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Abstract

The advective terms in several numerical weather models have been integrated
with Semi-Lagrangian methods for decades. Their stability allows for larger time
steps than explicit finite difference methods, while experiencing less dispersion
than implicit finite difference methods. In the case of the one dimensional
advection equation, it turns out that for uniform and constant velocity, the
Semi-Lagrangian method is equivalent to a shifted finite difference method.
The degree of polynomial interpolation determines the truncation of the Taylor
series and accuracy of the finite difference approximations. The shift is necessary
to account for arbitrarily large time steps without losing stability as occurs
for explicit finite difference methods. For linear interpolation, the integration
is guarenteed to be stable for non-uniform and non-constant velocity, while
higher order interpolation can in theory experience instability. The instabilities
occasionally observed in the HARMONIE operational code are a part of the
departure point problem. This thesis proves the existence and uniqueness of
and convergence to these departure points. In areas with large vertical velocity
gradients, the convergence of fixed point iteration can be too slow, resulting
in nonphysical crossing of characteristics and therefore negative model layer
heights. This could be the key to finding a criterion to prevent runtime errors
occurring and improving reliability of numerical weather prediction.

iii





Contents

1 Introduction 1

2 Eulerian advection 4
2.1 Analytical solution . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 General velocity . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Uniform constant velocity . . . . . . . . . . . . . . . . . . 6
2.1.3 Conservation of mass and energy . . . . . . . . . . . . . . 7

2.2 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Conservation of mass and energy . . . . . . . . . . . . . . 19

3 Semi-Lagrangian advection 24
3.1 Determining the departure point . . . . . . . . . . . . . . . . . . 24

3.1.1 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.4 SETTLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 An interpretation of Semi-Lagrangian methods as finite differ-
ence methods 31
4.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Discussion 46

6 Conclusion 48

v



1 Introduction

Historical context
What is the thing people talk about when they have no conversation topics?
That’s right, weather. The weather always influences our lives. Whether that
is through being the reason for our holiday destinations, the reason plans get
cancelled or the reason people need to flee their home. Historically people have
always been fascinated by and have admired the weather, first thinking it is
due to gods and later learning about its physics. Predicting weather has for a
long time seemed impossible. In the late 19th century, the equations that gov-
ern the flow in the atmosphere were known, but no solution could be calculated.

In 1913, Lewis F. Richardson proposed the idea to use current observations of
the state of the atmosphere to calculate how the state changes over a certain time
interval. He gathered all the observations available at that time and used his
finite difference method to predict the state in 6 hours time. He did these calcu-
lations by hand and it took him more than 6 weeks. As promising as it sounded,
the prediction was not accurate. The numerical result showed a decrease in sur-
face pressure of 145 hPa, which was luckily not observed (Richardson, 1922).
In spite of this error, Richardson believed that the technique could be success-
fully applied with more observational coverage. And someday he hoped that
the time to compute the prediction would become smaller than the time inter-
val over which the calculation is done. This is essential for numerical weather
prediction to be useful.

In the following years, difference equations started to be researched. A very
important analysis was done by Courant, Friedrichs and Lewy in 1928. They
showed for hyperbolic differential equation, that the analytical domain of de-
pendence should be contained in the numerical domain of dependence. This
puts a limit on the ratio between spatial and temporal intervals. On a fixed
grid, there is a limit on the size of the time step that can be used for the nu-
merical integration (Courant et al., 1928). It was this limit that Richardson
had exceeded which, unbeknown to him at the time, created an unstable nu-
merical prediction. Because of this limit, a lot of smaller time steps needed
to be calculated to complete the prediction in a stable way. More time steps
required more computational power than was available at the time. This com-
putational limit was overcome when the first big computers were created and
in 1950 the first numerical weather prediction was made. More specifically, in
1950 the first prediction was made where the forecast time period was at least
equal to the computational time. This meant the turning point, where numeri-
cal weather forecasting could really have a function as an predictor of weather,
the realisation of Richardson’s dream.

Prior research
The first numerical weather predictions treated advection with Eulerian finite
difference methods, subject to the aforementioned stability limit. Eulerian
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means that the advection is seen from a Eulerian frame of reference, where
local changes in some scalar depend on the flow to and from this point in space.
These changes are then calculated on a stationary grid, where finite difference
are used to approximate the derivatives. Another method would be to look from
the frame of a fluid parcel and follow this parcel along its trajectory. This would
be advection in a Lagrangian frame of reference, where the state of the air par-
cel is assumed not to change along its trajectory. A starting grid of air parcels
would only change their positions, not the value of the scalar inside this parcel.
These values are constant, so unconditionally stable. The only challenge is the
calculation of trajectories. Lagrangian method were already shown in 1955 to
not be very useful, as an ordered starting grid will quickly become very irregular
(Welander, 1955). The win of the unconditional stability came at the cost of lost
accuracy and added complexity. Around this time, a lot of research was being
done on a ’hybrid’ method. This method combined the regularity of a stationary
grid of Eulerian methods and the greater stability of Lagrangian methods. This
hybrid method is called a Semi-Lagrangian method and early research showed
promising results (Fjørtoft, 1955; Wiin-Nielsen, 1959). It entails resetting the
’flowing’ grid of the Lagrangian method to an ordered grid after every time step.

Applying the Semi-Lagrangian technique to meteorological equation was first
done in 1962 by Krishnamurti and in subsequent years further improved (Krish-
namurti, 1962; Sawyer, 1963; Leith, 1965). The next step was combining Semi-
Lagrangian treatment of advection with semi-implicit methods for the gravi-
tational oscillations present in the atmosphere (Robert, 1981; Robert, 1982).
These oscillations were a big stability issue with explicit methods, limiting the
time steps taken. The Semi-Lagrangian semi-implicit method was applied to
many different problems and they all showed an improvement in stability and
accuracy over finite difference methods (Temperton & Staniforth, 1987; Côté &
Staniforth, 1988; Bermejo & Staniforth, 1992). A review was published in 1991
by Staniforth, discussing all the advancements on Semi-Lagrangian methods
and summarising the current knowledge on accuracy and efficiency (Staniforth
& Côté, 1991). It was shown that using Semi-Lagrangian semi-implicit methods
for numerical weather forecasting could reduce the computation time for a 10
day forecast from 24 to about 4 hours, about 6 times as fast.(Simmons, 1991).
This allowed for a higher resolution and longer forecasting range. The main im-
provement was the increase in time step that could be taken. The limit found
by Courant, Friedrichs and Lewy in 1928 could be avoided.

In 2005 the programme HIRLAM (High Resolution Limited Area Modelling)
was founded as a collaboration between numerous European meteorological in-
stitutes. In 2008 they created the HARMONIE model (HIRLAM ALADIN
Research on Mesoscale Operational NWP In Euromed) together with ALADIN
fromMeteoFrance and the ECMWF (European Centre for Medium-RangeWeather
Forecasts). This model is still in use at KNMI (Koninklijk Nederlands Meteo-
rologisch Instituut).
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The problem
As the Semi-Lagrangian method is understood to be unconditionally stable when
applied to the advection problem, it should not fail due to rounding or trunca-
tion errors. Nevertheless, occasionally the forecast produced by HARMONIE
at KNMI throws an exception. The computations are interrupted and have
to be restarted from zero. To prevent a recurrence, the time step is reduced
and the forecast is recalculated. If the problem occurs too late in the forecast,
it is not always possible to rerun the model before the scheduled release of the
forecast. Understanding the reason for the failure could prevent these problems.

In this thesis we study the stability of Semi-Lagrangian methods. What makes
Semi-Lagrangian methods so useful for advection problems? Can we understand
their advantage over Eulerian finite difference methods by finding a direct rela-
tion between the two?

Overview of contents
This thesis will first start with a summary of Eulerian finite difference methods
for solving the one dimensional advection problem. More specifically, we will
discuss their consistency, stability and convergence. Next, the Semi-Lagrangian
method is explained, with both the finding of the departure point and inter-
polation of the value at the departure point. For the iteration of finding the
departure point, we will prove the existence of such a point for bounded velocity
fields, discuss the uniqueness and convergence of the iteration and show an ex-
ample of the method used in HARMONIE (SETTLS). Then we will discuss how
the Semi-Lagrangian methods can be understood as Eulerian finite difference
methods. We will show that in that context, the advantage of Semi-Lagrangian
methods can be explained.
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2 Eulerian advection

Change of a scalar field u(t, x⃗), t ∈ R and x⃗ ∈ D, is governed by the continuity
equation

∂u

∂t
+ ∇⃗ · (uv⃗) = f,

where v⃗(t, x⃗) is the velocity field of the fluid, f(t, x⃗) is the creation or removal of

u locally and ∇⃗· is the divergence operator on D. The equation describes that
the change of u in time is determined by the flow of u and local changes in u.

For example, when u is a mass density of some quantity in the atmosphere, u
is assumed to be only transported. That would mean the following holds

f = 0.

With that, the continuity equation turns into the advection equation

∂u

∂t
+ ∇⃗ · (uv⃗) = 0.

Now the local change of u in a volume of air is only due to transport with
the velocity v⃗. When the velocity is divergence free, i.e. ∇⃗ · v⃗, the advection
equation becomes

∂u

∂t
+ v⃗ · ∇⃗u = 0.

This is often the assumption in atmospheric models, because air in the atmo-
sphere can be assumed to be incompressible. In one dimension, u and v depend
only on t and x. I will apply the discussed techniques to the one dimensional
advection equation

∂u

∂t
+

∂

∂x
(uv) = 0.

Often techniques are easier to apply and prove when the velocity is constant and
uniform, then denoted by v(t, x) = c ∈ R. That changes the advection equation
to:

∂u

∂t
+ c

∂u

∂x
= 0.

We will also consider a domain with length L and periodic boundary conditions
u(t, 0) = u(t, L) and if applicable v(t, 0) = v(t, L). Furthermore, the initial
condition will be denoted by u(0, x) = g(x).
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2.1 Analytical solution

The advection equation is a hyperbolic partial differential equation (PDE). One
such category of PDEs are the quasi-linear PDEs.

Definition 2.1 (Quasi-linear partial differential equation). A PDE is called a
quasi-linear PDE of order k if the highest order derivatives are order k and the
terms of order k occur as linear combinations with coefficients depending only
on terms of order i < k. Take for example a function u(x, y). A first order
quasi-linear PDE will be of the form

a(x, y, u)
∂u

∂x
+ b(x, y, u)

∂u

∂y
+ c(x, y, u) = 0

2.1.1 General velocity

The advection equation is a quasi-linear partial differential equation of the vari-
able u(t, x). It would even be considered fully linear. It has a(t, x, u) = 1,
b(t, x, u) = v(t, x) and c(t, x, u) = 0:

∂u

∂t
+ v

∂u

∂x
= 0. (1)

All quasi-linear PDEs can be solved by method of characteristics. This method
transforms the PDE into a set of ordinary differential equations (ODEs). For a
quasi-linear PDE of order k, the characteristic curve can be parameterised with
k parameters. The one dimensional advection equation is a first order PDE, so
the characteristic lines can be parameterised with parameter s. The change of
u with s is given by

du

ds
=

∂u

∂t

dt

ds
+

∂u

∂x

dx

ds
. (2)

Comparing equation (2) to equation (1) gives the following system of ODEs:
dt
ds = 1, t(0) = 0
dx
ds = v(t, x), x(0) = x0

du
ds = 0, u(0) = g(x0)

The first equation yields t(s) = s. The second one is a bit more tricky, with its
result being

x(s) = x0 +

∫ s

0

v(t(σ), x(σ))dσ = x0 +

∫ s

0

v(σ, x(σ))dσ

The lines of x depending on t are called the characteristic lines and are given
by

x(t) = x0 +

∫ t

0

v(τ, x(τ))dτ
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Because the derivative of u along the characteristics is zero, u is conserved along
these lines. The solution for x(t, x) is given by

u(s) = g(x0)

u(t, x) = g

(
x−

∫ t

0

v(τ, x(τ))dτ

)
The problem is, that this solution is not explicit. To find the solution for a point
(t, x), one has to find the trajectory x(t) first, which generally has no analytic
solution. So this has to be somehow approximated and then the characteristic
has to be followed back to the initial condition.

Another problem could be the crossing of different characteristic lines, making
the solution not unique. In the case that v is divergence free, the exact charac-
teristic lines will never cross. With a velocity field with non-zero divergence or
when approximating the characteristic lines, this becomes a possibility.

2.1.2 Uniform constant velocity

When the velocity is uniform and constant, the solution will be analytic. As-
suming v(t, x) = c ∈ R:

∂u

∂t
+ c

∂u

∂x
= 0.

Again, comparing this equation to equation (2) gives the following system of
ODEs:


dt
ds = 1, t(0) = 0
dx
ds = c, x(0) = x0

du
ds = 0, u(0) = g(x0)

−→


t(s) = s

x(s) = x0 + cs

u(s) = g(x0)

−→ u(t, x) = g(x− ct)

Here u(0, x) = g(x) is the initial condition. This shows that the solution of
the advection equation is the initial condition shifted along characteristic lines
x(t) = x0+ct. In this case the characteristic lines are straight and parallel lines,
visualised in figure 1.
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Figure 1: The characteristic lines, with slope 1/c in the xt-plane. The initial
condition at (x, t) = (x0, 0), will equal the solution along the characteristic line
though that point (Herman, 2015)

.

2.1.3 Conservation of mass and energy

The advection equation with periodic boundary conditions conserves both mass
and energy, denoted respectively by∫ L

0

u(t, x)dx and

∫ L

0

u2(t, x)dx.

Moreover, every higher power of u is also conserved. The following derivation
shows the conservation of mass:

∂

∂t

∫ L

0

udx =

∫ L

0

∂u

∂t
dx

= −
∫ L

0

∂

∂x
(uv) dx

= (u(t, 0)v(t, 0)− u(t, L)v(t, L))

= 0.

And for the energy the derivation is
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∂

∂t

∫ L

0

u2dx =

∫ L

0

∂

∂t

(
u2
)
dx

= 2

∫ L

0

u
∂u

∂t
dx

= −2

∫ L

0

u
∂

∂x
(uv) dx

= −2

∫ L

0

uv
∂u

∂x
dx− 2

∫ L

0

u2 ∂v

∂x
dx

= −
∫ L

0

v
∂

∂x

(
u2
)
dx− 2

∫ L

0

u2 ∂v

∂x
dx

=
(
u2(t, 0)v(t, 0)− u2(t, L)v(t, L)

)
−
∫ L

0

u2 ∂v

∂x
dx

= −
∫ L

0

u2 ∂v

∂x
dx.

In the case that the velocity is uniform, so there is no horizontal gradient, there
is energy conservation

∂

∂t

∫ L

0

u2dx = −
∫ L

0

u2 ∂v

∂x
dx

= 0.

A constant velocity is not necessary for energy conservation. That the energy
is conserved in the case of advection with uniform velocity makes sense. What-
ever initial condition one starts with, it will be transported at a certain velocity
everywhere, but never change shape, u does not change along the characteris-
tics. When the velocity only depends on time, the characteristics are no longer
straight lines, but their horizontal distance will be constant.

2.2 Numerical solution

Without solving a differential equation analytically, a solution can be found
numerically. A difference equation is a numerical scheme on a discrete domain

tn = n∆t, n = 0, 1, 2, . . . and xj = j∆x, j = 0, . . . , d− 1,

with d∆x = L. This is used to approximate a differential equation on a con-
tinuous domain. The goal is to find a solution un

j of the difference equation
that approximates the solution u(tn, xj) to the differential equation on the grid-
points, or un

j → u(tn, xj) as ∆t,∆x → 0. Important techniques include finite
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difference methods and finite volume methods for the spatial differences. To nu-
merically integrate the PDE forward in time, implicit or explicit methods can
be used, or a combination of both. A general time integration can be written as

u⃗n+1 = f(u⃗n+1, u⃗n, u⃗n−1, u⃗n−2, . . . )

If f only depends on previous time steps, then the method is explicit. Also
depending on the function value at the current time step u⃗n+1 is called implicit.
Semi-implicit will mean that f only depends on u⃗n+1 linearly. For implicit
methods, an extra step needs to be carried out to calculate u⃗n+1. Most often
this explicit expression cannot be found, so some root finding algorithm is used.
Explicit methods can be evaluated directly, but suffer from instability as ∆t
gets too large.

This paper will focus on explicit finite difference methods. The next sections
will summarise how to evaluate these methods. First, the difference methods
should be consistent with the differential equation. Next, the time step integra-
tion should be stable. Both ensure that the solution of the difference equation
converges to the solution of the differential equation, or un

j → u(tn, xj) as
∆t,∆x → 0.

A lot of theory can be visualised with numerical simulations. The numerical
simulations are done on a grid of 100 nodes. The initial condition will be an
array of all 0 and one node will have a value of 1. The mass and energy are
defined as the L1-norm and L2-norm of u⃗ respectively. This will make the initial
mass and energy both 1. Then c∆t

∆x is varied and simulated for 100 time steps.
The results of different tests will be showed throughout this thesis.

2.2.1 Consistency

The first thing that is necessary for convergence is consistency.

Definition 2.2 (Consistency). A finite difference equation is called consistent
with a differential equation, if by reducing the time step size and the spacial
grid spacing the truncation error could be made to approach zero.

Consider solving the one dimensional advection equation with an explicit finite
difference method. One such method could be upwind Euler forward (assuming
c > 0):

∂u

∂t
+ c

∂u

∂x
= 0 −→

un+1
j − un

j

∆t
+ c

un
j − un

j−1

∆x
= 0

According to the Taylor expansions of all the terms
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un+1
j − un

j

∆t
=

∂u

∂t

∣∣∣∣
(tn,xj)

+O (∆t)

un
j − un

j−1

∆x
=

∂u

∂x

∣∣∣∣
(tn,xj)

+O (∆x)

Multiplying the second equation with c and adding the first equation yields

un+1
j − un

j

∆t
+ c

un
j − un

j−1

∆x
=

∂u

∂t

∣∣∣∣
(tn,xj)

+ c
∂u

∂x

∣∣∣∣
(tn,xj)

+O (∆t) +O (∆x)

So this shows that

un+1
j − un

j

∆t
+ c

un
j − un

j−1

∆x
−→ ∂u

∂t

∣∣∣∣
(tn,xj)

+ c
∂u

∂x

∣∣∣∣
(tn,xj)

as ∆t,∆x −→ 0

So the finite difference method is consistent with the differential equation. These
derivations are similar for a general velocity profile. It replaces all u with uv
and removes c, but is still consistent with the advection equation.

2.2.2 Stability

Another important property of numerical integration methods is stability. The
definition of stability depends on the context used. We will describe stability
in two ways: Numerical stability and linear stability of maps. The first one is
stability in the sense that when a rounding error is made, it will be damped and
not increase in the following time steps. The second one is the linear stability
analysis of maps, particularly maps that project a vector in Rd to another vector
in Rd. These maps have fixed points and solutions can converge to or diverge
from this fixed point, defining stable or unstable fixed points.

Numerical stability
When a differential equation and the used difference equation are both linear
and the domain has periodic boundary, Von Neumann stability analysis can be
used (Charney et al., 1950). It assumes that calculations have finite precision,
so numerical errors will occur. These errors are the difference between the exact
numerical solution and the one obtained with finite precision arithmetic. Finite
precision arithmetic is used by computers, that have to store values with finite
precision, numerical errors occur. As the domain is periodic, the solution will
be too and the numerical error will as well (Fletchet, 1991).

Definition 2.3 (Linear partial differential equation). A linear partial differen-
tial equation is a differential equation that is linear in the governing function
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and its derivatives. Take for example a function u(x, y). A first order linear
PDE will be of the form

a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
+ c(x, y)u+ d(x, y) = 0.

The essence of Von Neumann stability analysis is looking at the Fourier de-
composition of this error. As the domain is periodic, this will be an exact
decomposition. In one dimension, the Fourier modes will have wave number
km = πm

L , with L the length of the domain. Due to the difference equation
being linear with constant coefficients, each Fourier mode will satisfy the finite
difference equation as well. Let’s again look at upwind Euler forward difference
scheme applied to the advection equation in one dimension.

un+1
j =

(
1− c∆t

∆x

)
un
j +

c∆t

∆x
un
j−1. (3)

A general mode has the following form:

ϵ(x, t) = E(t)eikmx.

Here E is the amplitude of the mode at a certain time t. For now this is assumed
to be unknown. This yields

ϵn+1
j = E((n+ 1)∆t)eikmj∆x,

ϵnj = E(n∆t)eikmj∆x,

ϵnj−1 = E(n∆t)eikm(j−1)∆x.

Plugging this ansatz into equation (3) yields

E((n+ 1)∆t)eikmj∆x =

(
1− c∆t

∆x

)
E(n∆t)eikmj∆x +

c∆t

∆x
E(n∆t)eikm(j−1)∆x

E((n+ 1)∆t)

E(n∆t)
=

(
1− c∆t

∆x

)
+

c∆t

∆x
e−ikm∆x

E((n+ 1)∆t)

E(n∆t)
=

(
1− c∆t

∆x
+

c∆t

∆x
cos (ikm∆x)

)
− i

c∆t

∆x
sin (ikm∆x)

For the numerical error to stay bounded, the amplitude of the waves should
not increase after every time step. That means the following condition needs to
hold: ∣∣∣∣E((n+ 1)∆t)

E(n∆t)

∣∣∣∣ ≤ 1.

This corresponds to
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√(
1− c∆t

∆x

)2

+
c∆t

∆x

2

+ 2

(
1− c∆t

∆x

)
c∆t

∆x
cos (κ∆x) ≤ 1

This is satisfied for all km if

0 ≤ c∆t

∆x
≤ 1. (4)

It means this method can be stable when c ≥ 0 and ∆t ≤ ∆x
c , but will always

be unstable when this limit is exceeded.

To show the validity of this analysis, consider the simulation where the initial
condition is given by

u⃗0 =



0
...
0

1e− 7
0
...
0


So a zero vector, but due to some small error, either computational or something
else, one of the nodes gets the value 1e− 7. The Von Neumann stability region
given by (4) would indicate where such an error would grow in size and where
it would decay. Figure 2 shows a simulation of transport of this error over one
round trip through the domain.

(a) c∆t
∆x

= 0.9 (b) c∆t
∆x

= 1.1

Figure 2: Simulation of error propagation over one full period of the domain.
The unbroken line is the inital condition and the dashed line is the value of u
after one full revolution.
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Figure 2a has the result of the simulation for c∆t
∆x = 0.9. The initial error has

shrunk in size and has diffused, which is expected for a stable finite difference
advection scheme. Figure 2b shows the results for c∆t

∆x = 0.9. There the initial
error has grown and also spread to neighbouring nodes. The order of the error
has grown by order of 1e7.

Stability of maps
When the numerical scheme is applied to all grid points simultaneously, it will
be denoted by a matrix vector multiplication. For example, equation (3) would
turn into

u⃗n+1 = Au⃗n, A = I − c∆t

∆x



1 0 · · · 0 −1
−1 1 0 · · · 0

0
. . .

. . .
...

... −1 1 0
0 · · · 0 −1 1

 . (5)

When this map A is applied to u⃗n, the L2-norm of u⃗n is required not to grow.
Otherwise, applying this map over and over, lets the energy in the system grow
without bound. The non-growth condition corresponds to

||u⃗n+1||2
||u⃗n||2

≤ 1, ∀u⃗ ∈ Rd.

This corresponds to the spectral radius of A being less or equal 1, or for the
eigenvalues of A: |λj | ≤ 1 for all j = 0, . . . , d−1. For the eigenvalues on the unit
circle, the requirement is that they are semisimple. The shape of this matrix
allows for easy evaluation of the eigenvalues. Due to the periodic boundary
condition and uniform velocity, the resulting matrix A of any applied finite
difference method will be circulant.

Definition 2.4 (Circulant matrix). A d× d matrix is called circulant if it is of
the form

M =



b0 b1 · · · bd−2 bd−1

bd−1 b0 b1 bd−2

... bd−1 b0
. . .

...

b2
. . .

. . . b1
b1 b2 · · · bd−1 b0

 .

Let b⃗ be the vector corresponding to the first row ofM with entries b0, b1, . . . , bd−1 ∈
C. Then every row is this same vector, but shifted.

These matrices have explicitely known eigenvectors and eigenvalues, shown in
the following theorem.
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Theorem 2.5. The normalized eigenvectors vk of a circulant matrix are given
by

vk =
1√
d

(
1, ωk, ω2k, . . . , ω(d−1)k

)
,

where ω is a primary root of unity, i.e.

ω = e
2πi
d .

The eigenvalues λk that correspond to the eigenvectors vk are given by

λk =

d−1∑
m=0

bmωmk

= b0 + b1e
2πi
d k + · · ·+ bd−1e

2πi
d (d−1)k

Proof. Proof can be found in (Davis, 1979).

Remark. Notice that the eigenvectors of circulant matrices don’t depend on the
entries of the matrix, therefore all circulant matrices have the same eigenvectors.
Also notice that all eigenvalues and eigenvectors are distinct, so all eigenvalues
are always semisimple.

Using this theorem, the eigenvalues of A are given by

λk = 1− c∆t

∆x
+

c∆t

∆x
e

2πi
d (d−1)k.

This yields

|λk|2 =

(
1− c∆t

∆x
+

c∆t

∆x
cos

(
2π(d− 1)k

d

))2

+

(
c∆t

∆x
sin

(
2π(d− 1)k

d

))2

=

(
1− c∆t

∆x

)2

+

(
c∆t

∆x

)2

+ 2

(
1− c∆t

∆x

)
c∆t

∆x
cos

(
2π(d− 1)k

d

)
When

0 ≤ c∆t

∆x
≤ 1, (6)

then (
1− c∆t

∆x

)
c∆t

∆x
≥ 0.

That means

14



|λk|2 =

(
1− c∆t

∆x

)2

+

(
c∆t

∆x

)2

+ 2

(
1− c∆t

∆x

)
c∆t

∆x
cos

(
2π(d− 1)k

d

)
≤
(
1− c∆t

∆x

)2

+

(
c∆t

∆x

)2

+ 2

(
1− c∆t

∆x

)
c∆t

∆x

=

(
1− c∆t

∆x
+

c∆t

∆x

)2

= 1

So all the eigenvalues always are either inside or on the unit circle when equation
(6) is satisfied. For values outside of this range we have(

1− c∆t

∆x

)
c∆t

∆x
< 0.

Remark that d ≥ 2 for this method to be used. Take k = 1, then

2π(d− 1)

d
̸= 2πn, n ∈ N.

So that means that

|λ1|2 =

(
1− c∆t

∆x

)2

+

(
c∆t

∆x

)2

+ 2

(
1− c∆t

∆x

)
c∆t

∆x
cos

(
2π(d− 1)

d

)
>

(
1− c∆t

∆x

)2

+

(
c∆t

∆x

)2

+ 2

(
1− c∆t

∆x

)
c∆t

∆x

=

(
1− c∆t

∆x
+

c∆t

∆x

)2

= 1.

In conclusion, because all the eigenvalues are semisimple, the map of equation
(5) is stable for

0 ≤ c∆t

∆x
≤ 1,

which is the same region from the Von Neumann stability analysis. In this case
the two analyses show the same results, because the eigenvectors are the Fourier
modes. So there is a connection between the norm of the eigenvalues and the
amplitudes of Fourier modes in the von Neumann analysis.

Another way to show this is to notice that all the eigenvalues

λk = 1− c∆t

∆x
+

c∆t

∆x
e

2πi
d (d−1)k
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lie on a circle in the complex plane with centre and radius given respectively by

mc = 1− c∆t

∆x
, rc =

c∆t

∆x
.

This circle of eigenvalues is contained in the unit circle for

0 ≤ c∆t

∆x
≤ 1,

and exceeds the unit circle outside of this range. This is visualised in figure 3.
For values outside of the stable range, the eigenvalues exceed the unit circle,
either to to the left of 1, for c∆t

∆x > 1 or to the right of 1, for c∆t
∆x < 0.

Figure 3: Eigenvalues of the map corresponding to integrating the advection
equation with upwind Euler forward. There are 10 gridpoints and the value of
c∆t
∆x is varied between −0.1, 0.5, 1 and 1.2. The eigenvalues are plotted next to
the unit circle indicated in black.

To see this for more values of c∆t
∆x , figure 4 shows the biggest absolute value, or

spectral radius, of the matrix. It shows that the spectral radius is equal to 1 in
the expected region and bigger than 1 outside of this region. This shows where
the map is stable and unstable.
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Figure 4: The biggest absolute value of all the eigenvalues of the map. This
is the map from applying the upwind Euler forward to the advection equation.
This value is plotted against the value of c∆t

∆x , varying between −1 and 2.

2.2.3 Convergence

In 1956, Lax and Richtmyer showed that for well-posed linear initial value prob-
lem and a difference equation that is consistent with it, stability is a necessary
and sufficient condition for the numerical solution of the difference equation to
converge to the analytical solution of the differential equation (Lax & Richt-
myer, 1956). The advection equation with uniform constant velocity is such a
problem and the consistency and stability of the upwind Euler forward method
are shown in the section before. Therefore, the numerical solution of that finite
difference equation will converge to the solution of the advection equation for

0 ≤ c∆t

∆x
≤ 1.

CFL-condition
For a numerical solution of a finite difference approximation to converge to the
analytical solution of the hyperbolic differential equation, it is a necessary con-
dition for the analytical domain of dependence to be contained in the numerical
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domain of dependence (Courant et al., 1928). This condition is called the CFL-
condition. The authors of this paper showed that when this is reversed, the
solution cannot converge. This reversal means that the solution of the differen-
tial equation depends on information outside of the domain of dependence of the
difference equation. This information cannot also influence the solution of the
difference equation, as it lies outside of its domain of dependence. The solution
of the difference equation misses information necessary for it to converge to the
analytical solution as the time step size and grid spacing both approach zero.

Definition 2.6 (Domain of dependence). The analytical domain of dependence
of a point (t, x) in space-time is the domain in space-time that influences its
value, i.e. all the point necessary for the determination of its value. The nu-
merical domain of dependence of a grid point (tn+1, xj) in space-time is the
smallest domain in space-time that includes the grid points influencing it.

Let’s continue with the one-dimensional advection equation. The point (xj , tn+1)
has a different domain of dependence for the differential equation and the differ-
ence equation. The first one is equal to the characteristic line through (xj , tn+1):
t(x) = (x − xj)/c + tn+1. The second one is a little more difficult to see. The
value of un+1

j in

un+1
j =

(
1− c∆t

∆x

)
un
j +

c∆t

∆x
un
j−1

depends on the value of un
j and un

j−1. These two in turn depend on un−1
j , un−1

j−1

and un−1
j−2 via the same equation. This will continue until the initial condition

is reached. The numerical domain of dependence is now the triangle containing
all these points, i.e. the lower triangle between the lines

x(t) = xj and x(t) = xj + (t− tn)
∆x

∆t

Figure 5a and 5b show the CFL-condition not satisfied and satisfied respectively.
Figure 5a shows the characteristic line, or analytical domain of dependence, to
be outside of the numerical domain of dependence. Figure 5b shows it to be
inside.
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(a) CFL condition not satisfied. (b) CFL condition satisfied.

Figure 5: The CFL-condition for the one dimensional advection equation with
uniform constant velocity c > 0. The analytical domain of dependence is visu-
alised with a blue line and the numerical domain of dependence is shown as the
greyed out area (Willcox & Wang, n.d.).

The CFL condition in this specific case can be written as

0 ≤ c ≤ ∆x

∆t
−→ 0 ≤ c∆t

∆x
≤ 1.

So for one dimensional advection with uniform constant positive velocity, nu-
merically integrated with upwind Euler forward, the CFL condition covers the
same region as the stability region. This immediately confirms that the conver-
gence is lost outside of the CFL region, as stability is a necessary condition for
convergence.

Furthermore, is seems that in this case the stability is a sufficient condition for
convergence. This result is expected, because this is a well-posed linear initial
value problem.

2.2.4 Conservation of mass and energy

In the discrete case, the mass and energy of the system are represented respec-
tively by

d−1∑
j=0

uj ≡ ||u⃗||1 and

d−1∑
j=0

u2
j ≡ ||u⃗||22.

First using equation (3), the mass can be evaluated to be
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d−1∑
j=0

un+1
j =

(
1− c∆t

∆x

) d−1∑
j=0

un
j +

c∆t

∆x

d−1∑
j=0

un
j−1

=

(
1− c∆t

∆x

) d−1∑
j=0

un
j +

c∆t

∆x

d−1∑
j=0

un
j

=

(
1− c∆t

∆x
+

c∆t

∆x

) d−1∑
j=0

un
j

=

d−1∑
j=0

un
j .

The second equality follows from the periodic boundary conditions. This shows
that the mass stays the same from time step to time step. Just as in the ana-
lytical case, the mass is conserved.

Figure 6 is the result of simulations of equation (3) for different values of c∆t
∆x .

Figure 6: Mass of u⃗ after 100 time steps for different values of c∆t
∆x . The bound-

aries of the stable region are indicated by the dashed black lines. Values of c∆t
∆x

without a corresponding mass value means that these points were too big in size
to plot on a reasonably scaled plot.
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In the region −0.2 ≤ c∆t
∆x ≤ 1.2, the mass seems to be conserved after 100

time steps. Outside of this region, the mass changed. In theory, the numerical
method should be mass conserving, but the numerical instability changes that.
Due to rounding errors blowing up, the mass can still increase or decrease. In
figure 7, the results can be seen for 1000 time steps, where the region of stability
further coincides with the region of mass conservation. The rounding errors now
also have had time to blow up in the regions just left of the left dashed line and
right of the right dashed line.

Figure 7: Mass of u⃗ after 1000 time steps for different values of c∆t
∆x . The

boundaries of the stable region are indicated by the dashed black lines. Values
of c∆t

∆x without a corresponding mass value means that these points were too
big in size to plot on a reasonably scaled plot.

The energy of u⃗n+1, according to equation (3), is given by
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d−1∑
j=0

(
un+1
j

)2
=

d−1∑
j=0

((
1− c∆t

∆x

)
un
j +

c∆t

∆x
un
j−1

)2

=

d−1∑
j=0

((
1− c∆t

∆x

)2 (
un
j

)2
+

(
c∆t

∆x

)2 (
un
j−1

)2)

+ 2

d−1∑
j=0

((
1− c∆t

∆x

)
c∆t

∆x
un
j u

n
j−1

)

=

((
1− c∆t

∆x

)2

+

(
c∆t

∆x

)2
)

d−1∑
j=0

(
un
j

)2
+ 2

(
1− c∆t

∆x

)
c∆t

∆x

d−1∑
j=0

un
j u

n
j−1

∑d−1
j=0

(
un+1
j

)2∑d−1
j=0

(
un
j

)2 =

(
1− c∆t

∆x

)2

+

(
c∆t

∆x

)2

+ 2

(
1− c∆t

∆x

)
c∆t

∆x

∑d−1
j=0 u

n
j u

n
j−1∑d−1

j=0

(
un
j

)2
So energy is generally not conserved. The last equation is always equal to 1 for a
constant u⃗, which is trivial. In the case of non constant data, the ratio between
sums in the last term can be understood as a ratio between autocorrelation with
lag 1 and lag 0. Because this ratio is always between −1 and 1, the energy is
non-increasing for all u⃗ if

0 ≤ c∆t

∆x
≤ 1.

It will be perfectly energy conserving if

c∆t

∆x
= 0 ∨ c∆t

∆x
= 1.

The first one is trivial and the second case is the case where the information is
shifted one node along every time step. This energy region can be seen in figure
8.
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Figure 8: Energy of u⃗ after 1000 time steps with ∆t = 1, ∆x = 1 and values of
c varying between −0.3 and 1.3. The result is plotted on a logarithmic scale for
the different values of c∆t

∆x . The boundaries of the stable region are indicated
by the dashed black lines. Data points outside of this stable region have a too
large value of the energy to be plotted.

The energy decreases inside of this region, the energy is conserved at the bound-
aries and the energy increases without bound outside of this region.
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3 Semi-Lagrangian advection

Instead of fixing the coordinate frame and calculating the local change of a
scalar due to its transport, one could also follow a parcel of air containing this
scalar quantity. In this way there is no flow in and out of the parcel, so the
amount of the scalar in our parcel remains constant. This way only the ’route’
this parcel takes needs to be calculated. This trajectory then fully determines
the advection.

Definition 3.1. Lagrangian advection equation] The advection of some prop-
erty u(t, x⃗) in a velocity field v⃗(t, x⃗) is governed by the advection equation in
Lagrangian form

du

dt
= 0,

dx⃗

dt
= v⃗ (t, x⃗) . (7)

Here d
dt = ∂

∂t + v⃗ · ∇⃗ is the material derivative, defining the link between the
Lagrangian and the Eulerian frame of reference.

The assumption in this equation is that u undergoes material advection, i.e.
is constant in an air parcel. The material derivative of u is zero, meaning con-
stant inside the followed air parcel. Using Lagrangian methods, integrating this
equation on a finite grid will conserve the initial condition but change the coor-
dinates of the air parcels. So the grid will morph according to the velocity field.
Now the method needs to keep track of changing coordinates, which is compu-
tationally very heavy. Furthermore, the grid very quickly becomes chaotic.

The way the Lagrangian method can be used effectively is by combining it with
Eulerian principles. That is what are called Semi-Lagrangian methods. Instead
of starting at the departure points on a grid, these methods start with the arrival
points on a grid. This means, that to find the value of u at an arrival point
x⃗A, one needs to find the value of u along the same trajectory ∆t time units
earlier. This point is then called the departure point x⃗D. Finding the value of
u at x⃗A consists of two problems: 1. Finding the departure point x⃗D and 2.
Determining the value of u at x⃗D and setting that as the new value of u at x⃗A.

3.1 Determining the departure point

Determining the departure point at time t from an arrival point xA at time
t+∆t is done by solving the following equation:

x⃗D = x⃗A −
∫ t+∆t

t

v⃗(τ, x⃗(τ))dτ.

The average of v⃗(τ, x⃗(τ)) in τ ∈ [t, t+∆t] can be defined as

⃗̃v(t,∆t) =
1

∆t

∫ t+∆t

t

v⃗(τ, x⃗(τ))dτ.
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So then the departure point problem is the solution to

x⃗D = x⃗A −∆t⃗̃v(t,∆t).

This average can be approximated by various choices of function, but not every
choice will be as accurate or easy to calculate. In the analytical case, the average
is calculated along the trajectory, but that is generally unknown. Approxima-
tions will use the value of v⃗ at certain t and x⃗. With an unknown trajectory,
the value of v⃗ is usually taken at x⃗D and x⃗A. The time at which the values are
taken is chosen a priori and the arrival point is also already known. The value
of ⃗̃v in a single departure point problem then only depends on the unknown
departure point itself: ⃗̃v(x⃗D).

3.1.1 Existence

The existence of a departure point is important for all applications of Semi-
Lagrangian methods (i.e. numerical weather prediction). A departure point

x⃗D ∈ Rd should be a solution of the following equation with x⃗, x⃗A, ⃗̃v ∈ Rd:

x⃗ = x⃗A −∆t⃗̃v (x⃗) .

This would be the same as finding the roots of

fi (x1, . . . , xd) =
1

∆t
(xi − xA,i) + ṽi (x1, . . . , xd) = 0, ∀i = 1, . . . , d.

where

x⃗ =

x1

...
xd

 , x⃗A =

xA,1

...
xA,d

 and ⃗̃v =

ṽ1...
ṽd

 .

Theorem 3.2 (Poincaré–Miranda). Consider the rectangle R ∈ Rd

R = [a1, b1]× . . .× [ad, bd],

and consider d continuous functions of d variables, f1, . . . , fd. Assume that for
each variable xi the function fi is non-positive when xi = ai and non-negative
when xi = bi. Then there exists a point x ∈ R such that fi(x) = 0 for all
i = 1, . . . , d.

Proof. Proof can be found in (Miranda, 1940).

Corollary 3.2.1. Suppose the velocity field ⃗̃v is bounded in each component, i.e.
there exist ṽi,min and ṽi,max such that ṽi,min ≤ ṽi ≤ ṽi,max for all i = 1, . . . , d,
then there exists at least one solution x⃗ ∈ [xA,1 −∆tṽ1,max, xA,1 −∆tṽ1,min]×
. . .× [xA,d −∆tṽd,max, xA,d −∆tṽd,min] to the departure point problem.
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Proof. TakeR = [xA,1−∆tṽ1,max, xA,1−∆tṽ1,min]×. . .×[xA,d−∆tṽd,max, xA,d−
∆tṽd,min]. We also have

fi (x1, . . . , xd) =
1

∆t
(xi − xA,i) + ṽi (x1, . . . , xd) , ∀i = 1, . . . , d.

This gives for xi = xA,i −∆tṽi,max:

fi (x1, . . . , xA,i −∆tṽi,max, . . . , xd) = −ṽi,max + ṽi (x1, . . . , xd)

≤ 0, ∀i = 1, . . . , d.

And for xi = xA,i −∆tṽi,min:

fi (x1, . . . , xA,i −∆tṽi,min, . . . , xd) = −ṽi,min+ṽi (x1, . . . , xd) ≥ 0, ∀i = 1, . . . , d.

Now according to the Poincaré-Miranda theorem, there is at least one x⃗ ∈ R
such that fi(x⃗) = 0 for all i = 1, . . . , d, which is a solution to the departure
point problem.

3.1.2 Uniqueness

The existence of a departure point doesn’t necessarily proof uniqueness of this
departure point. In the previous part we showed that there is at least 1 solu-
tion to the departure point problem whenever the velocity is bounded in every
dimension. Let’s say there is at least one departure point x⃗D. When there is
an i ∈ {1, . . . , d} such that

max
j=1,...,d

∂ṽi
∂xj

∣∣∣∣
x⃗D

< − 1

∆t
,

then there are always at least 2 more departure points. This also means that if

max
x⃗∈D

max
j=1,...,d

∂ṽi
∂xj

∣∣∣∣
x⃗

> − 1

∆t
,

then the departure point is unique in D.

3.1.3 Convergence

Calculating the departure point can be done in multiple ways. If ⃗̃v can be
expressed as a single function, there is a chance that the departure point can be
found analytically. For example, if ⃗̃v = x⃗, then the departure point is given by

x⃗D =
1

1 +∆t
x⃗A

More generally, the departure point cannot be found analytically. Normally the
velocity is only known on a discrete grid, so there will not be an expression
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possible for a function. In all the cases where the departure point cannot be
found analytically, other methods need to be used. The most used method is
that of the iterative method. This entails the following:

x⃗k+1 = x⃗A −∆t⃗̃v (x⃗k) ,

where x⃗0 = x⃗A can be used as initial guess. Given convergence of this method,
as k → ∞, we have x⃗k → x⃗D.

Theorem 3.3. If a fixed point iteration is given by

x⃗k+1 = F⃗ (x⃗k) ,

with F a matrix operator, and there exists a σ < 1 such that

||JF⃗ (x⃗) || ≤ σ, ∀x⃗ ∈ D,

then the fixed point iteration converges to fixed point x⃗∗ for any initial guess
x⃗0 ∈ D. Here J is the Jacobian matrix and || · || is a natural matrix norm.

Remark. As the spectral radius is bounded by every matrix norm, the matrix
norm in this theorem could also be replaced by the spectral radius of the Ja-
cobian matrix. This way the eigenvalues can be analysed instead of the matrix
norm.

In the departure point problem, initial condition x⃗0 ∈ D converges to the fixed
point if

ρ (Jv⃗ (x⃗)) ≤ ||Jv⃗ (x⃗) || <
1

∆t
, ∀x⃗ ∈ D.

Notice that this is a similar condition as for uniqueness of the departure point.
This condition is often checked for in numerical weather simulations, so it will
be used as an upper limit on the time step.

3.1.4 SETTLS

To use the fixed point iteration to find the departure point x⃗D, an approximation
for the average velocity along the trajectory ⃗̃v has to be used. The HARMONIE
model at KNMI uses the so called SETTLS scheme.

Definition 3.4 (SETTLS). To calculate the departure point of the Lagrangian
trajectory integration, the SETTLS (Stable Extrapolation Two Time Level
Scheme) scheme uses the iterative scheme{

x⃗0 = x⃗A − ∆t
2 (3v⃗(t, x⃗A)− v⃗(t−∆t, x⃗A))

x⃗k+1 = x⃗A − ∆t
2

(
2v⃗(t, x⃗k)− v⃗(t−∆t, x⃗k) + v⃗(t, x⃗A)

)
k ≥ 0

(8)

Where x⃗A is the arrival point at time t+∆t and x⃗k+1 is an approximation of the
departure point x⃗D at time t after k iterations. Here v⃗(t, x⃗k) and v⃗(t−∆t, x⃗k)
will be interpolated from values at grid points around x⃗k.
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Existence
The SETTLS scheme uses the following approximation to ⃗̃v:

⃗̃v (x⃗) =
1

2
(v⃗ (t+∆t, x⃗) + v⃗(t, x⃗A))

=
1

2
(2v⃗(t, x⃗)− v⃗(t−∆t, x⃗) + v⃗(t, x⃗A))

As v⃗ is bounded at all time t, this equation for ⃗̃v is also bounded. Therefore,
there exists a departure point that can be found with the SETTLS scheme.

Uniqueness
A departure point x⃗D ∈ D of the SETTLS scheme is unique in D when

max
x⃗∈D

max
j=1,...,d

∂ṽi
∂xj

∣∣∣∣
x⃗

> − 1

∆t
,

max
x⃗∈D

max
j=1,...,d

(
∂vi
∂xj

∣∣∣∣
(t,x⃗)

− 1

2

∂vi
∂xj

∣∣∣∣
(t−∆t,x⃗)

)
> − 1

∆t
.

In one dimension this means

max
x⃗∈D

(
∂v

∂x

∣∣∣∣
(t,x⃗)

− 1

2

∂v

∂x

∣∣∣∣
(t−∆t,x⃗)

)
> − 1

∆t
.

Convergence
The fixed point iteration using the SETTLS scheme always converges to a de-
parture point x⃗D ∈ D when

||Jv⃗ (x⃗) || <
1

∆t
, ∀x⃗ ∈ D.

Which in one dimension reads

∣∣∣∣∣ ∂v

∂x

∣∣∣∣
(t,x⃗)

− 1

2

∂v

∂x

∣∣∣∣
(t−∆t,x⃗)

∣∣∣∣∣ < 1

∆t
, ∀x⃗ ∈ D,

− 1

∆t
<

∂v

∂x

∣∣∣∣
(t,x⃗)

− 1

2

∂v

∂x

∣∣∣∣
(t−∆t,x⃗)

<
1

∆t
, ∀x⃗ ∈ D.

This interval is smaller than the interval for uniqueness. Should the criterion
for convergence be met, then the fixed point is always unique.

Another way to prove this is by introducing

xk = xA −∆xk, xD = xA −∆x∗
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The SETTLS scheme can then be written as

xA −∆xk+1 = xA − ∆t

2

(
2v
(
t, xA −∆xk

)
− v

(
t−∆t, xA −∆xk

)
+ v (t, xA)

)
∆xk+1 =

∆t

2

(
2v
(
t, xA −∆xk

)
− v

(
t−∆t, xA −∆xk

)
+ v (t, xA)

)
(9)

And for the departure point we have

xA −∆x∗ = xA − ∆t

2

(
2v (t, xA −∆x∗)− v

(
t−∆t, xA −∆xk

)
+ v (t, xA)

)
∆x∗ =

∆t

2

(
2v (t, xA −∆x∗)− v

(
t−∆t, xA −∆xk

)
+ v (t, xA)

)
(10)

The Taylor series expansions of v(t, xA −∆xk) and v(t−∆t, xA −∆xk) around
x = xA −∆x∗ are given respectively by

v(t, xA −∆xk) = v(t, xA −∆x∗) + (∆x∗ −∆xk)
∂v

∂x

∣∣∣∣
(t,χ1)

,

v(t−∆t, xA −∆xk) = v(t−∆t, xA −∆x∗) + (∆x∗ −∆xk)
∂v

∂x

∣∣∣∣
(t−∆t,χ2)

.

Here χ1 and χ2 are the values between xA−∆xk and xA−∆x∗ for which these
expansions are exact. Plugging these equations into (9) yields

∆xk+1 =
∆t

2

(
2v(t, xA −∆x∗) + 2(∆x∗ −∆xk)

∂v

∂x

∣∣∣∣
(t,χ1)

−v(t−∆t, xA −∆x∗)− (∆x∗ −∆xk)
∂v

∂x

∣∣∣∣
(t−∆t,χ2)

+ v (t, xA)

)
.

Using equation (10) this can be rewritten to

∆xk+1 = ∆x∗ +
∆t

2

(
2(∆x∗ −∆xk)

∂v

∂x

∣∣∣∣
(t,χ1)

− (∆x∗ −∆xk)
∂v

∂x

∣∣∣∣
(t−∆t,χ2)

)
.

Now introduce ϵk = ∆x∗ −∆xk, so the equation becomes

−ϵk+1 =
∆t

2

(
2ϵk

∂v

∂x

∣∣∣∣
(t,χ1)

− ϵk
∂v

∂x

∣∣∣∣
(t−∆t,χ2)

)
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The absolute value of this ϵ has to shrink every iteration for the scheme to
converge:

∣∣ϵk+1
∣∣

|ϵk|
=

∆t

2

∣∣∣∣∣ 2 ∂v

∂x

∣∣∣∣
(t,χ1)

− ∂v

∂x

∣∣∣∣
(t−∆t,χ2)

∣∣∣∣∣ < 1∣∣∣∣∣ ∂v

∂x

∣∣∣∣
(t,χ1)

− 1

2

∂v

∂x

∣∣∣∣
(t−∆t,χ2)

∣∣∣∣∣ < 1

∆t

This inequality is a bit less strict then via the Jacobian matrix, as χ1 and χ2

are some unique value.

3.2 Interpolation

When the departure point is found, chances are that it will not exactly coin-
cide with a grid point. The value at the departure point has to be interpolated
with the values surrounding the departure point. The more points used, the
more accurate the interpolation becomes. For example, zero-th order interpo-
lation would be the value of the nearest point, first order would be a linear
function through the direct neighbours, etc. The interpolation technique used
for finding the value at the departure point would be characterised by spline
interpolation. The location of the departure point determine what interpolation
nodes are used. So the interpolation polynomial is distinct on each grid segment
(xj , xj+1).

One of the most well known formulas for finding the interpolation polynomial,
uses Lagrange polynomials. Assume we want to find the value of u at the
departure point xD in one dimension. The interpolation data {uj} are known
at interpolation nodes {xj}, for j = 0, . . . ,m. The value of u(xD) is then given
by

u(xD) =

m∑
j=0

lj(xD)uj , lj(x) =

m∏
i=0
i ̸=j

(x− xi)

(xj − xi)
,

where lj are called the Lagrange basis polynomials. The polynomial lj(x) takes
value 1 at xj and 0 at all the other nodes. For problems in more dimensions,
other interpolation techniques may be used.
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4 An interpretation of Semi-Lagrangian meth-
ods as finite difference methods

Integrating the advection equation using Semi-Langrangian methods is not bound
by stability criteria like the explicit Eulerian finite difference methods. Time
steps may be arbitrarily large, with the only downside being the accuracy. We
have seen that convergence of the fixed point iteration for the departure point
may impose a time step size restriction, e.g. the SETTLS method only con-
verges for time steps smaller than the reciprocal of the velocity gradient. This
is typically in the range of 1e4 seconds. Alternative root finding methods, such
as the bisection method, have no such restriction. For HARMONIE with a grid
spacing of 2.5km and typical maximum atmospheric velocities of 100 kilometers
an hour, the CFL-condition implies a step size of 90 seconds. This shows the
advantage of Semi-Lagrangian methods over explicit Eulerian finite difference
methods. In this section we try to explain these advantages from the perspec-
tive of Eulerian finite difference methods. By interpreting the Semi-Lagrangian
methods as Eulerian methods and applying the analysis that is normally used on
Eulerian methods. The Semi-Lagrangian methods allow larger time steps like
implicit finite difference methods, but don’t suffer from large dispersion errors
like the implicit methods.

4.1 Consistency

First we will show that the Semi-Lagrangian scheme can be viewed as a Eulerian
finite difference method. To make this argument, the scheme needs to be con-
sistent with the Eulerian advection equation. Recall both advection equations,
Eulerian and Lagrangian respectively.

∂u

∂t
+ c

∂u

∂x
= 0 (11)

du

dt
= 0,

dx

dt
= c (12)

We give some examples of Semi-Lagrangian schemes rewritten as finite difference
schemes:

Example 4.1 (First order). Consider the departure point corresponding to
arrival point xj in the case of uniform velocity:

xD = xj − c∆t

In the Lagrangian frame, the solution of the advection equation is as follows:

un+1
j = l(tn, xD),

where l is the interpolated value of u at time tn, using Lagrange polynomials.
To linearly interpolate the value of u at this departure point, one needs to know
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between which two gridpoints xD is situated. Introduce p, which is calculated
to be

p =

⌊
c∆t

∆x

⌋
.

Then xD is between xj−p−1 and xj−p. Linearly interpolating gives

l(t, xD) =
xD − xj−p−1

xj−p − xj−p−1
un
j−p +

xD − xj−p

xj−p−1 − xj−p
un
j−p−1

=
xj − c∆t− xj−p−1

xj−p − xj−p−1
un
j−p +

xj − c∆t− xj−p

xj−p−1 − xj−p
un
j−p−1

=
(p+ 1)∆x− c∆t

∆x
un
j−p +

p∆x− c∆t

−∆x
un
j−p−1

=

(
1− c∆t

∆x
+ p

)
un
j−p +

(
c∆t

∆x
− p

)
un
j−p−1

Which means the solution is given by

un+1
j = l(t, xD)

=

(
1− c∆t

∆x
+ p

)
un
j−p +

(
c∆t

∆x
− p

)
un
j−p−1

This can be rewritten as

un+1
j = un

j−p + (p∆x− c∆t)
un
j−p − un

j−p−1

∆x
(13)

Introducing the reduced velocity c̃

c̃ = c− p∆x

∆t
,

equation (13) is given by

un+1
j = un

j−p − c̃∆t
un
j−p − un

j−p−1

∆x
,

un+1
j − un

j−p

∆t
= −c̃

un
j−p − un

j−p−1

∆x

This is the upwind Euler forward methods for p = 0, as then the reduced velocity
is the same as the original velocity. For the case where p > 0, the method is the
same, but using shifted nodes and a reduced velocity.

Example 4.2 (Second order). Again, the departure point corresponding to
arrival point xj in the case of uniform velocity is given by

32



xD = xj − c∆t

In the Lagrangian frame, the solution of the advection equation is as follows:

un+1
j = l(t, xD),

where l is the interpolated value of u using Lagrange polynomials. To quadrat-
ically interpolate the value of u at this departure point, one needs to know
between which two gridpoints xD is situated. In this case, p is

p =

⌊
c∆t

∆x

⌋
Then xD is between xj−p−1 and xj−p. For the quadratic interpolation, also
include xj−p−2. Linearly interpolating with Lagrange interpolation polynomials
gives

l(t, xD) =
(xD − xj−p−2) (xD − xj−p−1)

(xj−p − xj−p−2) (xj−p − xj−p−1)
un
j−p

+
(xD − xj−p−2) (xD − xj−p)

(xj−p−1 − xj−p−2) (xj−p−1 − xj−p)
un
j−p−1

+
(xD − xj−p−1) (xD − xj−p)

(xj−p−2 − xj−p−1) (xj−p−2 − xj−p)
un
j−p−2

=
(xj − c∆t− xj−p−2) (xj − c∆t− xj−p−1)

(xj−p − xj−p−2) (xj−p − xj−p−1)
un
j−p

+
(xj − c∆t− xj−p−2) (xj − c∆t− xj−p)

(xj−p−1 − xj−p−2) (xj−p−1 − xj−p)
un
j−p−1

+
(xj − c∆t− xj−p−1) (xj − c∆t− xj−p)

(xj−p−2 − xj−p−1) (xj−p−2 − xj−p)
un
j−p−2

=
((p+ 2)∆x− c∆t) ((p+ 1)∆x− c∆t)

2∆x2
un
j−p

+
((p+ 2)∆x− c∆t) (p∆x− c∆t)

−∆x2
un
j−p−1

+
((p+ 1)∆x− c∆t) (p∆x− c∆t)

2∆x2
un
j−p−2

un+1
j = un

j−p + (p∆x− c∆t)
3un

j−p − 4un
j−p−1 + un

j−p−2

2∆x

+
(p∆x− c∆t)

2

2

un
j−p − 2un

j−p−1 + un
j−p−2

∆x2

(14)

And again with the reduced velocity c̃ it reads
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un+1
j = un

j−p − c̃∆t
3un

j−p − 4un
j−p−1 + un

j−p−2

2∆x

+
(c̃∆t)

2

2

un
j−p − 2un

j−p−1 + un
j−p−2

∆x2

This does not seem the same as a finite difference method for the Eulerian
advection equation, but the second term reads like a 2nd order forward approx-
imation to the first derivative. Furthermore, the last term reads like a second
order centered approximation to the second derivative.

Both examples are similar in result, with only the order of accuracy increasing
and the number of terms. To understand these results, expand the solution to
the Lagrangian advection equation with a Taylor expansion:

un+1
j = l(t, xD)

= l(t, xj − c∆t)

= l(t, xj−p − c̃∆t)

= l(t, xj−p)− c̃∆tl′(t, xj−p) +
(−c̃∆t)2

2
l′′(t, xj−p) + . . .

=

∞∑
k=0

(−c̃∆t)k

k!
l(k)(t, xj−p)

(15)

Here l(k) is the k-th derivative of the Lagrange polynomial used for the inter-
polation. The degree of l is equal to the order of interpolation used. For linear
interpolation, l is also linear. For quadratic interpolation, it too is quadratic.
The derivatives of l are zero for k larger than the order of interpolation. Take
for example linear interpolation, which is first order, then

l(k) ≡ 0, for k > 1.

This reasoning also explains why the quadratic interpolation yielded an addi-
tional term of higher order in c̃∆t than the linear interpolation.

In the continuous case, the value of u at the departure point can also be ex-
panded around xj−p.

u(t, xD) = u(t, xj − c∆t)

= u(t, xj−p − c̃∆t)

= u(t, xj−p) + (−c̃∆t)
∂u

∂x

∣∣∣∣
(t,xj−p)

+
(−c̃∆t)2

2

∂2u

∂x2

∣∣∣∣
(t,xj−p)

+ . . .

=

∞∑
k=0

(−c̃∆t)k

k!

∂(k)u

∂x(k)

∣∣∣∣
(t,xj−p)
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The Taylor series can be compactly written as

u(t, xD) = e(p∆x−c∆t) ∂
∂xu(t, xj)

= ec̃∆t ∂
∂xu(t, xj−p)

This notation is exact when u is an analytic function. When m-th degree inter-
polation is used, the Semi-Lagrangian method can be interpreted as a truncation

of the exponential to order m. In particular, each derivative operator ∂(k)

∂x(k) is

approximated by a consistent finite difference operator, i.e. l(k) is consistent
with the k-th derivative of u. If m is the order of interpolation used, then the
error is at least order m+ 1− k.

Assume interpolation of order m, with interpolation nodes {xj+ni
} and inter-

polation values {u(t, xj+ni
)}, with i = 0, . . . ,m. In other words a list of m+ 1

distinct points to use for the m-th degree Lagrange polynomial. The Taylor
expansions of u(t, xj + ni) about xj are



u(t, xj+n0
) = u(t, xj) + n0∆x ∂u

∂x

∣∣
(t,xj)

+ · · ·+ (n0∆x)m

m!
∂(m)u
∂x(m)

∣∣∣
(t,xj)

+O
(
∆xm+1

)
u(t, xj+n1) = u(t, xj) + n1∆x ∂u

∂x

∣∣
(t,xj)

+ · · ·+ (n1∆x)m

m!
∂(m)u
∂x(m)

∣∣∣
(t,xj)

+O
(
∆xm+1

)
...

u(t, xj+nm
) = u(t, xj) + nm∆x ∂u

∂x

∣∣
(t,xj)

+ · · ·+ (nm∆x)m

m!
∂(m)u
∂x(m)

∣∣∣
(t,xj)

+O
(
∆xm+1

)
To approximate the k-th derivative with these points, consider a linear com-

bination of these expansions with coefficients ai. The following system of equa-
tions for all r = 0, . . . ,m− 1 needs to be solved

nr
0a0 + · · ·+ nr

mam =

{
r!, if r = k,

0, if r ̸= k.
(16)

This is equivalent to
1 1 · · · 1
n0 n1 · · · nm

n2
0 n2

1 · · · n2
m

...
...

...
...

nm−1
0 nm−1

1 · · · nm−1
m




a0
a1
a2
...

am

 = k!e⃗k (17)

The matrix on the left is a Vandermonde matrix, known to be nonsingular if
the nodes ni are distinct (Klinger, 1967). Furthermore, e⃗k is the k-th standard
basis vector. The equations (16) imply.

a0u(t, xj+n0
) + · · ·+ amu(t, xj+nm

) = ∆xk ∂(k)u

∂x(k)

∣∣∣∣
(t,xj)

+O
(
∆xm+1

)
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So, the solution of equation (17) are the coefficients for the finite difference
equation that approximates the k-th derivative of u:

a0u(t, xj+n0) + · · ·+ amu(t, xj+nm)

∆xk
=

∂(k)u

∂x(k)

∣∣∣∣
(t,xj)

+O
(
∆xm+1−k

)
The error could also be of higher order. More specifically, if q is the smallest
integer greater than m satisfying nq

0a0 + · · · + nq
mam ̸= 0, then the error is of

order ∆xq−k. Here q − k ≥ m+ 1− k.

Example 4.3. Take the points xj−1 and xj+1. Let us use the value of u at
these points to calculate u(t, xj) and the first derivative at this same point. This
means n0 = −1 and n1 = 1. The equations to solve are[

1 1
−1 1

] [
a0
a1

]
=

[
1
0

]
,

[
1 1
−1 1

] [
a′0
a′1

]
=

[
0
1

]
.

These two equations yield the following results:[
a0
a1

]
=

[
1
2
1
2

]
,

[
a′0
a′1

]
=

[
− 1

2
1
2

]
.

Furthermore, a20 + a21 ̸= 0, a′20 + a′21 = 0 and a′30 + a′31 ̸= 0. This means the
approximations have error of ∆x2−0 and ∆x3−1 respectively.

u(t, xj−1) + u(t, xj+1)

2
= u(t, xj) +O

(
∆x2

)
−u(t, xj−1) + u(t, xj+1)

2
=

∂u

∂x

∣∣∣∣
(t,xj)

+O
(
∆x2

)
The fact that the first derivative is calculated with a centered method, ensures
this higher order of accuracy.

Example 4.4. Let’s try to find a finite difference method for the third derivative
in (t, xj) using {xj−4, xj−1, xj , xj+2, xj+3}, (m = 4).

1 1 1 1 1
−4 −1 0 2 3
16 1 0 4 9
−64 −1 0 8 27
256 1 0 16 81



a0
a1
a2
a3
a4

 =


0
0
0
6
0

 .

These equations yield the following result:[
a0 a1 a2 a3 a4

]
=
[
− 1

21
1
6 0 − 1

3
3
14

]
.

Furthermore, −1024a0 − a1 +32a3 +243a4 ̸= 0. This means the approximation
has an error of ∆x4+1−3.
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−2u(t, xj−4) + 7u(t, xj−1)− 14u(t, xj+2) + 9u(t, xj+3)

42∆x3
=

∂3u

∂x3

∣∣∣∣
(t,xj)

+O
(
∆x2

)
This is the only finite difference formula possible with these points and has
second order accuracy.

Equations (13) and (14) can be understood as follows. Equation (13) uses two
points, is therefore linear, so had a Taylor expansion up to the first derivative.
This first derivative is approximated by the finite difference equation that can
be made with the two points. Equation (14) utilises three points, is therefore
quadratic, and the last term has an approximation for the second derivative. In
conclusion, the Semi-Lagrangian method is consistent with the Taylor approxi-
mation up to one order higher than the order of interpolation used.

4.2 Stability

The Semi-Lagrangian method is shown to be equal to some finite difference
method that is consistent with a Taylor expansion around the departure point.
The next question is if this method is stable. In the sense of Von Neumann
numerical stability analysis and stability of the resulting map.

Numerical stability
Recall that in the Eulerian frame, using first order upwind Euler forward yielded

un+1
j =

(
1− c∆t

∆x

)
un
j +

c∆t

∆x
un
j−1 (18)

And recall the formula that was the result of the Semi-Lagrangian method with
linear interpolation:

un+1
j =

(
1− c∆t

∆x
+ p

)
un
j−p +

(
c∆t

∆x
− p

)
un
j−p−1, p =

⌊
c∆t

∆x

⌋
(19)

For p = 0 this is the same as equation (18), indicating the similarity in both
methods. Again introduce the Fourier mode of the error:

ϵ(x, t) = E(t)eikmx

Plugging this general mode into equation (19) yields
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E((n+ 1)∆t)eikmj∆x =

(
1− c∆t

∆x
+ p

)
E(n∆t)eikm(j−p)∆x

+

(
c∆t

∆x
− p

)
E(n∆t)eikm(j−p−1)∆x

E((n+ 1)∆t) =

(
1− c∆t

∆x
+ p

)
E(n∆t)e−ikmp∆x

+

(
c∆t

∆x
− p

)
E(n∆t)e−ikm(p+1)∆x

E((n+ 1)∆t)

E(n∆t)
=

(
1− c∆t

∆x
+ p

)
e−ikmp∆x

+

(
c∆t

∆x
− p

)
e−ikm(p+1)∆x

=

(
1− c∆t

∆x
+ p

)
cos (kmp∆x) +

(
c∆t

∆x
− p

)
cos (km(p+ 1)∆x)

− i

(
1− c∆t

∆x
+ p

)
sin (kmp∆x)− i

(
c∆t

∆x
− p

)
sin (km(p+ 1)∆x)

The norm of this ratio is given by

∣∣∣∣E((n+ 1)∆t)

E(n∆t)

∣∣∣∣2 =

(
1− c∆t

∆x
+ p

)2

+

(
c∆t

∆x
− p

)2

+ 2

(
1− c∆t

∆x
+ p

)(
c∆t

∆x
− p

)
cos (km∆x)

Analogous to the Eulerian case, for this norm to be less or equal to 1 yields

p ≤ c∆t

∆x
≤ p+ 1.

For p = 0, this is the same stability region as before in the Eulerian frame. Even
more similarity can be seen when the reduced velocity c̃, given by

c̃ = c− p∆x

∆t
,

is plugged into equation (4.1). This yields

un+1
j =

(
1− c̃∆t

∆x

)
un
j−p +

(
c̃∆t

∆x

)
un
j−p−1.

Here now

0 ≤ c̃∆t

∆x
≤ 1,
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so the reduced velocity also satisfies the stability criterion from before. The only
difference is that the two values used to calculate un+1

j have shifted to un
j−p and

un
j−p−1 instead of un

j and un
j−1. This corresponds to shifting the domain p∆x

to the left, such that the reduced velocity satisfies the stability condition of the
case without the shift.

Stability of maps
Rewriting equation (19) as a vector matrix equation gives

u⃗n+1 = ASpu⃗n, A = I − c̃∆t

∆x



1 0 · · · 0 −1
−1 1 0 · · · 0

0
. . .

. . .
...

... −1 1 0
0 · · · 0 −1 1


Here S is the left shift matrix given by

S =


0 · · · 0 0 1
1 0 · · · 0 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0


Remark. Both A and S are circulant matrices.

Remark. The corresponding vectors of circulant matrices A and S are given by

b⃗A =


1− c∆t

∆x + p
0
...
0

c∆t
∆x − p

 , b⃗S =


0
0
...
0
1

 .

The following lemma is well-known:

Lemma 4.5. Let A and B be circulant matrices of equal dimension. The eigen-
values of the matrix AB are given by the product of eigenvalues from A and B.

Proof. Let A and B be circulant matrices, with eigenvalues αk, βk respectively.
The eigenvectors vk of circulant matrices are independent of the matrix ele-
ments, so they are the same for every circulant matrix. This yields Avk = αkvk
and Bvk = βkvk. The eigenvalues of the matrix AB, the result of the matrix
multiplication, are given by

ABvk = Aβkvk = βkAvk = βkαkvk

So the eigenvalues are equal to βkαk, the product of eigenvalues from A and
B.
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Lemma 4.6. Shifting all the elements of a circulant matrix with the shift matrix
S, rotates the eigenvalues in the complex plane.

Proof. Let A be a circulant matrix with eigenvalues αk corresponding to eigen-
vectors vk. Let S be a shift matrix. This entails that S is a circulant matrix with
only one non-zero element of b⃗, bm = 1. The eigenvalues µk of S corresponding
to eigenvectors vk are given by

µk = bme
2πi
d mk = eiϕk , ϕk =

2πmk

d
, k = 0, 1, . . . ,m− 1.

Lemma 4.5 says that the eigenvalues of AS are equal to αkµk = αke
iϕk . This

shows that the eigenvalues of A are rotated in the complex plane when multiplied
by S. Specifically

|αkµk| = |αke
iϕk | = |αk|, arg(αkµk) = arg(αke

iϕk) = arg(αk) + ϕk

Because the shift matrix only rotates the eigenvalues, it does not change their
absolute value and in turn will not change the spectral radius. This means

ρ (ASp) = ρ (A)

The stability of the map is determined by the spectral radius of ASp. As this is
the same as the spectral radius of A, the stability region is the same as in the
Eulerian case.

Non-uniform velocity
For non-uniform velocity v⃗, the reduced velocity is not the same for every arrival
point. The shift p is also dependent on the velocity, so it can vary. Now, both
the matrix A is not circulant anymore, as the shift needed to make the method
consistent cannot be written as Sp. This loss of the circulant properties, means
the map can now become unstable for interpolation.

For the map to be stable, the spectral radius should be less than or equal to
unity. This spectral radius is bound by every matrix norm induced by a vector
norm. Polynomial interpolation always has the property that

m∑
i=0

ai = 1

In the case of linear interpolation, the interpolation coefficients also sum to 1 in
absolute value:
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m∑
i=0

|ai| = 1

The ∞-norm of a matrix is given by

max
0≤j≤m

m∑
i=0

|aij |.

In other words, this norm is the maximum value of all absolute row sums. For
linear interpolation we get

ρ(Ã) ≤ ||Ã||∞ = 1,

meaning the map is always stable. The reason this holds, is because of the
maximum principle. If there exist umin and umax such that all the values {un

j }
satisfy

umin ≤ un
j ≤ umax, ∀j = 0, . . . , d− 1.

Then all the linear interpolated values l(x) satisfy

umin ≤ l(x) ≤ umax, ∀x ∈ D.

Consequently

||u⃗n+1||∞ ≤ ||u⃗n||∞,

which is the same as the ∞-norm of the matrix being less than or equal to
unity. For higher order interpolation, this maximum principle does not hold.
Examples can easily be constructed where the spectral radius is bigger than 1
for a non-uniform velocity and higher order interpolation.

4.3 Convergence

For convergence, again both consistency and stability is needed. The consis-
tency condition in this case is that the Semi-Lagrangian method used is consis-
tent with a truncated Taylor approximation using the reduced velocity c̃. For
Semi-Lagrangian methods this means the reduced departure point is given by
x̃D = xj − c̃∆t. So the departure point is shifted back to the adjacent interval
to the arrival point in steps of ∆x.

The resulting departure point will be interpolated, where this interpolation will
equal to some finite difference method of a truncated Taylor series. This finite
difference method has a certain stability region, with the reduced departure
point in it. With the use of the shift matrix, the method is shifted to the origi-
nal departure point. The stability region remains unchanged, only shifted along
to the departure point. But the stability of the method is the same, whether it is
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applied to the reduced departure point or shifted to the original departure point.

As the method is used to find a solution with the original velocity, the shift is
necessary for consistency. First it was applied to the reduced departure point,
so the resulting finite difference method is only consistent with the advection
equation with reduced velocity. The shift makes the method consistent with the
original advection equation.

Using a Semi-Lagrangian method to solve the advection equation with uniform
constant velocity can be understood as a finite difference technique:

1. Calculate the reduced velocity via

c̃ = c− p∆x

∆t
, p =

⌊
c∆t

∆x

⌋
.

2. Interpret the solution to the advection equation as an interpolation around
the departure point

u(tn+1, xj) = u(tn, xD)

= u(tn, xj − c∆t)

= u(tn, xj−p + p∆x− c∆t)

= u(tn, xj−p − c̃∆t)

= e−c̃∆t ∂
∂xu(tn, xj−p)

=

∞∑
k=0

1

k!

(
−c̃∆t

∂

∂x

)k

u(tn, xj−p)

= u(tn, xj−p)− c̃∆t
∂u

∂x

∣∣∣∣
(tn,xj−p)

+
(c̃∆t)

2

2

∂2u

∂x2

∣∣∣∣
(tn,xj−p)

− . . . .

3. Choose the number of interpolation nodes {xj−p+ni
} and corresponding

interpolation values {un
j−p+ni

} for i = 0, . . . ,m, based on the order of
accuracy m required. This will determine the truncation of the Taylor
approximation up to k = m.

4. Use these nodes for finite difference methods consistent with the terms in
the exponential expansion. To find the coefficients {ai}, {bi}, etc., each
time a system of equation with a Vandermonde matrix has to be solved.
The resulting finite difference methods will be given by
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u(tn, xj−p) = a0u
n
j−p+n0

+ · · ·+ amun
j−p+nm

+O
(
∆xm+1

)
∂u

∂x

∣∣∣∣
(tn,xj−p)

=
b0u

n
j−p+n0

+ · · ·+ bmun
j−p+nm

∆x
+O (∆xm)

...

∂(m)u

∂x(m)

∣∣∣∣
(tn,xj−p)

=
c0u

n
j−p+n0

+ · · ·+ cmun
j−p+nm

∆xm
+O (∆x)

This will result in the solution

un+1
j = a0u

n
j−p+n0

+ · · ·+ amun
j−p+nm

− c̃∆t

∆x

(
b0u

n
j−p+n0

+ · · ·+ bmun
j−p+nm

)
+ . . .

+
1

m!

(
−c̃∆t

∆x

)m (
c0u

n
j−p+n0

+ · · ·+ cmun
j−p+nm

)
It can be written as a map

u⃗n+1 = D0S
pu⃗n − c̃∆t

∆x
D1S

pu⃗n + · · ·+ 1

m!

(
−c̃∆t

∆x

)m

DmSpu⃗n

=

m∑
k=0

1

k!

(
−c̃∆t

∆x

)k

DkS
pu⃗n

= ÃSpu⃗n

5. These finite differences are then shifted p grid points to be consistent
with the advection equation with the original velocity. So in total the
advection equation, solved with the Semi-Lagrangian method with m-th
order interpolation, can be interpreted as the following finite difference
method.
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du

dt
= 0

⇕
u(tn+1, xj) = u(tn, xD)

⇕

u(tn+1, xj) =

m∑
k=0

1

k!

(
−c̃∆t

∂

∂x

)k

u(tn, xj−p)

⇕
un+1
j = a0u

n
j−p+n0

+ · · ·+ amun
j−p+nm

+
b0u

n
j−p+n0

+ · · ·+ bmun
j−p+nm

∆x
+ . . .

+
c0u

n
j−p+n0

+ · · ·+ cmun
j−p+nm

∆xm

⇕
u⃗n+1 = ÃSpu⃗n

The knowledge about consistency and stability in the Eulerian frame can be
applied to the Semi-Lagrangian method. Therefore, in the case of uniform con-
stant velocity, the Semi-Lagrangian method is both consistent and stable when
seen as a finite difference method. This means the numerical solution of the
Semi-Lagrangian method will converge to the analytical solution of the advec-
tion equation as ∆t,∆x → 0.

In the case of the upwind Euler forward finite difference scheme, the CFL-
condition was given by

0 ≤ c∆t

∆x
≤ 1.

Increasing the time step size, increasing the velocity or reducing the grid spacing
could all result in this limit being exceeded. That would result in the loss
of convergence due to numerical instability. The first order Semi-Lagrangian
method can be understood as calculating the reduced velocity, that satisfies the
CFL-condition again, and then shifting the numerical domain of dependence
so that it covers the analytical domain of dependence again. This is visualised
in figure 9. For values of c∆t

∆x larger than unity, the original CFL-condition is
exceeded. With the reduced velocity, p is now calculated to be 1, which means
the numerical domain of dependence should be shifted to cover the analytical
domain of dependence again. This new numerical domain of dependence is seen
as the shaded blue area. The CFL-condition is now again satisfied, for otherwise
unstable values of c∆t

∆x .
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Figure 9: The shifted CFL-condition visualised for the Semi-Lagrangian method
with linear interpolation. The grey area is the numerical domain of dependence
for p = 0, which means the method is the same as the upwind Euler forward
method. The blue region is the numerical domain of dependence for p = 1,
which now covers the blue line indicating the analytical domain of dependence.
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5 Discussion

Rewriting the Semi-Lagrangian method as an finite difference method helped us
understand why they allow for larger time steps while still maintaining stability.
For uniform and constant velocity, determining the departure point is exact
and the polynomial interpolation used can be understood as a truncation of
the Taylor series up to the degree of the polynomial used for the interpolation.
These terms in the Taylor series are equal to some finite difference approximation
of the corresponding derivative. The use of circulant shift matrices, allows for
shifting of the stability region to always include the departure point, while being
consistent with a finite difference scheme around a reduced departure point.

Non-uniform, non-constant velocity
The connection between Eulerian finite difference methods and Semi-Lagrangian
methods can be used to study their stability. For a non-uniform velocity, linear
interpolation can be shown to be stable as long as the departure point is between
the interpolation nodes. When using an interpolation polynomial of higher de-
gree, the matrix used for the integration map does not necessarily have spectral
radius smaller or equal to unity. This does not mean that using higher order
interpolation in for example atmospheric conditions can quickly yield unstable
numerical integration. The value of the interpolant can exceed all interpolation
values, but this will not occur every time step at the same location. The main
reason for this are the advection of the velocity itself and the viscosity of the
transportation fluid. The velocity will not remain constant in atmospheric con-
ditions, therefore changing the integration map every time step. Large velocity
gradients are counteracted by the viscosity of the fluid, diffusing these gradients.

Future research could mainly focus on what the effect of the changing velocity
profile over time is on the stability of the integration map. Single time steps
could be done with a matrix whose spectral radius is bigger than unity. The
velocity profile has changed for the next time steps, dampening the instability
created by the unstable time step. Incorporating an equation for the change in
velocity profile, such as the viscous Burgers’ equation, could be combined with
the Semi-Lagrangian advection, to show stability over more integration steps.
The analysis of this thesis is also only applied to one-dimensional advection,
but weather prediction is a three-dimensional problem. The connection of these
higher dimensional problems could maybe also be connected to finite difference
methods.

Analysis of the problem of HARMONIE
We used the theoretical analysis from the thesis to study some recurring fail-
ures in the HARMONIE weather prediction code used by KNMI. Analysing the
errors given by the HARMONIE model when the model crashes, leads us to
determine where the problem originates. The log files show a lot of warnings
about the Semi-Lagrangian departure point being underground, below the low-
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est model layer. These are warnings, because the model has code that shifts
these departure points back above ground. This same log then shows an error
message about an invalid floating point operation. These are typically square
roots of negative numbers, or divisions by zero. In this code, analysis of the
errors origin shows us that the problem is a square root of a negative number.
In calculations regarding the condensation of water in the air, the square root
of the model layer thickness is used. This thickness is calculated using the dif-
ference between the vertical coordinate of a grid point and the one below. The
layer thickness can become negative if the height of a gridpoint is higher than
the one above or lower than the one below. The problem seems to be in the de-
termination of the departure point. The HARMONIE model uses the SETTLS
fixed point iteration with 2 iterations. Increasing this number of iterations or
changing the fixed point iteration to a predictor-corrector method both some-
times help to fix the problem. This is another indication that the departure
point problem is the thing that crashes the model run.

This paper proved that the departure point always exists. Model runs of HAR-
MONIE are run with time steps of 75 seconds, while typical vertical velocity
gradients allow time steps in the order of 104. For the used time step size, the
departure point is always unique and the fixed point iteration converges to the
departure point. Moreover, this unique departure point is monotone, so two de-
parture points corresponding to two arrival points will never change order. This
leaves only one possible explanation for the error. If the fixed point iteration
converges very slowly, the limited number of iterations can result in the observed
switch. Some converging fixed point iterations can jump around the fixed point,
converging very slowly. Two neighbouring arrival points, both converging slowly
to their departure point and jumping around it during the iterations, can yield
a change in order at the truncation of the iterations. The higher the iteration
count, the smaller truncation error to the fixed point. The HARMONIE opera-
tional model only uses 2 iterations, so this effect can be significant enough. The
rate of convergence depends on the ratio between the velocity gradient and the
time step. The bigger the gradient, the slower the convergence is and the larger
the timestep, the slower the convergence is.

The model run fails in an area with large changes in surface elevation. The wind
following the surface will be changing from horizontal to vertical, meaning a
large vertical velocity gradient. This causes the both the warnings of trajectories
going underground, as the error resulting in termination of the run. As the
vertical velocity gradient is large, the convergence will be slow, increasing the
chance for two point to switch in vertical order.
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6 Conclusion

Rewriting the Semi-Lagrangian method as a finite difference method helped us
understand its advantages. The numerical domain of dependence can be shifted
to allow arbitrarily large time steps. The stability is no longer lost for larger
time steps. The only limit on the time step comes from the determination of the
departure point. Using fixed point iteration poses a limitation on the time step,
as the uniqueness and convergence depend on the velocity gradient and the time
step used. For typical atmospheric conditions, this limit is not a problem. The
problem of the HARMONIE model seems to originate in the truncation of the
fixed point iteration. Regions with large vertical velocity gradients can slow the
convergence of the fixed point iteration and cause a crossing of characteristic
lines when it is truncated. Vertical crossing of characteristics create negative
layer heights in the model, causing a floating point exception.

The analysis of this thesis is only possible for one dimensional advection with
uniform and constant velocity. Future research could try to find a similar con-
nection to finite difference methods for higher dimensional advection or prob-
lems with a non-uniform and non-constant velocity. For the non-uniform and
non-constant velocity, the transport of the velocity itself and viscosity of the
transportation fluid should be taken into account.
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