are the SSIM and RMSE averaged throughout the test data over the area

of interest.

In Figure 3, the SSIM and RMSE are presented for the variable T2m of the generated SR.

The SSIM over time, follows the same pattern for the test and train SR data. The values are often above 0.5, meaning the test

and train SR data have structurally similar patterns as the WRF 3km of T2m. Over space, the SSIM has some lower values over

Lake Garda (in the middle of the upper right figure), the values are higher in the south where the topography becomes flat. In

the north, where the topography is more present/rough, the SSIM seems to switch a lot between high and slightly lower values.120

The RSME over time is higher at the beginning and end of the year for both test and training SR. The RMSE never dips below
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the 2 K mark. Over space, Lake Garda is not as visible as it was for the SSIM. The lowest values of RMSE are in the southern

part of the figure, and in the nothern part, the RMSE reaches almost 4 K. In the northern part of the figure, the patterns of RMSE

become more complex with detailed structures of valleys and tops of high and low values of RMSE. This may be attributed to

the rough topography in the north, however.125
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(b) Worst SR: Snapshot is at 15:00 23-05-2021

Figure 4. The best and worst SR for T2m. Training period = 2017 - May 2018, testing period = 2021.

In Figure 4a, the best downscaling SR for T2m is displayed over the research area alongside the corresponding NCEP and

WRF 3km data. The RMSE is 1.1 K. The SSIM is 0.70, positive, meaning the patterns are one-to-one and not the opposite.

In Figure 4b, the worst SR for T2m is displayed together with the corresponding NCEP and WRF 3km data; it is remarkable

to see that overall the patterns of SSIM of the SR look vaguely familiar to the NCEP original data, even with almost the same

SSIM.130

3.1.2 U10m
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Figure 5. SSIM (upper two figures) and RMSE (lower two figures) for the U10m. The two figures on the left display the SSIM and RSME

over time for the training and test data. The two figures on the right display the SSIM and RMSE averaged throughout the test data over the

area of interest.
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In Figure 5, the SSIM and RMSE are presented for the variable U10m of the generated SR.

The SSIM over time, does not seem to have a pattern. The train SR is quite a bit higher than the test SR. The train SR has an

SSIM varying around 0.4, and the test SR is around 0.1. The training SR data is more similar to the WRF 3km data than the

test SR. It can be said that the test SR has an SSIM around 0.1, close to zero, which means it is entirely structurally dissimilar135

from the WRF 3km data. Over space, the SSIM is very low overall, with a max of around 0.3 in the northern region.

The RMSE over time also seems constant, with the training SR being lower (around the value of 1 m/s) than the test SR, which

varies between 2 and 3 m/s. Over space, the RMSE is overall high, around the value of 3 m/s. In the left and right side of the

middle of the figure the RMSE drops around 1.2 m/s. In the northern part of the figure, the RMSE has more complex patterns

because of the different topography in that region compared to the south.140
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(b) Worst SR: Snapshot is at 18:00 28-01-2021

Figure 6. The best and worst SR for U10m. Training period = 2017 - May 2018, testing period = 2021.

In Figure 6a, the best downscaling SR of the test set is displayed for the 10m-U-component of the wind together alongside the

NCEP and WRF 3km data. The RMSE of the SR is even less than the original data of NCEP. The RMSE is just around 1, so

there is little error. The SSIM for the SR is around zero. There is total structural dissimilarity.

In Figure 6b, the worst downscaling SR of the test set is displayed for the 10m-U-component of the wind alongside the NCEP

and WRF 3km data. Again, just like the worst T2m, the SR looks more like the NCEP than the WRF because the WRF 3km145

looks very different on the upper side of the grid. Therefore the RSME of the SR is again high, but the SSIM is similar to the

NCEP.

3.1.3 V10m

In Figure 7, the SSIM and RMSE are presented for the variable V10m of the generated SR.

The SSIM over time for both train and test SR looks constant. The train SSIM is around 0.4, and the test SSIM is around the150

value of 0.1, which is low, which means it is almost structurally dissimilar. Over space, the SSIM behavior of the previous

subfigure is confirmed. Over the whole subfigure, the SSIM varies between 0 and 0.10, with a few spots of 0.20. Again, the

patterns are in the north more complex than in the south.

The RMSE over time for the train SR is more constant around the value of 1 m/s, while the RMSE for the test SR seems to

display a more oscillatory behavior, varying between 2 and 3 m/s. Over space, the RMSE is low in the south, around 1.2 m/s.155
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Figure 7. SSIM (upper two figures) and RMSE (lower two figures) for the V10m. The two figures on the left display the SSIM and RSME

over time for the training and test data. The two figures on the right display the SSIM and RMSE averaged throughout the test data over the

area of interest.

In the north, it has a more complex structure with gradients between RMSE of 3.6 and 2 m/s. There seems to be a noticeable

difference between the patterns in the north of RMSE and compared to the SSIM.
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(a) Best SR: Snapshot is at 06:00 03-06-2021.
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(b) Worst SR: Snapshot is at 21:00 10-05-2021.

Figure 8. The best and worst SR for V10m. Training period = 2017 - May 2018, testing period = 2021.

In Figure 8a, the best downscaling of the test set is displayed for the 10m-V component of the wind alongside NCEP and WRF

3km data. As for the U-component and T2m variables, for the best SR, the RMSE is smaller than the original NCEP. The

SSIM of both NCEP and SR are very similar. In the SR, some blue spots are missed compared to the WRF data, indicating the160

southward wind spots do not generate well.

In Figure 8b, the worst downscaling of the test set is displayed for the 10m-V component of the wind alongside the corre-

sponding NCEP and WRF 3km data. The V-component of SR has the highest RMSE of all the variables for the test data. This

behavior is also seen in the RMSE of the original NCEP data. Again, the patterns in the northern parts of the WRF data are not

generated in the SR, looking more like the NCEP than the WRF.165
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3.2 Training with more years

In the training with more years (3.6 years) case, the following results will be displayed for each variable: the RMSE and SSIM

for the training and test data in space and over time, and the best and worst SR of the test data. For this case, the training data

is from 2017 until 2020, and the test data is from 2021. The results contain only the last step of downscaling (from MR to HR).
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Figure 9. SSIM (upper two figures) and RMSE (lower two figures) for the T2m. The two figures on the left display the SSIM and RSME

over time for the training and test data. The two figures on the right display the SSIM and RMSE averaged throughout the test data over the

area of interest.

In Figure 9, the SSIM and RMSE are presented for the variable T2m.

The SSIM in time oscillates for both test and train SR data between the values of 0.6 and 0.8. The closer value to 1, the more

identical the generated SR is to the WRF data. Over space, the SSIM is low around the Lake Garda region (in the middle of the

subfigure, contours of the outlining of the lake are visible), indicating a dissimilar structure around there. Overall, the SSIM

seems to be around 0.7, with a few spots in the north indicating a lower SSIM.175

The RMSE over time for the training SR data starts high and then lowers, but in an oscillating way. The testing SR data RMSE

varies between 2 and 2.5 K. Over space, the RMSE of the testing SR is the lowest over Lake Garda, around a value of 1.6

K. In the south, the RMSE is higher, around 3.2 K. In the north emerges some interesting patterns of higher RMSE aligning

diagonally with the value of around 3.2 K, as surrounding areas have a RMSE of 2 K.

In Figure 10a, the best SR test result is displayed alongside the corresponding NCEP and WRF 3km data of the variable. This180

SR has a RMSE of 0.54 K, which lies close to 0. The SSIM is 0.96, meaning the image is almost identical to the WRF of 3km.

The main difference between the generated SR and WRF 3km of the T2m variable is that some areas seem darker, thus more

red or blue, compared to WRF 3km. This behavior is seen in the blue area in the left corner, in the lower half of the figure in a

red region, and in the middle of the subfigure where approximately Lake Garda lies in the more orange area. Overall, the SR
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(b) Worst SR: Snapshot is at 15:00 16-08-2021.

Figure 10. The best and worst SR for T2m. Training period = 2017 - 2020, testing period = 2021.

does seem to generate the structure very well, with a small error. The warm south has a colder water region depicting Lake185

Garda and a cold north with more topography of the mountain ranges, leaving vertical lines of warmer and colder temperatures.

In Figure 10b, the worst SR is displayed for the variable T2m alongside the corresponding NCEP and WRF 3km data. The

RMSE is 12.80 K of the SR, a big difference from the best T2m snapshot. The SSIM is 0.50. It is between structurally correct

and structurally dissimilar. Indeed, structure-wise, the same patterns of the WRF are seen in the generated SR: warmer south

with a little less warm Lake Garda and cold diagonal strokes in the North with more topography. The RMSE behavior is seen190

in the generated SR, displaying everywhere colder colors. Comparing the SR with the NCEP however, they seem to be closer

in patterns.
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Figure 11. SSIM (upper two figures) and RMSE (lower two figures) for the U10m. The two figures on the left display the SSIM and RSME

over time for the training and test data. The two figures on the right display the SSIM and RMSE averaged throughout the test data over the

area of interest.
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In Figure 11, the SSIM and RMSE are presented for the variable U10m.

The SSIM over time for the training SR data is slightly increasing with some relatively small variations, from a value of 0.4 to195

almost 0.6. The SSIM of the test SR is lower, varying around 0.2. It means the test data is structurally less similar to the train

SR when compared to the WRF data. Over space, the SSIM of the test SR is overall low, and the spots of higher SSIM seem

random. In the north, one can find (seemingly random) patches of relatively high values of SSIM.

The RMSE over time for the training SR varies around the value of 1 m/s, while for the test SR, it oscillates around the value

of 2 m/s. Over space, the RMSE of the test SR is overall low in the south region of the figure. In the north, high and low values200

of RMSE are trading off spaces next to each other. These patterns are mostly diagonally. The highest value of RMSE is around

3.6 m/s, and the lowest is around 0.8 m/s.
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(a) Best SR: Snapshot is at 12:00 27-06-2021.
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Figure 12. The best and worst SR for U10m. Training period = 2017 - 2020, testing period = 2021.

In Figure 12a, the best SR for the variable U10m is displayed alongside the corresponding NCEP and WRF 3km data. The

RMSE of the SR is 0.52 m/s. The SSIM is 0.73, which is again close to 1 (structurally the same). It is visible in the figure:

both colors and structure are very similar. Looking at the pattern, the contour lines going diagonally also appear, just like in205

the WRF data, with the data in the north sometimes being wider, compared to the WRF data.

In Figure 12b, the worst case of SR for the variable of U10m is displayed alongside the corresponding NCEP and WRF 3km

data. The RMSE is 6.16 m/s, and the SSIM is 0.10 of the SR, meaning almost complete structural dissimilarity. It can be seen

in the right-most figure of Figure 12b. There is a discrepancy between the SR and WRF, meaning the wind direction is often

not similar, especially in the south. In the northern part of the figure, the values are often too low, and the wind direction is210

better. However, in the WRF data (middle figure), there are visible spots of higher positive values. In the SR data, the spots in

the north are more strokes going diagonally.

3.2.3 V10m

In Figure 13, the SSIM and RMSE are presented for the variable V10m.

The SSIM over time for the training SR data oscillates around the value of 0.4 at the beginning of the year, and later steadily215

increases towards a value of 0.6 with some dips. The SSIM of the test SR oscillates between 0.2 and 0.3, which is quite a bit

lower than the training SR. For the SSIM over space, the higher values are placed in the northern parts, while the lower values
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Figure 13. SSIM (upper two figures) and RMSE (lower two figures) for the V10m. The two figures on the left display the SSIM and RSME

over time for the training and test data. The two figures on the right display the SSIM and RMSE averaged throughout the test data over the

area of interest.

are in the south. In the north, the value of SSIM is the highest around the middle. The value of the test SR is low, meaning the

images of the SR are not identical and are more structurally dissimilar compared to the WRF data.

The RMSE over time for the training SR, oscillates a little around the value of 1 m/s. The test SR RMSE oscillates between220

1.5 and 2 m/s approximately. Over space, the RMSE of the test SR has relatively low values in the south, while the northern

part has some outliers around 3.4 m/s. These patterns are mostly diagonal, and some outliers are in the Lake Garda region.
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(b) Worst SR: Snapshot is at 16:00 16-06-2021.

Figure 14. The best and worst SR for U10m. Training period = 2017 - 2020, testing period = 2021.

In Figure 14a, the best case of SR for the variable V10m is displayed alongside the corresponding NCEP and WRF 3km data.

The RMSE of the SR is 0.53 m/s, and its SSIM is 0.71. The SSIM is again close to structurally correct compared to the WRF

data. It is visible in the SR data figure. The same structures of diagonal strokes of first negative and then positive V10m can be225

seen in the north, except the values have little deviations compared to the WRF data.

In Figure 14b, the worst case of the SR for the variable V10m is displayed alongside the corresponding NCEP and WRF 3km

data. The RMSE is 7.76, and the SSIM is 0.04 of the SR. The latter is almost zero, meaning there is next to no structural
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similarity with the WRF data. Comparing the two pictures of WRF and SR, for this case structurally (SSIM) and looking at the

actual values of V10m (RMSE), this case is very wrong. There are a lot of negative spots in the SR picture, and WRF stayed230

positive everywhere. The dots and strokes of WRF are not visible in the SR.

3.3 Future forcing

In the future forcing case, the following results will be displayed for each variable: the RMSE and SSIM for the training and

test data in space and over time, and the best and worst SR of the test data. For this case, the training data is from 2017 until

2020, and the test data is from 2041. The results will contain the last step of downscaling (from MR to HR).235

3.3.1 T2m
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Figure 15. Upper figure: SSIM of the variable T2m through time with average over space with training data of 2017-2020 and test data of

2041 (left) and SSIM averaged over time of the same test data plotted in the area of interest (right).

Lower figure: RMSE of the variable T2m through time with average over space with training data of 2017-2020 and test data of 2041 (left)

and RMSE averaged over time of the test data in 2041 plotted in the area of interest (right).

In Figure 15, the SSIM and RMSE for the variable T2m are displayed. The training data in the left figures is the same as from

Section 3.2.1.

The SSIM over time of the test SR is lower than the train SR. Values of the test SR vary between 0.2 and 0.4 approximately.

Over space, the SSIM of the test SR has the lowest values over Lake Garda, in the middle of the figure. The values there are240

almost zero. Outside the Lake Garda region, the SSIM values are high, around 0.6.

The RMSE over time of the test SR is higher than the train SR. The RMSE climbs from 4 K to roughly 6.5 K and then decreases

again towards 4 K. For the test SR, the RMSE value is high over space, with a minimum value of around 3.4 K, and the highest

value of RMSE is approximately 6.4 K. The south of the figure has a high RMSE, and the northeast also has higher values.

The northwest and middle eastern parts of the figure have the lowest values of RMSE.245
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Figure 16. The best and worst SR for T2m. Training period = 2017 - 2020, testing period = 2041.

In Figure 16a, the best case of SR for the variable T2m is displayed alongside the corresponding EC Earth and WRF 4km data.

The RMSE is 1.07 K, and the SSIM is 0.35 of the SR. The SSIM is low. It is visible in the figure of the generated SR. Although

the SR and WRF have a northeastern cold spot, their locations do not match. Also, in the south of the SR, there is a warm

region, which spreads out from west to east. This region can not be found in the WRF data with such warm temperatures.

In Figure 16b, the worst case of SR for the variable T2m is displayed alongside the corresponding EC Earth and WRF 4km250

data. The RMSE is 12.80 K, and the SSIM is 0.47 of the SR. Interestingly, despite the relatively high SSIM (even higher than

the SSIM for the best SR), its RMSE value is incredibly high. It leads to an interesting discrepancy in T2m values, though the

overall structure remains similar.

3.3.2 U10m
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Figure 17. Upper figure: SSIM of the variable U10m through time with average over space with training data of 2017-2020 and test data of

2041 (left) and SSIM averaged over time of the test data of the year 2041 plotted in the area of interest (right).

Lower figure: RMSE of the variable U10m through time with average over space with training data of 2017-2020 and test data of 2041 (left)

and RMSE averaged over time of the test data of the year 2041 plotted in the area of interest (right).
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In Figure 17, the SSIM and RMSE for the variable U10m are displayed. The training data in the left figures is the same as from255

Section 3.2.2.

The SSIM over time for the test SR is lower than the train SR. The SSIM for the test oscillates around zero, meaning it is

structurally dissimilar to the WRF 4km data. Over space, the SSIM for the test SR is also very low, achieving its lowest values

near the center of the figure at around -0.1 to -0.2, whereas the overall highest value is around 0.15.

The RMSE over time for the test SR varies between 2 and 2.5 m/s, with the highest RMSE in the beginning and end times. The260

lowest RMSE is around two-thirds of the year (2041). Compared to the train SR data, the RMSE is double. Over space, the

RMSE of the test SR is the highest in the northwest corner and the lowest in the northeast corner. Also, high values of RMSE

are in the east. A vague outline of the lake can be seen, with an RMSE of around 3 m/s.
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(b) Worst SR: Snapshot is at 6:00 06-02-2041.

Figure 18. The best and worst SR for U10m. Training period = 2017 - 2020, testing period = 2041.

In Figure 18a, the best case of SR for the variable U10m is displayed alongside the corresponding EC Earth and WRF 4km

data. The RMSE is 0.79 m/s, and the SSIM is 0.13 of the SR. With the SSIM being low, it is visible in the figure structure-wise265

that the SR and WRF are not the same. The WRF 4km has positive values in the northwestern, southwestern, and eastern parts

of the figure. For the SR, this only happens in the east part of the figure, and it is spreading to the northwest from there. Also,

some spots with negative values are not taking over into the SR data.

In Figure 18b, the worst case of SR for the variable U10m is displayed alongside the corresponding EC Earth and WRF 4km

data. The RMSE is 6.77 m/s, and SSIM is 0.01. The SSIM is so low that the SR and WRF are structurally dissimilar, which270

is visible in the figure. The WRF has positive values exclusively in the north- and southwest, while the SR has positive values

almost everywhere. The negative values of WRF in the middle between the two spots, in the northwest and southeast of the

figure, can not be found in the SR image.

3.3.3 V10m

In Figure 19, the SSIM and RMSE for the variable V10m are displayed. The training data in the left figures is the same as from275

Section 3.2.3.

The SSIM over time of the test SR is low compared to the train SR and varies around 0, meaning structurally, the SR is

dissimilar from its WRF counterpart. Compared to the train SR, there is a big difference. Spatially, the SSIM of the test SR is

15



0.2

0.0

0.2

0.4

0.6

0.8

1.0

SS
IM

train
test

`17 `18 `19 `20
Year (train)

0

1

2

3

4

RM
SE

 (m
/s

)

train
test

0.4
0.3
0.2
0.1

0.0
0.1
0.2
0.3

SS
IM

2041 2042
Year (test)

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6

RM
SE

 (m
/s

)

Figure 19. Upper figure: SSIM of the variable V10m through time with average over space with training data of 2017-2020 and test data of

2041 (left) and SSIM averaged over time of the test data of the year 2041 plotted in the area of interest (right).

Lower figure: RMSE of the variable V10m through time with average over space with training data of 2017-2020 and test data of 2041 (left)

and RMSE averaged over time of the test data of the year 2041 plotted in the area of interest (right).

also zero, with a few exceptions.

The RMSE over time of the test SR varies between 2.5 and 3 m/s. The highest values are at the beginning and end of the year280

2041. Compared to the train SR, the test SR SSIM has almost tripled. Over space, the RMSE of the test SR has its highest

values in the northwest and a diagonal stroke over the middle with a small spot at the right in the middle. These values seem

to be around 3.6 m/s, while the lowest values of approximately 1.2 m/s are located in the southeast and northeast with some

spots.
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(b) Worst SR: Snapshot is at 3:00 26-11-2041.

Figure 20. The best and worst SR for V10m. Training period = 2017 - 2020, testing period = 2041.

In Figure 20a, the worst case of SR for the variable V10m is displayed alongside the corresponding EC Earth and WRF 4km285

data. The RMSE is 0.72 m/s, and the SSIM is 0.04 for the test SR. The values of the V10m are not that high, leading to

relatively small errors compared to the WRF 4km data. However, the SSIM indicates that structures and patterns are wrong

because a value of 0.04 is extremely close to zero. The negative values are approximately in the right spot for SR, around the
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middle of the figure. The higher positive values of the WRF in the northwest and roughly southwest are not visible in the SR.

Overall, the SR has a lot more positive values than WRF.290

In Figure 20b, the worst case of SR for the variable V10m is displayed alongside the corresponding EC Earth and WRF 4km

data. The RMSE is 8.60 m/s, and the SSIM is 0.01 for the test SR. Structure-wise, this result is even worse than for the best

case of V10m. The RMSE is relatively high. However, high values of V10m are present, especially negative, in the WRF data.

A spot in the northwest corner is present, with values towards the -30 m/s. This spot is not replicated in the SR figure. The SR

has a generally high negative value spot in the middle of the figure. Meanwhile in the WRF data, the lowest values are around295

0 m/s.

4 Discussion

In this section, for every variable, the results of Section 3 will be discussed, comparing all three cases to one another. At the

end, a summary is available with a few remarks.

4.1 T2m300

Comparing the SSIM of Figure 3 to Figure 9 (upper half of both figures), it is visible that for the standard test (ST) case the

SSIM over time it is lower than for the more time (MT) case. It holds for both test and train SR. For the MT SSIM, it is the case

that the test SR is even higher than the train SR. It does not happen for ST, where the two SRs are in the same range. For the

SSIM over space, ST and MT develop the same problem: over the Lake Garda region, the SSIM is the lowest. It is the region

of interest, and these values of T2m compute the hydrodynamics of the Lake together with some other variables. Structurally,305

the patterns are not identical to the WRF data, which models the hydrodynamics.

Comparing the RMSE of Figure 3 to Figure 9 (lower half of both figures), it is visible that for the train SR of ST the RMSE

over time only has two peaks of around 4 K at the beginning and end of the training period. For MT, the train SR starts around

the same RMSE of 4 K and then decreases over time. The peak of training SR of MT is higher than that of ST. Meanwhile,

the test SR of ST follows the same RMSE over time as its training part. For MT, the test SR RMSE is lower. For ST, it varies310

between 2 and 4 K, while for MT, it varies between 2 and 2.5 K. Spatially, the RMSE of ST is divided over two sections down

the middle horizontally, with a high RMSE in the north and a lower RMSE in the south. For MT, this division is not visible.

Above and below Lake Garda, the RMSE is higher than at the Lake Garda region itself. This lower RMSE over Lake Garda

seem also to happen in the ST.

315

Further, comparing the SSIM of Figure 9 to Figure 15 (upper half of both figures), the test SR of MT is a lot higher than

for the future forcing (FF) case over time. For ST, the SSIM varies between 0.6 and 0.8. For FF, it varies between 0.2 and 0.4.

It leads to a less structurally similar SR compared to the WRF data for FF. For the SSIM over space, for both MT and FF, the

same behavior happens: Lake Garda has a low SSIM of around 0, and the region around it has an SSIM of around the value of

0.7.320
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Comparing the RMSE of Figure 9 to Figure 15 (lower half of both figures) over time, the RMSE of MT for the test SR is lower

than for FF. For MT, it varies between 2 and 3 K. For FF, it goes up and down from 4 to 6.5 K. Spatially, the RMSE of MT

differs much from FF. Over the Lake Garda region, the RMSE of MT is low, around 1.8 K. For FF, it is high everywhere, with

some peaks of 6.8 K, even over Lake Garda.

325

Thus, for T2m, the SSIM improves over time using more training data compared to the standard case, but for future data,

the SSIM over time is low. The SSIM over space for all three cases is the lowest over Lake Garda.

Furthermore, for the T2m, the RMSE of the test SR improves using more training data. However, the RMSE of the future data

becomes significantly higher. The RMSE over space becomes smaller in the Lake Garfa region after using more training data

for the training. This effect is, however, not visible for the future data with high RMSE over that region.330

4.2 U10m

Comparing the SSIM of Figure 5 to Figure 11 (upper half of both figures), the train SR has the same range of values for ST and

MT over time. Later in the training SR of MT, the SSIM is improving with a higher SSIM than ST. The test SR of ST is lower

than that of MT. For both ST and MT, the training SR has the better SSIM. It means the training SR has a higher similarity

compared to the WRF data than the test SR. The test SR is structurally dissimilar compared to WRF for ST and close to that335

structural dissimilarity for MT. The SSIM over space has overall higher values of MT than ST. MT does have a more random

pattern, while the SSIM of ST looks more smoothly with some spots of higher SSIM. It is the case because ST has spatially

more points than MT. The fact that MT has more training data points in time leads to some improvement in SSIM.

Comparing the RMSE of Figure 5 to Figure 11 (lower half of both figures), both ST and MT test SR is higher than the training

SR. The training SR of ST and MT are around the same values of 1 m/s, while the RMSE of the test SR of ST is slightly higher340

and more varying than for MT. The RMSE over space does have some similarities for ST and MT. In both cases, the RMSE

is higher in the northern part and lower in the south. The maximum RMSE is around the value of 3.6 m/s. The area of higher

RMSE is higher for the ST.

Comparing the SSIM of Figure 11 to Figure 17 (upper half of both figures), the SSIM over time for FF is lower than for345

MT. The SSIM of MT over time is around 0.2 while for FF it is around 0 for the test SR. The SSIM over space shows still a

few higher spots of SSIM for MT (0.35). For FF, it is mostly around 0.1 and even in the middle negative -0.1.

Comparing the RMSE of Figure 11 to Figure 17 (lower half of both figures), the RMSE over time of the test SR is higher for

FF than MT. Where MT has an upper limit of 2 m/s, for FF, that limit is 2.5 m/s, and the lower limit is 2 m/s. Over space, the

RMSE is only high in the northern part of the figure for MT, while for FF, this is the case everywhere. For Lake Garda, the350

error is around the same for both MT and FF.

Thus, for U10m, the SSIM of the test SR is improving over time when using more training data to train the network. However,

for future data, the SSIM has decreased again towards SR images being structurally dissimilar from its WRF counterpart. The
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SSIM over space seems not to improve over Lake Garda with more training data, and for future data, it is even so low the SSIM355

becomes negative.

Furthermore, for U10m, the RMSE over time is improving using more training data, but the RMSE is again higher for future

data. The RMSE over space around Lake Garda is still after using more training data high. The same happens for future data.

4.3 V10m

Comparing the SSIM of Figure 7 to Figure 13 (upper half of both figures), the SSIM over time for MT is higher than for ST in360

both cases of training and test SR. The error in SSIM (the lighter blue shaded area) is wider for MT than for ST. Over time, the

SSIM for MT increases the whole time. For ST, it stays around the same value. The SSIM over space for ST is low everywhere,

whereas, for MT, there are some spots of slightly higher SSIM values (the blue dots) in the south part of Lake Garda. However,

MT still has the same SSIM as ST.

Comparing the RMSE of Figure 7 to Figure 13 (lower half of both figures), the RMSE over time of the test SR is lower for365

MT than ST. For MT, the RMSE varies between 1.5 and 2 m/s, while for ST, it varies between 2 and 3 m/s. For the training SR

is no difference from ST and MT. The RMSE over space of ST and MT are largely similar: a high RMSE in the north and a

low RMSE in the south. The total area of higher RMSE is for ST larger than for MT, leading to an overall higher RMSE average.

Comparing the SSIM of Figure 13 to Figure 19 (upper half of both figures), the SSIM over time of the test SR is lower370

for FF than for MT. For FF, it varies around 0, while for MT, it varies around 0.2. The error of FF is smaller than for MT. The

SSIM over space is quite different from MT compared to FF. For MT, the SSIM is higher in the north than in the south. There

it is around 0. For FF, the SSIM is overall around zero, except in some spots where it is negative.

Comparing the RMSE of Figure 13 to Figure 19 (lower half of both figures), the RMSE over time is again higher for FF than

for MT. The RMSE of FF varies between 2.5 and 3 m/s, while the RMSE of MT varies between 1.5 and 2 m/s. The RMSE over375

space for both MT and FF has the area of highest RMSE around Lake Garda. For MT, the RMSE is also high in the northern

parts of the figure, while in the south, the RMSE is lower.

Thus, for V10m, the SSIM over time of the test SR is improving using more training data. The SSIM over time of future

data, is again lower. It leads to more SR images being structurally dissimilar to their WRF counterpart. The SSIM over space380

has some improvement in the northern part of Lake Garda using more training data. However, for future data, everywhere over

Lake Garda, the SSIM is low.

Furthermore, for V10m, the RMSE over time of the test SR is improving using more training data. However, for future data,

this is not the case. The RMSE over space, especially over Lake Garda, is high, even for using more training data or when

downscaling future data.385

19



4.4 Summary & Remarks

In conclusion, improvements to both SSIM and RMSE for all variables are visible using more training, though they do not

improve at the same rate. The SSIM and RMSE of future SR data are worse than the present-day SR data for all variables.

It is important to note that going from ST to MT to FF, each case consists of fewer spatial points, even if the training dataset

consists of more points. It could lead to more errors and faults in the structure similarity. Also, the region of downscaling be-390

comes more zoomed in with every case. Often, for the worst-case scenarios, the original data (NCEP for ST and MT, EC Earth

for FF) looks nothing like the WRF data, leading to a generated SR with no similarity and a high error compared to its WRF

counterpart. The generated SR makes logical sense the way it is presented, due to the way the model simulates. It downscales

from the original data, which looks nothing like the WRF counterpart. Also, considering the best and worst cases, sometimes

the SSIM did improve for a variable going from best to worst. It can happen because the best and worst SRs are chosen from395

the maximum and minimum values of RMSE. However, the best cases for T2m, U10m, and V10m in the future forcing shows

that there is some potential to use this network for future datasets: having small RMSEs. Further, different number of epochs

during training were used compared to van Rijk (2022). The number of epochs is 37 for wind and 7 for temperature, while it

was the other way around for van Rijk (2022). For the MT models the same number of epochs for the pretraining and other

values (alpha, dropout rate) are taking over from van Rijk (2022), while it maybe should have been evaluated what the best400

parameters were looking at the performance of the MT models of this paper.

For better-downscaled future datasets, future simulated data (like EC Earth data) can be contained in the training of the net-

works. Then the training dataset could consist of a few years of present data (2017-2020) and a few years of future simulated

data (2037-2040, for example). Testing can be done with the year 2041 to see if this leads to better-generated SR. After training

with this extra data, future patterns of the different variables may be presented better, because in the future, the structures and405

values of the variables could be very different than the present-day data due to climate change. A last note, for different vari-

ables, maybe different neural networks could be used. For example, Serifi et al. (2021) uses for the variables temperature and

precipitation the following network architecture: Residual-Predicting Network (RPN) and Deconvolutional Network (DCN).

They conclude there is no single best architecture for all variables by comparing RPN and DCN for their variables. Another ex-

ample of downscaling using machine learning is presented in Dibike and Coulibaly (2006), where they used a temporal neural410

network (TNN) to investigate the issues of downscaling present using neural networks. That paper concludes that the TNN is

an efficient method for downscaling: for both daily precipitation and daily maximum and minimum temperature series. A last

example of a different neural network using downscaling is in Baño-Medina et al. (2021), where they used convolutional neural

networks (CNNs) to investigate the suitability of CNNs for downscaling future climate change projections. They concluded

that their CNN yields lesser departures from the raw Global Climate Model outputs for the end of the century, making CNNs a415

plausible application for the downscaling of climate change projections. These three applications of neural networks for down-

scaling show potential for the future to use different neural networks for different variables, and even for future projections to

be downscaled.
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Appendix A: GAN

Figure A1. The training scheme for GANs

A Generative Adversarial Network (GAN) consists of two networks working together in an adversarial way: a generator G and

a discriminator D, see Figure A1. In this work, a Super Resolution GAN is used based on the work of van Rijk (2022). A neural

network consists of layers of nodes, where the layers connect through weights. Convolutional filters extract features from the

data. A loss function determines the network performance. One of the hyperparameters in a neural network is the learning rate:435

it determines the step size of the adjustments to the weights during training. The network training ensures an increase in their

performance, which is determined by gradient descent on the dependence of the loss function.

Because a GAN consists of two neural networks, two loss functions exist. The performance measure of the generator, trained

by low-resolution data, is the content loss Lcon. It is calculated by mapping both the created SR and the HR into a feature

space and then measuring the distance between the two mapped resolutions in the feature space. This method leads to better440

performance compared to pixel-based error measures. The second loss function is the adversarial loss function Ladv . It is

an added penalty for the generator. It is because the generator trains to fool the discriminator. The discriminator trains to

distinguish the generated super-resolution.

Some other network hyperparameters are batch size, the learning rate, and the α parameter. This latter parameter is used to

determine the strength of the adversarial loss function for the total loss of the generator during the training. It is depicted in445

Equation A1.

L= Lcon +αLadv (A1)

The network is trained in two steps. First, a pretraining of the generator is done with a number of epochs of 39. It happens so

that the discriminator will not easily distinguish the SR data from the training data. Otherwise, the training is slowed down.

Then, the second step is to train the model in the adversarial fashion of a GAN with a starting generator model with an epoch450

of 37.
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For the T2m variable, the following values of hyperparameters are used: number of epochs = 7; α = 0.001; and the dropout rate

= 0.8. For the wind velocity, these parameters are number of epochs = 37; α = 0.001; and dropout rate = 0.9.

Appendix B: Figures

B1 Case More Time Analysis: LR to MR455
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Figure B1. The best super resolution for the variable of T2m in the testing period of 2021. Training period = 2017 - 2020.
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Figure B2. The worst super resolution for the variable of T2m in the testing period of 2021. Training period = 2017 - 2020.
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Figure B3. The best super resolution for the variable of U10m in the testing period of 2021. Training period = 2017 - 2020.
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Figure B4. The worst super resolution for the variable of U10m in the testing period of 2021. Training period = 2017 - 2020.
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Figure B5. The best super resolution for the variable of V10m in the testing period of 2021. Training period = 2017 - 2020.
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Figure B6. The best super resolution for the variable of V10m in the testing period of 2021. Training period = 2017 - 2020.
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