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Abstract 

Naïve T cells are generally considered as a circulating, homogeneous and quiescent population of T 
cells. However, recent advancements show that the naïve T cell pool is much more heterogeneous 
and compartmentalized than thought before. This compartmentalization suggests selective homing 
of naïve T cells to specific tissues in the body, through the expression of homing markers. Homing of 
naïve T cells is thought to take place especially early in life. Until this day, the drivers of early-life 
homing and homing marker expression of naïve T cells are not yet fully understood. In this report, we 
investigate the immunological context of early life naïve T cell homing. For this purpose, we studied 
naïve T cell homing throughout early life immune development as well as in response to 
immunological triggers. First, we analyzed flow cytometry data of the immune system of preterm 
infants in the first 42 days postpartum. We show that preterm neonates have a high percentage of 
naïve T cells and that these T cells predominantly express gut homing markers integrin α4β7 and 
CCR9. Interestingly, the neonatal naïve T cell phenotype does not consistently change within the first 
42 days postpartum. Second, we looked at the effect of Toll-Like Receptor (TLR) ligand exposure in 
different stimulatory settings. TCR and TLR co-stimulation seems to enhance naïve T cell 
proliferation, along with upregulation of homing markers. Altogether, we conclude that neonatal 
naive T cells indeed express homing markers and that this is influenced by immune development as 
well as TCR and TLR stimulation. 
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Plain language summary 

Specialized immune cells called T cells play a key role in almost all immune responses. These cells can 
directly attack infected cells, but they can also help other immune cells become more effective at 
their jobs. Before a T cell can do any of this, it needs to be activated by other immune cells. They 
need to give the T cell three important pieces of information: What is going on? Where in the body is 
this going on? And how bad is the damage? Based on this information, the T cell will decide the best 
tactic to fight the infection. 
 
In order to travel to the correct organ as quickly as possible, the activated T cells will start to express 
so-called homing markers. These are labels presented on the outside of the T cell and they show 
where in the body the cell has to go. For example, some markers help cells migrate to the gut, while 
other markers help cells travel to the skin. First, scientists thought that only activated T cells were 
able to travel to specific organs. They thought that unactivated T cells, called naïve T cells, could only 
circulate through our body, waiting to be activated. However, there is an increasing amount of 
evidence that in some cases, also naïve T cells can travel to specific organs. Especially young T cells 
seem to be able to label themselves with homing markers to travel to specific tissues all over the 
body. In this study, we wanted to find out in which situations young naïve T cells are able to migrate 
to specific organs. 
 
First, we studied the T cells from newborn babies in their first weeks after birth. We saw that naïve T 
cells mostly express homing markers to go to the gut. Second, we aimed to test which immunological 
signals can change the homing marker expression of naïve T cells. We studied this by stimulating 
naïve T cells with immunological signals called TLR ligands, which are small parts derived from 
microbes. After stimulation with TLR ligands, we measured how many of the cells had homing 
markers on their surface. We show that TLR ligands can encourage cells to divide more and that the 
more a cell has divided, the more likely it is to present homing markers. As a result of this, we 
conclude that immunological signals can increase the number of naïve T cells with homing markers 
on their surface. 
 
Altogether, we found more evidence that not only activated, but also naïve T cells can migrate to 
specific organs in the body. In addition, we saw that migration of naïve T cells is more likely to take 
place in newborns than in adults and that this can also be promoted by the presence of TLR ligands. 
This knowledge can help us to better understand the importance of naïve T cell homing in newborn 
babies and reminds us of the differences between the immune system of infants and adults. 
 
 
 
 

  



4 
 

Abbreviations 

CBMC  Cord Blood Mononuclear Cell 

CTV  Cell Trace Violet 

FBS  Fetal Bovine Serum 

Lisi  Local Inverse Simpson’s Index 

PBMCs  Peripheral Blood Mononuclear Cell 

PTK7  Protein-Tyrosine Kinase 7 

scRNAseq Single-cell RNA sequencing 

TCM  Central Memory T cell 

TEM  Effector Memory T cell 

TEMRA  Effector Memory cell Re-expressing CD45RA 

TLR  Toll-Like Receptor 

TN  Naïve T cell 

TREC  T cell receptor excision circle 

UMI  Unique Molecular Identifier 
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Introduction 

Naïve T cells stand at the basis of all adaptive immune responses. Depending on the encountered 
pathogen and immunological context, they can steer towards a wide variety of immune responses. 
The general view is that naïve T cells are a circulating, homogeneous and quiescent population of T 
cells waiting for antigen encounter. However, accumulating evidence suggests that the naïve T cell 
pool is not nearly as homogeneous and quiescent as was believed (1). Instead, there seem to be 
distinct subpopulations of naïve T cells with unique phenotypical characteristics. Until this day, it is 
unknown what triggers are involved in the regulation of this heterogeneity and how these 
phenotypical characteristics relate to the functionality of naïve T cell subpopulations.  
 
There are several phenotypical characteristics that are associated with the developmental stages of 
naïve T cells. For CD4+ naïve T cells, a commonly used distinction is made based on the surface 
expression of the platelet endothelial cell adhesion molecule CD31. As CD4+ naïve T cells seem to 
lose their CD31 surface expression over time, this suggests that we can classify the most recent 
thymic emigrants as CD31+ cells and the older naïve T cells as CD31- cells (2). The proportion of 
CD31+ T cells  also decreases with advance in age, so the percentage of CD31+ T cells is high in 
neonates but declines with ageing. Within the youngest CD31+ population even further 
subcategorization has been proposed. Previous studies have shown that the most recent thymic 
emigrants express protein-tyrosine kinase 7 (PTK7) and produce IL-8 (3,4). Since CD31 is constantly 
expressed on almost all CD8+ naïve T cells, it cannot be used to subcategorize CD8+ naïve T cells. 
Instead, CD103 has been proposed as a marker to identify the youngest CD8+ naïve T cells (5). The 
search for more specific signatures within in the naïve T cell pool is still developing, so it is likely that 
there is even more naïve T cell diversity that has not yet been discovered. 
 
In addition to heterogeneity during naïve T cell development there is evidence for tissue 

compartmentalization of naïve T cells. Even though the majority of naïve T cells can be found in 

peripheral blood, some studies have shown that naïve T cells can also be found in different 

nonlymphoid tissues, like the skin and the gut (6,7). The compartmentalization of the naïve T cell 

pool is especially seen early in life, after which the number of naïve T cells residing in tissues 

decreases with ageing. Especially migration of neonatal naïve T cells to the gut is thought to be 

important for the priming of naïve T cells and in situ tolerization (8). Indeed, development of the 

neonatal immune system was hampered in newborns with gut bacterial dysbiosis (9). There are also 

studies that propose that naïve T cells exhibit a specific phenotype based on the tissue they are 

located in. For example, a study on fetal naïve T cells has shown that most fetal naïve T cells in the 

skin are CD4+ and express markers characteristic for hematopoietic stem cells (CD34 and CD38) (10). 

In addition, a murine study suggests that CD8+ naïve T cells in the gut seem to adapt a similar surface 

phenotype as intraepithelial lymphocytes (7). Still, naïve T cells seem to keep some of their general 

characteristics, as CD31 expression does not differ between naïve T cells found in the gut or in the 

circulation (6). Naive T cell compartmentalization also suggests a role of selective homing of naïve T 

cell subsets to different tissues in the body. Indeed, multiple studies have reported the expression of 

homing markers on neonatal naïve T cells (6,7). Neonatal naïve T cell compartmentalization as 

described above promotes heterogeneity in the naïve T cell pool, especially early in life. 

Apart from the phenotypic heterogeneity, there is thought to be functional heterogeneity in the 

neonatal naïve T cell pool. Particularly noteworthy is the bias of recent thymic emigrants towards 

innate immune signaling (11). For example, recent thymic emigrants seem to express innate 

receptors, like complement receptors and Toll-Like Receptors (TLRs) (12,13). Especially TLR 

expression on naïve T cells has been studied. TLRs are pattern-recognition receptors which are well-

known for their role in innate immunity. Most TLRs are expressed on the cell surface, where they can 
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recognize distinct pathogenic patterns (14). For example, TLR1/2 binds to triacyl lipopeptides, TLR4 

to LPS and TLR5 to flagellin. In contrast, intracellular TLRs like TLR3 and TLR7 can recognize double-

stranded and single-stranded RNA respectively. Several studies indicate that T cells express TLRs 

especially after activation (15). 

It is still largely unknown whether and how these receptors might play a role in establishing naïve T 

cell heterogeneity and functionality. Some studies suggest that TLR stimulation promotes the 

production of the innate-associated cytokine IL-8 by neonatal naïve T cells (4). TLR stimulation also 

seems promote naïve T cell maturation in general, as in vitro TLR-stimulated naïve cord blood cells 

showed enhanced proliferation and increased expression of maturation markers CD25 and CD45RO 

(16,17). Additionally, TLR stimulation resulted in an increased gut homing phenotype in term 

neonatal T cells, but not preterm neonatal T cells (17). Usually, naïve T cell differentiation and 

homing marker expression is induced by TCR stimulation and additional co-stimulation provided by 

dendritic cells. It is still to be elucidated how TLR stimulation interacts in this process, for example as 

a priming stimulus prior to stimulation or as co-stimulation. 

Until this day, the drivers of naïve T cells heterogeneity and differential homing marker expression of 

neonatal naïve T cells are not yet fully understood. In this report, we investigate the immunological 

drivers of early-life homing of human naïve T cells. For this purpose, we studied naïve T cell homing 

throughout early-life immune development as well as in the response to TLR stimulation. We 

investigate the naïve T cell phenotype of preterm neonates in the first 42 days postpartum. In 

addition, we study the effect of in vitro TCR and TLR stimulation on the expression of homing markers 

on cord blood derived CD4+ naïve T cells. 

Ultimately, we find that neonatal naïve T cells have a more extensive gut-homing phenotype than 
adult naïve T cells throughout immune development. In addition, exposure to TLR ligands seems to 
enhance cord blood derived CD4+ naïve T cell proliferation, along with upregulation of homing 
markers.   
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Methods part 1. Characterizing the T cell phenotype of preterm neonates 

Sample preparation 
Blood was collected from preterm neonates at 7, 21 and 42 days postpartum as part of the 
Nutribrain study of University Medical Centre Utrecht (n=25). The cells were incubated for 15 
minutes at room temperature with BD Pharm Lyse™ diluted 1:10 in aquadest to lyse the red blood 
cells before staining. 
 
Flow cytometry 
The isolated immune cells were stained with two separate panels for the identification of different T 
cell subsets and the expression of homing markers. For the T cell subset panel, all cells were stained 
for 20 minutes at 4 °C in Brilliant Staining Buffer (BD) with CD25-FITC, CD4-PerCp-Cy5.5, CCR7-APC, 
CD3-AF700, CD127-BV421, CD27-BV510, CD31-BV605, CD45RO-BV711, TCRgd-PE, CD21-PE-CF594 
and CD8-PE-Cy7. For the T cell homing panel, cells were stained for 20 minutes at 4 °C in Brilliant 
Staining Buffer (BD) with CD103-FITC, CD4-PerCp-Cy5.5, CCR9-APC, integrin β1-AF700, CD8a-APC-
eF780, integrin β7-BV421, CD3-BV605, CD45RO-BV711, GPR15-PE and integrin α4-PE-Cy7. After 
washing in Dulbecco’s Phospate Buffered Saline (PBS), the cells were fixed overnight at 4 °C using 2% 
paraformaldehyde. The next day, the cells were washed again and resuspended in FACS buffer (PBS 
containing 2% Fetal Bovine Serum (FBS) and 0.1% NaN3) and the samples were measured on a BD 
LSRFortessa.  
 
Data analysis 
FlowJo software was used to analyze the data and compare it to adult reference data. For the T cell 
subset panel, T lymphocytes were characterized as CD3+ lymphocytes. We used the expression of 
CD45RO and CCR7 to distinguish between naïve (TN ; CD45RO-, CCR7+), effector memory (TEM ; 
CD45RO+, CCR7-), central memory (TCM ; CD45RO+, CCR7+ ) and effector memory cells re-expressing 
CD45RA (TEMRA ; CD45RO-, CCR7-). Additionally, true naïve CD4+ T cells were gated as 
CCR7+CD27+CD45RO- (figure S1.1). For the T cell homing panel, we gated for CD4+ and CD8+ CD3+ 
lymphocytes. For both CD4+ and CD8+ populations we used the expression of CD45RO to distinguish 
between naïve (CD45RO-) and memory (CD45RO+) T cells. We gated the double-positive population 
for a4b1 and a4b7 and the positive populations for CCR9, CD103, CLA and GPR15 (figure S1.2). CD103 
and GPR15 were left out in all further analyses. Visualization of the data was performed in GraphPad 
Prism 9.3.0. We used a one-way ANOVA test for normally distributed samples and a Kruskal-Wallis 
test for non-normally distributed samples. 
 

Methods part 2. Homing marker expression in naïve CBMCs and PBMCs in 

response to in vitro TCR and TLR stimulation 

Sample preparation 
Human cord blood was obtained from neonates in the Wilhelmina Kinderziekenhuis Utrecht (n=2). 
Peripheral blood was collected from healthy donors through the Minidonordienst of University 
Medical Centre Utrecht (n=2, age range = 27-32). Blood was obtained via venipuncture and collected 
in 9 mL natrium heparin tubes, after which CBMCs and PBMCs were isolated using Ficoll gradient 
centrifugation. Subsequently, naïve T cells were sorted from the isolated CBMCs and PBMCs using a 
naïve CD4 T cell isolation kit and magnetic sorting on an autoMACS (Miltenyi Biotec). 
 
Cell stimulation 
Freshly isolated naïve CD4 T cells were stimulated on the same day as isolation. Prior to stimulation, 
the cells were stained with Cell Trace Violet (CTV) to investigate proliferation in response to the cell 
stimulation. After this, PBMCs and CBMCs were stimulated according to one of the following two 
different stimulatory conditions: 
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Stimulatory condition 1: Sequential TLR and CD3/CD28 stimulation 
Isolated CBMCs and PBMCs were stimulated overnight at 37 °C in culture medium (RPMI 1640 
medium containing 10% FBS, 2% L-glutamine and 2% penicillin-streptomycin) with one of the 
following TLR ligands separately: Pam3Cys4 (TLR1/2 ligand, 1 µg/mL), poly I:C (TLR3 ligand, 50 
µg/mL), flagellin (TLR5 ligand, 100 ng/mL) and imiquimod (TLR7 ligand, 5 µg/mL) . Subsequently, the 
TLR ligands were removed and the cells were resuspended in culture medium with IL-2 (20U/mL) in 
order to enhance survival. The cells were then stimulated for 24 hours with anti-CD3 (1 mg/mL, 
eBioscience™) and anti-CD28 (1 mg/mL, eBioscience™) coated on a 96-well MaxiSorp plate in a 
1:1000 dilution with PBS. Ultimately, the cells were removed from the coated plate and transferred 
to a regular round bottom plate and left to incubate at 37 °C for another 24 hours in culture medium 
with IL-2 (20U/mL). 
 
Stimulatory condition 2: TLR and CD3/CD28 co-stimulation 
Isolated CMBCs and PBMCs were stimulated for 48 hours at 37 °C with one of the following TLR 
ligands: Pam3Cys4 (TLR1/2 ligand, 1 µg/mL), poly I:C (TLR3 ligand, 50 µg/mL), flagellin (TLR5 ligand, 
100 ng/mL) and imiquimod (TLR7 ligand, 5 µg/mL) simultaneously with anti-CD3 and anti-CD28 in the 
concentrations described above. Ultimately, the cells were removed from the coated plate and 
transferred to a regular round bottom plate and left to incubate at 37 °C for another 48 hours in 
culture medium with IL-2 (20U/mL). 
 
Flow cytometry 
After the stimulation procedure, all cells were stained with immunofluorescent antibodies for flow 
cytometry as read-out of the cells’ phenotypes. First, the cells were stained for 20 minutes at 4 °C 
with eBioscience™ Fixable Viability Dye eFluor™ 506 (1:1000 diluted in PBS) to be able to 
discriminate between living cells and dead cells. Then, the cells were stained for 20 minutes at 4 °C in 
FACS buffer with 8% Brilliant Staining Buffer (BD), 2% FcR-blocking reagent (Miltenyi Biotec) and the 
following antibodies: integrin β7-PerCp-Cy5.5, integrin β1-AF700, CD27-APC-eF780, CD31-BV605, 
CD45RA-BV711, CD8-PE, CD45RO-PE-CF594 and integrin α4-PE-Cy7. Cells were incubated with the 
eBioscience Foxp3/Transcription Factor Staining Buffer Set for 30 minutes at 4 °C for fixation and 
permeabilization. After this, the cells were stained intracellularly for 30 minutes at 4 °C in 
permeabilization buffer (Invitrogen) with 2% FcR-blocking reagent, CD3-FITC and CD4-BV785. CD3 
and CD4 were stained intracellularly because they have shown to become internalized after cells get 
stimulated with aCD3/CD28. Samples were measured on a BD LSRFortessa. 
 
Data analysis 
FlowJo software was used to analyze the data. T lymphocytes were characterized as CD3+ 
lymphocytes. We defined naïve T cells as CD45RA+CD27+ and subcategorized these as CD31+ or 
CD31-. Additionally, we determined homing marker expression and CTV staining (figure S1.3). 
Visualization of the data was performed in GraphPad Prism 9.3.0. 
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Results part 1. Characterizing the T cell phenotype of preterm neonates 

Naïve T cells predominate in preterm neonates throughout the first 42 days postpartum 
To investigate immune development in preterm neonates we first determined the average 

percentage of naïve T cells in proportion to the percentages of TEM, TCM and TEMRA in the first 42 days 

postpartum. By far the most CD4+ and CD8+ T cells are naïve in preterm neonates (80-85%), without 

significant correlation with gestational age (n.s. 24-26 vs 27-29 weeks) (figure 1.1 A). However, there 

is more variance in the 27-29 weeks cohort. Preterm neonates also have a more naïve T cell 

phenotype (80-85%) than healthy adults (45-55%). The average CD4+ and CD8+ T cell composition, 

with a strong predominance of naïve T cells, shows no consistent change in the first 42 days 

postpartum (n.s. 7 vs 21 vs 42 days postpartum), despite individual variation (figure 1.1B and C) 

There is also no consistent change in CD31 expression over time (n.s. 7 vs 21 vs 42 days postpartum). 

The percentage of CD31+ naïve T cells diverges slightly over time, but the mean prevalence does not 

consistently change (figure 1.1 D).  

Figure 1.1:  The relative abundance of CD4+ and CD8+ T cell subsets of preterm neonates. A) The percentage of naïve 
(TN), effector memory (TEM), central memory (TCM) and effector memory cells re-expressing CD45RA (TEMRA)  in CD4+ T 
lymphocytes and CD8+ T lymphocytes compared to reference adult data (brown line). B+C) Individual CD4+ and CD8+ T cell 
ratio over time. D) The percentage of CD31+ T cells in the true naïve T cell population over time. Lines connect the samples 
of one individual at different timepoints. 

A. 

B. 

C. 

D. 
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Preterm neonates have a more gut-oriented homing phenotype compared to healthy adults 
We observe that in naïve T cells from preterm neonates, expression of general homing markers is 
low, whereas around 50% of CD4+ and 90% of CD8+ naïve T cells expresses the gut homing marker 
integrin α4β7 (figure 1.2). CCR9 is only in expressed in CD8+ naïve T cells, of which around 85% 
expresses CCR9. Reference data of adult naïve T cells report a much lower expression of gut homing 
markers, as 10-30% of naïve T cells expresses integrin α4β7 and less than 10% of naïve T cells 
expresses CCR9. In contrast, the expression of integrin α4β1 and CLA in adult reference data is 
comparable to the expression in preterm neonates. In memory T cells, expression of the general 
homing markers integrin α4β1 and CLA is higher, with an expression of around 50% and 20% 
respectively. Around 35% of CD4+ and 65% of CD8+ memory T cells expresses integrin α4β7, which is 
remarkably lower than in naïve T cells. CCR9 expression is low in CD4+ memory cells, but above 90% 
in CD8+ memory cells. Compared to adult reference data, gut homing markers integrin α4β7 and 
CCR9 are expressed significantly more in neonatal memory T cells, whereas the expression pattern of 
integrin α4β1 and CLA is comparable in neonatal and adult memory T cells. Additionally, we observe 
that the homing marker expression in all neonatal subsets changes slightly, but not significantly 
within the first 42 days postpartum and that any variance observed is independent of gestational 
cohort. 

 

  

Figure 1.2:  Expression of homing markers in preterm neonates in the first 42 days postpartum. The expression of integrin 
α4β7 (A), CCR9 (B), integrin α4β1 and CLA (D) for naïve CD4+, memory CD4+, naïve CD8+ and memory CD8+ T cells. 
Horizontal lines indicate the median expression per subset for neonates (black) and adults (brown - dotted). 
 

A. B. 

C. D. 
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Results part 2. Homing marker expression in naïve CBMCs and PBMCs in 

response to in vitro TCR and TLR stimulation 

Cord blood naïve CD4+ T cells have increased integrin expression upon co-stimulation with 
aCD3/aCD28 and TLR ligands 
In naïve CD4+ CBMCs, we observe that 48 hours of in vitro aCD3/aCD28 stimulation alone already 
increases the expression of both integrin α4β1 and integrin α4β7 (figure 2.1). We observe that 
simultaneous addition of TLR1/2 ligands (Pam3Cys4) and, to a lesser extent, TLR7 ligands 
(imiquimod) to aCD3/aCD28 further enhances the expression of integrin α4β7, but not integrin α4β1. 
The effect of stimulation is the same for CD31+ and CD31- cells, although the expression of integrin 
α4β1 is slightly higher in CD31- CBMCs in all conditions, including the unstimulated condition. The 
effect of TCR and TLR co-stimulation of naïve CD4+ CBMCs is remarkably different in naïve CD4+ 
PBMCs, which do not change their integrin expression in response to either aCD3/CD28 stimulation 
alone nor in combination with TLR ligands (figure 2.2 A+B). However, expression of CCR9 and CLA on 
PBMCs is altered in response to TCR and TLR co-stimulation. Combined aCD3/CD28 and TLR1/2 
stimulation on PBCMs impairs CCR9 expression, while TLR4 (LPS) and TLR5 (flagellin) stimulation 
enhance CCR9 expression on PBMCs (figure 2.2 C). In addition, CLA expression on PBMCs seems to be 
upregulated in CD31+ cells after aCD3/CD28 and TLR1/2 co-stimulation (figure 2.2 D). 
 
We also investigated whether pre-treatment of naïve CD4+ CBMCs with TLR ligands affects integrin 
expression after subsequent aCD3/aCD28 stimulation. We observe that 24 hours of in vitro 
aCD3/aCD28 stimulation of naïve CD4+ CBMCs alone increases the expression of integrin α4β1, but 
not integrin α4β7 (figure 2.3). In addition, the modulating effect of TLR1/2 and TLR7 on integrin α4β7 
expression is lost when they are administered as pre-stimulation instead of co-stimulation, whereas 
pre-treatment with TLR ligands does still decrease integrin α4β1 expression. We also see that, just 
like with co-stimulation, integrin α4β1 expression is somewhat higher in CD31- CBMCs than CD31+ 
CBMCS. None of the stimulatory conditions results in integrin upregulation in PBMCs. This suggests 
that especially CBMCs are potent to upregulate the expression of both integrin α4β1 and α4b7 in 
response to TCR stimulation alone. In addition, TLR stimulation can enhance integrin α4β7 
upregulation, but only as co-stimulation with TCR stimulation and not pre-stimulation. 
 
 

Figure 2.1: Expression of integrin α4β1 and α4β7 on naïve CD4+ T cells after aCD3/CD28 and TLR ligand co-stimulation. 

Mean percentage of cord blood naïve CD4+ T cells that express integrin α4β1 (A) or integrin α4β7 (B) after co-stimulation 

(n=1). Dotted lines indicate the mean percentage after aCD3/CD28 stimulation alone. Error bars indicate the standard-

deviation of the duplicate measurements for each condition.  

A. B. 
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Figure 2.2: Expression of integrin α4β1, integrin α4β7, CCR9 and CLA on naïve CD4+ T cells after aCD3/CD28 and TLR 

ligand co-stimulation. Mean percentage of healthy adult peripheral blood naïve CD4+ T cells that express integrin α4β1 

(A), integrin α4β7 (B), CCR9 (C) or CLA (D) after co-stimulation (n=1). Dotted lines indicate the mean percentage after 

aCD3/CD28 stimulation alone. Error bars indicate the standard-deviation of the duplicate measurements for each 

condition.  

A. B. 

C. D. 

Figure 2.3: Expression of integrin α4β1 and α4β7 on naïve CD4+ T cells after TLR ligand pre-stimulation and 

subsequent aCD3/CD28 stimulation. Mean percentage of cord blood naïve CD4+ T cells that express integrin α4β1 (A) 

or integrin α4β7 (B) after stimulation and mean percentage of healthy adult peripheral blood naïve CD4+ T cells that 

express integrin α4β1 (C) or integrin α4β7 (D) after stimulation (n=2). Dotted lines indicate the mean percentage after 

aCD3/CD28 stimulation alone. Error bars are standard-deviation. 

A. B. 

C. D. 
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Increasing integrin expression in CD4+ naïve T cells correlates with proliferation 
An important effect of aCD3/aCD28 stimulation is inducing proliferation. When comparing the 
expression of integrin α4β1 and α4b7 between CBMCs with a different proliferation history, we 
notice that expression of both integrin α4β1 and α4β7 increases the more cells proliferate, 
independent of the TLR ligand added (figure 2.4 A + B). Interestingly, the kinetics of integrin α4β1 
upregulation differ from α4b7 upregulation. Integrin α4β1 is already highly expressed in cells that 
divided only once (CTV1), whereas the expression of integrin α4β7 only increases after multiple 
divisions. Also in PBMCs, we observe that rapid upregulation of integrin α4β1 and more gradual 
upregulation of integrin α4β7, independent of the TLR ligand exposure (figure 2.4 C+D). However, the 
maximum integrin expression reached is lower than in CBMCs. In contrast to integrin α4β1 and α4β7, 
the expression of CCR9 and CLA in PBCMs is TLR ligand-dependent, as TLR1/2 stimulation decreases 
the expression of CCR9 but increases the expression of CLA per division state, whereas TLR4 
stimulation increases the expression of CCR9 and decreases the expression of CLA per division state 
(figure 2.4 E+F). 
 
 

 
Exposure to TLR ligands stimulates TCR-driven proliferation in naïve CD4+ T cells 
The data in figure 2.4 shows that integrin expression correlates almost exclusively with proliferation 
and not with the TLR ligand added, whereas the result from figures 2.1, 2.2 and 2.3 suggested that 
integrin expression was TLR ligand-dependent. We hypothesized that this TLR ligand-dependent 

Figure 2.4: Homing receptor expression and proliferation after TCR and TLR co-stimulation  
The percentage of cells that express integrin α4β1 in CBMCs (A), integrin α4β7 in CBMCs (B), integrin α4β1 in PBMCs (C), 
integrin α4β7 in PBMCs (D), CCR9 in PBMCs (E) or CLA in PBMCs (F) per number of proliferative rounds a cell has 
undergone (CTV0-4). The expression is determined after co-stimulation with aCD3/CD28 and additional stimulation of TLRs 
(TLR1/2, TLR3, TLR4, TLR5 and TLR7). 

A. 
B. 

F. 

C. D. 

E. 
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increase in integrin expression might be the result of increased proliferation in these samples. 
Indeed, proliferation of CBMCs significantly increases in response to TLR1/2 and, to a lesser extent, 
TLR5 and TLR7 co-stimulation with aCD3/CD28 for 48 hours (figure 2.5). This stimulatory effect is 
slightly higher in CD31- CBMCs, as they have an overall higher proliferation index than CD31+ CBMCs. 
In PBMCs, TLR1/2 co-stimulation also induces proliferation, whereas TLR5 and TLR7 co-stimulation 
does not seem to promote proliferation. In fact, TLR7 co-stimulation even seems to impair 
proliferation of PBMCs. In contrast to CBMCs, proliferation is higher in CD31+ PBMCs than CD31- 
PBMCs. However, CBMCs still proliferate more than PBMCs in all stimulatory conditions. 
 
 
  

Figure 2.5: Proliferation indices of CBMCs and PBMCs after 48 hours of TCR and TLR co-stimulation. Proliferation is 

determined for CBMCs (A) and PBMCs (B) for all stimulatory conditions separately. The proliferation index is defined as 

the total number of divisions divided by the number of cells that underwent at least one division. 

A. B. 
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Discussion 

In this study, we investigated the immunological drivers of early life homing of human naïve T cells. 
We show that the homing phenotype of naïve T cells is adaptive and depends on the immunological 
setting. Throughout early-life immune development, neonatal naïve T cells predominantly exhibit a 
gut homing phenotype, suggesting its importance in physiological immune development. We observe 
that skewing of the neonatal naïve T cell phenotype might also be driven by immunological triggers. 
We show that in vitro TLR stimulation promotes TCR-driven proliferation and general homing marker 
expression in cord blood derived CD4+ naïve T cells. 
 
In the first 42 days postpartum of preterm neonates, we found a predominance of naïve T cells and 
elevated expression of the gut-homing markers integrin α4β7 and CCR9 in neonatal naïve T cells 
compared to adults. We found that integrin α4β7 is highly expressed in both CD4+ and CD8+ naïve T 
cells, which targets them to the intestinal mucosa and mesenteric lymph nodes (18). Besides its role 
as homing receptor, integrin α4β7 is thought to promote tolerogenic properties of the mucosal 
immune system, as β7 integrins were required to reconstitute tolerogenic gut mononuclear 
phagocytes in mice (19). CCR9 is expressed in almost all peripheral CD8+ but not CD4+ naïve T cells, 
as also described in previous studies on peripheral naïve T cells in mice (20). This implies specific 
tissue preferences of CD4+ and CD8+ naïve T cells, adding to the heterogeneity in the naïve T cell 
pool. On the other hand, there were no significant differences between neonates and adults in the 
expression of the general homing marker integrin α4β1 or the skin homing marker CLA. Even though 
we have no evidence that neonatal naïve T cells actually migrate to nonlymphoid tissues, there are 
studies that have shown that naïve T cells can also be found in different tissues, especially early in life 
(6,7). For example, gut-homing appears to be important in the neonatal immune system to ensure 
adequate immune development (8,9). Selective skin-homing of naïve T cells has also been suggested, 
although this has only been studied in fetal and not neonatal skin (10). These data suggest that the 
conventional hypothesis that naïve T cells are a homogeneous, circulating population might only be 
true for adults, but not so much for the neonatal immune system. 
 
Even though our data shows that homing phenotype of neonatal naïve T cells is different from adult 
naïve T cells, we found that the gut-oriented T cell phenotype in preterm neonates does not 
consistently change in the first 42 days postpartum. This is in line with previous studies, which 
showed that, in contrast to B cells, dendritic cells and natural killer cells, the T cell compartment in 
infants maintains a distinct phenotype from adults for at least the initial 2 years of life (6,9). Although 
we found that the average T cell population did not change over the given time, preterm neonates 
showed high inter-individual variability in T cell subset composition over time, independent of 
gestational age at birth. Such discrepancies could be due to individual events like disease. Even 
though we excluded neonates with acute immunological complications from our data, it has been 
shown that the majority of preterm neonates suffers from immunological complications and pro-
inflammatory signatures (9,21). The inter-individual variability in T cell phenotype suggests that 
skewing of the neonatal naïve T cell phenotype might also be driven by immunological triggers. 
 
To study the effect of immunological triggers on the neonatal naïve T cell homing phenotype, we 
stimulated cord blood derived naïve CD4+ T cells with TCR and TLR stimulation. We observed that 
TCR stimulation alone can induce upregulation of integrins in cord blood derived but not adult naïve 
CD4+ T cells. This suggests that CBMCs have a lower threshold for aCD3/CD28 stimulation alone. This 
is in line with several studies which have shown that both CD4+ and CD8+ neonatal T cells proliferate 
more rapidly upon stimulation than adult-derived T cells (22–24). Interestingly, there was only a 
negligible difference in response between CD31+ and CD31- naïve T cells upon TCR stimulation. This 
suggests that the characteristics of naïve T cells correlate most with ageing of individuals and not so 
much the developmental stages of naïve T cells. 
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Previous research has stated that dendritic cells are required for T cells to respond to TLR ligand 
exposure (25). However, our data suggests that also MACS-sorted naïve CD4+ T cells have the 
potency to respond to TLR stimulation in the absence of dendritic cells. We show that especially 
TLR1/2 stimulation can significantly boost TCR-driven proliferation and homing marker expression of 
neonatal naïve T cells. This is in line with previous findings that human naïve T cells upregulate TLR2 
expression after activation (13). The modulating effect of TLR ligand exposure on neonatal but not 
adult naïve CD4+ T cells could be attributed to the fact that neonatal naïve T cells have a higher 
baseline TLR expression, whereas adult naïve T cells only upregulate their TLR expression after 
activation (15). 
 
Although neonatal integrin α4β1 upregulation is already promoted after 24 hours of TCR stimulation, 
integrin α4β7 is only upregulated after 48 hours of TCR stimulation. Notably, a previous mice study 
showed that integrin α4β7 upregulation upon TCR stimulation is dependent on simultaneous 
interaction with CD103 dendritic cells (26). This possibly explains why prolonged TCR stimulation is 
required in absence of CD103 dendritic cells to force sufficient activation for integrin α4β7 
upregulation. Interestingly, the kinetics of integrin α4β1 upregulation differ from α4β7 upregulation. 
We observed that integrin α4β1 is already highly expressed upon one proliferation round, whereas 
the expression of integrin α4β7 only increases after multiple divisions. This difference in kinetics can 
be explained by the chemical properties of their common subunit α4. Since α4 has a higher affinity 
for β1 than β7, it will predominantly form heterodimers with β1 (27). Possibly, the faster kinetics of 
α4β1 compared to α4β7 upregulation upon proliferation are related to their biological function, as 
integrin α4β1 is a more general homing marker, whereas integrin α4β7 is a more specific homing 
marker.  
 
The kinetics of integrin upregulation seemed to be independent of TLR ligand exposure. Interestingly, 
upregulation of CCR9 and CLA did seem to be influenced by TLR stimulation. However, direct 
comparison between the TLR ligands in our study is difficult, since we only took along one 
concentration per TLR ligand. Therefore, future studies should investigate a broader range of TLR 
ligand concentrations, as well as the effect of combinations of different TLR ligands. Additionally, our 
data could be compared to the effect of other immunological triggers on the neonatal naïve T cell 
phenotype, for example in response to cytokines or complement.  
 
Altogether, this study emphasizes that neonatal naive T cells are not just a homogeneous, circulating  
T cell population as suggested about the adult naïve T cell population. In contrast, neonatal naïve T 
cells exhibit distinct homing phenotypes which depend on the immunological context. Our data 
indicates that neonatal T cells are especially prone to gut homing during early-life immune 
development. In addition, exposure to TLR ligands seems to enhance TCR-driven naïve T cell 
proliferation, along with upregulation of homing markers. Even though it is still largely unknown how 
these phenotypical qualities relate to the functionality of naïve T cells, it does underline that the 
neonatal immune system cannot be directly compared to the adult immune system. 
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Supplement 1. Supplementary figures 

 

Figure S1.1: Gating strategy part 1 T cell subset panel. We gated for CD4+ and CD8+ CD3+TCRgd- lymphocytes. For the 

CD4+ population, we used CD25 and CD127 to select non-Tregs. For both CD4+ and CD8+ populations we used the 

expression of CD45RO and CCR7 to distinguish between naïve (TN ; CD45RO-, CCR7+), effector memory (TEM ; CD45RO+, 

CCR7-), central memory (TCM ; CD45RO+, CCR7+ ) and effector memory cells re-expressing CD45RA (TEMRA ; CD45RO-, CCR7-

). Additionally, true naïve CD4+ T cells were gated as CCR7+CD27+CD45RO-. Thymic naïve cells were gated as CD31+ and 

central naïve as CD31-. 
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Figure S1.2: Gating strategy part 1 T cell homing panel. We gated for CD4+ and CD8+ CD3+ lymphocytes. For both CD4+ 

and CD8+ populations we used the expression of CD45RO to distinguish between naïve (CD45RO-) and memory (CD45RO+) 

T cells. We gated the double-positive population for a4b1 and a4b7 and the positive populations for CCR9, CD103, CLA and 

GPR15. CD103 and GPR15 were left out in all further analyses. 
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Figure S1.3: Gating strategy part 2 TLR stimulation. We gated for live CD3+CD4+ lymphocytes. We defined naïve cells as 

CD45RA+CD27+ and subcategorized CD31+ and CD31- cells. We gated the double-positive population for a4b1 and a4b7 

and the positive populations for CCR9 and CLA. We used the CTV staining to categorize cells based on the number divisions 

undergone. 
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Supplement 2. Integration and clustering parameter adjustment for single-cell 

RNA sequencing 

Introduction 

Single-cell RNA sequencing (scRNAseq) is a popular technique to study immune cell heterogeneity at 
a single-cell transcriptomic level. Because this approach generates large amounts of data, 
subsequent bioinformatic analysis is required to process the data. In order to gain an unbiased 
insight in the full diversity of gene expression within and between cells, it is important to distinguish 
between technical variability between samples and actual biological heterogeneity. For this purpose, 
it is essential to first minimalize the background signal caused by technical variability, which is 
reflected as batch effect. A major pitfall in this analysis workflow is overcorrection of the data, which 
inherently decreases the detectability of biological heterogeneity. Consequently, a major aim of 
scRNAseq analysis is to find the optimal balance between batch effect correction while retaining 
biologically relevant output.  
 
One approach for scRNAseq analysis is using the R package Seurat, developed by the Satija lab (28). 
In the Seurat version 4 workflow, first all individual samples are filtered for low-quality cells. These 
cells are filtered out based on low number of gene counts, low number of cell counts and high 
percentage of mitochondrial genes. Subsequently, the individual samples are normalized for the 
percentage of mitochondrial genes, the number of S phase and G2M phase genes and optionally the 
percentage of ribosomal genes (pct.ribo). Then, all individual samples can be merged into a single 
Seurat object. However, depending on your sample origin, this can result in significant batch effects 
which can complicate correct data interpretation. Therefore, an alternative approach offered by the 
Seurat package is to perform integration with batch effect correction when combining different 
samples. 
 
First, the samples are screened for genes with high cell-to-cell variation in expression, called features. 
Depending on the size and heterogeneity of the samples that were used, the number of features to 
return can be adjusted (n.features). Then, the average gene expression in all samples is compared 
using universally expressed anchor genes. These are genes which have a similar expression in all 
samples, so discrepancies in their expression can be used to detect technical background signal. Low 
quality anchors can be filtered out by the argument k.filter. Finally, dimension reduction of the 
integrated dataset facilitates further analysis. In this function, the number of dimensions to be used 
for the reduction can be adjusted (dim). Together, the integration parameters described above 
determine the degree of batch effect correction during integration. The amount of remaining batch 
effect can be quantified using the Local Inverse Simpson’s Index (Lisi) test. This test provides 
information about how well-mixed the samples are. In case of a well-mixed distribution across 
samples, this would ideally yield in a Lisi score close to the number of samples that were integrated. 
After batch effect correction, the remaining differential gene expression can be determined, which is 
then considered as the actual biological variation in the samples. For this purpose, the integrated 
object can be clustered with a specific resolution, which reflects the clustering depth. This is followed 
by differential gene expression analysis to identify top differentially expressed genes per cluster. 
 
Although default values are available for all the parameters described above, these do not always 
result in the optimal balance between batch effect correction and biologically relevant output. 
Therefore, these parameters can be adjusted to improve the outcome of scRNAseq analysis. It is, 
however, still debatable how this parameter adjustment should be approached and how specific 
parameter settings affect the outcome of the analysis. In this study, we develop and test a 
bioinformatic tool to easily explore the effects of integration and clustering parameters in Seurat’s 
scRNAseq analysis. 
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Methods 

We performed SORT-seq of CD4+ True Naive (CD45RA+CD27+CD95-) T cells from patients with 
Down’s Syndrome as part of the PRIDE study of University Medical Centre Utrecht. As input data for 
the scRNAseq analysis in Seurat, we used the raw, Unique Molecular Identifier (UMI)-corrected 
counts provided by Single Cell Discoveries of four separate samples (s005, s008, s009, s010). For each 
of the individual samples we performed quality control and normalization with and without 
regressing for pct.ribo. The final objects were then integrated with a selection of different parameter 
settings for k.filter (100, 200, 300 and 400) and n.features (1000, 2000, 3000) (supplement 3). These 
values were selected based on the default settings for these arguments (k.filter=200, 
n.features=2000) and a range of values in the same order of magnitude. Preliminary analysis 
revealed that the dim argument had a negligible effect on the amount of batch effect. Therefore, we 
focus on the results of adjusting the arguments k.filter and n.features only. The Lisi test was 
performed to quantify the amount of batch effect and this was used to compare the different 
combinations of parameter settings. For this purpose, we used an automated for-loop to easily 
explore the different parameter combinations, including a standardized output format (supplement 
3). Subsequently, we performed clustering on the integrated objects using values between 0.1 and 
0.9 for the resolution argument. After this, the defining markers per cluster were determined using 
Seurat’s FindAllMarkers function and MAST test. Significant genes (p<0.05) were selected and sorted 
based on their log2 fold change. 
 

Results 

Integration of samples results in less batch effect than merging samples 
We compared the effect of integration and merging on batch effect with and without regression for 
pct.ribo separately. We found less batch effect in nearly all integrated objects compared to the 
merged objects (figure S2.1 and table S2.1). In addition, the samples that were not normalized for 
pct.ribo showed less batch effect after either merging or integrating than the samples that were 
normalized for pct.ribo. 

Figure S2.1 UMAPs of batch effect in merged and integrated samples. The samples were clustered based on original 
identity after merging (A+B) or integrating (C+D) the samples. For the integrated samples the default integration settings 
are shown (k.filter=200, n.features=2000) 

A. B. 

C. D. 
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Table S2.1: Batch effect in merged and integrated samples. The amount of batch effect is quantified as the Lisi test score. 
This was compared between samples with and without normalization for pct.ribo after either merging or integrating the 
samples. The range for the integrated samples covers the range in Lisi scores obtained with the different integration 
parameter settings. 

 Merged Integrated 

With pct.ribo 2,649 2,644-3,365 

Without pct.ribo 2,750 2,782-3,399 

 
Batch effect correction is mostly determined by n.features 
Although sample integration results in less batch effect than merging regardless of the integration 
parameter settings used, there is still a broad range of remaining batch effect. We show that the 
amount of remaining batch effect is mostly determined by the value of n.features, both for the 
samples with and without regression for pct.ribo (table S2.2 and S2.3). Interestingly, there seems to 
be no linear correlation for k.filter. Lisi score decreases with n.features, but not linearly.  
 
Table S2.2 and S2.3: Batch effect after integration with different settings for k.filter and n.features. The amount of batch 
effect is quantified as the Lisi test score for integration of the samples with and without regression for pct.ribo. 
 
     Without pct.ribo              With pct.ribo 

  N.features 

  1000 2000 3000 

K
.f

ilt
e

r 

100 3.224450652 2.963149527 2.781883933 

200 3.211560943 3.131807327 3.000971743 

300 3.359055219 3.169682359 3.052746692 

400 3.399024295 3.197298010 3.086605477 

 
Batch effect correction affects the detectability of biological heterogeneity 
We further looked the detectability of biological heterogeneity after different approaches for batch 
effect correction. For this purpose, we compared the clustering and number of differentially 
expressed genes of objects with different Lisi scores. We observe that integrated objects with little 
remaining batch effect and a high Lisi score (table S2.4) yield in less differentially expressed genes 
and thus less biological information than integrated objects with more remaining batch effect (table 
S2.5). In addition, the object with high Lisi score identifies two different clusters at a resolution of 
0.5, whereas the object with the Lisi score of 2.64 already detects two clusters at a clustering 
resolution of 0.3. Moreover, clusters with only a limited number of differentially expressed genes, as 
in table S2.4, do not provide much more insight in the heterogeneity of the samples, suggesting 
overcorrection and subsequent overclustering of these samples. We also compared integrated 
objects with the same amount of batch effect (Lisi score = 3.18), but different integration settings 
(n.features = 1000, k.filter=200 and n.features = 2000, k.filter = 400). Interestingly, clustering of 
these objects resulted in a notably different biological output, as they largely differ in number of 
clusters and differentially expressed genes (table S2.6 and S2.7). So the choice of integration 
parameter settings can influence the detectability of biological heterogeneity, even if the remaining 
batch effect of two object is the same. 
 
Table S2.4: Clustering and differential gene expression analysis for different resolutions (with pct ribo,  nfeatures = 1000, 
k.filter = 200, Lisi score = 3.37). NA = not available 

Resolution Nr of 
clusters 

Nr of genes 
cluster 1 

Nr of genes 
cluster 2 

Nr of genes 
cluster 3 

Nr of genes 
cluster 4 

0.1 1 NA NA NA NA 

0.2 1 NA NA NA NA 

0.3 1 NA NA NA NA 

0.4 1 NA NA NA NA 

  N.features 
 

 
1000 2000 3000 

K
.f

ilt
e

r 

100 3.347848350 2.993724544 2.769168720 

200 3.185957478 2.929128462 2.644296833 

300 3.317477891 3.199982175 2.720265794 

400 3.365077459 3.181236234 2.665079598 
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0.5 2 2 2 NA NA 

0.6 2 2 2 NA NA 

0.7 2 2 2 NA NA 

0.8 3 8 2 2 NA 

0.9 3 2 3 6 NA 

 

Table S2.5: Clustering and differential gene expression analysis for different resolutions (with pct.ribo, k.filter=200, 

n.features=3000, Lisi score = 2.64). NA =  not available 

Resolution Nr of 
clusters 

Nr of genes 
cluster 1 

Nr of genes 
cluster 2 

Nr of genes 
cluster 3 

Nr of genes 
cluster 4 

0.1 1 NA NA NA NA 

0.2 1 NA NA NA NA 

0.3 2 105 105 NA NA 

0.4 2 119 119 NA NA 

0.5 2 109 109 NA NA 

0.6 3 12 113 11 NA 

0.7 3 11 121 15 NA 

0.8 4 101 5 4 17 

0.9 4 106 5 5 20 

 
Table S2.6: Clustering and differential gene expression analysis for different resolutions (with pct.ribo, k.filter=200, 
n.features=1000, Lisi score = 3.18). NA = not available 

Resolution Nr of 
clusters 

Nr of genes 
cluster 1 

Nr of genes 
cluster 2 

Nr of genes 
cluster 3 

Nr of genes 
cluster 4 

0.1 1 NA NA NA NA 

0.2 1 NA NA NA NA 

0.3 2 55 55 NA NA 

0.4 2 39 39 NA NA 

0.5 2 33 33 NA NA 

0.6 2 32 32 NA NA 

0.7 3 31 13 7 NA 

0.8 3 31 12 7 NA 

0.9 4 55 6 12 8 

 
Table S2.7: Clustering and differential gene expression analysis for different resolutions (with pct.ribo, k.filter=400, 
n.features=2000, Lisi score = 3.18). NA = not available 

Resolution Nr of 
clusters 

Nr of genes 
cluster 1 

Nr of genes 
cluster 2 

Nr of genes 
cluster 3 

Nr of genes 
cluster 4 

0.1 1 NA NA NA NA 

0.2 1 NA NA NA NA 

0.3 2 64 64 NA NA 

0.4 2 71 71 NA NA 

0.5 2 22 22 NA NA 

0.6 3 3 21 64 NA 

0.7 3 2 21 66 NA 

0.8 4 0 9 8 72 

0.9 4 2 9 10 75 
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Conclusion 

In this study, we investigated the effects of adjusting integration and clustering parameters in 
scRNAseq analysis using the R package Seurat. For this purpose, we developed and tested a 
bioinformatic tool to easily explore the effects of integration and clustering parameters in Seurat’s 
scRNAseq analysis. Besides the development of this tool for future analyses, we show that it is 
advisable to perform integration instead of merging of our samples to reduce the amount of batch 
effect. For these specific samples normalization without regressing for pct.ribo also results in less 
batch effect. Additionally, the amount of batch effect correction and thus the amount of remaining 
batch effect is mostly determined by the argument n.features and then k.filter. We also show that 
overcorrection of the data can decrease the detectability of biological heterogeneity. Interestingly, 
the values chosen for n.features and k.filter during integration influence the biological output even 
when the batch effect is the same. This suggests that Seurat’s integration functions manipulate the 
data in more ways than only batch effect correction. 
 
This analysis does not offer a universal solution for optimal parameter settings, as the choice of 
parameter settings depends on the specific samples used in each individual analysis. In every case, 
the balance between batch effect correction and biologically relevant top genes should be carefully 
assessed when adjusting integration and clustering parameter settings. This study does give an 
overview of the impact of specific arguments in the Seurat workflow and thus helps to predict the 
effect of specific parameter alterations. In addition, it emphasizes the importance of understanding 
the different arguments in a function, since integration approaches with similar batch effects can still 
result in different clustering if different parameter settings are used. 
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Supplement 3. R script for Seurat v4 analysis 

#### 0. Loading required packages to run this R script for Seurat v4 #### 
  library("Seurat") 
  library('dplyr') 
  library('sctransform') 
  library('ggplot2') 
  library('MAST') 
  library('metap') 
  library('IDEATools') 
  library('DESeq2') 
  library('lisi') 
  #library('kBET') # An alternative approach to quantify batch effect  
  library('openxlsx') 
 
#### 1. Setting working directory and loading data #### 
  ## Set working directory to correct folder with the individual objects for 
integrated script 
  setwd("C:/Users/Marle Lokerse/Google Drive/I&I/Major internship/scRNAseq/Analyse 
PRIDE/Objects for integrated script") 
   
  ## Load the samples that have been normalized (SCTransform), regressed for % 
mitochondrial genes+ 
  ## partial cell cycle regression ( + optional: % ribosomal genes)  
   
  load(file = "C:/Users/Marle Lokerse/Google Drive/I&I/Major 
internship/scRNAseq/Analyse PRIDE/Objects for integrated 
script/s005SCT_ML_pctribo.Robj") 
  load(file = "C:/Users/Marle Lokerse/Google Drive/I&I/Major 
internship/scRNAseq/Analyse PRIDE/Objects for integrated 
script/s008SCT_ML_pctribo.Robj") 
  load(file = "C:/Users/Marle Lokerse/Google Drive/I&I/Major 
internship/scRNAseq/Analyse PRIDE/Objects for integrated 
script/s009SCT_ML_pctribo.Robj") 
  load(file = "C:/Users/Marle Lokerse/Google Drive/I&I/Major 
internship/scRNAseq/Analyse PRIDE/Objects for integrated 
script/s010SCT_ML_pctribo.Robj") 
 
#### 2. Integration and batch correction using Seurat integration function #### 
## A: Merge without batch correction 
  ML.merged <- merge(s005, c(s008, s009, s010), merge.data = T) 
   
  setwd("C:/Users/Marle Lokerse/Google Drive/I&I/Major internship/scRNAseq/Analyse 
PRIDE/Parameter analysis/Integrated objects") 
  save(ML.merged, file = "DATE_Uncorrected_withribo_merged.Robj") 
 
  #If the samples have been merged and saved before, reload the merged object  
  load(file = "C:/Users/Marle Lokerse/Google Drive/I&I/Major 
internship/scRNAseq/Analyse PRIDE/Parameter analysis/Integrated 
objects/230605_Uncorrected_withribo_merged.Robj") 
 
  #Runa PCA and UMAP on merged data 
  ML.merged <- RunPCA(ML.merged, verbose = TRUE, features = 
rownames(ML.merged@assays[["SCT"]]@scale.data)) 
  ML.merged <- RunUMAP(ML.merged, dims = 1:30) 
 
  #Perform Lisi test to quantify the batch effect 
  df_m <- as.data.frame(ML.merged@meta.data$orig.ident) 
  colnames(df_m)[1] <- 'origID'  
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  res_m <- compute_lisi(as.matrix(ML.merged@reductions$umap@cell.embeddings), df_m 
, label_colnames = 'origID') 
  mean(res_m$origID) 
 
## B: Integrate with batch correction 
  #Set ident to patient/project/plate name 
  s005 <- SetIdent(s005, value = "orig.ident") 
  s008 <- SetIdent(s008, value = "orig.ident") 
  s009 <- SetIdent(s009, value = "orig.ident") 
  s010 <- SetIdent(s010, value = "orig.ident") 
 
  #Create integrated Seurat object 
  integrate.list <- objects() 
  integrate.list$s005 <- s005 
  integrate.list$s008 <- s008 
  integrate.list$s009 <- s009 
  integrate.list$s010 <- s010 
   
  #Create vectors for the integration parameter values to be tested in the for 
loop 
  my_nfeatures <- c(1000, 2000, 3000) #These values can be adjusted to any value 
to be tested 
  my_kfilter <- c(100, 200, 300, 400) #These values can be adjusted to any value 
to be tested 
   
  #Create an empty dataframe where the batch effect will be pasted for all 
different parameter settings 
  batch_effect <- matrix(data = NA,ncol = length(my_nfeatures),nrow = 
length(my_kfilter)) 
   
  df_batch_effect <- data.frame(batch_effect) 
  colnames(df_batch_effect) <- my_nfeatures 
  rownames(df_batch_effect) <- my_kfilter 
   
  #Set working directory to save integrated objects 
  setwd("C:/Users/Marle Lokerse/Google Drive/I&I/Major internship/scRNAseq/Analyse 
PRIDE/Parameter analysis/Integrated objects") 
   
  #Identify anchors 
  reference.list <- integrate.list[c("s005", "s008", "s009", "s010")] 
   
  for (i in 1:length(my_nfeatures)) { 
    integrate.features <- SelectIntegrationFeatures(object.list = reference.list, 
nfeatures = my_nfeatures[i]) 
    reference.list <- PrepSCTIntegration(object.list = reference.list, 
anchor.features = integrate.features, verbose = TRUE) 
     
    for (j in 1:length(my_kfilter)) { 
      #Integrate data 
      integrate.anchors <- FindIntegrationAnchors(object.list = reference.list, 
normalization.method = "SCT", anchor.features = integrate.features, verbose = 
TRUE, k.filter = my_kfilter[j]) 
      ML.integrated <- IntegrateData(anchorset = integrate.anchors, 
normalization.method = "SCT", verbose = TRUE) 
       
      #Runa PCA and UMAP on integrated samples 
      ML.integrated <- RunPCA(ML.integrated, verbose = TRUE, features = 
rownames(ML.integrated@assays[["SCT"]]@scale.data)) 
      ML.integrated <- RunUMAP(ML.integrated, dims = 1:30) 
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      #Perform Lisi test to quantify the batch effect 
      df <- as.data.frame(ML.integrated@meta.data$orig.ident) 
      colnames(df)[1] <- 'origID' 
      res <- 
compute_lisi(as.matrix(ML.integrated@reductions$umap@cell.embeddings), df, 
label_colnames = 'origID') 
      df_batch_effect[j,i] <- mean(res$origID) 
       
      #Save integrated object 
      save(ML.integrated, 
           file = paste("DATE_Uncorrected_withpctribo_nf", 
                        my_nfeatures[i], 
                        "_kf", 
                        my_kfilter[j], 
                        ".Robj", 
                        sep="" 
           ) 
      ) 
    } 
  } 
   
  #Save the datframe with the batch effect results 
  setwd("C:/Users/Marle Lokerse/Google Drive/I&I/Major internship/scRNAseq/Analyse 
PRIDE/Parameter analysis") 
  write.xlsx(df_batch_effect, file = 
"DATE_Uncorrected_withpctribo_dim30_lisitest.xlsx", rowNames = TRUE) 
 
#### 3. Clustering #### 
  ## Load an integrated dataset (specific nfeatures and kfilter) to be clustered  
  setwd("C:/Users/Marle Lokerse/Google Drive/I&I/Major internship/scRNAseq/Analyse 
PRIDE/Parameter analysis/Integrated objects") 
  load(file="230604_Uncorrected_withpctribo_nf2000_kf400.Robj") 
   
  ## Create vectors for the parameter values to be tested in the for loop  
  my_resolutions <- c(seq(from = 0.1, to = 0.9, by = 0.1)) #These values can be 
adjusted to any value to be tested 
   
  ## Create an empty dataframe where the clusters per conditions will later be 
placed 
  clusters <- matrix(data = NA,ncol = 2, nrow = length(my_resolutions)) 
  df_clusters <- data.frame(clusters) 
  colnames(df_clusters) <- c("Resolution", "Number of clusters") 
  df_clusters[, 1] <- my_resolutions 
  df_clusters_pos <- df_clusters 
   
  for (i in 1:length(my_resolutions)) { 
    ## Prepare data 
    DefaultAssay(object = ML.integrated) <- "integrated" 
     
    ML.integrated <- RunPCA(ML.integrated, verbose = TRUE) 
    ML.integrated <- RunUMAP(ML.integrated, dims = 1:30) 
     
    ## Find clusters 
    ML.integrated <- FindNeighbors( 
      object = ML.integrated, 
      reduction = "pca", 
      dims = 1:30) 
   



30 
 

    ML.integrated <- FindClusters( 
      object = ML.integrated, 
      resolution = my_resolutions[i]) 
    
    DimPlot( 
      object = ML.integrated, 
      reduction = "umap", 
      pt.size = 1.2) 
     
    DimPlot( 
      object = ML.integrated, 
      reduction = "umap", 
      group.by = 'orig.ident', 
      pt.size = 1.2 
    ) 
     
    ## Save the number of clusters to the empty dataframe 
    df_clusters[i, 2] <- nlevels(ML.integrated) 
    df_clusters_pos[i,2] <- nlevels(ML.integrated) 
     
    ## Set the amount of clusters (if you have tried multiple resolutions for 
clustering, they are all saved as ML.integrated$...._res0.8/...res0.4 etc,) 
    key <- paste("integrated_snn_res.", my_resolutions[i], sep = "") 
    ML.integrated <- SetIdent(ML.integrated, value = key) 
     
    ## Order defined clusters based on phylogenetic analysis of identity classes  
    if (nlevels(ML.integrated) > 1) { 
      ML.integrated <- 
        BuildClusterTree( 
          ML.integrated, 
          reorder = TRUE, 
          reorder.numeric = TRUE, 
          dims = 1:30, 
          verbose = TRUE 
        ) 
       
      #### 4. Finding cluster defining markers #### 
      DefaultAssay(object = ML.integrated) <- "RNA" 
      ML.integrated <- SetIdent(ML.integrated, value = "tree.ident") 
      ML.integrated <- PrepSCTFindMarkers(object = ML.integrated) 
       
      ##Find Markers that are specific for each cluster 
      Batchedmarkers.mast <- 
        FindAllMarkers( 
          ML.integrated, 
          test.use = "MAST", 
          slot = 'data', 
          logfc.threshold = 0.25, 
          min.cells.feature = 5, 
          only.pos = FALSE, 
          min.diff.pct = 0.10 
        ) 
      
       ## Create list 
      listDEgenes_mast <- 
        split(Batchedmarkers.mast, f = Batchedmarkers.mast$cluster) 
 
      ## Filter on adj.P-value 
      listDEgenes_mast <- 
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        lapply(listDEgenes_mast, function(x) { 
          dplyr::filter(x, p_val_adj < 0.05) 
        }) 
 
      # Sort on logFC 
      listDEgenes_mast <- 
        lapply(listDEgenes_mast, function(x) { 
          x <- x[order(x$avg_log2FC, decreasing = T), ] 
        }) 
       
      ## Save number of genes per cluster to dataframe 
      for (j in 1:nlevels(ML.integrated)){ 
        if (nlevels(ML.integrated) >= j) { 
          df_clusters[i, paste("Nr of genes cluster ", j, sep= "")] <- 
nrow(listDEgenes_mast[[j]]) 
        } else { 
          df_clusters[i, paste("Nr of genes cluster ", j, sep= "")] <- "NA" 
        } 
      } 
       
      ## Save number of positive log fold changed genes per cluster to dataframe  
      for (j in 1:nlevels(ML.integrated)){ 
        if (nlevels(ML.integrated) >= j){ 
          positive_foldchange <- listDEgenes_mast[[j]][,"avg_log2FC"] > 0 
          df_clusters_pos[i, paste("Nr of positive genes cluster ", j, sep= "")] 
<- sum(positive_foldchange) 
        } else { 
          df_clusters_pos[i, paste("Nr of positive genes cluster ", j, sep= "")] 
<- "NA" 
        } 
      } 
       
      ## Write to Excel 
       setwd("C:/Users/Marle Lokerse/Google Drive/I&I/Major 
internship/scRNAseq/Analyse PRIDE/Parameter analysis/Cluster defining markers") 
       write.xlsx(listDEgenes_mast,file = 
paste("DATE_Uncorrected_withpctribo_nf2000_kf400_dim30_GE_", 
my_resolutions[i],".xlsx")) 
       write.xlsx(df_clusters, file = 
"DATE_Uncorrected_withpctribo_nf2000_kf400_dim30_clusters.xlsx") 
       write.xlsx(df_clusters_pos, file = 
"DATE_Uncorrected_withpctribo_nf2000_kf400_dim30_posclusters.xlsx") 
    } 
  } 

 

 


