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Abstract

Spatiotemporal resampling (ReSTIR) [Bitterli et al., 2020; Lin et al., 2021] is a popular new ray tracing technique. Unfortunately
it can suffer from correlation artifacts if left unchecked. One solution for this is offered by Sawhney et al. [2022] in the form
of Markov Chain Monte Carlo mutations. We reimplement and evaluate their proposed algorithm, and attempt to optimise it
for blue noise. Our addition of blue noise mutations is unsuccessful, but still provides some insight into how the underlying
characteristics of decorrelated ReSTIR work against a simple solution for achieving blue noise.
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1 Goals

The decorrelated ReSTIR algorithm Sawhney et al. [2022],
while being an improvement on previous iterations of
ReSTIR Bitterli et al. [2020]; Ouyang et al. [2021]; Lin et al.
[2021], can still stand to gain further improvements nonethe-
less, as is noted by the authors themselves as well. One
way of reducing visual noise is incorporating blue noise.
While blue noise could theoretically be added to any given
path tracer, it might be possible to tweak the decorrelation
procedure in a way that would yield better results than
simply using a blue noise mask for generating random
numbers for the samples.

The main research question of this thesis is therefore: Can
blue noise be efficiently incorporated into the decorrelation
of ReSTIR algorithms, in such a way that it produces more
visually pleasing results using the same number of samples
per pixel, and without costing too much additional time? As
a sub goal it would be useful to test whether the resulting
implementation also really performs better than simply ap-
plying a blue noise mask without any further optimisations.

2 Introduction

Ray tracing has become an increasingly more popular con-
cept in computer graphics in the past few years. Especially its
application in video games has helped it gain traction. In fact,
according to Google Trends, the most popular search term to
combine with ray tracing is ’Minecraft’ [trends.google.com,
2023]. This shows the importance of real time ray tracing
that can produce stunning images within milliseconds. The
main idea behind ray tracing is to more accurately simulate
the way light travels through a scene, resulting in realistic
and physically accurate effects such as shadows, diffuse re-
flections, participating media, etc.

A simple Whitted-style ray tracer would shoot a ray from
the camera through each pixel of the screen, test for each ray
if it hits an object, and then shoot a ray towards the light
source to test for visibility and brightness. This type of ray
tracer unfortunately still lacks indirect lighting and soft shad-
ows.

Path tracing takes it a step further by solving what is
known as the rendering equation [Kajiya, 1986] for each
pixel. This aims to encompass all (reflected) light that hits a
certain surface point x, and is reflected in a given direction.
One version of the equation requires integrating over all of
the surface areas x′ that potentially send light that bounces
via x towards the camera s, to get the sum of all the incoming
light. The amount of light traveling from x to s is then
defined as follows:

L(s← x) =

LE(s← x) +
∫

A
fr(s← x ← x′)L(x ← x′)G(x ↔ x′)dA(x′)

Here A refers to the all the surface area that is integrated over.
Furthermore, LE is then the directly emitted light, fr is the
fraction of light that gets reflected, and G is the geometry fac-
tor that might hinder light transport. Note that this means
that L(x ← x′) is actually recursively the rendering equation
for the indirect light that has bounced or was emitted from x′

towards x, and then via this equation is passed along to s.
While this is perhaps the more intuitive version of the ren-

dering equation, more often it is defined as an integral over

the hemisphere:

Lo(x, ωo) = LE(x, ωo) +
∫

Ω
fr(x, ωo, ωi)Li(x, ωi)cosθidωi

Here Lo is the amount of outgoing light, Li is the amount
of incoming light, Ω is represents the hemisphere, ω is a
direction in this hemisphere. LE is still the emitted light
and fr still the fraction of reflected light. The cosine how
incoming radiance gets converted to irradiance, which is
the amount (power) of light incoming per unit surface
area. Note that fr in this formula is often refered to as the
Bidirectional Reflectance Distribution Function (BRDF). It
should always obey the Helmholtz reciprocity, meaning that
fr(x, ωo, ωi) = fr(x, ωi, ωo).

The rendering equation is in most cases too complex to
be solved analytically, so it is usually solved with the help of
Monte Carlo integration [Metropolis and Ulam, 1949]. This
is a method used to estimate an integral by taking the aver-
age of multiple random samples. In the case of the rendering
equation, these samples would be rays shot from x into the
scene, to compute the amount of incoming light in those di-
rections. If enough samples are taken in random directions,
eventually the average will converge to the total amount of
incoming light, from all directions.

An unbiased estimator of the rendering equation is one
for which the expected value is equal to the true value of the
rendering equation. So if the estimator is run many times
separately, the average result should be correct. On the other
hand a biased estimator can still be a consistent one, in which
case it will still eventually converge to the correct result as
the number of samples increases [Fajardo et al., 2001; Kirk
and Arvo, 1991]. While one would naturally prefer for their
estimator to be unbiased to guarantee correct renders, there is
a trade-off in that biased estimators can often perform faster
than unbiased estimators.

To speed up this process of Monte Carlo integration, the
concept of importance sampling can be quite helpful. If there
is only light coming from one specific direction, you don’t
want to waste valuable resources shooting rays in directions
where there is no light. It would be beneficial to shoot more
rays towards bright areas of the hemisphere, and weigh these
accordingly to still get a correct average. Especially if we only
take a few samples, the probability that we don’t shoot a sam-
ple towards the light and miss it is now much lower, which
means that the variance will be lower as well. The impor-
tance of each direction is usually described with a probabil-
ity density function (PDF). This is a continuous function that
represents how the expected amount of incoming light is dis-
tributed over the hemisphere. Ideally you would want the
PDF you use to determine which samples to take to be exactly
proportional to the rendering equation. This of course defeats
the purpose of the PDF if it requires computing the render-
ing equation to better approximate the rendering equation.
Therefore cheaper functions are usually used as a PDF that
approximate the rendering equation without its more expen-
sive to compute components. An example of such an approx-
imation could be simply the positions and sizes of the light
sources in the scene. Techniques like Resampled Importance
Sampling (RIS) [Talbot et al., 2005] exist to use these cheaper
methods in a clever way to still obtain samples correctly dis-
tributed according to a more accurate and expensive PDF.
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3 Background

3.1 ReSTIR

The ReSTIR algorithm was initially put forward in 2020
by Bitterli et al. [2020]. It allows for faster rendering of
scenes with many lights by reusing samples of direct lighting
between neighbouring pixels and between frames. It is based
on a combination of Resampled Importance Sampling (RIS)
[Talbot et al., 2005] and Weighted Reservoir Sampling (WRS)
[Chao, 1982]. ReSTIR was quickly extended to cover global
illumination [Ouyang et al., 2021] and volumetric rendering
[Lin et al., 2021] as well. In 2022 a more general framework
was introduced under the name of GRIS [Sawhney et al.,
2022], which aimed to generalise RIS and use this to imple-
ment a version of ReSTIR that allows more advanced reusing
of paths with the help of shift maps.

3.1.1 Resampled Importance Sampling

As mentioned ReSTIR is partly based on RIS [Talbot et al.,
2005]. RIS is used as a cheaper method of importance sam-
pling. Usually with importance sampling, we assume a PDF
f that resembles a distribution over the hemisphere at a cer-
tain point, with the importance or value of light samples over
that hemisphere. When searching for a direction to shoot a
ray in, we usually want to use importance sampling and pick
a random sample according to its importance. Since an ac-
curate PDF may be expensive to evaluate, RIS proposes to
sample from a cheaper function that roughly approximates
f , while still obtaining accurate samples overall.

To achieve this, a number of samples are first generated
from the simplified function g. Using f we can then assign
resampling weights to these samples. Then with the help
of the RIS estimator function, the final accurate sample is
drawn from these weighted cheaper samples. The contri-
bution weight of the final sample is the sum of resampling
weights of the cheap samples over the evaluated contribution
of the resampled sample.

3.1.2 GRIS

Generalised Resampled Importance Sampling (GRIS) [Lin
et al., 2022] generalises the RIS theory by taking a single
sample from a number of cheaper samples from different
domains, rather than assuming a consistent domain. It does
this with the help of shift mappings, which map a sample
from one domain to another. This is especially useful for
ReSTIR, as different pixels naturally have different PDFs
for incoming light. The original ReSTIR algorithm did
not always converge, as a direct result of using the single
domain RIS theory while resampling from multiple different
domains. Therefore applying the GRIS theory fixes these
convergence issues of ReSTIR.

3.1.3 Weighted Reservoir Sampling

WRS [Chao, 1982] is a method for obtaining a single sample
from a stream of weighted potential samples, within constant
memory. A reservoir stores only its currently selected sample
x, the sum of all the weights it has previously seen wsum, and
the total number of samples it has seen M. When used in
combination with GRIS, the reservoir also needs to store the

contribution weight corresponding to the currently selected
sample, which is used in the RIS estimator. Every time a new
potential sample is presented to the algorithm, it replaces the
selected sample with the current sample in the loop with a
probability of w/wsum. M is incremented, and the new po-
tential sample’s weight is always added to wsum regardless of
this probability.

The reservoirs used in ReSTIR work slightly differently
to regular reservoir sampling, as we are now dealing with
reservoirs from different domains. The value M is now inter-
preted as the reservoir’s temporal confidence weight (Not to
be confused with the contribution weight). When combining
reservoirs, this confidence weight is used to compute resam-
pling weights for the reservoirs’ current samples. These affect
which of the two samples the combined reservoir ends up se-
lecting.

A shift mapping is then applied to the sample xj to ob-
tain a new sample x′j. This shift mapping is used to map the
other reservoir’s sample that was obtained from a different
PDF, to the domain of the current reservoir. There are multi-
ple ways of implementing such a shift mapping. For combin-
ing the reservoirs of two pixels at different times or positions,
this means that the shift map turns the other reservoir’s light
contribution sample into one that could have originated from
the current pixel and its PDF. Such a shift mapping should re-
sult in a new sample that is as similar to the input sample as
possible, to take as much advantage of valuable samples as
possible.

3.1.4 Shift Maps

The main shift mapping used by Lin et al. [2022] is the hy-
brid shift map, which combines two different shift mapping
strategies. It involves first performing a random replay,
where the random numbers of the input sample are reused
to generate the new sample. As soon as certain constraints
are met however, reconnection is applied, which connects
a point in the new sample to a point in the input sample,
and reuses the path from there on. This reconnection cannot
be applied to glossy surfaces, as there will be barely any
throughput at the angles created by the reconnection.

Figure 1: A hybrid shift map. The base path of x is mapped to
y by reusing its random numbers, then at yi−1 the conditions
are met for a vertex reconnection with xi.
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3.2 Decorrelating ReSTIR

3.2.1 Metropolis-Hastings

Markov chain Monte Carlo algorithms are a way of using
mutations for local exploration. The most commonly applied
algorithm in this category is Metropolis-Hastings (MH)
[Metropolis et al., 1953; Hastings, 1970]. This algorithm is
also what is used by Sawhney et al. [2022] to generate sample
mutations to decorrelate ReSTIR.

It is based on the concept of the Markov chain, which is
essentially a sequence of samples where each next sample de-
pends only on the previous sample in the chain. By using a
Markov chain whose stationary distribution is proportional
to the PDF of a point, we can efficiently generate new sam-
ples that are distributed proportionally to this PDF. We gen-
erate a new sample from a simpler distribution, dependent
on the previous sample in the Markov chain, and accept this
with a certain acceptance probability. This acceptance proba-
bility is dependent on the complex PDF and is defined such
that the eventual stationary distribution of the Markov chain
will resemble the complex PDF.

In the initialisation step, a random sample x0 is generated.
Then a number of iterations are run of the following process:

• Generate a candidate sample x′k from the previous sam-
ple, using a proposal distribution T(xk → x′k). Here the
transition kernel T(xk → x′k) represents the probability
of generating the x′k sample given the xk sample.

• Compute the acceptance probability:

a(xk → x′k) =
C(x′k)T(x′k → xk)

C(xk)T(xk → x′k)
.

In regular MH we set the contribution function C to be
equal to the target PDF p̂.

• Set xk+1 = x′k based on the probability a. Otherwise
xk+1 remains xk.

Intuitively the ratio of the new target PDF p̂(x′k) over the
old target PDF results in a preference for always accepting
any increase in the target PDF, and sometimes rejecting a de-
crease in target PDF. The ratio of the transition kernels is there
to satisfy the detailed balance condition. This condition is
necessary to guarantee the existence of a stationary distribu-
tion. A stationary distribution is the the probability distri-
bution of the samples produced by the Markov chain, which
is reached after a burn-in period of a number of iterations.
The acceptance probability ensures this to be proportional to
the target PDF p̂. The detailed balance condition, which is
needed to ensure the existence of a stationary distribution,
states that the probability of the Markov chain having pro-
duced a sample xk ( p̂(xk)) and subsequently generating and
accepting a sample x′k

(
T(xk → x′k)a(xk → x′k)

)
must be the

same as the probability of having the sample x′k and transi-
tioning to sample xk. Put into a formula we get:

p̂(xk)T(xk → x′k)a(xk → x′k) = p̂(x′k)T(x′k → xk)a(x′k → xk).

To ensure that the stationary distribution is unique, the
Markov chain must also be ergodic, which practically can
be ensured by using a proposal distribution that can gener-
ate every possible candidate sample from every possible base
sample. Put into formulas: if p̂(xk) > 0 and p̂(x′k) > 0, then
T(xk → x′k) > 0.

3.2.2 Metropolis Light Transport

The most well-known application of Metropolis-Hastings for
path tracing is Metropolis Light Transport (MLT) [Veach and
Guibas, 1997]. MLT uses MH to directly solve the rendering
equation. It uses both large mutations to ensure that the
entire domain is explored, and smaller mutations to take ad-
vantage of locally exploring the path space. Local exploration
allows for more quickly finding high-contribution paths.
MLT is later adapted to operate in Primary Sample Space
(PSS) [Kelemen et al., 2002] rather than primary path space.
This means that instead of mutating or mapping between the
paths themselves, we operate on the random numbers that
make up those paths. Each path then corresponds to a vector
of random numbers.

Multiplexed MLT [Hachisuka et al., 2014] further im-
proves upon the algorithm. Reversible Jump Metropolis
Light Transport (RJMLT) [Bitterli et al., 2017] takes it a
step further and introduces a technique for transforming
light paths back into PSS. Even more recent developments
include Geometry-Aware MLT [Otsu et al., 2018], Selectively
Metropolised Monte Carlo light transport [Bitterli and Jarosz,
2019], Delayed Rejection MLT [Rioux-Lavoie et al., 2020],
and Ensemble MLT [Bashford-Rogers et al., 2021].

What mainly separates how MH is applied in MLT
versus for decorrelating ReSTIR, is that in the latter case
the mutations do not drive the spatiotemporal reuse, but
merely decorrelate the resampling that is already being done.
Increasing the number of mutations therefore does not affect
the amount of error, only how it is distributed.

Aside from MLT, Sequential Monte Carlo [Doucet et al.,
2001] and Population Monte Carlo [Cappé et al., 2004] are
also MCMC methods that have seen use in ray tracing [Ghosh
et al., 2006; Lai et al., 2009], though not as extensively as MLT.

3.2.3 Primary Sample Space

When using the PSS for mutations instead of path space, the
space they operate in gets transformed through the sampling
PDF into path space. To compensate for this, the contribu-
tion function used to compute the acceptance probability for
MH must now be divided by the sampling PDF. Therefore,
as stated by Kelemen et al. [2002], the contribution function
becomes:

C(ū) :=
p̂(ȳ(ū))
q(ȳ(ū))

,

where p̂ is the target PDF, q is the sampling PDF along which
the path ȳ is sampled from the random numbers ū. One con-
sequence of this new contribution function is that the accep-
tance probability becomes flatter than it was before, resulting
in more mutations getting accepted.

3.2.4 Mutating ReSTIR Paths

The ReSTIR PT paper [Lin et al., 2022] presented an improved
unbiased variant of the original ReSTIR, but this requires cap-
ping the temporal confidence weight, which cannot simply
be done in a scene agnostic way. Therefore it is difficult to
find a cap that is large enough to sufficiently take advantage
of temporal history, without introducing noticeable correla-
tion artifacts. A potential solution is introduced by Sawhney
et al. [2022]. The idea is to apply MCMC mutations in be-
tween the temporal and spatial resampling steps, so that any
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bias that is carried over from previous frames is perturbed
and mutated before contributions are spread out over neigh-
bouring pixels.

To mutate the samples stored in ReSTIR’s reservoirs, the
reconnection vertex in the hybrid shift map is perturbed. This
is a relatively cheap operation, as the reconnection vertex is
already stored in the reservoirs, and only it requires retracing
the two rays connecting this vertex to the rest of the path.
Figure 2 shows how the reconnection vertex is perturbed.

Figure 2: A mutated hybrid shift map. The reconnection ver-
tex yi is perturbed into y′i .

In order to actually obtain the perturbed reconnection
vertex, Sawhney et al. [2022] make use of the Primary Sample
Space [Kelemen et al., 2002]. Specifically, they perturb the
random numbers used for sampling the direction ωi−1 from
yi−1 towards the reconnection vertex yi. These random
numbers are recovered by inverting the sampling procedure
as per Bitterli et al. [2017].

To apply the new mutated sample to the reservoir, the
reservoir’s contribution weight needs to be adjusted. The
new contribution weight is updated as follows:

W(xk) =
p̂(x0)

p̂(xk)
W(x0),

where x0 is the base sample already stored in the reservoir,
xk is the final mutated sample, and p̂ refers to the target func-
tion.

Since the choice for the Metropolis Hastings starting
sample x0 is now the result of resampling done by ReSTIR,
the burn-in period of Metropolis-Hastings can be avoided
[Veach, 1998].

Each frame the decorrelated ReSTIR algorithm performs
the following steps:

• First do the initial resampling, tracing a number
of paths and storing the final selected sample in a
reservoir.

• Perform temporal resampling. For each pixel combine
its initialised reservoir with the reservoir of the previ-
ous frame of the pixel in that previous frame that corre-
sponds to the current one. Which pixels correspond to
which can be determined via motion vectors.

• In the next phase Metropolis Hastings is used to mu-
tate the samples held in the reservoirs from the previ-
ous step.

• Then a spatial resampling pass is performed, where for
each pixel a number of random neighbouring pixels are
selected, to merge their reservoirs. Doing multiple iter-
ations of this effectively increases the radius of pixels
whose reservoirs are combined.

• Lastly the samples that are remain as the selected sam-
ples in the reservoirs are used to perform the final shad-
ing and compute each pixel’s color.

3.3 Blue Noise

Blue noise refers to high frequency noise, as opposed to the
more common white noise which encompasses all frequen-
cies. This means that blue noise will see less clumps of sim-
ilar values close to each other, instead similar values will be
spread out and differing values are positioned close together.
This is said to be more visually pleasing to the human eye.
One explanation for this could be that the photoreceptors in
our eyes are blue noise distributed [Yellott, 1983]. However,
no clear definite explanation or justification has been put for-
ward as of yet. Blue noise is also more easily filtered out by a
denoiser, as a simple high frequency blur pass like a gaussian
blur can remove high frequency noise.

The strength of a blue noise pattern can be visualised by
computing the frequency of the pixel intensities with a dis-
crete Fourier transform. If the noise in the image is indeed
blue noise, then the DFT should show a lack of low frequen-
cies, as seen in Figure 3, which is exactly what defines blue
noise.

(a) A white noise mask (b) DFT of a white noise mask

(c) A blue noise mask (d) DFT of a blue noise mask

Figure 3: 128x128 noise masks and their respective power
spectra. Blue noise lacks lower frequencies, which are plotted
in the center of the DFT image. Images taken from Chizhov
et al. [2022]

Blue noise patterns in computer graphics are commonly
seen in two variants, sample point distributions and random
noise masks. The former refers to a collection of points that
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have random positions while still being relatively uniformly
distributed over the space. The latter is more relevant in re-
gards to ray tracing and can be used to generate pseudo-
random numbers such that the noise that ends up in the ray
traced image has a blue noise error distribution. Blue noise
in this context was originally introduced for digital halfton-
ing, where blue noise was applied to fuzzy the borders be-
tween colors in quantized images with a limited number of
colors available [Ulichney, 1987; Lau and Arce, 2001]. Specifi-
cally the void and cluster algorithm for generating blue noise
masks has been influential for the use of blue noise in ray
tracing Ulichney [1993].

While having been applied in rendering before [Mitchell,
1991], blue noise dithered sampling (BNDS) [Georgiev and
Fajardo, 2016], inspired by its use in digital halftoning, has
recently sparked more interest in the application of blue
noise in ray tracing. BNDS works through the use of blue
noise masks, which are two dimensional masks consisting
of blue noise distributed random vectors. These masks are
tiled across the pixels of the screen and each vector is used
as a source of random numbers to construct a path for the
corresponding pixel. This essentially correlates the pixel
estimates so that nearby pixels will differ from each other
more than they would in a white noise mask.

Heitz and Belcour [2019] devise a method that scales bet-
ter to higher sample counts by building on the concept of per-
muting sampling sequences. Ahmed and Wonka [2020] then
make further improvements by taking inspiration from error
diffusion. Chizhov et al. [2022] propose a method that uni-
fies the two approaches of Georgiev and Fajardo [2016] and
Heitz and Belcour [2019] into a formalized perceptual error
framework. Salaün et al. [2022] then derives a bound for this
perceptual error and propose a multi-class framework that
can be applied to minimize it, resulting in a blue noise error
distribution.

One drawback of these methods is that they neglect real
time temporal noise. When taking time as a Z axis, a simple
spatial blue noise error distribution still shows a white noise
distribution along this Z axis. Wolfe et al. [2021] solve this
problem with spatiotemporal blue noise masks. They also
show that ensuring a temporal blue noise distribution is es-
pecially beneficial for temporal antialiasing or other filtering
methods.

4 Methodology

To test the effectiveness of the blue noise addition, we first
need to acquire a base implementation of the ReSTIR algo-
rithm with MCMC decorrelation, as presented by Sawhney
et al. [2022]. This implementation can then be built upon by
incorporating blue noise techniques. The blue noise imple-
mentation can then be evaluated compared to the base imple-
mentation and compared to a noiseless reference. The noise-
less reference can be obtained by running an unbiased and
consistent path tracer for a sufficiently long time, so with-
out any potential bias introduced by ReSTIR or MCMC tech-
niques.

4.1 Interpreting the Decorrelation of ReSTIR

Paths can finish in two different ways, either through next
event estimation (NEE), or by hitting a light source ’naturally’

and escaping the path.
While not explicitly defined for indirect illumination, we

adapt the formula for the sampling PDF q for a path segment
as:

q(yk → yk+1) := pρ(ωk−1, ωk)g(yk+1).

Here pρ is the PDF for the BSDF ρ, and ωk is the unit vector
from vertex yk to yk+1. The geometry term g at yk is defined
as:

g(yk) :=
|cos θ|

|yk − yk−1|2
,

where θ is the angle between ωk−1 and the geometric surface
normal at yk. Note that the geometry term at yk+1 is used for
the PDF at yk

We will refer to the reconnection vertex, whose position
will get changed by the mutations, as yi. The vertices that are
one step in the path closer to the camera and one step further
will be refered to as yi−1 and yi+1 respectively. In Figure 4
we show a schematic drawing of the relevant part of a given
path.

Figure 4: A schematic of the variables used to compute the
sampling PDFs. The parts of the path that remain unaffected
by the mutation are tinted red. In green is the factor that is
ignored if yi+1 is the final vertex.

Since both vertex yi+1 and yi+2 are unaffected by the mu-
tation, we do not need to recompute the geometry term for
yi+2. However, if yi+2 and by extension ωi+1 exist, we do
need to recompute pρ(ωi, ωi+1), since this is affected by ωi.
As such the total sampling PDF that needs to be recomputed
is:

qm = pρ(ωi−2, ωi−2)g(yi)pρ(ωi−1, ωi)g(yi+1)pρ(ωi, ωi+1),

where the trailing pρ(ωi, ωi+1) is left out if yi+2 does not ex-
ist. We can use this as the sampling PDF for the contribution
function, as the sampling PDF that remains constant for the
rest of the path cancels itself out in the ratio of the contribu-
tion function used for computing the Metropolis Hastings ac-
ceptance probability. The same holds true for the target PDF.

Sawhney et al. [2022] show that the ratio of the transition
functions that is used for the MH acceptance probability is as
follows:

T(ū′ → ū)
T(ū→ ū′)

=
|cos θ′|
|cos θ|

|yi+1 − yi|2
|yi+1 − y′i |2

p(ω′i−1, ω′i)

p(ωi−1, ωi)

p(ω′i , ωi+1)

p(ωi, ωi+1)
.

Here θ is the angle between ωi and the surface normal at yi+1.
We need to choose one of the BSDF components when in-

verting a path segment to the random numbers used to gen-
erate it. To do this, one option is to keep using the same
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sampling strategy as is used for the base reconnection ver-
tex, which is stored in the reservoir. This ensures consistency
and minimises the chance of error. Another option is to use a
reversible jump, as presented by Bitterli et al. [2017], to guess
what sampling strategy is most plausible. This might be ben-
eficial as it is another more effective way to mutate the path’s
sampling strategy beyond mutating the random number re-
sponsible for choosing the sampling strategy. We have eval-
uate our implementation using the first option to keep the
mutation process as simple as possible, though we ended up
implementing both options.

4.2 Blue Noise

To adjust the decorrelation algorithm to achieve a more high
frequency error distribution closer to blue noise, we follow
the the remarks made by Sawhney et al. [2022] in their fu-
ture work section. They suggest that the mutations might
be able to optimise for blue noise by also taking neighbour-
ing pixel values into consideration when computing its ac-
ceptance probability, preferring mutations that introduce dif-
fering sample values.

To compute when a mutation will contribute to a blue
noise error distribution, we take inspiration from Georgiev
and Fajardo [2016]. They create blue noise sample masks by
minimising a blue noise energy function of the entire mask.
They define this as the total sum of blue noise energy for each
pair of pixels i and j, which in turn is defined as follows:

E(i, j) = exp

(
−||ic − jc||2

σ2
c

− ||is − js||d/2

σ2
s

)
,

where ic and jc are the integer pixel coordinates, is and js are
the sample values, and σc and σs are Gaussians that are re-
spectively set to 2.1 and 1. d refers to the dimensionality of
the sample space. Whereas Georgiev and Fajardo used this
energy function for creating a blue noise sample mask, we
use it directly on the pixel light intensities. We convert the
pixel color to scalar intensity, so that we can compute the blue
noise energy over a 1-dimensional sample space.

Georgiev and Fajardo apply simulated annealing to
swap pixels around while minimising this energy function.
Instead, when deciding whether to accept a mutation, we
compute the average blue noise energy with a number of
neighbouring pixel within a given box radius. We compute
this both for the base pixel luminance and the mutated pixel
luminance.

These two energy values can then be used in the standard
simulated annealing acceptance probability as formulated by
Kirkpatrick et al. [1983]:

abn =

{
1, if e′ < e

exp
(
− (e′−e)

T

)
, otherwise

Here e and e′ are the base and mutated energies, respectively.
T refers to the temperature, which usually decreases as sim-
ulated annealing progresses, in order to gradually reduce the
chance of accepting increases in the energy function. Since
our algorithm needs to produce blue noise in real time, we fix
to a low value in an effort to greedily approach a blue noise
error distribution.

To actually integrate this blue noise acceptance probabil-
ity into the existing acceptance probability that targets the tar-
get PDF, we replace the ratio of the contribution function with
a weighted average of this ratio and abn:

a(xk → x′k) =
(

abnwbn +
C(x′k)
C(xk)

(1− wbn)

)
T(x′k → xk)

T(xk → x′k)
,

where wbn is the weight for preferring blue noise, in the range
of [0, 1]. We leave the transition kernels out of the weighted
average, as these only function as a way to guarantee the de-
tailed balance condition.

5 Implementation

The source code of ReSTIR PT is publicly available, whereas
the code for the additional decorrelation via MCMC mu-
tations is not. Therefore this decorrelation feature must
be implemented by ourselves. This open source ReSTIR
implementation makes use of GPGPU and is built with
Falcor [Kallweit et al., 2022], which is a popular real-time
rendering framework made by NVIDIA that aims to abstract
away many operations relevant to graphics. While this might
speed up the implementation process once the framework is
learned, it also might mean less freedom in the optimisation
of the code. An alternative might be reimplementing ReSTIR
PT in a less complex framework like Lighthouse 2 and
working more directly with CUDA. However, considering
both time constraints and convenience, we opt to simply
move forward with the existing implementation in Falcor.

5.1 ReSTIR PT

ReSTIR PT is implemented as a render pass for Falcor, which
are organised in separate projects within the Falcor’s Visual
Studio solution. Each frame the render pass executes its ker-
nels to update the pixel buffer.

Figure 5: An overview of the different kernel passes used in
ReSTIR PT.

First the main trace pass kernel gets executed, which sam-
ples and traces a new light path for each pixel. These samples
are used as the initial samples stored in the reservoir structs,
as shown in Figure 1. These reservoirs also store information
for potential reconnection vertices (rcVertex) corresponding
to the selected sample, which can later be used for reconnec-
tion shifts. Note that in this implementation, the final vertex
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Algorithm 1 Reservoir struct for ReSTIR PT (simplified for
clarity)

struct PathReservoir
{

float M; // temporal confidence weight
float w_sum;
float weight;
bool specularRc;
bool specularPrev;
bool transmissiveRc;
bool transmissivePrev;
bool rcVertexLength;
bool pathLength;
bool lastVertexNEE; // whether the path ended via NEE
float3 F; // cached integrand / target PDF
float lightPdf; // NEE light PDF
float sourcePdfPrev; // scatter PDF for yi−1
float sourcePdfRc; // rc vertex scatter PDF
float geomRc; // geometry term at rc vertex
uint initRandomSeed; // saved random seed at first bounce
uint rcRandomSeed; // saved random seed after rc Vertex
// position and surface normal of the reconnection vertex
HitInfo rcVertexSd;
// incident direction on reconnection vertex
float3 rcVertexWi;
// sampled irradiance on reconnection vertex.
// oscar: the total thp starting with rcNext
float3 rcVertexIrradiance;

}

on a light source will never actually be marked as a reconnec-
tion vertex.

The initRandomSeed variable is necessary for the random
replay shift, whereas the rcRandomSeed variable is used in
case we want to retrace the part of the path from a temporal
sample that is reconnected to. This is mainly useful to do
when rendering a dynamic scene with moving objects that
might affect the lighting measured in previous samples.

The reservoir also stores several flags, for example for
whether the bounces at yi−1 and yi were specular. It also
stores the length of the path and the number of vertices be-
fore the selected potential reconnection vertex1. Whether the
path was finished via NEE is also stored as a flag.

After the reservoirs have been built, it is followed up by
a temporal retrace pass. This pass uses both the newly cre-
ated reservoirs and a buffer of ’temporal’ reservoirs from the
previous frame. It traces a random replay path up to the re-
connection vertex, and stores some reconnection data needed
to reconnect this path to an older sample. As shown in Algo-
rithm 2, this data includes the position and outgoing direc-
tion from yi−1 to yi−2 and the target PDF for the path up to
the reconnection vertex.

Algorithm 2 Reconnection data used for reconnection shift in
ReSTIR PT

struct ReconnectionData
{

float3 prevPosition; // position of yi−1
float3 prevWo; // outgoing direction from yi−1 to yi−2
float pathTargetPdf; // target PDF up to rc vertex

}

This information is passed to the subsequent temporal
reuse pass, which attempts to finish the hybrid shift by now

1In the actual ReSTIR PT implementation, path length excludes both the
first vertex (that directly connects to the camera), and last vertex (on a light
source).

using the reconnection data to reconnect the temporal replay
path to the temporal reservoir. Therefore the temporal reser-
voir is shifted towards the domain of the new reservoir.

Now that the temporal resampling is done, the algorithm
moves on to a spatial retrace pass. Once again this pass per-
forms the random replay part of the hybrid shift, but now
we use several neighbouring pixel’s reservoirs rather than a
temporal reservoir. The same goes for the subsequent spa-
tial reuse pass, except in this pass the resulting shifted and
merged reservoirs are finally used to compute each pixel’s
color.

5.2 Reproducing the Decorrelation

To implement the decorrelation of this algorithm, Sawhney
et al. [2022] add a decorrelation pass in between the temporal
reuse and spatial retrace passes. Since correlation artifacts
occur when the same sample is spread around via spatial
resampling, decorrelating right before helps diversify those
samples.

Figure 6 shows how the decorrelation pass relates to the
temporal and spatial resampling passes. It needs to use the
reconnection data (Algorithm 2) saved by the temporal reuse
pass to have access to yi−1 without having to retrace the path.

Figure 6: An overview of how the decorrelation pass fits in
between the ReSTIR PT passes. The output color in blue is
only used for blue noise.

In Algorithm 3 we show the way the mutation algorithm
works on a higher level. It starts an initialisation step, fol-
lowed by a number of iterations of computing a mutation and
determining whether to accept it, and then finally applying
the mutation to the reservoir. Separating the computation of
the mutated sample and the computation of the acceptance
probability is important in regards to the cohesion of the pro-
gram, and facilitates implementing the blue noise acceptance
probability later on.

5.2.1 Initialisation

The initialisation mainly consists of recomputing some
characteristics of the existing path. We define two different
structs, as shown in 4: SampleMHInit for variables that
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Algorithm 3 High level code structure for mutating the reser-
voirs.

Input : Reservoir r and the number of MH iterations
Output : The potentially mutated reservoirs
function metropolisHastingsPT(r, iterCount)

sb = ∅ // Base sample
sm = ∅ // Mutated sample
accept = false
initialiseMH(sb, sampleMHInit, r)
for iterCount iterations:

sm = computeSampleMut(sb, sampleMHInit, r)
accept = acceptSampleMut(sb, sm, sampleMHInit, r)
if accept

sb = sm
if accept

updateReservoirMut(sb, sampleMHInit, r)

are only initialised once, and SampleMH for the variables
that get updated by the mutation. This way we can use
two instances of the SampleMH struct for the base and the
mutated values.

Algorithm 4 The SampleMHInit and SampleMH structs
which respectively contain the variables that remain constant
and the variables that are changed by the mutation.

struct SampleMHInit {
float3 startingTargetPdf;
float startingSourcePdf;
bool rcIsSecondToFinalVertex;
bool rcVertexNEE;
float3 rcNextPos;
// position and outgoing direction of yi−1
ShadingData rcPrevVertexSd;

}

struct SampleMH {
float4 samplePSSPrev;
float sourcePdfPrev;
float sourcePdfRc;
float sourcePdfNext;
float sourcePdf;
float3 targetPdf;
float3 rcPrevVertexWi;
float3 rcVertexWi;
bool isTransmissionPrev;
bool isTransmissionRc;
bool isSpecularPrev;
bool isSpecularRc;
bool isSpecularNext;
// position, surface normal, and outgoing direction of yi
ShadingData rcVertexSd;
// position, surface normal, and outgoing direction of yi+1
ShadingData rcNextVertexSd;

}

After ensuring that a valid yi exists, we first initialise the
shading data, which includes a vertex’s position, surface nor-
mal, and outgoing direction, for the reconnection vertex (yi),
and for both the vertex before and after that (yi−1 and yi+1
respectively). We obtain information for yi−1 from the recon-
nection data2 (Algorithm 2), and for yi from the reservoir.

To further initialise these structs, we need more informa-
tion than is originally stored in the reservoirs in the base im-
plementation of ReSTIR PT. We show the variables we add
to the reservoir struct in Algorithm 5. For one, the vertex

2An implementation-specific exception to this is when the reconnection ver-
tex length is 1, in which case yi−1 would be the first vertex directly connected to
the camera. In this case we need to use the primary shading data, which is the
shading data corresponding to this very first vertex, and always gets passed
separately from the reconnection data.

yi+1 is not stored in the reservoir, as it is not relevant to the
reconnection shift, which connects yi−1 to yi. However, we
do need yi+1 to reconnect it to the mutated y′i . Therefore,
just as is done by Sawhney et al. [2022], we store it in the
reservoir, so that we can use it to initialise its shading data.
We make sure to save it during the initial path construction,
whenever we hit a surface while the previous vertex is an
rcVertex. One caveat with this is that we encounter different
surface hit data when we perform NEE, as opposed to sim-
ply hitting a triangle mesh surface. If yi+1 is indeed a point
on a light source, sampled through NEE, then we only need
to know this position and its surface normal. Therefore we
store both of these as separate float3 variables, on top of the
HitInfo we save if yi+1 is a regular surface, as shown in Algo-
rithm 5. There would be room for future optimisation here if
necessary, since we never use both of these at the same time.

In addition to this, we also need store the incoming direc-
tion ωi+1 from yi+1 towards yi+2

3, since we need it to recom-
pute the sampling PDF for yi+1. We would not need to do
this if we only needed to compute the diffuse component of
this PDF, since it only depends on ωi+1, which is unaffected
by the mutation. However, the specular component depends
on how the outgoing direction relates to the incoming direc-
tion, so it does require us to store ωi+1. To save this variable
in the reservoir, we update it during the path tracing process
whenever handle a vertex hit while the previous vertex was
the reconnection vertex. One again we need to make an ex-
ception for NEE, if we have sampled the light from yi+1. In
this case we can simply store the direction towards the light
when it gets sampled through NEE.

Note that we might be deviating here from Sawhney et al.
[2022], as they only mention storing the offset vertex yi in ad-
dition to what is already stored in the reservoir for ReSTIR
PT. On the other hand they do mention that ωi+1 is required
for computing the transition kernels, while also implement-
ing the decorrelation algorithm as a separate block from the
larger ReSTIR algorithm.

Algorithm 5 Variables added to reservoir for decorrelation

struct PathReservoir // 128 Bytes
{

...
// position and surface normal of yi+1,
// if not sampled via NEE
HitInfo rcNextHit;
// position of yi+1 as the point on the light source that
// is selected via NEE
float3 posNEE;
// If yi+1 is sampled via NEE, then this is the
// normal on the light source. Otherwise this is the
// incident direction ωi+1 on yi+1.
float3 rcVertexNextWiOrN;

}

We can then use the data for these three consecutive ver-
tices to initialise additional data about this part of the path.
First we take the path segment from yi−1 to yi and invert it
into the four random numbers used to generate it.

We also convert the path segment from yi+1 to yi+2 to PSS,
in order to determine whether to treat it as a specular bounce

3While the code is largely unoptimised due to time constraints, one minor,
potentially superfluous optimisation we made here is combining the incoming
direction and the NEE light surface normal for yi+1 into one variable, since we
only use the latter if yi+1 is sampled through NEE, in which case there is no
incoming direction left.
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or not. We can use the cachedJacobian for pρ(yi−1), pρ(yi)
and g(yi). An exception is if yi+1 is sampled through NEE,
in which case we need to recompute q(yi). We do need to
(re)compute p̂(yi−1), p̂(yi), g(yi−1) and pρ(yi+1). We mul-
tiply the partial target PDFs for each vertex together to get
a total target PDF, and multiply the sampling PDFs together
for a total sampling PDF as well.

5.2.2 Computing the Mutation

After initialisation, we can perform a number of iterations of
metropolis-hastings. One such iteration starts with comput-
ing the integrand for the mutated reconnection vertex. To do
this, we first apply a gaussian mutation to the four random
numbers in PSS we have saved, corresponding in path space
to the path segment from yi−1 to yi. We immediately convert
the mutated numbers back to path space to obtain the mu-
tated direction for the bounce from yi−1. We also then com-
pute the throughput and sampling PDF for this bounce. If the
mutated PSS numbers do not correspond to a valid path, or
the sampling PDF is nearly equal to 0, we cancel the mutation
and skip an iteration. The restriction on the sampling PDf is
to prevent floating point errors. Next we trace a ray in the
mutated direction to find y′i . We then initialise the shading
data for this mutated reconnection vertex. In the following
step we trace an additional ray to evaluate the visibility of
the segment between y′i and yi+1. We also invert this seg-
ment to PSS, in order to determine whether to treat it as a
specular bounce.Then we can compute the mutated through-
put and sampling PDF for this path segment and for the one
following it. We compute the updated total target PDF and
sampling PDF. We cancel the mutation if either of these is be-
low some epsilon, to prevent floating point errors.

5.2.3 Accepting the Mutation

Once the difference in throughput and sampling PDF caused
by a mutation has been computed, we can determine whether
we want to accept the mutation or not. We rewrite the for-
mula for the acceptance probability to be slightly different
from Sawhney et al. [2022], to prevent floating point inaccu-
racies.

a(u→ u′) =
p(y(u′))
p(y(u))

∗ q(y(u))
q(y(u′))

∗ T(u′ → u)
T(u→ u′

If we accept the mutation based on this probability, we re-
place the base SampleMH struct instance with a copy of the
mutated instance.

5.2.4 Updating the Reservoir

If we have accepted a mutation in one of the iterations, we
update the reservoir.

We multiply the reservoir’s weight by the ratio of the mu-
tated target PDF over the base target PDF, after first convert-
ing both of these to grayscale scalar values. Note that we do
not compute the target PDF for the entire path, but only for
the part of the path that is affected by the mutation. The con-
stant part of the target PDF cancels itself out when computing
the ratio, so it can be ignored.

We similarly multiply the cached integrand by the ratio of
the base over the mutated target PDF.

We also update each part of the cachedJacobian and the
flags for whether the bounces at yi−1 and yi are specular.

5.2.5 PSS Inversion

We have implemented functions to invert a sampled direction
to the random numbers used to sample it. We have mostly
based the process on the inverse mappings as presented by
Bitterli et al. [2017], though the concept of switching between
path and sample space goes back to Kelemen et al. [2002].
Since we want to support BRDFs that consist of both spec-
ular and diffuse components, we implement Bitterli et al’s
reversible jump.

The actual sampling method of diffuse reflections is
based on concentric mapping, the inverse for which we
adapt from Shirley and Chiu [1997]. As we weren’t able to
find an inverted method for GGX sampling [Walter et al.,
2007], which was used for specular/glossy reflections, we
derived this ourselves.

5.2.6 Direct lighting

We also implemented the decorrelation algorithm for ReSTIR
DI before working with ReSTIR PT, however the structure
and implementation of the ReSTIR DI algorithm turned out
to be so different from the ReSTIR PT implementation that we
opted to shift our focus solely to the latter. The effect of the
mutations on ReSTIR DI will naturally be less strong, as the
paths are per definition much less complex.

5.3 Blue Noise

When optimising for blue noise, we need to take neighbour-
ing samples into consideration. Specifically we need to know
the light intensity of each sample to calculate the blue noise
energy of the selected neighbours. To prevent having to re-
compute this for every neighbour, we need access to a pre-
computed array of the light intensity of each pixel. As por-
trayed in Figure 6, we solve this by computing the output
color in the temporal reuse pass, and passing this on to the
decorrelation pass.

Algorithm 6 Pseudocode for handling blue noise.

function metropolisHastingsPT(r, iterCount, color)
initialiseMH(sb, sInit, r)
for iterCount iterations:

sm = computeSampleMut(sb, sInit, r)
abn = computeBlueNoise(sb, sm, sInit, r, color)
accept = acceptSampleMut(sb, sm, sInit, r, abn, wbn)
if accept

sb = sm
if accept

updateReservoirMut(sb, sInit, r)

function computeBlueNoise(sb, sm, sInit, r, cb, nnb)
// Compute mutated color
cm = cb * mutF / oldF * toScalar(oldF) / toScalar(mutF)
bnEnergyBase = 0
bnEnergyMut = 0
for nnb pixels in a given radius:

// Use color and pixel location to compute bn energy
bnEnergyBase += blueNoiseEnergy(cb, cnb, pb, pnb)
bnEnergyMut += blueNoiseEnergy(cm, cnb, pb, pnb)

// Obtain average bn energies
bnEnergyBase = bnEnergBase / sampledNeighbourCount
bnEnergyMut = bnEnergyMut / sampledNeighbourCount
// Always accept lower mutated bn energy, sometimes higher
bnDiff = bnEnergyMut - bnEnergy
return bnDiff >= 0 ? exp(-bnDiff / T) : 1

As shown in Algorithm 6, we compute the color that the
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mutated path would contribute by taking the adjustments
that we would apply to the reservoir’s weight and target PDF
if we accept the mutation, and applying these to the base
color. We can then use these two color values and compute
the average blue noise energy between them and a number of
their neighbours. Finally we compute the blue noise accep-
tance probability based on these blue noise energies.

One drawback of our implementation is that we do not
update the pixel luminance in between the MH iterations, to
avoid dealing with concurrency issues. This means less ef-
fectiveness for the blue noise energies, as they are not based
on how a mutation changes the blue noise energy from its
base sample, but compared to the very first sample that is
still stored in the reservoir.

6 Results and Discussion

These base and the blue noise implementations are compared
in terms of the amount of noise and the distribution of noise
they produce, and how much time it takes them to produces a
frame, given the same number of samples per pixel. To prop-
erly compare the ray tracers, they need to produce images
of the same scene, using the same parameters for the camera
and such. Furthermore, to reduce the effect of outliers, we av-
erage our metrics over a certain number of images, which we
have set to 10. To obtain these images, we let the ray tracer
run for 50 frames, save the pixel luminance (before it gets sent
to the tonemapper), reset the reservoirs, and repeat the pro-
cess until we have saved 10 images. The resulting EXR files
are then imported and analysed in Matlab.

We set the temporal confidence weight cap to 50, since
the benefit of decorrelated ReSTIR is being able to make more
use of temporal history without the large correlation artifacts.
Furthermore we have used an adapted version of the Veach
Ajar scene that features surfaces that are mostly diffuse, as we
encountered issues with scenes with too many strongly spec-
ular surfaces that we haven’t had the opportunity to resolve.
In part due to this we also closed the door slightly more, to
create more hard to sample light-carrying paths, which be-
come less common if there are more diffuse surfaces. And
lastly the camera is aimed at the ceiling, where the correla-
tion artifacts caused by hard to sample paths are more clearly
visible.

For the blue noise implementation we use a neighbour
count of 8 and radius of 4. We set the blue noise weight to 1.

In Figure 7 we show a cropped example of the reduc-
tion in correlation artifacts when using the same seed. While
not too noticeable, performing 5 mutations does result in less
correlation artifacts in the form of streaks across the ceiling,
parallel to the slit in the door through which light enters the
room.

6.1 Error

The amount of error or noise can be measured with metrics
such as RMSE, SSIM [Wang et al., 2004] or FLIP [Andersson
et al., 2020]. RMSE is simply average difference in pixel val-
ues compared to a reference image. Specifically, RMSE is de-
fined as:

RMSE =

√
∑K

m=1
(

Im − Îm
)2

K
,

(a) 0 mutations

(b) 5 mutations

(c) 5 mutations (blue noise)

(d) Reference image

Figure 7: Cropped frames of the ceiling in Veach Ajar with 0
vs 5 mutations, using the same seed. Exposure is manually
turned down for visibility.
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Scene
Covariance
0 mutations

Covariance
5 mutations

Covariance
5 mutations (blue)

Time (ms)
0 mutations

Time (ms)
5 mutations

Time (ms)
5 mutations (blue)

Veach Ajar
(ceiling) 3.5208e-04 3.0106e-04 2.938e-04 17 22 24

Table 2: Measured relative covariance with pixel radius 8, based on ReSTIR PT with a hybrid shift.

where K is the total number of images, Im is the reference
pixel luminance, and Îm is the estimated pixel luminance.
SSIM is slightly more advanced and less absolute, looking
at the structure between pixels as well. FLIP takes it a step
even further and aims to measure the perceptual difference
for humans compared to the reference image. However, the
amount of noise in the image renders is usually not very rel-
evant when evaluating the difference between renders with
white noise versus blue noise, as the amount of error in the
image is expected to be the same, just at different frequen-
cies. Confirming that this is indeed the case can sufficiently
be done with RMSE, though it might be interesting to ex-
amine whether FLIP picks up a difference between blue and
white noise.

As shown in Table 1, we do see a slight increase in error
when applying mutations, as opposed to the slight decrease
reported by Sawhney et al. [2022]. This could be simply an
inaccuracy due to a low measured frame count, or due to a
quirk in the different scene and parameters we use. If not,
then in theory we wouldn’t expect a higher error if Metropo-
lis Hastings is properly implemented.

Scene
RMSE
0 mutations

RMSE
5 mutations

RMSE
5 mutations
(blue)

Veach Ajar
(ceiling) 0.1019 0.1057 0.1026

Table 1: Measured root-mean-square error.

6.2 Correlation

Another relevant metric is the relative pixel covariance, used
to measure correlation. This was already used by Sawhney
et al. [2022] to measure the effectiveness of their algorithm at
reducing correlation artifacts in ReSTIR. The covariance be-
tween two pixels i and j in an image I is given by:

cij =
1

K− 1

K

∑
m=1

(Imi − Īi)(Imj − Īj),

where K is the number of images and Ī is the average of K im-
ages. The total covariance of the image is then computed by
taking the average of for each pixel i the average covariance
with all the pixels j within their neighbourhood of a box with
a given radius r (which we set to 8).

As shown in Table 2, we have achieved a similar reduction
in correlation artifacts as Sawhney et al. [2022] did, though
it should be noted that our adjustments to the scene make
the results difficult to compare one to one. Our blue noise
implementation appears to achieve slightly lower covariance
than the base decorrelation, but considering our the relatively
small number of frames we have computed this over, this dif-
ference may very well be insignificant.

An observation we made while testing is that mutations
can fall short when the correlation artifacts are caused by
light coming in through a slit. In this case spatial resampling
can fail to help neighbouring pixels perpendicular to the slit
to find this source of light, as the light vertex becomes ob-
structed by the shift. If the light source is large, it could mean
that there is still light reaching the neighbouring pixel via the
slit, but at a different angle than can be found via a hybrid
shift. At the same time, sample is easily spread out parallel to
the slit. This can result in streaks of bright spots parallel to the
slit, which is also slightly visible in Figure 7a. Mutations lose
their effectiveness in these cases, compared to for example
correlation artifacts caused by glossy bounces, as they will
attempt to move the reconnection vertex around across the
surface, but only moving it parallel to the slit will prevent the
light source vertex from getting obstructed.

6.3 Blueness of noise

To visualise how the error is distributed in an image, we com-
pute the discrete Fourier transform (DFT) of the image. In the
case of blue noise this should result in fewer lower frequen-
cies compared to higher frequencies. The DFT is usually visu-
alised as a square image whose axes represent the frequency
of noise, with the middle of the image as the origin. For white
noise the frequencies would be random, but for blue noise the
middle of the image would be darker, as this means less low
frequency noise compared to high frequency noise.

This begs the question of at which point our path tracer
will produce noise that we deem sufficiently blue. There un-
fortunately do not seem to be any studies that look into how
well the improved perception of blue noise path traced im-
ages scales up as the error distribution becomes more blue.
Since there seems to be no clear defined point at which per-
ceptual improvements become negligible, we could instead
simply compare a few levels of blueness to each other by
varying the amount of mutations and the degree to which
their acceptance probability skews towards a blue noise dis-
tribution. Unfortunately, as evident by the DFTs correspond-
ing to frames produced by the basic decorrelation algorithm
and the blue noise version shown in Figure 8, we were un-
able to succeed in using the mutations to produce blue noise
distributed error.

This lack of blue noise may be in part because its accep-
tance probability becomes less effective over multiple itera-
tions, as we do not update the pixel luminances between MH
iterations.

Another factor is the structure of the render passes. The
noise produced by our decorrelation pass gets fed into the
spatial resampling pass, which essentially undoes the high
frequency distribution. Samples that differ from each other
and are nearby each other are likely to get overridden by the
highest sample, thereby shifting the samples back from being
negatively correlated to being positively correlated. The ef-
fect that the spatial resampling pass has on the blue noise is
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(a) Cropped decorrelated ReSTIR (b) DFT of the regular mutations

(c) Cropped blue noise frame (d) DFT of blue noise mutations

Figure 8: DFTs of zoomed in part of the ceiling in Veach Ajar
with 5 mutations, using the same seeds.

similar to how blue noise interacts with a denoiser; the high
frequency noise gets mostly filtered out, leaving only low fre-
quency noise. In theory this would still preferable to feeding
regularly distributed error to the spatial resampling pass.

Unfortunately displaying the pixel values of the reser-
voirs directly after the decorrelation pass does not result in
blue noise either. Moreover, as mentioned before, executing
the decorrelation pass after spatial resampling would reduce
its effectiveness in diversifying the samples. It is possible
the mutations are simply not able to do enough to shift
the error distribution from being positively correlated to
being negatively correlated. As shown by Sawhney et al.
[2022], the mutations contribute very little to reduce the
overall error, meaning that the algorithm relies on spa-
tiotemporal resampling to find important paths, but not on
the mutations. As a result, the mutations will most often
be applied to high-contribution paths, diversifying them
into slightly lower-contribution paths, rather discovering
high-contribution paths from less valuable paths. Because of
this, using mutations to optimise for blue noise is inherently
limited by for the most part only being able to do this by
rejecting a sample’s mutation that decreases light intensity if
its neighbours are already darker. Combining this decreased
effectiveness with already positively correlated samples
means approaching a blue noise error distribution becomes
an uphill battle.

Unfortunately due to time constraints we were unable to
test if our implementation is capable of producing blue noise
when executed independently from the rest of the algorithm.

7 Conclusion

Our main contribution has been reimplementing the decor-
relation of ReSTIR via MCMC mutations, as put forward by
Sawhney et al. [2022]. We have provided our interpretation

of how their algorithm is best implemented, and have found
somewhat similar results in our evaluation.

We were not able to adjust the mutations into producing
more high-frequency distributed error, akin to blue noise. De-
spite this, it may be valuable to now know the limitations of
blue noise mutations when combined with ReSTIR. MCMC
mutations do not appear to be the most efficient method of
creating blue noise, because they are not able to match the
quality of the paths already found by ReSTIR.

ReSTIR’s spatiotemporal resampling also actively works
to reduce blue noise and increase low frequency noise in the
form of correlation artifacts. Because of this, vying for blue
noise may still be beneficial to ReSTIR, but it will be difficult
to actually produce a blue noise error distribution.

8 Future Work

More analysis into exactly why our algorithm fails at produc-
ing even a hint of blue noise, and whether it produces blue
noise when executed in isolation would be useful.

Ensuring that new samples are blue noise distributed, by
for example using a blue noise mask, might be beneficial to
our algorithm. It might again be cancelled out by the resam-
pling, but will likely at least help combat correlation artifacts.

As such, it might also be interesting to combine the
findings of Heitz and Belcour [2019] concerning reordering
pixel values of the previous frame to achieve blue noise, with
the spatiotemporal reuse of ReSTIR PT. Especially applying
shift maps to the reordered pixel samples rather than simply
swapping them around in image space might be enough to
provide an alternate way of reducing correlation artifacts
in ReSTIR. This reordering step might then somehow be
merged with the spatial resampling step to minimise the
performance hit.
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Appendices

A Code

The source code for this project is available publicly at: https://git.science.uu.nl/vig/mscprojects/blue-noise-distributed-
mcmc-decorrelation-of-restir.

B Reflection

It was unfortunate that the leap from ReSTIR DI to ReSTIR PT was as big as it was, partly due to the algorithms being structured
differently, so in hindsight it might have been better to focus on only one of the two.

Furthermore, the majority of the time was spent on implementing the decorrelation algorithm, leaving little to none for the
handling of blue noise. This also resulted in time constraints concerning the evaluation and analysis of the results.
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