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Abstract

The holonomy group of a connection is very intimately related to the curvature of the connection and
to the existence and quantity of parallel sections, thus controlling an important part of the geometry.
The Lie groups that can arise as the holonomy group of the Levi-Civita connection of a Riemannian
manifold were classified by Berger, resulting in a list of seven possible groups. These holonomies give
rise to special geometries, like Kéhler, Calabi—Yau or hyperkdhler geometries. It was not until fifty
years later that Olmos offered a geometric proof of Berger’s theorem, as an alternative to Berger’s more
algebraic proof. The first part of this work is dedicated to presenting Olmos’s proof, orderly developing
the requisites needed to understand it.

In the second part we introduce the generalization of holonomy to the Lie algebroid setting. Lie
algebroids are, in a sense, a generalization of the tangent bundle and, as such, it makes sense to consider
Lie algebroid connections and Lie algebroid holonomy. This new concept presents some remarkable new
features. The first one is the failure of the Ambrose-Singer theorem: the holonomy algebra is not only
determined by curvature, but also by the isotropy of the algebroid. We give a new proof of this Lie
algebroid Ambrose—Singer theorem, and provide some original examples of flat Lie algebroid connections
with non-discrete holonomy. Secondly, the notion of Lie algebroid holonomy is a leafwise notion, so the
holonomy can jump from leaf to leaf. When considering general Lie algebroid connections on vector
bundles, this behavior can be quite wild: it can jump either up or down when changing to smaller leaves.
We provide as well original examples of such behaviors.
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Introduction

On the trivial vector bundle £ = M x R" over a smooth manifold M, there is a canonical way of taking
derivatives of sections of E along directions in M. Indeed, sections of E can be identified with maps in
C*(M,R"), and the derivative of o € C°°(M,R") in the direction of v € T, M is just given by o.v. A
section of E whose derivative vanishes in all directions is constant.

On a general vector bundle £ — M, though, the above construction is only canonical locally, whereas
globally there is no canonical way of taking directional derivatives. A consistent choice of directional
derivatives is what we call a connection on E. This allows us to talk about “constant” or “parallel”
sections: those whose directional derivatives vanish in all possible directions. The existence and quantity
of such sections on a given bundle is controlled by the holonomy group of the connection.

Concretely, the holonomy group of a connection at a point x € M consists of all the possible linear
automorphisms of the fiber F, that arise as parallel transport along loops based at x. Parallel transport is
a way of connecting fibers of E by means of the connection: if v € E, and « : [0, 1] — M is a smooth curve
starting at x, then there is a unique section of F which is parallel along 7, meaning that its derivative in
the direction of 4(t) vanishes. The value of such a section at time 1 is the parallel transport of v along
«v, and we call it 7,v. The holonomy group at x is the subgroup of GL(E,) given by transformations of
the form 7, for all loops 7 based at x. As said, this group is very closely related to the space of parallel
sections of E. This goes under the name of the holonomy principle: every vector in E, which is invariant
under the holonomy group gives rise to a unique parallel section of E, and all parallel sections arise in
this manner. The reason we are interested in the (non)existence of parallel sections is because this is
very intimately related to the geometry of F. Indeed, the holonomy group contains essentially the same
information as the curvature (actually, a bit more). The curvature of a connection is an obstruction for
the connection to define a cochain complex on FE-valued differential forms on M, and it is related to
holonomy through the celebrated Ambrose-Singer theorem: the Lie algebra of the holonomy group is
spanned by the parallel transport of every curvature endomorphism on M.

If E is the tangent bundle of a Riemannian manifold (M, g), then it is well known from Riemannian

geometry that there is a unique connection which is compatible with g and moreover torsion-free, called
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the Levi-Civita connection. The holonomy group of TM at x € M for the Levi-Civita connection is called
the Riemannian holonomy group of M, and we denote it by Hol,(M). As stated, the group Hol, (M)
determines part of the geometry of M. Indeed, if Hol,(M) leaves some tensor over z invariant, then
by the holonomy principle there is some global tensor field on M which is nowhere vanishing, parallel
and equals the given tensor at x. Applying this reasoning to the simplest examples already gives some

interesting results:

1. The group SO(n) is the subgroup of GL(n,R) preserving the canonical metric on R™ and the
canonical volume form dz! A --- A dz™, for (27); coordinates in R"™. Hence, if Hol, (M) C SO(n),

then there is parallel volume form on M. In particular, M is orientable.

2. The group U(n) is the subgroup of GL(2n,R) preserving the canonical metric on R?>" and the

0 _ 0
Oxi T dyI>

R2".  Actually, U(n) C SO(n), so that it also preserves the canonical volume form. Hence, if

canonical linear complex structure J on R?", given by J for (27,47 ); coordinates in
Hol, (M) C U(n), then there is a parallel almost complex structure and a parallel volume form on

M, which is equivalent to M being Kahler.

3. The group SU(n) is the subgroup of GL(2n, R) preserving the canonical metric on R?", the canonical
linear complex structure on R?" and the canonical complex volume form dz! A --- A dz™, for (27 =
29 +iy?); complex coordinates in C" = R?". Also, SU(n) C SO(n) as well, so it also preserves
the canonical volume form. Hence, if Hol,(M) C SU(n), then there is a parallel almost complex
structure, a parallel complex volume form and a parallel real volume form on M. This is the
definition of M being Calabi—Yau.

4. The group Sp(n) is the subgroup of GL(4n,R) preserving the canonical metric on R*" and the
canonical linear quaternionic structure on R%”, given by two linear complex structures I and J on
R*" defined by I% = % and I% = %, and J% = % and J%j = %, for (z7,y7,a7 b)),
coordinates in R*". Actually, Sp(n) C SU(n), so it also preserves a complex and a real volume form.
Hence, if Hol, (M) C Sp(n), then on M there are two parallel almost complex structures I and J
satisfying the quaternionic relations I.J = —JI, a parallel complex volume form and a parallel real

volume form. This is the definition of M being hyperkéahler.

A remarkable result by Berger [Ber55], together with some later refinements by Alekseevskii [Ale68]
and Brown and Gray [BG72], states that the four examples just listed plus Sp(n)Sp(1) and the two
exceptional cases G2 and Spin(7) are the only possible groups that a connected and simply connected
Riemannian manifold which is not reducible or locally symmetric can have as holonomy. Here reducible
means that the action of Hol, (M) on T, M is reducible, and locally symmetric means that every point
is a fixed point of a local isometric involution inverting the direction of geodesics. Moreover, each one of
these groups can be realized as the holonomy of some manifold and, actually, of some compact manifold
[Yau78, Bea83, Gal87, Joy96a, Joy96b, Joy96¢|.

The first objective of this thesis is to understand the proof of Berger’s theorem. The original proof by
Berger is algebraic and relies on the classification of Lie groups: it considers the list of closed connected
Lie subgroups of SO(n) which act irreducibly on R™ and applies two algebraic tests to each one of them.
These tests are essentially two symmetry tests having to do with the symmetry properties of the Riemann
curvature, and those groups that survive both tests can be holonomy groups.

Seven years later, Simons [Sim62] offered a new proof, still quite algebraic in nature. He showed that
if the holonomy group acts irreducibly and in a nonsymmetric manner, then it must act transitively on
the unit sphere of T, M. The transitive actions on the sphere had already been classified by Montgomery
and Samelson [MS43] and Borel [Bor49], and they are the ones above listed.

Relatively recently, Olmos [Olm05] found a different proof of Simons’s theorem, this one geometric

in flavor, which relies heavily on the Riemannian theory of submanifolds of Euclidean space. This is the
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proof we will be following. The proof has two main ingredients: if G C SO(n) is a compact connected

Lie subgroup acting irreducibly, then

1. for all ¢ € G and = € R™ nonzero, there is a smooth curve from z to gz in the orbit Gz such that
the action of g on the normal space to the orbit at x can be realized as the normal parallel transport

along the curve;

2. when the action is moreover not transitive on the unit sphere, for every nonzero x € R"™ there is
some vector ¢ which is normal to the orbit at  but not a multiple of x such that the normal spaces
to the orbits through the points of the curve = + t&£, for ¢t € R, span all of R"™.

From these two propositions it follows that if the holonomy acts irreducibly on T, M but not transitively,
then it must act symmetrically, meaning that it leaves the Riemann curvature invariant. From this one
can deduce that M must be locally symmetric.

The second part of the thesis focuses on the holonomy of Lie algebroids. Lie algebroids are, in a
way, a generalization of the tangent bundle of a manifold M. They are vector bundles A — M with two
structures that together make it behave like T'M: a Lie bracket on its space of sections and a way to take
derivatives of smooth functions of M in the directions of A, i.e., a bundle map p: A — TM, called the
anchor. Both objects are related by a Leibniz rule. The way to think about Lie algebroids is as a version
of the tangent bundle of M tailored for particular geometrical applications. Examples of this are regular
foliations, that is, involutive subbundles F' C T'M, where the “tailored tangent bundle” to look at is F;
Poisson geometry, where the “tailored tangent bundle” is the cotangent bundle T*M; or manifolds with
boundary, where the “tailored vector fields” are those tangent to the boundary.

Every construction on T'M using vector fields as derivations and their Lie brackets can be generalized
to Lie algebroids, like differential forms and the de Rham differential, or connections, parallel transport
and holonomy. Of course, a Lie algebroid connection, or A-connection, on a vector bundle £ — M will
be a consistent way of taking directional derivatives of sections of F along directions given by A. To
define parallel transport we already run into a problem: in the classical case, a section ¢ of E along a
smooth curve 7 : [0,1] — M was said to be parallel if its derivative in the direction of 4(¢) vanished for
all t. But following the “tailored tangent bundle” principle, we should substitute 7, which is a section
of TM along -y, by the “tailored velocity” of -, a section of A along . These are called A-paths, and
it is along them that we can parallel transport. As in the classical case, this leads to the notion of Lie
algebroid holonomy: linear automorphisms of the fiber F, which are parallel transport along A-paths
whose base paths are closed loops at z.

The Lie algebroid holonomy presents some remarkable new features, when compared with the clas-
sical holonomy. First of all, the Ambrose—Singer theorem does not hold anymore. This was proven by
Fernandes [Fer(02], and here we give a new proof of this fact. For Lie algebroid holonomy, the curvature
endomorphisms do not span the holonomy algebra, but we have to add new terms coming from the fact
that the anchor might not be injective. The classical Ambrose—Singer theorem gives that a flat connection
(one whose curvature vanishes identically) must have a discrete holonomy group. The Ambrose-Singer
theorem for Lie algebroids gives instead that flat connections can still have non-discrete holonomy, if the
anchor is not injective. We give explicit original examples of such behavior.

On the other hand, Lie algebroid holonomy is a leafwise object. Any Lie algebroid comes with an
involutive (possibly singular) distribution on the base manifold: the image of the anchor. This integrates
to a (possibly singular) foliation on M. The smooth curves on M that can be lifted to A-paths, i.e.,
those having a “tailored velocity” in A, must stay in a single leaf, and so the Lie algebroid holonomy only
sees what is happening at the leaf level. Hence, the holonomy can jump from leaf to leaf. We also give

original examples of such behavior.
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The thesis is organized as follows. Chapter 1 is devoted to introducing the basic language of connec-
tions and holonomy that we will be using throughout the entire text. We start with the general notion of
connections, parallel transport and holonomy on vector bundles, as well as curvature. We also prove the
Ambrose-Singer theorem. Finally, we particularize to the case of the tangent bundle and consider Rie-
mannian geometry: we introduce torsion, the Levi-Civita connection, the Riemann and related curvatures
and geodesics.

Chapter 2 goes into the Riemannian theory of submanifolds that we will need for Olmos’s proof of
Simons’s theorem. Whereas Section 2.1 is absolutely fundamental to follow the proof, Section 2.2 is only
necessary for the first step in Olmos’s proof (Proposition 3.47). If willing to take some details of the
proof of Proposition 3.47 in faith, Section 2.2 can be skipped in a first reading.

In Chapter 3 we finally give the proof of Berger’s theorem and study some of its consequences. In
Section 3.1 we start by describing reducible spaces and what their holonomy looks like, including the
de Rham decomposition theorem. Then we pass on to symmetric spaces, in Section 3.2: we establish
some of their basic geometric properties and study their underlying Lie theoretic nature, and from here
we conclude what their holonomy is. Lastly, Section 3.2.3 contains again some details for one of the
main ingredients for the proof of Proposition 3.47. The other main ingredient in such proof is studied in
Section 3.3: the normal holonomy theorem. This is the analog of the pointwise de Rham decomposition
theorem for the normal holonomy of a submanifold. Finally, in Section 3.4 we prove Simons’s theorem
using the previous machinery. In Section 3.5 we deduce Berger’s theorem about Riemannian holonomy
from Simons’s holonomy theorem. Using the classification of transitive actions on the sphere, we recast
Berger’s theorem in its original fashion: as Berger’s list of possible holonomy groups for a Riemannian
manifold. As it has already been stated, different holonomy groups give different geometric properties to
the manifold. These special geometries (K&hler, Calabi—Yau, hyperkéhler and quaternionic Kéhler) are
explored in Section 3.6 and we give some examples.

In Chapter 4 we turn to Lie algebroid connections and holonomy. We first give the basic defini-
tions, examples and properties of Lie algebroids, including the induced singular foliation. In Section 4.2
we introduce Lie algebroid connections, parallel transport and holonomy. We give a new proof of the
Ambrose—Singer-Fernandes theorem, by following the “tailored tangent bundle” principle, adapting the
proof of the classical Ambrose—Singer theorem to the Lie algebroid case, replacing TM by A. We finally
give original examples of flat Lie algebroid connections having non-discrete holonomy and of holonomy
jumps between leaves.

In order to keep the flow of the text, we have included in Appendix A the proofs of some results
formulated or used in the main body which require uninteresting computations. Also, although in the
main text we focus on the view of connections as covariant derivatives, for completeness we have added

an introduction to linear Ehresmann connections in Appendix B.



Holonomy

Consider the trivial rank r vector bundle £ = M x R” over a smooth manifold M. Sections of E can
be identified with C°°(M,R"). On such a bundle there is a canonical notion of what it means to take
the derivative of a section o € C*°(M,R") in the direction of v € T, M, it is just o,v. This expression is
R-linear on v and satisfies the following Leibniz rule in o: if f € C*° (M), then

(fo)sv = f(z)owv + (vf)o(x).

The “constant” or “parallel” sections of the bundle are those whose directional derivatives in all directions
vanish. In this case, they are the constant maps.

On a general vector bundle £ — M over a smooth manifold M there is no canonical way of taking
directional derivatives. A choice of such directional derivatives is what we call a connection on E. The
name connection comes from the fact that it allows us to compare different fibers of E through the
concept of parallel transport.

In this chapter we review the basic concepts of connection and curvature, we introduce parallel
transport and holonomy, we state and prove the Ambrose—Singer theorem and finally we particularize all

these constructions to the tangent bundle.

1.1. Connections

For a vector bundle E — M, we write QF(M, E) for the space of E-valued k-differential forms:

QF (M, E) :=T(A*T*M @ E).
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Definition 1.1. A connection on a vector bundle E — M is an R-linear operator V : ['(E) — QY(M, E)

satisfying the Leibniz rule
V(fo)=df ® o+ fVo, for feC®(M)andoecI(E).

We denote Vo (u) by Vo, for u € TM. A section o € T'(E) is called parallel if Vo = 0. )

Every vector bundle admits a connection, for instance by taking the canonical connection described
above on trivializing charts and gluing them together with a partition of unity, see for instance [Tul7,
Thm. 10.6]. Also, as a consequence of the Leibniz rule we have that if V and V' are two connections on
E, then V-V’ :T'(E) — QY(M, E) is C>°(M)-linear, so that actually V — V' € Q1(M,End E).

A connection on F immediately induces a connection on E*, defined by
V(o) i =u(A(0)) = M(Vyuo), for AeT(E*),0c e (E) and u € TM.

On the other hand, if E/ — M is another vector bundle with connection V’, then both V and V'

induce a connection V on E ® E’ given by
Vule®o):=Vo®o +0xV,d, foroel(E),o el'(E)andueTM.

In particular, they induce a connection V’ on every tensor product E¥* @ F*®' @ E': if T € T(E®* @
E*®l @ E'), then for \' € T'(E*), 0; € I'(F) and u € TM, it is given by

VI TN, N o) = VLT, M o, o)

k
= T VN A o)
=1

!
—ZT()\l,...,/\k,al,...,Vuoi,...,Ul).
i=1

This seems to potentially introduce some ambiguity, since T can be considered as a section of E®* ®
E*®L @ E' or as a section of E¥P @ B*®1 @ (E®*—P) @ *@(-9) g E'), for 0 < p < k and 0 < ¢ < [, which
have two a priori different connections. It is a routine exercise to check that they actually agree, so that
V!, T is perfectly well defined.

A connection can be extended to higher degree forms in a unique manner, by imposing that the

Leibniz rule be satisfied.

Definition 1.2. On a vector bundle £ — M with a connection V, the covariant differential is the
unique R-linear operator D : Q% (M, E) — QFF1(M, E) satisfying the Leibniz rule
Da®o)=da®o+ (—1)*a AV, foracQ¥(M)and o c'(E). )

Explicitly, it is given by a Koszul-type formula: if o € Q¥(M, E) and X; € X(M), then

Da(Xo, ... Xg) =Y _(-1)'Vx,(a(Xo, ..., Xi, ..., Xx))

+ Z(*l)iJrjOé([Xi,Xj],Xl, ey XZ‘, N 7Xj, . ,Xk)
i<j
The space Q°*(M, E) has several module structures, and it is interesting to know how these structures
behave under the covariant differential. First of all, the wedge product of forms induces a graded Q®(M)-
module structure on Q°*(M, E), by defining a wedge product as

QF (M) x QY(M,E) — QFYM,E)
(a,B®0) — (aAP)®o.
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Also, the composition of endomorphisms turns 2*(M, End F) into a graded ring, by defining

OF(M,End E) x Q/(M,End E) — QF(M,End E)
(a® A, B® B) —  (aAp)® AB,

and this in turn induces a Q°*(M, End E)-module structure as well on Q°*(M, E) by

OF(M,End E) x QY(M,E) — QFMUYM,E)
(a® A, pRO0) — (aAf)® Ao.

Lemma 1.3. The covariant differential is a degree 1 derivation of both the Q°*(M)-module and the
Q°*(M, End E)-module structures on Q® (M, E), by which we mean that for alla € QF (M), A € Q'(M,End E)
and B € Q™(M, E) we have that the following Leibniz rules hold:

D(aAB)=daAB+ (~1)*aADB and D(AANB)=DAAB+(—1)'AADS.

Proof. We will prove the results for decomposable forms. To that effect, let a € Q¥(M), B €
Q" (M) and o € I'(E). Then

DaA(B®0o)=D(aAB)@0c)=danB)@oc+ (—1)™anBAVe
=daAN(B@o)+ (~Dfan(dB@o+ (—1)"BAVo)
=dan(B@0)+(-1)*aADB o).

For the second Leibniz rule, we first prove it for A € I'(End E) and ¢ € T'(E). By the definition
of the induced connection on End E, we have that for all X € X(M),

VxA(O') = Vx(AO') — A(ng)

This exactly means that DA Ao = D(AA o) — AA Do, as wanted. Let now a € QY(M) and
B € Qm(M). Then

D(a®@ A)A(B®0o))=D((aNB)®Ac) =d(anB)® Ao+ (—1)*™aABADANAO)
= (daAB)® Ao+ (-1 (aAndB)® Ao
+ (=)™ a ABA(DANG+ AN Do)
= (da® A+ (-1)!a ADA) A (B®0)
+ (=D a®@ A A(dB@0+ (~1)"B A Vo)
=D(a@A)A(BR0o)+ (-1 (a® A)ADB o),

and this ends the proof. O

Definition 1.4. The curvature F of a connection V on E is the R-linear operator F : X2(M) —
I'(End E) given by

F(X,Y)O’ =VxVyoc—-VyVxo — V[X)y]d, for X,Y € %(M) and o € F(E)

We say that (E,V) is flat if F = 0. ¢

Remark 1.5. Tt is straightforward to see, using the Leibniz rule for V, that actually F is C°°(M)-linear,
so that F' € Q?(M,End E).

One way to think of F' is as the obstruction of D to square to zero, as the following shows.
Proposition 1.6. For all o € Q*(M, E) we have that D*a = F A a.

7
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Proof. Let 0 € T'(E). Then the Koszul formula gives that, if X,Y € X(M),
D?0(X,Y) =VxVyo —VyVxo — Vixyjo = F(X,Y)o = (FAo)(X,Y).
If now a € QF(M), then by the Leibniz rule and because F is a 2-form,
D*(a®0)=D(da® o+ (—1)*a A Vo)
=d’a®0+ (—1)""da A Vo + (-1)*da A Vo 4+ a A Do
=aANFANo=FA(a®o),
as wanted. O
An interesting property of F' is that it is always D-closed.
Proposition 1.7 (Second Bianchi identity). DF = 0.

Proof. By Proposition 1.6 and the Leibniz rule in Lemma 1.3, for any o € I'(E) we have that
D3¢ =D(FAo)=DF Ao+ FAVo=DF Ao+ Do,

from where we get DF = 0. O
Connections which are compatible with additional structures on E present special features. The ones
we will be using are metric connections.

Definition 1.8. A metric (-,-) on the bundle E is a section of the symmetric product S2E* which
is fiberwise nondegenerate, meaning that for every x € M, if v € E, is such that (v,w) = 0 for all
w € E,, then v = 0. If it is not only fiberwise nondegenerate but fiberwise positive-definite, meaning
that (v, v) > 0 for all nonzero v € E,, then we call it a positive metric.

A connection V on E is metric (or compatible with the metric) if
X(o,v) = (Vxo,v) + (0,Vxv), forallovel(FE)and X € X(M). )

Proposition 1.9. Let 'V be a metric connection on E. Then the curvature is skew-symmetric with respect
to the metric, by which we mean that (F A o,v) + (o, F Av) = 0, for all o,v € T'(E). If so(E) is the
subbundle of End E given by skew-symmetric endomorphisms, then F € Q*(M,s0(FE)).

Proof. Direct computation: for all X,V € X(M),

(F(X,Y)o,v) = (VxVyo —VyVxo — Vxyo,v)
= —(Vyo,Vxv) +(Vxo,Vyv) + (0, Vix y )
+ X (Vyo,v) =Y (Vxo,v) — [X,Y]|{o,v)
= (0, F(Y,X)v)+ X(Vyo,v) =Y (Vxo,v) — [X,Y]{o,v)
—Y{(0,Vxv)+ X(o,Vyv)
= (0, F(Y, X)V) + (XY =YX — [X,Y]){o, )
=—(0,F(X,Y)v) O

A metric on E induces an isomorphism E = E* by sending v € F to (v,-) € E*. This induces a

metric on E* and, hence, on every tensor product E®* @ E*®! by
(e - euete - 0fue - Qu el ® &)= (v,w)... (ow)E .. (€ ).

If a connection V on F is metric, then the induced connections on tensor products and duals are also
metric.

One last construction that we will use is the induced connection on a pullback bundle.

8



Jaime Pedregal 1.2. Parallel transport and holonomy

Lemma 1.10. Let E — M be a vector bundle with a connection V, and ¢ : N — M a smooth map from

a smooth manifold N. Then ¢*E has a connection ¢*V, the pullback connection, given by
(¢"V)(¢*0) :=¢"(Vo), foroe'(E).

Proof. We need only check that it is well defined by checking the Leibniz rule for a section ¢*(fo),
for f € C°°(M). Since ¢* commutes with the differential,

(0*V)(¢"(fo)) = ¢"(V(fo)) = ¢"(df ® 0 + Vo) =d¢" f @ ¢*0 + ¢" f¢* (Vo). [
Explicitly,
(¢*V)u(¢p o) = Vy,uo, forueTM.

Of course, not every section of ¢*E can be written as ¢*o for some o € I'(E), but they can all be written
as finite C°°(M)-linear combinations of such pullback sections.

Not surprisingly, the curvature of the pullback connection is the pullback of the curvature.

Lemma 1.11. Let E be a vector bundle with a connection V and curvature F', and ¢ : N — M a smooth
map from a smooth manifold N. Then the curvature of ¢*V is ¢*F € Q*(N,End ¢*E).

Proof. Write V for ¢*V, D for its covariant differential and F for its curvature. Then if o € QF(M)
and o € T'(F), we have that

D¢*(a®0) = D(¢*a® ¢*0) = dp*a® ¢*o + (—1)F¢p*a AV (¢*0)
= ¢*(da®o+ (-1)*a AVo) = ¢*D(a ® o).
Then, by Proposition 1.6, we have that
FA¢*o=D**c = ¢*D?0 = ¢*(F No) = ¢*F A ¢*o,
so F = ¢*F. O

As a last comment, there is an alternative viewpoint to connections as horizontal distributions over
the total space E of the bundle. Although we will not use it in this work, it is a fundamental viewpoint,

and we have decided to include an introduction to it in Appendix B.

1.2. Parallel transport and holonomy

One might wonder (rightly) why a connections is called so. The reason is that it allows to compare
(connect) different fibers of the bundle E. This is done through parallel transport.

Let E — M be a vector bundle with a connection V. Let « : [0,1] — M be a smooth curve. A section
of E along v is just a section of v*FE. Explicitly, a section along  is a smooth map o : [0,1] — E such
that o(t) € Ey4). It is said to be parallel along v if (7*V)o = 0. For (y*V)o we will also use the

following notations interchangeably

. v o _.
(v*V)o =Vs0 = pridals

If (x%); are local coordinates on M and {o;}; is a local frame for F, then in these coordinates and this
frame we can write 4/(t) = ¥¢(t) agi and o(t) = o*(t)o;(y(t)), for some smooth functions 4%, 0% : [0,1] — R.

Let Ffj be smooth local functions such that V_» o; = Ffjok. Then
ozt

o(t) = (V) 4 (0'7"03) = 6" (D)o (v(1)) + o (£) Vi 03 (4(t)
= (&' (t) + D5 (v(1) ™ (D)7 (1)) os (v(1)),

so that the equation for o to be parallel is locallly a first order linear ODE. These always have a unique

solution defined on the whole interval of definition of the equation. Hence, we have proved the following.

9
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Lemma 1.12. Let y: [0,1] — M be a smooth curve. Then for every v € E. ), there is a unique parallel
section o, along v such that ,(0) = v. O

This gives the sought way to connect different fibers.

Definition 1.13. Let v : [0,1] — M a smooth curve. Then parallel transport along ~ is the map

v By — By
v —  o,(1),

where 0, is the unique parallel section along v starting at v given by Lemma 1.12. ¢

Observe that parallel transport can be defined as well over piecewise smooth curves, by doing sequen-
tially parallel transport along the smooth parts of the curve.

Parallel transport has very nice properties.
Proposition 1.14. Let E be a vector bundle with connection. Then

1. parallel transport along a smooth curve v in M is a linear isomorphism, with inverse 7,-1, where
Y =l =),

2. parallel transport is invariant under reparameterization, i.e., if f : [0,1] — [0,1] is a diffeomorphism
with f(0) =0 and f(1) =1, then Tyo5 = Ty,

3. if v and a are two composable curves in M, then Ty.q = TaTy;

4. if the connection is metric, then parallel transport is isometric, i.e., (Tyv, Tyw) = (v,w) for all
v, W € Ew(O)-

Proof. 1 and 2 follow from the fact that if o is parallel along ~ then ¢ — o(1 — t) is parallel along
y~1 starting at o(1) and ending at ¢(0), and o o f is parallel along v o f. On the other hand, if v
is a parallel section along « starting at o(1), then

a(2t), 0<
t— 1

is a parallel section along v - v starting at ¢(0) and ending at v(1) = 74(0(1)) = T7o7y(c(0)). This
gives 3.
For 4, assume that the connection is metric. Then the pullback connection to v*FE is also

metric, so that, if o and v are parallel sections along ~,

d . .
%W, vy =(0,v)+ (o,v) = 0.

Hence, (0(0),v(0)) = (o(1),v(1)), and this ends the proof. O

Observe that this proof also gives that if {e;}; is a (orthonormal) basis for . () then there is a unique
(orthonormal) parallel frame {o;}; along v such that 0;(0) = e;. This procedure can be used to prove a
useful formula to compute the action of a connection.

Proposition 1.15. . Letx € M, v € T,M and o € T'(E). Let v :[0,1] = M be a smooth curve
with v(0) = x and ¥(0) = v, and let 7y be parallel transport along v from x to y(t). Then

dl

Vio = gi| i e00),

2. Let v:[0,1] = M be a piecewise smooth curve and let 7y be parallel transport along v from v(0) to
v(t). Then for any o € I'(v*E) we have that

o(t) = Tt%('rt_la(t)).

10
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Proof. For 1, let {o;}; be a parallel frame along . Then parallel transport is given by 7;(A\’0;(0)) =
N (t). Write o(vy(t)) = o*(t)o:(t) for some smooth functions o : [0,1] — R. Then,

Vir= gl ot = | o'Wt =500
d| dl
= G| 700 = 5| metw)

For 2, let again {0;}; be a parallel frame along v and write o(t) = o*(t)o;(t). Then

. iy .q d, ; d, _
6(t) = &' ()ai(t) = 7(6" (1)0:(0)) = i (0" (1)0s(0)) = (7 "o (£). O
Parallel transport along loops at a point plays a very important role in geometry, and it gives rise to

one of our main objects of study. Let II, , denote the set of piecewise smooth curves in M from x to y.

Definition 1.16. Let £ — M be a vector bundle with a connection V. The holonomy group of V at
x € M is defined as
Hol, (V) == {1y : v € I, . }.

The restricted holonomy group of V at x is defined as
Hol(V) := {r, : v € I, is null-homotopic}. N

Proposition 1.17. Let E — M be a vector bundle with a connection V and x € M. Then Hol,(V)
is a Lie subgroup of GL(E,) whose connected identity component is Hol2(V). In particular, Hol® (V) is

normal in Hol, (V).

Proof. That both Hol, (V) and Hol?(V) are subgroups of GL(FE,,) is a direct consequence of Propo-
sition 1.14. We now show that Hol? (V) is an arcwise connected subgroup of GL(E,), which implies
that it is a Lie subgroup [Yam50]. Let «y : [0,1]> — M be a smooth homotopy with fixed endpoints
starting at the constant path on z (every null-homotopic path is smoothly null-homotopic [Leel2,
Thm. 6.29]). By a similar argument as in Lemma 1.12 and using the smooth dependence on initial
conditions of ODE theory, for each v € E, there is o € I'(y*E) such that 3.0 = 0 and o(s,0) =v
for all s. Then, if 7, is parallel transport along s := 7(s, ), we have that 75v = o(s,1), which is
smooth on s. Since 7 is the constant path, then ¢(0,t) € E, does not depend on ¢, and therefore
700 = 0(0,1) = ¢(0,0) = v. We conclude that 7, is a smooth path in Hol’(V) from 7y to the
identity, as wanted.

Since Hol2(V) is a subgroup of Hol,(V), this also endows Hol, (V) with the structure of a Lie
group by translating the smooth structure of Holg (V) by left or right multiplication.

Consider now the map 7, (M) — Hol,(V)/Hol%(V) given by [y] — ! Hol(V). Tt is easily
seen to be a surjective group homomorphism. Since 71 (M) is countable [Leell, Thm. 7.21], then
Hol,(V)/Hol%(V) is also countable. Hence, the image of the identity component of Hol,(V) by
the projection Hol, (V) — Hol,(V)/Hol(V) is connected and contains id Hol?(V), from which
we conclude that indeed Hol% (V) is the identity component of Hol, (V). The fact that it is normal

follows from the fact that the identity component of a Lie group is always normal. O

Therefore, the following definition makes sense.

Definition 1.18. Let E — M be a vector bundle with a connection V. The holonomy algebra hol,(V)
of V at « € M is defined as the Lie algebra of Hol, (V). )

The holonomy group is independent of the base point in the following sense.

Proposition 1.19. Let E — M be a vector bundle with a connection V and let x,y € M be connected

by a piecewise smooth curve v in M. Then
Hol, (V) = 7, " Hol, (V).

11
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1

Proof. If a is a loop at y, then v-«a -+~ is a loop at =, and all loops at & can be obtained in this

way. O

The holonomy group is very intricately related to the geometry of E. It is closely related, on the
one hand, to parallel sections of the bundle, and, on the other, to the curvature of F, as we will see in
the next section. A parallel section clearly gives an Hol, (V)-invariant vector in E,. The correspondence
goes the other way around as well: every Hol,(V)-invariant vector in E, defines a parallel section, and

all parallel sections of E arise in this manner.

Theorem 1.20 (Holonomy principle). Let M be connected, E — M a vector bundle with a connection

V and x € M. Then the following vector spaces are isomorphic:
1. the space of parallel sections of E,
2. the space of Hol,(V)-invariant vectors in E,,

3. the space of sections invariant under parallel transport, i.e., sections o € I'(E) such that 7,(c(7(0))) =
o(v(1)) for all piecewise smooth curves v in M.

Proof. We first show the equivalence of 2 and 3. Map a section o € I'(F) invariant under parallel

transport to o(z). This vector is invariant under Hol, (V). Indeed, if 7 is a loop at z, then

The map is injective: if y € M and v is a smooth curve from x to y, then if o(z) = 0 we have
that o(y) = o(v(1)) = 7(o(x)) = 0, so ¢ = 0. The map is also surjective: let v € E; be
Hol,(V)-invariant and define o(y) := 7yv, where v is any smooth curve from z to y. Since v
is Hol, (V)-invariant, this section is well defined. It is also smooth, because around y one can
take concatenations of v with radial curves from y in some chart, and parallel transport depends
smoothly on these curves. Lastly, this ¢ is invariant under parallel transport: if v is any piecewise

smooth curve in M and « is a smooth curve from z to v(0), then

o((1)) = Tarv = Ty Tav = 7(0(7(0)))-

We now show the equivalence of 1 and 3. If ¢ € T'(F) is invariant under parallel transport, then
Proposition 1.15 gives that for any v € T, M, if -y is a smooth curve with v(0) = y and 4(0) = v,
and 74 : [0,1] — M is defined by ~:(s) = y(st), then

d . d

d _ d
= G| _ ety =g :

T,00 N 0) = = ol (1)

Vo - =z
t=0 dt],_g

o(x)=0.

Conversely, if 0 € T'(E) is parallel and v is a piecewise smooth path in M, then, since y*o is

parallel along -,
7(0(7(0))) = a(7(1)),

so ¢ is invariant under parallel transport. O

Corollary 1.21. Let M be connected, E — M a vector bundle with a metric connection V and x € M.
Then Hol, (V) C O(E,). Moreover, if E is orientable, then Hol, (V) C SO(E,).

Proof. Write g or (-, ) for the metric on E. Then for every o,v € T'(E) and X € X(M),
Vxg(o,v) = X{(o,v) — (Vxo,v) — (0,Vxv) =0.

Then, by the holonomy principle, g, is Hol,(V)-invariant, meaning that for all v € II, , and
u,v € by,

TW_lgéL’(u7v) = (Tyu, Tyv) = ga2(u,v) = (u,v),

12



Jaime Pedregal 1.3. Ambrose—Singer theorem

i.e., Hol, (V) C O(E;,).

If E is orientable, let w be the global frame for det E* defined on y € M by w(es,...,e,) =1
for any oriented orthonormal basis {e;}; of E,. Let {o;}; be any orthonormal local frame for E
and X € X(M). Then

Vxw(oy,...,on) = X(w(og,...,00)) — Zw(al, oy VX004 0m).
i
The first term vanishes because w(oy,...,0,) = 1 identically. On the other hand, the only term
that survives in the second term is the one corresponding to the component of V x ¢; in the direction
of o;, which is
1
<VX0—1'7 O’i> = §X<0i, 0i> = 0,

since (0;,0;) = 1 identically. Hence, by the holonomy principle, w, is Hol,(V)-invariant, which
gives that Hol, (V) C SO(E,). O

1.3. Ambrose—Singer theorem

We will now explore the relation between holonomy and curvature. Simply put: curvature determines
the holonomy. This is the celebrated Ambrose—Singer theorem, to which we now turn. In this exposition
we follow [Bal02], which is elementary, avoiding the use of any integrability theorems. Let E — M be
a vector bundle with connection V and let « : [0,1]> — M is a smooth map. If we consider coordinates
(s,t) on [0,1]?, then for o € T'(y*E) we use the notations

v . v
%U.—(’Y V)%O’ and ao.—(y V)

0 0.
ot

Lemma 1.22. Let vy : [0,1]> — M be a piecewise smooth homotopy. Let 75, be parallel transport along
s = Y(s,) from ys(t) to vs(1) and let

0 0 _
Fut= 1ol (o), a(s.0)) 72 € 0B, o).
Then for any o € T'(v*E) with %0 =0 and %a(~,0) = 0 we have that

%o’(s, 1) = (/01 Fs,tdt> o(s,1).

Proof. To make things clearer, Figure 1.1 shows a sketch of the situation. Using Proposition 1.15,
Lemma 1.11 and the fact that %0 = 0, we compute:

d v vV V 1o} 0
7 <Ts’t850(s’t)) = 7'37t&%0'(57t) = Ts 1 F (at"y(s,t), agv(s,t)) o(s,t) = Fs10(s,1).

Then, since 7,1 = id and %0(-, 0)=0,
Y o(5,1) = 11 o(s, 1) — V(O)—/ld N o(s,t)) dt = /1th (s,1). O
5:0(5 1) = Tsa5-0(s, Ts05-0(5,0) = | Tsit 520 (5, =, B o(s,1).

Corollary 1.23. Let v :[0,1]2 — M be a piecewise smooth homotopy with fized endpoints and let T4 be

d 1
— Ty = </ F tdt> Ts.
dS 0 ’

13
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Figure 1.1: Homotopy 7.

Proof. Let o € T'(y*E) with %a =0 and %a(~,0) = 0. Notice that since ~ has fixed endpoints,
the covariant derivative with respect to s at the endpoints is just derivation with respect to s.
Hence, o(-,0) is constant and, by Lemma 1.22,

\Y d d d
ga(s, 1) = g(o(s, 1)) = £(Tso(s,0)) = (dSTS> a(s,0)

:<AHQMQU@J)=(AHQMQTJ@0L

and this gives the result. O

We will now see that curvature gives information on the rate of change of parallel transport along
“homotopies of square loops”. To make this precise, let z € M and u,v € T.M. By a homotopy of
square loops we mean the following: given a smooth map f : U — M from an open neighborhood U of 0
in R? containing [0, 1] such that f(0) = 2, %(0) = and 3—5(0) = v, we consider the piecewise smooth
homotopy with fixed ends ~ : [0,1]> — M given by

f(4st,0), 0<t<1,

_ f(575(4t_1))’ i <t < l’
() = F(s(3—4t),s), ggtgé, (1-2)

f(0,4s(1—1)), 3<t<1.

A sketch of a homotopy of square loops can be seen in Figure 1.2.

R? _— v
©.9) (s,8)

0,00 (50

Figure 1.2: Homotopy of square loops based at z in the direction of u,v € T, M.

Proposition 1.24. Let v be a homotopy of square loops as in (1.2) and let 75 be parallel transport along
~vs. Then

d
— 7s =0 and

2
2
ds | ,—g ds?|_g

Ts = 2F (v, u).

14



Jaime Pedregal 1.3. Ambrose—Singer theorem

Proof. Direct computation, using the skew-symmetry of F', gives

9 P 0, t<lort>3
F (mv(s,t), 8Sv(s,t)> =3 4sF(5L,80) (s s(at — 1)), [ <t<3,
4sF (5L, 50 (s(3 — 4t),5), 3 <t<%.

Hence, by Corollary 1.23,
a
ds

3/4
Ts — / E)ytdt T0 — 0
s=0 1/4

Also, %Fs,t — 4F(v,u) uniformly in ¢ as s — 0 since 79 = id because -y, is the constant path.

Then,
3/4 4
T = —
s=0 ‘/1/4 dS

Theorem 1.25 (Ambrose-Singer). Let x € M and denote by I1, the set of piecewise smooth curves
[0,1] — M starting at x. Then

d2
ds?

Fs’tdt> To = 2F (v, u). O
s=0

hol (V) = span{T;lF(u, v)Ty 0y €1l and u,v € Ty M}.

Proof. Write g for the right-hand side of the equality. Let v € II, and u,v € Ty (;)M, and let «
be a homotopy of square loops based at v(1) in the direction of u and v. Write 74 := v - as -y 1,
which is a contractible loop at x for each s. Let g(s) := 7.7 Lr /5T~ Where 74 is parallel transport
along as. By Proposition 1.24 we have that 7, = id + F(v,u)s? + o(s?), which implies that
g(s) = id + 77 F (v, u)7ys + o(s), ie.,
% . g(s) = T,Y_lF('U,'LL)T.Y.
Hence, g is smooth outside of s = 0 and continuously differentiable at s = 0, so it is a C' curve
inside Hol? (V). Therefore, g C hol, (V).

Now we show that g is actually an ideal of hol, (V). Indeed, if ¢ — 7; is a smooth curve in
Hol’ (V) starting at id with velocity X € hol,(V), then

_ d
(X, 7] 'F(u,v)7,] = T

TtTV_lF(’U,,U)T,YTtil €g.
t=0
In particular, g is a Lie subalgebra. Let G be the unique connected Lie subgroup of Hol% (V)
integrating g [DK00, Thm. 1.10.3]. Let 7 be a piecewise smooth homotopy with fixed endpoints
starting at the constant path and let 75 be parallel transport along 7. Then Corollary 1.23 gives

that
d 1
—Ts = (/ Fsﬁtdt) Ts.
dS 0

Since the integrand lies in g for all s and ¢, the integral lies in g for all s, and so 75 € G for all s.
Indeed, if we write X (s) € g for the integral, then 7, is a solution to a initial value problem for
the time dependent vector field on G given by (g,s) — X(s)g, and the flow of such a vector field
always lies in G. Hence, Hol2(V) C G, so hol, (V) C g, and this ends the proof. O

With this powerful theorem at hand, we can easily prove that a bundle is flat if and only if it admits
a local parallel frame around every point (there are more fundamental proofs of this result, which do not
require the Ambrose—Singer theorem, see Corollary B.4).

Corollary 1.26. A vector bundle E — M with a connection V is flat if and only if there is a parallel

local frame around every point in M, meaning a frame {c;}; with Vo; = 0.

15



Chapter 1. Holonomy Jaime Pedregal

Proof. If {0;}; is a local parallel frame, then F(X,Y)o; =0 for all X, Y € X(M), where F' is the
curvature of V. Hence FE is flat. Conversely, if F is flat and = € M, then by the Ambrose—Singer
theorem we have that Hol’(V) = 1, which by the holonomy principle means that on a simply
connected neighborhood of x there is a parallel frame. O

1.4. Connections on the tangent bundle

Let M be a manifold and consider its tangent bundle 7'M . Connections on T'M have the special feature

that its space of sections is precisely X(M). This allows for the following definition.

Definition 1.27. Let V be a connection on T'M. Then its torsion is defined as the R-linear operator
T:X*(M)— X(M) given by

T(X,Y)=VxY -VyX - [X,Y], for X,Y € X(M). )
Remark 1.28. Tt is straightforward to see that actually T is C°°(M)-linear, so that T € Q*(M,TM).

A connection on T'M induces a connection on all spaces of tensor fields
T®D(M) .= T(TM®* @ T*M®')

by eq. (1.1).
Let R be the curvature of V. Then R can be regarded as a (1, 3)-tensor field, since Q*(M,End TM) C
5(1’3)(M ). It has some very interesting properties.

Proposition 1.29. The following hold, if X,Y,Z,W € X(M) and & stands for cyclic permutations in

the arguments:
1. R(X,Y) = —R(Y, X),
(First Bianchi identity) R(X,Y)Z + &(X,Y, Z) = T(T(X,Y), Z) + VxT(Y, Z) + 6(X,Y, Z),
(Second Bianchi identity) VxR(Y,Z) + R(T'(X,Y),Z) + 6(X,Y, Z) =0,
if V is metric, then (R(X,Y)Z, W) = —(R(X, Y)W, Z),

Cvo e e

if V is metric and torsion-free (meaning T =0), then (R(X,Y)Z, W) = (R(Z,W)X,Y).
Proof. 1 is just the fact that R is a 2-form, whereas 4 is Proposition 1.9. For the first Bianchi
identity, we explicitly write
R(X,Y)Z =VxVyZ —~VyVxZ —Vxy|Z,
R(YY,Z)X =VyVzX - VzVyX — Vy 7 X,
R(Z,X)Y =VzVxY - VxVzY - V2 x1Y,
and sum:
R(X,Y)Z+6(X,Y,Z) =Vx(T(Y,Z2)+[Y, Z]) - Vixyv1Z + &(X,Y, Z)
=T(X,[Y,Z]))+ Vx(T(Y,2)) + 6(X,Y, Z)
=T(X,[Y,Z))+VxT(Y,2)+ T(VxY,Z)+ T(Y,VxZ)+ &(X,Y, 2)
=T(T(X,Y),2)+VxT(Y,Z)+6(X,Y, Z).
For the second Bianchi identity, recall that the general second Bianchi identity (Proposition 1.7)
states that DR = 0, where D is the covariant differential. Then the Koszul formula for D gives
0=DR(X,)Y,Z)W =Vx(R(Y,Z2))W — R([X,Y],Z)W + 6(X,Y, Z)
=Vx(R(Y,Z)W) - R(Y,Z)VxW — R([X,Y],Z) + 6(X,Y, Z)
=VxRY,Z)W + R(VxY,Z)W + R(Y,.VxZ)W — R([X,Y],Z2) + 6(X,Y, 2)
=VxRY,Z)W + R(T(X,Y),Z)W + &(X,Y, Z).
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Lastly, if V is metric and torsion-free, then, using the first Bianchi identity and 1 and 4

repeatedly,
(R(X,Y)Z,W) = —(R(Y,Z)X,W) — (R(Z, X)Y,W) = (R(Y, Z)W, X) + (R(Z, X)W.Y)
= —(R(Z W)Y, X) - (RW,Y)Z, X) — (R(X,W)Z,Y) — (R(W, Z)X,Y)
=2(R(Z,W)X,Y)+ (RW,Y)X, Z) + (R(X, W)Y, Z)
=2(R(Z,W)X,Y) = (R(Y, X)W, Z) = 2(R(Z,W)X,Y) — (R(X,Y)Z, W),
and this gives the result. O

Another special feature of connections on T'M is that if v is a smooth curve in M, then + is a vector

field along +, so that it makes sense to consider its acceleration ¥ := V4.
Definition 1.30. A geodesic is a curve v in M such that 4 = 0. ¢

Written in coordinates, the equation of a curve to be geodesic is a second order ODE. Hence, there
is always a unique local solution, i.e., for every x € M and v € T,M, there is a unique geodesic
Yo : (—€,€) = M, for some € > 0, such that v,(0) = = and 4, (0) = v. Even more, let

U:={veTM :~, is defined up to time 1} C T M.

Then U is an open set [Pet16, Lem. 5.2.6] containing the zero section of T M, and we define the exponential
map exp : U — M by expv := 7,(1). It is a smooth map, by the smooth dependence of solutions to
ODEs on initial parameters [Pet16, Thm. 5.2.3]. Notice that we can write, then, v,(t) = exp(tv) for
small enough t. The restriction of exp to U NI, M is denoted by exp,,.

A connection on T'M is said to be (geodesically) complete if every geodesic can be defined on the
whole real line, i.e., if exp is defined on all of T M.

Definition 1.31. A pseudo-Riemannian metric on a manifold M is a metric on TM. A Riemma-
nian metric on M is a positive metric on TM. A (pseudo-)Riemannian manifold is a pair (M, g),
where M is a manifold and g a (pseudo-)Riemannian metric on M. A (local) isometry of (M,g) is a

(local) diffeomorphism ¢ of M such that p*g = g. ¢

An important class of vector fields over Riemannian manifolds, that we will use later on, are those

that preserve the metric infinitesimally.

Definition 1.32. A Killing vector field on a pseudo-Riemannian manifold (M, g) is a vector field
X € X(M) such that Lxg =0, i.e., such that

X(Y,Z) =([X,Y],Z) + (Y,[X,Z]), forallY,Z e X(M). ¢

Lemma 1.33. Let (M,g) be a pseudo-Riemannian manifold and X € X(M). Then X is Killing if and
only if its flow {¢¢ }+ acts by local isometries, by which we mean that for all x € M there is a neighborhood
U of x in M and € > 0 such that ¢y is an isometry on U for t € (—e¢,¢€).

Proof. Write My := {x € M : the maximal integral curve of X through z is defined up to time ¢}.
Then M; is open and ¢; : My — M_; is a diffeomorphism with inverse ¢_; [Leel2, Thm. 9.12].

Let € M and let U be a neighborhood of x in M such that for all y € U the integral curve

of X through y is defined in (—e¢, €) (one can take U to be any relatively compact neighborhood

of z). Observe, then, that for all ¢ € (—¢,€) we have that U C M, and we can consider ¢; as a

diffeomorphism from U onto its image.

If the flow acts by local isometries, then

7 (1 9)

t=0

t=0

mza

Since this argument can be repeated for any x € M, then X is Killing.
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Conversely, if X is Killing, then for all t € (—¢,¢) and y € U we have that

d d
%((ﬁ:g)y = ds (‘ﬁ‘ﬁ:g)y = (d’:ﬁXg)y =0,

s=0
S0 ((b;,kg)y = (Q%g)y = 0y- O

Pseudo-Riemannian manifolds have the special property that there is only one metric and torsion-free

connection.

Proposition 1.34. Let (M, g) be a pseudo-Riemannian manifold. There is a unique metric and torsion-

free connection on TM, called the Levi-Civita connection. It is given by the Koszul formula
1
(VxY,2) = 5(X(Y, 2) + Y(Z,X) - Z(X,Y) — (X, [V, Z]) + (Y, [2, X]) +(Z, [X, Y])). (1.3)

Proof. Tt is easy to see that if a connection on T'M is metric and torsion-free, then it must satisfy
the Koszul formula, so it is unique. For existence, one can (patiently) check that the Koszul

formula can be used to define a metric and torsion-free connection on 7M. O

The curvature of the Levi-Civita connection is usually called the Riemann curvature of M, and its
holonomy the Riemannian holonomy of M, denoted by Hol, (M). Because it is metric, the Levi-Civita

connection interacts nicely with isometries of M.

Lemma 1.35. Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita connection ¥V and ¢ an
isometry of M. Then
Vo.x(0:Y) = (VxY), forall X,Y € X(M).

In particular,
R(pe X, 0.Y )puZ = @u(R(X,Y)Z)  and Vo xR(:Y, 0. 2)p.W = 0. (Vx R(Y, 2)W),
for all Z,W € X(M).
Proof. We have that [0, X, ¢, Y] = ¢.[X, Y], because for any f € C*>(M),
[0 X, 0. Y]f = 0. X(Y(fop)op™) =Y (X(fop)op™)
=XY(fop)op ! =Y X(fop)op™
= @[ X, Y] S
We also have that
(0 X){psY, 0 Z) = (9 X)((Y, Z) 0 p7") = X(Y, Z) 0 o™
Then the Koszul formula for V gives

(Vo.x0:Y, 0. 2) = (VxY, Z) o o7 = (pu(VxY), 0. 7). O

A pseudo-Riemannian manifold is called (geodesically) complete if its Levi-Civita connection is so.
The renowned Hopf-Rinow theorem [Pet16, Thm. 5.7.1] gives altervative characterizations of such a
fact in the case of a Riemannian manifold. For a piecewise smooth curve v : [0,1] — M (here M is
Riemannian), we define its length as

1
£ = [ I3
Then the distance from z to y is defined as
d(z,y) :=inf{L(y) : v € Uz 4 }.

This actually makes M into a metric space whose topology coincides with the manifold topology of M

[Pet16, Thm. 5.3.8]. Then the Hopf-Rinow theorem states that geodesic and metric completeness agree.
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Theorem 1.36 (Hopf-Rinow). Let (M, g) be a Riemannian manifold endowed with the Levi-Civita con-

nection. Then the following are equivalent:

1.

M is geodesically complete,

2. exp, is defined on all of T,M for some x € M,

8. M satisfies the Heine-Borel property, i.e., every closed bounded set is compact,

4.

M is metrically complete.

Moreover, if M is complete, then any two points in M can be joined by a length-minimizing geodesic.

Infinitesimal variations of geodesics by geodesics satisfy a special equation, Jacobi’s equation, which

will be useful for us in Chapter 3.

Definition 1.37. A Jacobi field along a geodesic v in a Riemannian manifold (M, g) is a vector field
J € T(y*TM) such that J + R(J,%)% = 0, where the covariant derivative is taken with respect to the

Levi-Civita connection. ¢

Proposition 1.38. Let (M, g) be a Riemannian manifold and ~ a geodesic in M.

1.

For every v,w € Ty M, there is a unique Jacobi field J along v (at least when t is close enough
to 0) with J(0) = v and J(0) = w.

Let {¥s}se(—e,e) be a smooth family of geodesics with vy = ~y. Then the vector field t — chs 40 ~s(t)

is a Jacobi field along v. Moreover, every Jacobi field along v arises in this way.

Proof. Let {e;}; be a parallel frame for TM along v, and write J(t) = J*(t)e;(y(t)) and (t) =
a'(t)ei((t)) for some smooth J%,a/ : [0,1] — R, and R(ej,ej)ex = Rle; for some smooth
Rl :[0,1] = R. Then

J+R(J.4)y = (J'+ J'aa" R} )e;.

Hence, the equation for J to be Jacobi is a second order ODE, so it has a unique local solution
whenever .J(0) and .J(0) are fixed.

Let now {7s }s(—c,c) be a smooth family of geodesics with o = v and let J(t) := & a0 Vs ()
Then, since V is torsion-free,

j@:Z(i

and therefore, since 7y, is a geodesic,

J(t) = p (E)s
Conversely, let J be a Jacobi field along . If v starts at © € M, let a be the geodesic with
a(0) = z and &(0) = J(0), and let X,Y be parallel vector fields along o with X (0) = 4(0) and
Y (0) = J(0). Define now () := eXPy(s) (H(X (8) + 8Y(s))) for small enough s. Then 7o = v and
vs is a geodesic for all s, so that I(t) := % «—0 Vs(t) defines a Jacobi field, by the above proven.
Moreover, I(0) = &(0) = J(0) and

\Y 0 \Y .
RO B - TO R !

s=0

w)) — RE(1), T()3(0).

s=0

so that actually I = J. O
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Remark 1.39. 1If v is a geodesic of a pseudo-Riemannian manifold M and X is a Killing vector field,
then v*X is a Jacobi field along v, since we can write, if {¢;} is the flow of X,

and {¢s o v}s is a smooth family of geodesics around « for small enough s, by Lemma 1.33.

Back to curvature, one can define simpler curvatures on a pseudo-Riemannian manifold that carry

partial information about the Riemann curvature.

Definition 1.40. Let (M, g) be a pseudo-Riemannian manifold and R its Riemann curvature. The
sectional curvature of M is the map k € C*(Gry(T'M)) given by

2(R(w,v)v, w) _ (R(w,v)v,w)
[[v A wl? [[v]|2[[w]|? — (v, w)?’

K(v,w) =

for v,w € T, M linearly independent. Here Gra(T'M) refers to the Grassmannian bundle of planes on
TM.
The Ricci curvature of M is the symmetric tensor field Ric € 5(072)(M ) given by

Ric(v, w) := tr(u — R(u,v)w).
The scalar curvature of M is the smooth map scal € C*°(M) given by
scal(x) := tr Ricy,

viewing Ric € I'(End T'M) using the metric. )

If {e;}; is an orthonormal basis for T, M, then

Ric(v,w) = Z(R(ei,v)w, ei), forv,weT, M,

i

and scal(z) = >, (R(ei, €5)ej,e:) =3, ke, €;).
While the Ricci and the scalar curvatures carry less information than R, the sectional curvature carries

exactly the same amount of information.
Proposition 1.41. The sectional curvature determines the Riemann curvature.
Proof. Let u,v,w,z € T, M. Then an easy computation, using the first Bianchi identity, gives

6(R(v, 2)w,u) =
82

= 55 ((R(u+ tv,w + sz)(w + sz),u + tv) — (R(u + tz,w + sv)(w + sv),u + tz)),
s t=s=0

and the derivative on the righthand side can be computed using only the sectional curvature. [
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Riemmanian Geometry of Submanifolds

Olmos’s proof of Simons’s theorem on holonomy, which will be explained in Section 3.4, relies on the
theory of Riemannian submanifolds. Given a Riemannian manifold (M,g), any submanifold M of M
inherits a metric from g and the Levi-Civita connection of M is related to that of M. One can also
consider the normal bundle of M, whose fiber at z € M is composed by all the vectors in T,, M which are
orthogonal to all of T, M. This bundle also inherits a connection from the Levi-Civita connection on M.
In particular, we will show that the fundamental objects to study submanifolds in Riemannian geometry
are the tangential and normal parts of VxY, where X,Y € X(M), which are, respectively, the Levi-
Civita connection on M and the second fundamental form of M, and the tangential and normal parts of
Vx&, where X € X(M) and € € X(M) is normal to M, which are, respectively, the Weingarten operator
and the normal connection on M. All these objects are related by the fundamental equations of local
submanifold theory, Theorem 2.4. They are fundamental in the sense that every four objects satisfying
these relations (or, rather, their simplified version when M has constant sectional curvature) give a local
isometric immersion into a space of constant sectional curvature, i.e., they completely characterize the
submanifold locally [BCO16, Thm. 1.1.2].

We also study the basic properties of submanifolds of constant principal curvatures, in Section 2.2.
This material will be needed in Chapter 3, in the proof of Proposition 3.47. If such proof is not to be
looked at in detail, Section 2.2 may be safely skipped.

2.1. Fundamental equations

Let (M,g) be a Riemannian manifold and let (M,g) < (M,g) be a submanifold with the induced
Riemannian metric (by which we mean that g is the pullback of § by the inclusion). Denote by V the
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Levi-Civita connection on M. We will denote by TM+ the normal bundle to T M, with fibers
T,M* :={veT,M: (v,T,M) =0}

Hence we have the orthogonal decomposition TM|y = TM @& TM*. For u € TM|y; we will denote by
u! its projection to TM and by u' its projection to TM=*.

Lemma 2.1. Let M < M be a submanifold. Then the Levi-Civita connection on M is given by
VxY = (VxY)", for X,Y € X(M),

where on the right hand side X andY are taken to be any extensions of X,Y € X(M) to vector fields on
M.

Proof. Let X and Y be extensions of X and Y, respectively. If f € C°°(M) and f € C®(M) is
an extension of f, then df, = df,|r,a for x € M, since for any v € T, M we can pick a smooth
curve v in M such that v(0) = « and 4(0) = v, and

d d - _
== t:Of(v(t)) =,

dfz(v)
Therefore, for any = € M we have that X f(z) = df.(X(z)) = df,(X(x)) = X f(z), i.e., X f is an
extension of X f, and the value of X f at z can be computed using any extensions X and f. Then,
since [X,Y] € X(M), we have that

(X, Y]f(z) = X(YV [)(z) - Y (X [f)(z) = XV [)(2) - V(X [)(2) = [X,Y]f (),
so that [X, Y] is an extension of [X, Y], independently of the chosen extensions X and Y. Finally,
the Koszul formula (1.3) for V gives, if Z € X(M) and Z is an extension,

(Vx¥, Z) = L(X(Y, 2) = Y(Z,X) = Z(X,Y) — (X, [V, Z]) + (V. [, X]) + (Z,[X, Y])

= J(X(V.2) - V(Z,X) - Z(X.Y) - (X.[V.Z) + (V.[Z,

D)+ (Z,[X,Y]))
= (Vx¥.7) = (VxV)". 2),
so the nondegeneracy of the metric on M gives the result. Since all the terms in the Koszul formula

are independent of the chosen extensions, the formula for the Levi-Civita connection of M does

not depend on them either. O

The fundamental elements for studying the geometry of Riemannian submanifolds are the second
fundamental form, the normal connection and the Weingarten or shape operator, which we now introduce.
We let X+ (M) := I'(TM~) stand for the space of sections of the normal bundle, called normal vector
fields on M.

Definition 2.2. Let M < M be a submanifold. The second fundamental form of M is defined as
the map II : X(M)? — X+(M) given by

I(X,Y):= (VxY)t, for X,V € X(M).
We define the normal connection V*+ : X(M) x X+(M) — X+ (M) on TM~ as
V&= (Vxé)*, for X € X(M) and & € X+(M).

Finally, we define the Weingarten operator on the direction of ¢ € X+(M) as the map W :
X(M) — X(M) given by
WeX = —(Vx&) ', for X € X(M). ’
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Jaime Pedregal 2.1. Fundamental equations

Hence we can write, for X,Y € X(M) and ¢ € X+(M),
VxY =VxY +1(X,Y) and Vyé=VxEé— WeX.
The first equation is called Gauss’s formula and the second Weingarten’s equation.

Lemma 2.3. 1. The second fundamental form, the normal connection and the Weingarten operator

are all independent of the chosen extensions of the vector fields involved.
2. The normal connection defines a connection on the bundle TM* .

3. Il and W are C°°(M)-linear, and moreover 11 is symmetric. Hence, I1 defines a section of S*T* M ®
TM* and W a section of T*M+ @ T*M @ TM.

4. For all X,Y € X(M) and &£ € X+ (M) we have that

(I(X,Y),&) = (WeX,Y).

5. For all £ € X*+(M), the operator W is self-adjoint.

Proof. 1 follows as in the proof of Lemma 2.1. Since they are independent of extensions, we
will denote the extensions by the same name as the objects on M. For 2, let X € X(M) and
¢ € Xt (M). Clearly V¢ is C°°(M)-linear on X, because Vx¢ is so. On the other hand, if
f e C>®(M), then

V(&) = (Vx(fO)" = (XN)Er + f(VxET = (X)E+ fVxE
To see that II is symmetric, let X,Y € X(M). Then, since V is torsion-free and [X,Y] € X(M),
I(X,Y) = (VxY)' = (Vy X + [X, Y] = (Vy X)! =11(Y, X).

Also, II(X,Y) is clearly C°°(M)-linear on X, since VxVY is so, and since II is symmetric, it
is also C°°(M)-linear on Y. On the other hand, if £ € X (M), the expression WeX is again
C*°(M)-linear on X, while

WieX = =(Vx(fO))T = =(XN)E+ fVxE)T = [WeX.
This establishes 3. A simple computation gives 4, since V is metric and (Y, &) = 0:
(II(X,Y), &) = (VxY,§) = —(¥,Vx¢) = (We X, Y).
And now 5 immediately follows from the symmetry of II:
(WeX,)Y) =({II(X,Y), &) = (II(Y, X), &) = (X, WeY). O
Since (TM~*,V<1) is a bundle with connection, we call its holonomy the normal holonomy of M,
and denote it by Hol (M) (and by Hol:%(M) its restricted version).

Let R, R and R+ be the curvatures of TM, TM and TM~, respectively. The fundamental equations
to study the geometry of submanifolds are the following:

Theorem 2.4 (Gauss-Codazzi-Ricci equations). Let M < M be a submanifold. Then for X,Y,Z,V €
X(M) and &,m € X+ (M), we have that

1. (Gauss’s equation) (R(X,Y)Z)" = R(X,Y)Z — Wiry,2) X + Wix,2)Y, or, equivalently,
(R(X,Y)Z,V) = (R(X,Y)Z,V) + (I(Y,V),I[(X, Z)) — (I(X, V), 1LY, Z));
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2. (Codazzi’s equation) (R(X,Y)Z)t = VL 1I(Y, Z) — VL 1I(X, Z);
3. (Ricci’s equation) (R(X,Y)¢) = REH(X,Y)E+ II(WeX,Y) — II(X, WY), or, equivalently,

<R(X’ Y)fa 77> = <RL (X7 Y)§7 TI) - <[WE’ Wﬂ]X7 Y>;

4 (RXY)ET = (VyW)eX — (VxW)eY.
Proof. Direct computation, using that V is torsion-free:
RX,Y)Z =Vx(VyZ+1(Y,Z)) - Vy(VxZ +11(X, 2Z)) — W[Xy]Z
= R(X,Y)Z+1I(X,VyZ) — Wiy, X + Vx (1I(Y, Z))
—I(Y,VxZ) +Wix,2)Y — V%,(H(X, 7)) -1I([X,Y],2)
= R(X,Y)Z - Wiy X + Wnx,2)Y + Vx II(Y, Z) — V3 1I(X, Z).

Gauss’s and Codazzi’s equation immediately follow. The second form of Gauss’s equation follows

from Lemma 2.3(4). For Ricci’s equation, we compute as well:
R(X,Y)6 =Vx(Vy& = WeY) = Vy (Vi€ — WeX) — Vix €
_ pl
= RH(X,Y)E — Wy X — Vx (WeY) — II(X, WeY)
+ WV)L(§Y + Vy(WeX) +II(Y, We X) + We [ X, Y]
= RY(X, V)6 +TI(WeX,Y) — II(X, WeY) + (Vy W)X — (VxW),Y.

Ricci’s and the last equation follow immediately. The second form of it is again an application of
Lemma 2.3(4). O

When the ambient space M has constant sectional curvature, i.e., & = k for some k € R, it is called a
space form. Since sectional curvature determines the Riemann curvature, it follows [Pet16, Prop. 3.1.3]

that M has constant sectional curvature k& € R if and only if the Riemann curvature is given by
RX,Y)Z =k({(Y,2)X — (X, 2)Y), for X,Y,Z c X(M).
For a submanifold M < M of a space form, the Codazzi and Ricci equations take particularly nice forms:

VxI(Y,Z) = V3 II(X,Z) and (R (X,Y)&,n) = ((We, W,]X,Y),

for X,Y,Z € X(M) and &,m € X+ (M).

2.2. Principal curvatures and curvature normals

There are some types of submanifolds with special properties that we shall consider. The first type we

are interested in are those which are “composed of geodesics”.

Definition 2.5. A submanifold M < M is called totally geodesic if every geodesic of M is also a
geodesic of M. ¢

Lemma 2.6. A submanifold is totally geodesic if and only if its second fundamental form vanishes.

Proof. Let M be the submanifold with second fundamental form II. For any curve v on M, Gauss’s
formula gives Vs = V.4 + I1(§, 7). If II vanishes, then V4% = 0 implies that V4% = 0, and so
M is totally geodesic. Conversely, if M is totally geodesic, then II(v,v) = 0 for all v € TM. Since

21 (u,v) = M(u+ v,u 4+ v) — I(u,u) — (v, v)
for all u,v € TM, then II vanishes identically. O
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For instance, the complete totally geodesic submanifolds of Euclidean space R™ are the affine sub-
spaces, since geodesics are straight lines.
The second type of submanifolds we are interested in are those whose eigenvalues of the Weingarten

operators are locally constant.

Definition 2.7. The principal curvatures of a submanifold M — M at € M in the direction of
¢ € T,M* are the eigenvalues of We. We say that M has constant principal curvatures if the
eigenvalues of We () are constant for any parallel normal vector field £ along any piecewise smooth curve
in M. ¢

In particular, on a manifold with constant principal curvatures the eigenvalues of W¢ are constant for
any local parallel normal vector field £&. The reason why we are interested in submanifolds with constant

principal curvatures is because the following construction works especially well in this case.
Let M < M be a submanifold. Define

T, My = {€ € T,M=* : g¢ = ¢, for all g € Hol:°(M)}.

In general, if E — N is a vector bundle with a connection V and E' — N is a subbundle of E, then E’
is said to be parallel if it is invariant under parallel transport, i.e., if 7’,Y(E’v (0)) = E; 1) for all piecewise
smooth curves v in N. Equivalently, if for all o € T'(E’) and X € X(NN) we have that Vxo € T'(E'). It

is the necessary and sufficient condition for the possibility of restricting V to a connection on E'.
Lemma 2.8. The bundle TMg whose fiber at x € M is T,My" is a smooth parallel flat subbundle of
TM*.

Proof. For z € M, let {&;}; be a basis for T, Mz~ and U be a simply connected neighborhood of
x in M. Since &; is HoliO(M )-invariant, then by the holonomy principle it can be extended to a
V-L-parallel smooth normal vector field on U which we also call &;. If y € U and n € T, M-, let
~ be a curve from y to « in U. Then Tj-n € T,M+* is easily seen to lie in Tde-, SO Tj-n is a
linear combination of {§;(x)};, and hence 7 is a linear combination of {&;(y)};. Therefore, {&;(y)}:
is a basis for T, Mg, which gives that TMy" is smooth and parallel. Moreover, since {¢;}; is a
V-1-parallel frame, then Corollary 1.26 gives that T My is flat. O

From now on, let M be a space form. Let ¢ € Tsz-. Then by Ricci’s equation we have that
[We, W,)] = 0 for all p € T, M+. This means that {W : £ € T, My} is a commuting family of self-adjoint

operators, which means that there is a decomposition into common eigenspaces
T.M = E(2) ® - @ Egp) (), (2.1)
that is, there are unique linear functionals \;(z) € T} Mg- and vectors 7;(x) € T, Mg~ such that
Wevi = Ni(@)(&)vs = (mi(x),vi,  for £ € T, Mg~ and v; € E;(x).
The vectors 7;(x) are called curvature normals at x.

Proposition 2.9. Let M < M be a connected submanifold with constant principal curvatures, where M

s a space form. Then

1. the function g on the decomposition (2.1) is constant and the corresponding curvature normals are
well-defined smooth V*-parallel vector fields;

2. if moreover M = R™ and M is not contained in a proper totally geodesic submanifold, then the

curvature normals at x span T, Mg- for all x € M.

Proof. The integer g(z) is the number of different common eigenspaces on & € M. This means

that there is some & € TIMd- for which W has g(z) different eigenvalues. We can extend & to a
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V-+-parallel normal vector field on a simply connected neighborhood U of z, which we also call €.
Since M has constant principal curvatures, then W¢ has constant eigenvalues on U, which means
that for any y € U we have that g(y) > g(x), since T, M has to split at least into g(x) eigenspaces.
Let n € Ty,Mg be such that W, has g(y) different eigenvalues. By the same argument, we can
extend it to a V--parallel normal vector field on U, and since W, has constant eigenvalues on
U then g(z) > g(y), which gives g(y) = g(z). Since M is connected, this finally gives that g is
constant.

Let * € M and let n;(x) € T,Mg be a curvature normal at z. On a simply connected
neighborhood U of x, n;(x) can be extended to a smooth V-+-parallel vector field 7;. Let ¢ be a
V-+-parallel vector field on U, so that We has constant eigenvalues. Then at y € U, the number
(ni(x),&(x)) is an eigenvalue of We(,y. Let v € T, M be an eigenvector of such an eigenvalue. The

function (n;, &) is constant on U, since for any X € X(U) we have that

X(ni, &) = (Vxni, &) + (mi, Vx€) = 0.

Hence,
Weyv = (mi(2), §(@))v = (ni(y), €(y))v,

so that n;(y) is also a curvature normal at y € U. Since M can be covered by simply connected
charts, then 7; can be globally defined.

Suppose now that M = R"™. For x € M, define V, := {¢ € T,M* : W = 0}. To see that it
defines a smooth subbundle of TM*, let &, ..., & € V, be a basis and extend them to local smooth
vector fields by parallel transporting along radial geodesics, i.e., define &;(exp,v) = 71 (& (%)),
where 7~ is parallel transport from x to exp, (tv) along s — exp,(sv), where v € T, M. Then
the vector fields {&;}; are pointwise linearly independent. To see that they generate V' pointwise,
let n € V,, where y = exp, v, and let 7(t) := 7;-(7i")"*. Then n(t) is parallel along the radial
geodesic from x to y and 7(1) = 7. Since M has constant principal curvatures, then W, ) has
constant eigenvalues, and since W,y = W, = 0, then W, ) = 0. Write n(0) = ni&(x), for
some constants 7° € R. Then n = n(1) = 7i-(n(0)) = ' (&(z)) = n'&(y). Therefore {&;};
is a smooth frame for V. Moreover, V is parallel and flat. Indeed, if £ is a parallel section of
TM+ along a piecewise smooth curve v with £(0) € V, then We() has constant eigenvalues, so
Wey = WTWL (¢(0)) = 0 because We(g) = 0. Moreover, if § € V;, then the Ricci equation implies
that Rt (v, w)¢ = 0 for all v,w € T, M, so V is flat.

Let £ € T'(V) be V1t-parallel. Then Vx¢& = d¢(X) = Vi€ — WeX = 0 for every X € X(M),
so actually £ is constant as a map £ : M — R™. Since V is flat, there is a local parallel frame
around every x € M, by Corollary 1.26, which means that there is an affine subspace W C R"
such that V, = W for all x € M. Hence, T, M C le = W+, where * is taken in R”, which in
turn means that M C W+, Since M is not contained in a proper totally geodesic submanifold,
then necessarily W+ = R”, i.e., V, = 0 for all 2 € M.

Now, & € T, Mg satisfies We = 0 if and only if all its eigenvalues are zero, i.e., if and only if
(ni(x),&) =0 for all 4. That is,

V, N T, Mg = span{n; ()}

70

where * is taken inside of TIMd-. Since V, = 0, we conclude that span{n;(x)}; = Tsz-, as
wanted. O

Example 2.10 (Sphere). Consider the sphere S™ with the metric induced by the standard Euclidean
metric (-, ) on R"*!. Then 7,S" = (Rz)L, for z € S". Let E € X(R"*1) denote the Euler vector field,
given by E(x) = x. Then E(z) € T,(S")* for all z € S". If X € X(S"), then WgX = —(VxE)" =
—XT = —X,ie, Wg = —id. Hence, S” has constant principal curvatures. Moreover, WgX = —X =
(—E,E)X, so the curvature normal is —FE. v
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Remark 2.11. A manifold which is not contained in a proper totally geodesic submanifold is called full.
The space V-, with * taken inside of T, M, is known as the first normal space of M at z, and it
coincides with the span of the image of II,

V- = span{II(v,w) : v,w € TyM} C T,M=.
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Berger’s Holonomy Theorem

We now turn to Berger’s classification theorem of holonomy groups. The theorem states that if M is
an irreducible, not locally symmetric, oriented and connected Riemannian manifold of dimension n > 2,
then one of the following must hold:

1. Hol’(M) = SO(n),

2. n = 2m for m > 0 and Hol’(M) = U(n),

3. n = 2m for m > 0 and Hol"(M) = SU(n),

4. n = 4m for m > 0 and Hol’(M) = Sp(n),

5. n = 4m for m > 0 and Hol(M) = Sp(n) Sp(1),
6. n =7 and Hol’(M) = Gy,

7. n =8 and Hol’(M) = Spin(7).

The theorem was first proven by Berger [Ber55]. The proof was very algebraic and relied heavily on
the classification of Lie groups and its representations, which made it quite complex. Some years later
Simons [Sim62] offered a new (still algebraic) proof, and it was not until forty years later that Olmos
[Olm05] found a geometric proof of Simons’s theorem. It is Olmos’s proof that we will present here. We
will not follow [OlmO05] exactly, but rather a polished version of the proof one can find in [BCO16].

In this chapter we will make sense of what it means for a Riemannian manifold to be reducible and
(locally) symmetric, and we will see what this tells us about its holonomy. Then we will turn to the
more technical side of the proof of Simons’s theorem, using the machinery developed in Chapters 1 and 2.

Finally, we will give precise invariant definitions of the groups in Berger’s list and describe what types

28



Jaime Pedregal 3.1. Reducible spaces

of special geometries each groups gives rise to. These include Kéhler, Calabi—Yau, hyperkdhler and

quaternionic Kéahler geometries. We will give some examples of each of them.

3.1. Reducible spaces

The main aim of this section is to prove that having a reducible holonomy representation implies that
the manifold is locally a product. If the manifold is complete, it is even globally a product. This is de

Rham’s decomposition theorem.

Definition 3.1. A connected Riemannian manifold M is reducible if its holonomy representation is

reducible. It is irreducible if its restricted holonomy representation is irreducible. ¢

Proposition 3.2. Let M be reducible, € M and D, a nontrivial Hol, (M )-invariant subspace of T, M.

Define a distribution D by setting D, := 7,D,, where 7y is any piecewise smooth curve from x toy. Then
1. D is a well-defined involutive smooth distribution,

2. the mazimal integral submanifold N of D through x is totally geodesic.

1

Proof. If @ were another piecewise smooth curve from z to y, then a - y~" is a loop at z, so

T,;lTaDm = Dy, ie., 79Dy = 74 D,. This shows well-definedness. To see that it is smooth, let
y € M and let U be a normal neighborhood about y. Let {v;}; be a basis for D, and define vector
fields {X;}; in U by Xi(expy u) = T,v;, where u € Ty M is small enough such that exp, u € U
and 7, is parallel transport from y to exp, u along the geodesic ¢ + exp, (tu). Since 7, depends
smoothly on u, the vector fields {X;}; are smooth on U. It is clear that they form a frame for D.
To see involutivity, let X, Y € T'(D). Since [X,Y] = VxY — Vy X, it is enough to see that
VxY €T'(D). Let y € M and  the integral curve of X through y. Then, if 7 is parallel transport
from y to v(t) along ~y, by Proposition 1.15 we have that
d 1
VxY(y) = L (Y'(t)).
t=0
Since Y (t) € D, ) and Tt_lD'y(t) = D,, we have that, indeed, VxY (y) € D,,. This gives 1.
By Frobenius’s integrability theorem ([Leel2, Thm. 19.12] for instance), D is integrable. Let
N be the maximal integral submanifold of D through z. Let y € N and v € T, N, and let -y be the
maximal geodesic starting at y with velocity v. Then 4 is parallel along v, so ¥(t) = v € D).
Since D is a regular distribution, this easily implies that + does not leave N. For a complete
proof of this fact (also in the possibly singular setting) see Proposition 4.16. Hence, N is totally
geodesic. O

Proposition 3.3. Let M be reducible, x € M and D, a nontrivial Hol, (M )-invariant subspace of T,, M.
Let D be the distribution corresponding to D, and D’ the distribution corresponding to Di-. Let N (resp.
N') be the mazimal integral submanifold of D (resp. D’) through x. Then there are open neighborhoods
Vin M, U in N and U in N’ of x such that V is isometric to U x U’.

Proof. First observe that, because parallel transport is isometric, D and D’ are everywhere orthog-

onal. Let (W', (z',..., 2% y**1 ... 4™)) be coordinates about x such that {% k_| is a frame for
Dl and (W", (2%, ..., 2% o8+ .. 2™)) coordinates about x such that {%}?’:,ﬁ_l is a frame for
D'|wr. Then (W' NW”, (z!,...,2™)) are also coordinates about z.

Let V be the cube given by |2!| < ¢, for i = 1,...,n and € > 0 small enough such that
V C W' NW". Let U be the cube in N given by |2°| < ¢, for i = 1,...,k, and U’ be the cube in
N’ given by |2¢| < ¢, for i = k+1,...,n. Then as smooth manifolds V = U x U’. To see that
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they are also isometric we have to show that (X,Y) = 0if X € I'(D) and Y € I'(D’) and that
X(Y,Z)=0if either X e (D) and Y, Z € I'(D’) or X e I(D’) and Y, Z € I'(D").

Since D and D’ are orthogonal, it is clear that (X,Y) =0 if X € T'(D) and Y € T'(D’). On
the other hand, if X € T'(D) and Y € T'(D’), we can assume them to be coordinate vector fields,
so that [X,Y] = 0, and then, since the Levi-Civita connection is torsion-free,

VxY —VyX =VyY —VyX — [X,Y] =0.

By the same reasoning as in the proof of Proposition 3.2 we have that VxY € T'(D’) and Vy X €
I'(D), so actually both vanish. Then, if Z € T'(D’) is another coordinate vector field,

X(Y,Z) = (VxY, Z) + (Y, Vx Z) = 0.

The other case is analogous. O

Proposition 3.4. In the same situation as in Proposition 3.3, there are normal subgroups G and G’ of
Hol% (M) such that Hol2(M) = G x G', where G acts trivially on D= and G trivially on D,. Moreover,
Hol’(N) C G and Hol2(N') C G'.

Proof. Let « be a contractible loop at  and let g be the extension of 7,|p, to all of T, M by acting
trivially on Di and ¢’ the extension of 7| ps+ to all of T; M by acting trivially on D,. We will
show that both g and ¢’ lie in Hol? (M).

Suppose first that « is a lasso, that is, of the form a - 8- a~!, where « is a piecewise smooth
curve from x to some y € M and S is a contractible loop at y small enough so that it is contained
in a decomposable open set V = U x U’ as in Proposition 3.3. Let B (resp. B’) be the projection
of 8 unto U (resp. U’) and let 4 := a - B-a~tand 7 :=a- B -at. Since Tg = T5 X 75 and both
D and D’ are preserved by parallel transport, then 7., = 75 x 75/ as well. Also, 75 (resp. 75/) acts
trivially on D+ (resp. D,). Hence, g = 75 and ¢’ = 75/, so both lie indeed in Hol? (M).

Parallel transport along a contractible loop always equals a finite product of parallel transport
along such lassos [KN63, Vol. 1, App. 7], so g,¢" € Hol’(M) for any contractible loop 7. Let now
G be the subgroup of Hol? (M) consisting of extensions of 7,|p, to all of T, M by acting trivially
on D} for all 7., € Hol?(M) and similarly for G’. Then we just proved that Hol?(M) = G x G’
with G acting trivially on D;- and G’ trivially on D,. It is easy to check that G and G’ are normal
in Hol% (M).

Lastly, let v be a contractible loop contained in N. Suppose first that it is a lasso v = a-3-a 7!,
with both @ and 8 in N and with 8 small enough so that it is contained in a decomposable
open set V' = U x U’. Then 73 is the identity on D;(l), so for any v € D} we have that

Lr,v = v, so that 7, is the identity on Di-. Since parallel transport along a

TyU = T;ngTa’U =T,
contractible loop equals a finite product of parallel transport along such lassos, we finally obtain

that Hol?(N) C G. The case for Hol?(N’) is analogous. O

We have seen that if M is reducible then it can be locally written as a product. If M is 1-connected
and complete, then M can actually be written globally as a product. This is de Rham’s decomposition
theorem, originally proved in [dR52]. Several different proofs and generalizations have been given [KN63,
Wu64, Mal72], but here we follow [Pan92], which seems to be the most elementary, avoiding the use of

much machinery.

Lemma 3.5. In the same situation as in Proposition 3.3, with M connected and complete, let v € D,
and v' € DF. LetT: D! — Dy, be parallel transport along any curve in N from x to y := exp, v and 7" :

!

D, — D parallel transport along any curve in N' from x to z := exp, v'. Then exp,(Tv') = exp,(7'v).

Proof. First observe that 7 and 7 are well defined by Proposition 3.4. Let V be the parallel vector
field along t ~— exp, (tv’) with V(0) = v and define v : [0,1]2 — M by ~(s,t) = exp(tV (s)). It is
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enough to see that (-, 1) is geodesic and that %7(0, -) is parallel along ~o (in Figure 3.1 you can

see a sketch of the situation). Indeed, if this were the case then

ex (1) = exp, (5900.1)) = exp, (] 2(51)) =5(11) = exp. (V1) = e ().

s=0

exp,, (tv)
z exp, (1'v)

Figure 3.1: Proof of Lemma 3.5.

To this end, let s¢ € [0, 1] and pick a neighborhood W of ¥(sg, 0) isometric to a product U x U’,
in the fashion of Proposition 3.3. Projecting to U and U’, write v(s,t) = (8(s,t), 8'(s,t)). We will
see that actually 8 depends only on ¢ and 8’ only on s.

Since the integral submanifolds of D and D’ (the distributions induced by D, and D, respec-
tively) are totally geodesic, then for each s,

0 d
ﬁv(s,t) = a(exp(ﬂ/(s))) € Doy(s,1)-

Hence, we have that %ﬂ/(s,t) =0, i.e., 8’ depends only on s. Similarly,

0 d d
%W(sa 0) = %(expexpw(sv’)(o)) = £(expm(sv/)) € D'/y(s,O)a

S0 %,B(S,O) =0, i.e., B(s,0) is constant on s. Finally, %7(-, 0) is parallel along 7(-,0), because

0

d
&7(8,0) =@, exp(tV(s)) = V(s),

which gives that %% (s,0) = 0. Since ((s,0) is constant on s, then all the vectors %6(5,0)
belong to the same tangent space of U, so actually %%ﬁ(s, 0)=0,i.e., %ﬁ(s, 0) does not depend
on s. Now we have that 3(s,-) is a geodesic in U starting at 3(s,0) with velocity %B(s, 0); since
neither of these two things depends on s, we conclude that 3(s,t) does not depend on s. Hence
we can finally write (in W) ~(s,t) = (8(¢), 5'(s)).

Observe that 8’ is a geodesic in U’, because 7(s,0) = (8(0), 5'(s)) = exp,(sv’). Hence, for
each fixed ¢ we have that v(-,t) = (8(t), 8'(-)) is geodesic. Along it, Z~(-,t) = (B(t),0) is parallel.

We now split [0,1]? into a finite amount of sufficiently small squares such that the image by ~y
of each square is contained into one such W decomposable as a product. For all the squares with ¢
small enough, we just proved that (-, ¢) is geodesic and %’y(-, t) is parallel along it, for each fixed
t. These conditions are enough to prove the same for the following row of squares, with bigger ¢.
Inductively, we can prove that (-, ) is geodesic and %'y(~, t) is parallel along it for all ¢ € [0, 1].
This gives that (-, 1) is geodesic and that %v(o, -) is parallel along 7, since

VvV 0 vV 0
a%’y(oat) - %af}/(oﬂf) =0. O
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Theorem 3.6 (de Rham’s decomposition). Let M be a I-connected and complete reducible Riemannian
manifold. Let x € M and let N and N’ be the maximal integral submanifolds through x of the distributions
induced by a nontrivial Hol, (M)-invariant subspace of T, M and its orthogonal. Then M is isometric to
N x N'.

Proof. Let D and D’ be the mentioned distributions. For any = € M, denote by N(z) and N'(z)
the maximal integral submanifolds through x. For y = exp, v, with v € Dy, let 7, : D}, — D;
be parallel transport along any curve in N(z) from z to y, and for z = exp, v’, with v' € DZ, let
Ty . Dz — D, be parallel transport along any curve in N'(z) from z to z. Then Lemma 3.5 reads
exp, (7z,yv") = exp, (7, ,v). Define now F7 : N(x) — N(z) by F7(y) = exp, (72 ,v") = exp,(7; ,v).
It is smooth and satisfies (as is easy to check) F* = F2 o F? for any a € N'(x), from where we
see that it is a diffeomorphism. It is moreover an isometry. Indeed, let v € T,N(z) = D, and
v(t) = exp, (tu). Then, by Lemma 3.5, since F;(y) = exp, (7 4v'),

XDy (1) (Ty 1 (1) Tay¥') = €XDpz () (T, pz () T00),

so that
d
Fiu=—| F(vt)=—| expyp(tu m?)
dt|,_, dt|,_, () \ ey
! /
T dt == y .
atl,_, eXP'y(t)(TyKY(t)Tx,yU) dt|,_, €XPp: (y)(Ty,Fm(y) u)

= Ty R () U
Similarly we can define isometries GY% : N'(z) — N'(y) by GY(2) = exp,(7, ,v). Observe that
F(y) = Gu(2).

We now fix x € M and define F': N(z) x N'(x) - M by F(y,z) = FZ(y) = GY(z). It is a
local isometry, as a consequence of Proposition 3.3 and because each F? and GY are isometries.
Since M is complete, N(z) x N’(z) is connected and complete. Hence, F' is a local isometry
from a complete manifold to a connected manifold, which implies that it is actually a Riemannian
covering map [Pet16, Lem. 5.6.4]. Since M is simply connected, necessarily F' is an isometry. [

3.2. Symmetric spaces

Symmetric spaces, as their name suggests, are Riemannian manifolds which are symmetric, in the follow-
ing sense: about every point of the manifold there is an isometric involution which inverts the direction
of geodesics, called a geodesic symmetry, leaving the point fixed. As we will see, these spaces are always
homogeneous and their geometric properties are very intimately linked to the Lie theoretic data of their
isometry group. This will allow us to compute the holonomy of irreducible symmetric spaces.

In Section 3.2.3 we prove that the orbits of the holonomy representation of irreducible symmetric spaces

are submanifolds with constant principal curvatures. We will need this in the proof of Proposition 3.47.

3.2.1. Definitions and basic properties

Definition 3.7. A Riemannian manifold (M, g) is a symmetric space if for every x € M there is an
isometry o, such that 02 = id, 0,.(z) = —id and o,(x) = x. It is a locally symmetric space if the
isometry o, only exists on a neighborhood of z. ¢
Remark 3.8. On a Riemannian manifold M, let U, be a neighborhood of € M such that exp, :
B(0,¢) — U, is a diffecomorphism. Then the map o, : U, — U, defined by o, (exp, v) = exp,(—v) is
called the geodesic symmetry at x. A locally symmetric space is one where such a map is an isometry.

A symmetric space is one where such a map can be extended to a global isometry.
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Lemma 3.9. Symmetric spaces are complete.

Proof. Let M be a symmetric space and z € M. Let v be a geodesic starting at . Then o, oy is
the unique geodesic starting at & with velocity —(0), and so o, (v(t)) = v(—t).
If we write v;(t) := (¢t + s), whenever it is defined, then

7306/ (1(8)) = 062 (V=) = 05p2) (072 (~t = 5) )

= e/ (t+ %) = (t+s).

Then if v is defined up to time 7', it can be extended up to 27" by applying 0.,(s/2)0, for 0 < s <T'.
Hence M is complete. 0

Corollary 3.10. Let M be a connected symmetric space and x € M. Then there is only one isometry

op With 02 = id, 044 (x) = —id and o, (x) = z.

Lis an isometry fixing  and whose

Proof. Let o, and o, be two such isometries. Then g = o0,
differential at = is id. Let y € M and 7 a geodesic starting at = with (1) = y, which exists
because M is complete and by the Hopf-Rinow theorem. Then g o 7 is a geodesic starting at x

with velocity 4(0), and so g oy = «. Hence, g(y) = g(7(1)) = (1) = y. Therefore g = id. O

Hence it makes sense to speak of o, as the geodesic symmetry at z.
Example 3.11 (Euclidean space). Consider Euclidean space R™ with the standard Euclidean product.
The map o,(y) = 2z — y is a geodesic symmetry defined on all of R™, so it is a symmetric space. v
Example 3.12 (Sphere). Consider the sphere S™ with the metric induced by the standard Euclidean
metric (-,-) on R" ™1 Let o, (y) := 2(y, x)x — y (reflection about the line Rx). It is immediate to check
that o, is a geodesic symmetry. v
Example 3.13 (Hyperbolic space). Consider Minkowski space R1™, i.e., R**! with the nonpositive

metric
((t,l’), (Svy)) = —ls+ <$7y>a

for t,s € R, z,y € R™ and (-, ) the standard Euclidean product on R™. Consider the hyperboloid model
for hyperbolic space
A" = {(t,x) e RY" . 2 + ||z||* = —1, ¢t > 0}.

Then Ty ) #" = {(A\,v) € R*™! : =Xt + (v,x) = 0}. The restriction of (-,-) to T(; )™ is positive
definite. Indeed, if A = 0, then ((A,v), (A,v)) = ||v]|?> > 0, and if A # 0, then v # 0, because —\t+ (v, z) =
0 and ¢ > 0, and in this case,

2 2 2
= L’tf” < ||v||2Hf;” = ||v||2ll“”‘”“”$2 <oll?,
so that
(A ), (A, 0) = =A%+ [[v]|* > 0.
The reflection o,.(y) = —y — 2 (y, x) = is the geodesic symmetry in this case. \/

Example 3.14 (Lie groups). Let G be a Lie group with a bi-invariant metric, i.e., a Riemannian metric
such that left and right translations, L, and R,, are isometries for every g € G. Let o.(h) := h™!, for
h € G and where e € G is the identity element. Then clearly 02 = id, 0..(e) = —id and o.(e) = e.

Moreover, since . 0 Ly = Ry-1 o 0., then
0ex(g) © Lgi(e) = Rg-1.(€) 0 gex(e),

so that o..(g) is a linear isometry. Hence, o, is the geodesic symmetry at e. For g € G, we set
0g:=Lgoo.oL, 1, that is, o4(h) = gh™'g. v
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Example 3.15 (Projective spaces). Let K stand for R, C or H. Let K* := K \ {0} act on K*™! by
scalar multiplication. Then we define the K projective space as KP" := (K"*! \ {0})/K*. By restricting
to unit vectors, we have the following equalities

RP" = §"/{£1},  CP"=§"*!/s!,  HP" =§"*+%/s

In general, if G is a Lie group acting freely and properly by isometries on a symmetric space (M, g),
then it is easy to see that there is a unique metric g’ on the orbit space M/G such that the projection
p: M — M/G is a Riemmanian submersion, that is, such that the linear isomorphism (ker p.(x))* =
Ty(2)(M/G) is an isometry for all 2 € M. If in addition the action is such that o, = hoyh™! forallz € M
and h € G, then (M/G,g') is symmetric, with geodesic symmetry at p(x) given by 0,y op :=poo,.

Let (-,-) stand for the standard Euclidean (resp. Hermitian, quaternionic) inner product on R"™+!
(resp. C"*1 H™*!). Then the map o.(y) = 2(y,z)x — y is a geodesic symmetry of S* (resp. S?"+1,
S#+3). The Riemannian metric on S?"*! (resp. S¥**3) is the restriction of the Euclidean metric Re(:, -)
on C"! = R2"+2 (resp. of Re(-,-) on H"! = R4"+4) Observe that this geodesic symmetry coincides
with that of Example 3.12 only in the case of S™. It is immediate to see that they satisfy o4, = ho h™!.

We conclude that KP™ is a symmetric space. v

Lemma 3.16. Let M be a connected symmetric space and G = IsomO(M) the identity component of the
isometry group of M. Then G acts transitively on M, so M = G/H, where H = G, is the isotropy group

of some x € M. Moreover, H is compact.

Proof. Any two points z,y € M can be joined by a geodesic 7 : [0,1] — M. Then 01 /2)0.(x) =
041/2)02(7(0)) = (1) = y. By the Myers-Steenrod theorem [MS39], Isom(M) is a finite-
dimensional Lie group. Moreover, the map ¢ +— 0.(;/2)0, is a continuous map [0, 1] — Isom(M)
from id to o4 (1/2)0%, so that actually 0.1 /2)0, € G. Hence M = G/H with H = G,. That H is
compact is the content of [KN63, Vol. 1, Chap. 1, Cor. 4.8]. O

From now on we fix a connected symmetric space M and write M = G/H for G = Isom"(M) and
H = G, for a fixed x € M. Since M is complete, then g := LieG is the Lie algebra of Killing fields,
i.e., vector fields X € X(M) such that Lxg = 0. Since H is the subgroup of isometries fixing z, then
h:=LieH is
h={Xeg: X(z)=0}.
Let 0 : G — G be conjugation by o, that is, 0(g) = 0,90, = 0,90,. Then 0? =id and o(h) = h
for all h € H. Indeed, if h € H and y € M, let v : [0,1] = M be a geodesic from z to y; then

o(h)(y) = 02ho2(v(1)) = ou(hoy(=1)) = h(y(1)) = h(y).
Consider as well o, := Ad(o,) : g — g¢.

Proposition 3.17. We have that b = ker(o, — id). If p := ker(o, +1id), then g = b @ p satisfying the
Cartan relations

[0,0),[p,p] € b and [b,p] Cp. (3.1)
Moreover, p={X €g:VX(x) =0} and p =T, M.

Proof. Let X € h. Its flow is given by Exp(tX), where we use Exp to denote the Lie group
exponential, not to be confused with exp, the exponential map in the Riemannian manifold M.
Since Exp(tX) € H for each t, we have that

d
o X = —

p o(Exp(tX)) = % Exp(tX) = X.

t=0 t=0

Conversely, if 0, X = X, then

X(z) =0.X(x) = 4

p 0. Exp(tX)o,(x) = 0..(X(z)) = —X (),

t=0
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so X(z)=0and X €.

Since o, is involutive, meaning o2 = id, then its eigenvalues are 1. Then the decomposition
of g into o, eigenspaces is g = h @ p. The Cartan relations follow from the fact that o, is a Lie
algebra homomorphism.

Finally, let X € g be such that VX (z) = 0. Let v(t) = exp, (tX(z)) be the unique geodesic
starting at x with velocity X (z) and let Y € X(M) be given by

U'y(t/2)0—x(y)'
t=0

Then Y € g. Let v € T, M and let a be any curve starting at « with velocity v. Then

V.Y (z) = Vag%

0
Oy t/2)0z((s)) = Vo — O (t/2)02(a(s5))
ot Os .

s=t=0 t=0

%
| (Oya/zon).

If V is a parallel vector field along v with V(0) = v, then o0,.V is parallel along ~ (traversed
in the inverse direction) with 0.,V (0) = —wv, so that 0,V (t) = —V(—t). Similarly, if we write
Vija(s) =V(s+ %), then V; /5 is parallel along 7/, with initial value V(%), and hence o /2). Vi /2
is parallel along v, /o with initial value —V(%). Therefore o /2y, Vi /2(s) = —Vi/2(—s). This finally

gives
(@y(t/2)72)+V (8) = Oy(t/2(=V(=5)) = =0y (2/2)x (Vi/z <S - ;>)
=Vij2 (s + ;) =V(s+t).
Then (0(1/2)02)«v = (04 (1/2)02)+V (0) = V(t), which implies V,Y (z) = 0. Moreover,

d

il oot =500 = 0.

Killing fields are determined by their value and the value of their covariant derivative at a point,
since so it is for Jacobi fields, and Killing fields are Jacobi fields along geodesics (they are infinites-
imal variations of the geodesic by geodesics). Hence X =Y.

If we let 6 : G x G — G be given by (g, h) = o(g)h, then

(X, X)=0. X+ X = % t O&(J,Y(t/g)ﬂ'm,ﬂ'.y(t/g)o'r) =0,

so X €p.

Conversely, if X € p, let Y be as before. Then X —Y € hnNp =0, so that X =Y. Then
VX(z)=VY(x)=0.

Finally, consider p — T, M the evaluation at . If X € p is such that X(z) = 0, then
X € hnp =0, which gives that the map is injective. For any v € T, M, let v(t) = exp,(tv) and
let Y be as before. Then Y (z) = v and VY (z) = 0, so that Y € p. This gives surjectivity and
ends the proof. O

As said, many geometric properties of M are very closely related to the Lie theoretic data of G and

H. For instance, the curvature of M can be computed using the Lie bracket on p.
Proposition 3.18. Let R be the Riemann curvature of M. Then
(R(X,Y)Z)(@) = —[[X,Y], Z)(x), for X,Y,Z €p.
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Proof. Let X,Y € p and 7(t) = exp,(tY (x)). As in the proof of Proposition 3.17, we have that
the flow of V' is given by 0(;/2)0%. Then

d d

Ty(s/2)0z(V(t)) = e Y(t+s) = F(t).

Y (y(t))

" ds|,
Since X is Killing, and Killing fields are Jacobi fields (Remark 1.39), we have that Jacobi’s equation
(Definition 1.37) at time 0 gives VyVy X + R(X, Y)Y =0 at z. If Z € p, then we have that at «
0=VyzVyizX+RX, Y+ 2)Y + 2)
=VzVy X+ R(X,Z2)Y +VyVzX + R(X,Y)Z
=R(X,2)Y + R(X,Y)Z + R(Z,Y)X +2VyVzX + V iz X.

Since [p,p] C b, then [Z,Y](z) = 0, and hence 0 = 2(R(X,Y)Z + VyVzX)(z). Finally, at z,

R(X,Y)Z = —-R(Y,Z2)X + R(X,2)Y =V;VxY —Vz;VyX
= V2[X,Y] = VixvZ + [Z,[X, Y]] = —[[X, Y], Z],

as wanted. O

Corollary 3.19. The Ricci curvature of M is given by
Ric(X,Y)(x) = —tr((ad X adY)|,), for X,Y €p.
Proof. Simple computation using Proposition 3.18 (here Z € p):

Ric(X,Y)(z) = tr(Z(z) — (R(Z,X)Y)(x)) = tr(Z — —[[Z, X]Y]) = —tr((ad X ad Y)|,). O

Lastly, we show that locally symmetric spaces are determined by the parallelism properties of its
curvature. Recall that if R is the Riemann curvature of a Riemannian manifold M, then when we view
R as a End T'M-valued 2-form on M it is D-closed, where D is the covariant differential (Definition 1.2)
of the Levi-Civita connection V. On the other hand, V can be extended to act on tensor fields on
M, and hence it makes sense to consider VR as a (1,4)-tensor field on M. Recall that, as we saw in
Proposition 1.29, the fact that DR = 0 gives the second Bianchi identity for R:

VxR(Y,Z)+VyR(Z,X)+VzR(X,Y)=0, for X,Y,Z € X(M).

Proposition 3.20. A Riemannian space is locally symmetric if and only if its Riemann curvature is
parallel.

Proof. Let M be locally symmetric with curvature R. Let x € M and o, the (local) geodesic
symmetry. Since o..(z) = —id and o, is a local isometry, we have that for all u,v,w,z € T, M,
by Lemma 1.35,

—VuR(v,w)z = 02:(VuR(v,w)2) = Vo, uR(04s0, 0psxw)022 = Vy R(v,w)z,

which gives V,R = 0.

Conversely, let M be such that VR = 0. Let y be a geodesic and {E;}; a parallel orthonormal
frame along it. Then, since V4R = 0, we have that Vs (R(E;,¥)¥) = 0, i.e., R(E;, )7 is parallel
along 7. Hence, there are constants {a?}; ; such that R(E;,%)% = al E;. The Jacobi equation for
a field J = b'E; along v is, then, b* + aé-bj =0.

Let U, be a neighborhood of x € M such that exp, : B(0,¢) — U, is a diffeomorphism.
We want to show that o, : U, — U, given by o,(exp,v) = exp,(—v) is an isometry. Let
y =exp, v € U, and u = exp,, (v)w € T,U,, for v,w € T, M. Then

d

U= —
ds|,_,

exp, (v + sw).
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Consider the Jacobi field J(t) = 4 o0 &XP; (t(v + sw)) along t — exp,(tv). Then u = J(1). Let
{ei}:; be an orthonormal basis of T, M and extend it to a parallel orthonormal frame {F;}; along

the geodesic. Then the coefficients for the equation of J are (R(e;,v)v,e;). On the other hand,
d

Tl = - - oz (exp, (v + sw)) = % . exp, (—v — sw).
Consider the Jacobi field J(t) = 4 |s:0 exp, (t(—v—sw)) along t + exp,(—tv). Then ogu = J(1).
The coefficients of the equation of J along this geodesic with respect to the frame {—FE;}; are
(R(—ei, —v)(—v), —¢;) = (R(ei,v)v,¢;). Observe that J(0) = J(0) = 0 and that J(0) = w
and j(O) = —w. So the equations for the coefficients of J with respect to {E;}; and of J with
respect to {—F;}; are the same with the same initial conditions. By the uniqueness of solutions
to ODEs we obtain that the solution is the same. In particular, since both are coefficients with
respect to an orthonormal frame, we get that their norm coincides at every time ¢. In particular,

ozl = |J(1)|| = ||J(1)]| = ||u|l. Then o, is an isometry, since

2(u, v) = [|u+vl|* = [Jul* — Jo]|*. B

3.2.2. Isotropy representation and holonomy

Back to our globally symmetric space M, observe that, if we let C}, stand for conjugation by h in G,
then, since o(h) = o,ho, = h,

go Ch(g) = O';chghilo'x = haxgathl =Cpo U(g),

which gives that o, Ad(h) = (0 0 Cp)s = (Cp 0 0), = Ad(h)o,. This implies that the decomposition
g =bhDyp is Ad(H)-invariant.
Consider the isotropy representation H x T, M — T, M given by (h,v) — hyv.

Lemma 3.21. The isotropy representation is faithful. With the identification T,M = p, it corresponds

to the adjoint representation of H on p.

Proof. Let h € H be such that h.(z) =id. Let y € M and ~ a starting at = with (1) = y. Then

h oy is a geodesic starting at « with velocity 4(0), and so h o~ = . Hence, h(y) = h(y(1)) =
v(1) = y. Therefore h = id and the isotropy representation is faithful.
Also, if X € p, then
d
Ad(h)X (z) = 7 hExp(tX)h ™ (z) = ho (X (R (2)) = he (X (2)),
t=0
so indeed the isotropy representation corresponds to the adjoint representation of H on p. O

Corollary 3.22. Let n be an ideal of g with n C b, then n = 0.

Proof. By the Cartan relations (3.1), we have that [n,p] CnnNp C hNp =0. Then n C ker(ad :
h — gl(p)). By Lemma 3.21, this kernel is 0. O

Theorem 3.23. If g is semisimple and M simply connected, then the holonomy representation of M is

equivalent to the isotropy representation. In particular, Hol(M) = H.

Proof. Since VR = 0 by Proposition 3.18, then the holonomy principle (Theorem 1.20) implies
that 7.7 'R, = R, for any path v from z to y. Then the Ambrose-Singer theorem (Theorem 1.25)
gives

hol(M) = span{ R, (u,v) : u,v € T, M} =imR,.
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By Proposition 3.18, this is exactly ad[p, p]|p, and by the Cartan relations (3.1), we conclude that
hol(M) C ad b, when regarding ad b inside gl(p).

It is easy to see that [p,p] @ p is an ideal of g, since by the Jacobi identity and the Cartan
relations,

([, p],b] < [[p, b, 9]  [p,p].

Since the Killing form of g is nondegenerate by Cartan’s criterion ([Kna02, Thm. 1.45] for in-
stance), then the orthogonal of [p, p] @ p with respect to the Killing form is also an ideal of g, and
it lies inside of h. By Corollary 3.22, this ideal must vanish, and hence [p, p]®p = g, i.e., [p,p] = b.

Therefore, hol(M) = ad bh. Since the adjoint representation corresponds to the isotropy repre-
sentation by Lemma 3.21 and this one is faithful, we conclude that the holonomy representation
is equivalent to the isotropy representation and hol(M) = b. Since M = G/H is simply connected
and G is connected, then H is also connected, and this finally gives Hol(M) = Hol’(M) = H. O

An interesting case is when M is irreducible and at least 2-dimensional, because then g is semisimple.
Observe that in this case M has nonvanishing curvature, because if it did not we would have that
hol(M) =im R, = 0, so Hol(M) = 1, and since M is irreducible it should have to be 1-dimensional.

Proposition 3.24. If M is irreducible of dimension at least 2 then g is semisimple.

Proof. The first part of the proof of Theorem 3.23 gives that hol(M) C adh. Since hol(M) acts
irreducibly on T, M 22 p, so does ad h on p. Suppose the radical v of g is nonzero and let k+1 be the
level where the descending series of t terminates, i.e., such that t*) % 0 and t*+1) = [t(k), t(k)] = 0.
Since t*) is an ideal, then [h,t®) Np] € ) Np, so t*) N p is ad h-invariant.

If t®) N p =0, then t®) is an ideal of g inside of b, so by Corollary 3.22 it must vanish, which
is not possible. If t®) Np = p then p C t* and [p,p] € t*+Y = 0. Then by Proposition 3.18 we
have that im R, = ad[p, p]|, = 0, which cannot be because dim M > 2. O

3.2.3. Orbits of s-representations

In submanifold theory, 1-connected semisimple symmetric spaces are of great importance, where we call

a symmetric space semisimple if its algebra of Killing vector fields is semisimple.

Definition 3.25. A representation of a Lie group is called an s-representation if it is equivalent to the

isotropy representation of a 1-connected semisimple symmetric space. ¢

In words of [BCO16], for many reasons, orbits of s-representations play in submanifold theory the
same role as symmetric spaces in Riemannian geometry. We will now focus on showing that orbits of
irreducible s-representations are submanifolds with constant principal curvatures.

Following the notation of the rest of the section, let M = G/H be a 1-connected irreducible symmetric
space of dimension at least 2, and write g = h @ p for its Cartan decomposition. Here G = Isom’(M )
and H = G, for some x € M. Then g is semisimple by Proposition 3.24. Let B denote the Killing form
of g, which is nondegenerate [Kna02, Thm. 1.45]. We recall that it is given by

B(X,Y):=tr(ad X adY).

It is symmetric, and it is also invariant under Lie algebra automorphisms of g. Indeed, if 8 is such an

automorphism, then
B(0X,0Y) = tr(ad(AX) ad(0Y)) = tr(f(ad X ad Y)0™!) = tr(ad X adY) = B(X,Y).
In particular, it holds for o, = Ad(o,). This gives that B(p,h) = 0, because if X € p and Y € b, then
B(X,Y) = B(0.X,0.Y)=-B(X,Y).
This in turn implies that By and B|, are nondegenerate.
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Lemma 3.26. By is negative definite.

Proof. Let X € b. By the Cartan relations (3.1) we have that (ad X)?|, and (ad X)?|, are linear
endomorphisms of h and p, respectively. Hence,

B(X, X) = tr(ad X)?| + tr(ad X)?,.

The first term is By (X, X), where By, is the Killing form of h. Since H is compact, by Lemma 3.16,
then there is an Ad(H)-invariant inner product on b, with respect to which ad X|, is skew-self-
adjoint. Hence, ad X|, diagonalizes with imaginary eigenvalues, and By (X, X) is the sum of the
squares of such eigenvalues, so that By (X, X) < 0. If it is 0, then ad X|; = 0 and B(X,-) = 0. By
the nondegeneracy of B, this can only happen if X = 0.

As for the second term, consider the inner product (-,-) on p given by
Y, Z) .= (Y(x),Z(z)), forY,Z¢enp.
It is Ad(H)-invariant, since by Lemma 3.21, if h € H,
(Ad(R)Y, Ad(R)Z) = (h. (Y (2)), h (Z(2))) = (Y, Z).
Then ad X|, is skew-self-adjoint with respect to this product, and the same reasoning as with

ad X |y gives that tr(ad X)?|, < 0 and it is 0 if and only if X = 0. O

For X € p, consider the linear functional B|, (X, -). Then there is X* € p such that B|,(X,-) = (X*, ),
where (-,-) is the Ad(H)-invariant product given as in the proof of Lemma 3.26. Then the linear map
p — p given by X — X* is self-adjoint with respect to (-,-), by the symmetry of B. Therefore, there is
an eigenspace decomposition p = p; B - - B p,,. Let A; be the real eigenvalue corresponding to p;, and let
X, € p;. Recall that because B is Ad(G)-invariant then ad X is skew-self-adjoint for every X € g. Then
if Y € h and Z € p we have that

B([Y, Xi], 2) = =B(X,, [V, Z]) = =Xi(X,, [Y; Z]) = A([Y, Xi], 2).

Hence, p; is ad h-invariant. Since M is irreducible and the holonomy representation coincides with the
adjoint representation of H on p, by Theorem 3.23 and Lemma 3.21, then p; = p, i.e., there is A € R such
that B(X,Y) = MX,Y) for all X,Y € p. Since B is nondegenerate, we must have that A # 0.

We consider now the product B’ on g which coincides with —B if A < 0 and which is —B|y + B, if
A > 0. Tt is Ad(G)-invariant and positive definite. We need a final lemma.

Lemma 3.27. Let N < N be a submanifold and g € Isom(N) with g(N) = N. Then if ¢ € T,N+ and
v € TN, we have that Wy _cg.v = g.Wev. In particular, Wy, ¢ and W have the same eigenvalues.

Proof. Lemma 1.35 gives that V,, xg.Y = ¢.VxY for X,Y € X(M). Since g preserves N, then
if X € X(N) and ¢ € X+ (N) we finally have that

Wy*ﬁg*X = _(vg*Xg*f)T = _(g*va)T = _9*(vX5)T = g*WgX. O

Proposition 3.28. Let X € p be nonzero. Then the Ad(H)-orbit of X in p is a submanifold with

constant principal curvatures.

Proof. Let B’ be as described above and consider the Ad(H)-orbit of X, call it N, as a submanifold
of the Euclidean space (p, B'|,). The tangent space of N at X is [h, X], and Z € p lies in Tx N+
if and only if for all Y € §h we have that

B'([Y,X],Z) = B'(Y,[X,Z]) = 0.

39



Chapter 3. Berger’s Holonomy Theorem Jaime Pedregal

Since B’ is nondegenerate, then [X, Z] = 0, i.e., Ty Nt = 3,(X) :={Z € p: [Z,X] = 0}. Let n
be the orthogonal complement of 35(X) := {Y € b : [Y, X] = 0} in b with respect to B’|y. Then
[n,Tx Nt] C TxN. Indeed, if Z,W € Tx N+, then

HZ’ W]’X] = _[[WX]’Z] - [[Xr Z],W] =0,
so [Z,W] € 35(X), and therefore if Y € n then
B'([Y,Z],W) = B'(Y,[Z,W]) =0,

ie., [Y,Z] € TxN.

Let now h : [0,1] — H be a piecewise smooth curve and consider X (¢t) = Ad(h(¢))X. Since
h =n 3,(X), there are piecewise smooth curves n, z : [0,1] — H such that h(t) = n(t)z(t) and
such that Ly, )-1,7(t) € nand L )-1,2(t) € 35(X) for all ¢, where Ly, is left translation by h € H

in H. Then

< ad(z()x) = 2

pr Ad(z(t)) Ad(z(t) L2t +5) X

ds|,_

— Ad(=(0) (L 1.2(0), X] =0,

so actually X (t) = Ad(n(t))X. Let Z € Tx N+ and consider Z(t) = Ad(n(t))Z. Then [X(t), Z(t)] =
Ad(n(t))[X, Z] = 0, so Z(t) € Tx)yN+. Also, by a similar computation as before,

d
%Z(t) = Ad(n(t))[Ln)-11(t), Z] € Ad(n(t))[n, TXNJ‘] C Ad(n(t))Tx N = Tx N,
which means that Z(t) is actually V+-parallel. Since W and Wad(n(t))z have the same eigenvalues

by Lemma 3.27, we conclude that N has constant principal curvatures. O

Remark 3.29. The sectional curvature of M at x on the plane spanned by orthonormal X,Y € p is

1 1
K(Xv Y) = _<[[Ya X]vXLY> = _XB([[Y»XLXLY) = XB([Xv Y]7 [X’ YD
Since By is negative definite, then x > 0 if A < 0 and k < 0if A > 0 (and & # 0 because M is irreducible
and dim M > 2, as noted earlier). Symmetric spaces with x > 0 (resp. xk < 0) are said to be of the
compact (resp. noncompact) type.
Notice that, in particular, for an irreducible symmetric space M the scalar curvature is nowhere

vanishing, since scal(z) = ", . k(e;, e;), for {e;}; an orthonormal basis for T, M.

.3

3.3. Normal Holonomy Theorem

A key step towards the proof of Simons’s theorem is the normal holonomy theorem, originally proved by
Olmos in [Olm90]. Essentially, this theorem states that the action of the normal holonomy on the normal

space splits orthogonally into a trivial action and an s-representation.

Theorem 3.30 (Normal holonomy theorem). Let M < M be a submanifold of a space form and
x € M. Then there is an orthogonal decomposition TyM~* = Vo @ ---® Vi, and compact normal subgroups
G; C Holi‘O(M), fori=1,...,k, such that

1. Hol:O(M) = Gy x --- x Gy,
2. G acts trivially on Vj if i # j,
3. G; acts irreducibly on V; as an s-representation.
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Another way to put it, which distills what we are interested in, is the following. Recall that if M < M
is a submanifold, we defined

T, Mg = {¢€ € T,M* : g6 = ¢, for all g € Hol:(M)}.

Corollary 3.31. Let M < M be a submanifold of a space form and x € M. Let T, M} be the orthogonal
space to Ty M- inside of TyM~*. Then Hol:°(M) acts on T,yM} as an s-representation.

The proof we give here is the original proof given by Olmos as presented in [BCO16, Chap. 3]. It
uses the theory of holonomy systems developed by Simons in [Sim62].
Definition 3.32. Let (V, (-,-)) be a Euclidean vector space. An algebraic curvature tensor on V is
a (1,3)-tensor R:V x V — EndV such that for all u,v,w,z € V|

1. R(u,v) = —R(v,u),

2. (R(u,v)w, z) = —(R(u,v)z,w),

3. (R(u,v)w, z) = (R(w, 2)u, v),

4. (Bianchi identity) R(u,v)w + R(v, w)u + R(w,u)v = 0.

We define its scalar curvature as the number

scal(R) := Z(R(ei,ej)ej, ei),
.
where {e;}; is any orthonormal basis of V. We denote by Z(V') the vector space of algebraic curvature
tensors on V. ¢
Of course, algebraic curvature tensors are defined to mimic the behavior of the Riemann curvature at
a point.
If G C GL(V) is a Lie group acting on V', then the corresponding action on Z(V') is given by

(9R)(u,v) = g~ R(gu,gv)g, for g € G,
and the action of g := Lie G by
(XR)(u,v) = R(Xu,v) + R(u, Xv) + [R(u,v), X], for X €g.

Definition 3.33. A holonomy system is a triple (V, R, G), where (V, (-,}) is a Euclidean space, G C
SO(V) is a compact and connected Lie subgroup and R € #Z(V) is such that im R C g. In this case we
say that G is the holonomy group of the system and that g is its holonomy algebra.

We say that the system is irreducible if G acts irreducibly on V. We say that it is symmetric if
gR = R for all g € G, or, equivalently, if XR =0 for all X € g. ¢

It was Cartan the first to notice, although not using the formalism of holonomy systems, that irre-
ducible symmetric holonomy systems can always be represented by irreducible 1-connected symmetric
spaces. This is known as Cartan’s construction. We first need a proposition, which computes explicitly

the Levi-Civita connection of a bi-invariant metric on a Lie group.
Proposition 3.34. Let G be a Lie group with a bi-invariant metric, meaning a metric for which left and
right translations are isometries. Then the Levi-Civita connection is the connection given by

1
VxY = [X.Y]

on left-invariant vector fields X, Y € X(QG).
The Riemannian exponential is given by exp,(Lg.§) = gExp&, for g € G and § € g, where Exp is the

Lie group exponential and Ly is left translation by g in G. In particular, G is geodesically complete.
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Proof. Since the metric is left and right invariant, then its restriction to g := Lie G, which we call
(-,-)g, is Ad(G)-invariant, i.e., if {,n € g, then, if R, denote left and right translation by g € G

<Ad(9)§7Ad(g)77>g = <L9*Rg’1*§7Lg*Rg*1*n> = <€777>g

This gives, then, that ad ¢ is skew-self-adjoint with respect to (-,-)y for every £ € g. Also, if
Y,Z € X(G) are left-invariant, then (Y, Z) = (Y (e), Z(e))q identically. Hence, if X,Y,Z € X(G)

are left-invariant,

X{Y,2) = 0= S({[X(e), Y(e)], Z(e))q + (¥ (), [X(6), Z(e)])o)
= S([X.Y],2) + (V,[X, Z)) = (VxY. 2) + (¥, Vx2),

and since being metric is a tensorial property in all three arguments and T'G is parallelizable by

left-invariant vector fields, we conclude that V is metric. Also, if X,Y € X(G) are left-invariant,

1 1
VXY - va - [X7Y] = §[X7Y] - §[Y7X] - [va] = Oa

so V is torsion-free.
Let g € G and consider 7(t) := gExp(t£), with ¢ € g. Let ¢ be the unique left-invariant
vector field whose value at the identity e € G is &, given by £¥(g) = Ly.£. Then

5(0) = L] gExp(te) Exp(s€) = Ly papieye = E“(1(1)).
0

ds|,_
so that )
Vid = Ve (7(1) = 5165, €7 (4(1) = 0.
Therefore, v is geodesic. We conclude that exp,(Ly.§) = g Exp&. O

Theorem 3.35 (Cartan’s construction). Let (V, R, G) be an irreducible symmetric holonomy system with
R # 0. Then there is an irreducible 1-connected Riemannian symmetric space M such that (V,R,G) =
(TuM, R, Hol,(M)) for any x € M, where R, is the Riemann curvature at x. In particular, g = im R.

Proof. Let [:= g@® V and define a bracket on [ by taking the Lie bracket on g and extending it to
[ by [X,v] := Xv and [v,w] := —R(v,w) for X € g and v,w € V. This new bracket in [ is in fact
a Lie bracket. We must only check the Jacobi identity. For XY € g and v € V' we have that

(X, [V, o] + [Y, [v, X]] + [v,[X, Y]] = XYv—-YXv— [X,Y]v=0.
For X e gand v,w € V it is
[X, [v,w]] + [v, [w, X]] + [w, [X,v]] = —[X, R(v,w)] + R(v, Xw) + R(Xv,w) = (XR)(v,w) =0,
by symmetry of the system. For u,v,w € V it is
[w, [v, w]] + [v, [w, u]] + [w, [u,v]] = R(v,w)u + R(w,u)v + R(u,v)w =0,
by the Bianchi identity. Observe that the decomposition [ = g @ V satisfies the Cartan relations
V.Vllg,el Co,  [gVICV.

Actually, [ is semisimple. Indeed, if n C [ is an ideal such that n C g, then the Cartan relations
imply that nV = [n,V] CnNV =0, son = 0. This is an analogue of Corollary 3.22. Hence,
an analogue proof to that of Proposition 3.24, using that R # 0, now gives that [ is semisimple,
since the action of ad;g on V' coincides with the action of g on V, which is irreducible. Also, an
analogue of the proof of Theorem 3.23 gives that [V, V] @V =1, so [V,V] =g.
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Since g is compact, we have that B|; is negative definite, where B is the Killing form of [.
Then, the same argument as that prior to Lemma 3.27 gives an Ad(L)-invariant positive definite
product (-,-); on L

Let L be the 1-connected Lie group integrating [ and G’ the unique connected subgroup of L
integrating g, i.e., G’ = (Exp g) [DKO00, Thms. 1.14.3 & 1.10.3]. Let M = L/G’, which is a smooth
manifold. Define o, : [ = [ by X + v — X — v. It is an involution with eigenspaces g and V. Let
7w : L — M be the projection. For any z = w(h) € M, elements of T,, M are of the form 7, Rp.&
for £ € I, where Ry, is right translation by h in L. Then we can define a Riemannian metric on M
by

(me Rps&, me Rpam) := (£, M), for & m €L
The Ad(L)-invariance of (-, -); ensures that this is well defined.

Actually, M is a symmetric space. Let o : L — L be the homomorphism lifting o, to L [DKOO,
Cor. 1.10.5]. The isometry at © = w(h) is given by 0, o™ = m o R 0 0 o Rj—1. It is clear that
02 =id and 0,(x) = x, since 02 = id and o sends the identity to the identity. Also, since actually

T.M =V, any tangent vector is of the form 7, Rp.v, for v € V| which then gives that
Opx (T Rpsv) = Mo Rpu0v = =T Rpyv
for any v € V, so 0,.(z) = —id. Lastly, o, is an isometry: for any £,n € [ and k € L we have that
(Ops o Ris&, 0psTs Ris) = (MuRpsO s Rpy— 14 Ripu§, T Rps0 s« Rpy—1, Rigs)
= (M RRy,000R, _1 (k)+& T RRy000R, 1 (k)=1) = (§; M)t

Let now R, denote the Riemann curvature of M at x. Suppose that we have proved the

following equality
Ry (e Rpstty T Ry 0)Tu Rpsw = m R (R(u, v)w),  for u,v,w € V. (3.2)

Then, as in the proof of Theorem 3.23, the Ambrose—Singer theorem and the holonomy principle
imply that
hol,(M)=im R, ¥imR C g.

But g = [V,V] = imR, so g = hol, (M), and hence Hol, (M) = G. This also gives that M is
irreducible.
It only remains to prove (3.2). Consider in L the following metric: (Lg.&, Lgsn) := (€, 1)y, for

k € L. Tt is of course left-invariant, but it is actually also right-invariant:
(R, Rpeutn) = (Lioe Ad(K™1)E, Ly Ad (™)) = (Ad(K™H)E Ad(R™ ) = (€)1

Let V% be its Levi-Civita connection, given by Proposition 3.34. Since M = L/G’, any vector
field X € X(M) is m-related to a vector field X € X(L). Consider the connection V on M such
that VxY is m-related to sz_f/ for every X, Y € X(M), i.e.,

VxY(n(k)) = m (VLY (k)), forke L.

It is immediate to see that if X,Y,Z € X(M), then (Y, Z) om = (Y, Z), so that X(Y,Z) om =
X(Y,Z). This directly implies that V is metric. Also, since [X,Y] is 7-related to [X, Y], one also
easily sees that V is torsion-free. Hence, V is the Levi-Civita connection of M.

From Proposition 3.34 we also get that

exXPr () (T Bis§) = m(h Exp(Ad(h™1)¢)).
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Let v € V and let y(t) := n(hExp(t Ad(h~')v)) be the geodesic starting at 7(h) with velocity
T« Rp«v. According to the proof of Proposition 3.17, the corresponding Killing vector field X with

vanishing covariant derivative at w(h) is given at w(k), for k € L, by

d
X(m(k)) = T 0y (t/2)0x(n) (T(K))
t=0
d
= 2| 7O Brexpad(h-t)o/2) © 0 © Rexp(—t Ad(h=1)v/2)h=1 © B © 0 0 Rjps (k)
t=0
d
= m(kh™'o(hExp(—t Ad(h™ )v/2)h ) h Exp(t Ad(h~1)v/2))
t=0

= %W*Lk* Ad(h™ Y — %W*Lk* Ad(h™ Yo, Ad(h) Ad(h™')v
= 7, Ly Ad(R ™Yo = m ((Ad(h~1)o)E(k)),

where &€& is the unique left-invariant vector field in L with value ¢ € [ at the identity of L.
If u,v,w,z € V, since [(Ad(h~Hu)¥, (Ad(h~H)v)Y] = (Ad(h~!)[v,w])¥ and using Proposi-
tion 3.18 one finally sees that

(Ro (M R, T Ry 0) o Rpsw, mi R 2) = —(([[u, v], w], 2)1 = (R(u, v)w, 2)1,
and this gives (3.2). O

Remark 3.36. In the previous proof, one actually has that IsomO(M ) = L. Indeed, first of all notice
that since R # 0 necessarily V is at least of dimension 2, and hence so is M. By Proposition 3.24, then,
M is also a semisimple symmetric space. The proof of Theorem 3.23 now gives that, if H ®p is the Cartan
decomposition of the algebra of Killing vector fields on M, as in the previous section, then h = [p,p].
But in the previous proof we have seen that p = V as Lie algebras, and so [ = [V, V] @V = [p,p] & p, so
L = Isom’(M).

If M < M is a submanifold of a space form and x € M, we can view its normal curvature at z as a
linear map Rt : AT, M — A?T, M=+ by means of the formula

<RL(u Av),EAD) = <RL(u,v)§,n>, for u,v € TyM and &, € Ty M*.

Then its adjoint R+* : A2T, M+ — A%*T,M with respect to (-,-) is given, by Ricci’s equation (see
Theorem 2.4), by RY*(& An) = [We, W,], where here we view A2T, M C T, M®? = End T,,M, using the
metric. With this identification, the product on A*T, M is given by (A, B) = —1 tr(AB). The adapted
normal curvature at z is defined to be Rt := Rt o R+ : A2T, M+ — A2T, M, and it is given by

(R (61 1 €2). 65 A &a) = (Wey, Weal, [Wey, W) = —3 te(We,, Wel Wy, Wel)),

for & € TxMJ‘.

Lemma 3.37. R’ is an algebraic curvature tensor on T, ML with nonpositive scalar curvature. More-

over, its scalar curvature vanishes if and only if R vanishes.

Proof. The three conditions on (skew)symmetry on the arguments are clear, since tr(AB) =
tr(BA). The Bianchi identity can be easily checked by writing all the terms and noting that every
term cancels with some other one because again tr(AB) = tr(BA).

Also, if {&;}; is an orthonormal basis of T, M+, then

N 1 1
scal(R*) = —3 D te((We,, We, |[We,, We,]) = 3 D tr((We,, We, 1),
i,J .3
Since both Wg, and W, are self-adjoint, then [We,, We,] is skew-self-adjoint, so it diagonalizes
with imaginary eigenvalues. Then tr([W,, ng]2) equals minus the sum of some squares, which is
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always nonpositive and only vanishes when every eigenvalue vanishes, i.e., when [We,, We,] = 0.
Thus, SC&](RJ‘) is nonpositive and vanishes only when [We,, W¢,] = 0 for all 4, j, which means that
RL<§i N&j) = 0 for every i, j, that is, Rt =0. O

Observe that
im Rt = R (im R**) = RY(im R @ ker RY) = R (im RY* @ (im RT*)%) = im R+,
Hence, by the Ambrose—Singer theorem, g := ho[i‘ (M) is spanned by
{(r RY)(&1,62) 1y € (M) and & € T, M},

We now prove three lemmas that we will need in the proof of the Normal Holonomy Theorem. We
let G := Hol°(M).

Lemma 3.38. Let S = {7:%[%L cy € M (M)} and let T,M+ = Vo @ --- @ Vi be the unique, up to order,
orthogonal decomposition with G acting trivially on Vo and irreducibly on V;, for i # 0. Then for any
Rec S and &,n € T,M*, if we denote by &,n; the projections of £,m onto V;, respectively, we have that

1. R(&,&)=0if i #j,
2. R(§,m) = 32, R(&imi),
3. R(&,m:)V; =0 if i # j,
4. R(&,m)V; C V.

Proof. For any ¢, € T,M* we have that (R(&;,&)¢,n') = (R(&,1)&,&;). Since G acts on
Vi and R(&',n') € g, then R(¢',n')& € V; and so (R(&;,&;)¢',n') = 0if @ # j. This gives 1, and
2 follows immediately. By Bianchi’s identity and 1, if ¢ # j, then R(&,m:)&; = —R(n:,&;)& —
R(&;,&)n: = 0, which proves 3. Finally, 4 is just a consequence of V; being invariant under G and
R(&i,mi) € 9. O

Lemma 3.39. Using the notation of Lemma 3.38, let g; be the span of {R(&,m:) : &,mi € Vi, R € S},
fori#0. Then

1 [gi,g5] =0 if i # 7,

2.9=01D - Dgr and every g; is an ideal in g,
3. 0iV;=0ifi#j,

4. @i acts irreducibly on V;.

Proof. If i # j, then [R(&,m:), R(&;,1m;)]Vi = 0 for every [, by Lemma 3.38(3). This proves 1. That
g=g1+ -+ g follows from Lemma 3.38(2) and from the fact that

g=span{R({,n): &,n € T,M*, R e S},

by the Ambrose-Singer theorem. To see that the sum is actually direct, observe that if R(&;,n;) =
R'(&;,m;), for some R,R' € S and &;,n; € V; and §;,n; € V;, with ¢ # j, then R(&,n)V;
R'(&;,m;)Vi = 0, by Lemma 3.38(3). This means that R(&;,n;) acts trivially on T, M+, since it
already acts trivially on any V; with i # j, by Lemma 3.38(3) again. Now,

9, 9i] = [91, 9] + -+ + [9k, 0:] = [9i, 9:)-

The same reasoning that showed that g, N g; = 0 shows as well that [g;,g;] Ng; = 0, for ¢ # j,
from where it follows that [g;, g;] C g;. Therefore, g; is an ideal of g, giving 2. Lemma 3.38 and
the fact that G acts irreducibly on each V; easily give 3 and 4. O
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Lemma 3.40. Let G C SO(V) be a connected Lie subgroup acting irreducibly and R € Z(V) with
imR Cg. Then G is compact, and it acts on V as an s-representation if scal(R) # 0.

Proof. That G is compact follows from the fact that any connected Lie subgroup of SO(n) acting
irreducibly on R™ is closed in SO(n) (see for instance [KN63, Vol. 1, App. 5, Thm. 2]). Since G

is compact, there is a Haar measure p on G. Let

R = /G (gR)dp(g).

Then, since scal(gR) = scal(R) for any g € G, we have that scal(R') = scal(R)u(G) # 0 if
scal(R) # 0. Also, R’ is G-invariant. Hence, (V, R’,G) is an irreducible symmetric holonomy
system. By Cartan’s construction, Theorem 3.35, the G-action on V' corresponds to the holon-
omy representation of a 1-connected semisimple Riemannian symmetric space. Since in this case
the holonomy and the isotropy representations coincide, we conclude that the G-action is an

s-representation. O

We can finally give the sought proof.

3.4.

Proof. (Of the Normal Holonomy Theorem, Theorem 3.30) Let T,M+ =V, @ --- @V, and g =
g1 D - D gr be asin Lemmas 3.38 and 3.39. Let G; be the connected Lie subgroup of G with
Lie algebra g,. These groups are normal in G because the g; are ideals in g by Lemma 3.39(2).
Moreover, G = G; X -+ X Gj. By Lemma 3.39(3) and Lemma 3.39(4) we have that G; acts
trivially on V; and irreducibly on V;, for ¢ # j. Finally, for each i let R; € S be such that
R;|v, # 0, which exists because g; does not act trivially on V;. Since scal(R;) = 0 if and only if
R; =0, by Lemma 3.37, then we can apply Lemma 3.40 to G; C SO(V;) and conclude that G; is

compact (and hence G is so as well) and acts on V; as an s-representation. O

Simons’s Holonomy Theorem

In this section we finally prove Simons’s holonomy theorem, from which Berger’s holonomy theorem can

be deduced. A holonomy system (V, R, G) is called (non)transitive if G acts (does not act) transitively

on the unit sphere of V.

Theorem 3.41 (Simons’s holonomy theorem). An irreducible nontransitive holonomy system is neces-

sarily symmetric.

The proof we give here is the geometric proof found by Olmos [Olm05], or rather an enhanced version

of it presented in [BCO16]. It is long and technical. The two main ingredients are: if V' is a Euclidean

vector space equipped with the Levi-Civita connection, G C SO(V) is a compact connected Lie subgroup

acting irreducibly on V and v € V is nonzero, then:

1.

2.

3.4.1.

for every w € Gv and g € G there is a smooth curve v in Gv from w to gw such that g. |7, (Gv)r = Tj;
this is is Proposition 3.47, towards which we already worked in Section 2.2 and Section 3.2.3;

there is some normal vector ¢ € T,(Gv)t with ¢ ¢ Rv such that

V=) TG+t

teR

this is Lemma 3.49.

Exponential map and equivariant vector fields

Let M be a Riemannian manifold with a connection V on T'M, and denote by 7 the projection TM — M.

Let U be the subset of vectors v € T'M such that the unique geodesic starting at 7(v) with velocity v is

46



Jaime Pedregal 3.4. Simons’s Holonomy Theorem

defined up to time 1, and define exp’ : U — M x M by sending v to (7(v),expv). It is a diffeomorphism
from a neighborhood of the zero section of TM onto a neighorhood of the diagonal in M x M [Pet16,
Thm. 5.5.1], by the inverse function theorem.

Let now N be a submanifold of M and expt : U N TN+ — M the projection unto the second
component of the restriction of exp’ to UNTN*. It is easy to see again that exp™ maps diffeomorphically
a neighborhood of the zero section of TN onto its image in M. Such an image is called a tubular
neighborhood for N. If N is compact, then it can be taken to be the image by exp' of the e-ball bundle
{€ € TNL 1 ||¢|| < €} for some € > 0.

This gives a way of computing the isotropy of the slice representation.

Lemma 3.42. Let M be a Riemannian manifold and G C Isom(M) a compact Lie subgroup. For x € M,
consider the slice representation Gy x Tp(Gx)* — Tp(Gx)* given by (g,€) = g.&. Then if the norm of
€ € T,(Gz)™* is small enough, the isotropy group of & is (Gy)e = Gexp, ¢-

Proof. For any g € G, since g takes geodesics to geodesics, we have that gexp, v = expg, (g«v) for
every v € T, M. In particular, if g € (G.)¢, then gexp, { =exp, &, 50 g € Gexp, ¢-

To show the converse, let € > 0 be such that the e-ball bundle gives a tubular neighborhood of
the orbit Gz. Let [[£]| < € and g € Geyp, ¢. Then [|g.£]| < € as well and

expt & = exp, £ = gexp, & = exp,, (9:£) = expT(g.).

Since exp™ is a diffeomorphism on the e-ball bundle, this gives that ¢ = g,&, and therefore also
x = gx. That is, g € (G )e. O

It also gives that on compact isometric orbits any normal vector can be extended to an equivariant

normal vector field.

Proposition 3.43. Let V be a Euclidean vector space equipped with the Levi-Ciwita connection V, let
G C SO(V) be a compact connected Lie subgroup and v € V nonzero. Then for any ¢ € T,(Gv)* the
formula g(gv) .= g.& defines a normal vector field € € X+ (Gv). It is the unique equivariant normal vector
field with value & at v.

Proof. Let C:={w € V : 1|jv|| < |lw|| < Z|lv||}, which is compact in V. Then there is ¢ > 0 such
that for all w € C' the ¢/-ball bundle gives a tubular neighborhood of Gw. Let € := min(%|v]|,¢)
and ¢ € T,(Gv)t with [[£]] < e. Then we can apply Lemma 3.42 to £ to obtain that (G,)¢ =
Gexp, ¢ = Gyge. Hence, Gyie C G,

Let X € g. The infinitesimal generator of the G-action at any w € V is given by Xy (w) = Xw.
Therefore Ty, (Gw) = {Xw : X € g}. Then, since ¢ € T,(Gv)*, which means that (Xv,¢) = 0,
and g C so(V), we have that

(X(w+6),6) = L(XE,€) + {6, X€) =0,

50 € € Tyie(G(v + €))L, Also, v+ € € C, so that € lies in the tubular neighborhood of G(v + ).
Hence, Lemma 3.42 now gives that (Gyye)—¢ = Gy, so that G, C Gyye. Therefore, (G,)e =
Gy+e = Gy, which means that the slice representation of G, on T,,(Gv)* is trivial. This gives that
€ is well defined: if gv = ho for some g,h € G, then h™1g € G,, so hilg.e =€, ie., g.& = h.&.

Let now ¢ € T,(Gv)* be of any length. Then there is some n € T,,(Gv)* with ||n|| < eand A € R
such that £ = M. Then 7} is well defined by the above argument. But £(gv) = g.& = Agan = Aij(gv),
SO é is well defined as well.

Finally, if 1 were another equivariant vector field with value £ at v, then n(gv) = (g.n)(gv) =
9:(n(g™"gv)) = g.& = &(gv). O
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3.4.2. Transvections

Let M — M be a submanifold. A transvection of M is an isometry g of M such that g(M) = M and
such that for every x € M there is a curve v in M from x to g(z) such that g.|p, yo = T,YL. Let now V
be a Euclidean vector space, G C SO(V) a compact connected Lie subgroup and v € V nonzero. The
proof of Simons’s theorem given in [BCO16] is based on the following fact: every g € G is a transvection
of the orbit Gv if the action is irreducible, as we will now show. We need, though, some preliminaries.
The first fact we need is that if a connected Lie subgroup of SO(n) acts as an s-representation then it
equals the connected component of the identity of its normalizer. This is a consequence of the following
fact, for which we need some notions that will be introduced in Section 3.6, so it can be skipped in a
first reading and revisited afterwards. Recall that the normalizer of a subgroup H of a group G is the
subgroup {g € G : gHg™' = H}.
Proposition 3.44. Let M be a Riemannian manifold irreducible at x € M. Let n be the Lie algebra of
the normalizer of Hol® (M) inside SO(T,M). Then hol, (M) # n if and only if M is Kihler and Ricci-flat

in a 1-connected neighborhood of x.

Proof. As already described in Section 3.3, the metric on End T, M is given by (4, B) = —3 tr(AB).
Let g := hol, (M) and let [ be its orthogonal complement in n. First, g is an ideal of n, because if
A €nand B € g, then, since Exp(tA) Exp(sB) Exp(—tA) € Hol2(M) for all s and t,

d? d?
—_— Exp(tA) E B) Exp(—tA —_—
dids|__ PRt Bxp(sB) Bxp(—14) = o

d

dt

Exp(s Ad(Exp(tA))B)

s=t=0

Ad(Exp(tA))B = [A, B] € g.
t=0

Also, the metric (-, -) is Ad-invariant, since the adjoint action in GL(T,,M) is given by conjugation,
so that if g € GL(T, M),

1 _ _
(Ad(g)4, Ad(g)B) = — tr(gAg 'gBg™") = (A, B).
Hence, [ is also an ideal of n, because if A € n, B € [ and C € g, then
<[Aa B]a C> - 7<B7 [A, O]> =0.

Therefore, [I,g] = 0. Assume that [ # 0 and let J, € [ be nonzero. Then J2 is self-adjoint and
commutes with g, and so also with Holg(M ), because the endomorphism exponential is given by
a series. If E, is an eigenspace of eigenvalue A € R (these exist because J?2 is self-adjoint), then
E, is Hol? (M)-invariant. Since M is irreducible, we must have that E, = T, M, so that J2 = Xid.
Since for all v € T,,M we have that (J2v,v) = M|v||? = —(Jpv, Jpv) = —||Jv||?, we must have
A < 0, and by rescaling we may take J2 = —id.

By the holonomy principle, there is a parallel complex structure J on a simply connected
neighborhood of x. Hence, M on that neighborhood is Kahler, by Proposition 3.67. Observe
that if X and Y are local vector fields around x and {E;}; is a local orthonormal frame, using
Proposition 3.72,

(R(X,Y),J) = f% tr(R(X,Y)J) = 7% > (Ei,R(X,Y)JE;)

K2

= %Z(JEZ»,R(X, Y)E;) = —% Z(JEi,R(K E)X) — %ZUEi’R(Ei’X)W

1 1
= —5 Ric(Y, JX) + 5 Rice(X, JY) = Ric(X, JY).

But if 7y is a curve inside this neighborhood from x to y, since parallel transport is a linear isometry,
then
(R(X,Y)y, Jy) = (17 R(X,Y )7y, o) =0,
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because J, € [ and, by the Ambrose—Singer theorem, T,y’lR(X,Y)yT,Y € g. Hence, M is locally
Ricci-flat at x.

Conversely, assume that M is locally Kéhler and Ricci-flat around x. Let J be the complex
structure. Then, since J is parallel, it is invariant under conjugation by elements of Holg(M ),
so [Jz,g] = 0, i.e. J, € n. Since M is Ricci-flat, then by the previous argument using the
Ambrose-Singer theorem, J, is orthogonal to g. We conclude, then, that g # n. O

Corollary 3.45. Let G C SO(n) be a connected Lie subgroup acting irreducibly as an s-representation.

Then G equals the connected component of the identity of its normalizer in SO(n).

Proof. Let M be a 1-connected irreducible symmetric space such that the G-action is equivalent
to the isotropy (or holonomy) representation of M. By Remark 3.29, M cannot be Ricci-flat, so

the result now follows from Proposition 3.44. O

The last ingredient we need is a result by Olmos, whose proof falls outside the scope of this thesis.

Here we adapt the statement to our needs.

Proposition 3.46 ([BCO16, Cor. 5.1.8]). Let V' be a Euclidean vector space equipped with the Levi-Civita
connection, G C SO(V) a compact connected Lie subgroup acting irreducibly on V and v € V' nonzero.
If diim T, (Gv)g > 2, for some w € G, then Gu is the orbit of an s-representation.

In particular, if dim T,,(Gv)g > 2, then Gv has constant principal curvatures by Proposition 3.28.

Proposition 3.47. Let V' be a Fuclidean vector space equipped with the Levi-Civita connection, G C
SO(V) a compact connected Lie subgroup acting irreducibly on V. and v € V nonzero. Then for every

w € Gv and g € G there is a piecewise smooth curve v in Gv from w to gw such that g.|r, (Gvyr = T,yl.

Proof. Let g € G and let V be the Levi-Civita connection on V and V and V+ the Levi-Civita
and normal connections on Gv. Then, as in the proof of Lemma 3.27, we have that ¢.(VxY) =
Vg.x9:Y, for X, Y € X(Gv). This immediately gives that for every w € Gv,

Hol,"(Gv) = gul 7! oy HOlp (G) gl (o) -

Let w € Gv and let g : [0,1] — G be a smooth curve from the identity to g. Let v(¢) := g(t)v.
Let T,(Gv)t = Vo @ --- @ Vi be the decomposition given by the normal holonomy theorem
(Theorem 3.30), and let T, (Gv)t = Wy @ - - & Wy, be the corresponding decomposition. Since
both representations are equivalent, with the equivalence being given by conjugation by Tj, we
can assume that the representations V; and W; are equivalent. Let ¢ # 0. Since Holj;O(Gv) acts
on V; we can regard it as being inside of SO(V;). Then (75)~'g.|y, is in the identity component
of the normalizer of Hol:;°(Gw) in SO(V;), since

v, Hol,.* (Gv) .|y, 7 = (75) ! Hol (Gv) '3 = Hol,,"(Gw).

(Tj)ilg*

Since HoliO(Gv) acts on V; as an irreducible s-representation, Corollary 3.45 gives that actually

(Tj‘)*lg*h/i lies in Hol:%(Gw), i.e., there is a null-homotopic curve o; in Guv such that g.|y, =
Tjrji. Since Tjj, for j # 4, acts trivially on V;, we also have that g.|v, = TjTj, witha=a;1-...ay

null-homotopic. Hence, on T}, (Gv)+ = Vi @ -+ @ Vi we have that

9elTu (Gt =T Ta-

It only remains to see that it also holds on T},(Gv)g . First of all, note that Gv C S(||v||), where
S(r) is the sphere of radius r in V. Hence, the radial vector field £(w) = w is a normal vector field
of Gv. Moreover, it is V-+-parallel, since Vx¢& = X, so that V¢ = X1+ = 0 for all X € X(Gwv).
Hence, dim T, (Gv)g > 1.
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If dim T}, (Gv)g = 1, then ¢ is the only normal V-+-parallel vector field. Since We = —id, we
have that W¢ has constant eigenvalues, and hence Gv would have constant principal curvatures. If
dim T, (Gv)é > 1, then Proposition 3.46 gives that Gv has constant principal curvatures as well.
Observe that if 7 is a curvature normal, then g.7 is so as well. Indeed, if E(w) is the corresponding
eigenspace of 7, so that

Weu = (n(w),&)u,  for & € T,,(Gov)g and u € E(w),

then, by Lemma 3.27,
W.egeu = g:Weu = (g.1(gw)), 9+€) 9.
Hence t — g(t).«n(w) is a smooth family of curvature normals at w. Since there is only a finite
amount of curvature normals, we conclude that g.n = 7, i.e., n is G-equivariant. Since the
curvature normals span 7'(Gv)g pointwise and they are V--parallel, by Proposition 2.9, then for all
¢ € T,(Gv)g we have that the corresponding G-equivariant vector field given by Proposition 3.43
is V-+-parallel. Hence,
7-#7—5_527'#5:9*&

and this ends the proof. O

3.4.3. Proof of Simons’s theorem

We finally prove Simons’s theorem. Here we follow [BCO16, Sec. 8.2] closely.
First of all, the fact that G lies in the group of transvections of the orbit Guv has the following
consequence, which will be key in the proof.

Proposition 3.48. Let V' be a Fuclidean vector space equipped with the Levi-Civita connection, G C
SO(V) a compact connected Lie subgroup acting irreducibly and v € V nonzero. Let X € g and define

X : T,(Gv)* = T,(Gv)* by
L

v
X¢i= ~—| Exp(tX).s,
3 i |, xp(tX).§

where V- is the normal connection of the orbit Gv. Then X € hol-(Gv).

Proof. We can write X as

G I COR e
where Tf is V--parallel transport along the curve t — Exp(tX)v up to time ¢. By Proposition 3.47,
for each ¢ there is a curve v; in Gv such that Exp(tX)«|7, (vt = T,i, and so

() Exp(tX ) «|7, ()2 € Holy (Gv)
for each t. Then X € hol(Gw). O

Observe that actually, since elements of G are linear isometries,

— iR
Xe¢ = (CZ Exp(tX)*s) - (jt

that is, X is the orthogonal projection unto T, (Gv)* of Xvlr, (o)t -

1
Exp(tX)€> — X0,

t=0 t=0

In what follows, we prove three technical lemmas.

Lemma 3.49. Let V be a Euclidean vector space, G C SO(V') a compact connected Lie subgroup that is
not transitive on the unit sphere of V. and v € V nonzero. Then there is some normal vector & € T,(Gv)*
with € ¢ Ru such that

V= Tue(Gv+1)*.

teR
Moreover, v € Tyi1e(G(v +t€))* for all t € R.
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Proof. First we see that v € T, 14¢(G(v+t€))* for all t € R. Since Ty (Gv+1€)) = {X (v +1£) :
X € g} and because g C so(V'), we have that for all X € g,

(v, X(v+1t8)) = %(<U7X’U> + (Xv,v)) —t{Xv,&) =0.

Let S be the sphere of V' of radius ||v||. Since G C SO(V') and the orbit of SO(V) through v is
S, we have that Gv is a submanifold of S. If T,,(Gv)* = Rv = T,,S*, then dim Gv = dim S and
Gv would be an open submanifold of S. But it is also a compact submanifold of S, and hence
topologically closed in S. The connectedness of S would give then that Gv = S, which cannot be
because G is not transitive. Therefore, T,,(Gv)* # Rv and we can pick some & € T,(Gv)* \ Ru.
Note as well that the Weingarten operator in the direction of v is —id, since v is the value of
the radial vector field at v. Hence, by perturbing £ by some multiple of v we can assume that
det We # 0.
Define now N
U= <ZTv+t5(G(v+t£))l> .
teR
We aim at showing that U = 0.
Write v(t) = v + t£ for simplicity. To any X € g we can associate a vector field along v given
by
Ix(t) := Xy (y(t)) = Xv+tXE.

Since U C T,(+)(Gy(t)) for all t € R, any element in U can be written as Xv for some X € g. For
any such X, since Jx (t) € Ty ;) (G(t)) for any fixed t € R, and Xv € U, we have that

(Jx (t),m) = (Xv,0) +t{Jx (0),n) = t(Jx (0),n) =0,

for any 1 € T, (G~(t))*, which gives that Jx(0) € T (G(t)) for all t # 0. To see that also
Jx(0) € T,(Gv), note that Ty (Gy(t) — Ty(Gv) as t — 0. Indeed, if we write y(¢)/||v(t)|| =
h(t)v for some smooth curve h : R — SO(V), then

Ty (Gr() ={X~(t) : X € g} = {X H’;Eg X € g} = {Xh(t)v: X € g}

— {Xv: X € g} =T,(Gv).

Hence, J,(0) € U.
Let now §~ be the equivariant vector field normal to Gv with value ¢ at v. Then for all g € G
and f € C*°(Gv) we have that

Xe(ER) = G| EFEpEX) = G| 0.6l o Bxp(ex))
—ae (G| rommx)) - gcixvn — oo

i.e., [€, Xy] = 0 on Gv. Therefore,

AV _ _ - .
= 5| Ix)=VeXv =Vx )¢ = Vo€ — We(Xv) € U.
t=0

From all this we conclude that vﬁé =0and WU CU.

Since W¢ is self-adjoint, we have as well that W¢(U+ N T,(Gv)) € U+ N T,(Gv). For any
Y € g such that Yv € UL N T,(Gv) we have that Jy(0) = Vi, & — We(Yv) € UL, because
Vi £ € T,(Gu)= C UL Hence, Jy(t) = Yv + tJy(0) € UL

Let now Xi,..., Xy € g be such that {X;v}; is an eigenbasis for W¢|y, with respective eigen-
values {)\;};. Note that \; # 0 for all ¢, since det W¢ # 0. Then Jx, (t) = (1 — A\;t)X,v. For any

Jx(0)
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Z € g, write Z = X +Y, with X in the span of {X;}; and with Y such that Yv € U+ N T,(Gv).
Then

Z Tx, () + Ty (t) =Y (1= \it) Xiv + Jy (¢).
i
For every i, at time ¢t = 1/)\1- we have (Jz(t), X;v) = (1 — \t)| X;v||? = 0. Hence, X,v €
Ty /50 (Gy(1/ X)) E, since Ty (G(t) = {Zy(t) : Z € g} = {Jz(t) : Z € g}. Then X;v €
UNU+NT,(Gv) = 0. This finally gives U = 0, as wanted. O
Lemma 3.50. Let (V,R,G) be a holonomy system. Then
T,(Gv)* is invariant under R for all v € V, that is,
R(T,(Gv)*, T,(Gv) )T, (Gv)*t C T, (Go)*;
2. the restriction of R to To(Gv)* is invariant under Hol°(Gv).
Proof. Let v € V. Then for any u,w € V and ¢ € T,(Gv)* we have that, since R(u,w) € g,
(R(u, w)v, &) = 0= (R(v,{)u, w),

so R(v,&) = 0. Then the Bianchi identity gives that R(£,n)v = —R(n,v)§ — R(v,&)n = 0 for any

¢,m € T,(Gv)*, which means that R(¢,m) € g,, where g, is the isotropy algebra of v, given by
g, ={X €g: Xv=0}. Forany X € g,, Y € g and ¢ € T,(Gv)* we have that

<X§?YU> = _<€aXYU> = _<€7 [Xa Y]U> =0,
and hence g,T,(Gv)* C T,(Gv)*. This gives 1.

Let v be a piecewise smooth curve in Gv and let £ be a V1-parallel vector field normal to Gv
along . Then

d
580 = *E = E Wew) (1(1)) € Ty (G (1))
(here V is the Levi-Civita connection of V).

Let &, for i = 1,2,3,4, be vector fields of such kind. Because R is a constant tensor on V,
then R(v(t)) is V-parallel, so

0= ((FROO)) (€@ 0.&08O.40)
— GRG0 L0)E0.60) - (7 560.60) a0.60)
~ (R (@0, 60 @(0.60) - RE©0,00) Fa0.60)
(R (), (0 (1), S E4(1).

Since £&(t) € T,y (Gy(t)), then 1 gives that £ (R(&(2), &(t))&s(t), €4(t)) = 0, and this immedi-
ately implies 2. O

Lemma 3.51. Let (V,R,G) be a holonomy system, X € g and W C V' a subspace which is invariant
under both R and X R. Let X be the orthogonal projection unto W of Xv|w. Then (XR)|w = X - R|w .
Proof. Let wy,wy,w3 € W and ¢ € W+. Then (R(wy,&)ws, w3) = (R(wa, w3)wy, &) = 0 and
(R(w1,w2)€, w3) = —(R(wy,wz)ws, &) = 0. Let P : V — V be orthogonal projection unto W.
Explicitly, X is given by PXw on w € W. Then, if wy € W,
(X R) (w1, wo)ws, wa) = (X R(wr, we)ws — R(Xwy, w2)ws — R(wy, Xwz)ws — R(wi, w) Xws, wa)
= <PXR(’LU1,U)2)U}3 — R()_(wl,wg)wg — R(wl,)_(wg)wg — R(wl,’LUQ)Xwg,’LU4>
= (X - Rlw) (w1, wa)ws, wa),

and this gives the result. O
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Theorem 3.52 (Simons). Every nontransitive irreducible holonomy system is symmetric.

Proof. Let (V,R,G) be a nontransitive holonomy system and X € g. Let v € V be nonzero,
¢ € T,(Gv)* as in Lemma 3.49 and () = v+ t{. Write W, := T, (Gy(t))*, Ry == Rlw,,
(XR); := (XR)|w, and X; for the orthogonal projection unto W; of Xy |w,. Since (V, XR,G) is
also a holonomy system, then a combination of Lemmas 3.50 and 3.51 gives that (XR); = X;R;.
By Proposition 3.48, X; € ha[#(t)(G'y(t)), so Lemma 3.50 gives that X, R, = 0.

By Lemma 3.49 any w € V' can be written as w = ), w; with w; € Wy, for some ¢; € R, and
where this sum is finite. Then, since v € W, again by Lemma 3.49,

(XR)(v,w)v = > (XR)(v,wi)v =Y (XR)y,(v,w;)v = 0.

K2 7

Since this holds for any v # 0, X R has vanishing sectional curvatures, so X R = 0, by Proposi-
tion 1.41. Since X was arbitrary, we conclude that indeed (V) R, G) is symmetric. O

3.5. Berger’s Holonomy Theorem

We finally prove Berger’s holonomy theorem for Riemannian manifolds. We then study the transitive
actions on the sphere so as to give the original version of the theorem, in the form of a list. We end by

considering the special geometries that arise from having the different holonomies in Berger’s list.

3.5.1. Berger’s theorem

The argument for Berger’s theorem will boil down to a contradiction on the dimension of the manifold.

It will rely on the following remark.

Remark 3.53. If V is a Euclidean vector space and G C SO(V) is a connected compact Lie subgroup
acting irreducibly on V' then any orbit Gv with v # 0 must have dimension at least 2 unless dim V' < 2.
Indeed, if dim Gv = 0 then Rv is G-invariant and hence V' = Rov. If dim Gv = 1, then any g € G, must
be the identity on Gv, because by the Hopf~Rinow theorem Gwv is geodesically complete, so that g|g,
is totally determined by g.|r, (Gv), which is the identity because T, (Gv) is 1-dimensional. The subspace
span(Gw) is G-invariant and contains v, so V = span(Gv), which implies that g is globally the identity.
Hence G, is trivial and therefore dim G = 1. Since G is abelian and acts irreducibly, then dim V is at

most 2.

An easy consequence of Cartan’s construction is the following, which we will also need in the proof

of Berger’s theorem.

Lemma 3.54. Let (V,R,G) and (V, R, G) be two irreducible symmetric holonomy systems of dimension
at least 2 with R # 0. Then R’ is a scalar multiple of R.

Proof. If ' = 0, it is clear. If R’ # 0, then by Cartan’s construction both R and R’ have
nonvanishing scalar curvatures by Remark 3.29. Hence there is some A € R such that R” := R'—A\R
has vanishing scalar curvature. Since (V, R”,G) is also irreducible and symmetric of dimension at
least 2, if R” # 0 Cartan’s construction would give that R” has nonvanishing scalar curvature.
Hence R” = 0. O

Theorem 3.55 (Berger). An irreducible Riemannian manifold of dimension at least 2 whose restricted

holonomy group is not transitive on the unit sphere is locally symmetric.

Proof. Let M be such a manifold and let x € M be such that R, # 0, which is possible because M

is irreducible and of dimension at least 2. Any connected Lie subgroup of SO(n) acting irreducibly
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on R™ is closed in SO(n) [KN63, Vol. 1, App. 5, Thm. 2], from where it follows that Hol® (M) is
compact. Then (T, M, R, Hol? (M)) is an irreducible nontransitive holonomy system. By Simons’s
theorem it is symmetric, and so by Theorem 3.35 we have that hol (M) = im R,.

Let v € T, M and v any curve with v(0) = z and 4(0) = v. Then if we denote by 7 the parallel
transport along v from z to (),

VoR= —| 17 (R,u),
t=0

where we recall that 7, ' (Ry))(u,w) = 7, 'Ry (reu, mw) 7 for u,w € T, M. This formula
together with the Ambrose-Singer theorem and the fact that R, is also symmetric for any ¢
by Simons’s theorem gives that V, R is a symmetric algebraic curvature tensor with imV,R C
hol, (M). Hence (T, M, V, R, Holl(M)) is also an irreducible symmetric holonomy system.

By Lemma 3.54 there is A € T M such that V,R = A(v)R, for all v € T, M. Let v € T, M
be such that A(v) = (u,v) for all v € T,M and denote by U~ its orthogonal complement in
T.M. Suppose u # 0. Since Holg(M ) acts nontransitively on the sphere we must have that
dim T, M > 3, because the only nontrivial connected compact Lie subgroup of SO(2) is itself and
it acts transitively on the sphere.

Let v € T,M and w,z € U*. Then by the second Bianchi identity (Proposition 1.29),

0=V,R(w,z)+ Vy,R(z,v) + V,R(v,w)
= (u,v)R(w, z) + {(u, w)R(z,v) + (u, 2) R(v, w)
= <U,U>R(w,2),

so R(w, z) = 0. So for all v1,ve € T, M we have that (R(vi,v2)w, 2) = (R(w, 2)v1,v2) = 0, i.e.,
R(v1,v2)w € Ru. Since im R, = hol, (M) and hol,(M)w is the tangent space to the orbit of
Hol’ (M) through w, we get that this orbit is at most 1-dimensional. By Remark 3.53 this would
mean that dim 7, M < 2, which cannot be. Hence, u =0 and V,R =0 for all v € T, M.

Let S := {zeM:R,#0} # (. Then the complement of S is an open set of M where
R vanishes, so that VR = 0 also outside of S. Hence VR = 0 everywhere and M is locally
symmetric by Proposition 3.20. O

3.5.2. Transitive actions on the sphere

By Berger’s theorem, the restricted holonomy group of an irreducible and not locally symmetric Rie-
mannian manifold is transitive on the sphere. The transitive actions on the sphere were classified by
Montgomery and Samelson [MS43] and Borel [Bor49]. The list is given in Table 3.1.

Ga
SG

Group SU(n)

Sanl

SO(n) | U(n)
sn— 1 Sanl

Sp(n) Sp(1) | Sp(n) U(1) | Sp(n)
S4n7 1 S4n71 S4n7 1

Spin(7) | Spin(9)

Sphere it acts on S7 S15

Table 3.1: Transitive actions on the sphere.

From this list, two cases can be thrown away for the classification of holonomy. On the one hand, if a
Riemannian manifold has holonomy inside of Sp(n) U(1), then it necessarily lies inside of Sp(n) [Bes02,
10.66]. On the other hand, it was shown by Alekseevskii [Ale68] and Brown and Gray [BG72] that a
Riemannian manifold with holonomy Spin(9) is necessarily symmetric. We are left, then, with seven
possible cases.

We will now define the relevant groups arising in the classification, and in the following section we

will explore what special properties each type of holonomy confers to the geometry of the manifold.
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(Special) orthogonal group

Let V be an oriented Euclidean space with metric (-, -). Recall that the special linear group is defined as

the group of orientation-preserving isomorphisms of V:
SL(V) := {7 € GL(V) : Tvol = vol for some nonzero vol € A"V*},

where 7 acts on V* by 7A(v) := A(771v). Observe that if 7 € GL(V') preserves some nonzero vol € A"V*,
then it preserves any other element in A™V™*, since this is a real line.

Then we recall that the orthogonal group of V is defined as the metric preserving isomorphisms:
O(V):={r e GL(V) : (rv,7w) = (v,w) for all v,w € V}
and the special orthogonal group of V as
SO(V) :=SL(V) N O(V).

We write O(n) and SO(n) when V = R" with the standard Euclidean structure.

(Special) unitary group

Let now dim V' = 2n and J be an orthogonal linear complex structure on V', that is, J € End V such that
J? = —id and (Jv, Jw) = (v,w), for all v,w € V. Define w € A2V* by w(v,w) := (v, Jw) (it is indeed a
2-form, since J is orthogonal). From V' we can produce two different complex vector spaces. On the one
hand, we can define complex scalar multiplication on V' by (a + ib)v := av + bJv, for v € V. We call the
resulting vector space V(C), with complex dimension n. The complex general linear group of V' is then
defined as

GL(V,J) :=GL(V(C)) ={r e GL(V) : 7J = J1}.

On V(C) we can define a Hermitian metric by h(v,w) := (v,w) + iw(v,w). By Hermitian we mean
that h(v,w) = h(w,v) for all v,w € V(C), that it is C-linear in the first component and that it is
positive-definite. We define, then, the unitary group of V' as

UV, J):={r € GL(V(C)) : h(rv,7w) = h(v,w) for all v,w € V(C)}
= GL(V,J)nO(V).
To be able to define the special unitary group of V, we need to consider the complexification Vg :=
V ®r C, with complex dimension 2n. We can extend J by C-linearity to a complex endomorphism of

Vc. Since its minimal polynomial is 22 + 1, it diagonalizes with eigenvalues +i. Let V% and V%! be the

eigenspaces of eigenvalues ¢ and —i, respectively. It is very easy to see that
V0 =ly—iJv:veV} and VO'={v+iJv:veV}
Since Ve = V19 @ V01 we can identify (V10)* with the annihilator (V%1)°, i.e.,
(VIO ={a e V& : a(Jv) =ia(v) for all v € V},

and similarly,
(VOO ={a e VE: a(Jv) = —ia(v) for all v € V}.

Hence it makes sense to consider elements of (V10)* as “holomorphic” forms and elements of (V1)* as
“antiholomorphic” forms, and to define (p, ¢)-forms (p times holomorphic and ¢ times antiholomorphic)
as elements of

APV = span (AP(V10)* A AL(VO1)*).
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This gives a decomposition of forms
MV = P Arave.

p+q=k

Conjugation can be defined on V¢ as the map Av — v, for A € C and v € V. It is conjugate-linear as a
map Vg — Ve. Then we can define a Hermitian metric on Vi by h(v, w) := (v, W), for v,w € V¢, where on
the right-hand side (-, -) has been extended by C-linearity to Vi. We call this metric h as well because of
the following reason: the map v — (v—1iJv)/ /2 gives an isomorphism of complex vector spaces between

V(C) and V10, and it is actually an isomorphism of Hermitian vector spaces: for all v,w € V(C),
1 ) . 1 . . .
ih(v —iJo,w —iJw) = 5(1} —iJu,w +iJw) = (v,w) + i(v, Jw) = h(v,w).

Let now 2 € A™9V* be nonzero. Then QAQ = pvol for some € C*. If 7 € U(V, J) and we also call
7 its complex extension to Vg, then, since A™°V* is a complex line, there is A € C such that 70 = A.

Since T preserves (-, -}, and hence h, we get that
h(Q,Q) = h(1Q,7Q) = N*h(Q, Q),
i.e., [\]*> = 1. Therefore,
prvol = 1(pvol) = 7(Q A Q) = APQ A Q = pvol,

which implies that 7vol = vol. We conclude that actually U(V,J) = GL(V, J) N SO(V).

We define the complex special linear group as
SL(V,J) := {1 € GL(V, J) : 7Q = Q for some nonzero € A"°V*}.

Observe that if 7 € GL(V, J) preserves some Q2 € A™OV* then it preserves any other element in A0V *

since this is a complex line. Finally, the special unitary group of V is defined as
SU(V,J) :=SL(V,JJ)NU(V,J) = SL(V, J) n SO(V).

We write U(n) and SU(n) when V = R?" = C" with the canonical complex structure.

Symplectic group and Sp(n) Sp(1)

Let now dim V' = 4n and let I, J and K be orthogonal linear complex structures such that IJ = K. Let
wr, wy and wg be the corresponding 2-forms, respectively. From V' we can construct the quaternionic
vector space V(H) by defining quaternionic scalar multiplication on V' by (a + ib + jc + kd)v := av +

bIv 4 cJv 4+ dKwv, for v € V. On it we can define a quaternionic metric given by
(v, w) = (v, w) + iwr(v,w) + jws(v,w) + kwg (v,w), for v,w € V(H).

By quaternionic we mean that ¢(v,w) = ¢(w,v) for all v,w € V(H), that it is H-linear in the first
component and that it is positive-definite. We recall that conjugation on H is given by a + ib + jc + kd =
a — b — jc — kd. Then we define the symplectic group of V as

Sp(V,I,J) :={r € GL(V(H)) : ¢(tv,7w) = £(v,w) for all v,w € V(H)}
={reOV):rI=1Ir, 7J=Jr}
= GL(V,I)nGL(V,J) N O(V).
Just as we had that actually U(V,J) C SO(V'), we also have here that Sp(V,I,J) C SU(V,I) (and the
same holds for SU(V, J) and SU(V, K)). Indeed, consider the 2-form w = w; + iwg. If we write APIV*
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for the (p, ¢)-forms with respect to I, then we have that w € A?’OV*: for every u,v € V we have that

w(u —ilu,v+ilv) = (u — ilu, Jv — iKv) + i{u — ilu, Kv 4+ iJv)

= (u—itlu, Jv —iKv) — (u — ilu, Jv —iKv) =0,
=

=

w(u+ ilu,v +ilv)

)
)
u+ ilu, Jv —iKv) + i{u + ilu, Kv + iJv)

)

u+ ilu, Jv —iKv) — (u+ ilu, Jv — iKv) = 0.
Also, we have that

w(u —ilu,v —ilv) = (u — iITu, Jv + iKv) + i(u — ilu, Kv — iJv)
= 2(u — iJu, Jv + iKv) = 4((u, Jv) + i{u, Kv)),

so that w is nondegenerate. Then w" € A?"’OV* is nonzero and, if 7 € Sp(V, I, J), then 7w; = wy and
Twg = wg, because 7 € U(V,J) and 7 € U(V,K). Therefore Tw"™ = w™. Hence, 7 € SU(V,I). We

conclude that actually

Sp(V,1,J) = SU(V,I) nSU(V, J) N O(V).

If V =R = H" with the standard quaternionic structure, then we write Sp(n) := Sp(V,I,J). In
this case, if A* denotes the quaternionic adjoint of a matrix A, by which we mean its conjugate transpose,
then Sp(n) = {A € GL(n,H) : A*A = id}. Since the norm on H is given by |q|? := @q, and this coincides
with the standard Euclidean norm, then we have that Sp(1) = {g € H: |q| = 1} = S5.

Back to V, consider the action of Sp(V,I,J) x Sp(1) on V given by (7,q)v := 7(qv). Observe that
it is not an H-linear action. The kernel of the action is {(id, 1), (—id, —1)}. Then we define the group
Sp(V,I,J) Sp(1) as the image of such an action, which is isomorphic to Sp(V, I, J) x Sp(1) modulo Z,.
The following characterization will be useful for the treatment of Sp(V, I, J) Sp(1) for holonomy purposes.
It was first considered by Kraines [Kra66].

Proposition 3.56. Let Q := w? + w% + w?, where w? :=w Aw. Then
Sp(V,1,J)Sp(1) = {g € SO(V) : yQ = Q}.

Proof. Let 7 € Sp(V,1,J) and ¢q € Sp(1). It is clear that 7Q = Q. Write ¢ = a + ib + jc + kd,
with a? + b + ¢ + d? = 1. Straightforward computation gives that

qur = (a®> +b* — & — d*)wr + 2(be — ad)wy + 2(ac + bd)wp,
quy = 2(ad + be)wr + (a® — b2 + 2 — d*)wy + 2(cd — ab)wg,
quic = 2(bd — ac)wr + 2(ab + cd)wy + (a* — b* — & + d*)w.

Then, straightforward computation again gives that ¢@Q = Q. For instance, the coefficient of w?

in gQ is
(a® +b* — * — d?)? + 4(ad + bc)? +4(bd — ac)?® = (a®> + V* + > +d?)* =1,
while the coefficient of wy A wy is
2(be — ad)(a® + b* — ¢ — d*) + 2(ad + be)(a® — b? + ¢ — d*) + 4(bd — ac)(ab + cd) = 0.

Therefore, we have that elements of Sp(V) Sp(1) preserve Q.

The converse is shown in [Sal89, Lem. 9.1] using representation theoretical techniques. O]
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G2 and Spin(7)

Typically, G2 and Spin(7) are called the exceptional holonomy groups. Both can described using
the normed division algebra of octonions @. Recall that this is the algebra obtained by applying the
Cayley-Dickson construction to H. More specifically, we introduce a new imaginary unit ¢ satisfying

2 = —1 and the relations

p(Lq) = £(pg), (pl)q = (pg)¢, (p)(qf) = —pg,

for p,q € H, and we consider pairs of quaternions p + £g for p, ¢ € H. The product and conjugation rules

are
(p+Lq)p +4d")=pp' —dT+ L' q+P¢') and p+Llqg=p—Lq.

For a very nice account of octonions and its applications to geometry and topology see [Bae02].
Recall that the norm on O is given by |a|? := @a for a € Q. It satisfies the parallelogram law: if
a,b € Q, then
la+ b +]a—b*> = (@+b)(a+b)+ (@—b)(a—1b) =2(|a]* + [b]*),
0 it comes from an inner product on O given by the polarization identity, which gives (a,b) = Re(ab),
where Re is the real part, given by Rea := %(a +@). It is routine to check that actually |- |? equals the
Euclidean norm on R®, and hence the inner product is the Euclidean product on R3.

The algebra O is not associative, but it is alternative, in the sense that the associator
[a,b,c] := (ab)e — a(be), for a,b,c € O,

is alternating, meaning that it vanishes whenever two arguments coincide [Har90, Lem. 6.11]. Moreover,
Artin’s theorem states that any subalgebra of O generated by two elements is associative (see [Har90,
Thm. 6.39] for a proof).

By an automorphism of @ we mean an algebra automorphism of @, i.e., an element g € GL(Q) such
that g(ab) = g(a)g(b) for all a,b € Q. Notice that, since g(1) = g(1)2, we have that g(1) = 1. From this

one can also deduce that g preserves the imaginary octonions
ImO:={a€0:Rea=0}={ae0:a=—a}.

Indeed, it is easy to show that for a € @ we have that o> € R if and only if a € R or @ € ImQ. Let

a € Im O be nonzero, then, since g(1) =1 and @ = —a,
g(a)* = g(a®) = —|al?g(1) = —|al?,

so g(a) € Ror g(a) € ImO. If g(a) = A € R, then g(A7ta) = 1, so a = A\, which cannot be because

a € ImO. Hence, g preserves Im Q. This implies, then, that g(@) = g(a), which in turn implies that g

preserves the norm.
Definition 3.57. The group G4 is the automorphism group of O. ¢

Since the elements of G2 preserve the inner product and Im @, we can regard G2 as sitting inside
SO(Im Q) = SO(7).

Alternatively, one can characterize G5 by a geometrical property. On Im @ the product a x b := Im(ab)
defines a cross product, by which we mean that it is R-bilinear, skew-symmetric and such that (a,axb) =0

for all a,b € Im Q. The last equality follows from a straightforward computation:

1 — — 1
Re(aIm(ab)) = Z(E(ab —ba) + (ba —ab)a) = Z(—|a\2b — aba + |a*b + aba) = 0.

Proposition 3.58. Gy = {g € SO(Im Q) : g(a x b) = g(a) x g(b) for all a,b € O}.
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Proof. If g € Ga, then g(a x b) = g(Im(ab)) = Im(g(a)g(b)) = g(a) x g(b). Conversely, assume
that g € SO(Im Q) preserves the cross product, and extend ¢ to all of @ by ¢g(1) = 1. Then for
a,b e ImQ,

g(ab) = —g(ab) = —(a,b) — g(a x b) = —(g(a), g(b)) — g(a) x g(b) = —g(a)g(b) = g(a)g(b),
which already gives that g € Gs. O
The dimension of Gz is 14 [Bae02].

To introduce Spin(7), we need the broader notion of an isotopy of Q.

Definition 3.59. An isotopy of O is a triple (g1, g2, g3) € SO(Q)? such that g;(ab) = g2(a)gs(b) for all
a,b € Q. The group of isotopies of O we denote by Iso Q. ¢

Indeed, it is a group: if (g1, g2,93), (f1, f2, f3) € IsoQ, we define their product as (g1 f1, 922, 93f3),
which is indeed an isotopy:

g1f1(ab) = g1(f2(a) f3(b) = g2 f2(a)g3 f3(D).

Observe that G5 embeds into Iso O, by sending g € G2 to (g, g, g). Actually, we have the following third

characterization of Gs.
Proposition 3.60. G = {(g1,92,93) € IsoO : ga(1) = g3(1) = 1}.

Proof. The inclusion from left to right is obvious. Conversely, let (g1, g2, g3) € IsoQ be such that
g2(1) = g3(1) = 1. For all a € O, then, we have that

g1(a) = g1(al) = g2(a)gs(1) = g2(a) = g1(1la) = g2(1)gs(a) = gs(a).

Hence (91, 92,93) = (91,91, 91) and g1 € Gs. O

We are now ready to introduce Spin(7).
Definition 3.61. The group Spin(7) is the subgroup {(g1, g2, g3) € IsoO : g2(1) = 1} of Iso O. ¢
From Proposition 3.60 we immediately see that G5 is a subgroup of Spin(7). Observe as well that

if (g1,92.93) € Spin(7), then gi(a) = g1(la) = g2(1)gs
have the converse: if (g, g2,9) € IsoQ, then g(1) = g2(1)g(1), and by Artin’s theorem, we get that

gD = g2(1)]g(1)[*, i-e., g2(1) = 1. Hence,

(a) = gs3(a), so g1 = g3. Actually, we also

Spin(7) = {(g1, 92, 93) € IsoO : g1 = gs}.

Proposition 3.62. 1. The map Spin(7) — SO(ImQ) sending (g1,92,93) t0 g2|limo is a two-to-one
and surjective group morphism. It is the universal covering map of SO(Im Q).

2. The map Spin(7) — SO(Q) sending (g1, g2, 93) to g1 is an injective group morphism.

Proof. Let (g, g2, g) € Spin(7) be such that ga|imo = id|imo. Since g2(1) = 1, we have that go = id.
From this we get that g(a) = g(al) = g2(a)g(1) = ag(1), i.e., g is multiplication by ¢ := g(1) from
the right. Then g(ab) = (ab)c = g2(a)g(b) = a(bc) for all a,b € @. This can only happen if ¢ € R.
Indeed, write ¢ = p + £q for some p,q € H. Then for any p’ € H we have that
#'O)c = (&) (p+ tg) = —ap’ + L(pp)),
p'(le) = p'(Up + Lg)) = p'(—q + tp) = —p'q + L(P'p).

Hence, both p and ¢ commute with all of H, which immediately gives that p,q € R. Moreover,

((4i)(L4))c = —k(p+ Lq) = —kp + L(kq),
(Li)((€)e) = (€i)((£5)(p + £q)) = (¢i)(qj + L(pj)) = pji + £(qji),
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which gives that actually ¢ = 0. Hence, ¢ € R. Since g € SO(Q), then |¢| = 1, from where we
conclude that ¢ = +1. Hence, the kernel of the map in item 1 is {(id, id,id), (—id,id, —id)}, as
wanted.

To see that it is a surjective morphism, recall that by the Cartan-Dieudonné theorem (for in-
stance [Meil3, Thm. 1.1]), any element of O(Im Q) can be written as a finite product of reflections.
Then any element of SO(Im Q) is a product of an even number of reflections. The reflection in

Im @ with respect to the hyperplane orthogonal to a € Im @ with |a| = 1 can be simply written as
oa(b) =b—2(b,a)a = b — (ba +ab)a = aba, for b€ ImQ.

Let L, denote left multiplication by a € @. Then —c, € SO(ImQ), for a € Im O with |a| = 1, is
the image of (Lq, Sq, La), where s, € SO(Q) is given by —o, on Im O and s,(1) = 1. To see that
this triple is indeed an isotopy, it suffices to check it on b,c € Im @. We aim at proving that

a(be) = —(aba)(ac).

This follows from the Moufang identity (zyz)z = z(y(zz)), for all z,y, z € O, since then we have
that, by Artin’s theorem,

—(aba)(ac) = —a(b(a(ac))) = |al*a(bc) = a(be).

To prove Moufang’s identity, notice that (xyx)z — x(y(xz)) vanishes whenever two of the variables
coincide, by Artin’s theorem, so that, since (zyx)z — x(y(x2)) = [zy,x,z] + [z,y,zz] and the

associator is alternating,

z(y+2)z)(y +2) — 2((y + 2)(2(y + 2)))
zyz)z — x(y(22)) + (z22)y — 2(2(2Y))
[xy, x, 2] + [x,y, x2] + [x2, 2, 9] + [, 2, 2Y]

0=(
= (
= 2([zy, x, 2] + [z, y, x2]).

Lastly, since the map Spin(7) — SO(ImQ) is a 2-sheeted covering map, then the index of
m1(Spin(7)) in 71 (SO(Im@)) is 2 [Hat02, Prop. 1.32], and since 71 (SO(ImQ)) = Zo [Sep07,
Thm. 1.24], then Spin(7) is simply connected.

To see 2, assume that ¢ = id. Then a = g(al) = g2(a)g(1) = g2(a), so that go = id, and this
ends the proof. O

It follows, then, that dim Spin(7) = 21.
For holonomy purposes, there are equivalent definitions of Gy and Spin(7) as stabilizers of a certain
3-form and a 4-form. Define

o(a,b,c) :== (a,bcy, for a,b,ceImO.
Then ¢ € A>(Im Q)*, and it is immediate to see that G lies in the stabilizer of ¢. Actually, we have that
G2 ={g € GL(ImO) : g¢ = ¢}

[Bry87, Sec. 2, Thm. 1]. If we denote by 1 the element of @* such that 1(1) =1 and 1(Im Q) = 0, then
consider

b= 1N+,
where # is the Hodge star operator with respect to (-,-). Then ¢ € A*Q* and
Spin(7) = {g € GL(0) : g9 = ¢}
[Bry87, Sec. 2, Thm. 4].

60



Jaime Pedregal 3.6. Special geometries

3.5.3. Berger’s list

Knowledge of the transitive actions on the sphere gives the following reformulation of Berger’s theorem

(which is actually the original formulation by Berger).

Theorem 3.63 (Berger’s list). Let M be an irreducible, not locally symmetric, orientable and connected
Riemannian manifold of dimension n > 2. Then one of the following holds:

1. Hol’(M) = SO(n),

2. n=2m for m >0 and Hol”(M) = U(n),

3. n=2m for m >0 and Hol’(M) = SU(n),

4. n=4m for m >0 and Hol’(M) = Sp(n),

5. n = 4m for m >0 and Hol®(M) = Sp(n) Sp(1),
6. n =17 and Hol’(M) = Gs,

7. n =8 and Hol’(M) = Spin(7).

3.6. Special geometries

Each of the infinite families appearing in Berger’s list gives rise to a special type of geometry, meaning

Riemannian manifolds with special geometric properties. We will now give a review of these.

3.6.1. Kahler manifolds

Definition 3.64. An almost complex structure on a manifold M is an endomorphism J € I'(End T M)
such that J? = —id. An almost Hermitian structure on a Riemannian manifold (M, g) is an almost
complex structure J on M which is orthogonal with respect to g, that is, such that (Ju, Jv) = (u,v)
for all w,v € TM. An almost complex (resp. Hermitian) manifold is a pair (M, J) (resp. a triple
(M,g,J)) such that J is an almost complex structure on M (resp. an almost Hermitian structure on
(M, g)). '

The canonical examples of almost complex structures are those induced by complex manifolds, i.e.,
manifolds locally modeled on C" such that the transition functions are holomorphic. If (U, (27);) is a
local chart for a complex manifold and we write 2/ = 27 + iy’ so that (U, (27,y7);) is a local chart for
the underlying even-dimensional real manifold, then we can define an almost complex structure J by
J % = a%j, which is easily seen to be well defined globally.

Definition 3.65. An almost complex structure on a manifold M is called integrable if it can be induced
by the structure of a complex manifold on M. In that case we call J a complex structure and the pair
(M, J) a complex manifold. A Hermitian structure J on (M, g) is an integrable almost Hermitian
structure, and in that case the triple (M, g, J) is called a Hermitian manifold. ¢

A deep result by Newlander and Nirenberg [NN57] states that integrability is equivalent to the van-
ishing of the Nijenhuis tensor N € Q?(M,TM), defined by

N(X,Y):=J[X,Y] = [JX,Y] - [X,JY] = J[JX,JY] for X,Y € X(M).

Equivalently, .J is integrable if and only if the distribution TM? defined by T, M*° = (T,M)'* C
T, Mc, is involutive with respect to the Lie bracket (extended by C-linearity).
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Consider an almost Hermitian manifold (M,g,J) and define a (0,2)-tensor field w by w(u,v) =
(u, Jv), for u,v € TM. Tt is actually a 2-form, since

w(u,v) = (u, Jv) = —(Ju,v) = —w(v,u),

because J is orthogonal and squares to —id. It is moreover nondegenerate, because if w(u,v) = 0 for
all v € T, M, then (u,v) =0 for all v € T, M, so u = 0. This form is the Kéhler form of the almost

Hermitian manifold.

Definition 3.66. A Kihler structure on a Riemannian manifold (M, g) is a Hermitian structure .J
whose Kéhler form is closed, in which case the triple (M, g, J) is called a Kdhler manifold. ¢

We now give a characterization of Kéhler structures on a manifold M in terms of its holonomy. It is

a consequence of the following.

Proposition 3.67. An almost Hermitian manifold (M, g,J) is Kahler if and only if V.J = 0, where V
is the Levi-Civita connection of (M, g). Moreover, if w is the Kahler form of (M,g,J), then VJ = 0 if
and only if Vw = 0.

Proof. Since V is torsion-free, then [X,Y] = VxY — VyX. Also, the induced connection on
EndTM is given by VxJ(Y) = Vx(JY) — JVxY. This allows for the Nijenhuis tensor to be
written as
N(X,Y) =VyJ(X) = VxJ(Y) + J(Vyy J(X) = Vyx J(Y)).
On the other hand, the fact that V is metric and the Koszul formula for dw give that
dw(X,Y,2) = (Y, VxJ(Z)) — (X,VyJ(Z2)) + (X,VzJ(Y)).

It is now clear that if V.J = 0 then M is Kahler.

Conversely, assume that M is K&hler. Then dw = 0 implies that (X, Vy J(Z) — VzJ(Y)) =
(Y,VxJ(Z)). It is easy to see, using Proposition 1.15, that if A, B € I'(End T M), then Vx(AB) =
(VxA)B + AV x B, from where we see that JVxJ + (VxJ)J = VxJ? = —Vxid = 0. Therefore,
since N(Z,Y) =0,

0=(X,N(Z,Y))
= (Y,VxJ(2))
— (V.VxJ(2)
=2(Y,VxJ(Z)).

(X, VyyJ(JZ) =V 17J(JY))

= <X, VyJ(Z) — sz(Y)> + <X, J(ijj(Z) — VJZJ(Y))>
—(JY,VxJ(JZ))

Hence, VJ = 0, as wanted.
Lastly, an easy computation gives that Vxw(Y,Z) = (Y,VxJ(Z)), so VJ = 0 if and only if
Vw = 0. O

Corollary 3.68. A connected Riemannian manifold M of dimension 2n admits a Kdhler structure if
and only if Hol(M) C U(n).

Proof. Let J be a Kéhler structure on M. Then VJ = 0, by Proposition 3.67. Let v be a piecewise
smooth curve on M and X € T'(y*T'M) parallel. Then 3 (JX) = JX+JX =0,s0 7,J = Jr,.
Let « € M and consider U(n) as {r € O(T,M) : 7J = Jr}. If v is a loop at z, we have that
7yJ = J7y, while (7yu, 7yv) = (u,v) by Proposition 1.14, so 7, € U(n).

Conversely, assume that Hol(M) C U(n), by which we mean that for x € M there is an
orthogonal linear complex structure J,, on T, M with respect to which Hol, (M) C U(n). If v is a
loop at x, the action of 7, on J, is T,YJwT,Y_l, and this equals J, because 7, € U(n). Hence, J, is
Hol, (M)-invariant. By the holonomy principle, Theorem 1.20, there is a unique parallel section J
with value J, at x, and it is straightforward to see that it squares to —id and is orthogonal with
respect to the metric. By Proposition 3.67, then, J is a Kahler structure on M. O
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Example 3.69 (Riemann surfaces). Let (¥, g) be an orientable Riemannian surface. Let w be its Rie-
mannian volume form, defined by taking the value 1 on any oriented orthonormal basis. Since it is a
volume form, w is nondegenerate. It is also closed, since dw € Q3(X) = 0.

Consider the maps

¢ TS — T*%, W TS — T*%.
Vo g Vo W

Since both g and w are nondegenerate, both maps are isomorphisms. Denote by ¢f and w? their inverses.
They satisfy the relation ¢f o w” = —w# o g”. To see this, let v € T, ¥ be nonzero and let v := g o wb(u),
i.e. v is the unique vector in T, ¥ such that w(u,w) = (v,w) for all w € T,;3. Then (u,v) = w(u,u) =0

|2 = w(u,v). Since w is the Riemannian volume form we have that

w(ﬂﬂ) I
[l vl [l

Since w is nonzero, we must have that |lul| = ||v]. Any w € T, X can be written as w = Au + pv for
A, i € R. Then

and |jv

w(v,w) = w(v,u) = =A|ul|* = (—u, w),

which means that w’(v) = —g¢”(u). Therefore, wf o ¢°(u) = —v = —g# 0 W’ (u).

We define now J := gfow” € End(TE). It is an almost complex structure: J? = —gfow’owfog” = —id.
Any almost complex structure on ¥ is integrable, because if X is a nonvanishing local vector field, then
{X,JX} is locally a frame for TS, and

N(X,JX) = J[X,JX] - [JX,JX] + [X, X] + J[JX,X] = 0.

The complex structure J is characterized by the formula i, = i,w for all w € TX. Hence, it is

actually a Hermitian structure on (X, g), since
g(Ju, Jv) = w(u, Jv) = —w(Jv,u) = —g(J?v,u) = g(u,v).

Tts Kéhler form is —w, because g(u, Jv) = —w(u,v), and since w is closed, we conclude that (X, g, J) is
Kahler.
The computation above allows us to give the following more geometric definition of J: it rotates a

vector u € T, X an angle of 7/2 such that {u, Ju} is positively oriented. v

Example 3.70 (Complex projective space). Consider complex projective space CP™ as in Example 3.15.

The orbit of (2°,...,2"), which is the complex line through (2°,...,2") and the origin, we denote by

[0 :...:2"]. Complex charts on CP" are given as follows: let U; := {[2" : ... : 2"] : 2% # 0}, which is

open in CP", and define ¢; : U; — C™ by

1 ~
0i([2%:...:2"]) = ;(207 2 2.
The inverse, as can be readily checked, is given by
<pi_1(z1,...,z"):[21:...:zi:1:zi+1 2"

The change of coordinates ¢;; := ¢; o <pj_1 for ¢ > j is given by

1 , , ~
@ij(zl,...,z”) = (2. 20, a2,
Zl
which is holomorphic. Hence, CP™ is a complex manifold.
Consider the Fubini-Study form on C", defined by

&= %65103;(1 + 11207,
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where z = (2°,...,2") and ||z|? is computed using the standard Hermitian product on C", given by

(z,w0) =3, 27w, Obviously @ € Q(C") and it is closed. Explicitly, as an easy computation shows, it
is given by

wzzéffglggig (L4 21> de? ndz? =Y #2kded Az
(EAER . 2

- 29511112 _ 2 A T2
T 201+ ||2[]?)2 (L +112[1)22|2]1* = al|=[1* A 9|2]I) -

The corresponding symmetric tensor is, then

1

R N CEa FDE

(L+21%)> deddz? = 7 Fddz* |
J Jk

where by dz’/dz* we mean the symmetric product dz/dz" = 1(dz? ®dz" +dz* ®dz7). Then § is a complex
Riemannian metric on C”, by which we mean a symmetric (0,2)-tensor on the complexification of T*C™
such that §(&, &) > 0 for all nonzero ¢ € T*C™ ® C. Observe that a complex Riemannian metric contains
the same information as a real Riemannian metric, since we can obtain the latter from the former by
restricting to the real tangent bundle and the former from the latter by extending to the complexified
tangent bundle by C-bilinearity.

It is clear that § is symmetric and C-bilinear, it only remains to see that it is positive-definite. Let
&= Zj(vj% + wj%) be nonzero and write v = (v!,...,v"),w = (w!,... ,w™) € C". Then, using the

Cauchy-Schwarz inequality for (-, ),

9160 = W L+ 1121 D070 + ww’) = > (7 200" + 2 Fuwbwd)
J ik
1
= ST (L TPl + ) = G0, 2P = [, BP)
012 + [Jw]]?
= W > 0.

Hence, @ is a Kéhler form on C". It is invariant under ;;: if ¢ > 7, then

1
i

g1+ g ()P = 1o (14 i

<z1|2+~-~+|ﬁ2+...z"|2+1>)

— 105 iz 0+ 111 ) = (1 + [217) ~ log = ~ o =,
so 001og(1+ ||pij(2)||?) = 0dlog(1 + ||z]|?). Hence, the local forms {¢;@}; on CP™ glue to a well-defined
Kahler form w on CP", with corresponding metric g.

Lastly, we want to check that this structure actually coincides with the symmetric space structure on
CP" given in Example 3.15. First of all, recall that the standard Euclidean metric on C™*! is given by
Re(-,-). The tangent space to the orbit of the C*-action at z € C"*! is given by {\z: A € C} C T,C"*1.
A vector v € T,C"*! is, then, orthogonal to the orbit if and only if (v, 2) = 0. Indeed, if A = a + ib, then

Re(v, A\z) = aRe(v, z) + bIm(v, z),
and this vanishes for all a,b € R if and only if (v, z) = 0.
Define now a 2-form on C" ™!\ {0} by

7

mMHUVW&W%Z—WVWAaVW)

€
|

= ﬁ l|2||? g dz’ Ndz — E Z82AdR A dF
z .
j

ik
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It is closed and (1,1). If p: C"*! < {0} — CP" is the projection, an easy computation using that

H2 _ HZ”2
|2

llpi o p(2)

shows that p*w = w.

Let g be the (0,2)-tensor corresponding to w. It is not complex Riemannian, since a very similar
o

computation as before gives that if ¢ = Zj(vj% + w’ 5%;) is nonzero, then

568 = o (=12l + [[wl*) = (v, 2)* = [(w, 2)[*) > 0,

EER
by Cauchy-Schwarz, but it can be zero when v = Az and w = pz for any A, u € C. In the case that ¢ is
a real vector, i.e., £ = £, then u = ), and we have that £ = Az is tangent to the orbit of C* through z.
On the other hand, if £ is normal to the orbit, then, since (v, z) = 0,

_ ol

ok T _ 2 _ 2

Hence, restricted to the normal space to the orbit, ¢ coincides with the restriction of the Euclidean metric
to S+ (the so-called round metric). The metric on CP" given in Example 3.15 was defined as the metric
whose pullback along p coincided with the round metric on the normal space to the orbit. Since p*g = ¢,

we conclude that g is the sought metric. v

Example 3.71 (Complex submanifolds of Kéhler manifolds). Let (M, g, J) be a Kéhler manifold and
consider ¢ : N < M a complex submanifold, by which we mean a submanifold such that J(7T,N) C T, N.
Then ¢*.J is a complex structure on N. Let w be the Kéhler form of M. Then i*w is the Ké&hler form of
(N,i*g,i*J). Tt is closed, since the differential commutes with pullbacks. Hence N is Kéhler as well.

In particular, smooth complex projective varieties are Kahler. v

The curvature of a Kahler manifold interacts nicely with the complex structure.
Proposition 3.72. If (M,g,J) is Kdhler, then for all XY, Z, W € X(M) the following hold:
1. R(X,Y)J =JR(X,)Y),
2. (RUJX,JV)Z, W) =(R(X,Y)JZ,JW),
3. Ric(JX,JY) = Ric(X,Y).
Proof. Since VJ =0, then Vx(JY) = JVxY, from where we get that for all Z € X(M),
R(X,Y)JZ =VxVy(JZ) - VyVx(JZ) - Vixy)(JZ) = JR(X,Y)Z.
Using the symmetry properties of R and the just proven property,

(R(JX,JY)Z,W) = (R(Z,W)JX,JY) = (R(Z,W)X,Y)
= (R(X,Y)Z,W) = (R(X,Y)JZ, JW).

Lastly, if {F;}; is a local orthonormal frame for TM, then

Ric(JX,JY) =Y (R(E;,JX)JY,E) =Y (R(JE;,X)Y,JE;) = Ric(X,Y),

% i

since {JE;}; is also an orthonormal frame for T'M. O

65



Chapter 3. Berger’s Holonomy Theorem Jaime Pedregal

3.6.2. Calabi—Yau manifolds

On an almost complex manifold (M, J) we can define the bundles of (p, ¢)-forms AP2T*M just as we did
in Section 3.5.2. Its space of sections we denote by QP:9(M), whose elements we call differential (p, q)-
forms. The canonical bundle of M is the complex line bundle A™°%T*M over M. We also consider
(p, g)-multivector fields, that is, sections of APYT'M. Recall that o € Q!(M,C) belongs to Q1O(M) if
and only if it vanishes on X%1(M).

Definition 3.73. A Calabi—Yau structure on a Riemannian manifold (M, g) is a Kahler structure .J
whose canonical bundle admits a nowhere vanishing parallel section €2, in which case the tuple (M, g, J, )
is called a Calabi—Yau manifold. ¢

Proposition 3.74. A connected Riemannian manifold M of dimension 2n admits a Calabi—Yau structure
if and only if Hol(M) C SU(n). Moreover, if M is Kdhler then it is Ricci-flat if and only if Hol®(M) C
SU(n).

Proof. The first part follows easily from the holonomy principle and a similar argument to that of
the proof of Corollary 3.68. For the second part, assume that M is Kéhler and let {E;, JE;}; be
a local orthonormal frame for TM. Let V; := (F; —iJE;)/v/2, with dual forms V7, and define
Q:=V!A--- AV™, which is a local frame for the canonical bundle. Since A™°T*M is a complex
line bundle, then its curvature, the one induced from the Levi-Civita connection on M, can be
considered as a 2-form F € Q*(M,C), whose value on X,Y € X(M) can be computed locally as
F(X,Y)QW,...,V,). It is a straightforward computation (see Proposition A.1) to show that

F(X,V)Q(V4,...,V,) = ZQ(VI,...,R(Y,X)Vj,...,Vn).

Then, since {V}}; is an orthonormal frame, we have that, using Bianchi’s first identity and Propo-
sition 3.72,

FX,Y)QV4,...,Vy Zh (Y, X)V;,V;) = ;Z(R(YX)( —iJE)), E; + iJEj)

—zz (Y, X)E;, JE;)
:—ZZ (X, E,)Y, JE; —zz (E;.Y)X, JE;)
:—ZZ (Ej,X)JY, E;) Z (JE;,X)JY, JE;)

=—i Rlc(X, JY).

Hence, F(X,Y) = —iRic(X,JY). The form (u,v) — Ric(u, Jv) is sometimes called the Ricci
form of M. Hence we see that the canonical bundle is flat if and only if M is Ricci-flat. By the
Ambrose-Singer theorem, this means that the restricted holonomy group of the canonical bundle
is trivial if and only if M is Ricci-flat. If v is a null-homotopic loop at z € M and Q € AT M,
then 7,8 is exactly the parallel transport along « of €2, so that € is invariant under 7, viewed
as parallel transport on the canonical bundle if and only if 7, € SU(n). This finally gives the
result. O

Our definition of a Calabi—Yau manifold is the most natural one from the point of view of holonomy.
However, there is another typical definition of Calabi—Yau manifolds in the literature: a K&hler manifold
whose canonical bundle is holomorphically trivial.

To make sense of this other definition, consider the decomposition Q¥(M,C) = D, g—r QPUM). It
gives projections QPT4(M,C) — QP4(M). The composition of d : QP4(M) — QPTIHL (M, C) with the
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projections QPFI+HL(M, C) — QPFL9(M) and QPFI+HL(M,C) — QP4FT1(M) give the Dolbeault opera-
tors
0:QPI(M) — QPTHI(M), and 9 : QPI(M) — QPITH(M).

A (p,0)-form is called holomorphic if it lies in the kernel of . A nonvanishing holomorphic section
of the canonical bundle is called a holomorphic volume form. Hence, the alternative definition of
Calabi-Yau is that of a Kahler manifold admitting a holomorphic volume form. We will now see that
the two notions of Calabi—Yau manifolds agree somewhat on compact manifolds. By “agree somewhat”
we mean the following: a compact connected manifold admitting Kéhler structures admits a Calabi—Yau
structure in the first sense if and only if it admits one in the second sense, but these two structures might
be different!

First of all, an alternative formulation of the Newlander-Nirenberg theorem states that an almost
complex manifold (M, .J) is complex if and only if d = 9 + 0. In such case, from d?> = 0 one directly
deduces that 9% = 0, 9 =0and 99 + 00 = 0.

Second, we need to consider formal adjoints of some operators. To do this, first remember that the
Riemannian metric on M induces a metric on any tensor bundle over M, as in the end of Section 1.1.
When M is compact and orientable, we can define an inner product on S(k’l)(M), the L2-product, by

(T,8)y = / (T, S)vol, forT,S e ‘3(’“71)(]\4)7
M

where vol is the canonical volume form of M, characterized by taking the value 1 on any oriented
orthonormal basis. The formal adjoint of an operator on tensors P is another operator P* such that
(PT,S), = (T, P*S),. Such an adjoint is unique, by the positive definiteness of the L?-product.

Proposition 3.75. The formal adjoint of the connection V : T*D (M) — TEHD (M) is the operator
V* gEHD (M) — TED (M) given by

V0, X1,..., X)) ==Y VT Ei, X1,..., X))

on T € TRV (M), where § € TOF) (M), X; € X(M) and {E;}; is any orthonormal frame.
Proof. See Proposition A.3. O
For differential forms we adapt the metric, so as to take into account their skew-symmetry: we define
(@ Ao nak BEA A B = det((af, 7)) g

It is straightforward to check that for a, 8 € QF(M) we have that (a,3) = kla,3)". We let d* :
QFFL(M) — QF(M) stand for the formal adjoint of the de Rham differential d with respect to (-,-)".

Proposition 3.76. For a € QF(M) we have that

do(Xo, ..., Xx) = > (-1)'Vx,a(Xo,..., Xi, ..., Xp),  for X; € X(M).

Moreover, d* = V*.
Proof. See Proposition A.4. O

With the adjoints of V and d, we can form the corresponding Laplacians: the rough Laplacian V*V
and the Hodge Laplacian A := dd* 4+ d*d. These two are related by the Weitzenbock formula. We
define the Weitzenb6ck operator on a € TR (M) by

Rica(X1,..., Xg) ==Y R(E;, Xj)a(X1,..., X; 1, B, Xju1, ..., Xp),
‘7]‘
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for X; € X(M) and {E;}; any orthonormal frame. We call it Ric, following [Pet16], because on 1-forms
it is the Ricci curvature: if o € QY(M), with dual Y € X(M), and X € X(M), then

Rica(X) = R(E;, X)a(E;) = > (Y,R(X, E;)E;) = Ric(Y, X).

K3

Proposition 3.77 (Weitzenbock). For a € QF(M) we have that Aa = V*Va + Rica.

Proof. See Proposition A.5. O

The next ingredient is a very special fact for compact Kéahler manifolds, where the assumption of
compactness is key here. Just as we did for d, we can consider the formal adjoints of 9 and 9 and their
Laplacians Ay = 00" + 0*0 and Az = 90 +0°0. Itis a very remarkable fact that on compact Kéhler
manifolds A = 2A5 = 2A5. For a proof see [Wel08, Chap. V, Sec. 4]. It allows us to prove the following.

Proposition 3.78. On a compact Ricci-flat Kdhler manifold, being parallel, closed and holomorphic are

equivalent notions for (p,0)-forms.

Proof. Let (M, g,J) be compact Ricci-flat Kéhler and a € QP°(M). If Va = 0, then da = 0 by
Proposition 3.76 and a = 0 because d = 9 + 9. Assume now that « is holomorphic, i.e., da = 0.
Then, since 9'a= 0, because « is a (p, 0)-form, we have that Aza = 0. But since M is compact
Kahler, this also means that Aa = 0. If we prove that Rica = 0, then the Weitzenbock formula
gives that V*Va = 0, and this in turn would give that

(0, V*Va), = Va3 =0,

which implies that Va = 0. See Proposition A.7 for a proof of Rica = 0. O

Corollary 3.79. A compact Ricci-flat Kéhler structure is Calabi—Yau if and only if it admits a holo-

morphic volume form. ]

The last ingredient is the celebrated Calabi—Yau theorem. This theorem was conjectured by Calabi
in 1954 [Cal56, Cal57], and he gave a proof of the uniqueness part. In 1976 Yau proved existence
[Yau77, Yau78]. To state it, recall that the first Chern class of an almost complex manifold (M, J) is

the cohomology class
1
c1(M) = [F] € H*(M,C),

2m
where F' denotes the curvature of the canonical bundle of M with respect to any connection on T'M,
for instance the Levi-Civita connection (the first Chern class is independent of the chosen connection on
TM [Tul7, Thm. 23.3]). In Proposition 3.74 we proved that if M is Kahler, then its Ricci form lies in
2mer (M).

Theorem 3.80 (Calabi-Yau). Let M be a compact Kdihler manifold with Kdhler form w and p a real
closed (1,1)-form on M with p € 2mcy(M). Then there is a unique Kdhler metric on M with Kdhler
form in [w] € H?(M,R) whose Ricci form is p.

For a proof see for instance [Joy07].

Corollary 3.81. A compact connected complex manifold (M,J) admitting Kdhler structures admits a

Calabi-Yau structure if and only if it admits a holomorphic volume form.

Proof. If M admits a Calabi-Yau structure (g,2), then 9Q = 0 because d2 = 0 by Proposi-
tion 3.76. Conversely, assume that M admits a holomorphic volume form. Then the canonical
bundle of M is trivial as a complex vector bundle, so ¢; (M) = 0. By the Calabi—Yau theorem, there

is a metric on M which is Kéhler and Ricci-flat, and the result now follows from Corollary 3.79. O
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Observe that we are not claiming that if (M, g, J) is compact Kéhler admitting a holomorphic volume
form Q, then (M, g, J,Q) is Calabi—Yau, because to be able to use the Calabi-Yau theorem we need to
be able to change g. What we are actually claiming is the following: if (M, g) is a compact Riemannian
manifold with Hol(M, g) C U(n), then we can find a Kahler structure J on M, by Corollary 3.68, and
there is a holomorphic volume form €2 on M with respect to J if and only if there is some metric ¢’ such
that Hol(M, ¢') C SU(n), i.e., such that (M, g’, J,Q) is Calabi—Yau.

Example 3.82 (Smooth projective varieties). Let p be a homogeneous polynomial of degree d in C**1.
Then Z := p~1(0) \ {0} is invariant under the action of C*, since p is homogeneous. Assume that Z is a
smooth complex hypersurface of C"*! \ {0}. Then it defines a complex hypersurface of CP", call it Y.
Let O(—1) be the tautological bundle on CP", defined by

O(=1) :={(2,0) e CP" x C"' : 2 € ¢}.

It is a holomorphic line bundle over CP™. Let O(1) := O(—1)* and define O(k) := O(1)®* and O(—k) :=
O(k)* for k > 0. Then O(k +1) = O(k) ® O(l) and O(0) is the trivial bundle. By [Huy05, Prop. 2.4.1],
the space of homogeneous polynomials of degree d is isomorphic to the space of holomorphic sections
of O(d). Then the adjunction formula [Huy05, Prop. 2.2.17] and the fact that the holomorphic normal
bundle of Y is isomorphic to O(d) [Huy05, Prop. 2.4.7] gives that, if Ky is the canonical bundle of ¥
and Kcpn that of CP", then Ky = (K¢pn ® O(d))|y. Since Kcpn = O(—n — 1) [Huy05, Prop. 2.4.3],
we conclude that Ky = O(d —n — 1)|y. Hence, if d = n + 1, we have that Ky is trivial and so, by the
Calabi—-Yau theorem, Y admits a Kéahler Ricci-flat structure. If in addition Y is simply connected, then
it is Calabi—Yau.

An example of this is Fermat’s quintic 3-fold: let p(z) = Z?zo(zi)‘r’. Then dp = Z?:o 5(2%)4dz",
which vanishes only at 0 € C®, so that p~1(0) \ {0} is a complex hypersurface projecting to a complex
hypersurface Y of CP4. Since 5 =4 + 1, then Y admits a Kihler Ricci-flat structure. v

3.6.3. Hyperkahler and quaternionic Kahler manifolds

We finally turn to the holonomy groups related to the quaternions.

Definition 3.83. A hyperk#hler structure on a Riemannian manifold (M,g) is a triple of Kahler
structures (I, J, K) such that IJ = K, in which case the tuple (M, g,1,J, K) is called a hyperkéhler

manifold. ¢

Proposition 3.84. A connected Riemannian manifold M of dimension 4n admits a hyperkdhler structure
if and only if Hol(M) C Sp(n).

Proof. Tt follows easily from the holonomy principle and a similar argument to that of the proof
of Corollary 3.68. O

An explicit example is the following.

Example 3.85 (Gibbons-Hawking ansatz). First introduced in [GH78]. The exposition here follows
[GWO00]. Let U C R? be an open set with H'(U,R) = 0 and let 7 : M — U be a principal S!-bundle. Let
0 be a connection 1-form on M, i.e., 6 € Q'(M,iR) such that (%) = i, where 2 (z) = %|t:0 e*z. Then
its curvature df € Q?(M,iR) is basic, meaning that there is some o € Q2 (U, iR) such that df = 7*a. Let
V € C>(U) be a positive function such that *dV = «/2mi, where x is the Hodge star operator [Wel08,

Chap. V, Sec. 1]. Define now, if 6y := 6/2mi and we write the pullback forms 7*dx? simply as da?,

wy i=dz' A by + Vdz? A d:z:3,
wo 1= dz? A0y + Vdz3 A daxt,
wy = da A Oy + Vdzt A da?.
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Then w? = 2Vdz' Adz® Adx3 Aby is nowhere zero and w; Aw; = 0 for all i # j. Also, an easy computation
shows that dw; = 0; for instance:

dwy, = —dz? Ai_+dVAdx2/\d$3 =0,
27

since *dV = a/2mi.

Recall from Section 3.5.2 that if (I, J, K) is a hyperkédhler structure, then w; + iwg is a holomorphic
symplectic (2, 0)-form with respect to I (and similarly for wx + iw; with respect to J and wy + iw; with
respect to K). If we write

wo + iwz = (dx? +idx®) A (0 — iV dat),

w3 +iwy = (do® +idz) A (0 — iV da?),

w1 + iws = (dxt +idz?) A (0 — iV dx?),
from here we can read off three integrable complex structures given on the complexified cotangent bundle
of M by

Jl(d$2) = d$3, Jl(dfﬂl) = Vﬁleo,
JQ(diL’S) = dCCl, JQ(d.’Ez) = Vﬁleo,
Jg(dl‘l) = dCU2, Jg(dl'g) = V‘16‘0.

These define a hyperkéhler structure on M:

T Jo(da®) = Jy(dxt) = V10 = J3(dx?),
J1J2(d332) = Jl(V’lﬁo) = —dxl = J3(d.132)

The metric is given by g = w1 (-, J1+) = wa(+, J2r) = ws(-, J3-). Explicitly,
9 =V((dz")? + (da?)* + (dz®)?) + V165

Observe that, since SU(2) = Sp(1), then these spaces are also examples of Calabi—Yau manifolds. v

Definition 3.86. A quaternionic Kéahler structure on a Riemannian manifold (M, g) is a parallel
form Q € Q*(M) such that around every x € M there is a neighborhood on which there are almost
complex structures I, J and K with IJ = K and such that Q = w? + w? + w%. The triple (M, g,Q) is
then called a quaternionic Kahler manifold. ¢

Proposition 3.87. A connected Riemannian manifold M of dimension 4n admits a quaternionic Kdhler

structure if and only if Hol(M) C Sp(n) Sp(1).

Proof. Tt follows easily from the holonomy principle and a similar argument to that of the proof
of Corollary 3.68, using the characterization of Sp(n) Sp(1) in Proposition 3.56. O

The fundamental example of a quaternionic Kahler manifold is HIP", which is also symmetric by
Example 3.15. This is one of the simplest examples of a quaternionic Kahler symmetric space, also
known as Wolf spaces [Wol65]. It has been conjectured by LeBrun and Salamon [LS94] that these are the
only examples of complete quaternionic Kéahler manifolds with positive scalar curvature. This conjecture
has been proven in dimensions 4 [Hit81], 8 [PS91] and 12 [HHO02]. On the other hand, there are plentiful
examples of complete non-compact quaternionic Kahler manifolds with negative scalar curvature which
are not symmetric [LeB91, Ale75].
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Lie algebroids were introduced by Pradines [Pra67] as the infinitesimal version of a Lie groupoid. One
way to think of Lie algebroids is as a generalization of the tangent bundle. They are vector bundles
A — M endowed with a structure that mimics that of TM: a Lie bracket on its space of sections and a
way to take derivatives of smooth functions of M in the directions of A, i.e., a bundle map p: A — TM,
called the anchor. Both objects are related via a Leibniz rule. This framework unifies several different
geometries: foliations, manifolds with boundary, Poisson geometry, principal bundles. . .

In this chapter we first introduce the basics of Lie algebroids, including the induced singular foliation
on the base manifold, and then we pass to Lie algebroid connections and holonomy. The latter were
introduced by Fernandes first for Poisson manifolds [Fer00] and later for general Lie algebroids [Fer02]. He
proved, among other things, that the Ambrose—Singer theorem does not hold for Lie algebroid connections.
Rather, there are some additional terms coming from the kernel of the anchor. This makes it possible
for flat Lie algebroid connections to have non-discrete holonomy. In the final section we give a proof of
the Ambrose-Singer-Fernandes theorem in the spirit of Section 1.3, different from Fernandes’s proof in
[Fer00], and we give original examples of a flat Lie algebroid connection with non-discrete holonomy and

of holonomy jumps from leaf to leaf.

4.1. Basic definitions and facts

Definition 4.1. A Lie algebroid on M is a vector bundle A — M together with a vector bundle
morphism p : A — TM, called the anchor, and a Lie bracket [-,-] on its space of sections such that the
following Leibniz rule holds:

[a, fb] = fla,b] + (p(a)f)b, for a,beT(A)and f e C>®(M).
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The kernel of p, : A, — T, M is called the isotropy at x. ¢

The Leibniz rule implies that the anchor is a Lie algebra morphism at the level of sections.
Lemma 4.2. Let A — M be a Lie algebroid with anchor p. Then p([a, b]) = [p(a), p(b)] for all a,b € T(A).

Proof. On the one hand, if a,b,c € T'(A) and f € C*(M),

[[avb]a fC] = f[[av b]v C] + (P([a, bDf)C
On the other hand,

[[b, fe],a] = [£[b, c] + (p(b) f)e, a] = —[a, f[b, ] + (p(b) f)]
= —fla, [b.e]] = (p(a) )b, ¢] = (p(b) f)la, ¢] = (p(a)p(b) f)e,
and
([fe.al,b] = —[fla, c] + (p(a) e, b] = [b, fla, c] + (p(a) f)c]
= f1b, [a, cll + (p(0).f)la, c] + (p(a) £)[b; ¢] + (p(b)p(a) f)e.
The Jacobi identity for the bracket now gives that

0= (p([a, b)) f — [p(a), p(b)] f)e,
which establishes the claim. O

Example 4.3 (Tangent bundle). The tangent bundle TM — M is a Lie algebroid with the identity as
anchor and the Lie bracket as bracket on sections. \/

Example 4.4 (Lie algebras). A Lie algebra is a Lie algebroid over a point, with trivial anchor and bracket
given by the Lie bracket of the Lie algebra. v

Example 4.5 (Regular foliations). Let F' be a rank r involutive regular distribution on M, i.e., a subbun-
dle F C TM such that [['(F),T'(F)] C I'(F). This is equivalent, by the Frobenius integrability theorem
[Leel2, Thm. 19.12], to a regular foliation, i.e., a decomposition of M into disjoint connected embedded
submanifolds {L;};c; such that for every point z € M there is a chart (U, ¢) such that for each i € I
there is some \; € R"™", where n = dim M, with

UNL; =¢ YR" x {\;}).
Then F — M is a Lie algebroid with anchor the inclusion F — T'M and bracket the restriction of the

Lie bracket to I'(F). v

Example 4.6 (Action Lie algebroid). Let G be a Lie group, with Lie algebra g, acting smoothly on a
manifold M. For £ € g, denote by £j; the corresponding infinitesimal generator of the action on M, i.e.,

Ev(z) = 4 Exp(t€) -z, forze M,
dt g

where Exp is the Lie group exponential. Then the trivial vector bundle M x g — M can be made into a

Lie algebroid with the anchor given by p(z,&) := &y (x) and the bracket by

[fygl(@) = [f(2), 9(x)]g + g« (Enr () = fu(€pr(T)),

where we have identified I'(M x g) with C*°(M, g) and [, |4 is the Lie bracket of g. \4
As a generalization of TM, we can extend to A some notions typically defined on T'M.

Definition 4.7. Let A — M be a Lie algebroid with anchor p. The sections of A¥A* we call differential

A-forms and we denote them by Q¥(A). If E — M is a vector bundle, the sections of A*A* ® E we call

E-valued differential A-forms and we denote them by QF(A, E).
We define the A-differential on A-forms as the unique linear map d : Q%(A) — QF+1(A) such that
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1. da(aAB) = daa A B+ (—1)Fa A daB, for a € Q%(A) and B € Q!(A),
2. daf =df op, for all f € C°(M) and
daa(a,b) = pla)(a(b)) — p(b)(a(a)) — l[a, b])
for all a € Q'(A) and a,b € T(A). ’

When we do not wish to emphasize which Lie algebroid is being considered, we will talk of LA-forms
and LA-differential.

Lemma 4.8. The A-differential satisfies d4 = 0 and it is given by the Koszul formula
dAa(a()? sy ak) = Z(il)ip(ai)(a(a@v cee 7di7 s 7ak))

i
+ Z(—l)”ja([ai,aj],ao, ces Qi gy ag),
i<j

for a € QF(A) and a; € T(A).
Proof. See Lemma A.8 O
Definition 4.9. Let A — M be a Lie algebroid. We define the kth A-cohomology as

ker(da s QF(A) - QFFL(A))
HE(4) = im(dy - QF-1(A) — QF(A))

A Lie algebroid morphism is a vector bundle morphism that descends to cohomology.

Definition 4.10. Let A — M and B — N be Lie algebroids. A vector bundle morphism & : A — B
covering ¢ : M — N is a Lie algebroid morphism if d4®* = ®*dp, where the pullback ®* : Q*(B) —
QF(A) is given on a € QF(B) by

((P*oz)l.(al,...,ak) :a¢($)(¢’(a1),...,q>(ak)), for a; € A,. ¢

Hence, a Lie algebroid morphism ® : A — B induces a map on cohomology ®* : H*(B) — H*(A).
Observe that the anchor map is always a Lie algebroid morphism: if o € Q¥(M), then

dap*alag,...,ax) = Y (=1)'pla;)a(p(ao), .-, @s . ., plar))

+ (=D a(p([ai, aj]), p(a0), - - i, .5, -, pla))

i<j
=da(p(ag),...,plar)) = p*da(ag, ..., ax).

At first, one might have expected a simpler definition of a Lie algebroid morphism, something along the
lines of “a vector bundle morphism preserving the anchors and the brackets.” This definition, though,
does not make sense when the morphism is not covering a diffeomorphism. Indeed, if A — M and
B — N are Lie algebroids with anchors p4 and pp, respectively, and ® : A — B is a vector bundle
morphism covering ¢ : M — N, then “preserving anchors” would just mean that pg o ® = ¢, o py,
while “preserving brackets” would mean ®([a,b]) = [®(a), ®(b)], for a,b € T'(A). But observe that if
a € T'(A), then ®(a) € I'(¢*B), and in general ¢*B has no canonical Lie algebroid structure. If ¢ is
a diffeomorphism, though, then ¢*B = B is a Lie algebroid, and these two notions of Lie algebroid
morphism agree: ® : A — B covering a diffeomorphism ¢ : M — N is a Lie algebroid morphism if and
only if pgp o ® = ¢, 0 ps and ®([a,b]) 0o ™! = [®(a) 0o p1, P(b) 0 ¢~ 1] (the insertion of ¢! gives the
identification of ¢* B with B).
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4.1.1. Singular foliation

In this section we mainly follow [AS09]. As we will see, every Lie algebroid defines a foliation on the
base manifold. This foliation can be singular, i.e., the dimension of its leaves may vary. More precisely,
it defines a foliation in the sense of Stefan-Sussmann [Ste74, Sus73], which we now introduce.

For a vector bundle E — M, let T'o(E) denote the space of compactly supported sections. We consider
I'(E) and Tg(E) as C°(M)-modules. If # C T'o(F) is a submodule and ¢ : N — M a smooth map,
the pullback p*% of & along ¢ is the submodule of T'g(¢*E) generated by the elements of the form
fo*o, for f € C§°(N) and o € .#. When ¢ is the inclusion of a submanifold N of M, we call ¢*.# the
restriction of .% to N and write Fy.

Definition 4.11. A foliation % on a manifold M is a locally finitely generated submodule of X (M)
which is closed under the Lie bracket. Explicitly, it is a submodule % C X((M) such that

1. for every x € M there is a neighborhood U of x such that %y is finitely generated: there are vector
fields X,..., X € X(U) such that Fy = C(U) X1 + -+ + CF(U) Xy,

2. [#, 7] C .

The pair (M, %) is called a foliated manifold.

The tangent space F, to the leaf at x is the image of the evaluation map % — T, M given by
X — X(z).

For X € .Z, let ¢;* denote its flow at time . Then the exponential of X is exp X := ¢3* € Diff(M).
Let exp # be the subgroup of Diff (M) generated by the elements of the form exp X for X € #. Then

the leaves of .% are the orbits of exp .%. ¢

By definition, x,y € M lie on the same leaf if and only if there are Xy, ..., X € F such that
y=¢1to--0g (2).

Observe that, as it stands now, it is not clear that the leaves are actually submanifolds of M and that

the so-called tangent spaces to the leaves are actually the tangent spaces to any submanifold.

Proposition 4.12. Let .% be a foliation on M. The dimension of the tangent spaces to the leaves is lower
semi-continuous. That is, for every x € M there is a neighborhood U of x such that dim F, < dim F), for
everyy € U.

Proof. Since .Z is locally finitely generated, let U be a neighborhood of x such that there are
X1,..., Xk € X(U) generating .Z#y. Then dim F,, = dimspan{X;(z), ..., Xx(x)}. This equals the
rank of the matrix whose ith column is the components of X;(z) with respect to some coordinate
chart on U (possibly making U smaller). This rank is computed using the minors of the matrix.
By continuity of the determinant map, a minor which is nonzero at x will continue to be nonzero
on U, possibly after shrinking U, so this means that the rank cannot decrease on U. Hence,
dim F, < dim F}, for any y € U. O

Definition 4.13. Let .%# be a foliation on M and ¢ : N — M a smooth map. We denote by ¢~ 1(.%) the
submodule of Xy(N) defined by

e HNF) = {X € Xo(N): 0. X € p*F},

where ¢, X € To(p*TM) is given by (p.X)(z) := ¢. (X (x)).
We say that ¢ is transverse to # if the map ¢* F x Xo(N) — Lo(p*TM) given by (X,Y) — X+¢.Y

is surjective. ¢

Observe that a submersion onto M is transverse to any foliation on M.
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Proposition 4.14 ([AS09, Prop. 1.10]). Let & be a foliation on M and ¢ : N — M a smooth map.
Then ¢~ (F) is closed under Lie brackets, and if ¢ is transverse to F then o~ 1(F) is locally finitely
generated.

It is obvious that for all z € N we have that ¢~ (F), = {v € T, N : p,v € Fy(,)}.

The following local normal form for foliations allows us to define the smooth structure on the leaves.

Proposition 4.15 ([AS09, Prop. 1.12]). Let .Z be a foliation on M and x € M. Let q := dimT, M —
dim F,.. Then there is a neighborhood U of x, a q-dimensional foliated manifold (N,¥9) and a submersion
@ : U — N with connected fibers such that Fy = o~ 1(4). Moreover, we have that the tangent space of
the leaf of N at p(x) is 0, that ker p.(x) = F, and that each fiber of ¢ is contained in a leaf of F.

If U, (N,%) and ¢ are as in Proposition 4.15 around x € M, then we take ¢~ !(p(x)) as a chart for
the leaf through x. These charts indeed constitute a smooth atlas for the leaf through = [AS09, Prop.
1.14]. From Proposition 4.15 it is clear that the tangent space to the leaf through x with this smooth
structure if precisely F.

Proposition 4.15 also allows us to prove that curves tangent to the leaves stay on the leaves.

Proposition 4.16. Let % be a foliation on M. Then x,y € M lie on the same leaf if and only if there
is a piecewise smooth curve tangent to the leaves joining them, i.e., if there is vy : [0,1] — M piecewise
smooth with v(0) = x and (1) =y such that §(t) € Fy for all t € [0,1].

Proof. Let X € #. Then for every z € M the smooth curve given by 7(t) := exp(tX)(z) is
tangent to the leaves. Indeed, exp(tX)(z) = ¢ (), so

. d
§(0) = L exp(tX)(2) = X(6X(2)) € Py = Py,
If x,y € M lie on the same leaf, then there are Xy,..., X} € % such that y = {(’” o---0

X1(z). Define z; recursively by zo := = and z; := ¢7 (x;_1), so that y = x5, and let v;(t) :=
exp(tX;)(x;—1). Then the concatenation 7; - ... - is the sought curve.

Conversely, assume there is v : [0,1] — M piecewise smooth with v(0) = 2 and (1) = y such
that ¥(t) € F,4). Let U, (N,¥) and ¢ be as in Proposition 4.15. Shrinking U if necessary, assume
that Zy is generated by X1,..., X}, € X(U). Since §(t) € Fy ), write §(t) = 4" (£) X;(y(t)) for t
close enough to 0. Let {X;},¢[0,1) be the time-dependent vector field on U given by X; := A () X
Then + is an integral curve of X;.

Consider o := ¢ oy and write G, for the tangent space to the leaf of 4 at z € N. Let
Y := 0. Xy € D(¢*N). Since Fy = ¢~ 1(¥), we have that Y;(p(z)) € G,y = 0 for ¢ close enough
to 0. The curve t — (¢, «(t)) in R x N is an integral curve of the vector field (¢,z) — (1,Y:(z))
starting at (0, ¢(x)). Since Yi(p(z)) = 0, the curve t — (¢, (x)) is also an integral curve starting
at (0,p(z)). By the uniqueness of solutions to ODEs we have that «(t) = ¢(z) for ¢ close enough
to 0. Hence, v(t) € ¢~ '(p(x)), which is contained in the leaf of .# through z. Since [0,1] is
compact, we can repeat this argument a finite amount of times to conclude that ~(t) lies in the

leaf of = for all t. In particular, y = (1) does. O

Back to Lie algebroids, any Lie algebroid A — M with anchor p defines a foliation on M by setting
Z = p(To(A)). Indeed, it is locally finitely generated, since A is locally trivial, and it is closed under
the Lie bracket by Lemma 4.2. The leaves of A are the leaves of the induced foliation.
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4.2. Lie algebroid connections

4.2.1. Lie algebroid connections and parallel transport

Following the “generalization of the tangent bundle” approach to Lie algebroids, the following definition
is the most natural definition of a Lie algebroid connection.

Definition 4.17. Let A — M be a Lie algebroid and £ — M a vector bundle. An A-connection on £
is an R-linear operator V : I'(E) — Q1(A, E) satisfying the Leibniz rule

V(fo)=daf ®oc+ fVo.

We denote Vo(a) by V,o, for a € A. A section o € T'(E) is called parallel if Vo = 0.

If (-,-) is a metric on E, we say that an A-connection is metric or compatible with the metric if
pla)(o,v) = (Vao,v) + (0,V,v), forall o,v € I'(E) and a € T'(A).
The curvature of V is the 2-form F € Q?(A, End E) given by
F(a,b)o :=V,Vyo —VipVeo — Vig o, fora,b€T'(A) and o € I'(E). )

When we do not wish to emphasize which Lie algebroid we are considering, we will just talk of
LA-connections. For a vector bundle E — M and a Lie algebroid A — M, there always exists an A-
connection on E. Indeed, if V is a connection on E, then V,o := vp(a)m where p is the anchor and
o € I'(E), defines an A-connection on E. From now on, we fix a Lie algebroid A — M with anchor p and
a vector bundle £ — M with an A-connection V.

Definition 4.18. An A-path is a curve a : [0,1] — A such that ,(t) = p(a(t)), where 7,(¢) is the
projection of a(t) to M. We say that a goes from 7,(0) to v,(1). )

Intuitively, an A-path a is just a “correct velocity” for 7,, when we regard A as a generalization of
TM. Observe that by Proposition 4.16, there is an A-path from z to y in M if and only if z and y lie on
the same leaf.

Lemma 4.19. A smooth map a : [0,1] — A is an A-path if and only if a : T[0,1] — A given by

a(4) = a(t) is an LA-morphism.

Proof. The map a is an A-path if and only if 4 f(v4(t)) = df(p(a(t))) for all f € C>(M). The
left-hand side is d(&i*f)(%)7 while the right-hand side is &*dAf(%). So a is an A-path if and only
if @* commutes with the differentials at the level of functions. Since there are no 2-forms on [0, 1]
because it is 1-dimensional, a* always commutes with the differentials at the level of k-forms, for
k>1. O

We will often write a as adt.

To be able to define parallel transport, we need to be able to take derivatives of sections along A-paths.

Lemma 4.20. Let B — N be a Lie algebroid and ® : B — A a vector bundle morphism covering
¢: N — M and preserving anchors, i.e., such that py o ® = ¢, o pg. If a vector bundle E — M carries
a A-connection, then ¢*E inherits a B-connection ®*V given by (®*V)(¢*0) := ®*(Vo) for o € T'(E).

Proof. We need only check that it is well defined by checking the Leibniz rule for a section ¢*(fo),
for f € C°°(M). Since, ®* commutes with differentials at the level of functions, because pg o ® =

¢* °pPB, then
(@*V)(¢"(fo)) = ®*(V(f0)) = ®*(daf ® 0 + Vo) = dpd™f @ ¢"0 + ¢" f* (Vo). [
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A section of E along the A-path a is just a section of v}E. We say that it is parallel along a if
(a*V)o = 0. This notion makes sense precisely because of Lemmas 4.19 and 4.20. For (a*V)o we will

also use the following notations interchangeably
\Y
(a*V)o = V40 = prid c.

If {a;}; is a local frame for A and {o;}; a local frame for F, then in these frames we can write a(t) =
a‘(t)a;(va(t)) and o(t) = o*(t)o;(7a(t)), for some smooth functions a’, o’ : [0,1] — R. Let Fi—“j be smooth
local functions such that V,,0; = Ffjak. Then

o(t) = (a*V) o (0" (t)750:(t) = 6" (1)0i(Va(t)) + 0" () V() 73 (a(t))
= (6'(t) + T (va ()™ (t)a’ ()i (1a(2)),

so that the equation for o to be parallel is locallly a first order linear ODE. These always have a unique

solution defined on the whole interval of definition of the equation. Hence, we have proved the following.

Lemma 4.21. Let a : [0,1] — A be an A-path. Then for every v € E. (), there is a unique parallel
section o, along a such that 0,(0) = v. O

With this we can define parallel transport along a (allowed to be piecewise smooth) as in Sec-
tion 1.2: the map 7, : E (o) — E,,1) given by 7,0 := 0,(1). The basic properties of parallel transport
also hold in this case (Proposition 1.14), where the A-path a traversed in reverse order is

al(t) == —a(l —t),

and the concatenation of two A-paths a and b with v,(1) = 7,(0) is defined as

o) 2a(2t), 0<t<i
a - =
262t — 1), 2+ <t<1.

The analog of Proposition 1.15 is the following.

Proposition 4.22. 1. Let x € M, b € A, and 0 € T'(E). Let a : [0,1] — A be an A-path with
v4(0) = x and a(0) = b, and let 7y be parallel transport along a from x to v,(t). Then

d
VbO':f

I CCAGN)

t=0

2. Let a:[0,1] — A be a piecewise smooth A-path and let 7y be parallel transport along a from ~,(0)
to v4(t). Then for any o € T'(v}E) we have that

5(t) = 5 (77 (1),

4.2.2. Holonomy

As in the classical case, parallel transport leads to the concept of holonomy group. If A — M is a Lie
algebroid, let Hﬁ,y denote the set of piecewise smooth A-paths a with v,(0) = 2 and ~,(1) = y.

Definition 4.23. Let A — M be a Lie algebroid and E — M a vector bundle with an A-connection V.
The A-holonomy group of V at x € M is defined as

Hol, (V) = {r, :a € 112, }.
If we let L be the leaf through x, then the restricted A-holonomy group at z is
Hol%(V) := {1, :a € Hf’m with v, null-homotopic in L}. )
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In order to prove that Hol, (V) and Hol?(V) are Lie subgroups of GL(E,), we need to know how to
“lift” homotopies v : [0,1]> — M to some kind of “homotopies of A-paths”. One way to do this is the
following.

Let z € M and let L be the leaf through z. Since the rank of ker p does not change along L, we have

that ker p is a vector bundle over L. Then there is a short exact sequence of vector bundles over L
0— kerp— A, — TL — 0, (4.1)

where Ay, is the restriction of A to L.
If we consider coordinates (s,t) on [0,1]%, a vector bundle morphism ® : T'[0,1]*> — A can be written
uniquely as ® = adt + bds, for a,b: [0,1]2 — A. Explicitly, a(s,t) = @(%) and b(s,t) = @(%).

Lemma 4.24. Let n: TL — Ap be a splitting of the short exact sequence (4.1), i.e., a vector bundle
morphism such that pon =id. Then

1. if v:[0,1] = L is a curve, then a = n(¥) is an A-path over =,

2. if v:[0,1)> = L is a homotopy, then ® = adt + bds given by a = n(%’y) and b = n(%’y) 18 a vector
bundle morphism with po ® = ~.. In particular, as := a(s,-) is an A-path over vs := 7(s,-) for
every s, and if ¥s(t) = 0 then as(t) = 0.

Proof. The first claim is clear. For the second, p o CD(%) =po n(%v) = 7*(%) and similarly for
%, so po® = ~,. Since ,(t) = %’y(s, t), that a4 is an A-path over ~; is a consequence of the first

claim. 0

Proposition 4.25. Let E be a vector bundle with an A-connection V and x € M. Then Hol, (V) is
a Lie subgroup of GL(E,) whose connected identity component is Hol (V). In particular, Hol2(V) is

normal in Hol, (V).

Proof. That both Hol, (V) and Hol?(V) are subgroups of GL(E,) is a direct consequence of the
properties of parallel transport (cfr. Proposition 1.14). We now show that Hol?(V) is an arcwise
connected subgroup of GL(E,), which implies that it is a Lie subgroup [Yamb0]. Let L be the
leaf through x and let v : [0,1]? — L be a smooth homotopy with fixed endpoints starting at the
constant path on x (every null-homotopic path is smoothly null-homotopic [Leel2, Thm. 6.29]).
Let ® = adt +bds : T[0,1]?> — A be as in Lemma 4.24, which exists because short exact sequences
of vector bundles are always split. By a similar argument as in Lemma 4.21 and using the smooth
dependence on initial conditions of ODE theory, for each v € E, there is ¢ € T'(y*E) such that
%a = 0 and o(s,0) = v for all s. Then, if 7, is parallel transport along as, we have that
Tsv = o(s, 1), which is smooth on s. Since ag(t) = 0 € A, for all ¢, then ¢(0,t) € E, does not
depend on t, and therefore Tov = ¢(0,1) = ¢(0,0) = v. We conclude that 7, is a smooth path in
Hol’ (V) from 71 to the identity, as wanted.

Since Hol?(V) is a subgroup of Hol,(V), this also endows Hol, (V) with the structure of a Lie
group by translating the smooth structure of Holg (V) by left or right multiplication.

Consider now the map 71 (L) — Hol,(V)/ Hol2(V) given by [y] — 7, ' Hol2(V), where a is as
in Lemma 4.24 (for a fixed splitting). It is easily seen to be a surjective group homomorphism.
A similar argument as in the proof of Proposition 4.25, using that (L) is countable, gives that
Hol% (V) is the identity component of Hol, (V). O

Therefore, the following definition makes sense.

Definition 4.26. Let E be a vector bundle with an A-connection V. The holonomy algebra hol, (V)
of V at « € M is defined as the Lie algebra of Hol, (V). )

Because parallel transport can only be done between fibers of points on the same leaf, the holonomy

principle in this case is “leafwise”. The proof is identical to the classical case.
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Theorem 4.27 (Holonomy principle). Let M be connected and E — M a vector bundle with an A-

connection V. Let x € M and L the leaf through x. Then the following vector spaces are isomorphic:
1. the space of parallel sections of Ep,
2. the space of Hol, (V)-invariant vectors in E,,

3. the space of sections on L invariant under parallel transport, i.e., sections o € I'(Ey) such that

Ta(0(74(0))) = 0(7a(1)) for all piecewise smooth A-paths a on M.

4.2.3. Ambrose—Singer—Fernandes theorem

A remarkable fact is that the Ambrose—Singer theorem for LA-holonomy picks up some extra terms,
which imply that a flat A-connection does not necessarily have a discrete holonomy. This was already
observed by Fernandes [Fer00, Fer02]. Here we give a different proof, in the spirit of Section 1.3.

Let A — M be a Lie algebroid with anchor p and E — M be vector bundle with an A-connection
V. To understand what these extra terms are, observe that a € ker p, defines and endomorphism of the

fiber E,, as the following shows.

Lemma 4.28. Let a € kerp,. Then V, defines an endomorphism of E,, defined by V,v := V,o(x),
where o € T'(E) is such that o(z) = v.

Proof. Let o € T'(E) be such that o(z) = v. Any other section of E with value v at = can be
written as o + v, for some v € I'(E) with v(z) = 0. Then

Va(o +v)(x) = Veo(z) + Var(z).

So it is enough to see that V,v(z) = 0. Let {o;}; be a frame for E and write v = v'c;. Then

vi(x) = 0 for all 4, and hence, because p(a) = 0,

Vov(z) = vi(z)Vaoi(z) = 0. O

As we will see, the proof is completely analogous to that of Section 1.3, but these new terms suddenly
appear in the computations. To understand why they appear, recall that the key for our proof of the
Ambrose-Singer theorem was Lemma 1.22, and this one relied on the fact that the curvature of the
pullback connection is the pullback of the curvature, Lemma 1.11. For LA-connections, though, this does

not hold. We will just compute the case we are interested in.

Lemma 4.29. Let E — M be a vector bundle with an A-connection V and curvature F' and let & =
adt + bds : [0,1]> — A be a vector bundle morphism over v : [0,1]> — M with po ® = .. Then there is
a smooth map c : [0,1]> — A with poc =0 such that

VvV VV

Ezplicitly, it is given as follows: consider (s,t)-dependent sections ast,bs s € I'(A) such that as (y(s,t))
a(s,t) and bs(7y(s,t)) = b(s,t), then

0 0
c(5.0) = ( gyt = goans + lanssbud]) (5.0

Proof. The proof that 3 3= — 3~ is C°([0,1]?)-linear is straightforward, so we need only check
that the claim holds for pullback sections y*o, for o € T'(E). Consider a local frame {e;}; for A

and write a(s,t) = a’(s,t)e;(y(s,t)) and b(s,t) = b'(s,t)e;(y(s,t)) for some a?,b® : [0,1]? — R. Set
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as = a'(s,t)e; and by = b'(s,t)e;. Then

VV ..V v o
&%(’7 U) = &(vb(s,t)a) = a(b (S,t)’)/ (VEiU))
abi * i
= > (5,t)7"(Ve,0) +b"(5,1)Vy(s,4) Ve, 0

= (V40,0 + Ve V1.0) (4(5,1)).

Similarly,
VvV, .
%&(7 U) - (V%as,ta + vbs,tvas,ta) (’Y(S,t))
Hence,
vV V VvV .
<6t8s - (93815) (v'0) = Fasz, bs,t)(v(s, 1)) + v%bs,tf%as,t+[as,t7b57t]0’(’}/(8)t))'

It only remains to see that poc = 0. Let T, := p(as) and S, := p(bs ). Then Ty (y(s,t)) =
%’y(s,t) and Sg¢(v(s,t)) = %’y(s,t), since p o & = ,. Therefore,

0 0
P o C(S,t) = (atss#t - %Ts,t + [Ts,t7 Ss,t}) (7(8715))

Since v* commutes with differentials, we have that for all & € Q(M),

O(dv*v*dﬁv(a a)

9t s
5630 () o (53
= 2 (a1 (1(5, ) — o (0(Ta) (15, 1)) — da(Ta, S2.)(31(5,1)

—a (g8 ) ) + (7)) = a (570 ) G500 = (527 ()

— Tet(v(s, 1)) (a(Ss.0)) + S0 (v(s, ))((Ts.0)) + a([Ts 15 Ss.e)) (v(s, 1))
=a(poc(s,t)).

Hence, poc =0, as wanted. O

We may now start the proof of the Ambrose-Singer—Fernandes theorem.

Lemma 4.30. Let ® = adt + bds : T[0,1]2 — M be a vector bundle morphism over ~y : [0,1]%> — M with
po® =, and let 75 be parallel transport along the A-path as from vs(t) to vs(1). Let c: [0,1]> — A
be as in Lemma 4.29 and let

Foy = To1F (a(s,1),b(s, 1)) 7o} € gl(Ey (1)) and Agy:=T7s:VesnyTar € 0l(Ey, 1))
Then for any o € I'(y*E) with %a =0 and %U(~70) = 0 we have that

%0(57 1) = (/OI(FN + As,t)dt> o(s, 1).

Proof. Using Proposition 4.22, Lemma 4.29 and the fact that %O’ = 0, we compute:
d
o (Ts,tavsﬂ(syto = Ts,t%%d&t) = Tot(F(a(s,t),b(s,t)) + Vesr))o(s,t)

= (Fs,t + As’t>0'<s, 1)
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Explicitly, parallel transport along as from 7,(¢) to vs(1) is given by parallel transport along the
A-path r — (1 —t)as(r(1 —t) +t), covering r + ~,(r(1 —t) +¢). Then, since 7,1 = id, because it
is parallel transport along the A-path r — 0 € A, (1), and %0(, 0) =0,

\Y v v bd v
%U(& 1) =751 %a(s, 1) — TS’O%U(S,O) = /0 pn (Ts’t@sa(s’t)> dt

:([ﬁﬂ§t+A&gﬁ>o@J) O

Corollary 4.31. Let ® = adt+bds : T[0,1]> — M be a vector bundle morphism over a piecewise smooth
homotopy ~v : [0,1)> — M with fized endpoints, with po ® = ~, and such that if %’y(s,t) = 0 then
b(s,t) =0, and let 75 be parallel transport along as. Then

d 1
%7—8 = (/0 (Fs,t + As,t)dt> Ts-

Proof. For any v with fixed endpoints, such a lift ® always exists by Lemma 4.24. Let o € T'(v*E)
with %a =0 and %O’(-,O) = 0. Notice that since v has fixed endpoints, then b(s,0) = 0 and
b(s,1) = 0 for all s, so that the covariant derivative with respect to s at the endpoints is just
derivation with respect to s. Hence, o(-,0) is constant and, by Lemma 4.30,

d d d
5205 = ol 1) = L (no(s.0) = (o) o(5,0)

(A%F@+z%ﬂﬁ)0@@)<Kf@h%z%ﬂﬁ>ﬁgwﬂ%

and this gives the result. O

We now want to consider the analog of the homotopies of square loops. Let z € M, let L be the leaf
through z and let a,b € A,. Let f: U — L be a smooth map from an open neighborhood U of 0 in R?
with f(0) = z and ® = adx + bdy : T[0,1]> — A a vector bundle morphism over f with po ® = f, and
such that @(0,0) = a and b(0,0) = b, which exists by Lemma 4.24. Then the homotopies of square loops
in this case can be defined as follows: let ¢ : [0,1]? — [0, 1]? be the map

(4st,0), 0<t<1,
4t — 1 Loyp<t
oty ={ Dk =S
(s(3—4t),s), 5<t<y,
(0,4s(1 1)), 2<t<1,
then
v:=fogq and P := dog,. (4.2)

Then ® : T[0,1]2 — A is a vector bundle morphism with p o ® = ~,. Write ® = adt + bds (not to be
confused with a,b € A,, the difference is clear from context) and consider (z,y)- and (s,?)-dependent

sections Gy y, by y, @st, bst € T'(A) such that

dz,y(f(xvy)) = d(x,y), bm,y(f(xvy)) = B(xvy)v as,t(’y(svt)) = a(s7t) and bS,t(V(svt)) = b(S,t).

It is straightforward to see that the relations among these are

Astyst,0, 0<t<i Aty 0, 0<t< i

w Asbg s(at—1), %Stgé, by — Gy oat—1) T (4 = Dby gaimr), §<t<3
7 —4sGy3-11),s, 3 St T, 7 (3 —4t)ag(3-4t),s + bs(3—10),50 3 <t <3,
—4sboas(1—1), 2 << (1 —t)bo,as(1—1)» d<t<
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Proposition 4.32. Let (®,~) be a homotopy of square loops as in (4.2) and let 75 be parallel transport
along as. Then there is c € ker p, such that

d d?

7o =0 and el i 75 = 2F(b,a) — 2V..

% s=0
Explicitly, c is given as follows: let €: [0,1)2 — A be as in Lemma 4.29 for ®, then ¢ = (0,0).

Proof. Direct computation, using the skewsymmetry of F' and the formulas for a;+ and bs ¢, gives

0, t<lort>3
F(a(s,t),b(s,t)) = { 4sF(b,a)(s,s(4t — 1)), L <t<i,
4sF(b,a)(s(3 —4t),s), 3 <t<3.

On the other hand, it is an easy but somewhat lengthy computation to show that the map c :
[0,1)2 — A from Lemma 4.29 for ® is given by

07
c(s,t) = ¢ —4sc(s, s(4t — 1)),
—4s¢(s(3 — 4t), s),

©]

=

v
oo

Nl = T
IAIA A
~ o~ B
IA INA

E\wlxjh—' ~

Hence, by Corollary 1.23,

a
ds

3/4
Ts = / (FO,t + A07t)dt T0 — 0.
s=0 1/4

Also, if we let ¢ := &(0,0) € A, then (F,,+ A ;) = 4F(b,a) — 4V, uniformly in ¢ as s — 0 since

To,t = id because 7y is the constant path. Then,

3/4 d
Ty = —
s=0 /1/4 dS

Theorem 4.33 (Ambrose-Singer-Fernandes). Let x € M and denote by 12 the set of piecewise smooth
A-pahts [0,1] — A starting at x. Then

d2
ds?

(Fst+ As’t)dt> 70 = 2F(b,a) — 2V.. O
s=0

bol, (V) = span{7, ' F(a,b)7. : e € 112 and a,b € Ay}
+ span{7, V.7, : e € II? and ¢ € ker Pye (1)}
Proof. Analogous to that of the Ambrose—Singer theorem, Theorem 1.25. O

The new terms are genuinely a new feature of A-holonomy, they cannot be absorbed into the curvature
terms, since there are examples of flat A-connections with non-discrete holonomy. The easiest example
might be the following.

Example 4.34. If the anchor is trivial, then an A-connection on a vector bundle £ — M is just an
element in Q'(A,EndE). Let A = g be a Lie algebra over a point and E = V a vector space. An

A-connection on E is then a linear map B : g — gl(V). Its curvature is

F(&n) = [B(&), B(n)] — B([§;1]), for&neg.

Hence, it is flat if and only if B is a Lie algebra morphism (a representation). Any smooth curve
a : [0,1] — g is an A-path, and a smooth curve v : [0,1] — V is parallel along a if and only if
0(t) + B(a(t))v(t) = 0. If we write 7 for parallel transport along a, then it satisfies 7» = —B(a(t))7:.

If a is the constant path with value £ € g, then v(t) = e *2©y(0) is the parallel section along a.
Hence, we have that ¢Z(® C Hol(B). Consider now (eZ(9), the Lie subgroup of GL(V) generated by
eP@), Tts Lie algebra is the Lie subalgebra of gl(V) generated by B(g). Consider the time-dependent
vector field (g,t) — —B(a(t))g defined on (eP(®). Its flow is contained in (eZ(9)), and since 7 is a flow
line of such a vector field, we conclude that 7, € ((®)) for all ¢, i.e., Hol(B) = (eB(9).

Here we can see three different cases:
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1. If B is flat, let G be the 1-connected Lie group integrating g and let e® : G — GL(V) be the Lie
group morphism integrating g, given by eZ(Exp &) = eB©). Then (eB®) = eB((Expg)) = Z(G).
In this case, hol(B) = B(g), and this corresponds to the isotropy summand in the Ambrose-Singer—
Fernandes theorem.

2. If B is not flat but B(g) is a Lie subalgebra of gl(V'), then we still have hol(B) = B(g). In this
case, the curvature summand in the Ambrose-Singer—Fernandes theorem can be absorbed into the

isotropy summand.

3. If B is not flat and B(g) is not a Lie subalgebra of gl(V'), then we have that hol(B) is the Lie
subalgebra generated by B(g). In this case the curvature summand cannot be absorbed into the

isotropy summand. The curvature terms come from conjugation: if £,n € g then

d2

Tt @7t = (BE), B,

s=t=0

and these terms might not lie in B(g), i.e., they might not come from the isotropy.

Let us illustrate this with a particular example. Consider g = su(2) and V = C?. Consider the basis

of su(2)
0 0 1 i 0
o1 = s g9 = 5 g3 = ]
o T\t o P \o i

with commutation relations [01, 03] = —203 (and cyclic permutations).

The map B sending o to 041 (here indices are taken mod 3) is a representation, and since B(su(2)) =
su(2), we have that Hol(B) = SU(2). The map B sending o; to itself and permuting o and o3 is not a
representation, but we still have B(su(2)) = su(2), so still Hol(B) = SU(2). The map B sending o7 and
o2 to 0 and o3 to itself is not a representation either, and B(su(2)) = Ros, which is a subalgebra. In this
case, Hol(B) = U(1), where U(1) = e®9s C SU(2). Lastly, if B is the map taking o; to id and letting o9
and o unchanged, then B is not a representation and B(su(2)) = span{id, 02,03} is not a subalgebra.
Then hol(B) is the Lie algebra generated by B(su(2)), which is R & su(2). Hence,

Hol(B) = Rso x SU(2) = {A € GL(2,C) : A*A € Rogid}. v

Also, since A-holonomy is a leafwise property, it can jump from leaf to leaf, as the next examples
show.

Example 4.35. Reconsider Example 4.34 with changing basepoint. That is, consider A = [0, 1] x g as the
Lie algebroid over [0, 1] with trivial anchor and bracket given by [a, b](t) := [a(t), b(t)], for a,b: [0,1] — g.
The connection is now given by a smooth collection of linear maps By : g — gl(V).

For g = su(2), consider the map given by
Bi(o7) :=tid + (1 — t)oq,
Bi(o3) :=toa + (1 — t)os,
Bi(o3) :=tos + (1 — t)os.

From Example 4.34 we already now that Hol(By) = SU(2) and Hol(B;1) = Ry x SU(2). If ¢ # 0,1, then
we have that

[Bi(01), Bi(02)] = 2(1 — t)(—tos + (1 — t)oa),

from where we conclude that hol(B;) = R @ su(2). Hence,

SU(2), t=0

Hol(B,) = v
ol(B:) {R>0><SU(2), t>0
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Example 4.36 (Action Lie algebroid). Let G be a Lie group acting smoothly on M and consider the
action Lie algebroid A = M x g (Example 4.6). A smooth map a : [0,1] — A, which we write as a = (v, §)
for v:[0,1] = M and & : [0,1] — g, is an A-path if and only if

Let E = M x V be the trivial vector bundle over M, with V' a vector space. Then any A-connection on
E is of the form V = p*d + f3, for some 3 € Q!(A,End E), i.e., identifying T'(E) = C>(M, V),

Vew(z) = wi(§p(2)) + o (§w(x), foréeg, we CC(M,V)and xze M.

Since both A and E are trivial, then £ is a family of linear maps 3, : g — gl(V') depending smoothly on
zeM.
From here we get that a section o = (v,v) of F along v, where v : [0,1] — V|, is parallel if and only if

0(t) + Byt ((2))v(t) = 0.

With this we can do some explicit computations in some easy examples.
Consider the action of S = {w € C : |w| = 1} on C by complex scalar multiplication. Since the Lie
algebra of St is R and gl(R) = R, we get that 8 € C°°(C). In this case the anchor is p(z,\) = i\z, and

the parallel transport equation for a section o = (z, ) along z reads
fr+ B(z)An = 0.
Since everything is 1-dimensional, we can integrate this equation to get
1
() =exo (= [ a0 ) o)
0

If z is the constant loop at 0, then parallel transport along the A-path given by the constant A(t) = A € R
reduces to u(1) = e A 1(0). Hence,

R0, B(0) #
{1}, B(0) =

If z is a loop away from 0, then the A-path a = (2, \) satisfies A = —iZ/z. Hence,

Holy(83) = { 8

1 .
. z(t
) =exp (i [ stet0) i) o)
0 z()
Different choices of 8 give now different jumping behavior of the holonomy. Here we give some examples:
1. If 3 =0, then Hol,(8) = {1} for all z € C.

2. If B =1, then if z(¢) is not the constant loop at 0 and it has winding number k € Z around 0, then
(1) = e pu(0), so
R>0, z=0

Hol.(8) = { {e’™* ke Z}, z#0.

3. If B(z) = |z/|?, then
BEu! o
Hol.(8) = { (e ke z), z#0.
4. If B(2) = |2 = 1, then

R>07 z=0
Hol,(8) = { {e>™(=F-Dk.k ez} 2#0and |2| #1 v
{1}, 2| = 1.
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This last example shows that the jumps of holonomy from leaf to leaf can be as wild as we like, when
we consider general LA-connections. A natural question to ask is if the LA-holonomy group can have a
more controlled behavior in special situations. For instance, if A — M is a Lie algebroid, we can consider
A-connections V on A. In such situation it makes sense to define the torsion of V as in the classical case:
T € Q?(A, A) given by
T(a,b) :=Vub—Vya —[a,b], fora,be(A).

Then the same proof as Proposition 1.34 gives that, if A is endowed with a metric, there is a unique
A-connection on A which is metric and torsion-free, which we call the Levi-Civita connection of A. An
open question is whether the holonomy of the Levi-Civita connection exhibits a more regular behavior.
Other open questions regarding LLA-holonomy, that could be used as guiding questions for future work,
are the following. Is there a Berger-type list for LA-holonomy, at least for the Levi-Civita connection?
If we let Hol,(A) be the LA-holonomy group at = of the Levi-Civita connection of a Lie algebroid A,
then if Hol,(A) acts irreducibly on A,, the triple (A,, R;,Hol;(A)), where R, is the curvature of the
Levi-Civita connection, is an irreducible holonomy system. Therefore, Simons’s theorem (Theorem 3.41)
can be applied to this triple. Does this give any useful information on the geometry of A? Lastly, it is

still open how relevant LA-holonomy is in applications to geometry and physics.
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A

Some computations

Here we present the proofs of some results formulated or used in the main text, whose proofs require long

and uninteresting computations, which would break the flow of the main reading.

A.1. Computations of Section 3.6

Proposition A.1. Let (M, J) be an almost complex manifold, let F be the curvature of the Levi-Civita
connection on the canonical bundle A™OT*M and let Q € QO(M). Then for all X,Y € X(M) and
X; € XH0(M),

FX, V)X, Xp) =Y _QX1,...,RY, X)X;,..., X,),

where R is the Riemann curvature.

Proof. Straightforward computation, where the dots ... indicate the presence of the vector fields
{Xi}i:
FX,Y)QXy,...,X,) = X(VyQ(. ZVYQ o)
Y(VxQ(...)+ Z VxQ. )
—[X,Y)(Q +ZQ Vixy 1 Xjh---)

= XY(Q(...)) - ZX(Q(...,Vij,...))

=Y (Y., VxX;,...) = Q... VyVxX;,...))
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+ 300, Vv X, Vx Xy, ..)

Jk#j
—YX(Q +ZY Xj,...))
+) (X, YX]-,...))—Q(...,vxvaj,...))
=Y Q... VxXj,... . VyXp,...)

Gk
— [X,Y](© +ZQ Vixy1Xj,--.)

=> Q(..,VyVxX; - vaij + Vix v Xjs- )

=> Q(..,RY,X)X;,...),

as wanted. O

To ease the computation of adjoints, we will make repeated use of the following lemma.
Lemma A.2. Let E — M be a vector bundle and V a metric connection on E, where the metric can be

real or Hermitian. Then around every point x € M there is a local orthonormal frame {o;}; for E which

is normal at x, meaning that V,o0; =0 for all i and w € T, M.

Proof. Let (U, ) be a chart for M centered at x and {e;}; an orthonormal basis for E,. Define
local sections o; by o;(¢~1(v)) := Tie;, where 7; is parallel transport from x to ¢~ !(tv) along
s+ o~ 1(sv). It is a smooth frame, by the smooth dependence of solutions to ODEs on parameters.
Since 7 is a linear isometry, the frame is orthonormal. Lastly, using Proposition 1.15, we get that
for any w € Ty(p(U)),

d _ _
Vori0i= | T Yo H(tw) = —| & =0,

so the frame is normal at z. O

Also, recall the definition of the divergence of a vector field X € X(M): it is the smooth function div X
such that £Lxvol = (div X)vol (here Lx is the Lie derivative, with the sign convention that LxY = [X,Y],
for Y € X(M)). Explicitly, it is given by div X = % tr Lx g, as can be easily checked using an orthonormal
frame {E;};:

div X = (div X)vol(Ey, ..., Ey) = Lxvol(Ey, ..., Ey,)

= X(vol(E1,..., Ey,)) — Zvol(El, o LxEs, ... Ey)

:fz (X, Ey), ZEXgEl,E)

By Stokes’s theorem and Cartan’s formula for the Lie derivative, we have that

/ (divX)volz/ dixvol = 0.
M M

Proposition A.3 (3.75). The formal adjoint of the connection V : T®RD(M) — TEIHFD (M) is the
operator V* : TEHD (M) — TED (M) given by

V0, X1,.... X)) ==Y VT(0.E,X1,.... X))

on T € T*RD(M), where § € TOF) (M), X; € X(M) and {E;}; is any orthonormal frame.
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Proof. 1t is straightforward to see that the formula for V* does not depend on the orthonormal
frame. Let {E;}; be an orthonormal frame which is normal at # € M, as in Lemma A.2, and let
{E%}; denote its dual frame. If a = (a1, ..., a,) is a multiindex of length |a| := a1 + - - - + a,,, we

use the shorthand notation

E,=E, ® - ®E,, and E*:=E"®-.-®@ E"™.

Let S € M (M) and define a 1-form o by a(X) := (T,ixS). Then, at the point z, if a
runs through all the multiindices of length k& and b through all the ones with length [,

~V'a =Y Vga(B;) =Y E;(T,ig,5))
J J
= Z(<VEJT,ZEJS> + <T, VEJ’LE]S»
J
=> > (VE,T(E" E)S(E*, E}, Ey) + T(E*, By)Vg,ig,S(E*, Ey)).
Jj  ab
Since

Vi, i, S(E®, Ey) = ip,Vg,S(E*, Ey) + S(E*, Vi, E;, Ey)
= Vi, S(E% E}, By),

then

~V*a =YY (Vg T(E* E)S(E", E;, Eb) + T(E®, E,)VE,S(E*, Ej, E}))
J ab

= (VT, 8) — (T, V"*S).

Let now Y be the vector field dual to o with respect to g. Then, at x,
divY = =Y (Y, B}, Ej) = =) (VvE; - Vg, Y, E))

J J
=Y EiY.Ej) =) Ej(a(E))) = -V
J J
Hence, we conclude that

(VT,S), — (T, V*S), = / (div Y )vol = 0. 0
M

Proposition A.4 (3.76). For o € Q¥(M) we have that

do(Xo, ..., Xx) = > (-1)'Vx,a(Xo,..., Xi, ..., Xp), for X; € X(M).

)

Moreover, d* = V*.
Proof. First, we have that

Vx,a(Xo,. ., Xiy oo Xi) = Xi(a(Xo, . X X0) = > alXo, ., Vi, X, X, Xp).
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Since

S (D'l Xo, . VX, X, Xy, X)) =

IRE
> (=Dia(Xo,. ., Xiy o, Vi, X, X)
1<J
+) (-D'a(Xo,. .., VX, X, Xiy o, Xk
7<1
S (D) a(-Vx, Xj, Xo, o Xy Xy, Xk
1<J
Y (DM (Vx, X, Xo, o Ky K X
7<1
=Y (D) a(Vx, Xi = Vx,X;, Xo, .., Xy Xy, Xk
1<j
== (-1)"Ma([Xi, X;], Xo, ... Xy X Xy,
1<j

then the Koszul formula for da finally gives the result.

As for the second claim, we have that, if 5 € QF~1(M),

(,d8)" = 15 dB)
:% Z oz(Eil,--.7E¢,€)Z(—l)HlvE”B(Eil,...Eij,---7Eik)
LA I J
= Z (o, V) = ) (e, VB).
Hence,
(v, dB) (a, V5) (Vi B), = (V7. 8)3 O

Proposition A.5 (Weitzenbock, 3.77). For o € QF(M) we have that Aa = V*Va + Rica.

Proof. Consider an orthonormal frame { E;}; which is normal at z, as in Lemma A.2. The formula

follows from a somewhat lengthy computation. Let X; € X(M). First of all, by Proposition 3.76,

dd*o(X1,. .., Xp) :Z(— YV d (X1, X,y Xi)

:_Z DX (Vi alBy Xy, Xy oo Xi)

+ > (-1 (B, Xo, ... VX, X1, X Xy
Jyisl#]
= (-1YVx,Vea(B;, Xo,..., Xj,. .., X¢).

Jst

89



Appendix A. Some computations Jaime Pedregal

On the other hand,

d*da(Xy,...,X}) ==Y Vgda(E;, X1,..., X)

==Y Ei(da(B;, X1,..., X))+ > _da(E;, X1,...,VE,X;,. .., X)
: —

=Y Ei(Vga(Xi,...,Xx) = > (-1 E(Vx,a(Ei, X1,..., X, ..., Xy)
. -~
+Zan X1,.., VX, .., Xk)

i

+Z 1 Vy, x,a(E, X1, ..., Xj, ... X)

+ Z JVXOZ ...,Xj,...,inXl,...,Xk)
i,0,7#1
= —ZVE.VE.Q(Xl,... )= > (-1)VEVx,alB, X1, X, ..., Xk)
J

+Z JVVEXOZ(EZ,Xl,...,Xj,...Xk).

That computes the left-hand side of the equality. As for the right-hand side, the first term is

V'Va(X1,..., X)) = - Y Vg Va(B, Xi,...,X)

=Y E(Vgo(X1,..., X))+ > Vea(X1,...,VEX;,. .., Xp)
. —

= — Zinina(Xh . ,Xk),

and the second term

Rica(X1,..., Xp) = Z(— YHR(E;, X))a(Ei, X1, ..., X, ., Xg)
:—Z 1)VE V(B X1, .., Xy, Xp)
+Z 1YVx, Vea(B, X1,..., X;,..., Xp)
+Z 1)Vy, x,0(E;, X1,..., Xj,..., Xp).
This finally establishes the result. O
Proposition A.6. Let (M, g,.J) be a Kihler manifold and X,Y, Z,W € X"O(M). Then h(R(X,Y)Z,W) =
WR(X,W)Z,Y).

Proof. Let X,Y,Z, W € X(M). Then, using Proposition 3.72 we have that
hMR(X —iJX)Y +4JY)Z —iJZ),W —iJW) =
=4(R(X,Y)Z - R(JX,Y)JZ, W) +4i(R(X,Y)Z — R(JX,Y)JZ, JW).
By the Bianchi identity and again Proposition 3.72,

(R(X,Y)Z — R(JX,Y)JZ,W) = —(R(Y, Z)X + R(Z, X)Y, W)
+(R(Y,JZ)JX + R(JZ,JX)Y,W)
= (R(X,W)Z,Y) + (R(JX,W)JZ,Y),

and the same holds with JW instead of W. This already gives the result. O
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Proposition A.7. Let (M,g,J) be a compact Ricci-flat Kihler manifold and o € QP°(M). Then
Rica =0.

Proof. Tt is easy to see that, in general, if X € X(M) and Y € X(M,C), then R(X,Y)QY0(M) C
QL9(M). Hence, Rica can only take nonzero values when evaluated on (1, 0)-vector fields. It will
now suffice to prove that Ric(a! A+ Aa®)(Xy,..., X;) =0 for o/ € Q1O(M) and X; € X1O(M).

Let Y; € X10(M) be the corresponding vector field to o/ with respect to h, i.e., such that
ol (X) = h(X,Y;) for all X € X(M,C). Notice that if o = 87 +iJB37, for some 37 € Q' (M), then
Y, = W; —iJW;, where W; € X(M) is dual to 37, so that if {E,;}, is an orthonormal frame, we

have that
Zoﬂ E)E Zﬂj E El—ZZﬂj JE)
— Z W, E)E +iZ JW;, E))E,
1 l

=W, +iJW; =Y.

Then we may compute

Ric(a! @ --- @ o®) (X1, ..., X}) = ZR(El,Xj)(al ®--- @) (X1,...,Ep, ..., X})

1,7,
= 3 al(X1)...R(E, X)) (X)) ... o7 (B)...a"(X)
J,i#]
+Za (X1)...R(E, X)) (E) ... oF (Xk)

—

=> o (Xl)...h(R(Xj,Yj)Xi,Yi)...ozj...o/“(Xk)
+3 (X)) h(R(XG, E)ELY;) . oF(Xy).

The second term is determined by the Ricci curvature and the Ricci form, as follows: let X; =
Z; —iJZ; for Z; € X(M). Then, using Proposition 3.72,

Zh 3 ENELY;) =Y (R(Z; —iJZj, E)E;,W; +iJW;)
l
= 2Ric(Z;, W;) + 2i Ric(Z;, JW;).
Since M is Ricci-flat, this term vanishes.

We can now write
Ric(a A---Aa®) (X, ..., X}) =

= 3 3 (sgn0)a” D (X1) .. h(R(X;, Vo) Xis Vo)) - 070 .. a”®) (Xy).
J,i#£j o€ES

For o € & and j and i # j, let 0’ € &, be o composed with the transposition (ji), i.e., such that
a'(j) = o(i), o’'(i) = o(j) and ¢’'(l) = o(l) for any | # i and [ # j. Then the term corresponding

to o is

—

(sgno)a”D(X1) ... M(R(X;, Yo (7)) Xis Yo(iy) - - a) .a”®) (Xy),
and the term corresponding to o’ is
—(sgn0)a’ D (X)) . h(R(X;, V)Xo, Vo)) - - a7 .. a?®)(X,,).
Since h(R(X,Y)Z,W) = h(R(X,W)Z,Y) for X,Y,Z,W € X*°(M) (Proposition A.6), we finally

conclude that Rica = 0. O
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A.2. Computations of Section 4.1

Lemma A.8 (4.8). The A-differential satisfies d4 = 0 and it is given by the Koszul formula
daalag, ..., ax) = Z(—l)ip(ai)( (ag, ..., @i, ... ax))

H-J . q. A
+§ (las, aj], a0, .. Qs o5 G5, ... ak),
1<j

for a € QF(A) and a; € T(A).

Proof. We first prove the Koszul formula. The formulas for functions and 1-forms in the definition
of dy are exactly Koszul’s formula in those degrees. We prove the general formula by induction
on the degree. Assume that d4 is given by the Koszul formula on Q¥(A) and let a € Q'(A) and
B € QF(A). We will make use of the following explicit formulas, which are easy to deduce: if
v € Q2(A) and a; € T'(A), then

anBlag,...,ax) =Y _(=1)'ala:)Bao, ..., ai...,a)
i
YA ﬂ(a(h v 7ak+1) = - Z(_l)i+j7(ai7aj)5(a07 teey div teey d]v v 7ak+1)~
1<j
Then, if we use the short-hand notation 5(z) or 3(z,j) to denote the absence of the arguments a;

or a; and a; in 3, then

daa A B(ag, .. app1) = = Y (1) daa(ai, a;)B(i, j)

= > () (allanas]) + pla)ala) — plas)ala) B 5.
and A R
aNdaB(ag,...,app1) = Z(*l)za(ai)dAﬂ(i)
- Z(—ly‘“( olaz)p(ai) — alai)p(a;))B(, )
+2° 2 () alan)B[ag, al .-
rhy
Therefore,

da(a A B)(ao, ..., akt1) = (daa AB—aA dAﬁ)(GOa ey Aky1)

= > (=1 (pla;)(alai)B(i, 1)) — plai)(ala;)B(i, 1))

1<j

+Z j—H aﬁal])/B(}v )_ Z(_l)ia(ai)ﬁ([a’ﬁal]’zv.}.v )

J<i
—Z az Ck/\B Z j-Ha/\ﬁ [aj7al}77?75a )7
i<l

and this last line is the Koszul formula. (To be fair, in the sum involving j < [ and @ # j,1 we
should have split the sum in three pieces according to whether ¢ < j or j < i <l orl < ¢, and
adapted the signs, but this is irrelevant for the final result).

We now prove that d4 = 0 by induction on the degree. For a function f € C*°(M) we have
that for all a,b € T'(A),

4 f(a,b) = p(a)daf(b) — p(b)daf(a) — daf([a,b]) = p(a)p(b)f — p(b)p(a) f — [p(a), p(b)]f =0,
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by Lemma 4.2. For o € Q!(A), using Koszul’s formula and Jacobi’s identity it is straightforward
to see that d4« = 0. Assume now that d4 = 0 up to degree k and let o € Q'(A) and 8 € QF(A).
Then

di(aNB)=daldaaAB—aNdsf)=d4aAB+daaNdaB —daaANdaf+aANdif=0. O
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B

Ehresmann connections

There is an alternative viewpoint to connections which, although we do not use it in the text, is interesting
to know. In this appendix we show that the notion of a linear Ehresmann connection is equivalent to
our notion of connection, and that the curvature is an obstruction to the integrability of the Ehresmann
connection.

In this section we will be using local formulas for both the connection and its curvature. If U is a
trivializing chart for F, then local sections of E over U are identified with C°°(U,R"), for r the rank of
E. Over the trivialization, we can always consider the canonical connection on the trivial bundle, which
is just the differential, and since the difference of two connections is an End F-valued 1-form, we conclude
that there is some I' € Q(U, gl(r,R)) such that for z € U and v € T, M,

Voo =0+ T(v)(o(z)), foroeC™(UR").
Then we can explicitly compute the curvature as follows: for X, Y € X(U) and o0 € C*(U,R"),

FX,Y)o=Vx(Yo+T(Y)o) - Vy(Xo+T(X)o) — [X,Y]o — T([X,Y])o
=XYo+T(X)Yo+XTY)o+T(Y)Xo+T(X)I'(Y)o
~YXo - T(Y)Xo - Y(I'(X))o — [(X)Yo — D(Y)D(X)o
—[X,Y]o —I([X,Y))o
=dl'+TAD)(X,Y)o,
where TAT(X,Y) :=T(X)I'(Y) —T'(Y)['(X). The 1-form T is called the local connection 1-form for
the trivialization over U.
Denote by VE — FE the vertical bundle of E, with fibers V,E := ker m,(v), where 7 : E — M is

the projection and v € E. Since the fibers of E are vector spaces, for each v € E, there is a canonical
identification V,E = E,, by sending w € E, to %L‘;O (v +tw). Actually, VE = 7*E. In the following
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we use this identification implicitly. By the definition of V E, there is a short exact sequence of vector

bundles over F
0—VE—TE ™ 7*TM — 0. (B.1)

A splitting of this sequence is a vector bundle morphism h : 7*T'M — TF such that m, o h = id.
Moreover, we say that it is linear if for all v € F and ¢ # 0 we have that hy, = S, oh,,, where S; : £ — E
is fiberwise scalar multiplication by ¢.

Let us deduce the local expression for such a linear splitting. Let U be a trivializing chart for F.
Then we can assume that M = U, TM = U x R" (where n = dimM), E = U x R" (where r is
the rank of E), TE = U x R" x R® x R" and #*TM = U x R" x R®. With this notation, the map
m:UxR" = U is given by (x,v) — x and its differential 7, : U x R" x R” x R” — U x R" x R™ by
(z,v,w,u) = (x,v,w), and h is a map U x R" x R” — U x R" x R™ x R". The fact that 7. o h = id
implies that h(z,v,w) = (z,v,w, g(x,v,w)), for some g : U x R” x R™ — R", and the fact that it is a
vector bundle morphism implies that g is linear on w. Under these identifications, scalar multiplication
by ¢ sends (x,v) to (z,tv), whereas S : U X R" x R* x R” — U x R" x R™ x R" sends (z,v,w,u) to

(z,tv,w, tu). Hence, being a linear splitting translates into
h(z,tv,w) - (x,tv,w,g(x,tv,w)) = St*(h(xvvaw)) - (z,tv,w,tg(z,v,w)).

Therefore, g is homogeneous of degree 1 on v. This implies that it is actually linear on v:

d d
g(z,v,w) = 7 tg(z,v,w) = o g(z,tv, w) = dg(z,0,w)(0,v,0).
t=0 t=0

These properties allow us to see that connections on F are exactly linear splittings of (B.1).

Proposition B.1. Connections on a vector bundle m : E — M are in bijective correspondence with

linear splittings of (B.1).
Proof. Let h: 7*TM — TEFE be a linear splitting and define a connection on E by
Vw0 i= 0w — hyy(w) € VoyE =2 E,,  forw e T, M and o € T'(E).

Under the above local identifications, the isomorphism 7*E = VE is the map U x R" x R" —
U x R" x R" x R" given by (z,v,u) — (z,v,0,u). The section o is a map ¢ : U — U x R" given
by o(z) = (z, f(z)), for f: U — R" smooth, and its differential o, : U x R” — U x R” x R” x R"
is given by (z,w) — (z, f(z), w, df,(w)). Locally, then, the expression for V is

Vo = (z, f(2),0,dfs(w) = g(z, f(z),w)).

This defines a connection on E|y.

For the converse, let V be a connection on E. Define h: 7*TM — TE as follows: for v € E,
and w € T, M, we set h,(w) := g,w — V0, where o € T'(E) is such that o(x) = v. Here we view
Vwo € E, as an element of V,E. Let us write it locally: let o(y) = (y, f(y)) and, if we now let
w € T, M be (z,w) € U x R", we can write V,,0 = (z,df,(w) + T'(w)v), where I € Q(U, gl(r,R))
is the local connection 1-form of V and v = f(z) € R”. When we view V,,0 as an element of the

vertical bundle, it is (z,v, 0, df;(w) + T'(w)v), so finally we have the local expression
h(z,v,w) = (z,v,w, —T(w)v),
which defines a linear splitting. O

An Ehresmann connection is a choice of a horizontal bundle over F, i.e., a subbundle H CTFE
such that TE = VE @ H. Tt is said to be linear if moreover we have that Sy (H,) = Hy,, for all v € E
and t # 0. As a consequence of Proposition B.1 we have that connections are the same thing as linear

Ehresmann connections on F.
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Corollary B.2. Connections on a vector bundle m : E — M are in bijective correspondence with linear

FEhresmann connections on E.

Proof. Let V be a connection on F and let h : 7*T'M — TFE be the corresponding linear splitting of
(B.1) given by Proposition B.1. Let H := im h. Since h is a splitting, it is fiberwise injective, so H is
asubbundle of TE. Let v € E, and w € T, M. Then h,(w) € V, E if and only if 7, (h,(w)) = w = 0,
ie, H,NV,E = 0. Since dim(V,E @ H,) = dimF — dimM + dim M = dim F = dim T, F, we
conclude that TE = VE @ H, so H is an Ehresmann connection. Moreover, if t # 0,

St (hy(w)) = (St 0 0)sw — St Vo = (t0)sw — Vo (to) = hy,(w),

so H is linear.
For the converse, let H be a linear Ehresmann connection on E. Then 7|y is a vector bundle
isomorphism between H and 7*T'M. Let h := (m.|g)~!. It is a splitting of (B.1): 7. oh =

7ol 0 (me| )~ = id. Also, since H is linear, we have that
Tilm, = (70 S)«lu, = melm,, © St

which gives that h is a linear splitting. O

From this point of view, the curvature of V is the obstruction for its linear Ehresmann connection to

be integrable.

Proposition B.3. Let 7 : E — M be a vector bundle and V a connection on E, with corresponding

linear Ehresmann connection H. Then (E,V) is flat if and only if H is an integrable distribution on E.

Proof. Let h be the linear splitting given by V. Then locally we have that
h(l’, v, w) = (ZL', v, w, 71_\(’10)’11),

as in the proof of Proposition B.1. If we define a € Q'(E|y,R") by the formula gy (W, u) =
u+I'(w)v, for w € T, M and u,v € R", then clearly H,,) = imh, ,) = kera(y .. Let us write
elements of X(E|y) as pairs (X, V), (Y, W), for X, Y € X(U) and VW € X(R") =2 C>°(R",R"). If
¢ and ¢} are the flows of X and V, respectively, then on (z,v) € E|y we have that

XYW = 5 a6 )+ 5| oWl (v)
-4l (W(v)+r<Y<¢§<<x>)>v>
v % (W (0} (0)) + T(Y ()8} ()
t=0

= (X[TE))(x)v + WV (v)) + T(Y (2))V (v).

Observe that (X, V) is a section of ker o if and only if V(v) = —I'(X (x))v for all (z,v) € E|y.
Then, if (X, V) and (Y, W) are both sections of ker a, we have that on (x,v),

a([(X, V), (Y, W)]) = —da((X, V), (Y, W))
= —(XTY)(x)v = Wi (V(v)) = D(Y(2))V(v)
+ (YI'(X))(z)v + Va(W(v)) + D(X (x)) W (v)
+ [V, W](v) + T([X, Y](2))v
—(dl'+TAD)X,Y)(z)v=—-F(X,Y)(x)v.

Hence, H is involutive if and only if F' = 0, which, by the Frobenius integrability theorem [Leel2,
Thm. 19.12], means that H is integrable if and only if F = 0. O
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Corollary B.4. A vector bundle E — M with a connection V is flat if and only if there is a parallel

local frame around every point in M, meaning a frame {c;}; with Vo; = 0.

Proof. If {o;}; is a local parallel frame, then F'Ao; = D?0; = 0 for all i, where F is the curvature
of V. Hence F is flat.

Conversely, assume that F is flat. Let H be the linear Ehresmann connection of V. By
Proposition B.3, H is integrable. First of all, note that the zero section is an integral manifold of

H. Indeed, using the local expressions used throughout this section,
H(m,O) = th(w,()) = {(I,O)} x R™ x {0}7

and this is exactly the tangent space to the zero section at (x,0). Second, let L, ., be the (local)
leaf through (z,v), and consider 7 : L(,,) — U. Then the differential of 7 restricted the tangent
space of L, .) at (z,v), which is exactly H(, ), is an isomorphism onto T, U, with inverse h, ).
Hence, locally 7 gives a diffeomorphism between L(, ,) and U. This means that L, ,) can be
written as the graph of some smooth function f : U — R", ie., L. = {(z, f(z)) : x € U}.
This function defines a parallel section of E over U. Indeed, since tangent vectors to the graph
at (z, f(x)) are of the form (w, df,(w)) and elements of H(, f(,)) are of the form (w,—I'(w)f(x)),
then df,(w) = —I'(w) f(x), which leads to

Vof = (z,dfe(w) + T'(w) f(x)) = (z,0).

By the same argument, the converse is also true: if o(z) = (z, f(z)) is a (local) parallel section,
then its graph is a leaf of H.

Fix now z € U and let {e;}; be a basis for R". Let o; be the parallel section corresponding to
the leaf L(, ). It only remains to see that {o;(y)}; is a linearly independent set for all y € U.
Assume that there are real numbers {\*}; such that Afo;(y) = 0 for some y € U. Then the leaf
defined by the parallel section A’o; must be the zero section, which means that \o;(z) = Ae; = 0.
Hence, \* = 0, and this ends the proof. O
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