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Abstract

Speaker communities typically have some level of interaction and are not

completely isolated. When individuals who speak different languages

come into contact, it is probable that their respective languages undergo

a process of convergence.

Ranacher et al. (2021) have developed a method, sBayes, to estimate the

relative role of language contact, as opposed to inheritance and universal

preference, in creating similarities between languages. The model promises

to identify contact areas from empirical data using (Bayesian) inference.

However, validation of the approach proves difficult since they use em-

pirical data of real-world language in which, by definition, actual contri-

butions of language contact, inheritance and universal preference are not

known.

To further validate the sBayes model, a dataset is needed from which we

know our expected descriptive contact, inheritance and universal prefer-

ence values prior to the model run. This dataset can then be compared to

the output of sBayes.

For this purpose, we created synthetic language datasets using an agent-

based model to test the accuracy of sBayes. Using these datasets we con-

ducted two experiments, one to validate sBayes ability to detect isolated

causal explanations per language feature. The second to test sBayes fit to

an artificial language dataset and in determining language areas (clusters)

and overall causality counts.

Our results suggest that synthetic language data can successfully be used

for validation purposes of the sBayes language model. sBayes accuracy on

identifying clearly isolated causalities has a combined mean squared error

of 0.05 in our simulations. In a simulated real life situation, the model find

a similar amount of contact areas. In addition, the overall distribution of

feature state causality is the same in our synthetic data when we compare

it to a benchmark experiment.
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1. Introduction

Speaker communities typically have some level of interaction and are not

completely isolated. When individuals who speak different languages come

into contact, it is probable that their respective languages undergo a pro-

cess of convergence (Bowern and Evans, 2015). In other words, the lan-

guages become more similar to each other. In order to communicate with

one another, they often need to find a shared language, which can result

in situations of bilingualism or multilingualism (Matras, 2009). Exposure

to another language, especially if this is widespread within a community

and takes place over a long period of time, may lead to horizontal transfer:

the incorporation of words or structural features from one language into

another (Ranacher et al., 2021).

Ranacher et al. (2021) have developed a method for determining the

amount of horizontal transfer between languages. sBayes estimates the rela-

tive role of language contact, as opposed to inheritance through family and

universal preference of one’s surroundings, in creating similarities between

languages.

Computational models, like sBayes, are used to simulate and understand

complex systems. However, the accuracy of these models depends on var-

ious assumptions, data inputs and parameter values, which can introduce

a wide range of uncertainties and errors. To ensure the validity and use-

fulness of computational models, it is essential to subject them to rigorous

validation procedures (Saltelli et al., 2008).

While the model has shown promise in identifying known cases of lan-

guage contact and change, I believe it needs further validation to determine

its accuracy in recognizing new cases of language contact and change. Nor-

mally, when we want to assess the content validity of computational mod-

els, we compare the outputs with the available empirical data or known
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facts to assess their agreement (Saltelli et al., 2008). This proves difficult in

the area of language evolution since we simply do not know the facts on the

exact feature evolution over time, we can only assume. For this reason, we

can not apply any cross-validation or work with train/test models unless

we find a way to gather any data we know to be empirically correct.

sBayes was tested on simulated data (951 languages randomly assigned

to locations in space) and then on two case studies to reveal language con-

tact in South America and the Balkans (Ranacher et al., 2021). Yet, neither

of these experiments can fully validate the approach since the actual con-

tributions of language contact, inheritance and universal preference are un-

known. As sBayes utilizes an input data set that is formed with assump-

tions, it is not possible to effectively validate the model using a pre-existing

dataset due to all datasets regarding historical languages including partial

assumptions on the data points. These contributions are also not known

in the simulated data since these are based on existing languages with un-

known histories.

This research aims to validate the accuracy of the sBayes model by test-

ing its ability to identify areas of language contact and change in several

contexts using synthetic datasets of which the contributions are known. For

this purpose, we make use of synthetic datasets from which we see the input

and output values so that we can compare these with the model outcomes.

So, what is the accuracy of sBayes?
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2. Background

2.1 Contact linguistics

Linguistic contact effects can manifest in various forms and vary in their

scope and nature, arising from diverse underlying processes. One of the

most easily identifiable effects is the borrowing of linguistic forms and func-

tions from one language to another. This borrowing typically involves the

adoption of vocabulary, such as when English borrowed the word "lan-

guage" from French. However, it can also extend to structural elements,

such as affixes or individual sounds, like the borrowing of French suffixes

like "-able" (e.g., "readable") into English (Gelman et al., 2013). The areas in

which these types of contact effects occur may contain languages similar in

their properties. These areas are generally referred to as a linguistic area or

Sprachbund (Friedman, 2011).

There are two principled ways to approach the detection and description

of a linguistic area: bottom-up and top-down (Muysken et al., 2014). The

bottom-up approach starts with recognizing one or more notable attributes

in a specific geographic area, indicating potential contact. These attributes

can pertain to language or other cultural aspects. This initial observation

is used as a prior to further explore the distribution of additional linguis-

tic features within the approximate region. Gradually, a pattern emerges,

revealing a generally indistinct area where languages exhibit a shared set

of characteristics (Friedman, 2011). The other way to approach linguistic

areas, is top-down. Here the approach is to assemble a principled set of fea-

tures and screen the distribution of the feature values for areal clustering

(Friedman, 2011).

Determining linguistic areas is complicated as they result from a num-

ber of complex historical processes which are difficult to reconstruct (Ma-
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2.1 Contact linguistics

Figure 2.1: Inheritance, universal preference and contact determine horizontal
language transfer (Ranacher et al., 2021)

sica, 2001). To detect them, sBayes uses a bottom-up approach to determine

shared features between geographically close languages. However, assum-

ing these shared features occurred through only contact would ignore any

other contributing language processes. In our experiments, we will mainly

focus on the confounding factors of inheritance and global preference (fig.

2.1).

Inheritance in language transfer determines language features being trans-

mitted from one generation to the next in an evolutionary process, not un-

like the descent with modification that characterizes biological evolution.

In language, the modification stems from the variation that each generation

adds, mostly for signaling social identities. While this can lead to the split

of a language into dialects and eventually into new languages, many prop-

erties persist and are inherited faithfully (Croft, 2008).

As for universal preference; the structure of languages is shaped by uni-

versal aspects of how they are used for communication and thought, how

they are processed in the brain and how they are expressed with our speech

and gesture systems. As a result, languages may share a property just be-

cause all languages tend to have it (Bickel, 2015).
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Background

2.2 Bayes Theorem

Bayes theorem (eq. 2.1) is a fundamental concept in probability theory and

statistics that describes how to update our beliefs or probabilities about an

event based on new evidence. It mathematically relates the conditional

probabilities of two events.

p(A|B) = p(B|A)p(A)

p(B)
(2.1)

p(A) and p(B): p(A) is called the prior probability of event A, while p(B)

is the prior probability of event B. These are the probabilities of event

A and event B occurring independently of each other.

p(A|B): Posterior probability. This represents the probability of event A

occurring given that event B has occurred.

p(B|A): Likelihood. This is the probability of event B occurring given the

probability that event A has occurred.

2.3 The sBayes model

sBayes is a Bayesian mixture model that weighs the respective contributions

of contact and the confounding effects from inheritance and universal pref-

erence in accounting for the similarities between languages in the geograph-

ical space.

Ranacher et al.(2021) have adapted Bayesian statistics for locating geo-

graphical contact areas (Z) by comparing their feature states. In statistical

terms, the task of finding contact areas can be described as clustering, or

finding groups of objects whose members share commonalities. However,

naive clustering will simply group together languages with similar prop-

erties irrespective of the specific processes that have actually made them

similar. Instead, sBayes infers the relative role of contact, as opposed to the

other processes, in creating similarities between languages.
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2.3 The sBayes model

Figure 2.2: Flowchart sBayes model

As can be seen in fig. 2.2, sBayes aims to explain why single language (l)

has feature ( f ) with state (s). For example: why a certain vowel sound( f )

is present (s) in the Arawakan language Chamicuro (l)? Three effects are

proposed and a likelihood function (P) is defined for each:

1. Likelihood for universal preference (Puniversal): the state is universally

preferred.

2. Likelihood for inheritance (Pinherit): the language l belongs to a lan-

guage family (ϕ(l)) and the state was inherited from related ancestral

languages in the family.

3. Likelihood for contact (Pcontact): the language belongs to area Z(l) and

the state was adopted through contact in the area.

The unknown weights wuniversal, winherit and wcontact quantify the contri-

bution of each of these three effects. For a single language l, which is part of

a family ϕ(l) and an area Z(l), we define the probability of feature f being

in state s as the following mixture likelihood:

The mixture components Puniversal, Pinherit and Pcontact are part of a single

categorical distribution parameterized by probability vectors α f , β f , ϕ(l) and
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Background

γ f , Z(l). This means that the probability of observing state s in feature f is

α f , s if it is the result of universal preference, β f , ϕ(l), s if it was inherited

in family ϕ(l) and γ f , Z(l), s if it was acquired through contact in area Z(l).

Together, these probabilities will always add up to 1 meaning 100%.

This process is illustrated in fig. 2.3, showing universal preference and

inheritance acting as confounders to determine contact areas. The figure

also introduces the triangular posterior weights density plot which will be

used in plotting our results.

Since a Bayesian model requires a start point, prior probabilities are de-

ducted from the entered dataset and the experiment setup parameters if set

by the researcher. sBayes does not determine the optimal amount of clus-

ters by itself, it does one separate run per n amount of clusters as set by

the researcher. After a prior has been established, each run will take an in-

dependent posterior sample. In post-processing, users can inspect whether

the posterior samples across all runs converge to the same stable distribu-

tion (Ranacher et al., 2021).

Figure 2.3: Contact, universal preference and inheritance principles illustrated
with a posterior weights density plot in the middle (Ranacher et al., 2021)
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2.4 Geographical application of sBayes

2.4 Geographical application of sBayes

During each sampling step, Bayesian inference is applied to a moving se-

lection of single language locations l so that the model can find and define

contact areas. This moving happens through growing and shrinking the

possible area until a possible contact area is defined, not unlike how an

amoeba moves through extending (grow operator fig. 2.4) and shrinking

(shrink operator fig. 2.5). Areas have a high likelihood of contact if they

comprise similar features which cannot be equally well explained by uni-

versal preference and inheritance. There are no assumptions about any of

the properties of contact areas, such as their shape, size or number, whether

they comprise close or distant languages, or cover contiguous or discon-

nected regions in space. While the assignment of languages to families is

fixed, the assignment of languages to areas is inferred from the data. sBayes

allows for multiple contact areas Z( f Z1, ..., ZKg), each with its own set of

areal probability vectors.

sBayes infers the assignment of languages to contact areas from similar-

ities in the language datasets that are poorly explained by the confounding

effects of inheritance and universal preference.
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Background

Figure 2.4: Adding a language feature set through geographical point values
(Ranacher et al., 2021)

Figure 2.5: Deleting a language feature set through geographical point values
(Ranacher et al., 2021)
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2.5 sBayes data input

2.5 sBayes data input

The input of the model is an overview of the known language features and

their possible states (fig 2.6). In most cases, a language feature is either

present or not present. It is possible to enter any amount of feature states.

The chosen features and corresponding states are manually derived from

linguistic data in the study area.

The model then requires a description of all known languages in an area

in terms of their feature states, each with an identification code and x/y co-

ordinates. If it is known what existing language family the local language

stems from, this can also be entered and will give extra weight to the inher-

itance causality (fig. 2.7).

2.6 sBayes output

The model has the following outputs:

- Statistical overview of the model run

The log file provides acceptance/rejection statistics for each operator

(amount of clusters). A high acceptance rate indicates too frequent

and, thus, inefficient sampling, a low acceptance rate indicates too

sparse sampling.

At every 2000 iterations:

- Logarithm for prior, posterior and likelihood for the entire dataset

- Logarithm for prior, posterior and likelihood per cluster

- Weights for contact, universal preference and inheritance

- Areal weights per feature state per cluster

- Weights of preference per feature state per language family
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Background

Figure 2.6: Example of pre-determined spoken language features (Ranacher
et al., 2021)

Figure 2.7: Language feature values per language, location and known lan-
guage family (Ranacher et al., 2021)
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3. Methods

3.1 Prediction versus retrodiction

Even though sBayes is a probability model, the term prediction is in this con-

text misleading. The model does not actually predict any future outcomes of

language, instead, it retraces steps. The term explanation is therefore more

fitting and will be used throughout this paper.

When validating explanatory models, validation methods consist of build-

ing plausible mechanisms that are able to reproduce simulated behavior

similar to real behavior (Nuno et al., 2017). Retrodiction, as opposed to pre-

diction, aims to replicate previously observed elements of the target system.

When there is a historical record of factual data from the target system, the

justification for retrodictive validity in a predictive model is as follows: If

the model consistently and accurately replicates the historical record, it can

also be relied upon for future predictions (Gross and Strand, 2000). In order

to validate sBayes we need to create a dataset of which we have prior knowl-

edge. To achieve this we will work with synthetic language datasets of

which we control the setup parameters. When we have generated data with

a known history and starting point, we validate the content and construct

by running the model on data from which we have evolutionary knowl-

edge in multiple situations. We then compare the output with the input to

see whether sBayes accurately detects the set parameters.
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Methods

3.2 Agent based models

For our validation experiments, we will use an agent-based model to create

synthetic datasets of which we know the exact values of the model output

probabilities, in this case meaning the posterior probability distribution be-

tween contact, inheritance and universal preference.

Agent-based models (ABMs) are well-suited for capturing the intricacies

of social complexity and language (Civico, 2019). The flexibility of ABMs en-

ables us to explore and depict various facets of the phenomenon being stud-

ied. For instance, we can construct societies comprised of diverse agents,

organizations, networks, and environments, enabling interactions that re-

flect the heterogeneous nature of social systems. Through the deliberate

selection of specific elements from social reality, ABMs become a valuable

tool for representing social dynamics as perceived by researchers and stake-

holders alike. This process of delineation allows for a tailored modeling

approach that aligns with the nuanced understanding of social phenomena

(Nuno et al., 2017).

Agents in our model represent language communities with language

features as their attributes. The agents are initialized with some common

language features to represent universal preference. When agents inter-

act, features are exchanged with predefined probabilities, leading to contact

areas. Over time, new agents are created that inherit features from their

‘parents’. Furthermore, agents may migrate. For more information on the

agent-based model, please see Understanding through contact by Joseph Tay-

lor (2023).
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3.3 Experiment 1: Validation by isolation

3.3 Experiment 1: Validation by isolation

3.3.1 Creating artificial datasets

First, we need to establish whether the artificial language causal probabil-

ities are identified correctly by sBayes. In order to test the causal posterior

distribution per feature (inheritance, universal preference and contact) we

will generate three datasets in which these factors are simulated separately

one by one (see fig. 3.1). We will look at sBayes accuracy in identifying

the likelihoods of contact, inheritance and universal preferences for lan-

guage features. These datasets will be used to validate the performance of

the model by comparing its posterior distribution outcomes with the now-

known cases in language contact over change.

The feature state causality weights will be shown in a Dirichlet distri-

bution for multinomial variables every separate model runs. We will also

compute a mean squared error from our known input (100%) per feature

per experiment.

Figure 3.1: Flowchart of isolation detection
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Methods

3.3.2 Artificial isolation dataset parameters

Table 3.1 shows the possible parameters for our agent-based model and

their corresponding values in our 3 isolation datasets. For comparison pur-

poses, each dataset was created with 50 starting agents, which automatically

starts 50 language families since every starting agent brings their own lan-

guage branch.

In our inheritance dataset, inheritance happens with a small number of

starting agents before adding children per agent. We achieve this by having

a low contact rate between children (new languages) once they are born and

a very high rate of feature inheritance (the number of feature states taken

from a parent). In our universal preference dataset, all agents have exactly

the same feature states per feature. Lowest possible amount of children and

every language belongs to its own language family. In our contact dataset

we set a high interaction rate, low birth likelihood and low inheritance rate.

Inheritance Universal Preference Contact

Number of agents (start) 50 50 50

Number of agents (end) 535 54 51

Number of language families 50 50 50

Number of features 20 20 10

Max number of states 3 3 3

Grid size 20 20 20

Shortcut pct 0.4 0.4 0.4

Interaction likelihood 0.01 0.01 1

Birth likelihood 0.5 0.01 0.01

Inheritance rate lower 0.9 0.51 0.51

Inheritance rate higher 0.99 0.6 0.6

Child relocation likelihood 0.2 0.2 0.2

Table 3.1: Test caption
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3.3 Experiment 1: Validation by isolation

3.3.3 sBayes setup

Setting up an experiment in sBayes requires parameters. This will give the

model information about how we want to analyse at our language data. It

also gives the model information on computing the prior likelihoods. We

feed these setting into the model through a configuration file separated into

three sections:

1. The setting for our Markov Chain Monte Carlo (MCMC). This is a tech-

nique used in statistics and computational science for generating sam-

ples from complex probability distributions. The purpose of MCMC

sampling is to approximate the distribution of a target variable or set

of variables that may be difficult to sample directly (Congdon, 2005).

Its purpose in sBayes is to generate a series of observations that approx-

imate a given multivariate probability distribution. These settings will

be the same for every model run in this paper in order to be able to

compare our outcomes (fig. 3.2).

2. Model settings. The amount of clusters we want sBayes to look for

where each cluster is a separate model run. We will run the model for

clusters 1 through 5. With more area clusters sBayes will find it easier

to explain variance in the data. in the data. Universal preference is

always modeled as a confounder, while the effect of inheritance can

be turned on or off by the analyst (fig. 3.3).

3. Prior settings. Both universal preference and inheritance priors can be

uniform or adjusted to empirical data about the language (Gelman et

al., 2013. Preference in an area (contact) is unknown as a prior, the

contact areas and their defining features will be the output of sBayes

(fig. 3.4).

The following parameters are used for every experiment in this paper.
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Methods

Markov Chain Monte Carlo:

steps 4000000

samples 2000

runs 10

grow to adjacent 0.85

Operators

cluster steps (growing, shrinking, swapping) 50

weight steps (changing weights) 10

cluster effect (changing probabilities in clusters) 20

confounding effects (probabilities in confounders) 10

source 10

initial objects per cluster 10

Warmup

warmup steps 10000

warmup chains 10

sample from prior false

Table 3.2: sBayes setting for our Markov Chain Monte Carlo (MCMC)

Model:

clusters [1,2,3,4,5]

sample source true

confounders

universal "<ALL>"

family: All known families here

Table 3.3: sBayes setting for our model
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3.4 Experiment 2: Benchmark run versus synthetic language data

Priors:

Clusters min. size of 3 and a max. size of 100

Geo-prior cost based

Probability function exponential

Aggregation policy mean

Scale 200.0

Cost-matrix inferred from geo-locations:

Prior on cluster size uniform area

Prior on weights uniform

Prior on cluster effect uniform

Prior on confounding effect universal:

Dirichlet prior for confounder universal <ALL>

Prior on confounding effect family:

Uniform prior for confounder family All known families here

Table 3.4: sBayes setting for our priors

3.4 Experiment 2: Benchmark run versus synthetic

language data

3.4.1 South America experiment parameters

Since our last experiment portrayed theoretical and extreme situations, it

should be relatively easy for sBayes to pick up on pre-set parameters. In

real life however, all three causes will appear together. We want to know

whether sBayes is able to identify similar contact patterns in a (synthetic)

real-life situation.

By doing a benchmark run with sBayes, we are able to determine the val-

ues of a ’regular’ verified model run. For this, we will use the provided

South America experiment setup for testing purposes of the model. This

dataset is put together from empirical data collected by Ranacher et al. The

researchers chose the area of Western South America because of its extreme
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genealogical diversity and major split between two cultural/linguistic ar-

eas (Andean and Amazonian). They were expecting strong signals to point

towards linguistic contact (Ranacher et al., 2021).

After running our benchmark experiment, we will generate a dataset

similar to the South American dataset using our agent-based model. We

will use the settings shown in figure 3.5. Figure 3.6 shows the shape of

the South America language dataset compared to our generated artificial

language dataset. We chose a higher number of language families to combat

bias created by unknown historical links in language heritage (the missing

links that are likely present but unknown to us).

We want sBayes to interpret our synthetic data in a similar way as the

official South America experiment. Since we can not reproduce the actual

language history, we will not be able to compute any comparisons in pos-

terior weights. We can however compute a deviance information criterion

(DIC), which is used to measure model performance considering model fit

and complexity. The most suitable K clusters is where the DIC levels off, so

that adding more areas does not improve the fit of the model. We run sBayes

iteratively increasing the number of areas K and evaluate the DIC for each

run. We expect the DICs to level out around the same amount of areas.

Number of agents 10

Number of features 36

Max number of states 5

Grid size 10

Shortcut pct 0.4

Interaction likelihood 0.4

Birth likelihood 0.5

Inheritance rate lower 0.8

Inheritance rate higher 0.004

Child relocation likelihood 0.2

Table 3.5: Agent-based model settings for creating our synthetic dataset
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3.4 Experiment 2: Benchmark run versus synthetic language data

Benchmark experiment Synthetic experiment

Number of features 36 36

Number of feature states min 2 max 5 min 2 max 5

Number of languages 100 131

Number of language families 6 10

Table 3.6: Details on South America experiment

3.4.2 sBayes parameters compared

Model:

Benchmark experiment Synthetic experiment

clusters [1,2,3,4,5] [1,2,3,4,5]

sample source true true

confounders

universal "<ALL>" "<ALL>"

family: Tucanoan family 0

Panoan family 1

Tacanan family 2

Arawak family 3

Quechuan family 4

Tupian family 5

family 6

family 7

family 8

family 9

Table 3.7: Model settings for both of our datasets
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Methods

Priors:

Benchmark experiment Synthetic experiment

Cluster size min. 3 max. 100 min. 3 max. 100

Geo-prior cost based cost based

Probability function exponential exponential

Aggregation policy mean mean

Scale 200.0 100.0

Cost-matrix inferred from geo-locations:

Prior on cluster size uniform area uniform area

Prior on weights uniform uniform

Prior on cluster effect uniform uniform

Prior on confounding effect universal:

Dirichlet prior

for confounder universal <ALL> <ALL>

Prior on confounding effect family:

Uniform prior Tucanoan. family 0

Uniform prior Panoan. family 1

Uniform prior Tacanan. family 2

Uniform prior Arawak. family 3

Uniform prior Quechuan. family 4

Uniform prior Tupian. family 5

Uniform prior family 6.

Uniform prior family 7.

Uniform prior family 8.

Uniform prior family 9.

Table 3.8: Prior settings for both datasets
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4. Results

4.1 Experiment 1: Isolation validation

4.1.1 Inheritance isolation

Our results are shown in two visualizations, the posterior weights density

distributions per feature (fig. 4.1) and the error chart per feature (fig. 4.2)

where 0 is perfect and 1 is the worst. Our weight distributions show the

spread of the likelihood outcomes per feature for universal preference (U),

inheritance (I) and contact (C). The spread of the likelihood is shown in

green, ranging from light to dark showing the computed weights by density.

These can be observed more clearly in later figures 4.3 and 4.5. The purple

dot represents the mean point of the spread between these three likelihoods.

The isolation of inheritance as a confounding factor is clearly picked up

by sBayes. All features overall causalities are almost exclusively inherited.

Our errors from 1 (100%) have a mean squared error of 0.0004 and a barely

visible spread in our weights visualization.

In our weights table (fig. 4.1) we can observe the means of all density

plots to be in absolute corner. However, F1 and F3 show a slight diversion.

Our error table (fig. 4.2) supports these slight outliers.
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Results

Figure 4.1: Posterior weight plots per feature for for the experiment in which
only inheritance takes place

Figure 4.2: Error per feature for the experiment in which only inheritance
takes place
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4.1 Experiment 1: Isolation validation

4.1.2 Universal preference isolation

Figure 4.3 shows the posterior density weight plots per feature for our uni-

versal preference dataset. For universal preference to be detected, the ma-

jority of our languages needs to share a similar feature state. When a major-

ity is reached, other languages will convince other languages to assume the

same feature state. Looking at fig. 4.4 we see that the errors of our estimated

probabilities are low for the majority features, with a mean squared error of

0.01 showing that our likelihoods are accurate.

Figure 4.3: Posterior weight plots per feature for the experiment in which only
universal preference takes place
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Results

Figure 4.4: Error per feature for the experiment in which only universal prefer-
ence takes place
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4.1 Experiment 1: Isolation validation

4.1.3 Contact isolation

Our contact-focused dataset provides the most varying results. The spread

of our weight distributions is visibly higher than in our other isolation ex-

periments (fig. 4.5). Our error graph confirms this (fig. 4.6). While all of

our results are still pointing towards contact, some of our features move to-

wards universal preference (F4) and slightly towards inheritance (F3, F7).

The mean squared error of our combined features is 0.13.

Figure 4.5: Posterior weight plot per feature for experiment in which only con-
tact takes place

Figure 4.6: Error per feature for the experiment in which only contact takes
place
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4.2 Experiment 2: Benchmark run versus synthetic

language data

We are testing sBayes fit to an artificial language dataset in determining lan-

guage areas (clusters). In fig. 4.8 and fig. 4.7 we see the deviance informa-

tion criterion (DIC) for different contact clusters. We observe both models

flattening out around K = 3. The DIC however, has much higher values

and variation in the synthetic dataset compared to our real life situation.

This can be cause by the larger dataset.

Weight plots for the South America dataset (fig. 4.9) and our synthetic

dataset (fig. 4.10) show that the distribution of feature causalities is compa-

rable between the two. Our causality outcomes are summarized in table 4.1.

Here we observe that inheritance is more present in our synthetic dataset.

Universal preference however, is mostly absent. Overall though, the dis-

tribution between causes is the same. Inheritance occurs most, contact less

and universal preference least.

South America experiment Synthetic language set

Number of I features 25 30

Number of U features 4 2

Number of C features 7 4

Table 4.1: Feature causality count comparison
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4.2 Experiment 2: Benchmark run versus synthetic language data

Figure 4.7: Deviance information criterion for the benchmark dataset

Figure 4.8: Deviance information criterion for the synthetic dataset
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Figure 4.9: Posterior density weight plots for benchmark data
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4.2 Experiment 2: Benchmark run versus synthetic language data

Figure 4.10: Posterior density weight plots for synthetic language data
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5. Discussion

5.1 Implications

We presented a validation method for sBayes, a Bayesian mixture model

for language contact while accounting for confouders. Since no empirical

data can be easily collected on historical language evolution, we proposed

the use of synthetic language data to determine the accuracy of sBayes. For

this purpose we conducted two experiments, one to validate sBayes abil-

ity to detect isolated causal explanations per language feature. The second

to test sBayes fit to an artificial language dataset and in determining lan-

guage areas (clusters). Our results suggest that synthetic language data can

successfully be used for validation purposes of the sBayes language model.

sBayes accuracy on identifying clearly isolated causalities has a combined

mean squared error of 0.05 in our simulations.

In addition to explaining language contact, sBayes can now be further

utilized in the exploration of various other fields. When different groups

interact, there are numerous aspects beyond language that can be examined

through sBayes, as long as they can be represented as features. Culture is

one such dimension: whenever individuals come into contact, they often ex-

change not only language but also artifacts, cultural customs, ideas, rituals,

mythology, and more.

Further research can be done by generating more datasets for specific

purposes and testing their outcomes in sBayes. More research can also be

done on parameter validation for the agent-based model that was used for

generating our datasets.
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5.2 Context

5.2 Context

Analysis leads us to the conclusion that there is still a need for a systematic

quantitative approach to identify contact areas, one that considers both the

process leading to contact effects and the influence of other factors that can

confound the results. A preliminary attempt to address this research gap

was presented in (Daumé, 2009), where a non-parametric Bayesian model

was used to reconstruct language areas, capturing both areal and phylo-

genetic effects, but without distinguishing universal preference and inher-

itance. A similar concept was explored in (Towner et al., 2012), where an

autologistic model, along with family and neighbor graphs, was employed

to examine the impact of inheritance and areality on cultural macroevolu-

tion in North America. Although this model does not directly infer areas, it

assumes that spatial influence occurs within a fixed radius of 175 km. Later,

this approach was extended to infer hidden areas based on language data

(Murawaki, 2020).

An alternative approach is proposed in (Michael et al., 2014), where a set

of languages is assigned to a potential contact area, referred to as a "core,"

based on prior knowledge. Subsequently, a naive Bayes classifier is used to

determine whether other languages belong to the core or a control set, con-

sisting of languages unlikely to have been in contact with the core. The same

authors also suggested a relaxed admixture model to identify language con-

tact (Michael and Chang, 2014). This mixture model focuses on detecting

borrowings between pairs of languages but does not account for the possi-

bility of larger contact areas.

Ranacher et al. (2021) developed a method for determining the amount

of horizontal transfer between languages. sBayes estimates the relative role

of language contact, as opposed to inheritance through family and univer-

sal preference of one’s surroundings, in creating similarities between lan-

guages. sBayes draws inspiration from these approaches. However, it dif-

fers in that it explicitly infers the assignment of languages to contact areas

based on the available data. The shape and size of the areas are not prede-

termined but can vary. Additionally, our model incorporates a geographical
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prior to enforce spatial coherence and account for the influence of geogra-

phy. Furthermore, the model effectively addresses the confounding factors

of inheritance and universal preference, ensuring that only signals of lan-

guage contact are detected.

sBayes was tested on simulated data and on two case studies to reveal

language contact in South America and the Balkans (Ranacher et al., 2021).

Yet, neither of these experiments fully validated the approach since the ac-

tual contributions of language contact, inheritance and universal preference

are unknown.

Building upon previous work, the validation of the sBayes model pro-

vides a valuable contribution to the existing knowledge by offering a com-

prehensive and flexible tool for analyzing language contact and other do-

mains influenced by social complexities.

5.3 Limitations

This research assumes the validity of the agent-based model used to create

our validation data sets. It has not been fully tested and validated.

For clarification, sBayes uses a greatly simplified projection of language

and language feature development. The model also greatly simplifies ge-

ographical contact and does not take into account the social status of lan-

guage speakers, speaking goals, trade networks, or geographical landmarks

like rivers or mountain ranges.

The model can not plot if any of the three confounding factors turn out

to be an actual 0. We therefore had the adjust the datasets to not output

any zeroes but as close to 0 as possible. This only caused problems with

our isolation experiments and would be highly unlikely to occur in real life

data.

The reliability of our synthetic data is impacted by ’islanding’ or isolated

clustering of the agents (fig. 5.1) in dataset generation. Since the languages

do not move, they can only interact when they are close to each other. If

the grid size is set too high, agents will be randomly generated and spawn
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5.3 Limitations

Figure 5.1: "Islanding" or isolated clustering of agents without ever contacting
neighboring families

children around them over time. They may never come into contact with

other language families in different locations on the grid. This can cause our

results to have a relatively low representation of contact and an overinflated

presence of inheritance.
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6. Conclusion

sBayes recognized our experimental artificial language data in every sce-

nario. By looking at the weight distributions per feature in 3 hypotheti-

cal situations, we determined that sBayes correctly identified the causalities

of inheritance, universal preference and contact. We see that the average

causality per feature clearly points towards our simulated feature state her-

itage with a combined mean squared error of 0.05.

Our second experiment tested sBayes’ fit to an artificial language dataset

in determining language areas (clusters). We performed a benchmark ex-

periment with an empirically correct dataset and reproduced these dataset

characteristics with an agent based model. We then calculated the deviance

information criterion (DIC) for different contact clusters and observed both

models flat out around K = 3. The overall distribution of feature state causal-

ity is the same in our synthetic data when we compare it to a benchmark

experiment,

The accuracy of sBayes in our situations has proven to be high. The

model performs well in recognizing historical language data and reproduc-

ing real life language situation.
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