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Abstract. Gradual semantics are methods that evaluate overall
strengths of individual arguments in graphs. In this thesis, we
investigate gradual semantics for extended frameworks in which
probabilities are used to quantify the uncertainty about arguments
and attacks belonging to the graph. We define the likelihoods of
an argument’s possible strengths when facing uncertainty about
the topology of the argumentation framework. We also define an
approach to compare the strengths of arguments in this probabilistic
setting. Finally, we propose a method to calculate the overall
strength of each argument in the framework, and we evaluate this
method against a set of principles.
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1. Introduction

Within the last couple of decades, argumentation has emerged as a
popular field in Artificial Intelligence [9, 15]. It has been shown to be
useful in several domains, such as decision making [46], reasoning under
inconsistency [17] and non-monotonic reasoning [34] and is applicable
in the domains of law and medicine [9]. The underlying structure of
formal models of abstract argumentation takes the form of directed
graphs, whose nodes represent arguments and whose directed edges
indicate attacks between attacks.
Two main classes of semantics were proposed to reason about such

structures and to evaluate arguments in the graphs. Extension-based
semantics are proposed with the goal of identifying jointly acceptable
sets of arguments (extensions) based on specific properties within the
graph [23]. The acceptability status of an argument is then derived from
these extensions. The argument is sceptically accepted if it belongs to all
extensions, credulously accepted if it belongs to some of the extensions,
and rejected otherwise. On the other hand, gradual semantics [21] focus
on individual arguments and quantify their strengths in graphs, using
a richer scale (usually the unit interval of reals [0, 1]). They typically
define strength of an argument to depend on strengths of its direct
attackers. One intuitive difference between gradual and extension-based
semantics is that, in the latter approach, the attack relation is used
to destroy its target (two conflicting arguments cannot be in the same
extension), while in ranking based semantics it is often used to only
weaken its target. Examples of gradual semantics are h-Categoriser [17],
Simple product semantics [32], Trust-based semantics [38], Iterative
Schema [25], Max-based and Cardinality-based semantics [8]. Some of
the approaches were adapted to frameworks where arguments and/or
attacks have a base weight [5, 6, 7, 8], bipolar frameworks in which
both support and attack relations are present in a graph [4, 40, 41],
and weighted bipolar SETAFs where a set of arguments can attack or
support a target together [45]. Gradual semantics are similar in spirit
to ranking semantics [2, 20], which focus on the strength of arguments
relative to that of other arguments, and return a preorder on arguments,
thus ranking them from the strongest to the weakest ones. Obviously,
each gradual semantics can be used to generate a ranking semantics
(but not vice versa).

For many applications in which there is uncertainty about topology of
the argumentation graph, simple attack frameworks appear too simple
for convenient modelling of those aspects of an argumentation problem.
There are different scenarios in which uncertainty about the presence of
arguments and attacks in a graph arises naturally: at times, ambiguities
in the language used for presenting an argument, or the presentation of
arguments with incomplete premises or claims may lead to uncertainty
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about the correct interpretation of attacks between arguments [28];
other times, arguments are presented with explicit uncertainty in their
claims [28]; an audience to some argumentation is often unsure of the
exact set of arguments being put forward, and a participant in some
argumentation may be unsure which arguments the audience has in
mind [30]. In order to handle these uncertainties, Li, Oren and Norman
[33] proposed Probabilistic Argumentation Frameworks which augment
argumentation graphs with probabilities. In this approach, named the
constellations approach by Hunter1[27], probability values are added to
the arguments and attacks, allowing for the modelling of uncertainty in
which elements should be present in the argumentation framework. In
the constellations approach, a considered extension semantics is used to
determine the probability of an argument being (credulously/sceptically)
accepted. This approach to probabilistic argumentation has been ex-
tensively investigated from an extension-based semantic point of view
[26, 27, 28, 30, 39, 18, 35, 29, 37, 19], but never from the perspective of
gradual semantics. Therefore, the current results on the constellations
approach are well suited to answering the question of probability of
(joint) acceptance of (sets of) arguments, but not the questions about
probability of strength of an individual argument, or the question which
argument is stronger in a probabilistic setting. Such questions are
instead a particularly good match for applications of gradual semantics
to graphs augmented with probabilities.
The aim of this thesis is to study gradual semantics in probabil-

istic argumentation frameworks, following the constellations approach.
Working towards this goal we set ourselves the following objectives:
Our first goal is to define semantics that return probabilities of an ar-
gument’s acceptance with respect to any strength threshold, providing
a richer scale of acceptability statuses than would be possible using
Dung semantics. The second goal is to employ rankings to determine
the probability that one argument is stronger than another and to
extend this ranking-based approach to enable us to find the probability
of certain, possibly more complex, ranking queries of interest being
satisfied. This, for example, would allow us to calculate the probability
that the argument a is stronger then either b or c. For both of these
objectives, our intent is to investigate the formal properties of and
connections between the approaches adopted in pursuing them. Our
third goal is to investigate the challenging problem of defining semantics
that assign unique overall strength to each argument in a probabilistic
argumentation framework. In this investigation we aim to propose desir-
able principles for such semantics, following the constellations approach,
inspired by existing principles for gradual semantics from the literature

1In the same paper, the author introduces the notion of the epistemic approach
to probabilistic argumentation, which can be used to represent the degree to which
an argument is believed [27, 31, 42].
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[5]. We intend to investigate properties of those principles and show
their compatibility. Finally, we aim to propose the first family of such
semantics, by providing a method for generalising gradual semantics for
argumentation graphs to our probabilistic framework. We mean to show
that if the considered underlying gradual semantics satisfies existing
principles [5], then its generalisation satisfies our novel principles.

The remainder of this thesis is organised as follows: Section 2 provides
the formal background to the sections that follow it. In section 3, we
pursue our first goal and investigate the use of gradual semantics
with PrAFs to determine the probability of acceptability of arguments.
Section 4 is concerned with the comparison of arguments in a PrAF
in pursuit of our second goal. In it, we employ gradual semantics to
determine argument rankings and investigate the probability that a
demand on such rankings is met in a PrAF under a gradual semantics.
In Section 5, in pursuit of our third and final goal, means of assigning
each argument in a PrAF an overall strength using gradual semantics are
investigated in keeping with the constellations approach to probabilistic
argumentation. Finally, in Section 6, we discuss work related to this
thesis, we discuss work that may follow this thesis in the future, and
conclude on the work presented in this thesis.
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2. Background

2.1. Dung’s Argumentation Framework. The core concept that
all topics we will introduce hereafter relate to is that of argumentation
graphs, introduced by Dung in his seminal 1995 paper [23] under the
name argumentation frameworks; a formalism based on the notion that
arguments are defeasible and may attack each other and that deciding
which arguments to accept requires evaluation of the attacks between
arguments. Given that conflict between arguments is possible, whether
an argument can reasonably be accepted depends on the existence of
counterarguments, which may in turn be subject to their own counter-
arguments, and so on. The argumentation framework allows for the
evaluation of a set of arguments by placing them in a directed graph,
where arguments make up the nodes and attacks between arguments
are modelled as the edges between them. Formally we have:

Definition 2.1 (Argumentation Graph). An argumentation graph, or
AG, is an ordered pair G = ⟨A,R⟩, where A is a non-empty finite set
of arguments and R ⊆ A×A is an attack relation between arguments.
Let AG denote the set of all argumentation graphs.

Considering argumentation graphs, we have the following:

• We say an argument a ∈ A attacks an argument b ∈ A, aRb for
short, iff (a, b) ∈ R.

• If an argument a ∈ A attacks an argument b ∈ S ⊆ A, we say
a attacks S.

• Similarly we say S ⊆ A attacks a ∈ A iff there exists some
b ∈ S such that b attacks a.

• An argument a ∈ A or set of arguments S ⊆ A defends an
argument b ∈ A if it attacks all arguments c ∈ A that attack b.

• Likewise, an argument a ∈ A or set of arguments S ⊆ A defends
a set of arguments S ′ ⊆ A if it defends all members of S ′.

• The function FG : 2A → 2A such that for S ⊆ A FG(S) =
{a | S defends a} is called the characteristic function of G.

The argumentation graph formalism considers arguments and attacks
as purely abstract entities, doing away entirely with features such as
the structure and origin of arguments and the nature of attacks. This
simplification makes it so the framework can be regarded more as a
calculus of conflict, applicable to a wide variety of areas only loosely
related to argumentation such as nonmonotonic reasoning and game
theory. This broad applicability helps explain the academic interest the
formalism has enjoyed, even as a subject upon itself rather than a tool
to be used in another setting.

We see a very simple example of an argumentation graph in Figure 1.
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a b c

Figure 1. A simple argumentation graph with argu-
ments a, b, and c and attacks (a, b) and (b, c).

With argumentation frameworks encoding sets of arguments and the
conflict between them, Dung seeks to identify sets of arguments in
an argumentation graph, called extensions, that together represent a
reasonable position one might take. The first constraint for such an
extensions to be considered reasonable is that they should be internally
consistent.

Definition 2.2 (Conflict-freeness). Let G = ⟨A,R⟩ be an argumenta-
tion graph. A set of arguments S ⊆ A is conflict-free iff there are no
a, b ∈ S s.t. (a, b) ∈ R.

As a minimum, one more constraint is placed on reasonable extensions.
We require that such an extension defends all of its members from outside
attacks.

Definition 2.3 (Admissibility). Let G = ⟨A,R⟩ be an argumentation
graph. A set of arguments S ⊆ A is admissible iff it is conflict-free and
it defends all its elements.

Further constraints on these extensions produce special classes of
admissible sets of arguments. As a mechanism for identifying such
extensions, Dung introduces semantics—commonly collectively referred
to as Dung semantics or extension semantics—that map an AG to its
extensions belonging to a specific class.

Definition 2.4 (Extension Semantics). An extension-based semantics
is a function S mapping any argumentation framework G = ⟨A,R⟩ to
a subset of 2A, denoted as ES(G).

• Complete semantics Co maps any G = ⟨A,R⟩ to its complete
extensions: those S ⊆ A that are conflict-free and for which it
holds that S = FG(S).

• Grounded semantics Gr maps any G = ⟨A,R⟩ to its grounded
extension: its minimal (w.r.t. set inclusion) complete extension.

• Preferred semantics Pr maps any G = ⟨A,R⟩ to its preferred
extensions: its maximal (w.r.t. set inclusion) complete exten-
sions.

• Stable semantics St maps any G = ⟨A,R⟩ to its stable ex-
tensions: those of its preferred extensions S that attack all
arguments in A \ S.

We say an argument is sceptically accepted under an extension se-
mantics if it belongs to all of its extensions, credulously accepted if it
belongs to at least one of its extensions, and rejected otherwise.
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Example 1 (A running example). The argumentation graph presented
in Figure 1 consists of arguments a, b, and c with aRb and bRc. The
extension of this graph characterised by grounded semantics, is {a, c}.
As this is the only extension produced, these arguments will both be
sceptically accepted. Informally we have the following: a is part of the
extension because it is not attacked. Including a requires us to exclude
b as a attacks b. This attack that rules out b then defends c from the
attack it receives, which allows us to include it.

2.2. Gradual Semantics for Argumentation Graphs. As we ex-
plained in the introduction, gradual semantics do not identify sets of
arguments that are acceptable together, as extension semantics do,
but rather assign to each argument a unique overall strength value or
acceptability degree considering the strengths of their attackers. This
richer evaluative scale, where arguments with a higher acceptability
degree are considered more acceptable, enables us to make comparisons
between alternative arguments, even when both would be assigned the
same acceptability status by a Dung semantics.
Following an approach already accepted by some authors from the

field [8], for simplicity we use the unit interval of reals as the evaluative
scale.

Definition 2.5 (Weighting). [8] A weighting on a set X is a function
from X to the interval [0, 1].

Now we can define gradual semantics in a formal way.

Definition 2.6 (Gradual Semantics). [8] A semantics is a function
S transforming any argumentation graph G = ⟨A,R⟩ ∈ AG into a
weighting DegSG on A (i.e., DegSG : A → [0, 1]). For any a ∈ A, DegSG(a)
represents the strength of a.

A well-studied gradual semantics that will be used as an example in
this work is the h-categoriser, proposed by Besnard and Hunter [17]:

Definition 2.7. The h-categoriser is a gradual semantics Hbs s.t. ∀G =
⟨A,R⟩ ∈ AG, ∀a ∈ A,

DegHbsG (a) =
1

1 +
∑

bi∈AttG(a) Deg
Hbs
G (bi)

.

Example 2 (Running example, continued). Applying Hbs to the ar-
gumentation graph presented in Figure 1, we get that DegHbsG (a) = 1,
DegHbsG (b) = 1/2, and DegHbsG (c) = 2/3. Comparing this to Example 1
we note that under grounded semantics arguments a and b received
the same status, ”accepted”, while under the h-categoriser argument
a is stronger than argument c and we note that while argument b was
not accepted under grounded semantics (the attack from a ruled out
its acceptance) it receives a positive but lowered strength under the
h-categoriser.
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In the literature on gradual semantics, several works have been
devoted to development of principles that represent desirable formal
properties of semantics, with the purpose to serve as a tool for analysis
and comparison of gradual semantics [3, 5, 8, 10, 12].
In what follows, we recall some principles from [5], adjusted to non-

weighted graphs.
Before the first principle, we recall what it means for an isomorphism

between argumentation graphs to exist.

Definition 2.8 (Isomorphism). Let G = ⟨A,R⟩ and G′ = ⟨A′,R′⟩ be
two AGs. An isomorphism from G to G′ is a bijective function f from
A to A′ such that ∀a, b ∈ A, aRb iff f(a)R′f(b).

The first principle, Anonymity, requires that an argument’s strength
depends only on the topology of the argumentation graph. I.e. the
argument’s name and contents are irrelevant to its strength.

Principle 2.9 (Anonymity). A gradual semantics S satisfies Anonymity
iff for any AGs G = ⟨A,R⟩ and G′ = ⟨A′,R′⟩, for any isomorphism f
from G to G′, the following holds: ∀ a ∈ A, DegSG(a) = DegSG′(f(a)).

Independence states that an argument’s strength should not de-
pend on arguments that are not connected to it. Here, for any G =
⟨A,R⟩,G′ = ⟨A′,R′⟩ ∈ AG s.t. A ∩ A′ = ∅, G ⊕ G′ is the AG
⟨A ∪ A′,R∪R′⟩.

Principle 2.10 (Independence). A gradual semantics S satisfies Inde-
pendence iff for any AGs G = ⟨A,R⟩ and G′ = ⟨A′,R′⟩ s.t A∩A′ = ∅,
the following holds: ∀ a ∈ A, DegSG(a) = DegSG⊕G′(a) where G⊕G′ =
⟨A ∪ A′,R∪R′⟩.

The Directionality principle expresses that an argument’s strength
may only depend on arguments from which a path to it exists. I.e.
for any G = ⟨A,R⟩ ∈ AG, the strength of an argument a ∈ A may
only depend on an argument b ∈ A if there exists a finite non-empty
sequence ⟨x1, . . . , xn⟩ of arguments xi ∈ A s.t. x1 = b, xn = a and
∀i < n, xiRxi+1.

Principle 2.11 (Directionality). A gradual semantics S satisfies Dir-
ectionality iff for any AGs G = ⟨A,R⟩ and G′ = ⟨A,R′⟩ s.t. R′ =
R∪{(a, b)} and ∀r ∈ R, P ′

R(r) = PR(r), it holds that: ∀x ∈ A, if there
is no path from b to x, DegSG(a) = DegSG′(f(a)).

Equivalence ensures that an argument’s overall strength depends only
on the strengths of its attackers.

Principle 2.12 (Equivalence). A gradual semantics S satisfies Equival-
ence iff for any AG G = ⟨A,R⟩, ∀a, b ∈ A, the following holds: if there
exists a bijective function f from AttG(a) to AttG(b) s.t. ∀x ∈ AttG(a),
DegSG(x) = DegSG(f(x)), then DegSG(a) = DegSG(b).
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Maximality states that a non-attacked argument will have maximal
strength (i.e., the strength 1).

Principle 2.13 (Maximality). A gradual semantics S satisfies Maxim-
ality iff for any AG G = ⟨A,R⟩, ∀a ∈ A, it holds that: if AttG(a) = ∅,
then DegSG(a) = 1.

The Neutrality principle states that an argument with strength zero
has no impact on the strength of any argument it attacks.

Principle 2.14 (Neutrality). A gradual semantics S satisfies Neutrality
iff for any AG G = ⟨A,R⟩, ∀a, b ∈ A, it holds that: if AttG(b) =
AttG(a) ∪ {x} s.t. x ∈ A \ AttG(a) and DegSG(x) = 0, then DegSG(a) =
DegSG(b).

Weakening states that if an argument has an attacker with positive
strength, then its own strength cannot be maximal.

Principle 2.15 (Weakening). A gradual semantics S satisfies Weaken-
ing iff for any AG G = ⟨A,R⟩, ∀a ∈ A, it holds that if AttG(a) ̸= ∅,
then DegSG(a) < 1.

Resilience states that in any graph, every argument will have strictly
positive strength.

Principle 2.16 (Resilience). S satisfies Resilience iff for any AG
G = ⟨A,R⟩, ∀a ∈ A, DegSG(a) > 0.

The Reinforcement principle states that the intensity of an attack is
proportionate to the strength of its source.

Principle 2.17 (Reinforcement). A gradual semantics S satisfies Rein-
forcement iff for any AG G = ⟨A,R⟩, ∀a, b ∈ A, the following holds: if
DegSG(a) > 0, AttG(a) \ AttG(b) = {x}, AttG(b) \ AttG(a) = {y}, and
DegSG(y) > DegSG(x), then DegSG(a) > DegSG(b).

Where Weakening leads to a loss of strength whenever an argument
is attacked by at least one argument with positive strength, Counting
requires that each alive attacker negatively affects the overall strength
of an argument.

Principle 2.18 (Counting). A gradual semantics S satisfies Counting
iff for any AG G = ⟨A,R⟩, ∀a, b ∈ A, it holds that: if AttG(b) =
AttG(a) ∪ {x} with x /∈ AttG(a), Deg

S
G(x) > 0, and DegSG(a) > 0, then

DegSG(a) > DegSG(b).

The Weakening Soundness principle, going beyond Weakening, states
that attacks are the only reason for a decrease in argument strength.

Principle 2.19 (Weakening Soundness). A gradual semantics S satisfies
Weakening Soundness iff for any AG G = ⟨A,R⟩, ∀a ∈ A, it holds
that: if DegSG(a) < 1, then ∃b ∈ AttG(a) s.t. Deg

S
G(b) > 0.
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2.3. Probabilistic Argumentation Frameworks. When using argu-
mentation graphs and semantics to evaluate arguments, we assume that
all relevant arguments and attacks are considered and no arguments
or attacks in the graph are irrelevant. In reality, however, it is rarely
clear which arguments and attacks apply and should thus be placed
in the graph. We might, for example, run into natural language being
imprecise such that it is unclear whether claims are contradictory or
there might be multiple ways to model the premises and claims often
left implicit in conversation. We might also be in a situation where we
are unsure what arguments a dialogue partner or an audience has in
their mind. At other times we may be dealing with explicit uncertainty,
such as with utterances like ’I am 99% sure’ or ’I may have seen Robin
yesterday’.

Example 3. [28] Suppose we are part of the audience to a discussion
between a proponent and an opponent of expanding Heathrow airport.
In the debate the proponent offers up the first and third of the following
arguments and the opponent presents the second:

• x = We should build a third runway at Heathrow because
everyone will benefit from the increased capacity.

• y = It is not true that everyone will benefit in the community.
• z = Local residents won’t have problems with traffic because we
will increase public transport to the airport.

The first and third arguments make both their premises and claim
explicit. The second argument, however, leaves its premises implicit; it
is an enthymeme.
Now suppose that with the knowledge we have available, we deem

that the second argument can be made explicit in one of two ways:

• y′ = It is not true that everyone will benefit in the community.
There are local residents who will suffer from increased noise
from the increased number of aircraft.

• y′′ = It is not true that everyone will benefit in the community.
There are local residents who will have problems from increased
traffic on the roads to the airport.

We now see that both interpretations of y attack x, but only the second
is attacked by z. It is thus uncertain whether we should include the
attack from z to y in our graph.

Uncertainty such as that described above is captured by probabilistic
argumentation frameworks: an extension of argumentation frameworks,
originally proposed by Li, Oren, and Norman [33], where each argument
and attack is given a certain likelihood of appearing in a graph.

Definition 2.20 (PrAF). A probabilistic argumentation framework
(PrAF) is a quadruple F = ⟨A, PA,R, PR⟩, where ⟨A,R⟩ is an argu-
mentation graph and PA : A → (0, 1] and PR : R → (0, 1] associate



12

likelihood values with arguments and attacks respectively. PrAF denotes
the set of all probabilistic argumentation frameworks.

In a PrAF F = ⟨A, PA,R, PR⟩, the argumentation graph G = ⟨A,R⟩
represents the set of all arguments and attacks that may potentially
appear. An instantiated graph that may arise under the uncertainty we
face thus contains a subset of the arguments and attacks in G. We call
the process of deriving such a graph from a PrAF induction, and name
the graphs that result induced graphs (of the PrAF). The functions PA
and PR represent the uncertainty in the arguments and attacks in G.
PA gives the probability that an argument appears in a graph induced
from G and PR the conditional probability that an attack appears in an
induced graph given that both arguments it relates appear in the graph.
The ranges of both functions deliberately exclude 0, as any argument
or attack with a zero probability is known never to appear and is thus
redundant. The maximum value 1 either function may assign represents
certainty that an argument appears in an induced graph or that an
attack appears given that its origin and target do as well.
We say that an argument is perfect in a PrAF, if it is both non-

attacked and its probability is 1.

Definition 2.21 (Induced Graph). An argumentation graph G′ =
⟨A′,R′⟩ is induced from a probabilistic argumentation framework F =
⟨A, PA,R, PR⟩ iff all of the following hold:

• A′ ⊆ A
• R′ ⊆ R ∩ (A′ ×A′)
• ∀a ∈ A such that PA(a) = 1, a ∈ A′

• ∀(a, b) ∈ R such that PR((a, b)) = 1 and a, b ∈ A′, (a, b) ∈ R′

I(F) denotes the set of all argumentation graphs that may be induced
from a probabilistic argumentation framework F.

Example 4 (Running example, continued). Looking back to the pre-
vious example, we see that the argumentation graph we have so far
been using for our running example may represent the dialogue under
interpretation y′′. Argument a in our graph corresponds to argument z
in the dialogue, b corresponds to y and c to z. The other interpretation
would produce a subgraph of our example graph that excludes the
attack from c to b. This whole scenario may then be modelled with the
PrAF presented in Figure 2. Here we would have 0 < PR((a, b)) < 1.
We would have to base the exact value of this probability on our under-
standing of the likelihood of either interpretation of y being intended.
All other probabilities are equal to one.

Our definition of an induced graph differs from the original, proposed
in [33], in the fourth bullet; in addition to the attack (a, b) being
certain, the original definition requires that arguments a and b both
have probability 1 instead of only requiring them to be present in
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a b c

(a)

a b c

(b)

Figure 2. A probabilistic argumentation framework
with a single uncertain attack (a, b): (a) shows the entire
PrAF and its induced graph where (a, b) is present; (b)
shows the induced graph where (a, b) is not present.

the graph for (a, b) to be certainly present in the graph. This change
eliminates any induced graphs that will receive probability 0 under
the following definition 2.22, where an attack with probability 1 is not
present even though the arguments it connects are.

Since independence between arguments and attacks is assumed, the
probability of some induced graph G being induced from a PrAF F can
be computed using the joint probabilities of independent variables:

Definition 2.22 (Probability of an Induced Graph). Given a probabil-
istic argumentation framework F = ⟨A, PA,R, PR⟩, the probability of
some graph G′ = ⟨A′,R′⟩ being induced from F is:

P I
F(G

′) =
∏
a∈A′

PA(a)
∏

a∈A\A′

(1− PA(a))∏
r∈R′

PR(r)
∏

r∈R↓A′\R′

(1− PR(r))

where R ↓A′= {(a, b)|a, b ∈ A′ and (a, b) ∈ R}.

Through definitions 2.20, 2.21 and 2.22 it is easily shown that

(1) ∀F ∈ PrAF, ∀G ∈ I(F), P I
F(G) > 0

The following proposition claims that P I
F is a probability distribution

over the induced graphs of a PrAF.

Proposition 2.23. The sum of probabilities of all argumentation graphs
that may be induced from an arbitrary PrAF F is 1. i.e.∑

G∈I(F)

P I
F(G) = 1

Proof. Note that this proposition is essentially the same as the ana-
logous statement for PrAFs by [33]. Since we slightly modified the
definition of an induced graph, we present this statement for com-
pleteness without claiming that the result is original. We prove this
proposition by induction. For the base case, consider a PrAF F =
⟨A, PA,R, PR⟩ with A = {a}. Either PA(a) = 1 or 0 < PA(a) < 1.
In the former case, I(F) = {⟨A,R⟩} with P I

F(⟨A,R⟩) = 1. In the
latter case, I(F) = {⟨A,R⟩, ⟨∅,R⟩} with P I

F(⟨A,R⟩) = PA(a) and
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P I
F(⟨∅,R⟩) = 1−PA(a). Since 0 < PA(a) < 1, PA(a)+ (1−PA(a)) = 1.

In either case,
∑

G∈I(F) P
I
F(G) = 1.

In general, there are four ways to expand a PrAF F = ⟨A, PA,R, PR⟩
to make PrAF F′ = ⟨A′, P ′

A,R′, P ′
R⟩: we may add a certain argument,

we may add a certain attack, we may add an uncertain argument, or
we may add an uncertain attack. We consider these as four induction
steps. For all, assume that for F it holds that

∑
G∈I(F) P

I
F(G) = 1.

(1) If we add a certain argument a, we have a bijective function
f from I(F) to I(F′) s.t. ∀G ∈ I(F), P I

F(G) = P I
F′(f(G)), so∑

G∈I(F) P
I
F(G) =

∑
G′∈I(F′) P

I
F′(G′) = 1. Here f(G) is G with

the addition of the new argument a.
(2) If we add a certain attack r = (a, b), we also have a bijective func-

tion f from I(F) to I(F′) s.t. ∀G ∈ I(F), P I
F(G) = P I

F′(f(G)),
so

∑
G∈I(F) P

I
F(G) =

∑
G′∈I(F′) P

I
F′(G′) = 1. Here f(G) is G

with the addition of r if a and b are in G and simply G otherwise.
(3) If we add an argument a with 0 < PA(a) < 1, we have a

surjection f from I(F′) to I(F) s.t. for each G ∈ I(F) there
are exactly two graphs G′,G′′ ∈ I(F′) with f(G′) = f(G′′) =
G where G′ = G and G′′ is G with the addition of a. We
have P I

F′(G′) = P I
F(G) · (1 − PA(a)) and P I

F′(G′′) = P I
F(G) ·

PA(a). Since 0 < PA(a) < 1, P I
F′(G′) + P I

F′(G′′) = P I
F(G), so∑

G∈I(F) P
I
F(G) =

∑
G′∈I(F′) P

I
F′(G′).

(4) If we add an attack r = (a, b) with 0 < PR(r) < 1, we get
that each G ∈ I(F) that does not contain arguments a and
b corresponds to a single identical G′ ∈ I(F′) with P I

F(G) =
P I
F′(G′) and that each G ∈ I(F) that does contain arguments a

and b corresponds to two graphs G′,G′′ ∈ I(F′) s.t. G′ = G,
G′′ is G with the addition of r, P I

F′(G′) = P I
F(G) · (1− PR(r))

and P I
F′(G′′) = P I

F(G) · PR(r). Since 0 < PR(r) < 1, P I
F′(G′) +

P I
F′(G′′) = P I

F(G), so
∑

G∈I(F) P
I
F(G) =

∑
G′∈I(F′) P

I
F′(G′).

□

The probability distribution P I
F is used in [33] to define the prob-

ability of a set of arguments X being accepted in a PrAF as the sum
of probabilities of those induced graphs in which all arguments are
accepted.

Definition 2.24 (Probability of Extension-based Acceptability). Given
a probabilistic argumentation framework F = ⟨A, PA,R, PR⟩, an infer-
ence mode i ∈ {sceptical, credulous}, and an extension semantics S, the
probability that some set of arguments X ⊆ A is acceptable in F w.r.t.
S and i is:

PS,i
F (X ) =

∑
G∈I(F),∀a∈XGp∼i

Sa

P I
F(G)
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Where G p∼sceptical

S a iff ∀S ∈ ES(G), a ∈ S and G p∼credulous

S a iff
∃S ∈ ES(G), s.t. a ∈ S.

What follows is a collection of special notations used in the thesis.

Notation. Let F = ⟨A, PA,R, PR⟩ be a PrAF, G = ⟨A,R⟩ be an AG,
and a ∈ A.

•We write aRb iff (a, b) ∈ R.
• AttF(a) and AttG(a) denote the set of all attackers of a in F
and G respectively (i.e., AttF(a) = AttG(a) = {b ∈ A|bRa).

• For a, b ∈ A, we say there is a path from b to a if there exists a
finite non-empty sequence ⟨x1, . . . , xn⟩ of arguments xi ∈ A s.t.
x1 = b, xn = a and ∀i < n, xiRxi+1.

• For any F = ⟨A, PA,R, PR⟩,F′ = ⟨A′, P ′
A,R′, P ′

R⟩ ∈ PrAF s.t.
A ∩ A′ = ∅, F ⊕ F′ is the PrAF ⟨A ∪ A′, P ′′

A,R ∪ R′, P ′′
R⟩

where for any a ∈ A (respectively a ∈ A′) P ′′
A(a) = PA(a)

(respectively P ′′
A(a) = P ′

A(a)) and for any r ∈ R (respectively
r ∈ R′) P ′′

R(r) = PR(r) (respectively P ′′
R(r) = P ′

R(r)).
• For any G = ⟨A,R⟩,G′ = ⟨A′,R′⟩ ∈ AG s.t. A∩A′ = ∅, G⊕G′

is the AG ⟨A ∪ A′,R∪R′⟩.
• For any F = ⟨A, PA,R, PR⟩ and S ⊆ A, F|S = ⟨S, (PA)|S,
R|S×S, (PR)|(R|S×S)⟩.
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3. Probabilistic Acceptability of Arguments

In the work of Li, Oren, and Norman [33], Definition 2.22 is used
to determine the probability that some set of arguments is acceptable
under a given Dung semantics by adding together the probabilities of
those induced graphs where the set is acceptable. This section explores
the possibility of determining that probability under a gradual semantics
instead.
Where Dung semantics determine the acceptability of an argument

directly, without explicitly considering the overall strength of the ar-
gument, gradual semantics may be used to determine acceptability
indirectly through the strengths they assign arguments. An approach
to deriving argument acceptability from the strengths assigned to argu-
ments by a gradual semantics is proposed in [1]; we may simply accept
those arguments whose strength meets or exceeds a threshold we choose.

Definition 3.1 (Acceptability Under Gradual Semantics). Given an
argumentation graph G = ⟨A,R⟩ and a gradual semantics S, an ar-
gument a ∈ A is threshold accepted in G with respect to S and some

threshold t ∈ [0, 1], denoted G p∼t

S a, iff DegSG(a) ≥ t.

Now that we can derive the acceptability of an argument from its
strength, we may follow the same approach as Li, Oren, and Norman
to determine the probability that a set of arguments is acceptable.

Definition 3.2 (Probability of Acceptability). Given a probabilistic
argumentation framework F = ⟨A, PA,R, PR⟩, a gradual semantics S,
and a threshold t ∈ [0, 1], the probability that some set of arguments
X ⊆ A is acceptable in F w.r.t. S and t is:

PS,t
F (X ) =

∑
G∈I(F),∀a∈XGp∼t

Sa

P I
F(G)

That is, PS,t
F (X ) is the sum of the probabilities of the induced graphs of

F where all arguments in X are accepted. For brevity, we write PS,t
F (x)

instead of PS,t
F (X ) for singleton sets X = {x}.

Example 5 (Running example, continued). In our running example, we
are trying to answer the question whether Heathrow airport should be
expanded. For this, we may wish to find the probability of argument c
being accepted. Suppose we pick an arbitrary acceptance threshold t =
2/3. In induced graphG1, shown in Figure 2a, we have DegHbsG1

(c) = 2/3. In
this induced graph c is accepted. In induced graph G2, shown in Figure
2b, we have DegHbsG2

(c) = 1/2. Here c is not accepted. The probability of
either induced graph, and by extension the probability of acceptability,
depends on PR((b, c)). We see that P Hbs,t

F (c) = P I
F(G1) = PR((b, c)).
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The following result states that the probability of acceptance of any
argument in a framework is bounded from above by its probability of
being present in the graph.

Proposition 3.3. Let F = ⟨A, PA,R, PR⟩ be a probabilistic argument-
ation framework and let S be a gradual semantics. For every t ∈ [0, 1]

we have PS,t
F (a) ≤ PA(a).

Proof. Let F = ⟨A, PA,R, PR⟩ be a PrAF with a ∈ A, let S be a
gradual semantics, and let t ∈ [0, 1]. It follows from Definition 2.22 that

(2) PA(a) =
∑

G=⟨A,R⟩∈I(F),a∈A

P I
F(G)

It follows from Definition 3.1 that any for any G = ⟨A,R⟩ ∈ I(F) where
a /∈ A, for any threshold t, a is not accepted in G w.r.t S. From here

we see that if for any G = ⟨A,R⟩ ∈ A, G p∼t

S a, then PS,t
F (a) = PA(a)

and if not, then PS,t
F (a) < PA(a). □

Now we state a form of monotonicity property that compares prob-
abilities of acceptance when different thresholds are considered.

Proposition 3.4. Let F = ⟨A, PA,R, PR⟩ be a probabilistic argument-
ation framework and let S be a gradual semantics. If t ≤ t′, then

PS,t
F (a) ≥ PS,t′

F (a).

Proof. We prove the result by contraposition. Let F = ⟨A, PA,R, PR⟩
be a PrAF with a ∈ A, let S be a gradual semantics, and let t, t′ ∈ [0, 1].

Suppose PS,t
F (a) < PS,t′

F (a). This implies the existence of a G ∈ I(F)

s.t. G p∼t′

S (a) and not G p∼t

S (a). From Definition 3.1 we see that such
a G may only exist if t > t′. □

Next we consider properties that depend on behaviour of the chosen
gradual semantics. According to the first property, if the semantics
satisfies Maximality, then the probability that a non-attacked argument
has maximal strength is maximised.

Proposition 3.5. Let F = ⟨A, PA,R, PR⟩ be a probabilistic argumenta-
tion framework and let S be a gradual semantics that satisfies Maximality.
If a ∈ A is not attacked in F, then PS,1

F (a) = PA(a).

Proof. Let F = ⟨A, PA,R, PR⟩ be a PrAF with a ∈ A, and let S
be a gradual semantics that satisfies Maximality. Suppose a is not
attacked in F. This means that a is not attacked in any G ∈ I(F).
Combined with the assumption that S satisfies Maximality, this gives
∀G = ⟨A,R⟩ ∈ I(F) s.t. a ∈ A, DegSG(a) = 1. From here, Definition

3.1 gives that ∀G = ⟨A,R⟩ ∈ I(F) s.t. a ∈ A, G p∼1

S a. Equation 2

now gives us PS,1
F (a) = PA(a). □
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Satisfaction of the Resilience principle implies non-zero probability
that an argument has at least some positive strength.

Proposition 3.6. Let F = ⟨A, PA,R, PR⟩ be a probabilistic argumenta-
tion framework and let S be a gradual semantics that satisfies Resilience.
Then for some t > 0, PS,t

F (a) > 0.

Proof. Let F = ⟨A, PA,R, PR⟩ be a PrAF with a ∈ A, and let S be a
gradual semantics that satisfies Resilience. Assume it does not hold that
for some t > 0, PS,t

F (a) > 0. Through Equation 1 and Definition 3.2 we

see this means that for any t > 0 there is no G ∈ I(F) s.t. G p∼t

S a.
Definition 3.1 then gives, together with t > 0, that in all G ∈ I(F)
DegSG(a) = 0. S satisfies resilience, so this is not possible. □

If, in addition, the semantics satisfies Weakening, the probability
of acceptance of an attacked argument cannot reach its probability of
belonging to the graph.

Proposition 3.7. Let the semantics satisfy Resilience and Weakening.
If a is attacked, then for t = 1, PS,t

F (a) < PA(a).

Proof. Let F = ⟨A, PA,R, PR⟩ be a PrAF with a ∈ A s.t. AttF(a) ̸= ∅,
let S be a gradual semantics that satisfies Resilience and Weakening,
and let t = 1. AttF(a) ̸= ∅ implies that there is a G = ⟨A,R⟩ ∈ I(F)
s.t. a ∈ A and AttG(a) ̸= ∅. S satisfying Resilience makes it so that
∀b ∈ AttG(a), Deg

S
G(b) > 0. S satisfying Weakening makes it so that

a being attacked in G and all attackers of a in G having a non-zero
strength imply DegSG(a) < 1. From here, Definition 3.1 gives that not

G p∼t

S a. From Equation 2, Definition 3.1, and Definition 3.2 we see that

PS,t
F (a) = PA(a) if a is accepted in all G ∈ I(F) and PS,t

F (a) < PA(a)
otherwise. Since we have a G ∈ I(F) s.t. a is not accepted, we thus

have PS,t
F (a) < PA(a). □

The last result of this section characterises perfect arguments.

Proposition 3.8. Let S satisfy Maximality, Weakening and Resilience.
Then a is perfect in F iff PS,1

F (a) = 1.

Proof. Let F = ⟨A, PA,R, PR⟩ be a PrAF with a ∈ A, and let S be a
gradual semantics that satisfies Maximality, Resilience and Weakening.
We prove that a is perfect in F iff PS,1

F = 1. i.e. we prove that AttF(a) =

∅ ∧ PA(a) = 1 ⇐⇒ PS,1
F = 1. Left-to-right we have: PA(a) = 1

implies that ∀G = ⟨A,R⟩ ∈ I(F), a ∈ A. Combining this with S
satisfying Maximality and AttF(a) = ∅ we get ∀G ∈ I(F), DegSG(a) = 1.

Definition 3.1 gives us ∀G ∈ I(F), G p∼1

S (a), from which we derive

PS,1
F = 1 through Proposition 2.23 and Definition 3.2. Right-to-left

we prove by contraposition: We assume AttF(a) ̸= ∅ ∨ PA(a) ̸= 1. If
AttF(a) ̸= ∅, Proposition 3.7 gives us that, because S satisfies Resilience
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and Weakening, PS,1
F (a) < PA(a) and thus that PS,1

F ̸= 1. If PA(a) ̸= 1,
we know that PA(a) < 1. From here, Proposition 3.3 gives us that

PS,1
F (a) < 1 and thus that PS,1

F ̸= 1. □
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4. Ranking Arguments in a Probabilistic Setting

Through the introduction, removal, or alteration of terms in a gradual
semantics one may vastly alter the exact values it assigns to arguments.
Hence, comparing an argument’s strength to an exact threshold can
only be informative when we are intimately familiar with the semantics
used. We see this reflected in the principles used in the literature to
study or define semantics [5, 12]; these principles only speak about
strength values relative to those of other arguments, or to minimum or
maximum values enforced by the framework and never do so in absolute
values. Such properties are ultimately what distinguish two semantics
and comparing arguments based on their relative strength is thus an
appropriate use of gradual semantics.
Let us consider a practical example to better inform our intuitions.

Suppose we are a university hiring committee tasked with filling a
PhD position and there are two candidates to consider: Alex and Billy.
We may model the suitability for hiring of Alex with an argument a
and that of Billy with an argument b. Any reason for questioning the
suitability of either candidate can now be modelled as an attacker of
either argument. For instance, Alex’s suitability may be brought into
question based on doubts of their mastery of the English language
(argument x with xRa) and Billy may be considered a poor fit in the
team as they are known to have had some conflict with other members
of the research group (argument y with yRb). Uncertainty is introduced
into the graph by argument x (Alex has insufficient mastery of the
English language) relying on an assumption made because Alex did
not provide formal test results proving the contrary and by doubts
whether argument y (there is known conflict between Billy and other
team members) should constitute a valid attack on Billy’s suitability as
a candidate.

Say Alex is part of a demographic that is currently underrepresented
in the university’s staff, while Billy is not. Based on this fact, we
prefer to hire Alex whenever they are at least as suitable a candidate as
Billy. In order to select a candidate, we may wish to determine which
candidate has the highest probability of being preferred. In other words,
we want to find the probability that a is at least as strong as b and the
probability that it is not and hire Alex if the former is greater.
Note that Definition 3.2 cannot be used to formalise this problem.

To find these probabilities, we first need to rank arguments in each
individual induced framework. We now define what it means that a is
ranked at least as highly as b in G, denoted by G ⊨S a ⪯ b. Note that
here we follow the convention from [2], where a ⪯ b means “a is at least
as strong as b”.

Definition 4.1 (Ranking Arguments in Induced Graphs). Let G′ =
⟨A′,R′⟩ be an induced graph of probabilistic argumentation framework
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F = ⟨A, PA,R, PR⟩, and let S be a gradual semantics. For a, b ∈ A,
G′ ⊨S a ⪯ b iff one of the following holds:

• a, b ∈ A′ and DegSG′(a) ≥ DegSG′(b), or
• either DegSG′(b) = 0 or b /∈ A′.

The second condition equates the arguments without any strength
with those not present in a graph. Note that now we can define
probability of a ⪯ b as

(3) PF,S(a ⪯ b) =
∑

G∈I(F),G⊨Sa⪯b

P I
F(G)

and that we get the probability of a ⪯̸ b as the complement of a ⪯ b.
Now we emphasise that in some situations calculating probability

that a ⪯ b is still insufficient. Suppose we introduce a third candidate
into our example: Charlie, whose suitability is represented by argument
c which also receives some uncertain attack. In this case the definition
given by equation 3 no longer serves to determine the probability that,
say, Alex is at least as strong candidate as the other two—even if we
were to somehow combine PF,S(a ⪯ b) and PF,S(a ⪯ c)—as induced
graphs in which c is stronger than a may count toward PF,S(a ⪯ b) and
graphs in which b is stronger than a may count toward PF,S(a ⪯ c).
To properly determine this probability we require a formalism that
considers multiple argument inequalities at the same time.

Definition 4.2 (Ranking Query). Given a probabilistic argumentation
framework F = ⟨A, PA,R, PR⟩, a ranking query is a Boolean combina-
tion of expressions of the form a ⪯ b with a, b ∈ A.

We will denote ranking queries with Greek letters α, β, γ, . . . Note
that using ranking queries one can also express that one argument is
of strictly higher rank than another (a ⪯ b ∧ ¬b ⪯ a) and that two
arguments have equal ranks (a ⪯ b∧ b ⪯ a). By ⊤ we denote a ranking
query of the form α ∨ ¬α.
For a ranking query α and an induced graph G, we define G ⊨S α

simply by extending Definition 4.1 with the cases of Boolean connectives
in the standard way. For example, we define G ⊨S α ∨ β iff G ⊨S α or
G ⊨S β. We say that two queries α and β are incompatible if there is
no graph such that G ⊨S α and G ⊨S β. Note that the query ⊤ holds
in every induced graph.

Definition 4.3 (Probability of Ranking Queries). Given a probabilistic
argumentation framework F = ⟨A, PA,R, PR⟩ and a gradual semantics
S, let α be a ranking query. The probability that the ranking on argu-
ments indicated by α holds is:

PF,S(α) =
∑

G∈I(F),G⊨Sα

P I
F(G)
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That is, PF,S(x) is the sum of the probabilities of the induced graphs of
F that entail the query α under semantics S.

The additional expressivity offered by definition 4.3 allows us to
successfully find the probability that Alex is at least as strong as the
other candidates, namely by calculating PF,S(a ⪯ b ∧ a ⪯ c).
The first part of the proposition below expresses finite additivity.

Proposition 4.4. Given a PrAF F and a gradual semantics S, let α
be a ranking query.

(1) If α and β are incompatible, then PF,S(α ∨ β) = PF,S(α) +
PF,S(β).

(2) PF,S(⊤) = 1.

Proof. Let F be a PrAF, S be a gradual semantics, and let α, β be
ranking queries. We prove that (1) if α and β are incompatible, then
PF,S(α ∨ β) = PF,S(α) + PF,S(β), and that (2) PF,S(⊤) = 1.

(1) α and β being incompatible means there is no G ∈ I(F) s.t.
G ⊨S α andG ⊨S β. WheneverG ⊨S α orG ⊨S β, G ⊨S (α∨β).
It follows through Definition 4.3 that PF,S(α ∨ β) = PF,S(α) +
PF,S(β).

(2) For any G ∈ I(F), G ⊨S ⊤. It follows through Definition 4.3
and Proposition 2.23 that PF,S(⊤) = 1.

□

The following result links Definition (4.3) and Definition (3.2).

Theorem 1 (Necessitation). Let F = ⟨A, PA,R, PR⟩ be a PrAF and
S a gradual semantics. For all arguments a, b ∈ A, if PF,S(a ⪯ b) = 1,

then for every t ∈ (0, 1] we have PS,t
F (a) ≥ PS,t

F (b).

Proof. Let F = ⟨A, PA,R, PR⟩ be a PrAF with a, b ∈ A, let S be a
gradual semantics, and let t ∈ (0, 1]. We assume PF,S(a ⪯ b) = 1.
With Definition 4.1 this implies that for any G′ = ⟨A′,R′⟩ ∈ I(F),
G′ ⊨S a ⪯ b which means that for any for any G′ = ⟨A′,R′⟩ ∈ I(F) we
have (1) a, b ∈ A′ and DegSG′(a) ≥ DegSG′(b) or (2) either DegSG′(b) = 0
or b /∈ A′.
In the case where a, b ∈ A′, we see that whenever G p∼t

S b we also

have that G p∼t

S a, since DegSG′(a) ≥ DegSG′(b). In the other case, we

certainly do not have G p∼t

S b since either DegSG′(b) = 0 while t ∈ (0, 1]
or DegSG′(b) is undefined.

From here we see that for any G ∈ I(F), G p∼t

S b implies G p∼t

S a.

This gives us PS,t
F (a) ≥ PS,t

F (b). □
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5. A Constellations Approach to Argument Strength

In the previous sections we saw how we may use the probabilities of
a PrAF’s induced graphs together with the strength values assigned
to each argument in those induced graphs by a gradual semantics to
determine the probability that an argument’s strength meets some
threshold or to determine the probability that some ranking query on
arguments is satisfied. Considering each of the PrAF’s induced graphs,
as we did in answering both of these questions, is characteristic of the
constellations approach to probabilistic argumentation. In this section,
we explore the possibility of taking a similar approach in assigning
each argument a unique strength; we look for a method that, given
a choice of gradual semantics S, assigns each argument an overall
strength that considers both the probabilities of induced graphs and the
strengths assigned by S in their context. First, we present a generalised
notion of this new method for assigning strengths. Then, we discuss
some of the properties and assumptions of this new approach and
present a set of principles for them inspired by the principles for gradual
semantics present in the literature. Finally, we propose a specification
of the generalised method for assigning strengths based on a gradual
semantics and discuss the properties of this specification.

Just as a gradual semantics is a function transforming an argument-
ation graph into a weighting on its elements, our generalised method
for assigning unique strengths to arguments in a probabilistic argu-
mentation framework—henceforth called a generalised semantics—is a
function transforming a PrAF into a weighting on its arguments.

Definition 5.1 (Generalised Semantics). A generalised semantics is
a function S transforming any probabilistic argumentation framework
F = ⟨A, PA,R, PR⟩ ∈ PrAF into a weighting DegSF on A (i.e., DegSF :
A → [0, 1]). For any a ∈ A, DegSF(a) represents the strength of a.

5.1. Principles for Generalised Semantics. As the PrAFs to which
generalised semantics are applied are an extension of the AGs to which
gradual semantics are applied, it is worth investigating which prin-
ciples used in the study of gradual semantics (or at least the intuitions
underlying them) transfer to the constellations approach. We study
the generally desirable principles proposed in [5] which are recalled
and adjusted to non-weighted graphs in the appendix and find that
while many translate naturally to the new setting, three require more
extensive alteration to be sensible, and two are not generally desirable.
Before proposing the principles resulting from this examination, let
us consider these two principles, equivalence and reinforcement, that
are not generally desirable in the new setting where we want both the
probabilities of induced graphs and the strengths of arguments in them
to contribute to the overall strength of an argument.
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Figure 3. A probabilistic argumentation framework il-
lustrating compensation between strength and probability
where argument x is uncertain and all other elements are
certain: (a) shows the entire PrAF and its induced graph
where x is present; (b) shows the induced graph where x
is not present.

The intuition underlying the equivalence principle is that the strength
of an argument in an argumentation graph should depend only on the
strength of its direct attackers. The intuition underlying the reinforce-
ment principle adds to this that increasing the strength of an attacker
should increase the impact of its attack. To show how these intuitions
may not generally hold when assuming the overall strength of attackers
in a PrAF, we present the following: consider the PrAF F shown in
figure 3 with two induced graphs G and G′ shown in subfigures a and
b respectively. Recall that we want the overall strength of an argument
to be based on the strengths assigned to it in each induced graph by
a gradual semantics S. We are interested in the overall strengths of
arguments a and b and how they are affected by their respective attack-
ers x and y. If we we were to select h-Categoriser (def. 2.7) as S, we
would have DegSG(a) = 1/2, DegSG′(a) = 1, and DegSG(b) = DegSG′(b) = 2/3.
The strength of y would be 1/2 in all induced graphs and we would have
DegSG(x) = 1. Based on the neutrality principle’s prescription that an
argument with strength 0 contributes the same as no argument, we say
DegSG′(x) = 0.
Now that we know the strength of the arguments in each induced

graph, the question becomes how to aggregate these. Given that, in the
constellations approach, we consider each induced graph as a possible
world with some probability, we might approach the matter similarly to
an expected value and say that the amount an argument’s strength in
one induced graph contributes to its overall strength should be directly
proportional to the probability of that induced graph. That is to
say we multiply each strength in an induced graph with that graph’s
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probability and sum over graphs to find the overall strength. If we take
this approach, we may alter the value of PA(x), and by extension P I

F(G)
and P I

F(G
′), to create scenarios where we may not desire equivalence

or reinforcement.
First consider equivalence: say PA(x) = 1/2. This gives P I

F(G) =
P I
F(G

′) = 1/2. The overall strength of x and y is equal, with DegSF(x) =
1·1/2+0·1/2 = 1/2 and DegSF(y) = 1/2·1/2+1/2·1/2 = 1/2. The attackers of a
and b are thus equally strong overall, and the certainty with which they
are attacked is also equal, but we have DegSF(a) = 1/2 · 1/2 + 1 · 1/2 = 3/4
while DegSF(b) = 2/3 · 1/2 + 2/3 · 1/2 = 2/3; a and b do not have the same
overall strength, nor do we necessarily want them to.
To demonstrate how reinforcement is not always desirable we say

PA(x) = 2/3. We now end up with DegSF(x) = 2/3 > DegSF(y) = 1/2 and
DegSF(a) = DegSF(b) = 2/3. The attacker of a is stronger overall than
that of b, but it is reasonable to desire that a and b are equally strong
overall.
Having seen which principles’ intuitions do not transfer nicely to

the constellations setting, we present seven principles based on those
presented in [5]. For this, we require the notion of isomorphisms on
PrAFs:

Definition 5.2 (PrAF Isomorphism). Let F = ⟨A, PA,R, PR⟩ and
F′ = ⟨A′, P ′

A,R′, P ′
R⟩ be two PrAFs. An isomorphism from F to F′ is

a bijective function f from A to A′ such that:

• ∀a ∈ A, PA(a) = P ′
A(f(a));

• ∀a, b ∈ A, aRb iff f(a)R′f(b);
• ∀(a, b) ∈ R, PR((a, b)) = P ′

R((f(a), f(b)))

If F = F′, we call any isomorphism from F to F′ an automorphism.

The first principle, PrAF Anonymity, expresses that an argument’s
evaluation does not depend on it’s identity or the structure underlying
it’s abstract representation.

Principle 5.3 (PrAF Anonymity). A generalised semantics S satis-
fies anonymity iff for any two PrAFs F = ⟨A, PA,R, PR⟩ and F′ =
⟨A′, P ′

A,R′, P ′
R⟩, and any isomorphism f from F to F′, the following

holds: ∀a ∈ A, DegSF(a) = DegSF′(f(a)).

The PrAF Independence principle dictates that the strength of an
argument cannot depend on arguments to which the argument is not
connected.

Principle 5.4 (PrAF Independence). A generalised semantics S satis-
fies independence iff for any two PrAFs F = ⟨A, PA,R, PR⟩ and F′ =
⟨A′, P ′

A,R′, P ′
R⟩ where A ∩ A′ = ∅, it holds that: ∀a ∈ A, DegSF(a) =

DegSF⊕F′(a).

The third principle, PrAF Directionality, states that the strength
of an argument a in a PrAF can only depend on an argument b if a
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path from b to a, that is a finite non-empty sequence of arguments
⟨x1, . . . , xn⟩ s.t. x1 = b,xn = a, and ∀i < n, xiRxi+1, exists in the
PrAF.

Principle 5.5 (PrAF Directionality). A generalised semantics S satis-
fies directionality iff for any two PrAFs F = ⟨A, PA,R, PR⟩ and F′ =
⟨A, PA,R′, P ′

R⟩ where R′ = R ∪ {(a, b)} and ∀r ∈ R, P ′
R(r) = PR(r),

the following holds: for any x ∈ A, if there is no path from b to x,
DegSF(x) = DegSF′(x).

For PrAF Maximality to hold, the strength of any argument that is
not attacked should be equal to its probability.

Principle 5.6 (PrAF Maximality). A generalised semantics S satisfies
probability maximality iff for any PrAF F = ⟨A, PA,R, PR⟩, ∀a ∈ A,
it holds that: if AttF(a) = ∅, then DegSF(a) = PA(a).

PrAF Weakening requires that the strength of an argument is de-
creased when it is attacked by an argument that is not worthless.

Principle 5.7 (PrAF Weakening). A generalised semantics S satisfies
weakening iff for any PrAF F = ⟨A, PA,R, PR⟩, ∀a ∈ A, it holds that:
if ∃b ∈ AttF(a) s.t. Deg

S
F(b) > 0 then DegSF(a) < PA(a).

PrAF Weakening Soundness goes beyond PrAF Weakening in that it
enforces that attacks are the only source of strength loss.

Principle 5.8 (PrAF Weakening Soundness). A generalised semantics
S satisfies weakening soundness iff for any PrAF F = ⟨A, PA,R, PR⟩,
∀a ∈ A, the following holds: if DegSF(a) < PA(a) then ∃b ∈ AttF(a) s.t.
DegSF(b) > 0.

The PrAF Resilience principle requires any argument present in a
PrAF be assigned a positive strength.

Principle 5.9 (PrAF Resilience). A generalised semantics S satisfies
resilience iff for any PrAF F = ⟨A, PA,R, PR⟩, ∀a ∈ A, DegSF(a) > 0.

We have already discussed that if we follow the constellation approach,
we should not expect that the Equivalence principle holds. Now we
turn to a special case of Equivalence proposed in [8], called Symmetry.
Originally it states that two arguments a and b that have the same sets
of attackers also have equal strengths. Similarly as for Equivalence, in
the case of PrAFs that ”symmetry” between a and b breaks easily when
we zoom in to induced graphs. For example, if a and b are not certain
and there are different (asymmetric) attacks from a and b towards their
own attackers, the induced graph in which only a appears will be very
different from those in which b occurs. In order to enforce symmetry
we require that a and b interact with their attackers, attackers of their
attackers, and so on in a symmetric way.
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Definition 5.10 (Attack Structure). For PrAF F = ⟨A, PA,R, PR⟩ and
a ∈ A, the attack structure of a in F is StrF(a) = {a}∪{c ∈ A | there is
a path from c to a}. We denote by StrF(a, b) the set StrF(a)∪ StrF(b).

Using attack structures, we may now define PrAF Symmetry.

Principle 5.11 (PrAF Symmetry). A generalised semantics S satisfies
PrAF Symmetry iff for every PrAF F = ⟨A, PA,R, PR⟩, ∀a, b ∈ A, the
following holds: if f : F|StrF(a,b) → F|StrF(a,b) s.t. f(a) = b, f(b) = a
and f(x) = x otherwise, is an automorphism, then DegSF(a) = DegSF(b).

The principles Neutrality and Counting build on the idea of symmetry,
and say that if an attack is added to one of two arguments in a symmetric
situation, the attack will additionally harm the target if the strength of
that attacker is positive, otherwise it will not. We apply that intuition
directly to our notion of PrAF Symmetry. First, we consider the
intuition about attackers with zero strength to get PrAF Neutrality.

Principle 5.12 (PrAF Neutrality). A generalised semantics S satisfies
Praf Neutrality iff for every PrAF F = ⟨A, PA,R, PR⟩, ∀a, b ∈ A,
the following holds: if there exists c such that (c, b) ∈ R, (c, b) /∈ R,
and f : F|StrF(a,b)\{c} → F|StrF(a,b)\{c} s.t. f(a) = b, f(b) = a and
f(x) = x otherwise, is an automorphism, then DegSF(c) = 0 implies
DegSF(a) = DegSF(b).

Now, we apply the intuition about attackers with positive strength
to get PrAF Counting.

Principle 5.13 (PrAF Counting). A generalised semantics S satisfies
PrAF Counting iff for every PrAF F = ⟨A, PA,R, PR⟩, ∀a, b ∈ A,
the following holds: if there exists c such that (c, b) ∈ R, (c, b) /∈ R,
and f : F|StrF(a,b)\{c} → F|StrF(a,b)\{c} s.t. f(a) = b, f(b) = a and
f(x) = x otherwise, is an automorphism, then DegSF(c) > 0 implies
DegSF(a) > DegSF(b).

The following result shows that PrAF Symmetry is already a con-
sequence of a subset of other principles.

Theorem 2. If a generalised semantics S satisfies PrAF Anonymity,
PrAF Independence and PrAF Directionality, then S also satisfies PrAF
Symmetry.

Proof. Let F = ⟨A, PA,R, PR⟩ be a PrAF and S be a generalised se-
mantics that satisfies PrAF Anonymity, PrAF Independence, and PrAF
Directionality. Suppose that a, b ∈ A and there is an automorphism f :
F|StrF(a,b) → F|StrF(a,b) s.t. f(a) = b, f(b) = a and f(x) = x otherwise.
Since S satisfies PrAF Anonymity and f is an automorphism, we know
DegSF|StrF(a,b)

(a) = DegSF|StrF(a,b)
(b). Let StrF(a, b) = ⟨A′, P ′

A,R′, P ′
R⟩.

Additionally, let F′ = ⟨A\A′, (PA)|A\A′ ,R|(A\A′)×(A\A′), (PR)|(R|(A\A′)×(A\A′))
⟩
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be F restricted to the complement of the attack structure of a and
b. Since G satisfies PrAF Independence, we know DegSF|StrF(a)⊕F′(a) =

DegSF|StrF(a,b)
(a) = DegSF|StrF(a,b)

(b) = DegSF|StrF(a)⊕F′(b). One by one, we

may now add the attacks between the attack structure of a and b and
their probabilities present in F to F|StrF(a) ⊕ F′ to finally return to F.
Since we know none of these attacks creates a path to a or b as they are
not part of the attack structure of a and b, we know that at each step
S’s satisfaction of PrAF Directionality ensures the degrees of a and b
do not change. This gives that DegSF(a) = DegSF(b). □

We now present the result which claims that from a subset of the
principles it follows that an argument’s strength is bounded by its
probability.

Theorem 3. If a generalised semantics S satisfies PrAF Independence,
PrAF Maximality, PrAF Weakening, PrAF Neutrality, and PrAF Dir-
ectionality, then for any F = ⟨A, PA,R, PR⟩ ∈ PrAF, for any a ∈ A,
DegSF(a) ≤ PA(a).

Proof. Let F = ⟨A, PA,R, PR⟩ be a PrAF with a ∈ A and let S be a gen-
eralised semantics that satisfies PrAF Independence, PrAF Maximality,
PrAF Weakening, PrAF Neutrality, and PrAF Directionality. For a, we
have either AttF(a) = ∅ or AttF(a) ̸= ∅. If AttF(a) = ∅, we get through
S satisfying PrAF Maximality that DegSF(a) = PA(a). If AttF(a) ̸= ∅
we have either ∃b ∈ AttF(a), Deg

S
F(b) > 0 or ∀b ∈ AttF(a), Deg

S
F(b) = 0.

If ∃b ∈ AttF(a), s.t. Deg
S
F(b) > 0, S satisfying PrAF Weakening gives us

DegSF(a) < PA(a). In the case ∀b ∈ AttF(a), Deg
S
F(b) = 0, we continue

by induction on the number of attackers of a. If a has one attacker,
then let us consider the framework obtained from F by adding only
one argument b with the same probability as a, ie. PA(b) = PA(a). By
PrAF Anonimity and Directionality, the degrees of all arguments from
F will stay the same as in the original graph, while dhe degree of b will
be PA(b) = PA(a) by PrAF Maximality. Finally, by PrAF Neutrality
we have that degrees of a and b must be the same. For the induction
step, let AttF(a) = {x1, . . . , xn+1}. Reasoning as above, we extend the
framework with a new argument b and n attacks toward b: from x1,
x2,. . . ,xn. By induction hypothesis, degree of b will be zero, and the
degree of a must be the same as the degree of b by PrAF Neutrality. □

Our next formal result states that there is always a subset of argu-
ments in a probabilistic argumentation framework which impacts the
strength of a given argument, namely its attack structure.

Theorem 4. If a semantics S satisfies PrAF-Independence and PrAF-
Directionality, then for any F = ⟨A, PA,R, PR⟩, for any a ∈ A, the
following holds: DegSF(a) = DegSF|StrF(a)

(a).
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Proof. Let F = ⟨A, PA,R, PR⟩ be a PrAF with a ∈ A and let S be
a generalised semantics that satisfies PrAF Independence and PrAF
Directionality.

F|StrF(a) = ⟨StrF(a),
(PA)|StrF(a),R|StrF(a)×StrF(a),

(PR)|(R|StrF(a)×StrF(a))⟩.
Let

F′ = ⟨A \ StrF(a),
(PA)|A\StrF(a),R|(A\StrF(a))×(A\StrF(a)),

(PR)|(R|(A\StrF(a))×(A\StrF(a)))⟩
be the restriction of F to all arguments but the attack structure of
a. From S satisfying PrAF Independence we get DegSF|StrF(a)

(a) =

DegSF|StrF(a)⊕F′(a). F|StrF(a) ⊕ F′ differs from F in the attacks between

the attack structure of a and its complement, none of which, per
Definition 5.10, form a path to a that is not already in F|StrF(a). From
S satisfying PrAF Directionality, we see that we may add these attacks
to F|StrF(a) ⊕ F′ so that we get F without altering the strength of a.
This gives that DegSF(a) = DegSF|StrF(a)

(a). □

5.2. Expected Strength Semantics. With a set of principles—or
desirable properties of a generalised semantics—laid out, let us consider
one way of specifying a generalised semantics S using a gradual semantics
S and consider how this specification relates to the different principles.
When we were discussing equivalence and reinforcement, we weighted
the contribution of an argument’s strength in an induced graph with
that induced graph’s probability. Formalising this gives:

Definition 5.14 (Expected Strength Semantics). Given a gradual
semantics S, the expected strength semantics based on S, denoted E(S),
is the generalised semantics such that ∀F = ⟨A, PA,R, PR⟩ ∈ PrAF,∀a ∈
A,

Deg
E(S)
F (a) =

∑
G=⟨A′,R′⟩∈I(F),a∈A′

P I
F(G) · DegSG(a)

The next results show that if the underlying gradual semantics S
satisfies some principles from the literature (presented Section 2), then
E(S) satisfies the principles for generalised semantics proposed in this
section.

E(S)’s satisfaction of the first four principles follows directly from S
satisfying these principles’ gradual semantics counterparts.

Theorem 5. Let S be a gradual semantics.

• If S satisfies Anonymity, then E(S) satisfies PrAF Anonymity.
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• If S satisfies Independence, then E(S) satisfies PrAF Independ-
ence.

• If S satisfies Directionality, then E(S) satisfies PrAF Direction-
ality.

• If S satisfies Maximality, then E(S) satisfies PrAF Maximality.

Proof. We prove the four items in Theorem 5 in turn:

• Let F′ = ⟨A′, P ′
A,R′, P ′

R⟩ be a PrAF s.t. there is an isomorphism
f from F to F′ and suppose S satisfies Anonymity. f implies the
existence a bijective function g from I(F) to I(F′) s.t. for all
G ∈ I(F), there is an isomorphism fromG to g(G) and P I

F(G) =
P I
F′(g(G)). S satisfying Anonymity now means that DegSG(a) =

DegSG′(a). Combining this with the fact that P I
F(G) = P I

F′(g(G)),

through Definition 5.14, we see that Deg
E(S)
F (a) = Deg

E(S)
F′ (a).

• Let F′ = ⟨A′, P ′
A,R′, P ′

R⟩ be a PrAF s.t. A ∩ A′ = ∅ and
suppose S satisfies Independence. Since the A and A′ are
disjoint, there exists a function f from I(F) to the power set
of I(F ⊕ F′) s.t. ∀G′′ = ⟨A′′,R′′⟩ ∈ I(F), f(G′′) = {G′′′ =
⟨A′′′,R′′′⟩ ∈ I(F⊕ F′)|∀a ∈ A, a ∈ A′′′ iff a ∈ A′′ ∧ ∀r ∈ R, r ∈
R′′′ iff r ∈ R′′}. For any two G,G ∈ I(F), f(G) ∩ f(G′) = ∅
and

⋃
G∈I(F) f(G) = I(F ⊕ F′). Definition 2.22 gives that for

any G ∈ I(F),

(4) P I
F(G) =

∑
G′∈f(G)

P I
F⊕F′(G′)

For any G′′ = ⟨A′′,R′′⟩ ∈ I(F), each G′′′ = ⟨A′′′,R′′′⟩ ∈ f(G)
can be written as G′′⊕G′′′′ with G′′ and G′′′′ having disjoint sets
of arguments. Since S satisfies Independence we now see ∀a ∈
A, ∀G ∈ I(F), ∀G′ ∈ I(F′), DegSG(a) = DegSG′(a). Combining
this with Equation 4 proves the result.

• Let F′ = ⟨A, PA,R′, P ′
R⟩ be a PrAFs with a, b, x ∈ A where

R′ = R ∪ {(a, b)} and ∀r ∈ R, P ′
R(r) = PR(r). Assume S

satisfies Directionality and there is no path from b to x. Since
there is no path from b to x in F or F′, there exists no G ∈
I(F)∪I(F′) where there is a path from b to x. In much the same
way as we did in the previous bullet, we identify a function f from
I(F) to the power set of I(F′). Since S satisfies Directionality
and there are no induced graphs with a path from b to x, we
get that ∀G ∈ I(F), ∀G′ ∈ f(G), DegSG(x) = DegSG′(x). The
result follows from this.

• Let a ∈ A s.t. AttF(a)∅. Assume S satisfies Maximality. Since
AttF(a)∅, ∀G ∈ I(F), AttG(a) = ∅. S satisfying Maximality
now means that ∀G ∈ I(F), DegSG(a) = 1. Equation 2 combines

with Definition 5.14 to give ∀a ∈ A, Deg
E(S)
F (a) = PA(a).

□
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Together with Resilience, ensuring that attackers are assigned positive
strength in all induced graphs, S satisfying Weakening implies that
E(S) satisfies PrAF Weakening.

Theorem 6. Let S be a gradual semantics. If S satisfies Weakening
and Resilience, then E(S) satisfies PrAF Weakening.

Proof. Let a, b ∈ A with b ∈ AttF(a) and Deg
E(S)
F (b) > 0. Assume S

satisfies Weakening and Resilience. It follows from Equation 2 and Defin-
ition 5.14 that if ∃G′ = ⟨A′,R′⟩ ∈ I(F) s.t. a ∈ A′ and DegSG′(a) < 1

then Deg
E(S)
F < PA(a). Since b ∈ AttF(a), there is at least one

G′ = ⟨A′,R′⟩ ∈ I(F) with a, b ∈ A and (b, a) ∈ R′. Since S satis-
fies Resilience, we know that DegSG′(b) > 0. From here, S satisfying

Weakening means DegSG′(a) < 1. We know see Deg
E(S)
F (a) < PA(a). □

The next two principles again follow directly from their gradual
semantics counterparts.

Theorem 7. Let S be a gradual semantics.

• If S satisfies Weakening Soundness, then E(S) satisfies PrAF
Weakening Soundness.

• If S satisfies Resilience, then E(S) satisfies PrAF Resilience.

Proof. We prove the two parts of Theorem 7 in turn

• Contrapositive; suppose S satisfies Weakening Soundness, a ∈ A
and there is no b ∈ AttF(a) with Deg

E(S)
F (b) > 0. It now

follows through Definition 5.14 that there is no G′ = ⟨A′,R′⟩ ∈
I(F) with a, b ∈ A, (b, a) ∈ R′, and DegSG′(b) > 0. Since S
satisfies Weakening Soundness, this means ∀G′ = ⟨A′,R′⟩ ∈
I(F), s.t. a ∈ A′, DegSG′(a) = 1. It follows that Deg

E(S)
F (a) =

PA(a).
• Contradiction; Suppose S satisfies Resilience and a ∈ A s.t. not

Deg
E(S)
F (a) > 0 (i.e. Deg

E(S)
F (a) = 0). Through Definition 5.14

this implies ∀G′ = ⟨A′,R′⟩ ∈ I(F), s.t. a ∈ A′, DegSG′(a) = 0,
but S satisfies Resilience so ∀G′ = ⟨A′,R′⟩ ∈ I(F), s.t. a ∈
A′, DegSG′(a) > 0.

□

Mirroring Theorem 2, the following result shows that E(S) satis-
fies PrAF Symmetry when S satisfies Anonymity, Independence, and
Directionality.

Theorem 8. Let S be a gradual semantics. If S satisfies Anonymity,
Independence and Directionality, then E(S) satisfies PrAF Symmetry.

Proof. The result follows from Theorem 2 and Theorem 5 combined
with the first three claims stated in the formulation of this Theorem. □

By adding Neutrality, we also get satisfaction of PrAF Neutrality.
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Theorem 9. Let S be a gradual semantics. If S satisfies Anonymity,
Independence, Directionality and Neutrality, then E(S) satisfies PrAF
Neutrality.

Proof. Let a, b, c ∈ A s.t. (c, b) ∈ R, f : F|StrF(a,b)\{c} → F|StrF(a,b)\{c}
s.t. f(a) = b, f(b) = a and f(x) = x otherwise, is an automorphism,

and Deg
E(S)
F (c) = 0. Suppose S satisfies Anonymity, Independence,

Directionality, and Neutrality. Our second remark is that from the
fact that f is an automorphism we obtain that a and b have the same

attackers in F|StrF(a,b)\{c}. Deg
E(S)
F (c) = 0 implies that ∀G ∈ I(F), if

c is an argument of G then DegSG(c) = 0. Let us first consider the
induced graphs of the PrAF F|StrF(a,b)\{c}. Obviously, the isomorphism
f defines a bijection between induced graphs of F|StrF(a,b)\{c} which
contain a and those that contain b, mapping each argument x to f(x)
and each attack (x, y) to (f(x), f(y)). For simplicity we denote that
bijection with f as well. From Anonymity it follows that for any induced
graph G of F|StrF(a,b)\{c} that contains a, we have Deg

S
G(a) = DegSf(G)(b).

Moreover, P I
F|StrF(a,b)\{c}

(G) = P I
F|StrF(a,b)\{c}

(f(G)). Consequently, the

expected strength semantics will assign the same strength to a and b in
F|StrF(a,b)\{c}.

Now let us consider the induced graph of the original PrAF F. Clearly,
each such graph that includes a (respectively b) extends exactly one of
the induced graphs G from F|StrF(a,b)\{c}, if we consider the extensions
that do not add to G novel arguments and attacks from F|StrF(a,b)\{c}.
Moreover, it is easy to show using Definition 2.22 that the sum of
probabilities of all those extensions of G in F|StrF(a,b)\{c} is exactly
P I
F|StrF(a,b)\{c}

(G). The proof of this fact is straightforward and deals

with independence of probabilities of elements of the framework in the
same way as the proof of Proposition 2.23. Therefore, to finish the proof
it is sufficient to show that the degree of a (resp. b) in each extension
G′ of the graph G that contains a (resp. b) is exactly DegSG(a) (resp.
DegSG(b)). For a this follows from the fact that the attack structures
of a are the same in G′ and G and the Theorem 2 from [8]. For the
argument b we consider two cases. If G′ does not contain the attack
from c to b, then we apply the same reasoning as for a. If the attack
from c to b is present in the extension, we simply use Neutrality (recall
that we know that degree of c is zero in every induced graph). □

By adding Counting and Resilience instead of Neutrality, we get
PrAF Counting.

Theorem 10. Let S be a gradual semantics. If S satisfies Anonym-
ity, Independence, Directionality, Counting and Resilience, then E(S)
satisfies PrAF Counting.

Proof. This result is proved in much the same way as the previous one,
with the main difference being that Counting is used to show that the
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attack from c harms b instead of Neutrality being used to show that it
is not.
Let a, b, c ∈ A s.t. (c, b) ∈ R, f : F|StrF(a,b)\{c} → F|StrF(a,b)\{c} s.t.

f(a) = b, f(b) = a and f(x) = x otherwise, is an automorphism, and

Deg
E(S)
F (c) > 0. Suppose S satisfies Anonymity, Independence, Direc-

tionality, Resilience, and Counting. As in the previous proof, we obtain
that a and b have the same attackers in F|StrF(a,b)\{c} from the fact that
f is an automorphism. S satisfying Resilience implies that ∀G ∈ I(F), if
c is an argument of G then DegSG(c) > 0. As above, let us first consider
the induced graphs of the PrAF F|StrF(a,b)\{c}. Once again, the iso-
morphism f defines a bijection between induced graphs of F|StrF(a,b)\{c}
which contain a and those that contain b, mapping each argument x to
f(x) and each attack (x, y) to (f(x), f(y)). Once more, let us denote
this bijection f as well. From Anonymity it follows that for any induced
graph G of F|StrF(a,b)\{c} that contains a, we have Deg

S
G(a) = DegSf(G)(b).

Moreover, P I
F|StrF(a,b)\{c}

(G) = P I
F|StrF(a,b)\{c}

(f(G)). Consequently, the

expected strength semantics will assign the same strength to a and b in
F|StrF(a,b)\{c}.
Let us now consider the induced graph of the original PrAF F. We

again see that each such graph that includes a (respectively b) extends
exactly one of the induced graphs G from F|StrF(a,b)\{c}, if we consider
the extensions that do not add to G novel arguments and attacks from
F|StrF(a,b)\{c}. As in the previous proof, it is again easy to show using
Definition 2.22 that the sum of probabilities of all those extensions of
G in F|StrF(a,b)\{c} is exactly P I

F|StrF(a,b)\{c}
(G).

To finish the proof we show that the degree of a in each extension
G′ of the graph G that contains a is exactly DegSG(a), while the degree
of b in each extension G′ of the graph G that contains b is no higher
than DegSG(b) and there exist such extensions where the degree of b is
lower than DegSG(b). For a this follows from the fact that the attack
structures of a are the same in G′ and G and the Theorem 2 from
[8]. For the argument b we consider two cases. First, if G′ does not
contain the attack from c to b, then we apply the same reasoning as
for a. Second, if the attack from c to b is present in the extension,
Counting shows that the degree of b in the extension is strictly lower
than DegSG(b) (recall that the degree of any argument in an induced
graph is positive because of Resilience). □

Let us recall that the h-categoriser semantics satisfies all the principles
from the Appendix [5]. Together with the theorems 5 through 10, that
gives us the following result, which verifies compatibility of all the
principles we proposed.

Theorem 11. E(Hbs) satisfies all the principles proposed in Sec. 5.1.
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Proof. The result follows from Theorems 5 through 10 and Hbs satisfy-
ing Anonymity, Independence, Directionality, Maximality, Weakening,
Resilience, and Weakening Soundness [5]. □
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6. Discussion

6.1. Related Work. While this thesis is the first instance of gradual
semantics being applied to probabilistic argumentation frameworks, the
two concepts have met in the literature once before; in [43], Thimm,
Cerutti and Rienstra propose a novel gradual semantics, Probabilistic
Graded Semantic, for use with argumentation graphs based on the con-
stellations approach to probabilistic argumentation. In their approach,
an extension semantics, an inference mode, and a single probability
value are used to assign each argument in an ordinary argumentation
graph a unique strength value; first, the AG is transformed into a PrAF
by assigning each argument in it the same given probability value and
assuming all attacks are certain. Then, the acceptability degree of
each argument is equated to the probability of acceptability under the
chosen extension semantics and inference mode as per Definition 2.24.
In their work, the strength assigned to an argument is said to corres-
pond to the argument’s resilience to changes in the graph’s topology.
This resilience also plays a role in the values assigned by the Expected
Strength Semantics presented in Section 5. It should be noted, however,
that in assigning an equal probability to all arguments—instead of
taking the probabilities of arguments and attacks as a constituent of
the framework, as is done in this thesis—the information encoded in
relative probabilities between elements, a major part of the PrAF’s
value, cannot be represented. Instead, the single probability value now
controls globally whether attackers or defenders are more important to
the acceptability degree of an argument. It should also be noted that,
in using the probability of acceptability under extension semantics to
determine the strength of an argument, Probabilistic Graded Semantics
cannot benefit from the rich evaluative scale offered by the gradual
semantics used for Expected Strength Semantics. As was done for the
semantics proposed in this thesis, the semantics proposed in [43] was
studied on the basis of principles, with Thimm et al. opting to use the
rationality postulates for ranking semantics proposed by Amgoud and
Ben-Naim [2]. The second contribution of [43] is the analysis of the
proposed semantics as a consistency measure for argumentation graphs.

Following the original approach of Li, Oren, and Norman [33], in this
thesis, we made an assumption of independence between the probabilities
of belonging to a graph of different arguments and attacks. This allowed
us to calculate the probability of each induced graph using the joint
probabilities of independent variables (Def. 2.22). It has been noted in
the literature, however, that making this independence assumption is
not always appropriate [28]—for example when two attacks attack the
same premise in two arguments, meaning that one appearing should
increase the likelihood of the other appearing as well—and some works
pertaining to the constellations approach to probabilistic argumentation
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[28, 29], in fact, do not make this assumption. Instead, these works
assume a more general case where a probability distribution over induced
graphs is taken as a constituent of the framework. The work in this
thesis can be easily adapted to this more general case; instead of
calculating the probability of each induced graph with Definition 2.22,
these values would be assumed to be given and used directly to calculate
the probability of acceptability (PS,t

F (X )), the probability of a ranking

query holding (PF,S(α)), or the acceptability degree (Deg
E(S)
F (a)). The

probabilities of individual elements appearing in the graph could be
calculated through summation of the probabilities of the induced graph
containing said element.

Mantadelis and Bistarelli [35] proposed the Probabilistic Attack Nor-
mal Form for PrAFs as a means of avoiding implicit dependence between
attacks and the arguments they connect, by removing uncertainty of
arguments and replacing it with added uncertain attacks from an added
perfect argument. However, this ”solution” relies on the fact that, under
extension-based semantics, an argument that is attacked may not be
accepted. Under the gradual semantics used in this thesis it is possible
that attacks merely weaken an argument, meaning this approach could
not be easily combined with the work we presented.
Given the variety of possible gradual semantics, it is no surprise

that—like this thesis—many works on the topic include (e.g. [36, 32])
or are dedicated to (e.g. [3, 20]) the study of principles that such
semantics should or may satisfy. When proposing the set of principles
for generalised semantics in Section 5, we generalised an existing set
of principles from [5] which, in turn, refine the first set of principles
for gradual semantics [3], and extend them to consider weights on
arguments. This set of principles from [5] was itself extended to also
consider weights on attacks in [7] and, in part, simplified in [8].

As all these sets of principles describe the same intuitions, we found
no benefit to using the original principles from [3] over those from
[5], even though we used a non-weighted framework in this thesis.
Meanwhile, as we will touch on later, using principles that consider
weights on arguments puts us in a better position for future work. With
regard to the later sets of principles, that presented in [7] offered no
advantage either and that from [8] seemed to translate less easily to the
probabilistic setting.

Multiple sets of principles describing the same intuitions is not unique
to those sets originating in [3]. As noted by Baroni, Rago, and Toni
in [11] many of the principles found in the various works on gradual
argumentation correspond to the same basic ideas. For example, the
Maximality principle—which corresponds to the basic idea that the
strength of an argument may only differ from its base score if the
argument is attacked—is stated in [3] as it is in Section 2 and slightly
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changed to include argument weights in [5],[7], and [8], while equivalent
properties are used in [32] and [13].

6.2. Future Work. Based on the work presented in this thesis, we
identify two clear opportunities for future work. First is the approxima-
tion of values produced, and second is the addition of weights to the
probabilistic argumentation frameworks used.
As is evident from Definition 2.21, the number of induced graphs

belonging to a PrAF grows exponentially with regards to the number of
arguments and attacks in the PrAF. This clearly makes it impractical to
calculate the probability of acceptability (PS,t

F (X )), the probability of a

ranking query holding (PF,S(α)), or the acceptability degree (Deg
E(S)
F (a))

exactly when working with large PrAFs. Li, Oren, and Norman made
the same observation about calculating the probability of acceptability
under extension semantics (PS,i

F (X )) [33] and the complexity of find-
ing extensions and determining the probability of acceptability in the
constellations approach to probabilistic argumentation using extension
semantics has since been studied extensively (e.g. [24]). Li, Oren, and
Norman’s solution to this problem is to approximate the value using
Monte-Carlo simulation, and we see no reason to believe the same solu-
tion may not be applied in our case. Such a simulation has three basic
steps: first, inputs are taken randomly from a probability distribution
over the domain. In our case, this is the probability distribution over
induced graphs (P I

F). Second, some computation is performed using
the selected inputs. In our case this would be calculating the strengths
of arguments in an induced graph and determining acceptability, de-
termining ranking query satisfaction, or multiplying with the induced
graph’s probability. Finally, the results of repeatedly performing the
first two steps is aggregated. Further motivating this approach are the
promising experimental results from [8] that indicate that the number
of iterations needed to closely approximate the acceptability degree of
arguments under h-categoriser and other gradual semantics may be
constant w.r.t. the size of the graph and that the time needed for this
approximation is low.

In this thesis we followed the constellations approach to probabilistic
argumentation and worked with probabilistic argumentation frameworks
in which arguments and attacks are given probabilities of belonging to a
graph. In doing so, we assumed that any two arguments in an induced
graph, disregarding attacks, are equivalent. There are a number of
factors that may still set such arguments apart, however. For example,
such as in the epistemic approach to probabilistic argumentation, we
may assign each argument a different probability of us believing it
[27, 31, 42]. Such differences in probability of belief between arguments—
like differences in certainty of the argument’s reasons [16], number of
user votes given to the argument [32], importance of a value promoted
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by the argument [14], or trustworthiness of the argument’s source
[38]—may be represented by a weighting on arguments that is carried
over from the PrAF into its induced graphs. Seeing how weights can
provide meaningful information, even when combined with probabilities
of belonging to a graph, extending the work in this thesis to include
weights emerges as promising future work. This extension would involve
changing to gradual semantics that consider weights on arguments, like
those in [8], and further generalising the semantics and corresponding
set of principles presented in Section 5 to meaningfully use these weights
which we accommodated for already by basing our principles on those
from [5].

6.3. Relevance to Artificial Intelligence. Argumentation’s relev-
ance as a field in Artificial Intelligence is well-established [9, 15]; its
applications include decision making [46], reasoning under inconsistency
[17], non-monotonic reasoning [34], and providing explainability to arti-
ficially intelligent systems [44, 22], and it finds use in various domains
including law, medicine, robotics, the semantic web, and security [44],
and e-government [9].
Where extension semantics focus on sets of arguments and allow

us to answer questions about the acceptability of arguments, gradual
semantics provide a richer evaluative scale, focusing on individual
arguments and allowing us to answer questions about the strength of
arguments. Another difference between these classes of semantics that
differentiates the types of problems to which they may naturally be
applied is that under extensions semantics an attack generally leads to
the immediate rejection of its target, while under gradual semantics an
attack may weaken its target without ruling it out altogether.
When applying extension or gradual semantics to argumentation

graphs, certainty about which arguments ought to appear in said graph
is assumed. Assuming such certainty limits the practical use of the
framework, however, as situations in which uncertainty about the to-
pology of the graph arise abound; for example, the language in which
arguments are presented may be ambiguous, claims or premises may be
left implicit, or arguments may be presented with explicit uncertainty
[28]. Probabilistic argumentation frameworks allow us to quantify such
uncertainty.

The application of extension semantics to probabilistic argumentation
frameworks has been studied extensively, allowing us to answer questions
about arguments’ acceptability when facing uncertainty about a graph’s
topology, gradual semantics had not until now. This thesis, in being
the first study of gradual semantics in probabilistic argumentation
frameworks, provides the first means of answering questions about
arguments’ strengths when facing this uncertainty.
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6.4. Conclusion. In this thesis, we conducted the first study of gradual
semantics in probabilistic argumentation frameworks. We followed the
constellations approach, associating each argument and attack with
a probability of it appearing in a graph, allowing us to represent the
uncertainty about a graph’s topology that may for example result
from ambiguities in natural language or implicit premises or claims of
argument being presented. We defined the probability of an argument’s
acceptability with respect to an arbitrary strength threshold when
evaluated by a gradual semantics and investigated how the choice of
semantics impacts this probability by means of principles taken from
the literature. Then, we introduced the notion of ranking queries, which
may express complex requirements for a ranking on arguments produced
by a gradual semantics, and defined the probability of such a query being
satisfied. After this, we proposed a method for calculating the overall
strength of each argument in a probabilistic argumentation framework,
and we evaluated this method against a set of principles. Finally, we
saw that our approach may be easily adapted to the more general case
where probabilistic independence between elements of the framework is
not assumed and noted two promising avenues for continuing this work
into the future.
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