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Abstract

The status of understanding quantum loop corrections of cosmological perturba-
tions is in its infancy. In this Master’s thesis we investigate the graviton self-energy
one-loop corrections induced by a massive, non-minimally coupled scalar field during
an Inflationary period produced by a de Sitter background. We fully renormalize this
result by the addition of four counterterms, two of which, the Ricci scalar square and
the Weyl tensor square, agree with the massless renormalization performed by ’t Hooft
and Veltman on a Minkowski background. This generalizes the work done by Park and
Woodard, who performed this procedure for the massless, minimally coupled case also
on de Sitter.
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Introduction

One of the biggest questions facing modern Cosmology is the origin of the Large Scale
Structure (LSS) Fig. 1, i.e. why do we observe a coherent structure of galaxy clusters at
very large scales [1–4], as opposed to a uniform distribution. Such a structure suggests
at a mechanism to induce density perturbations in the very early universe, able to survive
and influence this structure today. The theory that fits best with the data [5–8] is Infla-
tion, a period of rapid accelerating expansion in the early universe that enabled quantum
fluctuations to enlargen and act as a seed to grow into the structure we observe.

Figure 1: Large Scale Structure of galaxy clusters from the Sloan Digital Sky Survey
(SDSS) [4]. The colour indicates relative density of galaxy clusters at different luminosity
scales, while the white patches are comparatively empty void-space.

The theory of Cosmological Inflation was first introduced by Starobinsky and Guth[9–
11] and improved shortly after by Linde, Albrecht and Steinhardt [12, 13]. The theory was
originally proposed as a means to explain the Horizon, Flatness and Monopole problems
in the observations of Cosmology at the time, but was also used to explain LSS after it
was introduced [14–19]. Around the time that this theory was being developed, it was
predicted that such an Inflationary period will generate primordial gravitational waves
[20]. With the recent development of gravitational wave detectors at LIGO [21] we hope
that direct observations of the so-called B-modes of a gravitational wave signal would
cement the position of an Inflation Epoch into the early universe [22].

The recent announcements from the International Pulsar Timing Array (PTA) collabo-
rations [23] (made up from: NANOGrav [24, 25], EPTA [26–30] and Parkes Observatory
[31]) along with the Chinese PTA announcement [32], provide strong evidence for a Grav-
itational Wave Background (GWB). The origin of this signal is thought to be made from
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the mergers of supermassive black holes and possibly at least part of this signal could come
from primordial gravitational wave generated during Inflation, evidence for such would
cement Inflation into standard Cosmology theories.

In this thesis we are interested primarily on the quantum loop corrections of the gravi-
ton propagator that, via Inflation, could grow to a scale to be observable in LSS, in the
Cosmic Microwave Background (CMB) or even in the new GWB. We consider a small per-
turbation of a background metric gµν = ḡµν +hµν , |hµν | ≪ 1 then the tree-level propagation
of these gravitational waves is described by the Linearised Einstein Equation

Lµνρσhρσ =
1

8
√
πG

T µν , (0.1)

with L the Lichnerowicz operator, and is the result of a linear expansion of Einstein Field
Equation [33–35]. We are interested in the quantum-loop corrections to this equation

Lµνρσhρσ −
∫
dDx′

[
µνΣρσ

]
(x;x′)hρσ(x

′) = 8
√
πGT µν , (0.2)

where
[
µνΣρσ

]
is the graviton-self energy term bitensor, written in this notation to reinforce

the notion that it acts as a tensor for µ, ν indices on the left, at x, and as a separate tensors
for ρ, σ on the right, at x′. The ultimate goal for this thesis is to calculate the one-loop
contribution to this self-energy, due to a Massive, Non-Minimally Coupled Scalar Field
(MvNMCS)

Some of the earliest work looking at quantum loop-corrections to the graviton come
from ’t Hooft and Veltman’s famous 1974 paper [36], where they looked at the one-loop
corrections arising from a charged, Massless Minimally Coupled Scalar field (MMCS). They
found that by adding two counterterms, corresponding to the Ricci scalar and Ricci tensor
squares, they could remove the divergences of the theory at this one-loop order. We will
be able to compare their counterterm coefficients to those that we find in Section 4.4. This
was further expanded to the two loop level by Goroff and Sagnotti [37, 38].

More recently, work have previously been done by Park and Woodard in [39], where
they considered a real MMCS on a de Sitter background. They employ gauge invariance
and the implied tranversality of the self-energy to fix the tensor form and then identify the
trace of the divergent terms with that of the counterterms. This method is very calculation
heavy which were performed primarily on a computer, thus making comparison to our
work difficult in certain places.

This was then extended to a non-minimally coupling, but on a Minkowski background
by Marunovic and Prokopec [40]. Due to the much simpler terms one finds by taking
the Minkowski limit, this work acts as a very useful aid and guideline for the methods
we use. We will follow their initiative and perform our renormalization procedure first in
Minkowski, and then compute the de Sitter corrections in order to finish the calculations.

Inflation provides a perfect test bed for looking at the effects that primordial particles
have on Cosmological perturbations. Glavan, Prokopec and collaborators [41–43] looked
at the backreactions coming from various scalar fields during inflation, and their late time
effects. They found some evidence for contributions to Dark Energy and Dark Matter from
these scalars. Prokopec, Tsamis and Woodard also worked on a stochastic theory of In-
flation for Scalar Quantum Electrodynamics (SQED) in [44–46]. Prokopec also worked
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on non-scalar dynamics, by considering Majorana Fermions [47]. Recenetly, Glavan and
Prokopec [48] looked at fluctuations involving a massless non-minamally coupled scalar
field. Other work that has been done in this area by Park, Prokopec and Woodard [49],
where they looked at the implications these quantum corrections have on the gravitational
potentials.

This provides us with ample motivation to further investigate the graviton interactions
during Inflation. We will consider a de Sitter space, with a de Sitter invariant scalar prop-
agator, and assume m2 − ξR > 0 (where we use the positive coupling in the action and
so ξ < 0, with a conformal coupling at ξ = −1/6). The limit as this goes to 0 acts quite
differently than to the full MMCS [39], due to the addition of a de Sitter breaking term
∝ ln(aa′) in the propagator.

This thesis will be laid out in the following manner: First we will provide a back-
ground for Inflationary Cosmology that will be useful as an introduction to the concepts
used throughout this thesis. We will then derive the Chernikov-Tagirov [50] propagator
using two methods, first via direct application of the Hypergeometric equation, and then
separately by splitting the scalar field equation of motion into Fourier modes and solving
the resulting Bessel integrals. We then calculate the one-loop self-energy of the graviton in
a Minkowski background, and renormalize the the result via dimensional regularization.
For this reason, the number of dimensions, D, will be kept general, before we complete this
Renormalization procedure. Finally we repeat the calculation for a de Sitter background
by looking at the H2 suppressed corrections to finish our calculation.
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1 Inflationary Cosmology

Most modern Cosmological models are built from the Cosmological Principle [51]. It states
that the Universe at large scales (≳ 100 Mpc) looks the same to all observers, ie. it is
Isotropic (rotationally invariant) and Homogeneous (translationally invariant). The uni-
verse however is not static, but observations [5, 52] indicate that galaxies further away
from us recede from us at higher velocities, v = H0d, which is known as Hubble’s Law, with
the proportionality constant, Hubbles Paramater. This was then formulated independently
by Friedmann [53, 54] and Lemâıtre in the 1920s [55, 56] into the theory that the universe
is expanding. Together, this cosmology model became the Friedmann-Lemâıtre-Robertson-
Walker (FLRW) metric

ds2 = −dt2 + a2(t)
(
dr2 + S2

κ(r)dΩ
2
)

(1.1)

with a(t) the scale factor characterising the rate of expansion, and Sκ(r) is the degree of
freedom left in the metric that depends on whether the universe is flat, open or closed (i.e.
hyperbolic or spherical)1. Observations tells us that the universe appears to be approxi-
mately spatially-flat [5–7], such that we can consider Sκ(r) = r to recover spherically-flat
coordinates.

Upon solving the vacuum Einstein field equations for this metric, one obtains the two
Friedmann equationsH = ȧ/a,

H2 =
8πG

3
ρi(t) +

Λc2

3
, (1.2)

ä

a
= −4πG

3

[
ρi(t) + 3

P

c2

]
+

Λc2

3
, (1.3)

where we sum over the various density contributions ρi, which couple differently with the
scale factor. These equations give rise to solutions for the scale factor during periods dom-
inated by one of the energy densities. For example during a radiation dominated period,
where ρrad ∝ a−4, the scale factor becomes a ∝

√
t. Currently observations indicate that the

universe is dominated by a cosmological constant, [5–7], corresponding to an accelerat-
ing expansion (Planck’s observed values for the fraction of energy density of cosmological
constant Ω0,Λ = 0.6935 ± 0.0072, and matter Ω0,m = 0.3065 ± 0.0072 most of which is dark
matter).

This roughly describes the standard cosmology model of the universe, known as ΛCDM.
However there are some fine-tuning issues that remain. First, the Horizon problem reflects
the fact that the Cosmic Microwave Background (CMB) appears to be nearly perfectly uni-
form, and yet distant points in space should be causally disconnected. Second is the flatness
problem, which arises from the simple fact that the Friedmann equations dictate that a flat
universe is an unstable fixed point, and yet we see that our universe is approximately flat
instead of being dominated by a curvature ‘energy density’. These would require very spe-
cific initial conditions, and we would need to consider why the universes took these specific
initial conditions as opposed to any others. Finally, the magnetic monopole problem [57]

1One should be careful with the word flat, as occasionally this means we are considering Minkowski space,
as opposed to the shape of the space as it is meant here.
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Figure 2: An example of the single field scalar potential for slow-roll inflation, “rolling”
down from the initial unstable false vacuum, to the true vacuum, where reheating occurs
[59].

is that the predicted production of magnetic monopoles during the early universe should
be sufficiently high as to be observable today, despite no such observational evidence.

The theory of Inflation, a period of exponential expansion in the early universe, pro-
vides a neat explanation to resolve these issues. This period of rapid expansion allows for
points that were once causally connected to move outside of this connectedness, and ex-
plain the Horizon problem, and would also explain the flatness, with this expansion driving
the universe to be very spatially flat. Rapid expansion also serves to cool the universe, re-
ducing the production of magnetic monopoles [12]. Estimations place the duration of this
period to be approximately 60 e-foldings [19] (i.e. the universe scaled a factor of e60 ≡ 1026

during the inflation, which is posited to have taken ∼ 10−36s).
In Guth’s original description [11], a scalar field (originally the Higgs field was consid-

ered but was later abandoned) was allowed to tunnel through a false vacuum to the true
vacuum to achieve the required inflation. The Hubble parameter became constant value,
with a purely exponential scale factor,

a(t) = eHt. (1.4)

This old-Inflation was left with some major issues, one being no mechanism for ending the
Inflation and thus the classical Friedman style expansion could not occur, and no way for
the phase transition bubbles walls to uniformly coalesce, which would break isotropy and
homogeneity. Linde, and independently afterwards by Albrecht and Steinhardt, quickly
resolved these issues with the introduction of a slow-roll parameter ϵ = −Ḣ/H, which
would be very small during the required Inflationary period, allowing the scalar factor to
be quasi-exponential, while eventually transitioning the expansion out of this Inflationary
epoch, and into the desired Friedman-type expansion period. This “slow-roll Inflation” can
be achieved by considering a Coleman-Weinberg potential [58] (see Fig. 2 for an example
of such a potential, and an illustration for what “slow-roll” means).

This is what is known as Single Field Inflation, as only one scalar field is required to
govern the Inflation. There are other such as Multi-field Inflations, but they are typically
less favoured for their increased complexity. A good introduction to Inflation can be found
in [22, 60].
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Before moving forward, we shall briefly recall several components from General Rel-
ativity (GR) that will be useful for understanding this thesis. For a proper introduction to
GR, see Carrol [61], or a more in depth look can be found in Misner, Thorne and Wheeler
[62]. We have already seen the first of our important objects, the metric tensor itself gµν ,
which comes directly from the line element (such as Eq. (1.1)) with ds2 = gµνdx

µdxν . Sec-
ond there are objects stemming from the covariant-derivative, defined to transform under
Lorentz transformations correctly, i.e.

∇µV
ν = ∂µVν + Γν

µαV
α, (1.5)

where2 Γα
µν is the Levi-Civita connection fixed by metric compatibility ∇αgµν = 0, and

considering a torsion free theory Γα
µν = Γα

νµ, to

Γα
µν = gαβ

(
∂µgνβ + ∂νgµβ − ∂βgµν

)
.

All of the geometrical information for our space is contained in the Riemann tensor

Rρ
µσν = ∇σΓ

ρ
µν −∇νΓ

ρ
µσ = ∂σΓ

ρ
µν − ∂νΓ

ρ
µσ + Γρ

σλΓ
λ
µν − Γρ

νλΓ
λ
µσ (1.6)

which has a number of important symmetries. Written with a lowered first index we can
write Rρµσν ≡ R[ρµ][σν] ≡ Rσνρµ, where the square parentheses indicate antisymmetry about
those indices, i.e. exchanging these indices will induce a minus sign (and round brack-
ets indicate symmetry, and exchanging does not change the sign)3. Unlike in Minkowski
space where derivatives always commute, the presence of the extraneous connection in the
covariant derivative imparts the following commutation rule4[

∇µ,∇ν

]
V α = Rα

λµνV
λ. (1.7)

From the Riemann tensor we can extract specific parts of the geometric information,
first by way of the taking the trace of the first and third indices, we define the Ricci tensor,
which describes the deformation of objections by the curvature of space-time

Rµν = Rρ
µρν = ∂ρΓ

ρ
µν − ∂νΓ

ρ
µρ + Γρ

ρλΓ
λ
µν − Γρ

νλΓ
λ
µρ, (1.8)

and, taking a second trace to define the Ricci scalar, which characterizes the curvature of
the space-time

R = Rµ
µ = Rρµ

ρµ.

These two objects contain all of the trace-information for the Riemann tensor, but there
is also traceless information potentially missing. This is encapsulated in the Weyl Tensor,
which by definition is made to be traceless itself

Cρ
µσν = Rρ

µσν −
2

(D − 2)

(
δρ[σRν]µ +Rρ

[σgν]µ

)
+

2

(D − 1)(D − 2)
gµ[νgσ]ρR. (1.9)

2For lowered indices there is a minus on the connection term, covariant derivatives of higher order tensors
are defined analogously.

3We use the normalization convention T(αβ) =
1
2! (Tαβ + Tβα) and T[αβ] =

1
2! (Tαβ − Tβα) etc.

4For lowered indices there is a minus sign in front of the Riemann term.
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This contains the shape deformation information of the Riemann tensor, and can be thought
of as a way of expressing the angle preserving nature of the curvature. The Weyl tensor is
also defined with the same symmetries as the Riemann tensor. There is also a particularly
useful Ricci decomposition of the Riemann tensor square (see Section 1.G. of [63] for
details), that allow us to relate the square of these three tensors rather neatly

|Cρµσν |2 = |Rρµσν |2 −
4

(D − 2)
|Rµν |2 +

2

(D − 1)(D − 2)
R2. (1.10)

We have seen several objects which we describe as tensors, though strictly speaking
we consider tensor-fields. We normally think of a tensor field as an space-time dependent
object with (m,n) valence, meaning it hasm-lowered indices, and n-upper indices. A Tensor
is defined by the way in which it transforms under a coordinate change

Tµ1...µm

ν1...νn(x) =
∂xµ

′
1

∂xµ1
. . .

∂xµ
′
m

∂xµm

∂xν1

∂xν
′
1
. . .

∂xνn

∂xν′n
Tµ′

1...µ
′
m

ν′1...ν
′
n(x). (1.11)

We can think of this tensor as matching a matrix-like object to every space-time point, the
temperature at every point in a room is an example of a (0,0) Tensor field i.e. a scalar field;
while the velocity of particles in a fluid could be described by a (0,1) Tensor field, i.e. a
vector. Thus when we define the covariant derivative to transform correctly, we mean such
that it transforms as a tensor.

In a similar vein, we will want some way of describing relations between different
space-time points, thus, we define a bitensor to be an object that depends on two space-
time points, and transforms independently as a tensor at each point (potentially with two
separate valences). The details behind this concept are aptly summarised by Allen and
Jacobson [64]. A simple example for a bitensor that we will be interested in is the distance
between each set of pairs of points in a space, which would be a biscalar. One important
factor of bitensors that we will need to be careful with, is the preservation of how they
transform, we will need to ensure that for example an object that transform as a (2, 0)
tensor at x, and as a scalar at x′ does not become a scalar at x and a (2, 0) tensor at x′

during our calculation, as could happen if we are not careful with certain limits.
There are of course some trivial examples of bitensors, such as the product of two

tensors at different points, but for non-trivial bitensors are non-local in nature, meaning
they cannot be separated into two distinct local objects. The core bitensor of this thesis is
the graviton self energy [

µνΣρσ

]
(x;x′),

written in this notation to emphasise that the µ, ν indices are associated with the point x
and ρ, σ with x′ (we will keep to this convention throughout this thesis). We will further
drop the x, x′ dependance when it is clear from the context what the points should be.

We will now explore the specifics of the model we will be working with in this thesis.
In particular, we will consider the maximally symmetric de Sitter space for our model of
inflation in an FLRW metric, which aligns with Guth’s original model [11]. We will then
introduce the matter content of our Massive, Non-Minimally Coupled Scalar field.
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2 Our Model

We consider a period of Inlfation described by a background de Sitter space, which means
we take the de Sitter limit of slow roll inflation, i.e. ϵ→ 0, which simplifies our calculation.
For a similar treatment, without this limit, see Janseen et al. [65], where they consider a
MMCS with a constant ϵ > 1 (which induces a decelerating expansion). Throughout this
thesis, we will keep the dimension D general, so as to allow for dimensional regularization
during the renormalization procedure.

Figure 3: dSD embedding in R1,D, circles about this hyperboild as indicated are hypersur-
faces of fixed time X0. The central throat represents the causal past a singularity between
an expanding and contracting universe.

De Sitter space is defined as the unique maximally symmetric (meaning they contain
the maximum number of symmetries a space can have: 1

2
D(D + 1)) with constant positive

curvature 5 R > 0, and belongs to the SO(1, D) symmetry group. We can represent our D-
dimensional de Sitter space as a hyperboloid embedding of a D+1-dimensional Minkowski
space, with the constraint equation

−(X0)2 +
D∑
i

(X i)2 = constant, (2.1)

which is shown in Fig. 3. We will consider the planar coordinates (t, xi), i, j = 1, ...D − 1
[66], defined by

X0 = sinh(t) +
H

2
xix

ie−t, X i = xie−t, XD = cosh(t)− H

2
xix

ie−t, (2.2)

ds2 = −dt2 + (eHt)2dxidx
i, (2.3)

5the others are Anti-de Sitter, with constant negative curvature, and Minkowski with vanishing curvature
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which has an additional constraint X0 + xd = sinh(t) + cosh(t) > 0, thus restricting the
coordinates to the upper half of the embedding. This is known as the Poincaré patch of de
Sitter, and matches to the flat FLRW metric with a scale factor of a(t) = eHt, and thus also
corresponds to a space containing only a Cosmological constant. For some general reviews
and literature on de Sitter see [66–71], while for a closer look at de Sitter as it relates to
the graviton propagator see the discussions by Miao et al. and Morrison [33–35].

We can also rewrite our metric into conformal time η, via dt = adη

ds2 = −dt2 + a(t)2dx⃗2 = a(η)2
(
− dη2 + dx⃗2

)
, (2.4)

such that the metric becomes a conformally rescaled Minkowski metric gµν = a2ηµν . We can
also define a conformal, or coming Hubble parameter H = (da

dη
)/a ≡ Ha = − 1

η
. Throughout

this thesis, primarily make use of these conformal coordinates, and write a ≡ a(η) and
a′ ≡ a(η′) for the scale factor at two conformal times. The curvature terms are given by

Γρ
µν = H2a

(
δ0µδ

ρ
ν + δ0νδ

ρ
µ − ηρ0ηµν

)
, (2.5)

Rρµσν = 2H2gµ[νgσ]ρ, (2.6)
Rµν = H2(D − 1)gµν , (2.7)
R = H2D(D − 1). (2.8)

Solving the vacuum Einstein equation gives the Cosmological constant for this space

Λ =
1

2
(D − 2)(D − 1)H2 (2.9)

We now want to introduce the matter content. We consider a MvNMC scalar field,
described by the general action

S[ϕ, gµν ] =

∫
dDx

√
−g

{
− 1

2
∂µϕ∂νϕg

µν − V (ϕ) + ξRϕ2

}
. (2.10)

As we will be interested in diagrams with no scalar interactions, we can freely set V (ϕ) =
1
2
m2ϕ2. By varying this action with respect to the scalar field via δϕ(x′)

δϕ(x)
:= δD(x− x′) we find

the scalar field Equation of Motion

δS

δϕ(x)
= −

∫
dDx′∂′ν

{√
−g(x′)gµν(x′)∂′µϕ(x′)δD(x− x′)

}

+

∫
dDx

√
−g(x′)

{
′ϕ(x′)− dV

dϕ
+ ξRϕ(x′)

}
δD(x− x′) (2.11)

=
√
−g(x)

(
ϕ(x)−m2 + ξR

)
. (2.12)

The first term in Eq. (2.11) vanishes on the boundary6. Now we demand that the variation
of the action vanishes and we find the equation of motion for ϕ(x), known as the Klein-
Gordon equation √

−g(x)
(

ϕ(x)−m2 + ξR
)
= 0. (2.13)

6We assume that we can set the boundary to be sufficiently separated from x such that the Dirac delta
function vanishes
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3 The Scalar Propagator

In this section, we derive the Chernikov-Tagirov scalar propagator [50]. We will start by
quantizing our scalar field ϕ(x), along with the canonical momentum Π(x)

Π(x) :=
δS

δ∂0ϕ(x)
=

∫
dDx′

√
−g(x′)

{
−δ∂µϕ(x

′)

δ∂0ϕ(x)
∂νϕg

µν(x′)

}
(3.1)

δ∂µϕ(x)

δ∂0ϕ(x′)
= δ0µδ

D(x− x′) (3.2)

Π(x) = −
√
−gg0ν∂νϕ(x)

FLRW
====⇒ aD−2∂ηϕ(x). (3.3)

Now we want to promote ϕ(x) and Π(x) to operators, ϕ̂(x) and Π̂(x) by promoting their
Poisson bracket to an equal time commutation relation:[

ϕ̂(η, x⃗), Π̂(η, x⃗′)
]
= iℏδD−1(x⃗− x⃗′), (3.4)

⇒
[
ϕ̂(η, x⃗),−

√
−gg0ν∂νϕ̂(η, x⃗′)

]
= aD−2

[
ϕ̂(η, x⃗), ∂ηϕ̂(η, x⃗

′)
]
= iℏδD−1(x⃗− x⃗′). (3.5)

Next we want to compute the scalar propagator for our theory. In doing so we acknowledge
that de Sitter space is an out of equilibrium system (due to the nature of expansion). We
will employ Wightman functions ∆(+) and ∆(−), with the so called in-out formalism, but
there are others that are one could choose which give some additional insight. The primary
alternative is the in-in formalism, known as the Schwinger-Keldysh (SK) formalism. This
makes use of an imaginary time contour with R(t) ∈ [−∞, tc] + [tc, tc,−∞] [72–77], and is
also particularly useful for solving the linearised Einstein equation.

3.1 Equation of Motion

With both the equation of motion for ϕ̂(x), and the commutation relation between ϕ̂(x)
and Π̂(x), we can find a propagator Equation of Motion by starting with the definition of
the propagator as the time ordered two point function:

i∆(x;x′) :=⟨Ω|T ϕ̂(x)ϕ̂(x′)|Ω⟩ (3.6)

=θ(∆x0)⟨Ω|ϕ̂(x)ϕ̂(x′)|Ω⟩+ θ(−∆x0)⟨Ω|ϕ̂(x′)ϕ̂(x)|Ω⟩ (3.7)

=θ(∆x0)∆(+)(x;x′) + θ(−∆x0)∆(−)(x;x′). (3.8)

We introduce the Wightman functions ∆(±)(x;x′), and recall that θ(x) is the Heaviside step
function, defined with H(0) = 1

2
. We take the ansatz that the equation of motion has the

same form as the scalar field itself
√
−g

(
−M2

)
i∆(x;x′) = ℏ i δD(x− x′). (3.9)

where M2 = m2− ξR is the effective mass. Now let’s act this first on the positive frequency
Wightman function ∆(+)(

θ(∆x0) i∆(+)
)
=

1√
−g

∂µ
(√

−ggµν∂ν
[
θ(∆x0) i∆(+)

])
, (3.10)
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All of the terms where both of the derivatives do not act on θ(±∆x0), will vanish, along
with the M2 term, by employing the Klein-Gordon equation onto the Wightman functions
( −M2)∆(±) = 0. We also note that ∂ν (θ(±∆x0)) = ±δ0νδ(∆x0), which gives

∂ν
(
θ(∆x0)

)
i∆(+) + ∂ν

(
θ(−∆x0)

)
i∆(−) = δ0νδ(∆x

0)
(
i∆(+) − i∆(−)

)
(3.11)

= ⟨Ω|[ϕ̂(x0, x⃗), ϕ̂(x0, x⃗′)]|Ω⟩ = 0. (3.12)

Thus, we are only left with the first derivative acting on the ∆(±), and the second acting on
the θ(±∆x0) and our final result is

√
−g

(
−M2

)
i∆(x;x′) = δ(∆x0)⟨Ω|[

√
−gg0ν∂νϕ̂(x0, x⃗), ϕ̂(x0, x⃗′)]|Ω⟩ (3.13)

= ℏ i δD(x− x′). (3.14)

On the second line we made use of the commutation relation between ϕ̂(x) and Π̂(x), and
obtain the correct form for the equation of motion.

We will now show two methods for solving this equation, first by changing our equa-
tion into the form of the hypergeometric equation, and second by expanding the equation
into Fourier modes.

3.2 Hypergeometric Equation

We start by performing a change of variables for our equation of motion, into ȳ(x;x′)
(related to the geodesic distance l(x;x′) of de Sitter space ȳ(x;x′) = 4 sin

(
1
2
Hl(x;x′)

)
)

ȳ(x, x′) = a(η)a(η′)H2∆x2 = aa′H2
(
−∆η2 + ||∆x⃗||2

)
. (3.15)

The bar indicates that we have not yet introduced an i ε-prescription. We can easily rewrite
our propagator equation, and expand into derivatives of ȳ (see Appendix A for more de-
tails). First we note the expansion of the d’Alembertian operator in the FLRW metric is
ϕ = a−2

(
−∂2η +∇2 − (D − 2)H∂η

)
ϕ.

aD−2
{
−∂2η +∇2 − aH(D − 2)∂η − a2M2

}
(3.16)

= aD−2

{
ηµν

(
∂2ȳ

∂xµ∂xν
d

dȳ
+

∂ȳ

∂xµ
∂ȳ

∂xν
d2

dȳ2

)
+ aH(D − 2)δ0νη

µν ∂ȳ

∂xµ
d

dȳ
− a2M2

}
(3.17)

= aDH2

{(
4ȳ − ȳ2

) d2

dȳ2
+D (2− ȳ)

d

dȳ
− M2

H2

}
. (3.18)

Next we apply another change of coordinates ȳ = 4z, so that our propagator equation
becomes

√
−g

(
−M2

)
i∆(x;x′) = aDH2

[
z (1− z)

d2

dz2
+

(
1

2
D −Dz

)
d

dz
− M2

H2

]
i∆(x;x′).

(3.19)
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We start by trying the naive solution:
√
−g ( −M2)F naive(z) = 0, i.e. by ignoring the

δD(x − x′) of the propagator equation (In order to switch to the full propagator solution,
we will have to add an i ε-prescription to y(x;x′), which will be explained below)

[
z (1− z)

d2

dz2
+

(
1

2
D −Dz

)
d

dz
− M2

H2

]
F naive(z) = 0. (3.20)

This has the same form as the hypergeometric equation (see section 9.15 and in particular
Eq. (9.151) in [78]), which has two linearly independent solutions u1 and u2

z(1− z)
d2f

dz2
+ (γ − (α + β + 1)z)

df

dz
− αβf = 0. (3.21)

⇒ α + β + 1 =D, αβ =
M2

H2
, (3.22)

β2 − (D − 1)β +
M2

H2
= 0, (3.23)

⇒ β =
D − 1

2
±

√(
D − 1

2

)2

− M2

H2
, (3.24)

ν2 :=

(
D − 1

2

)2

− M2

H2
=

(
D − 1

2

)2

− m2

H2
+ ξD(D − 1). (3.25)

Note that the plus-minus option gives α and β. In Eq. (9.152.7), they then list that in the
special case, as we have, that γ = 1

2
(α + β + 1), the solutions are of the form

u1 = 2F1

(
α, β;

1

2
(α + β + 1); z

)
, (3.26)

u2 = 2F1

(
α, β;

1

2
(α + β + 1); 1− z

)
. (3.27)

Hypergeometric Equation: 2F1 (α, β; γ; z) =
∑
n=0

(α)n(β)n
(γ)n

zn

n!
, (3.28)

Pochhammer Symbol: (α)n := (α)(α + 1) . . . (α + n− 1) =
Γ(α + n)

Γ(α)
, (α)0 := 1.

(3.29)

The hypergeometric function in this series representation is convergent for |z| < 1, which
we analytically continue it with a branch cut between the poles at z = 1,∞. Because of
this, we will add an iε-prescription to our invariant distance quantity ȳ → y in order to
change from the naive solution to that of the propagator. We make use of the following
prescription

y = H2a(η)a(η′)∆x2F (x;x
′), (3.30)

∆x2F = −(|∆η| − iε)2 + ||∆x⃗||2. (3.31)
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We now have our two solutions, which we linearly combine with coefficients A,B ∈ C, to
give the scalar propagator as

i∆(x;x′) = A · 2F1

(
D − 1

2
+ ν,

D − 1

2
− ν;

D

2
;
y

4

)
+B · 2F1

(
D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1− y

4

)
. (3.32)

We now want to make sure our solution is in Hadamard form, which means that the only
singularities involved in our propagator should be at the lightcone ∆x2F → 0. For us that
means y → 0. As the hypergeometric function contains poles at z = 1, the singularity
obtained in the term of A is at y = 4, known as the antipodal singularity on de Sitter, and
can be obtained by setting η = −η. Thus, we discard this term, setting A = 0. The other
term is in the correct form, and we can expand it via Eq. (9.131.2) in [78], to give

i∆(x;x′) =B ·

{
Γ
(
D
2

)
Γ(1− D

2
)

Γ(1
2
− ν)Γ(1

2
+ ν)

2F1

(
D − 1

2
+ ν,

D − 1

2
− ν;

D

2
;
y

4

)

+
(y
4

)1−D
2 Γ

(
D
2

)
Γ
(
D
2
− 1

)
Γ
(
D−1
2

+ ν
)
Γ
(
D−1
2

− ν
)2F1

(
1

2
+ ν,

1

2
− ν; 2− D

2
;
y

4

)}
(3.33)

Now again comparing against Eq. (3.28) we see our solution does have the Hadamard
form, with the (y

4
)1−

D
2 . We can now evaluate B, by comparing with the D-dimensional

massless propagator for Minkowski Eq. (C.19)

B = ℏ
HD−2

(4π)D/2

Γ(D−1
2

+ ν)Γ(D−1
2

+ ν)

Γ(D
2
)

. (3.34)

And all together our equation for the scalar field propagator is

i∆(x;x′) = ℏ
HD−2

(4π)D/2

Γ
(
D−1
2

+ ν
)
Γ
(
D−1
2

− ν
)

Γ
(
D
2

) 2F1

(
D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1− y

4

)
.

(3.35)

So far we have worked in D-dimensions, but we will want to take the limit D → 4 after
dimensional regularization. Thus we require the propagator equation to be regular in this
limit, which we show explicitly in Appendix C.2, and gives the limit

lim
D→4

i∆(x;x′) =
ℏH2

(4π)2

{
4

y
+
∑
n=0

(1
2
+ ν)n(

1
2
− ν)n

(2)nn!

(y
4

)n

×
[
ln
(y
4

)
+ ψ

(
3

2
+ ν + n

)
+ ψ

(
3

2
− ν + n

)
− ψ (1 + n)− ψ (2 + n)

]}
.

(3.36)
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3.3 Fourier Mode Expansion

For this section, we follow very closely with [65], with a slight difference in that for they in-
clude a slow-roll parameter ϵ > 0, and use a massless, minimally coupled scalar. However,
this slow-roll parameter acts similarly to a mass term in our equation of motion, allowing
us to follow in the same steps. Let’s now perform a Fourier transform on our field ϕ̂(x) into
the momentum space field operator ϕ̂(η, k⃗)

ϕ̂(η, x⃗) =

∫
dD−1k

(2π)D−1

{
eik⃗·x⃗ϕ(η, k⃗)

}
. (3.37)

ϕ̂†(η, k⃗) = ϕ̂(η,−k⃗) as ϕ̂†(x) = ϕ̂(x), i.e. ϕ̂(x) is hermitian, (3.38)

[∂2η + (D − 2)aH∂η + k2 + a2M2]ϕ̂(η, k⃗) = 0. (3.39)

This is a useful form, but by bringing in a factor of a(D−2)/2 into the ϕ̂, and recall we define
ν2 =

(
D−1
2

)2 − M2

H2 , we can simplify this expression to(
∂2η + k2 −

ν2 − 1
4

η2

)(
a(D−2)/2ϕ̂(η, k⃗)

)
= 0. (3.40)

We now want to solve this equation, first we will expand ϕ̂(η, k⃗) into creation and annihi-
lation operators for our Fock Space, α̂†(k⃗) and α̂(k⃗)

ϕ̂(η, k⃗) = ϕ(η, k)α̂(k⃗) + ϕ∗(η, k)α̂†(k⃗), (3.41)

where we used the isotropy of ϕ(η, k) to remove the dependence on the direction of k⃗
(which comes from requiring the state to be rotational symmetric). Our creation and anni-
hilation operators are defined in the usual manner, such that we define our vacuum state7

|Ω⟩ to be a Gaussian state, and to obey:

α̂(k⃗) |Ω⟩ = 0 (∀k⃗) (3.42)

This then reduces our equation of motion for our mode functions ϕ(η, k) and ϕ∗(η, k) to(
∂2η + k2 −

ν2 − 1
4

η2

)(
a(D−2)/2ϕ(η, k)

)
= 0 (3.43)

and analogous for ϕ∗. These equations have solutions known as Hankel’s functions, de-
noted as H(1/2)

ν (z), which are Bessel functions of the third kind, linear combinations of the
first two kinds. We could have expressed this solution in terms of the Bessel functions, but
in the UV limit (large k⃗) this solution reduces to plane waves, while we want a solution in
the form of a travelling wave.

7A more general Gaussian state would be defined with [a(k⃗)α̂(k⃗)−b(k⃗)α(k⃗)α̂†(k⃗)] |Ω⟩ = 0, with a(k⃗), b(k⃗) ∈
C
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We can find this solution in section 8.4 and 8.5: Eq. (8.491.5) in [78]:

ϕ(η, k) =

√
π

4H
a−(D−2)/2H(1)

ν

(
k

H

)
. (3.44)

We have (H
(1)
ν ( k

H))
∗ = H

(2)
ν ( k

H) for real ν, k
H , this is the case if

(
D−1
2

)2
> M2

H2 , which we
will assume for now, and can analytically continue later. Decomposing our propagator into
Wightman functions again, we have

i∆(x;x′) := θ(∆η) i∆(+)(x;x′) + θ(−∆η) i∆(−)(x;x′), (3.45)

i∆(+)(x;x′) =
π

4

√
1

HH′ [a(η)a(η
′)]−(D−2)/2

∫
dD−1k

(2π)D−1
eik⃗·(x⃗−x⃗′)H(1)

ν

(
k

H

)
H(2)

ν

(
k

H′

)
,

(3.46)

i∆(−)(x;x′) =
π

4

√
1

HH′ [a(η)a(η
′)]−(D−2)/2

∫
dD−1k

(2π)D−1
eik⃗·(x⃗−x⃗′)H(1)

ν

(
k

H′

)
H(2)

ν

(
k

H

)
.

(3.47)

Now we want to solve these integrals. We do this by changing to generalised spherical
polar coordinates in D − 1 spatial dimensions, and then use Eq. (8.411.7) and (6.578.10)
from [78] to solve the spherical and radial integrals respectively (with φ is defined as the
angle between k⃗ and r⃗ = x⃗− x⃗′).

Consider the following general integral:

I =

∫
dD−1k

(2π)D−1
eik⃗·(x⃗−x⃗′)f(k) =

1

(2π)D−1

∫
dΩD−2

∫ ∞

0

dkkD−2eikr cos(φ)f(k) (3.48)

=
1

(2π)D−1

∫
dΩD−3

∫ ∞

0

dkkD−2f(k)

∫ π

0

dφeikr cos(φ) sin2(D−3
2

)(φ) (3.49)

=
1

2D−2π
D−1
2

∫ ∞

0

dkkD−2f(k)
JD−3

2
(kr)

(1
2
kr)

D−3
2

. (3.50)

We used (8.411.7) for the φ integral, and the relation given in Appendix C for the remaining
angular part. Now we can compare this with Eq. (3.46), and we obtain

i∆(+)(x;x′) =
2

D−3
2 π3/2

(4π)D/2

[a(η)a(η′)]−(D−2)/2

√
HH′r

D−3
2

∫ ∞

0

dkk
D−3
2

+1JD−3
2
(kr)H(1)

ν

(
k

H

)
H(2)

ν

(
k

H′

)
(3.51)

To solve this integral we want to use Eq. (6.578.10) (along with the identities in Eq.
(8.407.1/2) and (9.131.1)) in [78], however, this integral is only defined for Im(−∆η) >
|Im(r)|. Thus, we must add an iε-prescription: η → η − iε

2
and η′ → η′ + iε

2
, so that

∆η → ∆η − iε and the condition for the integral is satisfied. Then our equation for the
Wightman function becomes

i∆(+)(x;x′) =
2

D+1
2

π(4π)D/2

[a(η)a(η′)]−(D−2)/2

√
HH′r

D−3
2∫

dkk
D−3
2

+1JD−3
2
(kr)Kν

(
−ik

(
1

H
+
iε

2

))
Kν

(
ik

(
1

H′ −
iε

2

))
. (3.52)
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This integral is in now in correct form to be solved, and we have defined a convenient
invariant distance

y−+ = H2a(η)(η′)(∆x(+))2, (3.53)

(∆x(+))2 =
(
− (∆η − iε)2 + ||∆x⃗||2

)
. (3.54)

Eq. (6.578.10) expresses this integral Eq. (3.52) in terms of Associated Legendre functions
of the Third Kind P µ

ν (z), which are then expressed as hypergeometric functions in Eq.
(8.702). Utilizing these, we find the result for our positive frequency Wightman function
to be

i∆(+)(x;x′) =ℏ
HD−2

(4π)D/2

Γ
(
D−1
2

+ ν
)
Γ
(
D−1
2

− ν
)

Γ
(
D
2

) (3.55)

2F1

(
D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1− y−+

4

)
. (3.56)

In performing this integral, we have assumed ν to be real, i.e. (D−1
2

)2 ≥ M2

H2 . If this is not
the case, then we would need to analytically continue our solution.

For the negative frequency Wightman function, we take all of the same steps, except
that in the iε-prescription, we must flip the signs (as the Hankel functions are switched).
Thus we have η → η + iε

2
and η′ → η′ − iε

2
, such that we now have: ∆η2 → (∆η + iε)2, and

we define our invariant distance in a similar manner.

y+− = H2a(η)(η′)(∆x(−))2 = [y−+]
∗i, (3.57)

(∆x(−))2 =
(
− (∆η + iε)2 + ||∆x⃗||2

)
= [(∆x(−))2]∗, (3.58)

and our result for the negative frequency integral is

i∆(−)(x;x′) =ℏ
HD−2

(4π)D/2

Γ
(
D−1
2

+ ν
)
Γ
(
D−1
2

− ν
)

Γ
(
D
2

)
2F1

(
D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1− y+−

4

)
, (3.59)

i∆(+)(x;x′) =[i∆(−)(x;x′)]∗. (3.60)

Finally, we can our two Wightman propagator solutions, using Eq. (3.45) and the proper-
ties of the θ(±∆η) functions. We again define an invariant distance, this time for the full
propagator

y = H2a(η)a(η′)∆x2F , (3.61)
∆x2F = −(|∆η| − iε) + ||∆x⃗||2. (3.62)

and our scalar field propagator is

i∆(x;x′) = ℏ
HD−2

(4π)D/2

Γ
(
D−1
2

+ ν
)
Γ
(
D−1
2

− ν
)

Γ
(
D
2

) 2F1

(
D − 1

2
+ ν,

D − 1

2
− ν;

D

2
, 1− y

4

)
,

(3.63)
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which agrees with the propagator we found for via the hypergeometric equation in Eq.
(3.35). We can also rewrite this by separating out the Hadamard pole

i∆(x;x′) =
ℏHD−2

(4π)D/2

(
Γ

(
D

2
− 1

)(y
4

)1−D
2
+ f0(y)

)
, (3.64)

fm(y) =
∞∑

n=m

[
Γ
(
D−1
2

± ν
)
Γ(1− D

2
)

Γ(1
2
± ν)

(
D−1
2

± ν
)
n(

D
2

)
n
n!

(y
4

)n

+
Γ
(
D
2
− 1

) (
1
4
− ν2

)
2− D

2

(
3
2
± ν

)
n

n!(n+ 1)
(
3− D

2

)
n

(y
4

)n+2−D
2

]
. (3.65)

3.4 Minkowski Limit

Before moving on, we can take the Minkowski limit (H → 0) of the scalar propagator

i∆(x;x′) =
ℏmD−2

(2π)D/2

1(
m
√
∆x2

)(D−2)/2
KD−2

2

(
m
√
∆x2

)
, (3.66)

Kν(z) =
Γ (−ν)
2ν+1

∞∑
n=0

(z/2)2n+ν

(1 + ν)n n!
+

Γ (ν)

2ν+1

∞∑
n=0

(z/2)2n−ν

(1− ν)n n!
, (3.67)

1

z
D−2
2

KD−2
2
(z) =

Γ
(
1− D

2

)
2D/2

∞∑
n=0

(z/2)2n(
D
2

)
n
n!

+
Γ
(
D
2
− 1

)
2D/2

∞∑
n=0

(z/2)2n+2−D(
2− D

2

)
n
n!
, (3.68)

where Kν(z) is the Bessel function of the second kind. See Eq. (4.2) and (4.3) of [79]
for a similar derivation for this result. To make this equation more analogous to our de
Sitter version, let’s define8 Minkowski form of y(x;x′) = m2∆x2 ). We can then rewrite the
Minkowski propagator equation as

i∆(x;x′) =
ℏmD−2

(4π)D/2

∞∑
n=0

{
Γ
(
1− D

2

)(
D
2

)
n
n!

(y
4

)n

+
Γ
(
D
2
− 1

)(
2− D

2

)
n
n!

(y
4

)n+ 2−D
2

}
(3.69)

=
ℏmD−2

(4π)D/2

{
Γ

(
D

2
− 1

)(y
4

)1−D
2
+ f0(y)

}
(3.70)

fm(y) =
∞∑

n=m

{
Γ
(
1− D

2

)(
D
2

)
n
n!

(y
4

)n

+
Γ
(
D
2
− 1

)(
2− D

2

) (
3− D

2

)
n
(n+ 1)!

(y
4

)n+ 4−D
2

}
(3.71)

8Do not take this definition to literally, as this is simply to enforce the same dimensionless argument for
our propagator.
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4 Graviton Self Energy in a Minkowski Background

Now that we have the scalar propagator, we are able to compute the primitive graviton self-
energy. Our goal for this section is to find the divergent contributions to the self-energy
from the Feynman diagrams in Fig. 4, i.e. the 3-point and 4-point contributions. We
then perform dimensional regularization to remove these divergences, and renormalize our
theory by adding four counterterms. We will first perform these steps using a Minkowski
background so as to fix the counterterms and their coefficients. Then in Section 5, we will
repeat these steps on a de Sitter background, where we will be able to focus on the H2 and
higher suppressed terms.

Figure 4: The one-loop Feynman diagrams to the graviton self energy: the 3-point vertex
(non-local), the 4-point vertex (local) and the counterterm vertex contributions

Consider a perturbation to the background metric of the form gµν → ηµν + δgµν . By
demanding that the Kronecker delta δµρ is invariant, we find the inverse metric perturbation
to be related by

δgµν = −gµρgνσδgρσ. (4.1)

We detail the variations for other curvature terms in Section D. We use these rules to
expand our Action around this perturbation, and perform functional variation to find the
3-point and 4-point contributions. The functional derivative with respect to the metric on
Minkowski is given by:

δgρσ(x′)

δgµν(x)
= δρ(µδ

σ
ν)δ

D(x− x′), (4.2)

The first two diagrams in Fig. 4 are defined via the functional derivatives of the
action, the 3-point contribution is given by the product of first order functional derivatives,
each representing one of the vertices with one graviton propagator, while the 4-point is
given by the second order functional derivative, representing the vertex with two graviton
propagators:

[
µνΣρσ

]
(x;x′) =

1√
−g(x)

√
−g(x′)

〈
T ∗

{
i

ℏ2
δS[ϕ, gαβ]

δgµν(x)

δS[ϕ, gαβ]

δgρσ(x′)
+

1

ℏ
δ2S[ϕ, gαβ]

δgµν(x)δgρσ(x′)

}〉
.

(4.3)

The T ∗ indicates a time-ordered product, where every vertex derivative is pulled outside of
the time ordering, this will then generate another term which we will be removed by our
counterterm diagram. We will now look at the 3-point and 4-point contributions separately.
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4.1 4-Point Contribution

The 4-point diagram, also known as the local contribution, is defined by:

[
µνΣ

4Pt
ρσ

]
(x;x′) =

1

ℏ
1

√
−g

√
−g′

〈
T ∗ δ2Sϕ

δgµν(x)δgρσ(x′)

〉
=

1

ℏ

{
− 1

2

(
1

4
ηµνηρσ +

1

2
ηµ(ρησ)ν

)
ηαβ⟨T ∗∂αϕ(x)∂βϕ(x)⟩

+
1

4

(
ηµν⟨T ∗∂′ρϕ(x)∂

′
σϕ(x)⟩+ ηρσ⟨T ∗∂µϕ(x)∂νϕ(x)⟩

)
− 1

2
m2⟨T ϕ2⟩

(
1

4
ηµνηρσ +

1

2
ηµ(ρησ)ν

)
− 1

2
ξ⟨T ϕ2⟩Lµνρσ

}
δD(x− x′), (4.4)

where Lµνρσ is the Lichnerowicz operator, and is related to to the second order variation of
the Ricci scalar up to a minus sign,

Lµνρσ = ηµνηρσ∂
2 − 1

2

(
ηµν∂

′
ρ∂

′
σ + ηρσ∂µ∂ν

)
− 1

2

(
ηµ)(ρησ)(ν∂

2 + 2ηµ)(ρ∂
′
σ)∂(ν

)
. (4.5)

To evaluate the correlators in Eq. (4.4), we recall that in dimensional regularization D-
dependent powers of ∆x2 vanish in the coincidence limit, such that we find

⟨T ϕ2⟩ = lim
x′→x

i∆(x;x′) =
ℏmD−2

(4π)D/2
Γ

(
1− D

2

)
(4.6)

=
ℏmD−4

(4π)D/2

2m2

(D − 4)
− ℏm2

(4π)2
(ψ(1) + 1) (4.7)

≡
ℏmD−4Γ

(
D
2
− 1

)
(4π)D/2

2m2

(D − 4)
− ℏm2

(4π)2
(2ψ(1) + 1) , (4.8)

⟨T ∗∂αϕ(x)∂βϕ(x)⟩ = lim
x′→x

∂α∂
′
β i∆(x;x′) =

ℏmD−2

(4π)D/2
Γ

(
−D

2

)
1

2
m2ηαβ (4.9)

= − ℏmD

(4π)D/2

1

2

ηαβ
(D − 4)

− ℏm2

(4π)2
1

4
(2ψ(1) + 3) ηαβ (4.10)

≡ −
ℏmD−4Γ

(
D
2
− 1

)
(4π)D/2

m4

2

1

(D − 4)
ηαβ −

ℏm2

(4π)2
1

4
(3ψ(1) + 3) ηαβ (4.11)

The divergent terms are those proportional to δD(x− x′)/(D− 4). As the main purpose for
this Minkowski calculation is to prepare us for the de Sitter case, we primarily focus on the
divergent terms here. Together they give the 4-point contribution:

[
µνΣ

4Pt
ρσ

]
(x;x′) =

mD−4Γ
(
D
2
− 1

)
(4π)D/2

1

(D − 4)

{
− 1

4
m4ηµνηρσ − ξm2Lµνρσ

}
+ finite-terms. (4.12)
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4.2 3-Point Contribution

The 3-point diagram is defined by[
µνΣ

3Pt
ρσ

]
(x;x′) =

1

ℏ2
1

√
−g

√
−g′

〈
T ∗ i

δSϕ

δgµν(x)

δSϕ

δgρσ(x′)

〉divergent-terms

=
i

4ℏ2

{(
1

2
ηµνη

αβ − δα(µδ
β
ν)

)(
1

2
ηρση

γδ − δγ(ρδ
δ
σ)

)
⟨T ∗∂αϕ(x)∂βϕ(x)∂

′
γϕ(x

′)∂′δϕ(x
′)⟩

+
1

2
m2

[
ηµν

(
1

2
ηρση

γδ − δγ(ρδ
δ
σ)

)
⟨T ∗∂′γϕ(x

′)∂′δϕ(x
′)(ϕ(x))2⟩+ . . .

]
+

1

4
m4⟨T (ϕ(x))2(ϕ(x′))2)⟩

− ξ

[(
1

2
ηµνη

αβ − δα(µδ
β
ν)

)
D′

ρσ⟨T ∗∂αϕ(x)∂βϕ(x)(ϕ(x
′))2⟩+ . . .

+
1

2
m2

(
ηµνD

′
ρσ + ηρσDµν

)
⟨T (ϕ(x))2(ϕ(x′))2)⟩

]
+ ξ2DµνD

′
ρσ⟨T (ϕ(x))2(ϕ(x′))2)⟩

}
, (4.13)

where Dµν = ∂µ∂ν − gµν∂
2 comes from the first variation of the Ricci scalar up to a minus

sign. We Wick contract these four point correlators9,

⟨T (ϕ(x))2(ϕ(x′))2)⟩ = 2 (i∆(x;x′))
2
, (4.14)

⟨T ∗∂αϕ(x)∂βϕ(x)(ϕ(x
′))2⟩ = 2∂(α i∆(x;x′)∂β) i∆(x;x′), (4.15)

⟨T ∗∂αϕ(x)∂βϕ(x)∂
′
γϕ(x

′)∂′δϕ(x
′)⟩ = 2∂α)∂

′
(γ i∆(x;x′)∂′δ)∂(β i∆(x;x′), (4.16)

and plugging these into Eq. (4.13), we can express the 3-point contribution in terms of the
scalar propagator[
µνΣ

3Pt
ρσ

]
(x;x′) =

i

4ℏ

{
2∂µ)∂

′
(ρ i∆(x;x′)∂′σ)∂(ν i∆(x;x′)

−
(
ηµν∂

α∂′(ρ i∆(x;x′)∂′σ)∂α i∆(x;x′) + . . .

)
+

1

2
ηµνηρσ∂

α∂′γ i∆(x;x′)∂′γ∂α i∆(x;x′)

+m2

[
ηµνηρσ∂

α i∆(x;x′)∂α i∆(x;x′)−
(
ηµν∂

′
ρ i∆(x;x′)∂′σ i∆(x;x′) + . . .

)]
+

1

2
m4ηµνηρσ (i∆(x;x′))

2

− ξ

[(
ηµνD

′
ρσ + ηρσDµν

)
∂α i∆(x;x′)∂α i∆(x;x′)− 2

(
D′

ρσ∂µ i∆(x;x′)∂ν i∆(x;x′) + . . .
)

+m2

(
ηµνD

′
ρσ + ηρσDµν

)
(i∆(x;x′))

2

]
+ 2ξ2DµνD

′
ρσ (i∆(x;x′))

2

}
, (4.17)

9Wick contraction across the same position vanishes.
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where the . . . represents a symmetric term with (µ, ν, x) ↔ (ρ, σ, x′). Now we need identi-
ties for the product of derivatives of the propagators. We will detail briefly the process for
extracting derivatives here.

The terms we are interested in contain various powers of y = m∆x2, which are diver-
gent if they are non-integrable in D=4 dimensions. This is the case for y−2 type terms. We
first extract derivatives via(y

4

)−α

=
2

m2(α− 1)(2α−D)
∂2

(y
4

)1−α

, (4.18)

until all divergent terms are in the form of y2−D, at which point we extract one more
d’Alembert and pick up a (D − 4) pole,(y

4

)2−D

=
2

m2(D − 3)(D − 4)
∂2

(y
4

)3−D

. (4.19)

We can then add the massless propagator equation of motion in order to isolate the poles
onto Dirac deltas,

∂2

m2

(y
4

)3−D

=
∂2

m2

[(y
4

)3−D

−
(y
4

)1−D
2

]
+

(4π)D/2

mDΓ
(
D
2
− 1

) i δD(x− x′)

}
. (4.20)

This procedure is given in more detail in Appendix B.1. The final propagator identities that
we are interested in, up to the finite terms, are(

i∆(x;x′)
)2

=
ℏm2D−4Γ2

(
D
2
− 1

)
16πD

∂2

2(D − 3)(D − 4)

(4π)D/2

mDΓ
(
D
2
− 1

) i δD(x− x′)

+ finite-terms, (4.21)

∂µ i∆(x;x′)∂ν i∆(x;x′)div =
ℏm2D−4Γ2

(
D
2
− 1

)
16πD

1

4(D − 3)(D − 4)

×

{
1

2

(D − 2)

(D − 1)
∂µ∂ν +

1

2

1

D − 1
ηµν∂

2 −m2ηµν

}
(4π)D/2

mDΓ
(
D
2
− 1

) i δD(x− x′)

+ finite-terms, (4.22)

∂µ∂
′
ρ i∆(x;x′)∂ν∂

′
σ i∆(x;x′)div =

ℏm2D−4Γ2
(
D
2
− 1

)
16πD

1

4(D − 3)(D − 4)

×

{
1

8

D(D − 2)

(D + 1)(D − 1)
∂µ∂ν∂

′
ρ∂

′
σ +

1

8

D

(D + 1)(D − 1)

(
ηµν∂

′
ρ∂

′
σ + η′ρσ∂µ∂ν

)
∂2

+
1

2

1

(D + 1)(D − 1)
ηµ)(ρ∂

′
σ)∂(ν∂

2 +
1

2

1

(D + 1)(D − 1)

(
1

4
ηµνη

′
ρσ +

1

2
ηµρηνσ

)
∂4

+m2

[
− 1

4

(D − 2)

(D − 1)

(
ηµν∂

′
ρ∂

′
σ + η′ρσ∂µ∂ν

)
− 1

D − 1

(
1

4
ηµνη

′
ρσ +

1

2
ηµρηνσ

)
∂2

− 1

(D − 1)
ηµ)(ρ∂

′
σ)∂(ν

]
+m4

(
1

4
ηµνη

′
ρσ +

1

2
ηµρηνσ

)}
(4π)D/2

mDΓ
(
D
2
− 1

) i δD(x− x′)

+ finite-terms. (4.23)
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Now we are ready to expand these terms in our 3-Point contribution Eq. (4.17). This
Equation has a number nice symmetries that one can employ to speed up the gathering
of divergent terms. For example any term ∝ gµν in ηρσ∂µ∂

′
ρi∆(x;x′)∂′σ∂νi∆(x;x′) will con-

tribute finitely to the self energy, due to the coefficients in front of it and the second trace
in Eq. (4.17) coming together as ∝ (D − 4).

4.3 Divergent terms in Vertex Function

Together, the divergent terms for the 4-Point and 3-Point diagrams are given by

[
µνΣ

4Pt
ρσ

]
(x;x′) =

mD−4Γ
(
D
2
− 1

)
(4π)D/2

1

D − 4

{
− 1

4
m4ηµνηρσ −m2ξLµνρσ

}
δD(x− x′) (4.24)

[
µνΣ

3Pt
ρσ

]
(x;x′) =

i

4

{
2∂µ)∂

′
(ρ i∆(x;x′)∂′σ)∂(ν i∆(x;x′)−

(
ηµν∂

α)∂′(ρ i∆(x;x′)∂′σ)∂(α i∆(x;x′) + . . .

)
+

1

2
ηµνηρσ∂

α∂′γ i∆(x;x′)∂′γ∂α i∆(x;x′) +
1

2
m4ηµνηρσ (i∆(x;x′))

2

+m2

[
ηµνηρσ∂

α i∆(x;x′)∂α i∆(x;x′)−
(
ηµν∂

′
ρ i∆(x;x′)∂′σ i∆(x;x′) + . . .

)]
− ξ

[(
ηµνD

′
ρσ + ηρσDµν

)
∂α i∆(x;x′)∂α i∆(x;x′)− 2

(
D′

ρσ∂µ i∆(x;x′)∂ν i∆(x;x′) + . . .
)

+m2

(
ηµνD

′
ρσ + ηρσDµν

)
(i∆(x;x′))

2

]
+ 2ξ2DµνD

′
ρσ (i∆(x;x′))

2

}
, (4.25)

Now we evaluate this out fully, where again we only consider those terms ∝ 1/(D − 4),
as the others will contribute finitely. We first must expand the mD−4 = µD−4(1 + (D −
4) ln(m2/µ2)/2), introducing a mass scale µ, then we can express these divergences as

[
µνΣ

div
ρσ

]
(x;x′) =

µD−4Γ
(
D
2
− 1

)
16πD/2

{
−1

8(D + 1)(D − 1)(D − 3)(D − 4)

[
(D − 2)

(D − 1)
∂µ∂ν∂

′
ρ∂

′
σ +

1

(D − 1)

(
ηµν∂

′
ρ∂

′
σ + ηρσ∂µ∂ν

)
∂2

− 1

(D − 1)
ηµνηρσ∂

4 +

(
ηµ)(ρησ)(ν∂

4 + 2ηµ)(ρ∂
′
σ)∂(ν∂

2

)]
+

1

4(D − 3)(D − 4)

(
1

2

(D − 2)

(D − 1)
+ 2ξ

)2

DµνD
′
ρσ

− m2

2(D − 3)(D − 4)

(
1

2

(D − 2)

(D − 1)
+ 2ξ

)
Lµνρσ

+
m4

2(D − 3)(D − 4)

(
1

4
ηµνηρσ +

1

2
ηµ)(ρησ)(ν

)}
δD(x− x′), (4.26)
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4.4 Renormalizing the Minkowski Case

As we do not have any external scalar propagators, the terms already in our action cannot
contribute to the renormalization procedure. To renormalize our theory at one-loop order,
we add the following counterterms

Sct[gαβ] =
∫
dDy

√
−g

{
c1|Cγαδβ|2 + c2R

2 + c3m
2R + c4m

4

}
, (4.27)

with ci arbitrary coefficients that we wish to fix. As all of the curvature terms vanish on
Minkowski, we only need the first variation of these terms.

δ2

δgµν(x)δgρσ(x′)

∫
dDy

√
−g

{
c1|Cγαδβ|2 + c2R

2 + c3m
2R + c4m

4

}
=

√
−g

√
−g′

{

c1
2(D − 3)

(D − 2)

[
(D − 2)

(D − 1)
∂µ∂ν∂

′
ρ∂

′
σ +

1

(D − 1)

(
gρσ∂µ∂ν∂

2 + gµν∂
′
ρ∂

′
σ∂

2
)

− 1

(D − 1)
gµνgρσ∂

4 +

(
gµρgνσ∂

4 + 2gµρ∂ν∂
′
σ∂

2

)]

+ 2c2

[
∂µ∂ν∂

′
ρ∂

′
σ −

(
gµν∂

′
ρ∂

′
σ∂

2 + g′ρσ∂µ∂ν∂
2

)
+ gµνg

′
ρσ∂

4

]

+ c3m
2

[
− 1

2
gµνg

′
ρσ∂

2 +
1

2

(
gµν∂

′
ρ∂

′
σ + g′ρσ∂µ∂ν

)
+

1

2

(
gµρgνσ∂

2 + 2gµρ∂
′
σ∂ν

)]

+ c4m
4

[
1

4
gµνgρσ +

1

2
gµρgνσ

]}
δD(x− x′)√

−g
(4.28)

We can now compare this against Eq. (4.26) to find the counterterm coefficients:

c1 =
µD−4Γ

(
D
2
− 1

)
16πD/2

−(D − 2)

16(D + 1)(D − 1)(D − 3)2(D − 4)
∼ −1

ε

1

120
(4.29)

c2 =
µD−4Γ

(
D
2
− 1

)
16πD/2

1

8(D − 3)(D − 4)

(
1

2

(D − 2)

(D − 1)
+ 2ξ

)2

∼ 1

ε

1

72
(4.30)

c3 =
µD−4Γ

(
D
2
− 1

)
16πD/2

1

2(D − 3)(D − 4)

(
1

2

(D − 2)

(D − 1)
+ 2ξ

)
∼ 1

ε

1

6
(4.31)

c4 =
µD−4Γ

(
D
2
− 1

)
16πD/2

1

2(D − 3)(D − 4)
∼ 1

ε

1

2
. (4.32)

After the ∼, we have dropped the common µD−4Γ(D
2
−1)/(16πD/2) and expressed D = 4+ε

in order to compare against ’t Hooft and Veltman’s result in [36]. To do so, we must convert
their Ricci tensor square counterterm to our Weyl square. Consider the Gauss-Bonnet term,
this provides a variation proportional to D − 4, so its contribution can be set to 0:

G2 = |Rµρνσ|2 − 4|Rµν |2 +R2 ∼ 0 (4.33)
⇒|Rµρνσ|2 ∼ 4|Rµν |2 −R2 (4.34)
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|Cµρνσ|2 = |Rµρνσ|2 −
4

(D − 2)
|Rµν |2 +

2

(D − 1)(D − 2)
R2 (4.35)

=
4(D − 3)

(D − 2)
|Rµν |2 −

D(D − 3)

(D − 1)(D − 2)
R2 (4.36)

D=4−−→ = 2

(
|Rµν |2 −

1

3
R2

)
(4.37)

Finally, ’t Hooft and Veltman have in Eq. (3.34) of [36]

∆L =

√
g

ε

(
1

72
R2 +

1

60

(
|Rµν |2 −

1

3
R2

))
→

√
g

ε

(
1

72
R2 +

1

120
C2

)
(4.38)

which match our counterterms coefficients above. Note that we can interpret this equiva-
lence by noting that we most include all counterterms possible. There are 5 independent
structures, the Riemann square, the Ricci tensor square, the Ricci scalar square, Ricci m2

and m4. The Gauss-Bonnet term removes one of these, and we can convert another to
the Weyl square simply due to the easier calculation involved (Weyl square vanishes on de
Sitter).

We are now ready to move onto the de Sitter case, and check if our terms can be renormal-
ized there.
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5 Graviton Self-Energy in a de Sitter Background

Now that we have correctly renormalised the Minkowski self-energy, we want to generalize
the result to a de Sitter background. The expression for the graviton self energy at one loop
is given in the same form as for Minkowski

[
µνΣρσ

]
(x;x′) =

1√
−g(x)

√
−g(x′)

〈
T ∗

{
i
δS(3)

δgµν(x)

δS(3)

δgρσ(x′)
+

δ2S(4)

δgµν(x)δgρσ(x′)

}〉
. (5.1)

The T ∗ indicates that we pull derivatives outside of the time ordering again.
Before we compute these terms, we need to know how to take functional derivatives

with respect to the metric in de Sitter space. Unlike in Minkowski, taking the naive Kro-
necker deltas in the definition results in an ambiguity in the ordering of covariant deriva-
tives. Instead we apply

δgαβ(y)

δgµν(x)
=

[
(µg

α
]
(x; y)

[
ν)g

β
]
(x; y)δD(x− y) (5.2)

where we introduce this bitensor term
[
µg

α
]
(x; y). This is defined such that in the coinci-

dence limit, it reduces to the ordinary metric, and in the Minkowski limit to the Minkowski
metric:

[µgρ] (x;x
′) = − 1

2H2
∇µ∇′

ρy, (5.3)

where the prime indicates a derivative at x′. We detail some of the primary identities in-
volving this bitensor in Appendix A.1, and additional information an be found in literature
[64, 80, 81]. As it will be clear in context, we drop the position argument. Further through-
out this section, we assume that µ, ν are symmetrised, as are ρ, σ, as this can be difficult to
represent with bitensors.

Analogously to Minkowski, we define two operators which come from the first and
second variation of he Ricci scalar,

Pµν = ∇µ∇µ − gµν

(
+H2(D − 1)

)
, (5.4)

Pµνρσ =
1

2
gµνg

′
ρσ − 1

2

(
gµν∇′

ρ∇′
σ + g′ρσ∇µ∇ν

)
− 1

2

(
[µgρ] [νgσ] + 2

[
µ)g(ρ

]
∇′

σ)∇(ν

)
− (D − 4)(D − 1)

4
H2gµνgρσ −

(D − 2)(D − 1)

2
H2gµρgνσ. (5.5)

The Pµνρσ is similar to the Lichnerowicz operator: the derivative terms match, while the H2

terms do not. If we shift the Ricci scalar by R → R − 2Λ, then the second order variation
matches the Lichnerowicz operator, as is done in [39] (see Section D for more details on
the variation of curvature terms).

Now we proceed as in the Minkowski case by considering the 4-point and 3-point contri-
butions separately. Most of the of the analysis is the same, with the addition of H2, H4

corrections that appear. As such we have three remaining independent terms to renormal-
ize: H2-double derivative, H4 and H2m2 terms.
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5.1 4-Point Contribution

[
µνΣ

4Pt
ρσ

]
(x;x′) =

〈
T ∗ δ2Sϕ

δgµν(x)δgρσ(x′)

〉divergent-terms

=
1

ℏ

{
− 1

2

(
1

4
gµνgρσ +

1

2
gµ(ρgσ)ν

)
ηαβ lim

x′→x
∂α∂

′
β i∆(x;x′)

+
1

4

(
gµν lim

x′→x
∂ρ∂

′
σ i∆(x;x′) + gρσ lim

x′→x
∂µ∂

′
ν i∆(x;x′)

)
− 1

2
m2 lim

x′→x
i∆(x;x′)

(
1

4
gµνgρσ +

1

2
gµ(ρgσ)ν

)
− 1

2
ξ lim
x′→x

i∆(x;x′)Pµνρσ

}
δD(x− x′)√

−g
(5.6)

As in Minkowski we use the vanishing of D-dependant powers of y in dimensional regular-
ization in the coincident limit, to find

lim
x′→x

i∆(x;x′) =
ℏHD−2

(4π)D/2

Γ
(
D−1
2

± ν
)
Γ(1− D

2
)

Γ(1
2
± ν)

=
ℏHD−2

(4π)D/2

{
2Γ

(
D
2
− 1

)
(D − 3)(D − 4)

(
1

4
− ν2

)
+

(
1

4
− ν2

)(
1− 2ψ(1) + 2ψ

(
1

2
± ν

))
+ 1

}
.

(5.7)

lim
x′→x

∂α∂
′
β i∆(x;x′) =

ℏHD−2

(4π)D/2

Γ
(
D−1
2

± ν
)
Γ(1− D

2
)

Γ(1
2
± ν)

(
D−1
2

± ν
)(

D
2

) −1

2
H2gαβ

=
ℏHD

(4π)D/2

Γ
(
D
2
− 1

)
(D − 3)(D − 4)

(
1

4
− ν2

)(
9

4
− ν2

)
1

2
gαβ

+
ℏH4

(4π)2

{(
1

4
− ν2

)(
9

4
− ν2

)[
− 1

2
ψ(

1

2
± ν)− 1

2
ψ(1)

]
+

3

2

(
1

4
− ν2

)
+

1

2

(
9

4
− ν2

)}
.

(5.8)

All together the 4-point contribution gives

[
µνΣ

4Pt
ρσ

]
(x;x′) =

HD−4Γ
(
D
2
− 1

)
(4π)D/2

1

(D − 3)(D − 4)

(
1

4
− ν2

)
×

{
H2ξ

[
− 1

2
gµνg

′
ρσ +

1

2

(
gµν∇′

ρ∇′
σ + g′ρσ∇µ∇ν

)
+

1

2

(
[µgν ] [νgσ] + 2 [µgν ]∇′

σ∇ν

)
− (D − 1)H2 [µgν ] [νgσ]

]
− 1

4
m2H2gµνgρσ

}
δD(x− x′) + finite-terms (5.9)
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5.2 3-Point Contribution

Repeating the steps from Minkowski, with the same Wick contractions, the 3-point contri-
bution can be expressed in terms of the scalar propagator[
µνΣ

3Pt
ρσ

]
(x;x′) =

i

4ℏ2

{
2∂µ)∂

′
(ρ i∆(x;x′)∂′σ)∂(ν i∆(x;x′)

−
(
gµν∂

α∂′(ρ i∆(x;x′)∂′σ)∂α i∆(x;x′) + . . .

)
+

1

2
gµνgρσ∂

α∂′γ i∆(x;x′)∂′γ∂α i∆(x;x′)

+ (m2 − ξR)

[
gµνgρσ∂

α i∆(x;x′)∂α i∆(x;x′)−
(
gµν∂

′
ρ i∆(x;x′)∂′σ i∆(x;x′) + . . .

)]
+

1

2
(m2 − ξR)2gµνgρσ (i∆(x;x′))

2

− ξ

[(
gµνP ′

ρσ + gρσPµν

)
∂α i∆(x;x′)∂α i∆(x;x′)− 2

(
P ′

ρσ∂µ i∆(x;x′)∂ν i∆(x;x′) + . . .
)

+ (m2 − ξR)

(
gµνP ′

ρσ + gρσPµν

)
(i∆(x;x′))

2

]
+ 2ξ2PµνP ′

ρσ (i∆(x;x′))
2

}
. (5.10)

Now we wish to evaluate these propagator terms, which is outlined in Appendix C, and
remains the exact same as in Minkowski. The resulting propagator identities, again only
focusing on the divergent terms here, are(

i∆(x;x′)
)2

=
ℏ2HD−4Γ

(
D
2
− 1

)
(4π)D/2

2

(D − 3)(D − 4)

δD(x− x′)√
−g

+ finite-terms (5.11)

∂µ i∆(x;x′)∂ν i∆(x;x′) =
ℏ2HD−4Γ

(
D
2
− 1

)
(4π)D/2

1

(D − 3)(D − 4)

×

{
1

2

(D − 2)

(D − 1)
∇µ∇ν +

1

2

1

(D − 1)
gµν − 1

2
(D − 2)H2gµν −

(
1

4
− ν2

)
H2gµν

}
δD(x− x′)√

−g

+ finite-terms (5.12)

We express the much longer ∂µ∂′ρ i∆(x;x′)∂ν∂
′
σ i∆(x;x′) term in Eq. (C.35). At this point

we are ready to renormalize these terms, which must match the counterterms we found
in Minkowski. As in that case, these steps are rather involved, though many terms can be
neglected from the divergences after they pick up (D − 4) factors. Further, in Minkowski
we found that all of the non-minimal coupling dependance came in the came in a so-called
conformal-form, such that we can rewrite the following(

1

4
− ν2

)
= m2 − 1

2
D(D − 1)V, (5.13)

where V ≡ 1
2
(D−2)
(D−1)

+ 2ξ is the conformal prefactor.
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5.3 Renormalizing the de Sitter Case

Gathering together the 4-point and 3-point contributions, we can write the divergent terms
as the following (where as in Minkowski, we replaceHD−4 = µD−4(1+(D−4) ln(H2/µ2)/2))[
µνΣ

div
ρσ

]
(x;x′) =

µD−4
(
1 + 1

2
ln(H2/µ2

)
Γ
(
D
2
− 1

)
16πD/2

{
−1

8(D + 1)(D − 1)(D − 3)(D − 4)

[
(D − 2)

(D − 1)
∇µ∇ν∇′

ρ∇′
σ +

1

(D − 1)

(
gµν∇′

ρ∇′
σ + g′ρσ∇µ∇ν

′
)

− 1

(D − 1)
gµνg

′
ρσ

′ +
(
[µgρ] [νgσ]

′ + 2 [µgρ]∇′
σ∇ν

′
)

− 2H2

(
gµν∇′

ρ∇′
σ + g′ρσ∇µ∇ν

)
−H2gµνg

′
ρσ

−H2(D − 2)
(
[µgρ] [νgσ] + 2 [µgρ]∇′

σ∇ν

)
+ 2H4(D − 1)gµνg

′
ρσ

]

+
1

4(D − 3)(D − 4)

(
1

2

(D − 2)

(D − 1)
+ 2ξ

)2
[
− 2∇µ∇ν∇′

ρ∇′
σ + 2

(
gµν∇′

ρ∇′
σ + gρσ∇µ∇ν

′
)

− 2gµνgρσ
′ −H2(D − 2)(D − 1)

(
gµν∇′

ρ∇′
σ + g′ρσ∇µ∇ν

)
+H2(D − 4)(D − 1)gµνgρσ −H2D(D − 1)

(
[µgρ] [νgσ] + 2 [µgρ]∇′

σ∇ν

)
−H4

(1
4
D2(D − 1)− 2(D − 1)3

)
gµνg

′
ρσ

−H4
(1
2
D2(D − 1) + 2D(D − 1)2

)
[µgρ] [νgσ]

]

− m2

2(D − 3)(D − 4)

(
1

2

(D − 2)

(D − 1)
+ 2ξ

)
Pµνρσ

+
m4

2(D − 3)(D − 4)

(
1

4
gµνgρσ +

1

2
[µgρ] [νgσ]

)}
δD(x− x′). (5.14)

In Appendix D we derive the full variation of the counterterms and we use the same coef-
ficient as in Minkowski

c1 =
µD−4Γ

(
D
2
− 1

)
16πD/2

−(D − 2)

16(D + 1)(D − 1)(D − 3)2(D − 4)
, (5.15)

c2 =
µD−4Γ

(
D
2
− 1

)
16πD/2

1

8(D − 3)(D − 4)

(
1

2

(D − 2)

(D − 1)
+ 2ξ

)2

, (5.16)

c3 =
µD−4Γ

(
D
2
− 1

)
16πD/2

1

2(D − 3)(D − 4)

(
1

2

(D − 2)

(D − 1)
+ 2ξ

)
, (5.17)

c4 =
µD−4Γ

(
D
2
− 1

)
16πD/2

1

2(D − 3)(D − 4)
. (5.18)
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Thus we find that the counterterm contribution is given by:

1
√
−g

√
−g′

δ2

δgµν(x)δgρσ(x′)

∫
dDy

√
−g

{
c1|Cγαδβ|2 + c2R

2 + c3m
2R + c4m

4

}

=
µD−4Γ

(
D
2
− 1

)
16πD/2

{
1

8(D + 1)(D − 1)(D − 3)(D − 4)

[
(D − 2)

(D − 1)
∇µ∇ν∇′

ρ∇′
σ +

1

(D − 1)

(
gµν∇′

ρ∇′
σ + g′ρσ∇µ∇ν

′
)

− 1

(D − 1)
gµνg

′
ρσ

′ +
(
[µgρ] [νgσ]

′ + 2 [µgρ]∇′
σ∇ν

′
)

− 2H2

(
gµν∇′

ρ∇′
σ + g′ρσ∇µ∇ν

)
−H2gµνg

′
ρσ

−H2(D − 2)
(
[µgρ] [νgσ] + 2 [µgρ]∇′

σ∇ν

)
+ 2H4(D − 1)gµνg

′
ρσ

]

− 1

4(D − 3)(D − 4)

(
1

2

(D − 2)

(D − 1)
+ 2ξ

)2
[
− 2∇µ∇ν∇′

ρ∇′
σ + 2

(
gµν∇′

ρ∇′
σ + gρσ∇µ∇ν

′
)

− 2gµνgρσ
′ −H2(D − 2)(D − 1)

(
gµν∇′

ρ∇′
σ + g′ρσ∇µ∇ν

)
+H2(D − 4)(D − 1)gµνgρσ −H2D(D − 1)

(
[µgρ] [νgσ] + 2 [µgρ]∇′

σ∇ν

)
−H4

(1
4
D2(D − 1)− 2(D − 1)3

)
gµνg

′
ρσ

−H4
(1
2
D2(D − 1) + 2D(D − 1)2

)
[µgρ] [νgσ]

]

+
m2

2(D − 3)(D − 4)

(
1

2

(D − 2)

(D − 1)
+ 2ξ

)
Pµνρσ

− m4

2(D − 3)(D − 4)

(
1

4
gµνgρσ +

1

2
[µgρ] [νgσ]

)}
δD(x− x′), (5.19)

which exactly removes all of our divergent terms.
Finally we want to obtain the renormalized one-loop self-energy. First, there are the

terms ∝ ln(H2/µ2) in our divergent term. Then there are the non-local finite terms that
come directly from the i∆(x;x′) identities. Finally there are the local terms (i.e. ∝ δ4(x−
x′)) and come from terms that are expanded around D = 4 (which thus give (D− 4)/(D−
4) = 1 contributions to the finite self-energy). Note that as all of the divergences are
extracted, we can evaluate D = 4 at this stage. The non-local terms are immediate to
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compute and is given by

[
µνΣρσ

]finite-non-local

1-loop
(x;x′) =

iH4

4(4π)4

×

{
∇µ∇ν∇′

ρ∇′
σ

[(
1

15
+

2

3
ξ + 2ξ2

)
g(y) +

(
2

3
+ 12ξ − m2

H2

)(
1

4
− ν2

)
ln
y

4

−
(
1

3
+ 4ξ

)(
1

4
− ν2

)
y

4
+ 2ξ2

(
8

y
f0(y) + f 2

0 (y)

)]
+
(
gµν∇′

ρ∇′
σ + g′ρσ∇µ∇ν

′) [− (
1

20
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2

3
+ 2ξ2

)
g(y)
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(
1

2
+ 2ξ

)(
1

4
− ν2

)
y

4
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(
1

2
+ 2ξ2

)(
8

y
f0(y) + f 2

0 (y)
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′
ρσ

′
[(

1

20
+

2

3
+ 2ξ2

)
g(y) +

(
1

8
+ ξ + 2ξ2

)(
8

y
f0(y) + f 2

0 (y)

)
+

1

60

(
[µgρ] [νgσ]

′ + 2 [µgρ]∇σ′∇ν

)
g(y)

+H2
(
gµν∇′

ρ∇′
σ + g′ρσ∇µ∇ν

) [
−
(
1

6
+ 2ξ + 6ξ2

)
g(y)−

(
1

6
+ ξ

)(
1

4
− ν2

)
g(y)

+
1

2

m2

H2

(
1

4
− ν2

)
y

4
+ 2ξ

4

y
− 6ξ2

(
8

y
f0(y) + f 2

0 (y)

)]
+H2gµνg

′
ρσ

[(
19

60
+ 4ξ + 12ξ2

)
g(y)− 1

12

(
1

4
− ν2

)
g(y)

− (1 + 4ξ)

(
1

4
− ν2

)
y

4
+
(
3ξ + 12ξ2

)(8

y
f0(y) + f 2

0 (y)

)]
−H2

(
[µgρ] [νgσ] + 2 [µgρ]∇σ′∇ν

)[
1

30
+

1

3

(
1

4
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+H2 [µgρ]∇σ′∇ν
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− 8

(
1

4
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)
ln(y/4)

y
− 4

(
1

4
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)2
ln(y/4)

y

− 2
4

y
− 4

(
1

4
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)
4

y
+

1

3

(
1

4
− ν2

)2
4

y

+

(
1

4
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)(
9

4
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)(
−5

6
+ 2ψ(1)− ψ

[
1

2
± ν

])
4

y

]

32



+H4gµνgρσ

[(
3

5
+ 6ξ + 18ξ2

)
g(y) +

(
1 + 5ξ +

1

4

m2

H2

)(
1

4
− ν2

)
g(y)

+

(
−6ξ +

1

2

m2

H2

)(
1

4
− ν2

)
y

4
+ 18ξ2

(
8

y
f0(y) + f 2

0 (y)
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+H4 [µgρ] [νgσ]

(
−6ξ +

1

2

m2

H2

)(
1

4
− ν2

)
g(y) + 4∇µ∇′

ρ

4

y
∇ν∇′

σf2(y)

+ 4

(
1

4
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)
∇µ∇′

ρ ln(y/4)∇ν∇′
σf1(y) +∇µ∇′

ρf1(y)∇ν∇′
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+

[
−

(
1

2
+ 2ξ

)
gµν − 6ξH2gµν + 2ξ∇µ∇ν
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2∇′

ρ

4

y
∇′

σf1(y) +∇′
ρf1(y)∇′

σf1(y)

)
+

[
−

(
1

2
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)
g′ρσ − 6ξH2g′ρσ + 2ξ∇′

ρ∇′
σ

](
2∇µ

4

y
∇νf1(y) +∇µf1(y)∇νf1(y)

)}
.

(5.20)

The local finite terms take some more effort to find, as they are the divergent terms that
pick up a factor of (D − 4) such to make the term finite.[

µνΣ
4Pt-finite-local
ρσ

]
(x;x′)

=
1

16π2

{
1

120

[
H2

(
gµν∇′

ρ∇′
σ + gµν∇′

ρ∇′
σ

)
+ 2H2 [µgρ]∇ν∇′

σ − 3H4gµνg
′
ρσ

]

+
(1 + 6ξ)2

6
H4gµνg

′
ρσ +

(1 + 6ξ)

12
m2H2gµνg

′
ρσ

+
1

24

(
1

4
− ν2

)[
3(4ξ − 1)H4gµνg

′
ρσ −H2

(
[µgρ] [νgσ] + 2 [µgρ]∇ν∇′

σ

)
− 6H4 [µgρ] [νgσ]

]
+

1

4

[(
1

4
− ν2

)(
1− 2ψ(1) + ψ(1

2
± ν2)

)
+ 1

]

×

[(
1

4
+ ξ

)
H2gµνg

′
ρσ + 2ξH2

(
[µgρ] [νgσ] + 2 [µgρ]∇ν∇′

σ

)
− 6ξH4 [µgρ] [νgσ]

]}
δ4(x− x′√

−g
(5.21)
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6 Discussion and Conclusion

In this thesis, we successfully completed the renormalization procedure for the graviton
one-loop self-energy,

[
µνΣρσ

]ren

one-loop
(x;x′), on a Minkowski, and a de Sitter background. We

did this by adding four counterterms to our theory, |Cγαδβ|2, R2, Rm2, m4. The coefficients
for the massless terms correspond exactly to those found by ’t Hooft and Veltman [36] and
also by Park and Woodard [39].

In order to complete this renormalization procedure, we first needed to derive the
scalar propagator in the massive, non-minimal coupling case, known as the Chernikov-
Tagirov Propagator in Section 3,

i∆(x;x′) =
ℏHD−2

(4π)D/2

Γ
(
D−1
2

+ ν
)
Γ
(
D−1
2

− ν
)

Γ
(
D
2

) 2F1

(
D − 1

2
+ ν,

D − 1

2
− ν;

D

2
, 1− y

4

)
.

(6.1)

This propagator is de Sitter invariant, and we assume m2 − ξR > 0, unlike in the mass-
less, minimally coupled case found in Park and Woodard’s work, where their propagator
contains a de Sitter breaking term ∝ ln(aa′).

Our steps were then to evaluate the divergent terms found in the 4-point and 3-point
Feynman diagrams. We did this first on a Minkowski background in Section 4 and then
again on de Sitter in Section 5. This allowed us to first fix the counterterm coefficients in
Minkowski and then compute the H2 suppressed terms in de Sitter. The 4-point contribu-
tion requires the second order variation of the Ricci scalar, given in Appendix D, along with
the curvature variations for the counterterms. These variations make it clear that we need
to include the bitensor [µgρ] (x;x

′) in our calculations in order to maintain the bitensorial
form of the self-energy, as without it, an ambiguity arises in how to order derivatives, giving
rise to ill-defined results.

The 3-point contribution involves taking products of derivatives of this propagator. We
used then isolated all derivatives onto a Dirac delta proportional to 1/(D−4), by extracting
derivatives. This procedure is detailed in Appendix B, and is then implemented in Appendix
C.4 to obtain the divergent and finite terms for required propagator derivatives.

Finally to obtain the fully renormalized one-loop graviton self-energy, we gathered
together both the local and non-local finite terms. This requires us to be careful when we
computed the divergent terms, as certain D − 4 expansions were required to gather terms
into the correct Renormalizable form.

Due to time constraints, we were unable to apply this result and this work acts only
to derive the result. However, there are a number of interesting directions future work
could go. The most obvious next step is to solve the one-loop quantum corrected linearised
Einstein field equation

Lµνρσhρσ −
∫
dDx′

[
µνΣρσ

]
(x;x′)hρσ(x

′) +O(h2) = 8πGT µν , (6.2)

to find the effect of massive non-minimally coupled scalars on dynamical gravitons at one-
loop level, and potentially to further study static mass and quadrupole influences. This was
previously done in the massless, non-minimal coupling case [77], where no effects were
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found, however the additional massive and non-minimal coupling terms in our case could
provide these effects. To solve this, one should employ the Schwinger-Keldysh formalism
[49, 82, 83], by replacing our self-energy with its retarded form[

µνΣρσ
]
(x;x′) →

[
µνΣρσ

ret

]
(x;x′) ≡

[
µνΣρσ

++

]
(x;x′) +

[
µνΣρσ

+−
]
(x;x′). (6.3)

Where we obtain this ± prescription by changing the i ε-prescription used in the invariant
distance y(x;x′)

y++(x;x
′) = H2aa′

(
−(|η − η′| − i ε)2 + ||∆x⃗||2

)
≡ y(x;x′), (6.4)

y+−(x;x
′) = H2aa′

(
−(η − η′ + i ε)2 + ||∆x⃗||2

)
, (6.5)

y−+(x;x
′) = H2aa′

(
−(η − η′ − i ε)2 + ||∆x⃗||2

)
, (6.6)

y−−(x;x
′) = H2aa′

(
−(|η − η′|+ i ε)2 + ||∆x⃗||2

)
. (6.7)

It was also found [49] that for the massless minimally coupled case, there was an
secular correction of the form ln(a) to the gravitational scalar potentials, such to be an
effective screening of the newtons constant

G→ G

(
1− ℏ

c5
GH2

30π
ln(a)

)
. (6.8)

This effect is suppressed by the very small coefficient during primordial inflation, but for
a long lasting inflationary epoch these effects could grow to become a significant contri-
bution. The effects of the additional mass, and non-minimal coupling terms could give
additional similar effects in our case.

It would also be interesting to repeat our calculation in a number of different ways.
First, recall that we employed a strictly positive effective mass, m2 − ξR > 0, but in the
massless, minimally coupled case, m2−ξR = 0, the scalar propagator picks up an additional
de Sitter breaking term. This means that we cannot take the limit m2 − ξR → 0+, however
in the negative effective mass case, m2 − ξR < 0, you do pick up this additional symmetry
breaking term. It would be interesting to investigate this limiting procedure from below
and compare against the fully massless, minimally coupled case [39].

Finally, while the results in de Sitter space are very useful, it would be more insightful
to look at ϵ > 0 slow roll inflation, as de Sitter does not capture all of the relevant effects
[48]. The propagator equation is not expected to deviate very much. Janssen et. al. [65]
found that for a massless, minimally coupled scalar, the additional slow-roll parameter
acted as an effective mass term in the equation of motion for the scalar field, appearing as
ν = D−1−ϵ

2(1−ϵ)
in the same propagator form as we found.
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A Identities involving the Invariant Distance y

A very useful quantity for us is the invariant distance y(x;x′), which is related to the de
Sitter geodesic distance l(x;x′) as

y(x;x′) = 4 sin2

(
1

2
Hl(x;x′)

)
. (A.1)

We wish to study both the classical, ȳ(x;x′) and the quantum y(x;x′) forms, which are
related as:

ȳ(x;x′) = H2a(η)a(η′)∆x2 = HH′∆x2 (A.2)
y(x;x′) = H2a(η)a(η′)∆x2F = ȳ(x;x′) + 2iε sgn(∆η)∆η (A.3)

Note that y → ȳ in the ε→ 0 limit, and so we only care about this distinction when we are
dealing with propagator poles, as elsewhere the ε will not be present.

We will need a variety of derivatives of y, noting that y(x;x′) is a biscalar, and so the
first covariant derivative w.r.t. each coordinate will be a normal derivative. To do this we
look at derivatives of the Feynman propagator first: ∆x2F = −(|∆η| − iε)2 + ||∆x⃗||2. Then
using property that ∂x sgn(x) = 2δ(x) we can calculate the derivatives acting on it, and
obtain the following identities:

∂µ
(
∆x2F

)
= 2∆xµ + 2δ0µiε sgn(∆η), (A.4)

∂µ
(
∆x2F

)
= 2∆xµ − 2δµ0 iε sgn(∆η), (A.5)

∂2
(
∆x2F

)
= 2D + 4δµ0 δ

0
µiεδ(∆η), (A.6)

∂µ
(
∆x2F

)
∂µ

(
∆x2F

)
= 4

(
∆x2 + ε2 + iε(∆xµδ0µ −∆xµδ

µ
0 )
)
= 4∆x2F . (A.7)

This allows us to find

∇µy = ∂µy = δ0µHy + 2∆xµHH′ + 2iε sgn(∆η)HH′δ0µ, (A.8)

∇µ∇νy = H2
(
ηµν(2− y) + 4iεδ(∆η)δ0µδ

0
ν − 2iε sgn(∆η)ηµνH′) , (A.9)

H2
y = D(2− y)− 4iεδ(∆η)− 2iε sgn(∆η)DH′, (A.10)

gµν∂µy∂νy = H2
(
4y − y2 − 4iε sgn(∆η)H′y

)
. (A.11)

Let’s gather together a list of identities we can make from these, setting y = ȳ, i.e. ε = 0

∇µ∇ν
y

4
= H2gµν

(
1

2
− y

4

)
(A.12)

∇µ∇′
ρy = H2

(
δ0µδ

0
ρ −

1

2
Haδ0µ∆xρ +

1

2
Haδ0ρ∆xµ −

1

2
ηµρ

)
, (A.13)

∇′
ρ∇′

σ

y

4
= H2g′ρσ

(
1

2
− y

4

)
(A.14)

H2

y

4
= D

(
1

2
− y

4

)
(A.15)

∇µ
y

4
∇µy

4
= H2

(
y

4
−

(y
4

)2
)

(A.16)

(A.17)
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Assuming de Sitter invariance, the chain rule gives us

∂µ =
∂y

∂xµ
d

dy
(A.18)

∂2 = ηµν
(

∂2y

∂xµ∂xν
d

dy
+

∂y

∂xµ
∂y

∂xν
d2

dy2

)
(A.19)

We can then use ∆x2 = ηµν∆xµ∆xν ⇒ ∂σ(∆x
2) = 2∆xσ to evaluate these

∂y

∂xµ
= 2aa′H2∆xµ + δ0µaHy, (A.20)

∂2y

∂xµ∂xν
= 2aa′H2ηµν + 2aa′H2aH

(
δ0ν∆xµ + δ0µ∆xν

)
+ 2 (aH)2 δ0µδ

0
νy, (A.21)

∂y

∂xµ
∂y

∂xν
=

(
2aa′H2∆xµ + δ0µaHy

) (
2aa′H2∆xν + δ0νaHy

)
(A.22)

= 4
(
aa′H2

)2
∆xµ∆xν + 2aa′H2aH

(
δ0ν∆xµ + δ0µ∆xν

)
y + (aH)2 δ0µδ

0
νy

2. (A.23)

Finally gathering all of the terms, and after some careful manipulation, we find

√
−g

(
−M2

)
= aDH2

{(
4y − y2

) d2

dy2
+D (2− y)

d

dy
− M2

H2

}
. (A.24)
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Now let’s take a deeper look at some identities and contractions under the coincidence
limit. Note that the order of prime and unprimed derivatives on a biscalar or bitensor are
independent.

y

4

δD(x− x′)√
−g

= 0 (A.25)

∇µ
y

4

δD(x− x′)√
−g

=
y

4
∇µ

δD(x− x′)√
−g

= 0 (A.26)

∇µ
y

4
∇ν

δD(x− x′)√
−g

= −1

2
H2gµν

δD(x− x′)√
−g

(A.27)

∇µ∇ν
y

4

δD(x− x′)√
−g

=
1

2
H2gµν

δD(x− x′)√
−g

(A.28)

y

4
∇µ∇ν

δD(x− x′)√
−g

=
1

2
H2gµν

δD(x− x′)√
−g

(A.29)

y

4

δD(x− x′)√
−g

= H2D

2

δD(x− x′)√
−g

(A.30)

∇µ
y

4

δD(x− x′)√
−g

= −H2∇µ
δD(x− x′)√

−g
(A.31)

∇µ
y

4
∇ν

y

4

δD(x− x′)√
−g

=
1

2
H4gµν

δD(x− x′)√
−g

(A.32)

∇µ
y

4
∇α∇β

δD(x− x′)√
−g

= −H2gµ(α∇β)
δD(x− x′)√

−g
(A.33)

∇α
y

4
∇′

γ∇′
δ

δD(x− x′)√
−g

= H2
[
αg(γ

]
∇′

δ)

δD(x− x′)√
−g

(A.34)

A.1 The Bilocal Metric

Much of the ideas behind this section are described in detail in [64] and [80], though be
aware, they typically use a slightly different definition which causes some of the following
identities to differ.

Let x, x′ be two space-time points and y = H2aa′∆x2 be the invariant distance between
them. It is useful to distinguish between them in the space-time indices. To do this, we
associate µ, ν with x and ρ, σ with x′. We define the bitensor

[µgρ] (x;x
′) = − 1

2H2
∇µ∇′

ρy = − 1

2H2
∂µ∂

′
ρy (A.35)

In the coincidence limit, we can apply A.13 to get the metric tensor, i.e.

lim
x′→x

[µgρ] (x;x
′) = gµρ (A.36)

though one should be careful with this limit, as in certain expressions it is vital to retain
the bitensorial form. In principle this should only be applied after we integrate over a Dirac
delta, or similarly take this coincidence limit. This limit also implies that in the Minkowski
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limit, H → 0, this bitensor becomes the Minkowski metric. We should use the following
identity when we want to exchange the location of a derivative[

µgρ
]
∇µ

δD(x− x′)√
−g

= −∇′
ρ

δD(x− x′)√
−g

(A.37)

It is also important to commute these bitensors through covariant derivatives, as this appear
next to the Dirac delta in the functional derivative definition. The identities we need are(

[µgρ] [νgσ]
δD(x− x′)√

−g

)
= [µgρ]

δD(x− x′)√
−g

+ 2H2 [µgρ] [νgσ]
δD(x− x′)√

−g
(A.38)

∇′
σ∇ν

(
[µgρ]

δD(x− x′)√
−g

)
= [µgρ]∇′

σ∇ν
δD(x− x′)√

−g
−H2gµνg

′
ρσ

δD(x− x′)√
−g

(A.39)

′
(
[µgρ] [νgσ]

δD(x− x′)√
−g

)
=

{
[µgρ] [νgσ]

′ + 4H2 [µgρ] [νgσ]
′

− 8H2 [µgρ]∇′
σ∇ν + 4H4gµνg

′
ρσ + 4H4 [µgρ] [νgσ]

}
δD(x− x′)√

−g
(A.40)

∇′
σ∇ν

′
(
[µgρ]

δD(x− x′)√
−g

)
=

{
[µgρ]∇′

σ∇ν
′ −H2gµνg

′
ρσ

′

− 2H2

(
g′ρσ∇µ∇ν + gµν∇′

ρ∇′
σ

)
+H4(D − 1)gµνg

′
ρσ +H2 [µgρ]∇′

σ∇ν

}
δD(x− x′)√

−g
(A.41)

gµν [µgρ] [νgσ]
δD(x− x′)√

−g
=g′ρσ

δD(x− x′)√
−g

(A.42)

gµν [µgρ]∇ν
δD(x− x′)√

−g
=−∇′

ρ

δD(x− x′)√
−g

(A.43)

gµν [µgρ]∇ν∇′
σ

δD(x− x′)√
−g

=−∇′
ρ∇′

σ

δD(x− x′)√
−g

+DH2g′ρσ
δD(x− x′)√

−g
(A.44)

gµν [µgρ]∇ν∇′
σ

δD(x− x′)√
−g

=−∇′
ρ∇′

σ

δD(x− x′)√
−g

+ (D + 2)H2∇′
ρ∇′

σ

δD(x− x′)√
−g

+ (D + 2)H2g′ρσ
δD(x− x′)√

−g
−D2H4g′ρσ

δD(x− x′)√
−g

(A.45)

gµν [µgρ] [νgσ]
′ δ

D(x− x′)√
−g

=g′ρσ
δD(x− x′)√

−g
− 2H2g′ρσ

δD(x− x′)√
−g

(A.46)

gµν [µgρ] [νgσ]
′ δ

D(x− x′)√
−g

=g′ρσ
′ δ

D(x− x′)√
−g

− 4H2g′ρσ
δD(x− x′)√

−g

− 8H2∇′
ρ∇′

σ

δD(x− x′)√
−g

+ 4(D + 1)H4g′ρσ
δD(x− x′)√

−g
(A.47)
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B Extracting Derivatives

Consider f to be a differentiable function of y = H2aa′δx2, on de Sitter. We can derive the
d’Alembert operator acting on f(y) as

H2
f(y) =

1

H2

(
yf ′(y) + gµν∂µy∂νyf

′′(y)

)
, (B.1)

= (4y − y2)f ′′(y) +D(2− y)f ′(y)

− 4iεδ(∆η)f ′(y)− 2iε sgn(∆η)H′(2yf ′′(y) +Df ′(y)). (B.2)

This is a very useful equation which forms the basis for the extracting derivatives or
d’Alembertians process. Consider f(y) =

(
y
4

)α
H2

(y
4

)1−α

= (α− 1)(D − α)
(y
4

)1−α

+
1

2
(D − 2α)(1− α)

(y
4

)−α

+ iε

[
δ(∆η)(α− 1)− 1

2
sgn(∆η)(α− 1)(α− D

2
)

](y
4

)−α

. (B.3)

The εδ(∆η)(∆x2F )
−α term generates a Dirac delta in the ε → 0 limit if α = D/2, and is

regular otherwise. Thus for α ̸= D/2 we can take discard the ε terms and find:(y
4

)−α

=
−2

(α− 1)(D − 2α)H2

(y
4

)1−α

+
2(D − α)

D − 2α

(y
4

)1−α

, (α ̸= D/2) (B.4)

H2

(y
4

)1−D
2
=

(4π)D/2

Γ(D
2
− 1)HD

iδ(x− x′)√
−g

+
1

4
D(D − 2)

(y
4

)1−D
2
. (B.5)

We use these two identities to rewrite some powers of y in order to isolate the diver-
gences onto Dirac deltas. It is convenient to gather the finite terms into

g(y) = −4
H2

ln(y/4)

y
+ 8

ln(y/4)

y
− 4

y
, (B.6)

which appears when expanding
(
y
4

)2−D about D = 4. We then find the following(y
4

)2−D

=
2

(D − 3)(D − 4)

(4π)D/2

Γ
(
D
2
− 1

)
HD

iδD(x− x′)√
−g

+ g(y) (B.7)(y
4

)1−D

=
4

(D − 2)2(D − 3)(D − 4)

(4π)D/2

Γ
(
D
2
− 1

)
HD

{
H2

iδD(x− x′)√
−g

− (D − 2)
iδD(x− x′)√

−g

}
+

1

2H2
g(y)− g(y) (B.8)(y

4

)−D

=
8

D(D − 1)(D − 2)2(D − 3)(D − 4)

(4π)D/2

Γ
(
D
2
− 1

)
HD

×
{
H2

′

H2

iδD(x− x′)√
−g

− (D − 2)
H2

iδD(x− x′)√
−g

}
+

1

12H2

′

H2
g(y)− 1

6H2
g(y)

(B.9)
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We would like an expression for the product of two derivatives of general powers of y,
so we consider

∇µ∇ν

(y
4

)−(α+β)

=
(α + β)(α + β + 1)

αβ
∂µ

(y
4

)−α

∂ν

(y
4

)−β

(B.10)

+ (α + β)
(y
4

)−(α+β+1)

∇µ∇ν
y

4
(B.11)

Rearranging, and making use of Eq. (B.4), we find

∂µ

(y
4

)−α

∂ν

(y
4

)−β

=
αβ

(α + β)(α + β + 1)
∇µ∇ν

(y
4

)−(α+β)

+
αβ

D − 2(α + β + 1)
H2gµν

{
−1

(α + β)(α + β + 1)H2
+ 1

}(y
4

)−(α+β)

(B.12)

In a similar manner, one can also show

∂µ∂
′
ρ

(y
4

)−α

∂ν∂
′
σ

(y
4

)−β

=
αβ(α + 1)(β + 1)

(α + β)(α + β + 1)(α + β + 2)(α + β + 3)

{
∇µ∇ν∇′

ρ∇′
σ

(y
4

)−(α+β)

+ (α + β)
[
H2gµν∇′

ρ∇′
σ +H2g′ρσ∇µ∇ν

](1

2

(y
4

)−(α+β+1)

−
(y
4

)−(α+β)
)

− (α + β)2H4gµνg
′
ρσ

(
1

2

(y
4

)−(α+β+1)

−
(y
4

)−(α+β)
)

+
1

2
(α + β)(α + β + 1)H4gµνg

′
ρσ

(
1

2

(y
4

)−(α+β+2)

−
(y
4

)−(α+β+1)
)}

+

[
− 2

αβ(α + 1)(β + 1)

(α + β + 1)(α + β + 2)(α + β + 3)
+

αβ

2(α + β + 1)

]
H2 [µgρ] (x;x

′)∇ν∇′
σ

(y
4

)−(α+β+1)

+
1

2

αβ(α + 1)(β + 1)

(α + β + 2)(α + β + 3)
H4 [µgρ] (x;x

′) [νgσ] (x;x
′)
(y
4

)−(α+β+2)

(B.13)
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B.1 Minkowski Equivalents

In this subsection we will briefly detail some of the equivalent formulae for the Minkowski
invariant distance y = m2∆x2. For a similar treatment, see Marunovic and Prokopec [40],
where they detailed this procedure for a massless minimally coupled scalar on a Minkowski
background. They do not employ this dimensionless y parameter.

∂µy = 2m2∆xµ = −∂′µy (B.14)

∂µ∂νy = 2m2ηµν (B.15)
∂µ∂

′
ρy = −2m2ηµρ (B.16)

For the extraction of derivatives procedure, it is much more simple in Minkowski.(y
4

)−α

=
2

m2(α− 1)(2α−D)
∂2

(y
4

)1−α

(B.17)

Then we also have, from the massless, minimally coupled propagator equation

∂2

m2

(y
4

)1−D
2
=

(4π)D/2

mDΓ
(
D
2
− 1

) i δD(x− x′) (B.18)

This allows us to extract d’Alembertians onto
(
y
4

)3−D and then expand around D − 4 ac-
cording to:

∂2

m2

(y
4

)3−D

=
∂2

m2

[(y
4

)3−D

−
(y
4

)1−D
2

]
+

(4π)D/2

mDΓ
(
D
2
− 1

) i δD(x− x′)

}
, (B.19)

We then define g(y) = −4∂2 ln(y/4)
m2y

so that we get

(y
4

)2−D

=
1

2(D − 3)(D − 4)

µD−44πD/2

Γ
(
D
2
− 1

) i δD(x− x′) + g(y) (B.20)(y
4

)1−D

=
1

m2(D − 2)2(D − 3)(D − 4)
∂2

(4π)D/2

mDΓ
(
D
2
− 1

) i δD(x− x′)

+
1

2m2
∂2g(y) (B.21)(y

4

)−D

=
2

m4D(D − 1)(D − 2)2(D − 3)(D − 4)
∂4

(4π)D/2

mDΓ
(
D
2
− 1

) i δD(x− x′)

+
1

12m4
∂4g(y) (B.22)

Similar to the de Sitter case, we want general formula for products of single and double
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derivatives of powers of y. The single derivative is straightforward

∂µ

(y
4

)−α

∂ν

(y
4

)−β

=
αβ

(α + β)(α + β + 1)

{
∂µ∂ν +

1

2(α + β + 1)−D
ηµν∂

2

}(
y

y

)−(α+β)

(B.23)

∂µ∂
′
ρ

(y
4

)−α

∂ν∂
′
σ

(y
4

)−β

=
αβ(α + 1)(β + 1)

(α + β)(α + β + 1)(α + β + 2)(α + β + 3)

{
∂µ∂ν∂

′
ρ∂

′
σ

(y
4

)−(α+β)

+
1

2
m2(α + β)

(
ηµν∂

′
ρ∂

′
σ + η′ρσ∂µ∂ν

) (y
4

)−(α+β+1)

+m4(α + β)(α + β + 1)

(
1

4
ηµνη

′
ρσ +

1

2
ηµ)(ρη

′
σ)(ν

)(y
4

)−(α+β+2)

+

[
(α + β)(α + β + 2)(α + β + 3)

2(α + 1)(β + 1)
− 2(α + β)

]
m2ηµρ∂

′
σ∂ν

(y
4

)−(α+β+1)
}

(B.24)

43



C Scalar Propagator Calculations

This Appendix is a collection of more in depth looks at some of the calculations involving
the scalar propagator

C.1 D-Dimensional Minkowski Propagator Calculations

Let’s briefly investigate the propagator solution for a D-dimensional Minkowski massless
scalar field. The Equation of Motion then looks like:

∂2(i∆(x;x′)) = iℏδD(x− x′). (C.1)

We want to show the following form does indeed satisfy this equation, and determine the
normalization constant A0:

i∆(x;x′) = A0

(
1

∆x2F

)D
2
−1

, ∆x2F = −(|∆x0| − iε)2 + ||∆x⃗||2. (C.2)

As indicated, we add an iε-prescription, in order to avoid the pole at x = x′, and then we
will take the limit of ε→ 0 in order to generate the δD(x−x′). Plugging this into Eq. (C.1),
we find

∂2(i∆(x;x′)) = A0

(
D

2
− 1

)(
1

∆x2F

)D
2
−2{

−−∂2(∆x2F )
(∆x2F )

2
+

(
D

2

)
∂µ(∆x

2
F )∂

µ(∆x2F )

(∆x2F )
3

}
(C.3)

= A0

(
D

2
− 1

)(
1

∆x2F

)D
2
−2{

−2D − 4iεδ(∆x0)

(∆x2F )
2

+

(
D

2

)
4∆x2F
(∆x2F )

3

}
(C.4)

= A0

(
D

2
− 1

)(
1

∆x2F

)D
2 (

4iεδ(∆x0)
)
. (C.5)

We can check to make sure that this is a Dirac delta in the ε→ 0 limit, by acting it on a test
function and thus we can find A0:∫

dDx′{∂2(i∆(x;x′))f(x′)} := iℏf(x), (C.6)
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= lim
ε→0
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(||∆x⃗||2 + ε2)
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f(x0, x⃗′)

}
. (C.8)

Let r⃗ = x⃗− x⃗′ = ∆x⃗ and perform a change of variables, Taylor expanding f(x0, x⃗− r⃗) about
r⃗:
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Then substituting r⃗ = ερ⃗

lim
ε→0
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)
√
πΓ (D − 1)

]
, (C.11)

where to compute this integral, we switched to polar coordinates and used the generalised
formula for D dimensions. This generalization is given in terms of angles θi, i > 0 defined
on an interval [0, π] and θ0 along [0, 2π), as well as a radial r = ||x⃗||.∫

dD−1x =

∫
dΩD−2

∫ ∞

0

dr =

∫
dθD−3 . . . dθ1dθ0 sin

D−3(θD−3) . . . sin(θ1), (C.12)∫
dΩD−2 =

2π
D−1
2

Γ
(
D−1
2

) =
2(4π)

D
2
−1Γ

(
D
2

)
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. (C.13)

Thus if we have an integral dependent on one angle φ, we can extract it by letting θD−3 = φ
(and assuming D > 3)∫

dΩD−2f(φ) =

∫
dΩD−3

∫ π

0

dφ sinD−3(φ)f(φ), (C.14)∫
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. (C.15)

We can also use Eq. (8.335.1) from [78], with x = D−1
2

, to reduce this fraction

Γ (2x) =
22x−1

√
π

Γ (x) Γ
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)
, (C.16)
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⇒ A0 = ℏ
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2
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, (C.18)

i∆(x;x′) = ℏ
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4πD/2
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. (C.19)

C.2 D → 4 limit of Scalar Propagator

We would like to ensure that the D → 4 limit of our proposed scalar propagator is well
defined. Here is the equation we want to check (denoting Γ(a ± b) = Γ(a + b)Γ(a − b) for
brevity):

i∆(x;x′) =
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We can expand these Hypergeometric functions, rearranging some of the terms and ex-
tracting the n = 0 term from the second 2F1. Then recasting the index n → n + 1 (and
employing (a± b)n = (a+ b)n(a− b)n) our equation becomes
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(C.21)

For later convenience we define fm(y) as this sum starting at n = m, so that we can write

i∆(x;x′) =
ℏHD−2

(4π)D/2

(
Γ

(
D

2
− 1

)(y
4

)1−D
2
+ f0(y)

)
(C.22)

We are interested in the terms in this f0(y), as the other term is perfectly regular in D → 4.
In all of the following, we will keep up to linear terms in D − 4, first we can express the
general expansion of Γ functions and Pochhammer symbols as zD around the point z4:

Γ (zD) = Γ(z4) (1 + ψ(z4)(zD − z4)) (C.23)
(zD)n = (z4)n (1 + (ψ(z4 + n)− ψ(z4))(zD − z4)) , (C.24)

where here the ψ(z) function is defined as ψ(z0) = d
dz
ln(Γ(z))|z=z0. Each term we need to

take the limit of, contains: ±D
2
⇒ zD − z4 = ±D−4

2
. Now expanding each part of the first

term inside the sum of Eq. (C.21) we get
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where we define ψ(z ± x) = ψ(z + x) + ψ(z − x). For the second term we get the same
prefactor
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. (C.26)

Finally our expression for the scalar propagator in D = 4 dimensions is

lim
D→4
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(C.27)
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C.3 Scalar Propagator at Coincidence

The coincidence limit for the scalar propagator can be obtained from Eq. (3.35), and
utilising the fact that in dimensional regularization, D-dependent powers of y vanish at
coincidence. This results in

lim
x′→x

i∆(x;x′) =
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=
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C.4 Derivatives of the Scalar Propagator

Recall that the scalar propagator was found to be

i∆(x;x′) =
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fm(y) =
∞∑

n=m

[
Γ
(
D−1
2

± ν
)
Γ(1− D

2
)

Γ(1
2
± ν)

(
D−1
2

± ν
)
n(

D
2

)
n
n!

(y
4

)n

+
Γ
(
D
2
− 1

) (
1
4
− ν2

)
2− D

2

(
3
2
± ν

)
n

n!(n+ 1)
(
3− D

2

)
n

(y
4

)n+2−D
2

]
(C.31)

To calculate these identities, we must make use of a process known as extracting deriva-
tives, which is detailed in Appendix A. For the propagator square we find

(i∆(x;x′))
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(C.32)

Next we consider the derivative of each scalar propagator in the square. We need to
apply several more renditions of this extracting d’Alembertians operation, giving

∂µi∆(x;x′)∂νi∆(x;x′) =
ℏ2Γ

(
D
2
− 1

)
HD−4

(4π)D/2

1

(D − 3)(D − 4)

×
{
1

2

(D − 2)

(D − 1)
∇µ∇ν +

1

2

1

(D − 1)
gµν − 1

2
(D − 2)H2gµν −

(
1

4
− ν2

)
H2gµν

}
iδD(x− x′)√

−g

+
ℏ2H4

(4π)4

{(
1

6
∇µ∇ν +

1

12
gµν − 1

2
H2gµν −

1

2

(
1

4
− ν2

)
H2gµν

)
g(y)

+

(
1

4
− ν2

)
H2gµν

4

y
−

(
1

4
− ν2

)
∇µ∇ν

4

y
+ 2∂(µ

4

y
∂ν)f1(y) + ∂µf0∂νf0

}
(C.33)
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Now for the second derivative form, ∂µ∂′ρi∆(x;x′)∂′σ∂νi∆(x;x′). Solving this makes use
of Eq. (B.13). We start with
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where we expanded ∂µ∂′ρf0(y)∂
′
σ∂νf0(y) to extract divergences. Next we must evaluate Eq.

(B.13) for five sets of α, β values.
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The final result, summing all of the terms together is:
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It is more useful to write the divergent part in this way, splitting the H2, m2 dependences
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D Curvature Variations

This section deals with the variations induced in Curvature tensors due to adding a pertur-
bation of a background metric gµν → gµν + δgµν . Standard variational principle gives

δgµν = −gµρgνσδgρσ, (D.1)

δ
√
−g = −1

2

√
−ggαβδgαβ. (D.2)

The curvature tensors/objects we are interested in are defined bellow, with their value on
de Sitter:

√
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Rµν = gρσRρµσν = H2(D − 1)gµν , (D.6)
R = gµνRµν = H2D(D − 1), (D.7)

Gµν = Rµν −
1

2
Rgµν = H2 (D − 1)(2−D)

2
gµν , (D.8)

Cρ
µσν = Rρ

µσν −
2

(D − 2)

(
δρ[σRν]µ + gµ[νRσ]

ρ
)
+

2

(D − 1)(D − 2)
δρ[σgν]µR (D.9)

= 0 on de Sitter (D.10)

To find the first and second variations of these quantities, we follow the procedure in
Section 35.14 of [62].

δRγ
αδβ = ∇δδΓ

γ
βα −∇βδΓ

γ
δα, (D.11)

=
1

2
gγλ

(
− gαµgλν∇δ∇β − gβµgλν∇δ∇α + gαµgβν∇δ∇λ

+ gαµgλν∇β∇δ + gδµgλν∇β∇α − gαµgδν∇β∇λ

)
δgµν , (D.12)

δRαβ = ∇λδΓ
λ
βα −∇βδΓ

µ
µα =

(
−gα)µ∇ν∇(β +

1

2
gαµgβν +

1

2
gµν∇β∇α

)
δgµν , (D.13)
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δ2Rγ
αδβ =

(
1

2
gδκ∇[λδgγ]κ − 1

4
∇δδg

γλ

)(
gαµgλν∇β + gβµgλν∇α − gαµgβν∇λ

)
δgµν

−
(
1

2
gβκ∇[λδgγ]κ − 1

4
∇βδg

γλ

)(
gαµgλν∇δ + gδµgλν∇α − gαµgδν∇λ

)
δgµν

+ δgγλ
(
gαµgλν∇[δ∇β] + gδ]µgλν∇α∇[β − gδ]µgαν∇λ∇[β

)
δgµν (D.14)

δ2Rαβ =
1

4
gµρgνσ∇αδg

ρσ∇βδg
µν +

1

2
gβνgµρgασ∇λδgµν∇λδg

ρσ − 1

2
gβµgαρ∇σδg

µν∇νδg
ρσ

+
1

2
δgµν

(
gµρgνσ∇α∇β + gαρgβσ∇µ∇ν − gµρgασ∇ν∇β − gµρgβσ∇ν∇α

)
δgρσ

− 1

2
∇νδg

µν

(
gµρgασ∇βδg

ρσ + gµρgβσ∇αδg
ρσ − gαρgβσ∇µδg

ρσ

)
+

1

4
gµν∇λδgµν

(
gλρgασ∇βδg

ρσ + gλρgβσ∇αδg
ρσ − gαρgβσ∇λδg

ρσ

)
(D.15)

In order to take the functional derivatives, we employ

δgαβ(y)

δgµν(x)
=

[
µg

α
]
(x; y)

[
νg

β
]
(x; y)δD(x− x′) (D.16)

We must be careful to ensure the bitensorial form is unbroken during our calculations, and
so we do not change the space-time point of µ, ν or ρ, σ derivatives/metrics. This leaves us
with the following identities to change the position of a derivative

[µgρ]
[
µgσ

]δD(x− x′)√
−g

= gρσ(x
′)
δD(x− x′)√

−g
(D.17)

[
µgρ

]
∇µ

δD(x− x′)√
−g

= −∇′
ρ

δD(x− x′)√
−g

, (D.18)

[
µgρ

]
∇µ∇ν

δD(x− x′)√
−g

=

(
−∇′

ρ∇ν −H2 [νgρ]

)
δD(x− x′)√

−g
, (D.19)

⇒ ∇µ∇ν

([
µgρ

][
νgσ

]δD(x− x′)√
−g

)
= ∇′

ρ∇′
σ

δD(x− x′)√
−g

. (D.20)

Once this is understood, the variation follows quickly. We want the Ricci scalar, the
Ricci Scalar square and the Weyl Tensor variations for our counterterms

δ2

δgµν(x)δgρσ(x′)

∫
dDy

√
−gR =

√
−g(x)

√
−g(x′)

{
(D − 4)(D − 1)

4
H2gµνg

′
ρσ +

(D − 2)(D − 1)

2
H2 [µgρ] [νgσ]−

1

2
gµνg

′
ρσ

+
1

2

(
gµν∇′

ρ∇′
σ + g′ρσ∇µ∇ν

)
+

1

2

(
[µgρ] [νgσ] + 2∇′

σ)∇(ν

[
µ)g(ρ

])}δD(x− x′)√
−g

, (D.21)
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δ2

δgµν(x)δgρσ(x′)

∫
dDy

√
−gR2 =

√
−g(x)

√
−g(x′)

{
+ 2∇µ∇ν∇′

ρ∇′
σ − 2

(
gµν∇′

ρ∇′
σ + g′ρσ∇µ∇ν

′
)
+ 2gµνg

′
ρσ

′

+H2

[
(D − 2)(D − 1)

(
gµν∇′

ρ∇′
σ + g′ρσ∇µ∇ν

)
− (D − 4)(D − 1)gµνg

′
ρσ

+D(D − 1)

(
[µgρ] [νgσ] + 2 [µgρ]∇′

σ∇ν

)]
H4

[(
D2(D − 1)2

4
− 2(D − 1)3

)
gµνg

′
ρσ

+

(
1

2
D2 (D − 1)2 − 2D(D − 1)2

)
H4 [µgρ] [νgσ]

]}
δD(x− x′)√

−g
(D.22)

δ2

δgµν(x)δgρσ(x′)

∫
dDy

√
−gC2 =

√
−g(x)

√
−g(x′)2(D − 3)

(D − 2)

{
(D − 2)

(D − 1)
∇µ∇ν∇′

ρ∇′
σ +

1

(D − 1)

(
gµν∇′

ρ∇′
σ + g′ρσ∇µ∇ν

′
)

− 1

(D − 1)
gµνg

′
ρσ

′ +
(
[µgρ] [νgσ]

′ + 2 [µgρ]∇′
σ∇ν

′
)

− 2H2

(
gµν∇′

ρ∇′
σ + g′ρσ∇µ∇ν

)
−H2gµνg

′
ρσ

−H2(D − 2)
(
[µgρ] [νgσ] + 2 [µgρ]∇′

σ∇ν

)
+ 2H4(D − 1)gµνg

′
ρσ

}
δD(x− x′)√

−g
(D.23)

Note that we can actually express this R2 as a linear combination of the following:

R2 =
[
R−D(D − 1)H2

]2
+ 2D(D − 1)H2

[
R− (D − 2)(D − 1)H2

]
−

[
(D(D − 1)H2)2 − 2D(D − 1)2(D − 2)H4

]
, (D.24)

which aligns in the counterterms used in [39], and allows one to make use of only the first
variation of the Ricci scalar for the first term, the Lichnerowicz operator for the second and
the variation of the volume element

√
−g for the third term.
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[56] A. G. Lemâıtre. “A Homogeneous Universe of Constant Mass and Increasing Radius
accounting for the Radial Velocity of Extra-galactic Nebulæ”. In: Monthly Notices of
the Royal Astronomical Society 91.5 (Mar. 1931), pp. 483–490. ISSN: 0035-8711. DOI:
10.1093/mnras/91.5.483. eprint: https://academic.oup.com/mnras/article-
pdf/91/5/483/3079971/mnras91-0483.pdf.

[57] Y. Zeldovich and M. Khlopov. “On the concentration of relic magnetic monopoles in
the universe”. In: Physics Letters B 79.3 (1978), pp. 239–241. ISSN: 0370-2693. DOI:
https://doi.org/10.1016/0370-2693(78)90232-0.

[58] S. Coleman and E. Weinberg. “Radiative Corrections as the Origin of Spontaneous
Symmetry Breaking”. In: Phys. Rev. D 7 (6 1973), pp. 1888–1910. DOI: 10.1103/
PhysRevD.7.1888.

[59] V. Patel and C. Lineweaver. “Solutions to the Cosmic Initial Entropy Problem with-
out Equilibrium Initial Conditions”. In: Entropy 19 (2017), p. 411. DOI: 10.3390/
e19080411.

[60] D. Baumann. TASI Lectures on Primordial Cosmology. 2018. arXiv: 1807.03098 [hep-th].

[61] S. M. Carroll. An Introduction to General Relativity: Spacetime and geometry. Cam-
bridge University Press, 2019.

[62] K. S. Thorne, J. A. Wheeler, and C. W. Misner. Gravitation. Freeman San Francisco,
CA, 2000.

[63] A. L. Besse. Einstein manifolds. Springer Science & Business Media, 2007.

[64] B. Allen and T. Jacobson. “Vector two-point functions in maximally symmetric spaces”.
In: Communications in Mathematical Physics 103.4 (Dec. 1, 1986), pp. 669–692. DOI:
10.1007/BF01211169.

[65] T. M. Janssen et al. “Infrared propagator corrections for constant deceleration”. In:
Classical and Quantum Gravity 25.24 (2008), p. 245013. DOI: 10.1088/0264-9381/
25/24/245013. arXiv: 0808.2449 [gr-qc].

[66] M. Spradlin, A. Strominger, and A. Volovich. Les Houches Lectures on De Sitter Space.
2001. arXiv: hep-th/0110007 [hep-th].

[67] A. V. Araujo et al. de Sitter-Invariant Approach to Cosmology. 2022. arXiv: 2203.

04824 [gr-qc].

[68] T. S. Bunch and P. C. W. Davies. “Quantum field theory in de Sitter space: renormal-
ization by point-splitting”. In: Proceedings of the Royal Society of London. A. Mathe-
matical and Physical Sciences 360.1700 (1978), pp. 117–134. DOI: 10.1098/rspa.
1978.0060. eprint: https://royalsocietypublishing.org/doi/pdf/10.1098/
rspa.1978.0060.
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