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Abstract
Due to increasing world population and high amount of hunger, better agricultural technology is in demand.
Growy is a vertical farming company that is aiming to meet this demand in the future. By scaling-up, methods
that could be used before are becoming infeasible, like manually monitoring the health of the crops. Therefore,
automated monitoring is required to keep performing well. Chlorosis is easily detectable in microgreens and
it is informative about the growth conditions. Thus, automating stress detection could be a perfect way to
approach automated monitoring. Stress detection does require the ability to induce stress and capture this
stress. These results show that stress can be induced in a vertical farming environment using a tap-water
treatment. Capturing stress is also possible, but still requires a lot of improvements to work well in a color
sensitive application. Anomaly detection appears to work well for detecting stress, but the experiments
should be repeated with more stable and better quality data. These methods provide the foundations for an
automated monitoring system for microgreens growing in a vertical farming environment.
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1 Layman’s summary
Feeding the world is becoming more challenging as the world’s population increases and many
people are suffering from hunger. Vertical farming could be a way out, because it can improve the
amount of food we can produce per square meter. Growy is a very successful company attempting
to realize the vertical farming dream by automating the care for plants by robots. However, it is
becoming difficult to make sure all plants are growing properly. Currently, the crops are inspected
manually, but due to the increase of production, this is becoming very challenging. For this reason,
the monitoring process should become automated.

Insufficient nutrients can cause stress in microgreens, which will present by changing of the
color of the leaves. Because of this noticeable color change, computer vision could be a good
approach to solve the problem. To experiment with this, it is required that you can give plants
stress and see the stress in images. We show that stress can be induced, but it is difficult to visualize
due to constraints in the image-capturing system. When the system is improved, stress could be
detectable using machine learning, anomaly detection, specifically. These results are a first step in
automating health monitoring in microgreens growing in a vertical farm.
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2 Introduction
2.1 Need for vertical farming

As global life expectancy has been increasing steadily since 1950 (Ritchie et al. 2023), the world’s
population is predicted to grow to 9.8 billion by the year 2050 (UN 2022). By the year 2050, food
demand is said to increase by 60% (Silva 2012). At the same time, 1 in 7 people is suffering from
hunger (Silva 2012). These problems demand agricultural technology capable of sustainably and
affordably producing food around the globe, like vertical farming due to its space-efficiency. Growy
is a young but well performing vertical farming company aiming to bring food cultivation to the
next level by increasing sustainability and affordability among others. They grow many different
types of crops (i.e. cultivars) like herbs, lettuces and other microgreens. Crops are seeded, mostly
automatically, in gutters of 0.10 by 2.40 meters. One hundred of these gutters are laid out next to
each other on a growth layer, with multiple growth layers above one another in a growth cell. Each
growth layer is serviced by a robot that takes care of daily watering and moves the gutters when
and where they are supposed to go. Conditions inside the growth cell can be regulated by adjusting
the lights and air conditioning. A vertical lift is being used to transport between different growth
cells to make sure the gutters are in the correct conditions during all stages of their growth cycle.
After two to three weeks, the gutters exit the growth cell and are harvested, cleaned and prepared
to be seeded again and enter a new growth cycle. These farms are cutting edge technology because
1) they decrease space requirement by vertical farming, 2) thereby allow for farming virtually
anywhere and 3) automate their farms by robot labor and transportation.

Recently, growy has improved its technology much and are attempting to increase the scale
of production and automation in the coming months. As more processes become automated,
the attention shifts to more complicated tasks. Now that most basic operations have become
automated, the next step is automating the monitoring of farm performance and health. First steps
have already been taken, namely by monitoring temperature, CO2-levels and nutrient contents of
the water among others. Another aspect of monitoring is visual inspection, which is an abstract task
and is highly dependent on context. During the entire production-cycle from seeding to harvesting,
the plants are inspected for aberrant growth. Although manually inspecting the crops is fine at
a low scale, it is blocking properly up-scaling because it would require a high amount of manual
labor, impeding the goal of affordability. Being able to monitor the health of crops automatically
would therefore be a big breakthrough for Growy to reach their goals. In this paper, the focus is on
automating stress detection in a vertical farming environment. Stress has been selected specifically
because it can indicate whether proper growth conditions are being met. The next section will
address stress in more detail to explain why this particular anomaly is selected for this monitoring
experiment.

2.2 Stress
Plants can become stressed by nutrient deficiency causing them to display chlorosis, drying or
curling among others. Chlorisis is characterized by becoming chlorophyll deficient, causing the
leaves to bleach. Chlorophyll is required for photosynthesis, therefore chlorosis can decrease
nutritional value of a crop. Chlorosis is caused by insufficiently available nutrients for chlorophyll
synthesis (Brown 1961). Among these nutrients, most important are minerals like iron (Abadía
et al. 2011), and nitrogen (Klotz et al. 2016). Additionally, nutrient-uptake can become impaired
because of too high or low pH-levels, causing nutrient insufficiency despite nutrient availability
(Turner, Arzola, and Nunez 2020). Finally, other problems like improper drainage, root damage or
infections can be the cause of chlorosis (Jung et al. 2022). Because of a loss of chlorophyll that
gives leaves their green color, chlorosis can be identified by bleaching, a process by which green
leaves become yellow (figure 1) or white (Jung et al. 2022). Humans can therefore classify stress in
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Figure 1. Bleached leaves in China Rose radish. Healthy leaves should be looking freshly green like the
cotyledons. The secondary leaves are yellow and have a strongly visible venation pattern.

a plant by looking at the leaves. Another important feature of chlorophyll is its ability to perform
photosynthesis using blue and red light. As the plant experiences stress, the concentration of
chlorophyll decreases in the leaves and thereby, the absorbance of blue and red light decreases.
Additionally, near-infrared (NIR) light is strongly reflected by chlorophyll. Therefore, microgreens
with stress have a different reflection pattern than healthy microgreens (Jung et al. 2022).

For these reasons, the anomaly in microgreens we focus on is stress, because it is 1) easily
observable and 2) very informative about the effect of the growth conditions inside a growth cell.
Furthermore, in addition to white light, images will also be captured under a NIR and a red light.
Images taken under different lighting conditions will be used to train different models to assess
which light produces most information-rich images. Together, the experiment could what lighting
conditions can be used to automatically detect stress in a vertical farming environment.

2.3 Anomaly Detection
Because chlorosis can be observed easily by a human, it is possible that computer vision can be
used to replace humans in this regard. Explicitly teaching a model to classify stress could be a good
approach. However, this would require intensive labelling and low potential for re-usability of
the model. Since a human detects stress by the outstanding leaves in a gutter, anomaly detection
appears to be a good candidate for this task. An anomaly detection model is trained on only normal
data, perfect undisturbed growth in this case. After training, it should be able to recognize healthy
looking crops and, in contrast, have trouble recognizing microgreens with abnormalities. This
method requires no intensive full-image labelling because it is unsupervised learning. Moreover,
instead of just being trained to detect stress, anomaly detection can potentially be used to detect
more anomalies than just stress, like drying out, damage and other visually presenting anomalies.
Therefore, anomaly detection will be used as a model to detect stress.
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Autoencoder
Anomaly detection can be implemented like a convolutional autoencoder (Collin and Vleeschouwer
2020). An autoencoder is a two-in-one model, because it consists of an encoder and a decoder. The
encoder encodes the input into a smaller dimension, the latent space, and the decoder reconstructs
the input from this latent-space-encoding (figure 2. The autoencoder is trained using the mean
squared error (MSE)-loss, which calculates the difference between the input and reconstruction.
Because the model is only trained on normal looking data, it could have difficulty reconstructing the
input containing anomalies because it looks different than the data is was trained on. Therefore, the
reconstruction error is expected to be higher for images containing anomalies. This reconstruction
error allows for anomaly detection.

Lossy reconstructions
A problem with the MSE is that it leads to blurry outputs (Zhao et al. 2015), thereby also not only
increasing the error anomalies, but also for normal data. This problem can be circumvented by using
skip-connections between the layers of the encoder and decoder. However, additional changes
are required, because by introducing the skip-connections, the model can just focus on the skip
connection in the last layer, which also contains the input image, nullifying all previous layers.
Collin and Vleeschouwer 2020 proposed two changes. First, using an addition-skip rather than a
concatenation-skip. A concatenation-skip stacks the channels of two different layers which allows
the model to ignore specific parts of the tensor. A mathematical addition prevents the channels
from a specific layer to be ignored because the two layers are combined into one. Secondly, Collin
and Vleeschouwer 2020 used anomaly simulation to make the input slightly different from the
expected output. This forces the model to learn the pattern within the images, because it can occur
that part of the image has to be reconstructed entirely. Introducing addition-skip-connections in
addition to anomaly simulation should lead to better reconstruction and can therefore lead to a
suitable anomaly detecting autoencoder.

Anomaly simulation
Because there are different types of anomalies in the growing cells, we want to experiment with
different types of anomaly simulation. Bleaching of the leaves will be simulated by changing the
color slightly. Furthermore, seeds of one cultivars can end up in a another’s gutter. As a result,
part of the leaves of the expected cultivar are blocked by the invading plant. To simulate this, a
randomly perturbed elliptical shape with random grayscale values is added to the input image.
Finally, two types of noise are also used as anomaly simulation, namely gaussian (Barbu 2013)
and salt and pepper noise (Fu et al. 2018). These anomaly simulation methods are used to assess
whether they can improve the performance of models with skip-connection.

The goal of this project is to investigate whether anomaly detection can be used to detect
stress in microgreens in a vertical farming environment. First, this requires the ability to induce
and capture stress. To find a good induction method, two different stress induction-approaches
are tried; a resource saving short-term treatment and a time and resource intensive long-term
approach. For capturing, three different lighting modes, white, red and infrared are combined to
see which type of data leads to the best performance. Additionally, the effects of Skip-connections
and anomaly simulation are assessed as well, like performed by Collin and Vleeschouwer 2020.
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3 Methods
3.1 Stress Induction

Spray treatment
Pieces of the substrate of a gutter mustard frills green were cut off and put in separate boxes. The
leaves were sprayed with 20 mL at different concentrations of hydrogen peroxide dissolved in water.
The concentrations of hydrogen peroxide ranged from 0.7% to 1.4%. The sprayed solutions were
left on the leaves until they evaporated.

Irrigation treatment
Three gutters (control, flush-tap and tap) were sown with wasabi mustard on biostrate. The gutters
were germinated for three days in the dark, humid and warm germination cell. During the first two
days, the gutters were sprayed with standard germination-solution, which is 0.0070% hydrogen
peroxide and 0.0076% nitric acid dissolved in water. At the end of the third day, the gutters were
transferred to an automated growth cell where they were irrigated twice daily with 800 grams of
AMS2-nutrient. AMS2-nutrient is a 1:1 mix of solution A and solution B, which are described in table
1. After 5 days, the flush-tap and tap gutters were removed from the automatic irrigation and were
thereafter twice daily watered manually with 800 mL tap water. To remove most nutrients from
the substrate, the flush-tap gutter was first flushed by inclining the gutter and adding a constant
stream of tap water for 5 minutes. After 5 days of tap water, i.e. during the weekend, the gutters
were watered once per day by the robot using AMS2-nutrient. After two days, the flush-tap gutter
was flushed again as described above and both flush-tap and tap gutters were returned to the tap
water treatment. In the final two days, the plants did not receive any water. Photo’s of all three
gutters were collected in the automated growth cell daily with the growth-lights and working-lights
off.

Table 1. Nutrient contents of solution A and B. Solution A and B are mixed in a 1:1 ratio to make AMS2-
nutrient. The solutions are stored separately to prevent the salts from precipitating.

Nutrients Solution A (mg/L) Solution B (mg/L)

Borax - 5.15

Ca(NO3)2 710.88 -

CuSO4 · 5H2O - 0.56

Iron EDDHA 6% 49.14 -

K2SO4 - 48.99

KH2PO4 - 306.19

KNO3 288.24 445.3

MgSO4 · 7H2O - 197.18

MnSO4 · H2O - 2.16

Na2MoO4 · 2H2O - 0.76

NH4NO3 0.12 -

ZnSO4 · 5H2O - 2.59

3.2 Data acquisition
Images were collected by a raspberry pi camera module 2 NoIR mounted to the robot. During the
night, the growth lights were turned off and the robot performed photoruns. Before a photorun, the
gutter was raised 150 mm. A photorun consisted of two image gathering phases, 1) top-view and 2)
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Table 2. Number of images per dataset. The data was divided into 6 different groups. The number of images
per group can be found in this table.

Dataset Number of images
Train 75
Test 19

Validation 36
Seedlings 27

Stress 21
Wilted 18
Total 196

side-view. During the top-view, the robot moved from one side of a gutter over the entire length of
the gutter in 9 steps. At each of the 9 steps, the robot captured three photo’s under different lighting
conditions; white, NIR and red. During the second stage, side-view, 8 photo’s were captured under
only white light condition. For this project, the side-view images were not used. The images were
saved locally on the robot together with the corresponding metadata and were uploaded when the
robot finished all photoruns of the night. This was done because uploading could sometimes be
interrupted and such interruptions should not influence the photorun instructions.

3.3 Preprocessing
Photo’s were captured at a resolution of 3280x2464. Due to an alignment issue in the current version
of the farm, the top 820 pixels did not contain plants in a gutter (figure 3D and E), but capture the
background of a growing layer. In addition, there is an artefact in the images in the form of a strongly
lit circle surrounded by an increasing red tint. Therefore, a section of 1300x900 was taken from the
middle and the rest of the image was not used.

3.4 Datasets
The images were divided into categories by manual inspection. Images of the first three days were
labelled as seedlings since they were very small. Because they were so small, they looked very
different from the images after a couple of days. This set is held-out because we can use it as a
performance benchmark to show whether the model is able to pick up on very big differences. This
set is called the seedlings-set. Images that showed no abnormalities and were not too large were
put into the good category. This set was split twice. First the validation-set was made by taking
all images from one gutter. The images of the other two gutters were split 80/20% into a train
and a test set. Images that appeared to show bleaching or yellow leaves were marked as stressed.
Images of drooping plants were marked as wilted due to water deprivation. Healthy leaves that
were too large were left out of the train and test set. When it was uncertain whether there was
observable stress, the image was left out. During training, images were randomly rotated every
epoch to augment the dataset.

3.5 Image input modes
Since there were images under multiple lighting conditions, the models were trained on different
combinations of these conditions. All images were initially saved in RGB. RGB was only used for the
white light condition. For NIR and red light, the red channel was used. The models were trained
on White, White-grayscale, normalized difference vegetation index (NDVI), NIR+Red, White+NDVI,
White-gray+NDVI and White+NIR+Red. The + indicates stacking of channels rather than addition.
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Figure 2. Model architecture of the anomaly detection model. The encoder starts from input and ends at
conv6. The decoder starts at conv6 and ends at output. Skip-connections are denoted by black arrows.

The only input mode where the channels where combined is NDVI.

3.6 NDVI transformation
NDVI transformation was applied on an image with red lighting and an image with NIR lighting. For
NDVI transformation, only the red channel was used for both. The red channel of the image under
red lighting condition was inverted by multiplying by -1 and adding 255, which is the max of an
unsigned 8-bit integer. NDVI is defined in equation 1 and has a range of [−1, 1].

NDV I =
NI R − Red

N I R + Red
(1)

3.7 Anomaly detection
An autoencoder was trained on images of healthy plants. The autoencoder consists of an encoder-
model that is connect to a decoder-model through a bottleneck layer. The encoder decreases
dimensions and the decoder increases dimensions (figure 2). The basic building blocks of the
encoder consist of a 5x5 strided convolution, batch normalization, dropout and leakyReLU acti-
vation. The basic buidling blocks of the decoder consist of upsampling, 5x5 convolution, batch
normalization, dropout and LeakyReLU activation. Both encoder and decoder are made up of 6
building blocks, such that the input and output have the same dimensions. For kernel initialization,
He-normal was chosen because it is a good fit when using LeakyReLU (He et al. 2015). The network
was trained using mean squared error between the input and output. Therefore, the aim is that the
decoder is trained to recreate the input based on the output of the encoder.

3.8 Model performance
To assess the model performance, the residual sum of squares (RSS) was calculated between input
and prediction for each image in each dataset. High residual corresponds to high error and low
residual to low error. The RSS is defined in equation 2.

Residual sum of squares =
n∑
i=1

(P i nput
i

− P
pr ed i ct i on
i

)2 (2)

where n is the number of pixels P in the input.
To compare performance of models with a different number of input channels, the average was

taken over the channel dimension. Using the residual, performance of the model was characterized
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using receiver-operator-characteristic (ROC)-curves and precision-recall (PR)-curves.

4 Results
4.1 Stress Induction

Spray treatment
At concentrations below 0.35%, no effect of the spray treatment could be observed. Leaves sprayed
with higher concentrations displayed some minor blistering (figure 3C). This blistering-effect was
very localized to were the peroxide drops had landed. The observed effect did not resemble
bleaching. In addition to blistering, the plants also presented with signs of mildew. This was visible
by strong discoloration in the lower leaves.

Irrigation treatment
After a few days, a difference between the gutters was observable by their size. The gutter receiving
normal treatment had grown fuller than the two gutters on the tap-water treatment. After two
weeks, the first signs bleaching leaves were observable when taking the gutters out of the cells.
During the final week, chlorosis was clearly visible under lighting conditions outside of the growth
cell by bleaching and the venation pattern (figure 3F).

Figure 3. Wasabi Mustard captured inside and outside the growth cell at different days and different
positions. Images inside growth cell were taken by the robot camera and images outside the growth cell with
a cellphone camera. A) Inside growth cell day 18 cropped to center. B) Same as A on day 19. C) Blistering after
spraying with high concentration of hydrogen-peroxide captured outside growth cell. D) Inside growth cell
day 12. E) Same day, position and light as D, but different gutter. F) Chlorosis captured outside growth cell on
day 19. G) Empty gutter captured under white light showing a circular artefact in the center. The blue line in
the center shows which pixel-values are plotted in H. H) Plot of the RGB values of the pixels on the blue line
from G. I) Captured roughly the same position as F inside growth cell with white light on day 17.
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4.2 Image Capturing
Visible stress was difficult to capture
Images inside the growth cell were collected daily. This allowed the growth to be tracked over time.
The main goal was to capture stress using this system. Images were captured inside and outside
the growth cell during the days that stress was observable. Figure 3F shows stress captured outside
the growth cell with a smartphone camera. Bleaching was clearly visible as well as the venation
pattern. An image of stress captured inside the growth cell can be seen in figure 3I. A venation
pattern appeared to be distinguishable, but there was no such clear distinction in color as in figure
3F. Additionally, there was an overall color difference between the images captured inside and
outside the growth cell. The images inside the growth cell appeared much more blue/white than
the images outside the growth cell.

Images varied over time and position in the cell
The images captured inside the growth cell were compared among each other. Figure 3A and B
show an image of the same position of the same gutter, captured at day 18 and 19, respectively. The
leaves displayed very different colors, 3A more green/red and 3B more blue/white. Additionally,
images from the same day taken of different gutters but equal X-coordinates were compared as well.
The gutter shown in figure 3D was in between the two wasabi mustard gutters from the irrigation
treatment experiment. The gutter shown in figure 3E is visible in the background of 3D. The other
gutter shown in figure 3E was next to the previous gutter and next to a recently seeded gutter that
did not belong to the irrigation treatment experiment. There is a clear difference between the
colors of figure 3D and E, where D is much more blue/white and E is more green/red. This difference
was the same over the entire length of the gutters. Finally, multiple images were taken of the same
gutter and the same x-position on the same day (figure 4). Differences in brightness and color are
clearly visible between these images. These difference were not visible when the growth lights are
on.

To verify stability of the camera system, multiple images of the same position were captured in
succession under white light. The red, green, blue and brightness values were plotted over time
(figure 4K and L). The values are stable over time for the images captured with the growth lights on.
In contrast, without growth light, the values vary strongly between the first three images. This is
clearly observable between the first and last images (figure 4F and J).

In addition to the white images, color difference are also visible in the images taken under NIR
and red light. The red images can be grouped into images that look a more deep red and images
that have a brighter red (figure 1A and B). For the NIR images, the images can be grouped into
mostly pink and more blue/purple (figure 1D and E). The difference between the NIR images is less
apparent than the red images (supplementary figure 1).

Artefact
In addition to color differences between images, a circular artefact is visible in all images. This
artefact is most apparent on images of an empty gutter (figure 3G). The center of the circle shows
strong white reflection, whereas the edges of the images are more red. The RGB-values along the
horizontal blue line are plotted in figure 3H. In the center, the RGB-values are stable, whereas they
change towards the edges. The green and blue values start to decrease at the same horizontal
position and appear to decrease the same amount; the difference between green and blue values
appears to be constant. In contrast, the red values increase when moving away from the center
and finally drop as well. The artefact is also clearly present in the images taken by NIR and red
light (supplemental figure 1). For infrared (F), there is a hotspot of light in the center of the image,
whereas the image taken under red light (C) shows the same red increase further from the center.
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Figure 4. Inconsistent image sensor startup. Multiple images were captured in short succession. A-E
Chronologically ordered images captured in short succession with the growth lights on. F-J Chronologically
ordered images captured in short succession with the growth light off. K Average RGB- and brightness values
of images A-E. L Average RGB- and brightness values of images F-J.

4.3 Anomaly Detection
Models with skip-connection were trained on the train- test-, validation and seedlings-dataset to
assess how well it was able to learn what normal wasabi mustard looks like. The models were
different in the type of colormode they used. For all models, the train- and test-set have a similar low
residual and the seedlings-set is much higher for all models. Most models have a higher residual for
the validation set, but still much lower than the seedlings-set. The model trained on white-grayscale
shows an equal residual between train, test and validation.

The ROC- and PR-curves show perfect performance for the models trained on white-gray and
white-gray-NDVI. The model trained on NDVI performs worse than the one trained on red and
infrared. The model trained on white-rgb shows better performance than the model with other
image-types in addition to white-rgb.

In an attempt to further improve the difference between train- and test-data and validation-data,
four models with skip-connections were trained with different types of anomaly simulation. Among
the models with anomaly simulation, salt and pepper noise was the best model. However, none of
the models had significantly better performance than the model without anomaly simulation.

Skip models were trained with data from different lighting conditions. The model trained on
color images taken with white light outperformed almost all other models significantly. The model
trained on white grayscale + NDVI images performed worse, but not significantly. The two worst
performing models were the model trained on NDVI and the model trained on NIR+Red.
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Figure 5. Residuals for each image in each dataset. The residuals are separated by their respective models.
Residuals of the seedlings set is very high for each model. Residuals of the stress dataset are lower than
seedlings, but still high for some models.

5 Discussion
The goal of this project is to assess whether stress in microgreens can be detected using computer
vision. This requires the ability to induce stress in microgreens and then capture the stress using
cameras. We were able to induce stress using the tap water treatment but not by spray treatment.
Capturing the stress in photo’s appears to be possible but still needs improvements. The anomaly
detection model seems to be able to reconstruct images of healthy microgreens and has a high
RSS for images displaying anomalous growth in microgreens.

5.1 Stress induction
To train a model capable of detecting stress in microgreens, images of stressed microgreens are
required. We tried inducing stress long- and short-term. A hydrogen-peroxide-spray treatment was
used for short-term stress induction. The treated microgreens developed blisters on the leaves,
but this did not resemble chlorosis. Therefore, this approach cannot be used to induce the stress
we are looking for. However, only hydrogen-peroxide has been used to attempt to induce stress.
Possibly, using a different chemical could induce stress through a spray treatment. For example,
a strong acid might be a candidate to try next. The benefit of spray treatment is that it could be
much faster and less resource intensive than irrigation treatment. Therefore, I suggest conducting
more experiments with different chemicals. In contrast to the spray treatment, the long-term tap
water treatment was able to induce stress in wasabi mustard in two weeks. This approach has only
been tried on wasabi mustard and can therefore not be guaranteed to also induce stress in other
cultivars. For this reason, this approach should be repeated for other cultivars. In addition, tap-
water can still contain some nutrients for microgreens and might therefore not be the most optimal
stress-inducer. I propose that the same treatment is also performed with reverse-osmosis-water
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Figure 6. Performance of models using residual For each model, the residuals of the validation and stress
data is used. When increasing the threshold, the performance changes. Perfect PR-curve starts at (0,1), moves
to (1,1) and then (1,0). Perfect ROC-curve starts at (0,0), moves to (0,1) and then (1,1).

instead of tap water because more nutrients can be removed using reverse-osmosis. Therefore,
reserve-osmosis-water could be a more potent stress-inducer than tap water.

5.2 Image capturing
Images of healthy and stressed microgreens were captured under white, red and infrared light. It
was more difficult to identify stress in images under these lighting conditions than it was outside
the growth cells. The first cause is that images appear very blue/white. This makes it difficult to
detect color changes. Importantly, the images have not been corrected by color calibration or
other post processing. Doing this could possibly improve the usability of the images. For example,
using a reference card with known color-values, the camera can be calibrated to produce more true
colors. This could drastically improve image quality which could be beneficial for color-sensitive
applications, such as stress detection.

Canopy height
However, the second cause of aforementioned difficulty is image inconsistency, which also compli-
cates calibrating the camera sensor. The results presented here show that images taken on different
days can differ drastically (figure 3A and B). Color differences could in part be explained by the
proximity of the canopy to the camera. Since the gutter are lifted to a fixed height before capturing,
the canopy is closer to the camera the taller it grows. Following the law of squares, more light will
hit the canopy increasing the brightness produced in the image. Therefore, lighting is possibly
inconsistent because of canopy height.

Background
Nevertheless, our data show that height cannot be the only cause of image inconsistency. Images
gathered at equivalent canopy height also show differences. It appeared that these differences
could be caused by the amount of white in the background. The images belonging to the gutter
shown in figure 3E all had a white background and were all more green than the images belonging
to the gutter from figure 3D. The different appearance could be explained by automatic white
balancing performed by the image sensor. This should be verified by disabling that feature and
properly calibrating it, for example using a reference card. Fixing the white balance could further
improve the quality of the images gathered inside the growth cell.
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Sensor saturation
Furthermore, the saturation of the camera sensor also appears to have been causing inconsistency.
Figure 4L clearly shows that the images gathered over time are not consistent. The exact cause of
this effect is not known to me, but could be caused by sensor saturation, or a different feature of
the camera sensor changing the image. Anyway, this also affects the consistency of the images and
therefore needs to be addressed for color sensitive applications.

Other causes
So far, mainly problems on the camera side have been discussed. However, other issues could
possibly affect image-gathering inside the growth cell. The LEDs are controlled by changing their
voltages. Previously, it has been shown that the LEDs can have power issues (Dawe 2022). From
the data presented in this paper it cannot be excluded that power issues are causing the observed
differences. The possibility of this problem needs to be examined in the future. Furthermore, figure
4K shows that images captured while the growth light were much more consistent then without
the growht light. In addition, the optimization of the number of LEDs was performed by eyeballing.
Therefore, it could be possible that the number and type of LEDs needs more optimization to get
images of proper quality.

A problem with optimizing all these different parameters is that the experiment runs inside a
production environment. It can be convoluted to work perform an experiment that would seem
easy. This is because the camera module is installed on the robot that is tasked with the day-
to-day care for all crops. Experiments can be interrupted by tasks the robot has to perform for
other departments in the company. Additionally, the robot is much more elaborate than just a
camera system. This can raise issues that are completely unrelated to the camera but still hinder
experiments with it. Finally, it was not allowed to move crops to the production cell if they were
grown elsewhere. Certain types of anomalies can be found during harvesting and it would be
beneficial to capture images of these anomalies. However, since the camera system is inside the
growth cell, this is not possible. Therefore, it would be much more ideal to separate the basic
optimization stage from the production-ready product. If a more accessible version of the camera
system would be available, experimenting with lights, calibration, camera settings and gathering
relevant data would be much easier and could be achieved much faster.

Camera type
The current camera captures images in color and applies filters in the process. These RGB-cameras
do have the benefit that they produce images that a human can understand very easily because they
are very similar to our visual system. Other researchers use monochrome cameras instead because
they do not have to apply filters (Steven 2023). Monochrome capturing also opens the possibility
to multi-spectral imaging which can be used to assess the chemical-contents of microgreens
(Dieleman et al. 2018). Therefore, I propose to experiment with monochrome cameras instead.

Regardless of the type of camera used, it appears that the current positioning of the LEDs
leads to a circular artefact on the images. This artefact makes a large part of the image difficult
to use for analysis. Spreading out the LEDs over the width of the field of view could potentially
circumvent this issue. However, the artefact might also be caused by the fish-eye effect. For color-
and light-sensitive application, the artefact needs to be removed.

5.3 Anomaly Detection
Anomaly detection aims to reproduce the input by autoencoding. During inference using a perfect
model, a low RSS is expected for normal data and a high RSS for data with anomalies. It has been
shown that MSE leads to blurry images and that this could be circumvented using an addition-
skip connection (Collin and Vleeschouwer 2020). The data suggests that this also holds for our
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data. Introducing a skip-connection into the model leads to much lower RSS in general, but the
decrease is most noteworthy for the train- and test-data. Therefore, the difference between normal
and abnormal data becomes larger by using a model with a skip-connection, allowing for better
anomaly detection.

The train- and test-data give similar RSS for all models. The seedling-data has a very high RSS,
which indicates that the input in not simply transferred through the skip-connection. Additionally,
the validation data has a much lower RSS than the seedling data. Furthermore, the stress data
leads to a higher residual than the validation data. Together, these findings appear to indicate that
the model is able to learn what healthy wasabi mustard looks like and that the model struggles to
reconstruct the image when stress is present. Therefore, it appears that this model is suitable for
anomaly detection in microgreens.

Models trained on grayscale images taken by white light seem to lead to the best performance,
which is in line with the work of Collin and Vleeschouwer 2020. Single channel input works well
for anomaly detection. For this reason, training our model on NDVI is expected to perform well.
Strikingly, stacking the red and infrared image into a 2-channel image appears to lead to a better
model than when training on NDVI. Models trained on white-rgb did not improve when adding
other image types, like NDVI or red and infrared. From this, we conclude that grayscale images
captured under white light are best suited for training anomaly detection. However, this could
possibly change when the image capturing system is improved using aforementioned changes.

One important difference between the seven different input-modes is the number of channels in
those inputs. White-grayscale has only one channel, whereas White-rgb+NIR+red has five channels.
To compare these models, the average residual was calculated over the channels. This could have
caused the influence of an important channel to have been lost. However, since the models trained
on 1) NDVI and 2) Red+NIR did not perform well, this appears to be unlikely. Therefore, it is not
likely that taking the average over the channels has caused a bias.

Since stress was not as obviously distinguishable in the images gathered in the growth cell,
there is the possibility that the images selected for containing stressed leaves did not actually
contain stress. Therefore, the model would not have been able to learn to detect stress since it
might not have been present in the data. In the future, lighting conditions that properly light the
microgreens are required to be able to detect chlorosis like is possible outside the growth cell.

Experiments were also conducted with models trained using anomaly simulation. None of the
anomaly simulations improved the performance significantly when trained on RGB or grayscale
images taken under white light.

The models were trained on a dataset with a low number of images. This was mitigated by
augmentation through random rotation. However, more data would be beneficial to make the
model much stronger. This can be achieved on one hand by gathering images of many more gutters.
Additionally, if the circular artefact can be removed, larger parts of the image become available
for training. Alternatively, expanding augmentation with random brightness or contrast could
possibly increase the amount of usable data without taking more images. It is possible that the
pixels tainted by the artefact are usable when these changes are made to augmentation. However,
on the currently used limited dataset, the model already generalized rather well on the test- and
validation-set. So, the model could become stronger and more robust, but the results presented in
this paper are still good as well.

All cultivars
All models were only trained on images of wasabi mustard. This cultivar was chosen because it
can be grown easily and stress can be seen clearly. However, Growy has many more crops than
just wasabi mustard. To detect anomalous growth in other cultivars, data needs to be collected for
each and a model has to be trained on this data. The easiest step is to train and deploy a copy of
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the model described in this paper for each cultivar. Because gutters are equipped with an IR-chip,
the type of crop can be read-out by the robots and the corresponding model retrieved. Another
solution is to train a single model that can learn to distinguish cultivars and then perform anomaly
detection. A slight variation on the auto-encoder presented here could potentially be used for
this application: a variational auto-encoder (Hsu, Zhang, and Glass 2017). I propose the name
cultivariational auto-encoder. In theory, the model’s latent space could also be used to perform
anomaly detection. If all cultivars can be fit in this latent space with as little overlap a possible,
the auto-encoder could be able to learn the growth pattern of multiple cultivars at the same time.
Distributing the cultivars on the latent space could possibly be achieved by the reparameterization
trick that characterizes the variational auto-encoder. Whether additional changes to the current
model architecture are required is difficult to predict. The first step should be to get very reliable
data-collection and retry stress detection using anomaly detection, only thereafter implement
reparameterization and train the model on more than one cultivar.

6 Conclusion
Automatic monitoring in vertical farming is required for quality assurance when scaling up produc-
tion. Cameras can be used to gather data from the crops. However, for advanced tasks such as
color-sensitive stress detection, the image quality needs to be improved much more. This could
be achieved by color calibration, LED and camera sensor optimization and understanding the
lighting characteristics inside a growth cell. Despite the suboptimal image quality, an autoencoder
with skip connections appears to be able to learn what healthy wasabi mustard looks like and
can be used for anomaly detection. Anomaly detection appears to be a promising technique for
monitoring the desired growth of microgreens. When the image capturing system is improved, this
experiment should be repeated and expanded upon by implementing a variational autoencoder
instead. Hopefully, this technique can then be used to monitor the entire growing process inside a
vertical farm to ensure, healthy, tasty and affordable food around the globe.
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A Supplementary Material

Supplementary Figure 1. NIR and red images A-C are images captured under red light. Images D-F are
captured under NIR.
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