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Abstract

The goal of this thesis is to study pseudo-orthogonal Yang-Mills actions and understand under
which conditions they contain the Hilbert-Einstein action free of instabilities. The physical
motivation is to construct a renormalizable theory of quantum gravity. We first provide the
mathematical background necessary to introduce gauge theories in curved spacetime and General
Relativity. Subsequently, we develop the concept of geometrical Yang-Mills theory, i.e. Yang-
Mills theories for which part of the gauge connection takes also the role of the cotetrad fields.
The resulting theory retains only a part of the original gauge group as its group of symmetry. We
show that for some pseudo-orthogonal groups one obtains the Hilbert action (and consequently
Einstein’s equations) as part of the theory. Then, specializing to a coordinate system, we derive
the Hamiltonian of such theories and we analyze the constraints that arise in phase space due
to the redundancy of the Yang-Mills Lagrangian. We study the class of such constraints and it
turns out that the theory possesses both first and second class constraints. Finally, we establish
the conditions under which the constraints are preserved by the evolution. The next steps – left
for future work – would include the study of dynamics, stability and symmetry breaking to the
theory that at low energies would be equivalent to Einstein’s general relativity.
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Introduction

The first gravitational theory saw the birth of Theoretical Physics, perhaps the last one one will
see its end. For more than a century, researchers from all over the world tried to properly quantize
the gravitational field. Up to now, no undoubtedly convincing solution to this problem has been
found. Starting from general relativity in 1915, the theory has been extended and generalized
in many different ways (see [1] for a review). Of these several theories, string theory is one of
the only examples for which Einstein’s field equations are obtained without adding by hand the
Hilbert action to the theory, or by introducing it as a counterterm as in some induced gravity
theories. The goal of this thesis is to show that there exists another class of theories obtained
by a suitable generalization of the well-known Yang-Mills theories that contains Einstein theory
in the torsionless low energy limit.

As the Standard Model should teach us, Fundamental Nature seems to be described (at least
at some scales) by gauge theories of the Yang-Mills type. These theories are proved to be renor-
malizable and thus it motivates us to look in this kind of theories for a possible solution to the
renormalizability problem of quantum gravity. Moreover, it is well-known that the renormaliza-
tion of flat spacetime theories generically induces higher order geometric scalar with respect to
the Ricci scalar present in the Hilbert action. Usually this terms provide instabilities of the Os-
trogradski kind[10], due to the presence in the action of quadratic second-order time derivatives
with respect to some components of the metric tensor. Since the Yang-Mills theory fundamen-
tally provides a theory of a field strength squared, it seems natural to use an appropriate gauge
group in order to reproduce at least these counterterms in a stable way. This is possible due to
the fact that a Yang-Mills theory is a first order formalism similar to the Palatini formalism in
GR (i.e. the variational principle of Hilbert action for which Christoffel symbols are considered
free and they are not the Levi-Civita connection[5]). Another reason why we think Yang-Mills
theories have a chance of explaining gravity is the geometrical structure that lies underneath
them. General relativity and Yang-Mills theories are two of the most important examples of
Differential Geometry in Theoretical Physics. We will then address the question whether one
can use the geometry of gauge theories to derive general relativity.

Guided by the results of [3], that shows linear GR as a spin-2 field theory, and [2], that explains
gravity as an effective field theory, we are inspired to use spin-1 Yang-Mills fields (which is known
that can be put in product to form the spin-2 rep) to describe a theory that reduces to GR in
some low-energy limit. It is worth noticing that it was proved by Edward WItten[9] that one
can recover 2+1 dimensional general relativity from a Chern-Simons theory (i.e. a ”topological”
Yang-Mills theory), we will then attempt to define a fully ”geometrical” Yang-Mills theory to
obtain the same results in four spacetime dimensions.

Following the work by James T. Wheeler and Juan Trujillo[8], we studied the possibility of
obtaining a gravitational theory such as Weyl squared gravity from a Yang-Mills theory of the
conformal group. Soon we realized that, in order to twist the geometry of spacetime with the
geometrical structure of their gauge theory, we needed a way to define the metric tensor in a non-
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trivial gauge theoretical way. We developed a new class of Yang-Mills theories, called geometrical
Yang-Mills theory. We will show that it’s possible to define a metric for spacetime using part
of the gauge fields as cotetrad fields. Pseudo-orthogonal groups will result as the best choice
for our gauge groups. In particular, de Sitter theory (SO(1,4)) will reduce, in its torsionless low
energy limit, to general relativity with the appearance of a gauge theoretical Planck mass and
cosmological constant.

The thesis is divided as follows. In Chapter 1 we introduce all the mathematical prelim-
inaries necessary to understand standard Yang-Mills theories in arbitrary pseudo-Riemannian
manifolds. If the reader is already familiar with these concepts we advise them to proceed di-
rectly to the second chapter and come back to the first only if needed. Chapter 2 focuses on a
general introduction to gravitational theories and GR. Introducing the tetrad fields, we will see
that Einstein’s theory already contains a gauge description with respect to local Lorentz trans-
formations. Some examples of generalization of Einstein’s theory will be provided to introduce
the renormalizability and instability issues and to make a connection with what will be found in
our theories. The main chapter, Chapter 3, is dedicated to the definition of geometrical Yang-
Mills theory showing the necessity of studying pseudo-orthogonal gauge groups. We will present
two theories which have connections with gravity. The most important is the de Sitter gauge
theory we’ve already mentioned. It’s the easiest consistent example of geometrical Yang-Mills
theory and contains the Ricci scalar as part of the action. The second example is the revised
Wheeler-Trujillo theory for the conformal group that motivated us in the first place. Finally,
in Chapter 4 we introduce an Hamiltonian formalisms for generic Yang-Mills theories in curved
dynamical spacetime. In particular we focus on the constraints of the theory establishing their
class and their self-consistency conditions. We conclude addressing the missing steps of a proper
instability analysis and giving some outlooks for the theories we developed.
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Chapter 1

Mathematical introduction to
Yang-Mills theories

We will leave for granted the definition and basic applications of smooth mainfold, exterior or
Lie derivatives, tensors, and so on. We will start with a brief introduction on group theory. Then
we will explain the concepts of principal and vector bundles, with the related notions of connec-
tion (gauge field) and curvature (field strength). In the end we will explain the mathematical
background of gauge theories and we will introduce the Yang-Mills action. We advise the reader
without a proper differential geometry background to keep [4] or [6] as reference throughout
the following chapter. We personally suggest to use [4] and references therein for proofs of the
mathematical claims we will make. (Everything will be supposed to be smooth).

1.1 A rough introduction to group theory

Def 1.1.1 (Lie group). A set G, equipped with an operation g ⋆ h, g, h ∈ G, is called a group if:

1 ∀g, h ∈ G, g ⋆ h ∈ G;

1 ∃! e ∈ G such that e ⋆ g = g ⋆ e = g,∀g ∈ G;

1 ∀g ∈ G,∃g−1 ∈ G such that g ⋆ g−1 = g−1 ⋆ g = e.

A group G is called a Lie group if the product

p : G×G→ G,

(g, h) 7→ g ⋆ h,

and the inverse

i : G→ G,

g 7→ g−1,

are smooth functions on G×G and G, respectively. This gives to G a manifold smooth structure.

In the following we will be considering matrix Lie group, i.e. G ⊂ GL(r), for some r. For
simplicity we will denote the group product as g ⋆ h = gh.
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Def 1.1.2 (Lie algebra). Given a Lie group G, we define the Lie algebra of G, denoted by g, as:

g =
{
A ∈ Matr×r such that eA ∈ G

}
,

where eA =
∑
n
An

n! .

Remark. Some properties of the Lie algebra:

•
(
eA
)−1

= e−A;

• Given A,B ∈ g,αA+ βB ∈ g,∀α, β ∈ R;

• Given g ∈ G and A ∈ g, we have gAg−1 ∈ g.

With this structure the Lie algebra is a vector space over R, the algebra structure is given by
the commutator:

[A,B] = AB −BA ∈ g. (1.1)

Notice that the commutator is R-linear. Since the Lie algebra is a vector space, we can choose
a basis for it, say {Ga}a=1,...,n, where n is the dimensionality of g. We know that [Gi, Gj ] ∈ g,
so it can be expandend in the basis:

[Gi, Gj ] = c k
ij Gk, (1.2)

the elements of the basis are usually called generators of the Lie group G, while the c kij are
called structure constants of the Lie algebra g. We will now give a classification of Lie algebras.
Consider subsets a, b ⊂ g. We introduce the notation [a, b] ⊂ g as the set of all finite sums of
elements of the form [X,Y ], with X ∈ a and Y ∈ b.

Def 1.1.3 (Ideal). Let g be a Lie algebra. An ideal in g is a vector subspace a ⊂ g such that
[g, a] ⊂ a.

Def 1.1.4 (Lie algebra classification). Let g be a Lie algebra.

1. The Lie algebra g is called simple if g is non-abelian and g has no non-trivial ideals (dif-
ferent from 0 and g).

2. The Lie algebra g is called semisimple if g has no non-zero abelian ideals.

Def 1.1.5 (Lie group representations). Let G be a Lie group and V a vector space. A represen-
tation of G on V is given by a smooth map:

ρ : G→ GL(V ),

such that (∀g, h ∈ G):

1. ρ(gh) = ρ(g)ρ(h),

2. ρe = eGL(V ),

here GL(V ) is the general linear group of V .

Def 1.1.6 (Lie algebra representations). Let g be a Lie algebra and V a vector space. Then a
representation of g on V is a Lie algebra homomorphism

ϕ : g → gl(V ) = End(V )

ϕ([X,Y ]) = ϕ(X) ◦ ϕ(Y )− ϕ(Y ) ◦ ϕ(X) ∀X,Y ∈ g.
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In particular, there is one representation that will be extremely important for us. In the
following fix a Lie group G and its Lie algebra g.

Def 1.1.7 (Conjugation). For an element g ∈ G we define the inner automorphism conjugation
to be:

cg = Lg ◦Rg−1 : G→ G,

x 7→ gxg−1.

We indicate with (cg)∗ : g → g its differential.

Theorem 1.1.8 (Adjoint representation of a Lie group). The map

Ad : G→ GL(g),

g 7→ Ad(g) ≡ Adg = (cg)∗,

is a Lie group homomorphism, i.e. a representation of the Lie group G on the vector space g,
called the adjoint representation of the Lie group G. In particular we have (X ∈ g, g ∈ G):

AdgX = gXg−1.

Theorem 1.1.9 (Adjoint representation of a Lie algebra). The map

ad : g → End(g),

given by
ad = Ad∗,

is a Lie algebra homomorphim, i.e. a representation of the Lie algebra g on itself, called the
adjoint representation of the Lie algebra g. The map satisfies the formula:

(ad)(X)(Y ) = adXY = [X,Y ] ∀X,Y ∈ g.

Def 1.1.10 (Action of a Lie group on a manifold). Let G be a Lie group and M a smooth
manifold. We define the smooth right action of G on M to be:

R :M ×G→M,

(x, g) 7→ xg.

Keeping g ∈ G fixed, we also define the right g-action to be:

Rg :M →M,

x 7→ xg.

Def 1.1.11 (Fundamental vector field). Given A ∈ g, R : M ×G → M a right action and f a
function on M , we define:

X̃(f)(x) =
d

dt

∣∣∣∣∣
t=0

f(xetX).

Notice that X̃ is a derivation (i.e. it obeys Leibniz rule and R-linearity), then it defines a vector
field on M . The vector field so defined (that we will keep denoted as X̃) is the fundamental
vector field associated with X ∈ g.
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Considering M = G, it is well-known that there is a Lie algebra isomorphism:

g ∼= TeG,

X ↔ X̃,

where TeG is the tangent space of G at the identity e, in particular we have [̃A,B] =
[
Ã, B̃

]
. This

means that TeG is spanned by the fundamental vector fields associated to the generators of G.
Let’s look at the cotangent space T ∗

eG and choose the dual basis
{
θi
}
i=1,...,n

such that θi(G̃j) = δij .

Consider the exterior derivative (on G) of the dual form θi:

dθi(G̃j , G̃k) =
1

2

(
G̃j

(
θi(G̃k)

)
− G̃k

(
θi(G̃j)

)
− θi(

[
G̃j , G̃k

]
)
)
=

= −1

2
θi( ˜[Gj , Gk]) =

= −1

2
c ljkδ

i
l =

= −1

2
c ijk,

where we used Eq.(1.2). Noticing c i
jk = −c i

kj and applying duality, we find:

dθi = −1

2
c i
jkθ

j ∧ θk. (1.3)

These are the Cartan structure equations for a Lie group G.
Now we’ll state without proof an important theorem on the quotient space.

Theorem 1.1.12 (Manifold structure on G/H). Let G be a Lie group and H ⊂ G a closed
subgroup. Then G/H has a unique structure of a smooth manifold such that π : G → G/H is a
submersion.

1.2 Principal and vector bundles

In the following consider G to be a Lie group and M to be a fixed manifold.

Def 1.2.1 (Principal G-Bundle). A principal G-bundle is given by a manifold P (the total space)
equipped with the following:

1. a smooth right action Rg : P → P, g ∈ G as defined in Subsection 1.1;

2. a smooth submersion π : P →M such that π(pg) = π(p), p ∈ P ;

3. π : P →M is locally trivial, i.e

∀x ∈M, ∃U ⊂M (open neighborhood of x)

∣∣∣∣π−1(U)
G−equivariant∼= U ×G.

The trivial bundle is π :M ×G→M .

It follows from Theorem 1.1.12 that π : G→ G/H has the structure of a principal H-bundle.
Analogously we define a vector bundle in the following way.
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Def 1.2.2 (Vector Bundles). A R-vector bundle (or for a generic field K) of rank r over M is
given by a smooth manifold E (the total space) equipped with the following:

1. a smooth surjective map π : E →M ;

2. ∀x ∈M (the fiber at x) Ex := π−1(x) ∼= Rr;

3. ∀x ∈M, ∃U ⊂M,x ∈ U, such that π−1(U) ∼= U × Rr.

The trivial bundle is π :M × V →M , where V is an r-dimensional vector space.

Def 1.2.3 (Section). Let π : P → M be a principal G-bundle. A section is given by a smooth
map s :M → P such that π ◦ s = idM . A local section is defined on an open subset U ⊂M . We
will denote the space of sections as Γ(M ;P ).

Let π : E →M be a vector bundle. A section is given by a smooth map s :M → E such that
π ◦ s = idM . A local section is defined on an open subset U ⊂ M . We will denote the space of
sections as Γ(M ;E).

Def 1.2.4 (Local frame). Let π : E → M be a vector bundle of rank r. A local frame is
given by r sections {ei}i=1,...,r defined over some U ⊂M such that {ei}i=1,...,r forms a basis for
Ex, ∀x ∈ U . A frame induces a diffeomorphism:

E(U) = π−1(U) ∼= U × Rr.

Notice that there is no concept of frame for principal bundles. This reflects the property that
the structure group G acts transitively on the fiber. Thus, once we have a section s(x) = p ∈ Px
we can use it to induce a diffeomorphism as follows.

ϕ : P (U)
∼=→ U ×G,

s(x) 7→ (x, e),

p = s(x)g 7→ (x, g), p ∈ P, g ∈ G.

Def 1.2.5 (Associated vector bundle). Let π : P → M be a principal G-bundle and (ρ, V ) a
representation of G. The vector bundle associated to V is given by:

E(P ;V ) ≡ P ×ρ V := (P × V )/G→M,

where the quotient is taken as:

(p, v) ∼ (p′, v′) ⇔ (p′, v′) = (pg, ρ(g−1)v), p ∈ P, v ∈ V, g ∈ G.

Proposition 1.2.6 (Local sections of associated vector bundles). Let π : P →M be a principal
G-bundle and E = P ×ρ V an associated vector bundles. Let s : U → P be a local section for P .
Then there is a 1-to-1 relation between smooth sections τ : U → E and smooth maps f : U → V ,
given by:

τ(x) = [s(x), f(x)] , ∀x ∈ U.

In particular, there is an associated vector bundle which will be important in the following.
This is the case when V = g and ρ(g)X = g−1Xg, i.e. ρ is the adjoint representation of G. This
bundle is called the adjoint bundle and it is indicated as Ad(P ) := E(P, g).

Def 1.2.7 (Basic differential forms). Let π : P →M be a principal G-bundle, E(P ;V ) the vector
bundle associated with the representation ρ and V := P × V , i.e. a trivial vector bundle over P
with fiber V . A differential form α ∈ Ωk(P ;V ) = Ωk(P )⊗ V is basic if:
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1. R∗
gα = ρ(g−1)α,∀g ∈ G;

2. α(X̃) = 0,∀X ∈ g.

Remark. Let π : P → M be a principal G-bundle and ρ a rep of G on V . Then the pull-back
(π∗) of differential forms induces an isomorphism:

Ωk(M ;E(P ;V )) ∼= Ωkbasic(P ;V ).

Def 1.2.8 (Horizontal distribution). Let π : P →M be a principal G-bundle. A vector subbundle
H ⊂ TP is called a distribution, here TP is the Tangent Bundle of P . If the map Tpπ : Hp →
Tπ(p)M is an isomorphism for every p ∈ P , then H is called an horizontal distribution.

Def 1.2.9 (Connection on principal G-bundles). Let π : P → M be a principal G-bundle. A
connection on P is a horizontal distribution H that is G-equivariant, i.e.

Hpg = TpRg(Hp),

where TpRg is the tangent map induced by the right action.
Equivalently, let π : P → M be a principal G-bundle. A connection on P is given by a

g-valued 1-form ωωω ∈ Ω1(P, g) such that:

1. R∗
gωωω = Adg−1(ωωω), for all g ∈ G;

2. ωωω(X̃) = X, for all X ∈ g,

where Adg−1 denotes the adjoint action of G on g.
The two definitions are related as follows:

Ker(ωωω)p = Hp.

Def 1.2.10 (Connection on vector bundles). Let π : E → M be a vector bundle. A connection
is a bilinear map:

∇ : X(M)× Γ(M ;E) → Γ(M ;E),

(X, s) 7→ ∇X(s), X ∈ X(M), s ∈ Γ(M ;E),

such that (∀f ∈ C∞(M)):

1. ∇fX(s) = f∇X(s);

2. ∇X(fs) = f∇X(s) +X(f)s.

In physics literature one usually finds covariant derivative instead of connection.
Notice that the connection 1-form of a principal bundle is not basic. However it is straight-

forward to see that the difference between two connection one forms (ω and ω′) is a basic 1-form
(then, it’s isomorphic to a form living on the base manifold). Analogously, the connection ∇ of
a vector bundle doesn’t define a 1-form, but the difference between two ∇,∇′ does.

Def 1.2.11 (Curvature on principal bundles). Let π : P → M be a principal G-bundle with
connection 1-form ωωω ∈ Ω1(P ; g). The curvature F of a connection ω is defined as:

ΩΩΩ(ωωω) := dωωω +
1

2
[ωωω,ωωω] ∈ Ω2(P ; g).
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Remark. The curvature ΩΩΩ(ωωω) is a basic form, i.e. ΩΩΩ(ωωω) ∈ Ω2
basic(P ; g)

∼= Ω2(M ;Ad(P )).

Since ΩΩΩ defines a 2-form with values in Ad(P ), it seems reasoning to see what connection ∇ωωω

is induced on Ad(P ) by ωωω on P . Consider π : P →M a principal G-bundle and E = P ×ρ V the
vector bundle associated to the rep (ρ, V ). Notice that we have already shown, Def.1.2.7, that
basic forms on P are isomorphic to E-valued differential forms. For 0-forms this implies:

Γ(M,E) ∼=
{
f : P → V, f(pg) = g−1f(p),∀ g ∈ G

}
. (1.4)

Moreover, the representation ρ : G→ GL(V ) induces a morphism of Lie algebras ρ̃ : g → End(V )
(i.e. the tangent map of ρ):

ρ̃(X) :=
d

dt

∣∣∣
t=0

ρ(etX)

.

Def 1.2.12 (Connection on associated vector bundle). We define the connection on E = P ×ρV
to be:

∇ωωω : Ω0
basic(P ;V ) −→ Ω1

basic(P ;V ),

∇ωωω(f) = df + ρ̃(ωωω)f,

∇ωωω
X(f) = X(f) + ρ̃(ωωω(X))f.

In particular, for Ad(P ), we have ρ̃(X)Y = [X,Y ] , X, Y ∈ g. Then the induced connection
on Ad(P ) is given by:

∇ωωω
Ad(P )

= d+ [ωωω, ·] . (1.5)

Theorem 1.2.13 (Bianchi identity for principal bundles). Let π : P → M be a principal G-
bundle with connection ωωω. Then

∇ωωω
Ad(P )

ΩΩΩ(ωωω) = dΩΩΩ(ωωω) + [ωωω,ΩΩΩ(ωωω)] = 0.

As it can be easily proved using the definition Def.1.2.11. Indeed we find ({ei}i basis for g,
ωi ∈ Ω(P ), Ωi ∈ Ω2(P )):

∇ωωωΩ(ω) =d

(
dω +

1

2
ωi ∧ ωj ⊗ [ei, ej ]

)
+ [ω,Ω(ω)] =

=
1

2

(
dωi ∧ ωj ⊗ [ei, ej ]− ωi ∧ dωj ⊗ [ei, ej ]

)
+

+ ωi ∧ dωj ⊗ [ei, ej ] + ωi ∧ ωl ∧ ωm ⊗ [ei, [el, em]] = 0,

(1.6)

where we used the Jacobi identity to kill the last term. Notice that we proved it using only
algebraic relations and the definition of the curvature. This implies that the Bianchi identities
are algebraic relations and they do not depend on the geometrical structure.

Def 1.2.14 (Curvature on vector bundles). Let π : E → M be a vector bundle with connection
∇. The curvature F (∇) : X(M)× X(M)× Γ(M ;E) → Γ(M ;E) is defined as:

F (∇)(X,Y )(s) :=
(
∇X∇Y −∇Y∇X −∇[X,Y ]

)
(s), X, Y ∈ X(M), s ∈ Γ(M ;E).

Remark. The curvature F (∇) is clearly antisymmetric in the vector entries and it can be easily
checked that it is C∞(M)-linear in all entries and fiber preserving (i.e. it sends sections to
sections).

⇒ F (∇) ∈ Ω2(M ;End(E)),
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where End(E) denotes the vector bundle π : End(E) =
⋃
x∈M

End(Ex) →M , End(Ex) denotes the

endomorphism vector space of the fiber at x ∈M .

Def 1.2.15 (Exterior covariant derivative for vector bundles). Let π : E → M be a vector
bundle with connection ∇. The exterior covariant derivative d∇ : Ωk(M ;E) → Ωk+1(M ;E) is
the unique extension of ∇ : Γ(M ;E) → Ω1(M ;E) to higher degrees satisfying

d∇(γ ∧ ω) = dγ ∧ ω + (−1)kγ ∧ d∇(ω), γ ∈ Ωk(M), ω ∈ Ωl(M ;E).

More concretely we have (α ∈ Ωk(M ;E)):

d∇α(X0, ..., Xk) =

p∑
i=0

(−1)i∇Xi

(
α(X0, ..., X̂i, ..., Xk)

)
+
∑
i<j

(−1)i+jα([Xi, Xj ] , X0, ..., X̂i, ..., X̂j , ..., Xk),

where the hat on vectors means that they have been removed from there.

Remark. d2∇(s) = (d∇ ◦ d∇) (s) = F (∇)(s).

Since the curvature takes value in the End(E)-bundle, it is interesting to see which connection

∇End on End(E) is induced by ∇ on E.

Def 1.2.16 (Connection on the End(E)-bundle). We define the connection on End(E) to be:

∇End(E)(f)(s) := ∇(f(s))− f(∇(s)), ∀s ∈ Γ(M,E).

From this connection we can build the exterior covariant derivative d∇End(E) on End(E) as
in Def.(1.2.15).

Theorem 1.2.17 (Bianchi identity for vector bundles). Let π : E →M be a vector bundle with
connection ∇. Then

d∇End(E)(F (∇)) = 0.

Now we will present the local description of connection and curvature. Let π : P → M be
a principal G-bundle and consider U, V ⊂ M , together with the isomorphisms ϕU : π−1(U) →
U ×G and ϕV : π−1(V ) → V ×G such that U ∩ V ̸= ∅. Then we have the following situation in
the overlap:

π−1(U ∩ V )
ϕU−→ U ∩ V ×G,

π−1(U ∩ V )
ϕV−→ U ∩ V ×G,

⇒ ϕU ◦ ϕ−1
V : U ∩ V ×G→ U ∩ V ×G,

ϕU ◦ ϕ−1
V (x, g) = (x, gϕUV (x)),

where ϕUV : U ∩ V → G. Functions constructed as ϕUV are called transition functions and,
together with their domain of definition, they define uniquely the bundle. We will call the set of
domains and transition functions {Uα, ϕαβ}α,β a trivializing cover of the principal bundle.

13



The same conclusion holds for vector bundles. In this case in the overlap we have:

π−1(U ∩ V )
ϕU−→ U ∩ V × Rr,

π−1(U ∩ V )
ϕV−→ U ∩ V × Rr,

⇒ ϕU ◦ ϕ−1
V : U ∩ V × Rr → U ∩ V × Rr,
ϕU ◦ ϕ−1

V (x, v) = (x, ϕUV (x)v),

where ϕUV : U ∩ V → GL(r,R).
Let π : P → M be a principal G-bundle equipped with a connection ωωω ∈ Ω1(P ; g) and fix a

trivializing cover for P . On any Uα in the covering we have a local section sα : Uα → P
∣∣
Uα

and
we can use it to pull-back ωωω. We then define the local connection 1-form as:

ωωωα = s∗αωωω ∈ Ω1(Uα; g). (1.7)

Moreover, if we give a chart to the base manifold, {xµ}µ, and a basis to the Lie algebra g, {ea}a,
we can write:

ωωω(α)µ := ωωωα(∂µ), (1.8)

ωωω(α)µ =
∑
a

ωa(α)µea. (1.9)

Once again, consider Uα ∩ Uβ ̸= ∅, then we have:

sα = sβϕαβ (1.10)

and for the local connection 1-form we find the following transformation:

ωωωβ = ϕ−1
αβωωωαϕαβ + ϕ−1

αβdϕαβ . (1.11)

Let π : E → M be a vector bundle with connection ∇ and fix a trivializing cover as before.

On any Uα in the covering we have a local frame {ei}i that gives an isomorphism π−1(Uα)
ϕα→

Uα × Rr. On Uα × Rr the standard exterior derivative defines a connection, as can be easily
verified. However we have also the ∇-induced connection by ϕα. Since the difference between
two connections is a 1-form, we define the local connection 1-form as:

∇
∣∣
α
= d+Aα, Aα ∈ Ω1(Uα,Matr×r(R)) (1.12)

and we find the transformation rule:

Aβ = ϕ−1
αβAαϕαβ + ϕ−1

αβdϕαβ . (1.13)

Moreover, if we give a chart to the base manifold, {xµ}µ, and a local frame to E, {ei}i, we can
write (s ∈ Γ(M ;E), s =

∑
i siei):

Aµ := Aα(∂µ), (1.14)

Aµ(s) =
∑
i

siAµ(ei) :=
∑
i,j

si (Aµ)ij ej . (1.15)

From Def.(1.2.11) and Eq.(1.7) it is easy to see that the local expression for the curvature of
a principal G-bundle is:

ΩΩΩα = dωωωα +
1

2
[ωωωα,ωωωα] = s∗αΩΩΩ(ωωω) (1.16)
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and we have the transformation rule:

ΩΩΩα = Adϕ−1
αβ
(ΩΩΩβ). (1.17)

Notice that Adϕ−1
αβ

are the transition functions of the adjoint bundle Ad(P ).

For vector bundles we know that d2∇(s) = F (∇)(s), for all s ∈ Γ(M ;E). Since in a local
trivialization (one of the Uα in the cover) we have d∇ = d + Aα, the local expression for the
curvature of a vector bundle is:

Fα = dAα +Aα ∧Aα, (1.18)

with transformation rule:
Fβ = ϕ−1

αβFαϕαβ . (1.19)

We will now introduce the concept of metric for vector bundles. It will give us an essential
tool to write scalar actions out of our curvatures.

Def 1.2.18 (Bundle metric on vector bundles). Let E → M be a K-vector bundle over M . A
(Euclidean, K = R, or Hermitian K = C) bundle metric is a metric on each fibre Ex that varies
smoothly with x ∈M . Namely, it is a section:

⟨·, ·⟩ ∈ Γ(E∗ ⊗ E∗) (K = R),

⟨·, ·⟩ ∈ Γ(Ē∗ ⊗ E∗) (K = C),

which defines in each point x ∈M a non-degenerate symmetric or Hermitian form:

⟨·, ·⟩x : Ex × Ex → K.

Def 1.2.19 (Metric compatible connection). Let E be a vector bundle equipped with the bundle
metric g. Let ∇ be a connection on E. ∇ is said to be metric compatible if and only if (X,Y ∈
Γ(M ;E)):

dg(X,Y ) = g(∇X,Y ) + g(X,∇Y ).

As we have already mentioned, the adjoint bundle is the vector bundle we will be studying
the most throughout this thesis. We will then give it an important bundle metric. Recall that
the the adjoint bundle is a vector bundle of a Lie algebra on which we have the adjoint action of
its Lie group. We will then look for a metric which is invariant under the group action.

Def 1.2.20 (Killing form). Let g be a Lie algebra over K. The Killing form Bg on g is defined
by:

Bg : g× g → K,
(X,Y ) 7→ tr(adX ◦ adY ),

where, given f a linear endomorphism in a vector space V with basis {vi}i, we define the
matrix fij as:

f(vj) =
∑
i

fijvi (1.20)

and the trace as:
tr(f) =

∑
i

fii (1.21)

and it doesn’t depend on the choice of the basis. One can prove that the Killing form defines a
K-bilinear and symmetric form on g.
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Theorem 1.2.21 (Invariance of Killing form under automorphisms). Let σ : g → g be a Lie
algebra automorphism of g. Then the Killing form Bg satisfies:

Bg(σX, σY ) = Bg(X,Y ) ∀X,Y ∈ g.

In particular this holds for σ = Adg, with g ∈ G arbitrary.

Theorem 1.2.22 (Cartan’s criterion for semisimplicity). A Lie algebra g is semisimple if and
only if the Killing form Bg is non-degenerate.

Which shows that for semisimple Lie algebras we can use the Killing form as an adjoint
invariant metric on each fiber of the adjoint-bundle. Extending it smoothly we get an invariant
bundle metric ⟨·, ·⟩Ad. Since pseudo-orthogonal algebras are simple Lie algebra, we will use the
Killing form to generate our bundle metric as explained above. Given a local frame for the
adjoint bundle {ei}i, we introduce the following notation:

Gij ≡ ⟨ei, ej⟩Ad = c m
il c l

jm, (1.22)

where we used Def.1.2.20. Given two sections of the adjoint bundle F and H, we can then write:

⟨F,H⟩Ad = F iGj ⟨ei, ej⟩Ad = F iHjGij . (1.23)

1.3 Gauge theories

Throughout the following fix a principal G-bundle and an associated vector bundle E = P ×ρ V .

Def 1.3.1 (Gauge). A global gauge is a global section s :M → P , a local gauge is a local section
s : U → P .

Def 1.3.2 (Mathematical gauge transformation (Bundle Automorphism)). A gauge transforma-
tion is given by a fiber-preserving G-equivariant diffeomorphism f : P → P (a bundle automor-
phism of P ), i.e.

1. π ◦ f = π,

2. f(pg) = f(p)g, ∀ p ∈ P,∀ g ∈ G.

The set of all such trasformation is called the automorphism group or the gauge group of
P and it is indicated as G(P ) or Aut(P ). Usually, in Physics literature, the term gauge group
is used to indicate the structure group G. There’s in an intimate connection between the two
formalism that we will explain in the following.

Def 1.3.3 (G-valued maps on P ).

C∞(P,G)G :=
{
σ : P → G

∣∣σ(pg) = g−1σ(p)g
}
.

This set is a group with pointwise multiplication.

Proposition 1.3.4 (Correspondence between bundle automorphism and G-valued maps). The
map

G(P ) → C∞(P,G)G,

f 7→ σf ,

with σf defined by:
f(p) = pσf (p),

is a group isomorphism.
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Def 1.3.5 (Physical gauge transformation). A physical gauge transformation is a smooth map
τ : U → G, U ⊂ M . The set of all physical gauge transformations forms a group C∞(U,G)
under pointwise multiplication.

A rigid physical transformation is a constant map τ : U → G. Again this set has a group
structure and it is isomorphic to G

Proposition 1.3.6 (Physical vs Mathematical gauge transformations). Let s : U → P be a local
section. Then s defines a group isomorphism

C∞(PU , G)
G → C∞(U,G),

σ 7→ τσ = σ ◦ s,

where the inverse is given by:

C∞(U,G) → C∞(PU , G)
G,

τ 7→ στ ,

where
στ (s(x)g) = g−1τ(x)g, ∀x ∈ U,∀ g ∈ G.

Then, after we have chosen a section, i.e. a local trivialization for P , we can identify mathe-
matical and physical gauge transformations.

Theorem 1.3.7 (Action of mathematical gauge transformations on associated bundles). The
group of mathematical gauge transformations of the principal bundle acts on the associated vector
bundle through bundle isomorphisms via

G(P )× E −→ E,

(f, [p, v]) 7→ f · [p, v] = [f(p), v] = [p · σf (p), v].

Theorem 1.3.8 (Action of physical gauge transformations on associated bundles). Let s : U →
P be a local gauge and Φ : U → E a local section. Following Prop.(1.2.6) we can write:

Φ(x) = [s(x), ϕ(x)] , ∀x ∈ U, ϕ : U → V.

Suppose f is a local mathematical gauge transformation and τf : U → G the corresponding
physical transformation (as in Prop.(1.3.6)).

⇒ (f · Φ)(x) =
[
s(x), ρ−1(τf (x))ϕ(x)

]
.

In the context of gauge theories, we will call the ωaµ, introduced in Eq.(1.8), the (local) gauge
fields. We have already shown (Eq.(1.11)) how the gauge fields change after a change of gauge
(i.e. a change of local section).

Theorem 1.3.9 (Transformation of connections under mathematical gauge transformations).
Suppose that f ∈ G(P ) is a global mathematical gauge transformation. Then f∗ωωω is a connection
1-form on P and:

f∗ωωω = Adσ−1
f

◦ωωω + σ∗
fµG,

where µG is the Maurer-Cartan 1-form defined as: µG
∣∣
g
= g−1dg.

Remark. f∗ΩΩΩ(ωωω) = Adσ−1
f
ΩΩΩ(ωωω).
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In order to build the Yang-Mills action for a gauge theory we need more structure on the
base manifold. Throughout the following we will consider M to be an n-dimensional, oriented,
pseudo-Riemaniann manifold (M, g), where g is the pseudo-Riemaniann metric.

Def 1.3.10 (Canonical volume form on (M, g)). Let {ei}i=0,...,n−1 be an oriented, orthonormal
basis of TpM . Then the volume form is defined as:

dvolg (e0, ..., en−1) = +1.

If {xµ}µ=0,...,n−1 is a local chart on M , we have:

dvolg =
√

|g|dx0 ∧ ... ∧ dxn−1,

where g is the determinant of the matrix whose entries are:

gµν := g(∂µ, ∂ν).

Def 1.3.11 (Scalar product of forms). Given ω, η ∈ Ωk(M) we define the scalar product on
k-forms (in local coordinates) as:

⟨·, ·⟩ : Ωk(M)×Ωk(M) −→ C∞(M),

(ω, η) 7→
∑

µ1<...<µk

ωµ1...µk
ηµ1...µk =

=
1

k!

∑
µ1...µk

ωµ1...µk
ηµ1...µk =

=
1

k!
ωµ1...µk

ηµ1...µk ,

where again ωµ1...µk
= ω (∂µ1

, ..., ∂µk
).

Remark. This definition is independent of the choice of the local chart.

Both the component notation and the Einstein summation convention (as in the last step of
the previous equality) will be considered understood unless stated otherwise.

Def 1.3.12 (Hodge star operator). The Hodge star operator,

∗ : Ωk(M) −→ Ωn−k(M),

is the linear map defined by:
⟨ω, η⟩ dvolg = ω ∧ ∗η.

Remark. 1. In local coordinates we have:[6]

∗(dxµ1 ∧ ... ∧ dxµk) =

√
|g|

(n− k)!
gν1µ1 ...gνkµkϵν1...νkνk+1...νndx

νk+1 ∧ ... ∧ dxνn ,

where ϵ is the total antisymmetric symbol such that ϵ0...n−1 = +1;

2. ∗1 = dvolg;

3. If the signature of g is (s, t), we have ∗2ω = (−1)tω.
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Def 1.3.13 (L2-scalar product of forms). Given ω, η ∈ Ωk(M) we define the L2-scalar product
on k-forms as:

⟨·, ·⟩L2 : Ωk(M)×Ωk(M) −→ R,

⟨ω, η⟩L2 =

∫
M

⟨ω, η⟩ dvolg.

Analogously, for twisted forms ω ∈ Ωk(M ;E), E a vector bundle over (M, g), we have the
following generalization. Fix a local frame {ei}i=1,...,r for E, let F,G ∈ Ωk(M ;E) and expand:

F =

r∑
i=1

Fi ⊗ ei, G =

r∑
j=1

Gj ⊗ ej .

Then we define:

1. ⟨F,G⟩E =
∑
i,j ⟨Fi, Gj⟩ ⟨ei, ej⟩E , where ⟨·, ·⟩E denotes the scalar product induced by the

metric chosen on E;

2. ∗F =
∑
i(∗Fi)⊗ ei;

3. ⟨F,G⟩E,L2 =
∫
M
F i ∧ ∗Gj ⟨ei, ej⟩E .

Consider the curvature ΩΩΩ(ωωω) of P . We have then that it defines a twisted 2-form Ω(ω)M ∈
Ω2(M,Ad(P )). We give to Ad(P ) the same scalar product as in Eq.(1.22).

Remark. This scalar product is Ad-invariant so that the scalar product of twisted forms it
induces is Ad-invariant as well

Def 1.3.14 (Covariant codifferential). We define the covariant codifferential d∗∇ to be:

d∗∇ : Ωk+1(M,E) −→ Ωk(M,E),

d∗∇ = (−1)
t+nk+1 ∗ d∇ ∗ .

Theorem 1.3.15 (The covariant codifferential on twisted forms is formal adjoint of covariant
differential). Let M be a manifold. The covariant codifferential d∗∇ is the formal adjoint of
the exterior covariant differential d∇ with respect to the L2-scalar product (provided that ∇ is
compatible with the scalar product on E) on forms with compact support χ such that χ∩∂M = 0,
i.e.

⟨d∇ω, η⟩E,L2 = ⟨ω, d∗∇η⟩E,L2 ,

for all ω ∈ Ωk0(M,E), η ∈ Ωk+1
0 (M,E) with support as explained above.

Consider the adjoint bundle. The covariant derivative is given by d∇ = d + [ω,−] and the
inner product is given by Gij as in Eq.(1.22). Let {ei}i be a local frame for Ad-bundle. The
condition for d∇ to be compatible with the inner product is given by (compare with Def.1.2.19):

⟨∇ei, ej⟩Ad + ⟨ei,∇ej⟩Ad = ⟨dei, ej⟩Ad + ⟨ei, dej⟩Ad + ⟨ek, ej⟩Ad ω
lc k
li + ωlc k

lj ⟨ei, ek⟩Ad =

= d
(
⟨ei, ej⟩Ad

)
+ ωl

[
Gikc

k
lj +Gkjc

k
li

]
,

(1.24)
which shows that the covariant derivative is compatible with the metric if and only if:

clij + clji = 0, (1.25)

where we raise and lower Lie algebra index with the Ad-invariant metric tensor Gij .
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Def 1.3.16 (Yang-Mills action). We define the Yang-Mills action as (α ∈ R):

SYM [ωωω] = α ⟨ΩΩΩ(ωωω),ΩΩΩ(ωωω)⟩Ad(P ),L2

= α

∫
M

Ωi(ω) ∧ ∗Ωj(ω)Gij .

Remark. The Yang-Mills action is invariant under the gauge group G(P ).

The equations of motion for a Yang-Mills theory are obtained by taking the functional vari-
ation of the action with respect to the connection ωωω. Notice first that since ΩΩΩ(ωωω) = dωωω+ 1

2 [ωωω,ωωω]
we immediately have:

ωωω 7→ ωωω + δωωω ΩΩΩ(ωωω) 7→ ΩΩΩ(ωωω) + dωωωδωωω. (1.26)

The variation of the action in Def.1.3.16 yelds:

SYM [ωωω + δωωω] = ⟨ΩΩΩ+ δΩΩΩ,ΩΩΩ+ δΩΩΩ⟩Ad(P ),L2 =

= SYM [ωωω] + 2 ⟨dωωωδωωω,ΩΩΩ⟩Ad(P ),L2 =

= SYM [ωωω] + 2 ⟨δωωω, d∗ωωωΩΩΩ⟩Ad(P ),L2

(1.27)

and the equations of motion are:
d∗ωωωΩΩΩ = 0. (1.28)
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Chapter 2

General relativity and extensions

In this chapter we are going to study the relevant properties of gravitational theories. The
first part is dedicated to an introduction to general relativity both in standard coordinate basis
notation and in tetrad formalism. The latter will be well-suited to the introduction of a Lorentz
gauge symmetry in the theory. In the second part we will consider and motivate generalizations
of Einstein’s theory. In the end, we will provide a prove of Ostrogradsky theorem showing how
these generalizations lead to classical instabilities if one treats them naively.

2.1 Standard formulation of GR

In this section we are going to introduce the basic concepts needed to construct the Einstein-
Hilbert action for General Relativity. This theory is based on two assumptions:

• (General covariance) The laws of physics are the same in all reference frames (for all
observers);

• (Equivalence principles) In an arbitrary gravitational field no local experiment can distin-
guish a freely falling nonrotating system (local inertial system) from a uniformly moving
system in the absence of a gravitational field.

They imply:

• Physical laws must be written in a coordinate-free fashion;

• For any point x in our configuration space M (a topological set) there exist an open neigh-
borhood U ⊂ M (this is why we need a topology on M), such that U is diffeomorphic
(because dynamics requires derivatives) to R1,n−1 equipped with the canonical Minkowski
metric η (this is the mathematical definition of absence of a gravitational field) and orien-
tation. Notice that this gives to M the structure of a pseudo-Riemannian manifold.

Einstein gravity is then a geometric theory based on the tangent bundle (here is where the
metric is defined) of some manifold. We will present both the standard formalism and the tetrad
notation. Throughout this section we will fix an oriented, n-dimensional, pseudo-Riemaniann
manifold (M, g) with Lorentzian signature. This manifold will be called spacetime.
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2.1.1 Standard formulation

The tangent bundle TM is a vector bundle π : TM →M , with π−1(x) = TxM, x ∈M . In order
to take derivative of sections of TM , i.e. vector fields on M (such as 4-velocities), we need to
choose a connection.

Def 2.1.1 (Levi-Civita connection). The Levi-Civita connection is the unique connection
◦
∇ on

TM that satisfies:

dg(X,Y ) = g(
◦
∇X,Y ) + g(X,

◦
∇Y ), ∀X,Y ∈ X(M) (metric compatibility);

T (
◦
∇)(X,Y ) =

◦
∇XY −

◦
∇YX − [X,Y ] = 0 ∀X,Y ∈ X(M) (torsion-free).

Here we introduced the torsion associated to a connection on the tangent bundle, i.e.

T (∇) : X(M)× X(M) −→ X(M), (2.1)

T (∇)(X,Y ) = ∇XY −∇YX − [X,Y ] . (2.2)

As in Eq.(1.14) we can write in local coordinates:

◦
∇(X) = dX +

◦
Γ(Xαeα) =

[
dXα +Xβ(

◦
Γ)αβ

]
eα, (2.3)

◦
∇µ(X) =

[
∂µX

α +Xβ(
◦
Γµ)

α
β

]
eα, (2.4)

where

(
◦
Γµ)

α
β =:

◦
Γαµβ =

1

2
gαδ (∂µgδβ + ∂βgδµ − ∂δgµβ) (2.5)

are called the Christoffel symbols. Notice that

◦
Γαβγeα =

◦
∇βeγ , (2.6)

where ∇β ≡ ∇eβ .
The curvature associated with the Levi-Civita connection is called the Riemann curvature,

R, and is given by, in local coordinates:

◦
R = d

◦
Γ +

◦
Γ ∧

◦
Γ, (2.7)

(
◦
R)αβ = (d

◦
Γ)αβ + (

◦
Γ)αγ ∧ (

◦
Γ)γβ , (2.8)

(
◦
R(∂µ, ∂ν))

α
β = ∂µ

◦
Γαβν − ∂ν

◦
Γαβµ +

◦
Γαγµ

◦
Γγβν −

◦
Γαγν

◦
Γγβµ =: Rαβµν . (2.9)

The symbols Rαβµν are the components of the Riemann curvature tensor.
From the Riemann curvature tensor we get:

• (Ricci tensor)
◦

Rµν :=
◦

Rαµαν ;

• (Ricci scalar)
◦
R :=

◦
Rµµ = gµν

◦
Rµν .

With the Ricci scalar we can define the Einstein-Hilbert action:

22



Def 2.1.2 (Einstein-Hilbert action). The Einstein-Hilbert action is given by:

SEH [g] = α

∫
M

∗
◦
R = α

∫
M

◦
Rdvolg = α

∫
M

dnx
√
|g|

◦
R,

where α is a constant and we used dnx
√
|g| ≡

√
|g|dx0 ∧ ... ∧ dxn−1.

The equations of motion obtained with the variational principle are the well-known vacuum
Einstein’s equations:

Rαβ − 1

2
gαβR = 0. (2.10)

2.1.2 Tetrad formulation of GR

We have seen in Subsection 1.2 that, given a point x ∈ M , we can always find U ⊂ M , open
neighborhood of x, such that: TM

∣∣
U

∼= M × Rn. Notice though that TM is not an arbitrary
vector bundle over M . Indeed, once we have a local chart (ϕ,U) for M , this induces a local
frame for TM (which is the tangent map of ϕ), i.e.

ϕ : U −→ R1,n−1, (2.11)

x 7→ xµ(x); (2.12)

ϕ̃ : TM
∣∣∣
U
−→ U × TR1,n−1 = U × R1,n−1, (2.13)

Yx 7→ (x, Y µ(x)∂µ). (2.14)

This means that we can choose simultaneously coordinates on M and a frame on TM , from now
on we will consider this correspondence understood and we will just say coordinates for both M
and TM . Notice that if we use the notation {xµ}µ ≡ {xµ}µ=0,...,n−1 for the local chart, then we
use {∂µ}µ ≡ {∂µ}µ=0,...,n−1 for the local frame it induces. This is what we meant by ∂µ in, for

instance, Eq.(2.7). In the literature, this frame is called coordinate basis.
In this section we will formulate GR in a non-coordinate basis for TM made of orthonormal

vector fields {ea}a (with respect to g), i.e.

g(ea, eb) = ηab. (2.15)

We will call the set of this vector fields tetrad, even when n ̸= 4, or vielbeins (vierbeins if n = 4).
Notice that non-coordinates stands from the fact that these vector fields have non-vanishing Lie
Bracket:

[ea, eb]
∣∣
p
= c c

ab (p)ec, (2.16)

c c
ab = ecν [e

µ
a ∂µe

ν
b − e µ

b ∂µe
ν
a ] (p). (2.17)

Taking the dual basis as a frame for the cotangent bundle T ∗M and exploiting duality, we can
write:

g = ηab θ
a ⊗ θb. (2.18)

The dual forms to the tetrad are called solder forms.
We can expand the tetrad in the coordinate basis introduced above:

ea = e µ
a ∂µ. (2.19)
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The symbols e µ
a are the components of the tetrad in the coordinate basis, they will still be called

vielbeins (or vierbeins when n = 4). Analogously, we have:

θa = eaµdx
µ. (2.20)

Throughout this subsection, we will use Latin letters for the non-coordinate indices and Greek
letters for coordinate indices. Notice that non-coordinate indices are raised/lowered by η and
coordinate indices are raised/lowered by g, as it is well known that the metric induces a canonical
isomorphism V ∼= V ∗. As in the previous subsection, in order to take derivatives, we need to
introduce a connection. Notice that giving a connection to a bundle always implies making a
choice. Einstein’s choice, as we have anticipated before, is the Levi-Civita connection. One
should think of this connection as the canonical connection for a (pseudo-)Riemannian manifold.

We indicated this connection as
◦
∇ and its coefficients in local coordinates (and in coordinate

basis) as
◦

Γαβγ . Notice that Def.2.1.1 is independent of coordinates and thus it still defines a
connection also when we use the tetrad formalism. The only difference is that the Christoffel
symbols will be different from the usual ones. Indeed we will indicate them as Γabc. We define
them to be:

◦
∇aeb =

◦
Γcbaec. (2.21)

Substituting Eq.(2.19) into Eq.(2.21) we immediately get:

◦
Γcba = ecνe

µ
b

(
∂µe

ν
a + e λ

a

◦
Γνλν

)
= ecνe

µ
b

◦
∇µe

ν
a . (2.22)

Notice that in the last equality
◦
∇ acts only on the coordinate index of the bein, this is just a

convenient notation, though the second step is formally more correct. This means we can write
the Leci-Civita connection as:

◦
∇(V = V aea) = (dV a)ea + V bθc

◦
Γbacea =: (dV a)ea + V aωbaeb, (2.23)

where we have introduced the spin connection, i.e. ωab =
◦
Γabcθ

c, here ω is a matrix valued,
local, 1-form. We know that the Levi-Civita is the unique connection that satisfies both metric-
compatibility and torsion free. To see how these two conditions are expressed in terms of the
spin connection, we look back to Def.2.1.1 and we replace X → ea, Y → eb. From metricity we
have:

dg(ea, eb) = 0 = g(
◦
∇ea, eb) + g(ea,

◦
∇eb)

0 = ωcag(ec, eb) + ωcbg(ea, ec)

0 = ωba + ωab,

(2.24)

ωab = −ωba. (2.25)

From torsion-free we find:
◦
∇aeb −

◦
∇bea − [ea, eb] = 0

[ωcb(ea)− ωca(eb)− c c
ab ] ec = 0

◦
Γcba −

◦
Γcab − c c

ab = 0.

(2.26)

Notice that, since torsion is a map that takes two vectors to give one, we can write its components
(in tetrad basis) as:

T aea =
[
dθa + ωab ∧ θb

]
ea. (2.27)
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Replacing X → ea, Y → eb and Z → ec in Def.1.2.14 we get the curvature in the tetrad
formalism:

Rabcdea = R(ec, ed)eb (2.28)

=
◦
∇c

◦
∇deb −

◦
∇d

◦
∇ceb −

◦
∇[ec,ed]eb = (2.29)

=
◦
∇c

(
ωl b(ed)el

)
−

◦
∇d

(
ωl b(ec)el

)
− c f

cd

◦
∇feb = (2.30)

=
(
∂cω

l
b(ed)

)
el + ωl b(ed)ω

m
l (ec)em −

(
∂dω

l
b(ec)

)
el + ωl b(ec)ω

m
l (ed)em − c f

cd ω
m
b(ef )em =
(2.31)

=
[
∂cω

a
b(ed) + ωl b(ed)ω

a
l(ec)− ∂dω

a
b(ec) + ωl b(ec)ω

m
l (ed)em − c f

cd ω
a
b(ef )

]
ea =

(2.32)

=
[
dωab + ωal ∧ ωl b

]
(ec, ed)ea, (2.33)

where in the end we showed:
◦
R
a

b = dωab + ωal ∧ ωl b. (2.34)

Notice that Eq.(2.25) is somewhat surprising. We know from Eq.(1.12) that the local con-
nection 1-form of a vector bundle takes value in the space of matrices, which we can see as the
Lie algebra of GL(n), i.e.

gl(n) ∼= Matn×n(R). (2.35)

However, since ωab = −ωba, we have that the spin connection is a local 1-form that takes value
not in Matn×n but in a subalgebra of it, the algebra of the Lorentz group, i.e.

ω : X(M)× X(M) −→ so(1, n− 1). (2.36)

This is why we called ω the spin connection. Comparing Def.1.2.12 with Eq.(2.25) a question
arises naturally. Is TM the vector bundle on M associated to a principal SO(1, n− 1)-bundle?

Let us first give a definition for general vector bundles.

Def 2.1.3 (Reduction of structure groups). Let π : E → M be a vector bundle of rank r. We
say that its structure group can be reduced to G ⊂ GL(r,R) if there exists a principal G-bundle
π : P →M together with an isomorphism of vector bundles:

E ∼= E(P,Rr)

Proposition 2.1.4. The structure group of a vector bundle can be reduced to G ⊂ GL(r,R) if
and only if there exists a trivializing cover {Uα, ϕα}α∈A, M ⊆

⋃
α∈A

Uα, with the property that all

transition functions ϕαβ = ϕα ◦ ϕ−1
β take values in G.

Proposition 2.1.5. The reduction of the structure group to O(r) is equivalent to choosing a
metric on E. If E is also orientable, then the structure group can be reduced to SO(r).

Specializing to TM , this implies we can find a principal SO(1, n− 1)-bundle P , such that:

TM ∼= P ×ρ Rn, (2.37)

where ρ is the fundamental representation of the Lorentz group in n dimensions (we will then
imply g = ρ(g) in the following). This shows how the tangent bundle can be seen as a vector
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bundle associated to a principal SO(1, n − 1)-bundle LTM . The connection 1-form ω that we
defined in this chapter is then the connection on TM induced by

ω : TLTM −→ so(1, n− 1),

the connection 1-form on LTM . When we are dealing with a principal bundle P whose fiber is
isomorphic to SO(1, n− 1), we call P a principal Lorentz bundle.

We have already seen that principal bundle arise naturally in physics when one is dealing
with gauge theories. Since we have found the principal bundle associated to general relativity,
it seems natural to construct its gauge group and see if we can define GR as a gauge theory of
the Lorentz group. We will see that we can construct a gauge theory for Einstein gravity, but it
will be special since the action in Def.2.1.2 is not a Yang-Mills action.

A gauge symmetry is not like “normal” symmetries, i.e. transformation of symmetry that
depends on some fixed, constant, parameters. A gauge symmetry is signaling the presence of
redundancy in our description of reality. We should then ask ourselves, what is the redundancy
in the tetrad formalisms? We introduced a set of local orthonormal vector fields, i.e. the tetrad,
and throughout this section we only used the orthonormality property of this set. The problem
is that this property doesn’t uniquely specify the tetrad. Consider a tetrad at a point x ∈ M ,
{ea}a

∣∣
x
. If we act on it with an element g ∈ SO(1, n − 1) we get to a new set {e′a}a

∣∣
x
which

still satisfies Eq.(2.15) at x. This is the redundancy we were looking for. The set of all tetrads
related by a Lorentz transformation is the set of local inertial frames. When we move from
the point x ∈ M to an open subset U ∈ M , we see that the Lorentz transformations become
local, i.e. they depend on parameters which are functions of spacetime. We then identified the
gauge group of general relativity, or at least part of it. Mathematical gauge transformations are
given by f : LTM → LTM and, once we choose a local section s : U → LTM , they correspond
to physical gauge transformations τf : U → SO(1, n − 1) as given by Proposition 1.3.6, when
one is dealing with Lorentz transformation, one usually writes Λ instead of τf , in the following
we will stick to the former. We have already shown how the connection changes under gauge
transformations (see Theorem 1.3.9), i.e.

ω
Λ−→ Λ−1ωΛ + Λ−1dΛ. (2.38)

Notice that this remains true for the induced connection on the associated vector bundle TM
since ρ is a representation, i.e. a group homomorphism. The tetrad, as any other element of
X(M), is a section of this associated vector bundle. These objects change as given by Theorems
1.3.7-1.3.8, in particular:

ea
Λ−→ Λea, (2.39)

where again, since ρ is the fundamental rep of SO(1, n− 1), we simply wrote Λ = ρ(Λ).
Now we are ready to tackle the last goal of this section: rewrite the Einstein-Hilbert action

using the tetrad and the solder forms. Notice that we have cheated a bit in this section. The
tetrad we introduced can be defined only locally. If we could find a global tetrad frame for TM ,

this frame would induce TM
∼=→ M × Rn which means that the manifold is parallelizable and

then not so interesting, geometrically speaking. The important thing to keep in mind is that,
even if tetrads and solder forms are not global objects, we can build global objects out of them.
Give an open cover to M , {Uα}α in such a way that we have a tetrad frame on TM for any α,
{eα}α (here we used eα as a symbol for all the n vector fields that form the tetrad in the open
Uα). We have already studied the situation on the overlap with the appearance of the transition
functions. In this case however, we are passing from an orthonormal frame to another one, thus
the transition functions take value in SO(1, n − 1), as one would expect since TM is a Lorentz
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associated vector bundle. This means that building global object out of the tetrad and the solder
forms is the same as building gauge invariant object, with the gauge group introduced above. In
the tetrad formalism one can write the Hilbert action in Def.2.1.2 as:

S[ea] =

∫
M

ea ∧ eb ∧ ∗RRRab =
∫
M

√
−gd4xR, (2.40)

where we used Eq.(B.7). The goal of this thesis is to obtain this action as part of a Yang-Mills
action of the form in Def.1.3.16.

2.2 Generalizing general relativity

The goal of this section is to generalize the action in Def.2.1.2 by considering all the other
possible scalar terms of canonical dimension four that could be added to the Hilbert action
without spoiling its symmetry. We will follow the work of [1]. In Theoretical Physics one usually
works in natural units, i.e. setting ℏ = c = 1. This implies that any dimensionful quantity
has the dimension of a mass (or, equivalently, energy) to some power, this is what we mean by
canonical dimension or mass dimension of a dimensionful quantity. Setting ℏ = 1 immediately
implies that the action must be dimensionless (since ℏ is the quantum of action). Noticing that
c = 1 implies [dnx] = −n and [∂µ] = +1, where we write [X] meaning canonical dimension of X
in units of mass. In this section we fix n = 4.

2.2.1 Higher derivatives theory

The most general action we could write respecting the prescriptions above is:[1]

S[g] =

∫
M

√
−gd4x

[
1

2λ
C2 − 1

ρ
E4 +

1

ξ
R2 + τ□R+

1

κ2
(R− 2Λ)

]
, (2.41)

where λ, ρ, ξ, τ are independent parameters. We will now define all the terms present in the
action.

The first term appearing in the action is the Weyl tensor C ∈ Ω2(M,End(TM)). Given a set
of local coordinates we can define (we re-introduce n as dimensionality in order to give a more
general definition):

Cαβµν :=Rαβµν +
1

n− 2
(gβµRαν − gαµRβν + gανRβµ − gβνRαµ)+

+
1

(n− 1)(n− 2)
R (gαµgβν − gανgβµ) ,

⇒ Cα
β =Cαβµν dx

µ ∧ dxν ,

(2.42)

where Rαβµν , Rµν and R are the components of the Riemann tensor, Ricci tensor and the Ricci
scalar respectively. In Eq.(2.41) we wrote:

C2 = CαβµνC
αβµν = RαβµνR

αβµν − 4

n− 2
RαβR

αβ +
2

(n− 1)(n− 2)
R2,∫

M

∗C2 = −
∫
M

Tr [C ∧ ∗C] .

(2.43)

Notice that this term depends non trivially on the fourth derivatives of the metric.
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The second summand in the action, which is valid only in even dimension n = 2m, is E4 and
it is defined as: ∫

M

∗E4 =

∫
M

e(TM) :=

∫
M

Pf

(
1

2π
R

)
, (2.44)

where Pf denotes the Pfaffian, e(TM) denotes the Euler class of the tangent bundle and R ∈
Ω2(M,End(TM)) is the usual curvature tensor.

Def 2.2.1 (Pfaffian). The Pfaffian of a 2m × 2m skew-symmetric matrix X is defined as the
polynomial Pf(X), such that:

det(X) = (Pf(X))
2
.

Notice that the determinant of a skew-symmetric matrix is always a perfect square, but it
is only in even dimension that its square root is itself a polynomial in the matrix entries. The
Euler class is defined for oriented bundles as:

e(TM) = Pf(
1

2π
R) (2.45)

and it can be shown that it is independent from the choice of a connection on TM . Moreover,
the following theorem proves that its contribution to the action is a topological invariant, and
thus, it is also metric independent.

Theorem 2.2.2 (Chern-Gauss-Bonnet Theorem). Let M be a compact oriented Riemaniann
manifold M of dimension 2m and ∇ a metric connection on its tangent bundle TM with curva-
ture R relative to a positively oriented orthonormal frame. Then∫

M

e(TM) =

∫
M

Pf

(
1

2π
R

)
= χ(M),

where χ(M) is the Euler characteristic and its a topological invariant of M .

In four dimension we have:

E4 = RαβµνR
αβµν − 4RαβR

αβ +R2. (2.46)

The last three terms requires less introduction since they are just the square and the
d’Alambertian of the Ricci scalar plus the usual Hilbert action, supplemented by a cosmological
constant Λ. The action in Eq.(2.41) contains two terms that don’t affect the classical equation
of motion. The first one is clearly the Euler contribution, since it is a topological invariant. The
second one is □R since it gives rise to a contribution on the boundary, which is kept fixed by the
variational principle. Indeed, let y ∈ Ω1(M), y = yµdx

µ with yµ = ∂µR:

□R =
◦
∇µ∂

µR =
◦
∇µy

µ ⇒
∫
M

∗□R =

∫
M

∗
◦
∇µy

µ =

∫
M

d (∗y) =
∫
∂M

∗y. (2.47)

Eventhough the Euler term is a topological invariant we can use Eqs.(2.42-2.46) to rewrite
the action in the totally equivalent form:

S[g] =

∫
M

√
−gd4x

[
xRµναβR

µναβ + yRµνR
µν + zR2 + τ□R+

1

κ2
(R− 2Λ)

]
, (2.48)

where the parameters x, y, z are related to ρ, λ, ξ. Notice that in both expression for the action

there is only one dimensionful parameter: 1
κ2 =

m2
P

16π , where mP ∼ 1019GeV is the Planck mass.
Thus one would expect, in the regime |∂λgαβ | << mp, the higher derivatives contribution small
when compared with the Hilbert term in the action. This is called Planck suppression. However,
since the lagrangian contains higher derivatives, these terms are potentially unstable and whether
or not Planck suppression applies is still unknown and requires careful investigation.
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2.2.2 Semiclassical gravity and renormalization-induced higher deriva-
tives

The reason why we are so interested in an extended action like in Eq.(2.41) is its semiclassical
implications. Our goal is to study quantum field theories in the presence of a classical background
gravitational field gµν . We will see that even if the QFT under consideration is renormalizable
in flat space, the same is not necessarily true in curved spacetime. In particular, quantum
corrections can generate all the vacuum1 terms present in Eq.(2.41) and non-minimal couplings
between the quantum fields and the gravitational field. In the following we will be using the
functional picture of quantum field theory.

One of the most fundamental object in a QFT is the generating functional which is usually
given by:

Z[J ] =
1

N

∫
Dφe(iS[g,φ]+Jφ),

where Jφ symbolically denotes all the sources J coupled to the quantum fields φ of the theory
and N is a normalization constant. Since we are dealing with a classical metric field we can
rewrite the generating functional as:

Z[g, J ] =
1

N0
eiSvacuum[g]

∫
Dφei(Sm[φ,g]+Jφ),

N0 =

∫
DφeiS[g,φ]

∣∣∣∣
gµν=ηµν

,
(2.49)

where the normalization factor N0 is chosen in such a way that quantum induced corrections
can source classical gravity. In order to briefly explain how the higher derivative terms are
generated by quantum effects, we consider the background field method for the classical metric
gµν = ηµν + hµν . This means that we will assume we can expand any quantity, such as the
generating functional as well as Feynman diagrams, in a power series in hµν . Thus any diagram
in the theory will generate infinitely many more due to this expansion. This hµν-proportional
contributions can come or from existing vertices (e.g. Ψ̄Aµγ

µΨ) or from new vertices that simply
weren’t there in the flat space theory (e.g. gµν∂µϕ∂νϕ). All these contributions can only decrease
or keep invariant the degree of divergence of a given diagram, but they can never increase it since
these contributions may only add vertices but never remove them.

Let’s now turn our attention on theories that are renormalizable in flat space. Given the
argument above, we see that such theories have good chances to be renormalizable also in curved
spacetimes. First, we summarize some of the most important properties of a renormalizable QFT
in flat space:

1. The divergences that occur in the theory are local;

2. The divergences can be removed by local, gauge invariant counterterms;

3. Since the counterterms need to be added to the action, they must be geometrical scalars
of mass dimension 4;

4. The predictions of the theory are finite after the inclusion of a finite set of such countert-
erms.

1In this subsection the term vacuum will refer to pure gravitational contribution to any quantity such as the
action. This distinctions may not be trivial depending on the theory understudy, especially when symmetry
breaking occurs. In this subsection we will assume that such distinction is possible and done.
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Notice that the third property implies that all divergent diagrams in a renormalizable theory have
mass dimensions 4. This is extremely important. Consider, for instance, a vacuum bubble, i.e. a
connected diagram with no external lines. Suppose that we are working with a theory in which
such a vacuum bubble has quartic divergence. If we look into the infinite series of diagrams
that are generated from it, one can see that it will give rise to quadratic and logarithmically
divergent diagrams. This happens because the insertion of hµν-contribution can only produce
new vertices in a vacuum bubble. The first vertex produced this way doesn’t change the degree
of divergence since it doesn’t add any propagator to the diagram. However, the second vertex
already generates a propagator, which in the most general case goes as

(
k2 +m2

)α
, where k is

the four-momentum of the field appearing in the propagator, m is its mass (when non-vanishing)
and α is some (possibly half-integer) power. For the sake of practical simplicity we will focus on
the specific case in which the field in the propagator is a scalar field, so that we can take α = −1.
Notice though that our considerations will still be generic since we may just go on to another
vertex contribution and we will still obtain the same result.

Going back to our diagram, which is supposed to be quartically divergent, we see that the
second and the third vertex contributions give a quadratically and a logarithmically divergent
diagram. However, as pointed out before, in a renormalizable flat space theory all divergent
diagrams must have mass dimension 4. Now, let’s us assume that there are no other dimension-
ful quantity in the theory except the fields. Since hµν is dimensionless, the quadratically and
logarithmically divergent diagram will be proportional to the second and fourth derivatives of
hµν , respectively. However, if the theory is to be renormalizable also in curved space time, the
counterterms needed to remove these divergences must be geometric scalars. However, we have
already listed all geometric scalars built from the metric, its first, second and fourth derivatives,
in particular the only geometric scalar one can build out of the metric and its first and (linear
in) second derivatives is the Ricci scalar. In this way, we see how we really needed to include the
higher derivatives terms into the action in Eq.(2.41), otherwise we wouldn’t be able to absorb the
infinities coming from these new diagrams. In the same way, non-minimal coupling between fields
and gravity is required in order to absorb the infinities coming from new diagrams contributing
to the self-energy or vacuum-polarization of the fields.

Eventhough we needed a theory without dimensionful parameters in order to uniquely gener-
ate such high derivatives counterterms, more formal techniques imply the same results for theories
that violets this restriction, e.g. massive theories. There is a remarkable lesson to learn here.
Renormalizability in curved spacetimes requires the use of the most general action (Eq.(2.41))
for Svac[g] and the non-minimal coupling between fields and gravity. However, the higher deriva-
tive terms in Eq.2.41 may spoil the classical stability of the theory due to the Ostrogradsky
instability, which will be the subject of the following subsection.

2.2.3 Ostrogradsky Instability

In this subsection we will study the Ostrogradsky theorem in the context in which it was origi-
nally formulated, classical mechanics, following the work of Woodard[10]. For simplicity we will
consider a one-dimensional problem, so that M ⊂ R.

Theorem 2.2.3 (Ostrogradsky Theorem). Let L[x, ẋ, ẍ] be a lagrangian that non-degenerately2

depends on ẍ, i.e.
∂2L[x, ẋ, ẍ]

∂ẍ2
̸= 0.

2Notice that this property implies that the second order time derivative can not be removed by means of
integration by parts
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Then the hamiltonian obtained from it is unbounded from below, with consequential instability of
the system.

Let’s first analyse the equations of motion (the Euler-Lagrange equations) for a lagrangian
that depends non trivially on the acceleration. The action is given as usual:

S[x] =

∫
M

dtL[x, ẋ, ẍ] (2.50)

and its functional variation under x 7→ x+ δx is given by:

S + δS =

∫
M

dtL[x+ δx, ẋ+ δẋ, ẍ+ δẍ] =

=

∫
M

dt

[
L[x, ẋ, ẍ] + δx

∂L[x, ẋ, ẍ]

∂x
+ δẋ

∂L[x, ẋ, ẍ]

∂ẋ
+ δẍ

∂L[x, ẋ, ẍ]

∂ẍ

]
=

= S +

∫
M

dt δx

[
∂L[x, ẋ, ẍ]

∂x
− d

dt

∂L[x, ẋ, ẍ]

∂ẋ
+
d2

dt2
∂L[x, ẋ, ẍ]

∂ẍ

]
δS =

∫
M

dt δx

[
∂L[x, ẋ, ẍ]

∂x
− d

dt

∂L[x, ẋ, ẍ]

∂ẋ
+
d2

dt2
∂L[x, ẋ, ẍ]

∂ẍ

]
,

(2.51)

where we used integration by part exploiting the fact that the variations die off at the boundary
when one is deriving the equations of motions. From Eq.2.51 we see that the Euler-Lagrange
equation is:

∂L[x, ẋ, ẍ]

∂x
− d

dt

∂L[x, ẋ, ẍ]

∂ẋ
+
d2

dt2
∂L[x, ẋ, ẍ]

∂ẍ
= 0, (2.52)

which can be recast as:
....
x = F (x, ẋ, ẍ,

...
x ) . (2.53)

Since this equation is a fourth-order differential equation, we need to specify four initial con-
ditions, which means that the Hamiltonian of this system will have four canonical variables.
Ostrogradsky’s choice for these four variables is:

X1 = x, P1 =
∂L[x, ẋ, ẍ]

∂ẋ
− d

dt

∂L[x, ẋ, ẍ]

∂ẍ
,

X2 = ẋ, P2 =
∂L[x, ẋ, ẍ]

∂ẍ
.

(2.54)

Non-degeneracy in the lagrangian implies that we can invert these relations into an equation for
ẍ, i.e. we can find an acceleration A(X1, X2, P2) such that:

∂L[x, ẋ, ẍ]

∂ẍ

∣∣∣∣
x=X1, ẋ=X2, ẍ=A

= P2. (2.55)

We can then Legendre transform the lagrangian to finally get the Hamiltonian:

H [X1, X2, P1, P2] = P1Ẋ1 + P2Ẋ2 − L[x, ẋ, ẍ] =

= P1X2 + P2A− L[x, ẋ, ẍ].
(2.56)

The canonical equation of motion are given by:

Ẋi =
∂H [X1, X2, P1, P2]

∂Pi
Ṗi = −∂H [X1, X2, P1, P2]

∂Xi
. (2.57)
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It is easy to check that this hamiltonian generates time evolution. The phase space representation
in Eq.(2.54) comes from the evolution equations for X1, X2 and P1.

Ẋ1 =
∂H [X1, X2, P1, P2]

∂P1
= X2 ⇒ X2 = ẋ, (2.58)

Ẋ2 =
∂H [X1, X2, P1, P2]

∂P2
= A+

∂A

∂P2

[
P2 −

∂L[x, ẋ, ẍ]

∂ẍ

]
= A ⇒ P2 =

∂L[x, ẋ, ẍ]

∂ẍ
, (2.59)

Ṗ2 = −∂H [X1, X2, P1, P2]

∂X2
= −P1 − P2

∂A

∂X2
+
∂L[x, ẋ, ẍ]

∂ẋ
+
∂L[x, ẋ, ẍ]

∂ẍ

∂A

∂X[2]
= −P1 +

∂L[x, ẋ, ẍ]

∂ẋ
,

⇒ P1 =
∂L[x, ẋ, ẍ]

∂ẋ
− d

dt

∂L[x, ẋ, ẍ]

∂ẍ
.

(2.60)
Finally, the time evolution is given by the canonical equation for P1:

Ṗ1 = −∂H [X1, X2, P1, P2]

∂X1
= −P2

∂A

∂X1
+
∂L[x, ẋ, ẍ]

∂x
+
∂L[x, ẋ, ẍ]

∂ẍ

∂A

∂X1
=
∂L[x, ẋ, ẍ]

∂x
,

⇒ d

dt

∂L[x, ẋ, ẍ]

∂ẋ
− d2

dt2
∂L[x, ẋ, ẍ]

∂ẍ
=
∂L[x, ẋ, ẍ]

∂x
.

(2.61)

The most important thing to notice in Eq.(2.56) is that it is linear in P1 and thus it is unbounded
from below. When the Hamiltonian doesn’t posses a global minimum we say that the system
understudy is unstable. This happens because every configuration which corresponds to a local
minimum of the Hamiltonian, can be perturbed with a finite energy in such a way that the next
semi-stable configuration will have lower energy. Since the energy doesn’t have any lower bound
this process could go on forever and thus generate what we call instability in the system.

The same analysis we did for two time derivatives can be repeated for higher derivatives, in
particular, if the lagrangian is non-degenerate in the N -th order time derivative, N > 1, then
the Hamiltonian will be bounded from below only in one of the momenta, while the others N −1
will appear linearly as P1 in Eq.(2.56). In this way we see that there are unstable directions in
phase space, i.e. those directions for which the linear term P1X2 is negative. The only way for
a theory to avoid Ostrogradsky instability is to violate its only hypothesis: the non-degeneracy
of the lagrangian. This can be done explicitly, e.g. the Hilbert action Def.2.1.2, where R is
linear in the second derivatives of the metric. Another way to avoid the instability is to have (or
impose) constraints in phase space such that the unstable directions are unphysical, for example
this could be done in gauge theories.

Notice that Ostrogradsky theorem implies that the theories of Subsection 2.2.1 contains
classical instabilities if one consider them as only metric dependent. We will see that the Yang-
Mills formalism will allow us to introduce quantities as the curvature squared in a first order
formalism which doesn’t generate Ostrogradsky instabilities.
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Chapter 3

Geometrical Yang-Mills theories

This chapter is dedicated to the mathematical construction of some special Yang-Mills theories
that we will call geometrical. The reason for this name is that we will study the implications
of using part of the gauge connection as a tetrad. Throughout the following fix a manifold M
and a princpal G-bundle P → M (G being a Lie group). The last two sections are dedicated
to physical applications of the formalism at hand. In particular we will show the connection
between de Sitter theory and GR and between conformal theory and Weyl gravity.

3.1 Gauge theoretical metric and geometrical action

The goal of this section is to define the metric on M (g ∈ T ∗M ⊗T ∗M) using gauge connections
on P , (ωωω ∈ T ∗P ⊗ g). Then we will show how to write a geometrical Yang-Mills action and we
will provide its particular variation.

3.1.1 Metric properties and tetrad candidates

Throughout this subsection we will identify the most important properties of the metric and
we will then find some gauge fields that could define it. First of all, the metric tensor lies in
the symmetric

(
0
2

)
representation of the frame bundle of M that we introduced in Subsection

2.1.2. Since our goal is to define it through the gauge connections (which can be considered
(
0
1

)
),

we will need the symmetric direct product rep, exactly as one usually does with the tetrad i.e.
gµν = ηabe

a ⊗ eb, where η is (for the moment) an arbitrary symmetric constant matrix. Let’s
consider the gauge connection to be ωωω = α̃αα + βββ, where α̃αα,βββ ∈ T ∗P . We consider α̃αα to be the
part of the gauge connection that defines the metric, while the latter is independent from βββ. The
distinction in α̃αα and βββ generates a distinction also in the gauge algebra. This happens since this
forms take value in the Lie algebra of our gauge group. We will then introduce {ai}i=1,...,NA

and
{bj}j=1,...,NB

with NA +NB = N = dim(g) such that we can write:

ωωω = ωi ⊗ ei = α̃αα+ βββ = α̃i ⊗ ai + βj ⊗ bj , (3.1)

where {ei}i=1,...,N is a basis for the Lie algebra g. We are then tempted to define the metric
tensor as:

g ≡ ηijα̃
i ⊗ α̃j . (3.2)

Notice that if we intend to consider the fields α̃i equivalent to standard tetrad fields we need
more properties. In particular, NA must be equal to n, dimensionality of M . Moreover, we will
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show in Subsection 3.1.3 that dimensional analysis gives a dimensionless connection 1-form (for
the non-tetrad fields) and the dimension of an inverse mass for the tetrad 1-form. Since the
connection 1-forms and the tetrad fields are part of the same connection 1-form they need to
have the same mass dimension. We will then write αi =M−1α̃i, where M is a constant with the
dimension of a mass, and define the dimensionless metric the same as in the previous expression.

g = ηabα
a ⊗ αb =M−2ηabα̃

a ⊗ α̃b. (3.3)

However, this equation doesn’t actually define a metric on M since, strictly speaking, the tensor
constructed in this way lies in T ∗P ⊗symm T ∗P . We have seen already how to pullback 1-forms
from P to M in order to get local connection 1-form. In particular, we know that we need a
section s ∈ Γ(M,P ). We will then consider αi in Eq.(3.3) to be the local connection 1-form
(times M) associated with ααα and the section s. Notice that making another choice for s changes
the metric definition, unless the change of gauge (in the language of Subsection 1.3) leaves
Eq.(3.3) invariant. In general we will show that one in general loses part of the original gauge
symmetry defining the metric in this way. With the construction above we turned M into a
(pseudo-)Riemannian manifold (M, g).

3.1.2 The necessity of pseudo-orthogonal gauge groups

We have established in Subsection 2.1.2 that the choice of a metric is equivalent to the reduction of
the Frame bundle of M to a principal O(s,t)-bundle, with (s,t) being the signature of the metric.
Following the principle of special relativity and the ’mostly-plus’ convention, we declare that the
signature of our metric is (1,3). This implies that the Frame bundle is given by a Lorentz bundle
as we have explained before. Consider for the moment the trivial situation for which (M, g)
is just Minkowski spacetime, in particular the Riemann tensor vanishes everywhere. One can
show that in this situation, one can use the gauge-tetrad local 1-form (in the case of contractible
spacetimes, as Minkowski is, one can pullback the connections globally) as coordinates. the
metric tensor in this coordinates is then given by gµν = ηµν , showing the physical interpretation
of the matrix η. Indeed, we can see that it represents the metric of flat (or also asymptotically
flat) spacetime. Since we defined the signature to be (1,3), this turns η into the Minkowski
metric, i.e. η = diag(−1, 1, 1, 1). Going back to arbitrary (M, g), one can now see what kind of
gauge transformations leave the metric on M invariant. We know that under a physical gauge
transformation (h(x) ∈ G) a local connection 1-form changes as:

ωωω → h−1ωωωh+ h−1dh. (3.4)

Recall that the first term in the transformation rule above is the adjoint representation (i.e. a
linear action) of the Lie group G on its Lie algebra g.

Remark. Every linear map between finite dimensional vector spaces can be represented in matrix
form.

In the case at hand we have:

h−1ωωωh = ωi ⊗ h−1eih ≡ ωiHk
iek. (3.5)

Calling A,B ⊂ g, A = span {ai}i and B = span {bj}j , we infer the transformation on ααα and βββ:

ααα→ h−1ωωωh

∣∣∣∣
∈A

+ h−1dh

∣∣∣∣
∈A

≡ Hi
kω

kai + (h−1dh)iai,

βββ → h−1ωωωh

∣∣∣∣
∈B

+ h−1dh

∣∣∣∣
∈B

≡ Hj
kω

kbj + (h−1dh)jbj ,

(3.6)
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which shows that the metric tensor is generically non-invariant with respect to the gauge group
action. Indeed we find:

g → ηab
(
Ha

kω
k ∗ (h−1dh)a

)
⊗
(
Hb

kω
k ∗ (h−1dh)b

)
, (3.7)

with a, b = 1, ..., NA and k = 1, ..., N .. The previous equation shows that in general the only gauge
transformations that leave the metric (and, consequently, the pseudo-Riemannian manifold)
invariant are the transformations for which (h−1dh)a = 0, Ha

k is non-zero only for k = 1, ..., NA
and the matrix H ∈ O(1, 3), (i.e. it mixes the tetrad fields among them in a pseudo-orthogonal
fashion). Introducing an orientation on (M, g) and demanding invariance of the orientation under
the gauge action we can reduce the group to SO(1, 3). It seems natural to conclude that in order
to retain part of the original gauge symmetry after introducing the gauge theoretical metric
introduced in Subsection 3.1.1 one needs SO(1, 3) ⊂ G. Notice that using only the Lorentz
group is not enough. As we have explained in Subsection 2.1.2 the gauge connection of a Lorentz
bundle is associated with the covariant derivative on the tangent bundle of M induced by the
diffeomoerphism TM ∼= Fr(M) ×ρ Rn, with ρ the fundamental representation of the Lorentz
group. In particular, we have shown that demanding torsionless of a Lorentz connection is the
same as fixing the Levi-CIvita connection on TM . Geometric fields like the Riemann curvature
will be determined by the SO(1, 3) connection as in Eq.(2.34). We will then need to extend the
Lorentz algebra adding n or more generators. We will use n of this as gauge-tetrad fields and,
as we have shown, they have to satisfy (Λ ∈ SO(1, 3)):

ααα→ h−1ωωωh

∣∣∣∣
∈A

+ h−1dh

∣∣∣∣
∈A

= Λi kα̃
kai. (3.8)

3.1.3 Geometrical action

In the following we will use the standard notation for the tetrad, i.e. αa ≡ ea. As we have
explained before, in order to define a gauge theoretical metric on M , we need SO(1, 3) ⊂ G.
Considering the standard Yang-Mills action in Def.1.3.16. It is evident that in general the theory
will be Lorentz invariant and not G-invariant. This happens because the Hodge-star operator
introduces in the action a non-trivial metric dependence. We will then give a non-degenerate
inner product to g that is at least Lorentz invariant, Gij . The action reads the same as for
standard Yang-Mills theories:

S[ωωω] =

∫
M

Ωi ∧ ∗ΩjGij . (3.9)

Before providing its variation we will first do a dimensional analysis of the action identifying
the mass dimension of our gauge fields. First notice that we can write the volume V of a
4-dimensional compact submanifold U ∈M as:

V =

∫
U

∗1 =

∫
U

ϵabcd
4!

ea ∧ eb ∧ ec ∧ ed. (3.10)

Since a 4-volume has mass dimension -4 we will define the mass dimension of the tetrad fields
(the same for any coordinate 1-form dxµ) to be -1. Consider now a finite one-dimensional path
γ on M and a dimensionful function f : γ → R with mass dimension Mf . We have:

f(xf )− f(xi) =

∫
γ

df =

∫
γ

ea∂af. (3.11)

This immediately implies that ∂af has mass dimension equal to Mf + 1 (since the tetrad has
dimension -1). Since the metric components are defined as gab = ηcde

c(ẽa)⊗ ed(ẽb) we see that
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they are dimensionless. From now on we will write the mass dimension of a quantity ϕ as [ϕ].
The action must be dimensionless, i.e. [S] = 0 since we fix ℏ = 1 (and we also fix c = 1 so that
we can measure everything in unit of mass). We know that the curvature 2-form is given by
(compare with Def.1.2.11):

Ωi = dωi +
1

2
c i
jk ω

j ∧ ωk. (3.12)

Usually one finds the mass dimension of fields by demanding adimensionality for their kinetic
terms. As shown before, since the metric components are dimensionless, we have already fixed
the dimension of the tetrad field to be -1. Indeed we have [ea] = [eaµdx

µ] = 0 − 1 = −1. The
situation is different for the part of the connection that doesn’t define the metric (βββ). In this
case we have for its curvature (BBB):

Bj = dβj +
1

2
c j
lmω

l ∧ ωm. (3.13)

Assuming orthogonality of A,B ⊂ g with respect to the bundle-metric on the adjoint bundle (as
will be for the theories we will study in the following), we find that the kinetic term corresponding
to the βββ fields is given by: ∫

M

dβi ∧ ∗dβi. (3.14)

Remark. In four spacetime dimensions the hodge of a 2-form has the same mass dimension of
the original 2-form.

This happens because, on a four dimensional manifold, the Hodge star operator maps 2-forms
into 2-forms multiplying by dimensionless quantities (the Levi-Civita symbol and the metric
tensor). We then have to compute the mass dimension of dβi.

[dβi] = [∂µβ
i
ν ] + [dxµ ∧ dxν ] =

= [βiν ] + 1− 2 =

= [βiν ]− 1.

(3.15)

Comparing with Eq.(3.14) we find:

0 =

[∫
M

dβi ∧ ∗dβi
]
= 2

(
[βiν ]− 1

)
[βiν ] = 1.

(3.16)

Notice that the connection 1-form (not its coordinates) are dimensionless, in contrast with the
gauge tetrad fields which are fixed by the geometry to be of mass dimension -1. Thus as we have
shown in Subsection 3.1.2 we have to consider ea = M−1ẽa where ẽa is the true dimensionless
gauge connection. In particular, exploiting the orthogonality of Gij expressed above, we have
that the kinetic term for the tetrad fields reads:∫

M

dẽa ∧ ∗dẽa =M2

∫
M

dea ∧ ∗ea. (3.17)

The same for the interaction terms in the action, which are given by:∫
M

[
c l
jk dω

i ∧ ∗ωjωk + 1

4
c i
mnc

l
jkω

m ∧ ωn ∧ ∗
(
ωj ∧ ωk

)]
Gil. (3.18)
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We have thus shown that twisting gauge connection and tetrad fields requires a dimensionful
coupling costant (since it isn’t an overall factor) in order to have a consistent Yang-Mills theory.

There is another term that could be added to the action without violating any of the pre-
scriptions in Subsection 2.2.2. ∫

M

Ωi ∧ ΩjGij . (3.19)

Notice that there is no presence of the Hodge-star operator, thus this term doesn’t depend on the
metric tensor. In particular, if Gij is bi-invariant with respect to the adjoint action, Eq.(3.19) is
invariant with respect to the whole gauge group and not only the Lorentz subgroup. However,
one can show that this term is proportional to a boundary integral which gives no contribution to
the classical dynamics since the boundary is kept fixed by the variational principle. Nonetheless,
it could give rise to interesting phenomena at the quantum level.

3.1.4 Variation of the geometrical action and the equations of motion

The goal of this subsection is to provide the functional variation of the geometrical Yang-Mills
action in Eq.(3.9) under an infinitesimal variation of all the gauge connections. We already know
the variation of the curvature (cfr. Eq.(1.26)), i.e.

ωωω 7→ ωωω + δωωω ΩΩΩ(ωωω) 7→ ΩΩΩ(ωωω) + dωωωδωωω, (3.20)

so that the last piece we need (peculiar of a geometric Yang-Mills theory) is the variation of the
Hodge star operator. Consider a 2-form A ∈ Ω2(M) and let ∗′ denote the Hodge star operator
that depends on the metric g′ = ηab(α

a+δαa)⊗(αb+δαb) ≡ g+δg, where αa are the components
of the gauge field ωωω that defines the metric. (Notice that we will compute ∗′A and not ∗′A′, the
reason will be clear later.).

∗′A = ∗′
(
Aµν
2
dxµ ∧ dxν

)
=

√
−g′

2(n− 2)!
Aµνg

′µαg′νβϵαβρσdx
ρ ∧ dxσ =

= ∗A+
δ
√
−g

2(n− 2)!
Aµνg

µαgνβϵαβρσdx
ρ∧dxσ

+

√
−g

(n− 2)!
Aµν (δg

µα) gνβϵαβρσdx
ρ ∧ dxσ +O((δg)2),

(3.21)
where, for notational simplicity, we dropped the delta Diracs (notice that the theory is local
so that most of the time the presence of the Dirac distribution doesn’t give any interesting
contribution) From Eq.(3.3) we find:

δ
√
−g

δeaγ
= e γ

a

√
−g,

δgµν

δeaγ
= −gµγe ν

a − gνγe µ
a .

(3.22)

Plugging these results back in Eq.(3.21) we get:

∗′ A = ∗A+ e γ
a ∗A−

√
−g

(n− 2)!
(gµγe α

a + gαγe µ
a )Aµνg

νβϵαβρσdx
ρ ∧ dxσ. (3.23)
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Finally we can give the action variation. Provided that Gij satisfies Eq.(1.25), we can write (in
analogy with Eq.(1.27)):

S →S + 2 ⟨δωωω, d∗ωωωΩΩΩ⟩Ad(P ),L2 +

+

∫ [
e γ
a Ωi ∧ ∗Ωj −

√
−g

(n− 2)!
Ωi ∧ Ωjµν (g

µγe α
a + gαγe µ

a ) gνβϵαβρσdx
ρ ∧ dxσ

]
Gijδe

a
γ =

= S + 2 ⟨δωωω, d∗ωωωΩΩΩ⟩Ad(P ),L2 − 2Gij

∫
M

[
ΩiγνΩjµνe

µ
a − e γ

a

4
Ωi µνΩ

jµν

]
δeaγ

√
−gd4x ,

(3.24)
which gives as equations of motion:

Gaj

[
1√
−g

∂γ
(√

−gΩjδγ
)
+ c j

lmω
l
γΩ

mδγ

]
= Gij

[
ΩiδνΩjµνe

µ
a − e δ

a

4
Ωi µνΩ

jµν

] ∣∣∣∣
if a is a tetrad index

,

Gaj

[
1√
−g

∂γ
(√

−gΩjδγ
)
+ c j

lmω
l
γΩ

mδγ

]
= 0

∣∣∣∣
if a isn’t a tetrad index

.

(3.25)
We found the peculiarity of a geometric Yang-Mills theory. The gauge fields that take the role of
the tetrad are not source-free in vacuum, yet they are sourced by the energy-momentum tensor
of the theory.

3.1.5 Outlook: interacting matter

In this subsection we are going to briefly explain how to introduce gauge charged matter for
geometrical Yang-Mills theory. In usual Yang-Mills theory, charged fields live in associated
vector bundle as in Def.1.2.5 P ×ρ V . For instance, for chromodynamics P is given by an
SU(3)-bundle and (ρ, V ) is given by the fundamental representation (i.e. the color multiplets).
Since we have already established that geometrical theories are invariant, in general, only with
respect to the Lorentz subgroup, it seems natural to charge the fields only with respect to this
latter. We can then use the standard representation theory of SO(1,3) to define our fields. The
trivial example is the scalar spin-0 theory. In this case we have (ρ, V ) = (ρtrivial,R), where
ρtrivial(g) = 1, ∀g ∈ SO(1, 3). As usual, the connection on the principal bundle induces a
covariant derivative on the associated vector bundle (compare with Def. 1.2.12). In the case of
the scalar field this is simply given by the standard differential as it can be easily checked.

More interesting is the case of the fundamental representation (i.e. the multiplets of the
Lorentz group). In this case, since the Lorentz-subbundle is related to the frame bundle of M
(as explained in Subsection 3.1.2), the fields correspond to spacetime vector fields. As usual they
can be represented by:

A = (A0, A1, A2, A3) , (3.26)

where the components are referred to a tetrad frame since we reduced the frame bundle to its
Lorentz subbundle. The transformations of these fields is given by local Lorentz transformations.

Aa → Λ b
a Ab. (3.27)

In particular, we notice that one can always find a transformation for which two of the three
spatial components of the vector field vanish. This could perhaps help if one intends to study
possible simmetry breaking scenarios of the theory. We will see that for the de Sitter theory
these vector fields could turn the spacetime torsion into a non-dynamical field.
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3.2 de Sitter gauge theory

In this section we are going to study the geometrical Yang-Mills theory for the de Sitter group
(i.e. SO(1, 4)). We will show that the geometrical Yang-Mills action contains the Hilbert action
in the presence of a cosmological constant. We advice the reader to go through Appendix A to
get more familiar with the techniques we will be using.

3.2.1 de Sitter group and de Sitter bundle

The de Sitter group is defined as the isometry group (i.e. the set of diffeomorphisms ϕ :M →M
for which ϕ∗g(ϕ

∗X,ϕ∗Y ) = g(X,Y ), X,Y ∈ Γ(TM)) of the de Sitter space. This latter corre-
sponds to the following vacuum solution of the Einstein’s equation with cosmological constant
Λ:

ds2 = −dt2 + e2(
Λ
3 )

1
2 t
[
dχ2 + χ2(dθ2 + sin2 θdϕ2)

]
. (3.28)

This space can be mapped into the four dimensional surface in R5 given by:

− (z0)2 + (z1)2 + (z2)2 + (z3)2 + (z4)2 =
3

Λ
, (3.29)

with five-dimensional metric:
η = diag (−1, 1, 1, 1, 1) . (3.30)

The last expression shows that the isometry group of de Sitter space is the same as the one
for R1,4, i.e de Sitter group is given by SO(1, 4) and it clearly contains the Lorentz group as a
subgroup. As we have shown in Subsection 3.1.2, this makes de Sitter group a good candidate
to define a geometrical Yang-Mills theory. Notice that with respect to the Lorentz group we
have exactly four more generators and we will use them to define the tetrad fields on M . In
the following we will use lower-case latin letter for the Lie algebra indeces corresponding to the
Lorentz generators, i.e. MAB |A,B=0,...,3 ≡ M[ab]. The others four generator M[a4] will be called

P̃a. Comparing with Eq.(A.4), we get the commutators in the Lie algebra basis with this new
notation: [

M[ab],M[cd]

]
= ηbcM[ad] + ηadM[bc] + ηdbM[ca] + ηacM[db],[

M[ab], P̃c

]
= ηbcP̃a − ηacP̃b,[

P̃a, P̃c

]
=Mca,

(3.31)

which gives for the Killing metric (compare with Eq.(A.6)):

G[ab][cd] = 2(N − 2)
[
η[bc]η[da] − ηbdηca

]
,

G[ab][c4] = 0,

G[a4][c4] = −2(N − 2)ηac.

(3.32)

We now consider the particular pseudo-orthogonal bundle for which the structure group is
given by de Sitter group. As usual we introduce a connection:

ωωω =
1

2
ω[AB] ⊗M[AB] =

1

2
ω[ab] ⊗M[ab] + ea ⊗ P̃a, (3.33)
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which gives for the curvature (compare with Eq.(A.12)):

ΩΩΩ = dωωω +
1

2
[ωωω,ωωω] =

=
1

2

[
dω[ab] + ω

[a
c] ∧ ω

[cb] − ea ∧ eb
]
⊗Mab +

[
dea + ω

[a
b] ∧ e

b
]
⊗ P̃a ≡

≡ 1

2
Ω[ab] ⊗M[ab] + T a ⊗ P̃a.

(3.34)

3.2.2 de Sitter Yang-Mills theory

In this subsection we are going to introduce a de Sitter geometrical Yang-Mills theory. We
will show that the torsionless configurations of the theory corresponds to General Relativity,
supplemented by a Riemann squared term.

As we have mentioned above we will use the fields {ea}a as tetrad fields. We will then define
the metric as in Subsection 3.1.1:

g = ηabe
a ⊗ eb. (3.35)

The other part of the connection 1-form is related to the Lorenz generators and as such it corre-
sponds to the covariant derivative on the tangent bundle of M as explained in Subsection 3.1.2.
Comparison between Eq.(2.27) and Eq.(3.34) shows that, under the interpretation explained
above, the curvature related to the tetrad fields is given by the torsion on M related to the
covariant derivative inherited by ω[ab]. We introduce the notation:

R[ab] = dω[ab] + ω
[a
c] ∧ ω

[cb], (3.36)

so that we can write:
Ω[ab] = R[ab] − ẽa ∧ ẽb = R[ab] −M2ea ∧ eb. (3.37)

We have already shown in Subsection 2.1.1 that demanding tosionless on a metric-compatible
connection automatically fixes it to be the Levi-Civita connection. Recalling Eq.(2.34), we see
that for the configurations for which T a = 0, we have:

◦
R
ab

= R[ab]. (3.38)

This equivalence will be extremely important now that we will build the action.
Following the recipe of Subsection 3.1.3 we provide the action for the geometrical Yang-Mills

theory for the de Sitter group (α is an arbitrary dimensionless constant):

S[ω[ab], ea] =

∫
M

1

4
Ω[ab] ∧ ∗Ω[cd]G[ab][cd] + T̃ a ∧ ∗T̃ bG[a4][b4] =

= α

∫
M

1

2
Ω

[a
c] ∧ ∗Ω[c

a] −M2T a ∧ ∗Ta =

= α

∫
M

1

2
R

[a
c] ∧ ∗R[c

a] −M2T a ∧ ∗Ta −M2ea ∧ ec ∧ ∗Rca +M4 1

2
ea ∧ ec ∧ ∗ (ec ∧ ea) =

= α

∫
M

√
−gd4x

[
−1

4
R[ac]µνR[ac]µν +

M2

2
T [a]µνT[a]µν +M2(R− 2Λ)

]
,

(3.39)

where Λ = n(n−1)
4 M2 = 3M2 is the gauge theoretical cosmological constant coming from the last

term in the third line of the previous equation. Notice that we introduced the mass parameter
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M in accordance with the dimensional analysis provided in Subsection 3.1.3. The importance of
this action is its torsionless limit. Indeed for torsionless configuration we find:

S[ω[ab], ea] = α

∫
M

1

2

◦
R

[a

c] ∧ ∗
◦
R

[c

a] −M2ea ∧ ec ∧ ∗
◦
Rca +M4 1

4
ea ∧ ec ∧ ∗ (ec ∧ ea) =

= α

∫
M

√
−gd4x

[
−1

4

◦
R

[ac]µν ◦
R[ac]µν +M2(

◦
R− 2Λ)

]
,

(3.40)

which gives, as mentioned above, the Einstein-Hilbert action supplemented by a gauge theoretical
cosmological constant and a Riemann squared term. Notice that the latter is not multiplied byM ,
and this constant needs to be of the same order as the Planck mass to give a true correspondence
with general relativity. This means that the effect of this interaction on the Hilbert action is
suppressed by a Planck mass squared.

Using the results of Subsection 3.1.4, we will now provide the equations of motion of the
action in Eq.(3.39). For the Lorentz connections we find:

0 =G[ab][cd]

[
1

2
√
−g

∂γ

(√
−gΩ[cd]δγ

)
+

1

4
c

[cd]
[ef ][lm] ω[ef ]

γ Ω[lm]δγ +M2c
[cd]

[4f ][4m] efγT
mδγ

]
=

=
α

2
√
−g

∂γ

[√
−g
(
R δγ

[ab] −M2(e δ
a e

γ
b − e γ

a e
δ
b )
)]

+
1

2
∆[ab][cd]

(
ω
[c
l]γΩ

[ld]δγ − ω
[d
l]γΩ

[lc]δγ + edγT
cδγ − ecγT

dδγ
)
=

=
α

2
√
−g

∂γ

[√
−g
(
R δγ

[ab] −M2(e δ
a e

γ
b − e γ

a e
δ
b )
)]

+
1

2
M2

(
ebγT

δγ
a − eaγT

δγ
b

)
+

1

2

[
ω[al]γ

(
R

[l δγ
b] −M2(elδe γ

b − elγe δ
b )
)
− ω[bl]γ

(
R

[l δγ
a] −M2(elδe γ

a − elγe δ
a

)
)
]
= 0.

(3.41)
This equation corresponds to the generalization of flat-space Maxwell equations ∂νF

µν = 0 to
the case of non-Abelian gauge theory in curved spacetimes. For tetrad fields the situation is
different. From Eq.(3.25) we can see that for the tetrad fields we have the contribution of the
Hodge-star operator, a simil energy momentum tensor that appears on the right hand side. We
first look at the LHS, i.e.

− 2αηajM
2

[
1√
−g

∂γ
(√

−gT jδγ
)
+

1

2
c j
[l4][mn]

(
el γΩ

[mn]δγ − ω[mn]
γ T lδγ

)]
=

=− 2αηajM
2

[
1√
−g

∂γ
(√

−gT jδγ
)
+
ηnlδ

j
m − ηmlδ

j
n

2

(
el γΩ

[mn]δγ − ω[mn]
γ T lδγ

)]
=

=− 2αηajM
2

[
1√
−g

∂γ
(√

−gT jδγ
)
− enγΩ

[jn]δγ + ω[jn]
γ T δγ

n

]
=

=− 2αηajM
2

[
1√
−g

∂γ
(√

−gT jδγ
)
+ ω[jn]

γ T δγ
n − enγ

(
R[jn]δγ − ejδenγ + ejγenδ

)]
=

=− 2αηajM
2

[
1√
−g

∂γ
(√

−gT jδγ
)
+ ω[jn]

γ T δγ
n − enγR

[jn]δγ +M2(n− 1)ejδ
]

(3.42)
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and for the RHS:

2

{
G[EF ][CD]Ω

[EF ]δνΩ[CD]
µν e

µ
a − e δ

a

4
G[EF ][CD]Ω

[EF ]
µν Ω[CD]µν

}
=

=− α

2
e δ
a

[
1

2
R[dc]µνR[cd]µν −M2T dµνTdµν −M2

(
edµe

c
ν − ecµe

d
ν

)
R µν

[cd]+

+
M4

2

(
edµecν − ecµedν

)
(ecµedν − edµecν)

]
+ 2αe µ

a

[
1

2
R[dc]δνR[cd]µν −M2T dδνTdµν+

−M2 (ecµedν − edµecν)R
[dc]δν +

M4

2

(
edδecν − ecδedν

)
(ecµedν − edµecν)

]
=

=− α

2
e δ
a

[
1

2
R[dc]µνR[cd]µν −M2T dµνTdµν + 2M2R+ n(1− n)M4

]
+

+ 2α

[
e µ
a

1

2
R[dc]δνR[cd]µν −M2T dδνTdµνe

µ
a + 2M2R[cd]δνηacedν + (1− n)M4e δ

a

]
,

(3.43)
where we called R ≡ ecµe

d
νR

µν
[cd] . The last two expressions give the equations of motion for the

tetrad fields:

1√
−g

∂γ
(√

−gT δγ
a

)
+ ω[an]γT

nδγ +Ric δ
a − e δ

a

2
(R− 2Λ) =

1

2M2
(Θlorentz)

δ
a + (Θtorsion)

δ
a ,

(3.44)
here we identified:

Ric δ
a = R[cd]δνηacedν ,

(Θlorentz)
δ
a = e µ

a R[cd]δνR[cd]µν −
1

4
e δ
a R

[cd]µνR[cd]µν ,

(Θtorsion)
δ
a = e µ

a T dδνTdµν −
1

4
e δ
a T

dµνTdµν .

(3.45)

Once again, it is interesting to study torsionless solutions to the equations of motion. We see that
they correspond to Einstein’s field equations supplemented by a ‘geometrical’ energy momentum
tensor and the corresponding equations for the Lorentz connection, namely:

◦
Ric

δ

a − e δ
a

2

(
◦
R− 2Λ

)
=

1

2M2
(Θlorentz)

δ
a ,

G[ab][cd]

[
1

2
√
−g

∂γ

(√
−gΩ[cd]δγ

)
+

1

4
c

[cd]
[ef ][lm] ω[ef ]

γ Ω[lm]δγ

]
= 0.

(3.46)

This result is somewhat surprising. Indeed, we obtained Einstein’s equations and a cosmological
constant from the standard Yang-Mills action. In other words, we derived the equations of the
gravitational field from a theory more similar to QCD or the Electro-weak interaction, and in
general to the Standard Model physics. Moreover, notice that the difference between proper
GR and Eq.(3.46) is a factor which is of second order in the Riemann curvature tensor but
is also suppressed by an inverse Planck mass squared. The contribution coming from a non-
vanishing RHS of vacuum Einstein’s equation will then be relevant only when the curvature is
of the same order of magnitude as the Planck mass. This is the situation one usually finds when
considering portion of spacetime very close to the well-known singularities in some of the most
famous solutions to GR equations of motion. We expect this term to give tangible contributions
in such scenarios, perhaps, but this is just an educated guess, preventing or taming the presence
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of singularities. More likely this would effectively modify the structure of some event horizons
in an analogy with what happens with the Reissner-Nordstrom solution. It is worth mentioning
that adding matter to the theory will result in a contribution on the RHSs of Eq.(3.46). For the
tetrad equation we would find the energy-momentum tensor of the matter field, as it can be easily
check since it would appear from the Hodge-star variation again. For the Lorentz connection we
would have the contribution coming from the gauge current (as in standard Yang-Mills theory)
which for us will be represented by the angular momentum of the matter fields (since the gauge
symmetry group is given by local Lorentz transformations).

An important aspect of this theory is the appearance of a gauge theoretical cosmological
costant. This costant is positive and it’s proportional to the Planck mass squared. Having such
a big cosmological costant could be thought as a problem, expecially in cosmology, where one
of the most important model predicts a very small Λ. However, eventhough the classical value
is fixed by the structure constant of the de Sitter group to be proportional to the Planck mass,
there is no way to say whether (after providing a quantization scheme) renormalization would
keep this correspondence satisfied. Indeed, looking at the action, we see that, taking the factor
M2 inside the overall constant α, the bare value Λ will absorb the infinities coming from the
zero-point energy of the fields (one can think of a scalar field theory to convince themselves that
this is the situation). On the other hand, the bare Planck mass appears as a coupling costant in
front of the other term in the action (the Riemann squared term), thus we expect it would receive
quantum corrections associated with counterterms related to the field strength renormalization
parameter Z. With all these considerations in mind, we expect that the physical Planck mass and
the physical cosmological costant will be in general independent without spoiling the symmetry
of the action (i.e. local Lorentz symmetry).

Consider again the complete de Sitter geometrical action in Eq.(3.39). We would like to
give an intuitive scheme that one could follow in order to constraint dynamically the second
term (torsion squared) to be zero. Let A = Aµdx

µ = Aae
a be a 1-form vector field on M , not

necessarily a gauge boson. Here, as in Subsection 3.1.5 we exploited the interpretation of part
the connection field as tetrad fields to express the coordinates of the A field in this orthonormal
basis. Recalling that the tetrad generators correspond to M[a4] one can see from Eq.(A.13) that
the covariant derivative acting on the tetrad fields is given by:

dωωωe
a = dea + ω

[a
b]e

b = T a, (3.47)

so that charging the covector fields A as a Lorentz multiplet1, we find:

dωωωA = dAa ∧ ea +AaT
a. (3.48)

It clearly provides a gauge invariant expression (compare with Eq.(3.27)) and it’s different from
the standard exterior derivative only if torsion is non-vanishing (as it is the case when one consider
the general covariance principle applied to electro-magnetism). The easiest term to include in
the action for such a field would be the standard kinetic term:∫

M

F ∧ ∗F ≡
∫
M

dωωωA ∧ ∗dωωωA =

=

∫
M

[
dAa ∧ ea ∧ ∗

(
dAb ∧ eb

)
+ 2AaT

a ∧ ∗
(
dAb ∧ eb

)
+AaAbT

a ∧ ∗T b
]
.

(3.49)

1This means that we are applying the principle of general covariance passing from rigid to local Lorentz
transformation acting on the covector. We need Lorentz and not the entire general linear group, as would be the
case for general coordinate invariance, since as we studied in Subsection 2.1.2 we can always cover a Lorentzian
manifold with local orthonormal frames for the tangent bundle.
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We can then see that if one introduces a suitable potential for the A field, there is the possibility
of a condensation of the field such to give ⟨Aa, Ab⟩ = − 1

2M
2ηab. The semiclassical limit would

then correspond to the torsionless action in Eq.(3.40). We notice that since we don’t observe any
other massless vector fields in the universe, we think this vector field should be massive enough
to not make it detectable with modern experiments. Furthermore, since there is no dependence
of the action on the derivative of the tetrad fields, we argue that without the torsion squared
term the torsion field becomes non-dynamical and once we fix the initial conditions to give a
vanishing torsion this will remain true throughout evolution.

In conclusion, using the de Sitter group as gauge group for a geometrical Yang-Mills theory
we are able to obtain Einstein’s theory of gravity as a low energy torsionless limit of our theory.
The Yang-Mills formulation and in particular the structure constants of the de Sitter algebra
give the Hilbert action supplemented with a Riemann squared term, which is suppressed by a
Planck mass squared, a torsion squared factor, which could be possibly removed dynamically as
we have shown in Eq.(3.49), and a gauge theoretical cosmological costant (as well as the usual
mass parameter expected in all geometrical Yang-Mils theories). In Chapter 4 we will establish a
Hamiltonian formalism suited for geometrical Yang-Mills theories. In particular we will consider
the constraints arising in phase space and we will provide their analysis.

It is worth noticing that replacing de Sitter group SO(1,4) with anti-de Sitter group SO(2,3)
one would find the same reults we have found for de Sitter since the algebra of the two groups is
very similar, in particular the theory will still contain the Einstein-Hilbert action. The difference
lies in the cosmological constant which would be negative for the case of AdS gauge theory. This
comes from some relative sign between the structure constants of so(1, 4) and so(2, 3).

3.3 Conformal gauge theory

In this section we will be studying a conformal gauge theory, i.e a gauge theory with gauge
group given by the conformal group of flat space SO(2, 4). First, we will introduce the conformal
algebra and the conformal bundle. Then, we will be giving a consistent geometrical Yang-Mills
action as in Section 3.1 and we will study its equations of motion.

3.3.1 Conformal group and conformal bundles

In this subsection we will define the conformal group and its algebra, mapping it to the pseudo-
orthogonal group SO(2,4). Then we will introduce a principal SO(2, 4)-bundle with relative
connections and curvatures.

Def 3.3.1 (Conformal transformation). Let (M, g) be a pseudo-Riemaniann manifold. A diffeo-
morphism f : M → M is called a conformal transformation if it preserves the metric tensor up
to a local scale, i.e.

f∗gf(p) = e2σ(p)gp p ∈M, σ ∈ C∞(M),

in a local chart {xµ}µ:
∂yα

∂xµ
∂yβ

∂xν
gαβ(f(p)) = e2σ(p)gµν(p),

where yµ = f∗xµ ≡ xµ ◦ f .

The set of all such transformation clearly constitues a group which we denote as Conf(M, g).
Consider X ∈ X(M), if the infinitesimal flow of X at x ∈ M (in coordinates xµ(x) →

xµ(x) + ϵXµ(x), ϵ << 1) generates a conformal transformation we call X a conformal Killing
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vector (CKV) at x. The condition in Def.3.3.1 translates to:

∂ (xα + ϵXα)

∂xµ
∂
(
xβ + ϵXβ

)
∂xν

gαβ(x+ ϵX) = e2σ(x)gµν(x), (3.50)

which implies that g and X need to satisfy:

LXgµν = Xα∂αgµν + 2
(
∂(µX

α
)
gν)α = ψgµν , (3.51)

where, noting that σ ∝ ϵ we defined ϵψ
2 := σ and it is easy to see that it is given by:

ψ =
Xαgµν∂αgµν + 2∂µX

µ

n
. (3.52)

Proposition 3.3.2. • A linear combination of CKVs is still a CKV;

• The Lie bracket of two CKVs is again a CKV.

Thus we see that the set of conformal Killing vectors constitues an algebra which is called
the conformal algebra.

Through the rest of this section we will focus on the conformal group of flat space, i.e.
Conf(M,η), where η is the Minkowski metric. The conformal algebra of flat space is given by,
a, b = 0, 1, 2, 3:

[Lorentz transformations] Mab = xa∂b − xb∂a,

[Translations] Pa = ∂a,

[Special conformal transformations (SCTs)] Ka = 2xax
b∂b − x2∂a,

[Dilations] D = xa∂a,

(3.53)

with Lie brakets:
[Mab,Mcd] = ηbcMad + ηadMbc + ηdbMca + ηacMdb,

[Mab, Pc] = ηcbPa − ηcaPb,

[Mab,Kc] = ηbcKa − ηacKb,

[Pa,Kb] = 2(ηabD −Mab),

[D,Kb] = Kb,

[D,Pa] = −Pa.

(3.54)

We consider the following change of basis in conf(M,η).

Ma4 7→ Pa +Ka

2
,

M−1a 7→ Pa −Ka

2
,

M−14 7→ D,

Mab 7→Mab

(3.55)

and they satisfy the algebra of so(2, 4) (the six dimensional Lorentz group with η′ = diag(−1,−1, 1, 1, 1, 1)),
i.e.

[MAB ,MCD] = η′BCMAD + η′ADMBC + η′DBMCA + η′ACMDB , (3.56)
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where capital latin indices run from -1 to 4; -1 and 0 are the time indices and 1,2,3 and 4 are the
spatial indices. This allows us to use the results of Appendix A, in particular we will represent
the generators with the usual choice:

(MAB)
I
J = δIAηBJ − δIBηAJ . (3.57)

We will use the Killing form as metric tensor in Lie algebra space, in accordance with Eq.(A.6).
We call conformal bundle a principal bundle π : P → M such that its structure group is

given by SO(2, 4). As usual we can introduce a so(2, 4)-valued connection 1-form ωωω which can
be expanded in the generators in Eq.(3.53) as follows:

ωωω =
1

2
ωab ⊗Mab + ea ⊗ Pa + fa ⊗Ka + ω ⊗D

=
1

2
ωAB ⊗MAB ,

(3.58)

where ωab, ea, fa, ω, ω
AB ∈ Ω1(P ). Before reading further, we suggest the reader to go through

Appendix B in orther to get more acquainted with the techniques used in this chapter. Recall-
ing Def.1.2.11 and the formula in Eq.(B.5), we can write the curvature Ω associated with this
connection:

Ω =
1

2

[
dωab + ωac ∧ ωcb + 2

(
f b ∧ ea + eb ∧ fa

)]
⊗Mab+

+
[
dea + ωab ∧ eb + ea ∧ ω

]
⊗ Pa+

+
[
dfa + ωab ∧ fb + ω ∧ fa

]
⊗Ka+

+ [dω + 2ea ∧ fa]⊗D =

≡1

2
Ωab ⊗Mab + T a ⊗ Pa + Sa ⊗Ka +Ω⊗D,

(3.59)

or, in the so(2, 4) basis:

Ω =
1

2
ΩAB ⊗MA

B , (3.60)

with (compare with Eq.(B.4)):

ΩAB = Ωab A,B = 0, 1, 2, 3,

Ωa−1 = −2 (T a − Sa) ,

Ω4a = −2 (T a + Sa) ,

Ω−14 = Ω.

(3.61)

Moreover, we have the Bianchi identity dωΩ = 0 from Theorem 1.2.13:

1

2
dΩab +

ωac ∧ Ωcb − ωbc ∧ Ωca

2
+ f b ∧ T a − fa ∧ T b − ea ∧ Sb + eb ∧ Sa = 0,

dT a + ωab ∧ Tb + eb ∧ Ωba + ea ∧ Ω− ω ∧ T a = 0,

dSa + ωab ∧ Sb + fb ∧ Ωba − fa ∧ Ω+ ω ∧ Sa = 0,

dΩ+ 2 (ea ∧ Sa − fa ∧ T a) = 0,

(3.62)

or, in components:[
∂γΩ

ab
µν + 4eaγS

b
µν + 4faγT

b
µν + 2ωacγΩ

b
cµν

]
dxγ ∧ dxµ ∧ dxν = 0,[

∂γT
b
µν + 2

(
eaγΩ

b
aµν − ωγT

b
µν + ebγΩµν + ωabγTaµν

)]
dxγ ∧ dxµ ∧ dxν = 0,[

∂γS
b
µν + 2

(
f bγΩµν − ωγS

b
µν − faγΩ

b
aµν − ωabγSaµν

)]
dxγ ∧ dxµ ∧ dxν = 0,[

∂γΩµν + 2eaγS
a
µν − 2faγT

a
µν

]
dxγ ∧ dxµ ∧ dxν = 0.

(3.63)
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It is interesting to look explicitly at the transformations of the connection and the curvature
under conformal gauge transformations. In accordance with the general transformation rules in
Eqs.(1.11-1.17) we have:

ωωω 7→ ωωω′ = a−1ωωωa+ a−1da,

Ω 7→ Ω′ = a−1Ωa,
(3.64)

where a ∈ SO(2, 4). For transformation infinitesimally close to the identity we can write a ∼
1 + ϵa + O(ϵ2), where ϵ is a small parameter and a = aAB

2 MBA ∈ Ω0(M, so(2, 4)), aAB are
functions. The transformation rules in Eq.(3.64) becomes:

ωωω′ = ωωω + ϵdωωωa+O(ϵ2),

Ω′ = Ω+ ϵ [Ω,a] +O(ϵ2),
(3.65)

or, in a local trivialization:

ω′ab
γ = ωabγ + ϵ

[
∂γa

ab + 4
(
abKe

a
γ + abP f

a
γ

)
+ abcω

ac
γ

]
+O(ϵ2),

e′bγ = ebγ + ϵ
[
∂γa

b
P + 2

(
abae

a
γ − abPωγ + aebγ + aaPω

ab
γ

)]
+O(ϵ2),

f ′bγ = f bγ + ϵ
[
∂γa

b
K + 2

(
af bγ − abKωγ − abaf

a
γ − aaKω

ab
γ

)]
+O(ϵ2),

ω′
γ = ωγ + ϵ [∂γa+ 2aaKeaγ − 2aaP faγ ] +O(ϵ2);

Ω′bc
µν = Ωbcµν + ϵ

[
4
(
T bµνa

c
K + acPS

b
µν

)
− 2acaΩ

ab
µν

]
+O(ϵ2),

T ′b
µν = T bµν + ϵ

[
2
(
abaT

a
µν − abPΩµν + aT bµν + aaPΩ

ab
µν

)]
+O(ϵ2),

S′b
µν = Sbµν + ϵ

[
2
(
aSbµν − abKΩµν − abaS

a
µν − aaKΩabµν

)]
+O(ϵ2),

Ω′
µν = Ωµν + ϵ

[
2
(
aaKTaµν − aaPS

a
µν

)]
+O(ϵ2).

(3.66)

3.3.2 Connection to Weyl Gravity

In this subsection we will show how to recover Weyl gravity and Bach equations from a geomet-
rical Yang-Mills theories with gauge group given by the conformal group. This theory was first
developed by James T. Wheeler and his Ph.D. student Juan Trujillo[8]. Their idea was based
on a different structure with respect to what we have defined as geometrical Yang-Mills theories
in Section 3.1. They consider the manifold structure of the conformal group and they consider
the quotient with respect to the inhomogenous Weyl group IW, i.e. Lorentz transformations,
dilations and SCTs. The group one obtains is the translation group with manifold structure dif-
feomorphic to R4. They then use Theorem 1.1.12 and Def.1.2.1 to define a principal IW-bundle
over the translation group. Eventhough the gauge group is given (before geometrization) by IW
they still expand the connection and curvature in the whole conformal basis as we did. This is
how they solder the geometry of Yang-Mills theory with the geometry of spacetime. In contrast,
we start from a principal pseudo-orthogonal bundle with a connection that is as usual expanded
on the whole Lie algebra of the gauge group. We then need to reduce the symmetry in order to
consider part of this connection as tetrad fields defining the geometry of spacetime. On the other
hand, Wheeler’s idea is to take the quotient of the gauge group with respect to the tetrad gauge
generator ({ai}i in the language of Subsection 3.1.1). In this way the fundamental vector fields
associated with them (compare with Def.1.1.11) already define vector fields onM by construction
and the gauge symmetry is given by the whole IW group (and not only its Lorentz subgroup as
in our theories). However, from Eq.(1.3) we see that the Lie bracket of the tetrad fields as vector
fields can’t be different from the commutator of the generators associated with them. Since the
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translation group is an Abelian ideal of the conformal algebra, this means that the Lie bracket of
the tetrad onM is trivial and we can use them as coordinates. It is straightforward to prove that
if one then fixes the torsion on M to be zero, we can always find a global coordinate system with
both Levi-Civita connection and Riemann curvature tensor identically zero. Naturally, in order
to get any comparison with GR, they need to set torsion to zero in their theory and thus the
geometry of spacetime becomes trivial and there’s no gravitational field in any solution. We will
now show that we can use our concept of geometrical Yang-Mills theory to save the conceptual
mistake we mentioned and obtain Weyl squared theory for torsionless configurations.

The action we will start with is the conformal version of the general geometrical action in
Eq.(3.9), and it’s given by:

SYM [ωωω] =
α

2

∫
M

ΩAB ∧ ∗ΩBA =

= α

∫
M

[
1

2
Ωab ∧ ∗Ωba +Ω ∧ ∗Ω− 8T a ∧ ∗Sa

]
=

=
α

2

∫
M

√
−gd4x

[
1

2
ΩabµνΩ

baµν +ΩµνΩ
µν − 8TaµνS

aµν

]
.

(3.67)

Notice that in this particular geometrical Yang-Mills theory there is no gauge theoretical mass
parameter appearing in the action, and consequently in the equations of motion. This is due
to the fact that the generators for translations and special conformal transformations are not
orthogonal with respect to the metric in Lie algebra space. Indeed from the last term in the
action we see that eventhough we know that the torsion form has mass dimension -1 it will be
compensated by the mass dimension of the SC curvature. In this way we find that the mass
dimension of the gauge field fa needs to be +1.

1st step: change the metric in algebra space

We impose the following two constraints:

T a = 0,

Sa = 0.
(3.68)

They allow us to change the action in Eq.(3.67) into:2

S =

∫
M

αΩab ∧ ∗Ωba + βΩ ∧ ∗Ω. (3.69)

Notice that the metric tensor we use here in Lie algebra space is not necessarily the restriction of
the Killing form to Lorentz and dilational components only, as it can be checked comparing with
Eq.(3.67). Indeed, we would have α = 1/2 and β = 1. However, as we discussed in Subsection
3.1.3, the metric in algebra space doesn’t need to be fully gauge invariant. In this case, one can
show (using the transformations in Eq.(3.64)) that the action is invariant with respect to local
Lorentz transformation as well as local dilations for any value of α and β. Moreover, there is no
symmetry in the geometrical action preventing α and β to run differently due to renormalization.
Thus, even starting with the action as in Eq.(3.67) and the constraints in Eq.(3.68), the most
general theory that takes into account possible radiative corrections is the action in Eq.(3.69).

2Notice that this action is of course Lorentz-invariant as it should be for a geometrical Yang-Mills action,
moreover one can prove using Eq.(3.66) and the metric definition that the theory is also symmetric with respect
to gauge dilations.
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We will then study this theory and we will show how to obtain Weyl gravity as a gauge-fixed
version of the geometrical conformal theory.

The equations of motion are taken from variations of the action with respect to the connection
fields. We start with the Lorentz connection. In accordance with Eq.(3.59), we see that ωab
appears only in the Lorentz curvature Ωab. Its variation gives:

δΩab = dδωab + δωac ∧ ω b
c + ωac ∧ δωcb,

δS = 2α

∫
M

[
−δωab ∧ d ∗ Ωba + δωac ∧ ω b

c ∧ ∗Ωba − δωcg ∧ ωac ∧ ∗Ωga
]
.

(3.70)

The equation of motion is then:

d ∗ Ωfe + ω b
f ∧ ∗Ωbe − ωae ∧ ∗Ωfa ≡ D ∗ Ωfe = 0. (3.71)

The variation with respect to the dilational connection ω involves only its curvature Ω and
immediately provides the following equation of motion (compare with Eq.(3.59)):

d ∗ Ω = 0. (3.72)

The special conformal connection appears in both curvatures and its variation gives:

δΩab = 2
(
δf b ∧ ea − δfa ∧ eb

)
,

δΩ = −2δfa ∧ ea,

⇒ δS =

∫
M

δf c ∧
[
4α
(
ea ∧ ∗Ωca − eb ∧ ∗Ωbc

)
− 4βec ∧ ∗Ω

]
,

(3.73)

which gives the following equation of motion:

2αea ∧ ∗Ωca = βec ∧ ∗Ω. (3.74)

Finally, we study the equations of motion for the tetrad/translation connections. We will take
variations with respect to the tetrad components in the tetrad basis, i.e. δea ≡ beab e

b. As we
have studied in Subsection 3.1.4, we know that this equation will contain contributions coming
from the variation of the Hodge-star operator as in Eq.(3.23). The other part of the variation
comes from the explicit dependence of both Ω[ab] and Ω on the tetrad fields. Indeed, we have:

δΩ[ab] = −2
(
δea ∧ f b − δeb ∧ fa

)
,

δΩ = 2δea ∧ fa,
(3.75)

which gives as equations of motion: (compare with Eq.(3.24))

2αf bmΩ lm
[cb] + βfcmΩlm = α

(
Ω[ab]lrΩ[ba]cr −

δ l
c

4
Ω[ab]rsΩ[ba]rs

)
+ β

(
ΩlrΩcr −

δ l
c

4
ΩrsΩrs

)
,

2αf bmΩ lm
[cb] + βfcmΩlm = α (ΘL)

l
c + β (ΘD)

l
c ,

(3.76)
where we indentified the Lorentz and dilational energy-momentum tensors. Using Eq.(B.7) we
can write also the other equations of motion in components (in this section we use a tetrad basis
also in form space in order to have nicer equations to read):

DaΩ
a
bcd = 0, (3.77)

∂aΩ
ab = 0, (3.78)

2αΩdcde + βΩce = 0. (3.79)

Notice that symmetrizing the last equation we get the following constraint:

Ωd(c|d|e) = 0. (3.80)
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2nd step: vanishing dilational curvature

We will now solve the equations of motion, in particular we will show how the dilational cur-
vature dinamically vanishes. The Bianchi identity for a vanishing torsion reads (compare with
Eq.(3.62)):

eb ∧ Ωba + ea ∧ Ω = 0, (3.81)

or, in components:
Ωa[bcd] = δa[bΩcd]. (3.82)

Taking the trace in a and c gives:

Ωabad − Ωadab = −(N − 2)Ωbd = −2Ωbd, (3.83)

while, antisymmetrizing Eq.(3.79) and comparing with the Bianchi identity, we get:

−α
[
Ωdcde − Ωdedc

]
= βΩce,

⇒ (BIANCHI) (2α− β) Ωce = 0.
(3.84)

Then, provided 2α ̸= β, we have:
Ωab = 0 (3.85)

and Eq.(3.79) becomes:
Ωdcde = 0. (3.86)

Notice that now both Eq.(3.80) and Eq.(3.78) are trivially solved. The Bianchi identity in
Eq.(3.82) now gives:

Ωa[bcd] = 0. (3.87)

Now we define the Riemann curvature Rab in accordance with Eq.(2.34):

Rab = dωab + ωac ∧ ωcb. (3.88)

We can write the Lorentz curvature components as: (compare with Eq.(3.59))

Ωab =
1

2
Ωabcde

c ∧ ed,

Ωabcd = Rabcd + 2 [fbcδ
a
d − fbdδ

a
c − facηbd + fadηcb] .

(3.89)

Plugging it in Eq.(3.86) we find (f = faa):

Rbd = 2 [(N − 2) fbd + fηbd] ,

R = 4 (N − 1) f.
(3.90)

which can be inverted to give:

fab =
1

2 (N − 2)

[
Rab −

Rηab
2 (N − 1)

]
=

1

2
Rab, (3.91)
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where we introduced the Schouten tensor Rab. Inserting Eq.(3.91) in Eq.(3.89) we finally obtain:

Ωabcd = Rabcd +Rbcδ
a
d −Rbdδ

a
c −Ra

cηbd +Ra
dηbc =

= Rabcd +
1

(N − 2)

[(
Rbc −

Rηbc
2(N − 1)

)
δad −

(
Rbd −

Rηbd
2(N − 1)

)
δac −

(
Rac −

Rδac
2(N − 1)

)
ηbd+

+

(
Rad −

Rδad
2(N − 1)

)
ηbc

]
=

= Rabcd −
1

N − 2
[Racηbd −Radηbc −Rbcδ

a
d +Rbdδ

a
c]−

R

(N − 1)(N − 2)
[δadηbc − ηbdδ

a
c] =

≡ Cabcd.
(3.92)

We have shown how the equations of motion force the Lorentz curvature to be equivalent to the
Weyl tensor. With all the considerations of this subsection we can rewrite the action as:

S[ea, ωbc] = α

∫
M

Cab ∧ ∗Cba = −α
∫
M

√
−gd4xCabcdCabcd (3.93)

and the equation of motion for the spin connection is now:

DaC
abcd = 0. (3.94)

Consider then Eq.(3.76). Since we have seen that f[a]b = Rab, Ω[ab]cd = Cabcd and Ω = 0, we
can rewrite the equation as:

RacC
abcd = α (ΘL)

bd
. (3.95)

Taking the derivative of Eq.(3.94) and combining with the previous expression we obtain:

DcDaC
abcd +RacC

abcd = α (ΘL)
bd
, (3.96)

which are extended Bach’s equations for which the RHS would be zero. Once again, in the
geometrical theory we find a source in the RHS, coming from the contribution of the Hodge-star
operator.

Eventhough our action is given by Eq.(3.93) and we have found Bach’s equations, the theory
is not Weyl gravity yet. The reason lies in the expression for the gauge theoretical torsion in
Eq.(3.59), which is:

T [a] = dea + ω[ab] ∧ eb + ea ∧ ω. (3.97)

Since the last term is non-vanishing in general, this expression is not equivalent to the geometrical
torsion on the tangent bundle of spacetime (which would be given by the first two terms). Looking
at Eq.(3.85) we find:

0 = Ω = dω + 2ea ∧ fa =

= dω +Rabe
a ∧ eb

0 = dω,

(3.98)

which shows that ω is a closed 1-form. Supposing that we can apply Poincare Lemma, we have:

ω = dϕ ϕ ∈ C∞(M). (3.99)

We know how the gauge fields change under a gauge dilation (which we have noticed still gives
a gauge invariant action), i.e.

ωab 7→ ωab,

ea 7→ eαea,

fa 7→ e−αfa,

ω 7→ ω + dα.

(3.100)
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Choosing α = −ϕ this shows we can find a gauge in which the dilational connection identically
vanishes. This gauge is called Riemannian gauge. Notice that in this gauge torsion is:

T a = 0 = dea + ωab ∧ eb, (3.101)

which is the standard geometrical torsion as in Eq.(2.1). This implies that the spin-connection
(which is already metric compatible by definition) is also torsion-free turning it in the Levi-
Civita connection and R[ab] in the true Riemann curvature tensor, the same for all geometrical
quantities derived from it.

In conclusion, we have seen that another important example of a geometric Yang-Mills theory
is the Wheeler-Trujillo torsionless conformal gauge theory. The reduced gauge group is given
by the Lorentz subgroup (as it should always be for geometric theories) and dilations. The Lie
algebra metric in Eq.(3.69) is invariant with repect to the transformations mentioned above for
any value of α and β. For 2α ̸= β we have shown how to reduce the theory to a Cartan-Weyl
gravity (i.e. a CCC2 theory for which the Riemann tensor depends both on a non-vanishing torsion
and on the usual Levi-Civita connection). Exploiting the dilational gauge invariance, there exist
a gauge called Riemannian gauge for which the gauge theoretical and the geometrical torsion are
equivalent. Here the geometry of spacetime is actually Riemannian and the on-shell equivalence
with Weyl gravity is enstablished.

Notice that since both de Sitter and anti-de Sitter group are subgroups of SO(2,4), we can
reinterpret the conformal gauge field in such a way to obtain the same gravitational theory as in
Section 3.2 as part of the conformal Yang-Mills theory. The results don’t really differ from the
de Sitter case so we didn’t provide them explicitly but it’s really easy to convince ourselves that
calling ω[a4] = ea this is actually the case.
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Chapter 4

Hamiltonian analysis

In this chapter we are going to show how to write the Hamiltonian of such a pseudo-orthogonal
Yang-Mills Lagrangian. We will then use this Hamiltonian to analyse the constraints that arise

in phase space thanks to the degeneracy of the Lagrangian’s Hessian (i.e. det
(

δL
δω̇iδω̇j

)
=0).

4.1 Building the Hamiltonian

This section is dedicated to the construction of a self-consistent Hamiltonian. The first thing we
need to do is to identify the Lagrangian of our theory. If this was a classical mechanics problem,
it would be trivial since we could write the action as:

S =

∫
γ⊂M

dtL, (4.1)

where t is the evolution parameter that parametrizes the classical path γ. When one considers
field theory the situation is different. The integration in the action is extended to the whole
spacetime manifold and, in general, there is no unique and coordinate-independent way to break
the integral into space and time directions. We will then accept that in order to do so we
need to work in a coordinate frame, which we will call the researcher frame. The Hamiltonian
will be a frame dependent structure of the theory. Please notice that this has nothing to do
with the possible non-zero curvature of M . Rigid Lorentz transformations mix time and space
in a non-trivial way, which shows that also the Standard Model Hamiltonian would be frame
dependent.

Our reasoning proceeds as follow. We will consider a local chart (U,φ)1 for M so that we
can write the Yang-Mills action as:

S = −α
∫
U

Ω[AB] ∧ ∗Ω[AB] =

= −α′
∫
φ(U)

d4x
√
−g
[
gµαgνβΩ[AB]µνΩ

[AB]
αβ

]
.

(4.2)

Notice that, up to now, the action is still independent from the coordinate frame we chose on
U thanks to the invariant volume element. This is because we still didn’t specify a researcher
frame. We define a researcher frame to be: a local coordinates system with a specified time (read

1We will consider this chart as covering the whole region of space-time we intend to study.
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evolution) direction. Mathematically speaking, it means that we change the integration mesure
as follows: ∫

φ(U)∼=R4

√
−gd4x −→

∫
φ(U)∼=R×R3

√
−gdtdx3. (4.3)

Investigation on both the dependence of the time choice and the possibility to extend it globally
are ongoing. We will call the time derivatives of our fields researcher velocities and they will be
denoted by ω̇AB . Analogously, we will call the space derivatives researcher derivations and they
will be denoted by ∂iω

AB . The action can be now written as:

S[ωAB , ω̇[AB], ∂iω
[AB]] = −α′

∫
R⊂φ(U)

dt

[∫
R3⊂φ(U)

√
−gd3x

(
gµαgνβΩ[AB]µνΩ

[AB]
αβ

)]
. (4.4)

In analogy with Eq.(4.1) we define the researcher Lagrangian of the pseudo-orthogonal Yang-
Mills theory to be:

L[ω[AB], ω̇[AB], ∂iω
[AB], t] = −α′

∫
R3⊂φ(U)

√
−gd3x

(
gµαgνβΩ[AB]µνΩ

[AB]
αβ

)
. (4.5)

In order to have a clearer notation we will now write only Rn for the integration domain, of
course one always has to keep in mind the overall dependence on the researcher frame φ. In the
same way, we will omit the “researcher” prefix when referring to our fields or their derivatives.

We will now explicitly show the dependence of the Lagrangian on velocities and derivations
of the fields. Notice that the only components of the curvatures two-forms that depend on the
velocities are Ω(AB)0i. The computation proceeds as follows:

L =− α′
∫
R3

√
−gd3x

[
gµ0gνβΩ[AB]µνΩ

[AB]
0β + gµigνβΩ[AB]µνΩ

[AB]
iβ

]
=

=− α′
∫
R3

√
−gd3x

[
gµ0g0jΩ[AB]µ0Ω

[AB]
0j + gµ0gijΩ[AB]µiΩ

[AB]
0j +

+ g0igνβΩ[AB]0νΩ
[AB]
iβ + gjigνβΩ[AB]jνΩ

[AB]
iβ

]
=

=− α′
∫
R3

√
−gd3x

[
gi0gj0Ω[AB]i0Ω

[AB]
0j + g00gijΩ[AB]0iΩ

[AB]
0j +

+ gk0gijΩ[AB]kiΩ
[AB]
0j + g0igj0Ω[AB]0jΩ

[AB]
i0 + g0igjkΩ[AB]0jΩ

[AB]
ik +

+ gjig0βΩ[AB]j0Ω
[AB]
iβ + gjigkβΩ[AB]jkΩ

[AB]
iβ

]
=

=− α′
∫
R3

√
−gd3x

[
2gi0gj0Ω(AB)i0Ω

(AB)
0j + 2gk0gijΩ(AB)kiΩ

(AB)
0j +

+ g00gijΩ[AB]0iΩ
[AB]
0j + gjig00Ω[AB]j0Ω

[AB]
i0 + gjig0kΩ[AB]j0Ω

[AB]
ik +

+ gjigk0Ω[AB]jkΩ
[AB]
i0 + gjigklΩ[AB]jkΩ

[AB]
il

]
=

=− α′
∫
R3

√
−gd3x

[
2(g00gij − gi0gj0)Ω[AB]0iΩ

[AB]
0j + 4gk0gijΩ[AB]kiΩ

[AB]
0j +

+ gijgklΩ[AB]jkΩ
[AB]
il

]
.

(4.6)
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Introducing the notation M ij ≡ (g00gij − gi0gj0) we can write the Lagrangian in the more
compact form:

L = −α′
∫
R3

√
−gd3x

[
2M ijΩ[AB]0iΩ

[AB]
0j + 4gk0gijΩ[AB]kiΩ

[AB]
0j + gijgklΩ[AB]jkΩ

[AB]
il

]
. (4.7)

We can now find the canonical momenta Π associated to our fields. In order to do so we need
to take functional derivatives of the Lagrangian with respect to the velocities. Since the metric
tensor doesn’t depend on the velocities, we find:

δL

δω̇
[CD]
µ

=

∫
R3

d3x
(
−4α′√−g

) δΩ[AB]
0j

δω̇
[CD]
µ

[
M ijΩ[AB]0i + gk0gijΩ[AB]ki

]
. (4.8)

Since we have:
Ω

[AB]
0j = ω̇

[AB]
j − ∂jω

[AB]
0 + ω[AC]0ω

[C
B]j − ω[AC]jω

[C
B]0, (4.9)

we find:
δΩ

[AB]
0j (x)

δω̇
[CD]
µ (y)

= ∆
[AB]
[CD]δ

µ
jδ(x− y) = ∆

[AB]
[CD]δ

µ
jδ

3(x⃗− y⃗)δ(x0 − y0). (4.10)

Plugging it in Eq.(4.8) we get the canonical momenta, namely:

Π l
[CD] :=

δL

δω̇
[CD]
l

=
(
−4α′√−g

) [
M ilΩ[CD]0i + gk0gilΩ[CD]ki

]
, (4.11)

Π 0
[CD] :=

δL

δω̇
[CD]
0

= 0. (4.12)

The second equation is the primary constraint of our theory. As we shall see in a moment, we
won’t be able to invert the previous set of equations in order to find ω̇ as a function of canonical
fields and momenta.

Let’s study the Hessian of the Lagrangian, i.e.

T α β
[AB] [CD] :=

δ2L

δω̇
[AB]
α δω̇

[CD]
β

=

{
0 for (α, β) = (0, β) or (α, 0),(
−4α′√−g

)
M ij∆[AB][CD] for (α, β) = (i, j),

(4.13)

where we used Eqs.(4.10-4.11-4.12). Notice that one can write the Hessian as the functional
derivative of the momenta with respect to the velocities. Since it doesnt’t depend on the veloci-
ties, it is reasonable to assume the following ansatz for the momenta:

Π β
[CD] = T α β

(AB) (CD)ω̇
[AB]
α + P β

[CD](ω, x). (4.14)

Comparison with Eqs.(4.11-4.12) shows:

P 0
[CD] =0,

P l
[CD] =

(
4α′√−g

) [
∆[AB][CD]M

mlω̇[AB]
m −

(
ω̇[CD]i − ∂iω[CD]0 + ω[CA]0ω

[A
D]i − ω[CA]iω

[A
D]0

)
M il+

− gk0gilΩ[CD]ki

]
=
(
−4α′√−g

) [ (
−∂iω[CD]0 + ω[CA]0ω

[A
D]i − ω[CA]iω

[A
D]0

)
M il + gk0gilΩ[CD]ki

]
.

(4.15)
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The last step we need to do in order to get ω̇(ω,Π, x) is to find the inverse of the Hessian. Notice
that this matrix is proportional to the identity in every entry except for the spacetime indeces2.
We need to find the inverse of the matrix Mml. For this purpose, the following identities will be
useful:

gµαgαν = δµν ,

0 = δ0j = g0αgαj = g00g0j + g0kgkj ,

⇒ g0kgkj = −g00g0j ;
δij = giαgαj = gi0g0j + gikgkj ,

⇒ gikgkj = δij − gi0g0j .

(4.16)

We will now prove that the inverse of M ij is given by
gjl
g00 .

Mml glk
g00

= g00gml
glk
g00

− gm0gl0
glk
g00

=

=
1

g00
[
g00(δmk − gm0g0k)− gm0(−g00g0k)

]
= δmk,

(4.17)

which implies that we can express the velocities (clearly except for ω̇
[AB]
0 ) in terms of the momenta

(compare with Eq.(4.14)):

ω̇[CD]k =
(
−4α′√−g

)−1 glk
g00

(
Π l

[CD] − P l
[CD]

)
. (4.18)

Notice that plugging Eq.(4.17) into Eq.(4.11) we find:

Ω[CD]0n =
(
−4α′√−g

)−1 gln
g00

(
Π l

[CD] + 4α′√−ggk0gilΩ[CD]ki

)
, (4.19)

which is the only composite field in the Lagrangian that depends on the velocities.
We are now going to rewrite the Lagrangian in Eq.(4.7) as a function of fields and momenta.

For the sake of clarity we are going to work it out step by step.

M ijΩ[AB]0i =M
ij gli
g00

(
−4α′√−g

)−1
(
Π l

[AB] + 4α′√−ggk0gslΩ[AB]ks

)
=

=
(
−4α′√−g

)−1
(
Π j

[AB] + 4α′√−ggk0gsjΩ[AB]ks

)
,

M ijΩ[AB]0iΩ
[AB]
0j =

(
−4α′√−g

)−2
(
Π j

[AB] + 4α′√−ggk0gsjΩ[AB]ks

) glj
g00

(
Π[AB]l + 4α′√−ggp0gtlΩ[AB]

pt

)
=

=
(
−4α′√−g

)−2
[
Π j

[AB]Π
[AB]l + 8α′√−gΠ j

[AB]g
k0gslΩ

[AB]
ks +

+
(
−4α′√−g

)2 (
gk0gsjΩ[AB]ks

) (
gp0gtlΩ

[AB]
pt

)] glj
g00

;

(4.20)

Ω[AB]kiΩ
[AB]
0j =

(
−4α′√−g

)−1 glj
g00

Ω[AB]ki

(
Π[AB]l + 4α′√−ggs0gtlΩ[AB]

st

)
. (4.21)

2Notice that in Eq.(4.13) we omitted the Dirac-delta in local coordinates space eventhough technically it would
be there.
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The Lagrangian can be rewritten as follows:

L =

∫
R3

d3x

{(
−2α′√−g

) glj
g00

(
−4α′√−g

)−2
[
Π j

[AB]Π
[AB]l + 8α′√−gΠ j

[AB]g
k0gslΩ

[AB]
ks +

+
(
−4α′√−g

)2 (
gk0gsjΩ[AB]ks

) (
gp0gtlΩ

[AB]
pt

)]
+

+
(
−4α′√−g

) [(
−4α′√−g

)−1
gk0gijΩ[AB]ki

(
Π[AB]l + 4α′√−ggs0gtlΩ[AB]

st

)] glj
g00

+

− α′√−g
[
gijgklΩ[AB]jkΩ

[AB]
il

]}
=

=

∫
R3

d3x

{[
1

2

(
−4α′√−g

)−1 glj
g00

Π j
[AB]Π

[AB]l

]
+ 2α′√−g glj

g00

[(
gk0gijΩ[AB]ki

) (
gs0gtlΩ

[AB]
st

)]
+

− α′√−g
[
gijgklΩ[AB]jkΩ

[AB]
il

]}
(4.22)

and it doesn’t depend on the velocities anymore. We can now do the Legendre transformation
to get the Hamiltonian, i.e. H = Πω̇ − L.

H =

∫
R3

d3x

{(
−4α′√−g

)−1
Π l

[CD]

glk
g00

(
Π[CD]k − P [CD]k

)
+ ω̇

[CD]
0 Π 0

[CD]

−

[
(−4α′√−g)−1

2
Π j

[AB]Π
[AB]l + 2α′√−g

(
gk0gijω[AB]ki

) (
gs0gtlΩ

[AB]
st

)] glj
g00

+

+ α′√−ggijgklΩ[AB]jkΩ
[AB]
il

}
=

=

∫
R3

d3x

{
(−4α′√−g)−1

2
Π l

[CD]Π
[CD]k glk

g00
−
(
−4α′√−g

)−1
Π l

[CD]P
[CD]k glk

g00
+ ω̇

[CD]
0 Π 0

[CD]+

− 2α′√−g
(
gk0gijΩ[AB]ki

) (
gs0gtlΩ

[AB]
st

) glj
g00

+ α′√−ggijgklΩ[AB]jkΩ
[AB]
il

}
.

(4.23)
Since H still depends on some velocities, it is not a proper Hamiltonian. We will now follow
Dirac’s procedure to show that H doesn’t depend on the velocities on-shell and we will define
then a generalized Hamiltonian. Dirac’s reasoning goes as follows[7]. Let’s consider the variation
of the functional Πω̇ − L under an infinitesimal change in all its argument:

δ(Π µ
[CD]ω̇

[CD]
µ − L(ω, ω̇)) =

(
δΠ µ

[CD]

)
ω̇[CD]
µ +Π µ

[CD]

(
δω̇[CD]

µ

)
− δL

δω̇
[CD]
µ

δω̇[CD]
µ − δL

δω
[CD]
µ

δω[CD]
µ

= δ(Π µ
[CD])ω̇

[CD]
µ − Π̇ µ

[CD]δω
[CD]
µ ,

(4.24)
where we used both the momenta definition and the Euler-lagrange equations d

dt
δL

δω̇
[CD]
µ

= δL

δω
[CD]
µ

.

The previous equation shows that H doesn’t depend on the velocities when the equations of
motion are satisfied. In non-constrained systems one would then match the terms in Eq.(4.24)
with the (functional) derivatives of the Hamiltonian to get the canonical Hamilton’s equations.
However, when constraints are present, the variation of the fields are no longer independent.
Indeed, consider a general constraint of the general form ϕ(ω,Π) = 0. Then it follows:

δϕ

δω
[CD]
µ

δω[CD]
µ +

δϕ

δΠ µ
[CD]

δΠ µ
[CD] = 0, (4.25)
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which shows that the variation are no longer independent. Now we can compare the variation
in Eq.(4.24) with the variation of the Hamiltonian plus an arbitrary function of spacetime u
(actually it will be defined on the researcher frame) multypling the identity in Eq.(4.25). We
find:

δ(Π µ
[CD])ω̇

[CD]
µ − Π̇ µ

[CD]δω
[CD]
µ = δH + u

(
δϕ

δω
[CD]
µ

δω[CD]
µ +

δϕ

δΠ µ
[CD]

δΠ µ
[CD]

)
, (4.26)

which shows that the Hamilton’s equations of motion are given by:

ω̇[CD]
µ =

δH

δΠ µ
[CD]

+ u
δϕ

δΠ µ
[CD]

,

Π̇ µ
(CD) = − δH

δω
[CD]
µ

− u
δϕ

δω µ
[CD]

.

(4.27)

We then define the total Hamiltonian to be:

HT := H(ω,Πk) + uϕ(ω,Π), (4.28)

where Πk stands for the uncostrained momenta. Notice that HT is on-shell equivalent to the
original Hamiltonian that depends on the velocities. We can now rewrite the equations of motion
in terms of Poisson brackets, namely:

ω̇[CD]
µ =

{
ω[CD]
µ , HT

}
, Π̇ µ

[CD] =

{
Π µ

[CD], HT

}
. (4.29)

For our theory the constraints are ϕ[CD] = Π 0
[CD] = 0, which shows that our total Hamiltonian

is given by:

HT =

∫
R3

d3x

{
(−4α′√−g)−1

2
Π l

[CD]Π
[CD]k glk

g00
−
(
−4α′√−g

)−1
Π l

[CD]P
[CD]k glk

g00
+

− 2α′√−g
(
gk0gijΩ[AB]ki

) (
gs0gtlΩ

[AB]
st

) glj
g00

+ α′√−ggijgklΩ[AB]jkΩ
[AB]
il

}
+

u[CD] · ϕ[CD],

(4.30)

where the last term stands for all the Lagrange multipliers and constraints that will arise during
the analysis of the primary constraints above. The e.o.m. are given by Eq.(4.29). From the
Hamiltonian one can already see a potential problem of our theory. Notice that we can rewrite
the first two terms in Eq.(4.30) as:∫

R3

(
−4α′√−g

)−1 glk
g00

[(
Π l

[CD] − P[CD]l

)(
Π[CD]k − P [CD]k

)
− P[CD]lP

[CD]
k

]
, (4.31)

which is the kinetic energy (first term) and the left over from completing the square (second
term). Since for pseudo-orthogonal groups the metric in Lie algebra space we use is often a
indefinite inner product, we will have kinetic instabilities in the theory, i.e. fields for which
the kinetic energy comes with the wrong sign in the total hamiltonian. Notice that there is no
indefiniteness coming from the inner product in spacetime indeces. This is due to the presence
of the primary constraints that force the timelike component of the momenta to vanish. In
the constraints analysis we will give we won’t find any constraint able to declare the kinetic
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instabilities unphysical. However, the presence of second-class constraints suggests that the
simplectic structure of phase space is not canonical and thus not all hope is gone that after
one properly identifies the physical phase space of the theory there won’t be this kind of issues.
After all, we have shown in Section 3.2 that the torsionless low energy limit of de Sitter theory
coincides with general relativity so we expect at least a portion of physical phase space to be
stable and possibly closed with respect to the evolution.

4.2 Constraints analysis

In this section we are going to study the self-consistency of the theory. In particular we are going
to verify the conditions under which the evolution preserves the primary constraints we’ve found
in the previous section. Since the constraints are given by ϕ[CD] = Π 0

[CD] = 0, the self-consistency

condition is given by ϕ̇[CD] = 0, or, equivalently:

0 ≈ ϕ̇[CD] =

{
ϕ[CD], HT

}
=

{
Π 0

[CD], HT

}
= − δHT

δω
[CD]
0

. (4.32)

We will solve the previous equation first for non-tetrad fields and then for the tetrad.

4.2.1 Secondary constraints for non-tetrad fields

Focusing on the non-tetrad fields, it is evident that the only contribution to Eq.(4.32) comes
from the second term in Eq.(4.30), i.e.(

−4α′√−g
)−1

Π l
[CD]

glk
g00

P [CD]k =Π i
[CD]

(
−∂iω[CD]

0 + ω
[C
A]0ω

[AD]
i − ω

[C
A]iω

[AD]
0

)
+

+ gm0gikΩ
[CD]
mi

glk
g00

Π l
[CD].

(4.33)

Here, and everywhere in this subsection, the indeces [C,D] stand for non-tetrad fields only. Since

Ω
[CD]
ki doesn’t depend on ω

[CD]
0 , only the first line actually contributes. The secondary constraint

for non tetrad fields is then (after one integration by part and dismissing boundary terms):

0 ≈ − δHT

δω
[CD]
0

= DiΠ
i

[CD] ≡
[
∂iΠ

i
[CD] +Π i

[CA]ω
A]

[D i − ω
[A
C]iΠ

i
[AD]

]
, (4.34)

which corresponds to a generalized Gauss law. Notice that the adjective generalized stands both
for the generalized ”electric field” (Ω(CD)0i), that one has because the gauge theory is not abelian,
and the generalized canonical momenta which is a non-trivial combination of generalized electric
and magnetic fields if the metric tensor has non-zero components of the kind gi0 (for example
Kerr’s Black Holes), and it is this combination that is source-free in the vacuum. Notice that
this is not a consequence of the geometrical nature of the theory but it comes from the fact that
our fields have support on arbitrary Lorentzian manifold and not on Minkowski spacetime. It
will follow a second constraints analysis as in Eq.(4.32).

4.2.2 Secondary constraints for tetrad fields

Since the metric tensor depends on the tetrad fields, the identification of the secondary constraints
will take more efforts than for the non-tetrad case. Notice that we can decompose the variation
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of the Hamiltonian with respect to the tetrad as follows:

δHT

δeaγ
=
δHT

δgµν
∂gµν

∂eaγ
+
δHT

δeaγ

∣∣∣∣
gµν fixed

. (4.35)

The second term is the same one would have for the other gauge connection (in the following we
assume ea = ω[·a]). It follows that we have:

δHT

δea0

∣∣∣∣
gµν fixed

= −DiΠ
i

[·a]. (4.36)

The variation with respect to gµν is quite involved, we will tackle the problem in several
steps. Let us introduce the following notation (compare with Eq.(4.15)):

P̃ l
[CD] =

(
−4α′√−g

)−1
P l
[CD] =M il

(
−∂iω[CD]0 + ω[CA]0ω

[A
D]i − ω[CA]iω

[A
D]0

)
+ gk0gilΩ[CD]ki.

(4.37)
Then we have:

δHT

δgµν
=

∫
R3

d3x

{
δ (−4α′√−g)−1

δgµν
1

2

glk
g00

Π l
[CD]Π

[CD]k +
(
−4α′√−g

)−1 1

2

δ glkg00

δgµν
Π l

[CD]Π
[CD]k+

−Π l
[CD]

δ glkg00

δgµν
P̃ [CD]k −Π l

[CD]

glk
g00

δP̃ [CD]k

δgµν
− δ (2α′√−g)

δgµν
(
gk0gijΩ[AB]ki

) (
gs0gtlΩ

[AB]
st

) glj
g00

+

−
(
2α′√−g

)
2
δ
(
gk0gij

)
δgµν

Ω[AB]ki

(
gs0gtlΩ

[AB]
st

) glj
g00

−
(
2α′√−g

) (
gk0gijΩ[AB]ki

) (
gs0gtlΩ

[AB]
st

) δ gljg00
δgµν

+

+
δα′√−g
δgµν

gijgklΩ[AB]jkΩ
[AB]
il + α′√−g

δ
(
gijgkl

)
δgµν

Ω[AB]jkΩ
[AB]
il

}
=

=

∫
R3

d3x

{[
(−4α′√−g)−2

(−4α′)

−2

glk
g00

Π l
[CD]Π

[CD]k − 2α′ (gk0gijΩ[AB]ki

) (
gs0gtlΩ

[AB]
st

) glj
g00

+

+ α′gijgklΩ[AB]jkΩ
[AB]
il

]
δ
√
−g

δgµν
+

+

[
(−4α′√−g)−1

2
Π l

[CD]Π
[CD]j −Π l

[CD]P̃
[CD]j − 2α′√−g

(
gk0gijΩ[AB]ki

) (
gs0gtlΩ

[AB]
st

)] δ gljg00
δgµν

+

−Π l
[CD]

glk
g00

δP̃ [CD]k

δgµν
+
(
−4α′√−g

) δ (gk0gij)
δgµν

Ω[AB]ki

(
gs0gtlΩ

[AB]
st

) glj
g00

+

+ α′√−g
δ
(
gijgkl

)
δgµν

Ω[AB]jkΩ
[AB]
il

}
.

(4.38)
We will now provide some useful intermediate formulas. Introduce the notation Dρσ

µν ≡ δρ(µδ
σ
ν)

so that we can write:
δgαβ(x)

δgµν(y)
= Dαβ

µνδ(x− y). (4.39)
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We omit the delta Dirac for convenience.

δ
√
−g

δgµν
= −1

2
gµν

√
−g,

δM il

δgµν
= gilD00

µν + g00Dil
µν − gl0Di0

µν − gi0Dl0
µν ,

δ
(
gαβgρσ

)
δgµν

= Dαβ
µνg

ρσ +Dρσ
µνg

αβ ,

δ glkg00

δgµν
= −

gl(µgν)k

g00
− glk

(g00)
2D

00
µν .

(4.40)

Plugging this formulas into Eq.(4.38) one gets the variation of HT with respect to the metric
tensor in a completely generic pseudo-orthogonal Yang-Mills theory (not even geometric). How-
ever, let us first contract Eq.(4.40) with the variations of the metric tensor with respect to the
tetrad which is:

δgµν

δeaγ
= −gµγe ν

a − gνγe µ
a . (4.41)

In this way the computation will be a little bit shorter. We get:

δ
√
−g

δe 0
a

=
1

2

√
−ggµν

(
2gµ0e ν

a

)
=

√
−ge 0

a ,

δM il

δe 0
a

=−
(
gilD00

µν + g00Dil
µν − gl0Di0

µν − gi0Dl0
µν

) (
gµ0e ν

a + gν0e µ
a

)
=

=−
[
gil
(
2g00e 0

a

)
+ g00

(
gi0e l

a + gl0e i
a

)
− gl0

(
gi0e 0

a + g00e i
a

)
− gi0

(
gl0e 0

a + g00e l
a

) ]
=

=− 2
[
g00gil − gl0gi0

]
e 0
a −

(
g00gi0 − gi0g00

)
e l
a +

(
gl0g00 − gl0g00

)
e i
a =

=− 2M ile 0
a ,

δ
(
gαβgρσ

)
δe 0
a

=−
[(
gα0e β

a + gβ0e α
a

)
gρσ +

(
gρ0e σ

a + gσ0e ρ
a

)
gαβ
]
,

δ glkg00

δe 0
a

=+ 2g00e 0
a

glk

(g00)
2 +

1

2
(glµgνk + glνgµk)

(
gµ0e ν

a + gν0e µ
a

)
= 2

glk
g00

e 0
a .

(4.42)
Comparing this formula with Eq.(4.37) we get:

δP̃ l
[CD]

δgµν
δgµν

δe 0
a

=
δM il

δe 0
a

(
−∂iω[CD]0 + ω[CA]0ω

[A
D]i − ω[CA]iω

[A
D]0

)
+
δgk0gil

δe 0
a

Ω[CD]ki =

=
(
−∂iω[CD]

0 + ω[CA]0ω
[A
D]i − ω[CA]iω

[A
D]0

) (
−2M ile 0

a

)
+

− Ω[CD]ki

(
gk0gile 0

a + g00gile k
a + gk0gi0e l

a + gk0gl0e i
a

)
=
(
−∂iω[CD]

0 + ω[CA]0ω
[A
D]i − ω[CA]iω

[A
D]0

) (
−2M ile 0

a

)
+

− Ω[CD]ki

(
gk0gile 0

a + g00gile k
a + gk0gl0e i

a

)
,

(4.43)

where we used the antysymmetry of Ω in the spacetime indeces. Before contracting with glm
g00 we
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will show these useful identities (compare with Eq.(4.16)):

glmg
k0gil = δimg

k0 − gi0g0mg
k0,

g00gilglm = g00δim − g00gi0g0m,

gk0glmg
l0 = −gk0g00g0m.

(4.44)

We find:

glm
g00

δP̃ l
[CD]

δgµν
δgµν

δe 0
a

=2δim

(
∂iω

[CD]
0 − ω[CA]0ω

[A
D]i + ω[CA]iω

[A
D]0

)
e 0
a +

+
Ω

[CD]
ki

−g00
[(
δimg

k0 − gi0g0mg
k0
)
e 0
a + g00

(
δim − gi0g0m

)
e k
a − g00gk0g0me

i
a

]
=

=2δim

(
∂iω

[CD]
0 − ω[CA]0ω

[A
D]i + ω[CA]iω

[A
D]0

)
e 0
a −

Ω
[CD]
ki

g00
[(
gk0e 0

a + g00e k
a

)
δim

]
;

(4.45)

Π m
[CD]

glm
g00

δP̃ l
[CD]

δgµν
δgµν

δe 0
a

= 2Π i
[CD]

(
∂iω

[CD]
0 − ω[CA]0ω

[A
D]i + ω[CA]iω

[A
D]

)
e 0
a −

Ω
[CD]
ki Π i

[CD]

g00
(
gk0e 0

a + g00e k
a

)
.

(4.46)
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Now we can plug all the intermediate steps into Eq.(4.38) to get:

δHT

δea0
=

{[
(−4α′√−g)−2

(−4α′√−g)
−2

glk
g00

Π l
[CD]Π

[CD]k − 2α′√−g
(
gk0gijΩ[AB]ki

) (
gs0gtlΩ

[AB]
st

) glj
g00

+

+ α′√−ggijgklΩ[AB]jkΩ
[AB]
il

]
e 0
a +

+

[
(−4α′√−g)−1

2
Π l

[CD]Π
[CD]j −Π l

[CD]P̃
[CD]j − 2α′√−g

(
gk0gijΩ[AB]ki

) (
gs0gtlΩ

[AB]
st

)](
2
glj
g00

e 0
a

)
+

−DiΠ
i

[·a] − 2Π i
[CD]

(
∂iω

[CD]
0 − ω

[C
A]0ω

[A
D]i + ω

[C
A]iω

[A
D]0

)
e 0
a +

Ω
[CD]
ki Π i

[CD]

g00
(
gk0e 0

a + g00e k
a

)
+

−
(
−4α′√−g

)
Ω[AB]ki

(
gs0gtlΩ

[AB]
st

) (
gk0gije 0

a + g00gije k
a + gk0gi0e j

a + gk0gj0e i
a

) glj
g00

+

− α′√−g
[(
gi0e j

a + gj0e i
a

)
gkl +

(
gk0e l

a + gl0e k
a

)
gij
]
Ω[AB]jkΩ

[AB]
il

}
=

=

{[
− (−4α′√−g)−1

2
Π l

[CD]Π
[CD]k glk

g00
− 2α′√−g

(
gk0gijΩ[AB]ki

) (
gs0gtlΩ

[AB]
st

) glj
g00

+

+ α′√−ggijgklΩ[AB]jkΩ
[AB]
il + 2

glj
g00

(
(−4α′√−g)−1

2
Π l

[CD]Π
[CD]j −Π l

[CD]P̃
[CD]j+

− 2α′√−g
(
gk0gijΩ[AB]ki

) (
gs0gtlΩ

[AB]
st

))
− 2Π i

[CD]

(
∂iω

[CD]
0 − ω

[C
A]0ω

[AD]
i + ω

[C
A]iω

[AD]
0

)
+

+Ω
[CD]
ki Π i

[CD]

gk0

g00
−
(
−4α′√−g

)
gk0Ω[AB]kl

(
gs0gtlΩ

[AB]
st

)]
e 0
a +

−DiΠ
i

[·a] +Ω
[CD]
ki Π i

[CD]e
k
a − (−4α′√−g)

g00
Ω[AB]ki

(
gs0gtlΩ

[AB]
st

)[
e k
a g

00
(
δi l − gi0g0l

)
− gk0g00g0le

i
a

]
+

− α′√−g
[(
gi0e j

a + gj0e i
a

)
gkl +

(
gk0e l

a + gl0e k
a

)
gij
]
Ω[AB]jkΩ

[AB]
il

}
=

=

{
−DiΠ

i
[·a] +

[
Ω

[CD]
ki Π i

[CD] −
(
−4α′√−g

)
Ω[AB]kl

(
gs0gtlΩ

[AB]
st

)]
e k
a +

− α′√−g
[(
gi0e j

a + gj0e i
a

)
gkl +

(
gk0e l

a + gl0e k
a

)
gij
]
Ω[AB]jkΩ

[AB]
il +

+ e 0
a

[
(−4α′√−g)−1

2
Π l

[CD]Π
[CD]j glj

g00
− 6α′√−g

(
gk0gijΩ[AB]ki

) (
gs0gtlΩ

[AB]
st

) glj
g00

+

+ α′√−ggijgklΩ[AB]jkΩ
[AB]
il − Ω

[CD]
ki Π i

[CD]

gk0

g00
−
(
−4α′√−g

)
gk0Ω[AB]kl

(
gs0gtlΩ

[AB]
st

)]}
=

=

{
−DiΠ

i
(·a) +

[
Ω

(CD)
ki Π i

(CD) −
(
−4α′√−g

)
Ω(AB)kl

(
gs0gtlΩ

(AB)
st

)]
e k
a +

− α′√−g
[(
gi0e j

a + gj0e i
a

)
gkl +

(
gk0e l

a + gl0e k
a

)
gij
]
Ω[AB]jkΩ

[AB]
il +

+ e 0
a

[
(−4α′√−g)−1

2
Π l

[CD]Π
[CD]j glj

g00
− 2α′√−g

(
gk0gijΩ[AB]ki

) (
gs0gtlΩ

[AB]
st

) glj
g00

+

+ α′√−ggijgklΩ[AB]jkΩ
[AB]
il − Ω

[CD]
ki Π i

[CD]

gk0

g00

]}
≈ 0.

(4.47)
These are the secondary constraints associated to the tetrad fields. The generalized electric field
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for the tetrad obeys a very generalized Gauss law and it is not source-free in the vacuum. In
deriving the previous equation we used the following result:

Π m
[CD]

glk
g00

P̃ [CD]l = Π i
[CD]

(
−∂iω[CD]

0 + ω
[C
A]0ω

[AD]
i − ω

[C
A]iω

[AD]
0

)
+
gk0
(
δim − gi0g0m

)
g00

Π m
[CD]ω

[CD]
ki =

= Π i
[CD]

(
−∂iω[CD]

0 + ω
[C
A]0ω

[AD]
i − ω

[C
A]iω

[AD]
0

)
+
gk0

g00
Π i

[CD]Ω
[CD]
ki .

(4.48)

4.2.3 Analysis of secondary constraints

The goal of this subsection is to study the secondary constraints of the theory, establish their
class and see if they bring new constraints or not. We start with non-tetrad fields. Notice that
we can rewrite the secondary constraints in Eq.(4.34) as:

ϕ
(2)
[AB] = ∂iΠ

i
[AB] +

1

2
c[LM ][NQ][AB]ω

[LM ]
i Π[NQ]i, (4.49)

where we used:
1

2
c[CD][EF ][AB]A

[CD]B[EF ] = A[AC]B
[C
B] −A[BC]B

[C
A]. (4.50)

Before computing the Poisson brackets as in Eq.(4.32), we give two important property concern-
ing the delta Dirac and its derivatives:

[f(y)− f(x)] ∂xδ(x− y) = f ′(x)δ(x− y), (4.51)

∂xδ(x− y) + ∂yδ(x− y) = 0, (4.52)

which are to be intendend in the distributional sense. We will know prove them against well-
behaved test functions of both x and y.∫
dy g(y) [f(y)− f(x)] ∂xδ(x− y) = ∂x

(∫
dy g(y) [f(y)− f(x)] δ(x− y)

)
+

∫
dy g(y)f ′(x)δ(x− y) =

=

∫
dy g(y)f ′(x)δ(x− y);

(4.53)∫
dx g(x) [f(y)− f(x)] ∂xδ(x− y) =

∫
dx {∂x [g(x) (f(y)− f(x)) δ(x− y)]− ∂x [g(x) (f(y)− f(x))] δ(x− y)} =

=

∫
dxf ′(x)g(x)δ(x− y)−

∫
dxg′(x) (f(y)− f(x)) δ(x− y) =

=

∫
dxf ′(x)g(x)δ(x− y).

(4.54)
In this way we proved Eq.(4.51), now we go on with the second property. Notice that since
Eq.(4.52) is symmetric in x and y, we just need to prove it once.∫

dx f(x) [∂xδ(x− y) + ∂yδ(x− y)] = −
∫
dx f ′(x)δ(x− y) + ∂y

∫
dx f(x)δ(x− y) =

= −f ′(y) + f ′(y) = 0,

(4.55)

so that we concluded our proof.
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We will now establish the class of these constraints. In order to do so we need to compute the

Poisson brackets between the constraints. It is evident that Eq.(4.49) doesn’t depend on ω
[AB]
0 .

This implies that the Poisson brackets between primary and secondary constraints vanish. We
will now compute the Poisson brackets between secondary constraints:{
ϕ
(2)
[AB](x), ϕ

(2)
[CD](y)

}
=

{
∂xi Π

i
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y
jΠ

j
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}
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2
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+
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2
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ω
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+
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+
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(4.56)
where we used the total antisymmetry of the structure constants, the Jacobi identity and
Eqs(4.51)-(4.52).

It follows that the secondary constraints for non-tetrad fields are second-class in general. In
particular, we find that Eq.(4.56) doesn’t vanish in the following cases:

• if [AB] = [−1, b] and [CD] = [−1, 4];

• if [AB] = [ab] and [CD] = [·d].

Before computing the self-consistency condition for tetrad fields, we provide the following nota-
tion:

ϕ
(2) Gauss
[·a] ≡ DiΠ

i
[·a], (4.57)

ϕ
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(4.58)
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The self-consistency conditions for non-tetrad secondary constraints are:{
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(4.59)
We will carry on the computation in several steps for the sake of clarity. We find (compare with
Eq.(B.9)):
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Putting all together we finally find:{
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(4.63)
There are no new constraints associated with the non-tetrad fields. Indeed, they provide restric-
tions on the choice of the arbitrary functions u(2)[CD] for [CD] being as mentioned above. Notice
that the arbitrary functions of spacetime related to the Lorentzian Gauss Law are still free. It
happens because, as one can see from the structure constants of pseudo-orthogonal groups and
Eq.(4.63), their self-consistency condition fixes the functions u(2)[·d]. This reflects the property
of geometric gauge theories which are in general symmetric only with respect to the subgroup
of the total gauge group that leaves the metric tensor invariant. In our case it is clear from
the gauge transformation of the tetrad-connection fields that this subgroup corresponds to the
Lorentz group.

We now proceed with the tetrad secondary constraints. Since ϕ
(2) source
[·a] depends on the
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metric, it also depends on ω
[·a]
0 ≡ ea0. In particular, we find:{

ϕ
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[·b]

}
̸≈ 0, (4.64)

which gives for their self-consistency conditions:∫
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}
≈ 0. (4.65)

It follows that these four equations will fix the four arbitrary functions u(1)[·a].
In conclusion, we have shown that the secondary constraints of the theory don’t generate

any new constraint on phase space. The self-consistency conditions provide equations for the
arbitrary functions u in the Hamiltonian in the following sense:

• Eq.(4.63) for [−1, 4] relates the functions u(2)[−1a] (or u(2)[4a] if [·a] = [−1a]);

• Eq.(4.63) for [−1a] (or [4a] if [·a] = [−1a]) fixes the function u(2)[−1,4];

• Eq.(4.63) for [ab] fixes the functions u(2)[·a];

• Eq.(4.65) for [·a] fixes the functions u(1)[·b].

The only arbitrary Lagrange multipliers we are left with are the ones corresponding to the Lorentz
group. Once again we find that the gauge symmetry of our theory, and in particular of its
phase space, is given in general by the Lorentz subgroup. We can now consider the Hamiltonian
definition as complete and self-consistent with respect to the action formalism provided in Section
3.1. We have shown that the Hamiltonian formalism breaks coordinate invariance of the theory
but not of the dynamics, since it can be proved (by means of an exhausting computation)
that the equations of motion obtained by variation of the action in Eq.(3.9) are the same one
gets from the simplectic structure in Eq(4.29), in particular they are covariant with respect to
change of coordinates. The kinetic energy in Eq.(4.31) shows that there are no Ostrogradski
kind of instabilities but the non-compact nature of pseudo-orthogonal groups gives rise to kinetic
instabilities. We have established the presence of primary and secondary constraints on phase
space which are both first and second-class. In order to solve the constraints3 it will be necessary
the introduction of the Dirac bracket. After the Dirac procedure is complete, one will have
defined the physical phase space of the theory on which the Dirac brackets will impose a non-
canonical simplectic geometry. The next step would then be to start the process of canonical
quantization. The classical kinetic instabilities should turn in unitarity problems of the quantum
theory. Perhaps, constraining the Lie algebra norm of the physical momenta to be definite
positive throughout evolution could show that at least a portion of phase space is stable.

Notice that most of the reasoning of this chapter could be used, by properly adapting the
notation, to describe the Hamiltonian of any Yang-Mills theory in curved spacetime. Indeed,
a lot of the formulas we used as intermediate steps don’t require the presence of the gauge
theoretical metric. It is the introduction of the gauge tetrad fields that complicates the structure
of phase space. Even in curved spacetime and with a dynamical metric, one can use our formulas
to convince themselves that the primary and secondary constraints would be all first class. In
the case of compact Yang-Mills theories (i.e. with compact gauge group G), the Hamiltonian
formalism we provided is already complete. This is because the compactness of the gauge group

3By solving the constraints we mean using the relations ϕ[CD] in order to express the dynamics only in terms
of physical variables
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allows us to define a gauge invariant and positive definite inner product in Lie algebra space.
Moreover, since the constraints would all be first class, they can be immediately solved and
taking the quotient of what’s left of phase space with respect to the gauge transformations one
can immediately define the physical phase space of the theory. In particular, one can do it also
in the presence of the Hilbert action in the Palatini formalism by adapting the notation we used
throughout this chapter. We believe that the reasoning applied throughout this final chapter
could be very useful in the general setting of being able to provide a Hamiltonian treatment for
generic Yang-Mills theories (as the Standard Model) in dynamical spacetime without using the
well-known ADM decomposition.
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Conclusion

The main goal of this thesis was to reformulate general relativity in the context of Yang-Mills
theories. Indeed, it is well-known that Einstein’s theory suffers from singularity problems (see
[5]) and it is been proved that the theory is not renormalizable (see [1] for a review). Knowing
that gravity can be formulated as an effective field theory[2], we showed that it is possible to
formulate GR as a constrained version of some more general theory in its low energy limit.

Throughout this thesis we have shown the intimate relation between pseudo-orthogonal Yang-
Mills gauge fields and gravitational theories. In order to introduce a gauge theoretical cotetrad
fields, we have developed a new class of theories, geometrical Yang-Mills theories. Defining the
metric through these particular gauge fields requires the introduction of a mass parameter which
will take the role of a gauge theoretical Planck mass. The geometrical action one obtains will be
generically invariant only with respect to the Lorentz subgroup. However, we have shown that
the invariant subgroup can be extended, for instance for Wheeler-Trujillo gravity[8] this also
includes local dilations. The equations of motion one obtains are the standard curved spacetime
generalization of the well-known Yang-Mills equations. In the case of the tetrad fields, one sees
that these fields are sourced in the vacuum by a energy-momentum tensor related to the field
strength of our gauge connection.

The main result of the thesis is the de Sitter gauge theory we developed in Section 3.2. The
tosionless low energy limit of the theory coincides with general relativity with the appearance of
a positive gauge theoretical cosmological constant. This result allows us to consider Einstein’s
theory of gravity as part of a more general Lorentz invariant de Sitter Yang-Mills theory. We
argue that the theory might be renormalizable since the vertex structure of the theory is essen-
tially the same as ordinary flat-space Yang-Mills theories. However, since we studied arbitrary
curved spacetimes, there could be new counterterms associated to the non-trivial geometry of
the spacetime as in Subsection 2.2.2. We believe that this counterterms could be added to the
theory using our geometrical Yang-Mills formalism, so that they shouldn’t provide any Ostro-
gradsky instability as we have shown in Chapter 4. Using the conformal group as gauge group,
we have shown that one can use our formalism to recover Weyl squared gravity, which is needed
to provide the necessary counterterms to the curved spacetime generalizations of standard renor-
malizable flat-space theories (such as quartic scalar field theory). These results inspire us to say
that geometrical Yang-Mills theories could be an useful formulation of gravitational theories in
general.

We provided the first steps towards canonical quantization ([, ] = iℏ{, }) building the Hamil-
tonian and studying the phase space of the theory. Since pseudo-orthogonal groups are non-
compact Lie groups, the Killing form we use in Lie algebra space gives rise to an indefinite inner
product. This means that some fields will pick the wrong sign in the kinetic energy and they
could generate instability problems in the theory. However, as one can see from the kinetic
energy of the theory, there is no sign of Ostrogradsky instabilities in the theory at hand, as
we originally expected since Yang-Mills theories consider the Riemann squared term in the first
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order formalism. As it is usually the case with gauge theories, we find both primary and sec-
ondary constraints. They are both first and second-class constraints and their self-consistency
conditions reduce the gauge redundancy in phase space to the Lorentz subgroup of our original
gauge group. Once again we see that the introduction of the gauge cotetrad fields reduces the
original gauge symmetry of the theory. There are no new constraints arising in phase space and
thus the Hamiltonian we provide is complete.

The natural next step of this research would be to try to solve the kinetic issue we have
discussed above. The presence of second-class constraints shows that one need the formalism of
Dirac brackets to properly solve the constraints without changing the dynamics. The simplectic
geometry one would find at the end of this process will in general be different from the standard
one given by canonical Poisson brackets. The hope is that, after one is able to solve the constraints
using Dirac’s procedure and to properly identify physical phase-space taking the quotient with
respect to the residual gauge symmetry, the unstable fields would turn unphysical or harmless at
least. The hope is that gauge symmetry will prevent these classical instabilities from developing.
Another possible solution would be to start the process of canonical quantization using the
Hamiltonian and simplectic structure we provided. On the Hilbert space of states one can then
find a way to keep the ghost fields (i.e. the quantum analogous of the classical kinetic instability)
away from the dynamics resulting in a unitary S-matrix. If this is done without spoiling the
symmetry of the theory, the procedure should provide a self-consistent gauge invariant quantum
theory for which the correspondence with general relativity is established at the classical level.
In the end, one could also study the effect of the Riemann squared term in de Sitter gauge
gravity in situations for which it is natural to expect a curvature of the same order of magnitude
of the Planck mass. This could give interesting contributions expecially in regions of spacetime
close to GR singularities, perhaps preventing their formation or modifying the structure of event
horizons.

In conclusion, we provided a new formalism for which interesting results can be found in the
context of gravitational theoires. We have showed another way of deriving general relativity out
of the geometrical gauge principle and we have provided a consistent Hamiltonian framework
suitable for any Yang-Mills theory in dynamical curved spacetime.
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Appendix A

Pseudo-orthogonal groups and
bundles

A.1 Pseudo-orthogonal groups

In this section we are going to define pseudo-orthogonal groups and study their properties.
Consider the vector space RN equipped with the following metric (in the canonical cartesian
basis):

η = diag(−1, ..,−1︸ ︷︷ ︸
S

,+1, ...,+1︸ ︷︷ ︸
T

), (A.1)

with S + T = N . This inner product turns RN into the (pseudo-)normed vector space RS,T
(for S = 1 and T = 3 we get Minkowski space time). We define the (fundamental rep of the)
pseudo-orthogonal group O(S, T ) as the set of transformations on RS,T that leave the inner
product η(X,Y ) invariant, X,Y ∈ RS,T , i.e. η(Λ · X,Λ · Y ) = η(X,Y ), Λ ∈ O(S, T ). It
can be proved that pseudo-orthogonal groups are Lie groups. It seems then natural to look
at transformations infinitesimally close to the identity in order to identify their generators, i.e.
Λab = δab + αMa

b +O(α2). We get:

η(X,Y ) = ηABX
AY B → ηABX

AY B + α
[
ηABM

A
CX

CY B + ηABX
AMB

CY
C
]
+O(α2) =

= ηABX
AY B + αXCY B [MBC +MCB ] +O(α2),

⇒MBC = −MCB .
(A.2)

Here and throughout this appendix capital latin indeces run from −S+1, ..., 0, ..., T . The previous
result shows that the generators of the pseudo-orthogonal group O(S, T ) are given by N × N

antisymmetric matrices (when one index is lowered as in Eq.(A.2)). There are then N(N−1)
2

linearly independent generators which are given by:

(MAB)
I
J = δIAηBJ − δIBηAJ . (A.3)

Notice that MAB = −MBA so that from now on we will write M[AB] for the pseudo-orthogonal
generators. In the following we will consider only the proper-orthochronus pseudo-orthogonal
group (i.e. the part of O(S, T ) which is connected to the identity), so that with the exponential
map (compare with Def.1.1.2) we can recover the whole group.
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Now we are ready to study the commutators between the elements of the pseudo-orthogonal
Lie algebra. We compute:([
M[AB],M[CD]

])I
K

=
(
M[AB]

)I
J

(
M[CD]

)J
K
−
(
M[CD]

)I
J

(
M[AB]

)J
K

=

=
(
δIAηBJ − δIBηAJ

) (
δJCηDK − δJDηCK

)
−
(
δICηDJ − δIDηCJ

) (
δJAηBK − δJBηAK

)
=

=
(
δIAηBCηDK − δIAηBDηCK − δIBηACηDK + δIBηADηCK

)
+

−
(
δICηDAηBK − δICηDBηAK − δIDηCAηBK + δIDηCBηAK

)
=

=
(
M[AD]

)I
K
ηBC −

(
M[AC]

)I
K
ηBD −

(
M[BD]

)I
K
ηAC +

(
M[BC]

)I
K
ηAD =

=
[
∆

[EF ]
[AD]ηBC −∆

[EF ]
[AC]ηBD −∆

[EF ]
[BD]ηAC +∆

[EF ]
[BC]ηAD

]
(MEF )

I
K ≡

≡c [EF ]
[AB][CD]

(
M[EF ]

)I
K
,

(A.4)
where we introduced the identity in antisymmetric

(
0
2

)
tensor space, i.e.

∆
[AB]
[CD] =

1

2

(
δACδ

B
D − δADδ

B
C

)
. (A.5)

Having identified the structure constants of the pseudo-orthogonal algebra we can now compute
the Killing metric for this Lie algebra as in Eq.(1.22), namely:

G[AB][CD] =c
[EF ]

[AB][LM ] c
[LM ]

[CD][EF ] =

=
[
ηBL∆

[EF ]
[AM ] + ηAM∆

[EF ]
[BL] + ηBM∆

[EF ]
[LA] + ηAL∆

[EF ]
[MB]

]
·

·
[
ηDE∆

[LM ]
[CF ] + ηCF∆

[LM ]
[DE] + ηDF∆

[LM ]
[EC] + ηCE∆

[LM ]
[FD]

]
=

=2(N − 2) [ηBCηDA − ηBDηCA]

(A.6)

Moreover we can also verify that this metric satisfies Eq.(1.24), indeed we have:

c
[EF ]

[AB][CD] G[EF ][LM ] = −c [EF ]
[AB][LM ] G[EF ][CD]. (A.7)

To prove it we first inspect the LHS:

c
[EF ]

[AB][CD] G[EF ][LM ] =2(N − 2)
(
ηBC∆

[EF ]
[AD] + ηAD∆

[EF ]
[BC] + ηBD∆

[EF ]
[CA] + ηAC∆

[EF ]
[DB]

)
·

· (ηFLηEM − ηFMηEL) =

=2(N − 2)

[
ηBC (ηMAηLD − ηMDηLA) + ηAD (ηMBηLC − ηMCηLB)+

− ηBD (ηMAηLC − ηMCηLA)− ηAC (ηMBηLD − ηMDηLB)

]
=

=2(N − 2)

[
ηBCηMAηLD − ηBCηMDηLA + ηADηMBηLC − ηADηMCηLB+

− ηBDηMAηLC + ηBDηMCηLA − ηACηMBηLD + ηACηMDηLB

]
.

(A.8)
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The RHS is found by swapping [LM ] ↔ [CD] in the previous equation.

c
[EF ]

[AB][LM ] G[EF ][CD] =2(N − 2)

[
ηBLηDAηCM − ηBLηDMηCA + ηAMηDBηCL − ηAMηDLηCB+

− ηBMηDAηCL + ηBMηDLηCA − ηALηDBηCM + ηALηDMηCB

]
=

=− c
[EF ]

[AB][CD] G[EF ][LM ],

(A.9)
which proves the claim.

A.2 Pseudo-orthogonal bundles

Throughout this section we will fix a manifold M and a principal SO(S, T )-bundle P →M . We
introduce a connection 1-form ωωω on P and we expand it in the basis of so(S, T ) in Eq.(A.3).

ωωω =
1

2
ω[AB] ⊗M[AB], (A.10)

where the 1/2 in front is necessary to avoid overcounting. As in Subsection1.2 we consider
the adjoint bundle Ad(P ). In particular, we will consider the commutator between twisted
differential forms (AAA = 1

2A
[AB] ⊗MAB , A

[AB] ∈ Ωk(P )). We find:

[AAA,BBB] =
1

4
A[AB] ∧B[CD] ⊗

[
M[AB],M[CD]

]
=

=
1

4
A[AB] ∧B[CD] ⊗

(
η[BC]M[AD] + η[AD]M[BC] + ηDBMCA + ηACMDB

)
=

=
1

2

(
A

[A
C] ∧B

[CB] −A
[B
C] ∧B

[CA]
)
⊗M[AB].

(A.11)

Using Def.1.2.11 we find the curvature associated with ωωω.

ΩΩΩ = dωωω +
1

2
[ωωω,ωωω] =

=
1

2

[
dω[AB] + ω

[A
C] ∧ ω

[CB]
]
⊗M[AB].

(A.12)

We also compute the covariant derivative on twisted forms.

dωωωAAA = dAAA+ [ωωω,AAA] =

=
1

2

[
dA[AB] + ω

[A
C] ∧A

[CB] − ω
[B
C] ∧A

[CA]
]
.

(A.13)
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Appendix B

Useful formulas

B.1 Commutators and covariant exterior derivatives for
the conformal group

Here we will give some of the formulas that we will frequently be using in Section 3.3.
Often we will need to compute the commutator of differential forms twisted with elements of

so(2, 4), i.e. (A = Ai ⊗ ei, B = Bj ⊗ ej)

[A,B] := Ai ∧Bj ⊗ [ei, ej ] . (B.1)

In the following we will write:

A =
1

2
Aab ⊗Ma

b +AaP ⊗ Pa +AaK ⊗Ka +A⊗D =

=
1

2
AAB ⊗MAB

(B.2)

and analogously for B. Comparing Eq.(B.2) with Eq.(3.55) we can write:

1

2
AAB ⊗MAB =

1

2

[
Aab ⊗Mab +A−14 ⊗D +A−1b ⊗

(
Pb −Kb

2

)
−A4−1 ⊗D −A4b ⊗

(
Pb +Kb

2

)]
=

=
1

2
Aab ⊗Mab +A−14 ⊗D +

A−1b −A4b

4
⊗ Pb −

A−1b +A4b

4
⊗Kb,

(B.3)
which gives:

AAB =


A = a,B = b, Aab,

A = −1, B = 4 A,

A = 4, B = a − 2 (AaK +AaP ) ,

A = −1, B = a 2 (AaP −AaK) .

(B.4)

77



We can now compute:

[AAA,BBB] =
1

4
Aab ∧Bcd ⊗ [Mab,Mcd] +

1

2
Aab ∧BcP ⊗ [Mab, Pc] +

1

2
Aab ∧BcK ⊗ [Mab,Kc] +

+
1

2
AaP ∧Bcd ⊗ [Pa,Mcd] +AaP ∧BbK ⊗ [Pa,Kb] +AaP ∧B ⊗ [Pa, D] +

+
1

2
AaK ∧Bcd ⊗ [Ka,Mcd] +AaK ∧BbP ⊗ [Ka, Pb] +AaK ∧B ⊗ [Ka, D] +

+A ∧BbP ⊗ [D,Pb] +A ∧BbK ⊗ [D,Kb] =

=
1

4
Aab ∧Bcd ⊗ (ηbcMad + ηadMbc + ηdbMca + ηacMdb) +

1

2

(
Aab ∧BcP −AcP ∧Bab

)
⊗ (ηcbPa − ηcaPb)+

+
1

2

(
Aab ∧BcK −AcK ∧Bab

)
⊗ (ηbcKa − ηacKb) + 2

(
AaP ∧BbK −AbK ∧BaP

)
⊗ (ηabD −Mab)+

+ (AaP ∧B −A ∧BaP )⊗ Pa − (AaK ∧B −A ∧BaK)⊗Ka =

=Aac ∧Bcb ⊗Mab +Aab ∧BbP ⊗ Pa +AaP ∧Bab ⊗ Pb +
(
Aab ∧BbK +AbK ∧Bba

)
⊗Ka+

+ 2 (AaP ∧BaK −AaK ∧BaP )⊗D + 2
(
AbK ∧BaP −AaP ∧BbK

)
⊗Mab+

+ (AaP ∧B −A ∧BaP )⊗ Pa − (AaK ∧B −A ∧BaK)⊗Ka =

=

[
Aac ∧Bcb −Abc ∧Bca

2
+AbK ∧BaP −AaK ∧BbP −AaP ∧BbK +AbP ∧BaK

]
⊗Mab+

+
[
Aab ∧BbP +AbP ∧Bba +AaP ∧B −A ∧BaP

]
⊗ Pa+

+
[
Aab ∧BbK +AbK ∧Bba −AaK ∧B +A ∧BaK

]
⊗Ka+

+ 2 [AaP ∧BaK −AaK ∧BaP ]⊗D,
(B.5)

where we used the commutation relations in Eq.(3.54).
We compute also the exterior covariant derivative acting on A.

dωωωA =dA+ [ωωω,A] =

=

[
1

2
dAab +

ωac ∧Acb − ωbc ∧Aca

2
+ f b ∧AaP − fa ∧AbP − ea ∧AbK + eb ∧AaK

]
⊗Mab+

+
[
dAaP + ωab ∧AbP + eb ∧Aba + ea ∧A− ω ∧AaP

]
⊗ Pa+

+
[
dAaK + ωab ∧AbK + fb ∧Aba − fa ∧A+ ω ∧AaK

]
⊗Ka+

+ [dA+ 2 (ea ∧AaK − fa ∧AaP )]⊗D.
(B.6)

B.2 From forms to coordinates (local) representation

In the following section fix a pseudo-Riemannian 4-dimensional manifold (M, g) and a (possibly
local) basis for T ∗M . Often we will need to write in coordinates expressions like δea ∧ ec ∧ ∗Ωac
or δω ∧ d ∗Ω. We can compute then the more general formula for the wedge product between a
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2-form (B ∈ Ω2(M)) and the hodge star of a 2-form (A ∈ Ω2(M)):

B ∧ ∗A =

√
−g

4(n− 2)!
AµνBρσϵµναβdx

ρ ∧ dxσ ∧ dxα ∧ dxβ =

=
1

4(n− 2)!
AµνBρσϵµναβ ϵ̃

ρσαβ√−gd4x =

=
1

2
AµνBµν

√
−gd4x ,

(B.7)

where we introduced the total anti-symmetric contravariant symbol ϵ̃αβρσ (which is equal to 1 if
(α, β, ρ, σ) is an even permutation of (0, 1, 2, 3)). It is straightforward to prove that ϵ̃αβρσϵµνρσ =
2(n−2)!∆αβ

µν . The precedent formula shows how to pass from forms notation to the more physics
familiar coordinate framework.

B.3 Hamiltonian derivatives

In this appendix we will give some useful formula for Chapter 4. First of all we give the functional
derivatives of the Hamiltonian with respect to fields and momenta. For the momenta we get:

δHT

δΠ a
[EF ]

= (−8α′√−g)−1Π[EF ]k gak
g00

− gak
g00

P̃ [EF ]k =

= (−8α′√−g)−1 gak
g00

Π[EF ]k + ∂aω
[EF ]
0 − 1

2
c

[EF ]
[LM ][NQ] ω

[LM ]
0 ω[NQ]

a − gm0

g00
Ω[EF ]

ma ,

(B.8)

while, for non-tetrad fields, we obtain:

δHT

δω
[EF ]
a

=∂m

[(
Π a

[EF ] + 4α′√−ggk0gpaω[EF ]kp

) gm0

g00

]
− ∂i

[(
Π i

[EF ] + 4α′√−ggk0gpiΩ[EF ]kp

) ga0
g00

]
+

+ ∂i
(
4α′√−ggajgkiΩ[EF ]jk

)
+

+
1

2
c[LM ][NQ][EF ]

{
−Π[LM ]aω

[NQ]
0 +

ga0

g00

[
Π[LM ]iω

[NQ]
i + 4α′√−ggk0gpiΩ[LM ]

kp ω
[NQ]
i

]
+

− gm0

g00

[
Π[LM ]aω[NQ]

m + 4α′√−ggk0gpaΩ[LM ]
kp ω[NQ]

m

]
− 4α′√−ggajgkiΩ[LM ]

jk ω
[NQ]
i

}
.

(B.9)
The functional deerivative with respect to the timelike component of the gauge fields is already
given in Eq.(4.61). For tetrad fields we know that the situation is differernt. Since the Hamil-
tonian depends non-trivially on the metric the functional derivative will get another term with
respect to standard Yang-Mills fields. We introduce the following notation:

δH

δω
[·a]
γ

∣∣∣∣
geometric

≡ δH

δgµν
∂gµν

∂ω
[·a]
γ

,

δH

δω
[·a]
γ

∣∣∣∣
YM

≡ δH

δω
[·a]
γ

− δH

δω
[·a]
γ

∣∣∣∣
geometric

.

(B.10)

Clearly we find that the Yang-Mills part of the variation (YM) is the same one we found for
non-tetrad fields in Eq.(B.9). Comparing with Eq.(4.38) and the formulas given after, we can
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compute the geometric part:

δH

δω
[·a]
γ

∣∣∣∣
geometric

=

{
(−4α′√−g)−1

−2

glk
g00

Π l
[CD]Π

[CD]k − 2α′√−g
(
gk0gijΩ[AB]ki

) gs0
g00

Ω
[AB]
sj α′√−ggijgklΩ[AB]jkΩ

[AB]
il

}
·

· ω γ
[·a]+

+

{
(−4α′√−g)−1

2
Π l

[CD]Π
[CD]j −Π l

[CD]P̃
[CD]j − 2α′√−g

(
gk0gijΩ[AB]ki

)
gs0gtlΩ

[AB]
st

}
·

·

[
1

g00
(
δγlω[·a]j + δγjω[·a]l

)
+ 2

gljg
0γω 0

[·a]

(g00)
2

]
+

−Π k
[CD]

gkl
g00

{[
M lγω i

[·a] +M iγω l
[·a] + 2

(
gilg0γ − gl0giγ − gi0glγ

)
ω 0
[·a]

]
·

·
(
∂iω

[CD]
0 − ω

[C
A]0ω

[AD]
i + ω

[C
A]iω

[AD]
0

)
+

−
(
gpγgilω 0

[·a] + g0γgilω p
[·a] + gp0giγω l

[·a] + glγgp0ω i
[·a]

)
Ω

[CD]
pi

}
+

−
(
−4α′√−g

)
Ω[AB]ki

gs0

g00
Ω

[AB]
sj

{
gkγgijω 0

[·a] + g0γgijω k
[·a] + giγgk0ω j

[·a] + gjγgk0ω i
[·a]

}
+

− α′√−gΩ[AB]jkΩ
[AB]
il

{
giγgklω j

[·a] + gjγgklω i
[·a] + gkγgijω l

[·a] + glγgijω k
[·a]

}
.

(B.11)
Fom the expressions given in this appendix one immediately obtains the Poisson brackets between
the Hamiltonian and the fields and momenta, thus one gets the Hamiltonian equations of motion
in the simplectic formalism. It can be verified that the latter are equivalent to the Lagrangian
equations, in particular they are covariant. However, the computation is extremely long and it
doesn’t give any new insights on the theory at hand. As such, we decided to not put it here but
to leave the computation as a very mean exercise for the reader.
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