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Abstract

The holonomy group of a connection is very intimately related to the curvature of the connection and

to the existence and quantity of parallel sections, thus controlling an important part of the geometry.

The Lie groups that can arise as the holonomy group of the Levi-Civita connection of a Riemannian

manifold were classified by Berger, resulting in a list of seven possible groups. These holonomies give

rise to special geometries, like Kähler, Calabi–Yau or hyperkähler geometries. It was not until fifty

years later that Olmos offered a geometric proof of Berger’s theorem, as an alternative to Berger’s more

algebraic proof. The first part of this work is dedicated to presenting Olmos’s proof, orderly developing

the requisites needed to understand it.

In the second part we introduce the generalization of holonomy to the Lie algebroid setting. Lie

algebroids are, in a sense, a generalization of the tangent bundle and, as such, it makes sense to consider

Lie algebroid connections and Lie algebroid holonomy. This new concept presents some remarkable new

features. The first one is the failure of the Ambrose–Singer theorem: the holonomy algebra is not only

determined by curvature, but also by the isotropy of the algebroid. We give a new proof of this Lie

algebroid Ambrose–Singer theorem, and provide some original examples of flat Lie algebroid connections

with non-discrete holonomy. Secondly, the notion of Lie algebroid holonomy is a leafwise notion, so the

holonomy can jump from leaf to leaf. When considering general Lie algebroid connections on vector

bundles, this behavior can be quite wild: it can jump either up or down when changing to smaller leaves.

We provide as well original examples of such behaviors.
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Introduction

On the trivial vector bundle E = M ×Rr over a smooth manifold M , there is a canonical way of taking

derivatives of sections of E along directions in M . Indeed, sections of E can be identified with maps in

C∞(M,Rr), and the derivative of σ ∈ C∞(M,Rr) in the direction of v ∈ TxM is just given by σ∗v. A

section of E whose derivative vanishes in all directions is constant.

On a general vector bundle E →M , though, the above construction is only canonical locally, whereas

globally there is no canonical way of taking directional derivatives. A consistent choice of directional

derivatives is what we call a connection on E. This allows us to talk about “constant” or “parallel”

sections: those whose directional derivatives vanish in all possible directions. The existence and quantity

of such sections on a given bundle is controlled by the holonomy group of the connection.

Concretely, the holonomy group of a connection at a point x ∈ M consists of all the possible linear

automorphisms of the fiber Ex that arise as parallel transport along loops based at x. Parallel transport is

a way of connecting fibers of E by means of the connection: if v ∈ Ex and γ : [0, 1]→M is a smooth curve

starting at x, then there is a unique section of E which is parallel along γ, meaning that its derivative in

the direction of γ̇(t) vanishes. The value of such a section at time 1 is the parallel transport of v along

γ, and we call it τγv. The holonomy group at x is the subgroup of GL(Ex) given by transformations of

the form τγ for all loops γ based at x. As said, this group is very closely related to the space of parallel

sections of E. This goes under the name of the holonomy principle: every vector in Ex which is invariant

under the holonomy group gives rise to a unique parallel section of E, and all parallel sections arise in

this manner. The reason we are interested in the (non)existence of parallel sections is because this is

very intimately related to the geometry of E. Indeed, the holonomy group contains essentially the same

information as the curvature (actually, a bit more). The curvature of a connection is an obstruction for

the connection to define a cochain complex on E-valued differential forms on M , and it is related to

holonomy through the celebrated Ambrose–Singer theorem: the Lie algebra of the holonomy group is

spanned by the parallel transport of every curvature endomorphism on M .

If E is the tangent bundle of a Riemannian manifold (M, g), then it is well known from Riemannian

geometry that there is a unique connection which is compatible with g and moreover torsion-free, called
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Introduction Jaime Pedregal

the Levi-Civita connection. The holonomy group of TM at x ∈M for the Levi-Civita connection is called

the Riemannian holonomy group of M , and we denote it by Holx(M). As stated, the group Holx(M)

determines part of the geometry of M . Indeed, if Holx(M) leaves some tensor over x invariant, then

by the holonomy principle there is some global tensor field on M which is nowhere vanishing, parallel

and equals the given tensor at x. Applying this reasoning to the simplest examples already gives some

interesting results:

1. The group SO(n) is the subgroup of GL(n,R) preserving the canonical metric on Rn and the

canonical volume form dx1 ∧ · · · ∧ dxn, for (xj)j coordinates in Rn. Hence, if Holx(M) ⊆ SO(n),

then there is parallel volume form on M . In particular, M is orientable.

2. The group U(n) is the subgroup of GL(2n,R) preserving the canonical metric on R2n and the

canonical linear complex structure J on R2n, given by J ∂
∂xj = ∂

∂yj , for (xj , yj)j coordinates in

R2n. Actually, U(n) ⊆ SO(n), so that it also preserves the canonical volume form. Hence, if

Holx(M) ⊆ U(n), then there is a parallel almost complex structure and a parallel volume form on

M , which is equivalent to M being Kähler.

3. The group SU(n) is the subgroup of GL(2n,R) preserving the canonical metric on R2n, the canonical

linear complex structure on R2n and the canonical complex volume form dz1 ∧ · · · ∧ dzn, for (zj =

xj + iyj)j complex coordinates in Cn ∼= R2n. Also, SU(n) ⊆ SO(n) as well, so it also preserves

the canonical volume form. Hence, if Holx(M) ⊆ SU(n), then there is a parallel almost complex

structure, a parallel complex volume form and a parallel real volume form on M . This is the

definition of M being Calabi–Yau.

4. The group Sp(n) is the subgroup of GL(4n,R) preserving the canonical metric on R4n and the

canonical linear quaternionic structure on R4n, given by two linear complex structures I and J on

R4n defined by I ∂
∂xj = ∂

∂yj and I ∂
∂bj = ∂

∂aj , and J ∂
∂xj = ∂

∂aj and J ∂
∂yj = ∂

∂bj , for (xj , yj , aj , bj)j

coordinates in R4n. Actually, Sp(n) ⊆ SU(n), so it also preserves a complex and a real volume form.

Hence, if Holx(M) ⊆ Sp(n), then on M there are two parallel almost complex structures I and J

satisfying the quaternionic relations IJ = −JI, a parallel complex volume form and a parallel real

volume form. This is the definition of M being hyperkähler.

A remarkable result by Berger [Ber55], together with some later refinements by Alekseevskii [Ale68]

and Brown and Gray [BG72], states that the four examples just listed plus Sp(n) Sp(1) and the two

exceptional cases G2 and Spin(7) are the only possible groups that a connected and simply connected

Riemannian manifold which is not reducible or locally symmetric can have as holonomy. Here reducible

means that the action of Holx(M) on TxM is reducible, and locally symmetric means that every point

is a fixed point of a local isometric involution inverting the direction of geodesics. Moreover, each one of

these groups can be realized as the holonomy of some manifold and, actually, of some compact manifold

[Yau78, Bea83, Gal87, Joy96a, Joy96b, Joy96c].

The first objective of this thesis is to understand the proof of Berger’s theorem. The original proof by

Berger is algebraic and relies on the classification of Lie groups: it considers the list of closed connected

Lie subgroups of SO(n) which act irreducibly on Rn and applies two algebraic tests to each one of them.

These tests are essentially two symmetry tests having to do with the symmetry properties of the Riemann

curvature, and those groups that survive both tests can be holonomy groups.

Seven years later, Simons [Sim62] offered a new proof, still quite algebraic in nature. He showed that

if the holonomy group acts irreducibly and in a nonsymmetric manner, then it must act transitively on

the unit sphere of TxM . The transitive actions on the sphere had already been classified by Montgomery

and Samelson [MS43] and Borel [Bor49], and they are the ones above listed.

Relatively recently, Olmos [Olm05] found a different proof of Simons’s theorem, this one geometric

in flavor, which relies heavily on the Riemannian theory of submanifolds of Euclidean space. This is the
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proof we will be following. The proof has two main ingredients: if G ⊆ SO(n) is a compact connected

Lie subgroup acting irreducibly, then

1. for all g ∈ G and x ∈ Rn nonzero, there is a smooth curve from x to gx in the orbit Gx such that

the action of g on the normal space to the orbit at x can be realized as the normal parallel transport

along the curve;

2. when the action is moreover not transitive on the unit sphere, for every nonzero x ∈ Rn there is

some vector ξ which is normal to the orbit at x but not a multiple of x such that the normal spaces

to the orbits through the points of the curve x+ tξ, for t ∈ R, span all of Rn.

From these two propositions it follows that if the holonomy acts irreducibly on TxM but not transitively,

then it must act symmetrically, meaning that it leaves the Riemann curvature invariant. From this one

can deduce that M must be locally symmetric.

The second part of the thesis focuses on the holonomy of Lie algebroids. Lie algebroids are, in a

way, a generalization of the tangent bundle of a manifold M . They are vector bundles A→M with two

structures that together make it behave like TM : a Lie bracket on its space of sections and a way to take

derivatives of smooth functions of M in the directions of A, i.e., a bundle map ρ : A → TM , called the

anchor. Both objects are related by a Leibniz rule. The way to think about Lie algebroids is as a version

of the tangent bundle of M tailored for particular geometrical applications. Examples of this are regular

foliations, that is, involutive subbundles F ⊆ TM , where the “tailored tangent bundle” to look at is F ;

Poisson geometry, where the “tailored tangent bundle” is the cotangent bundle T ∗M ; or manifolds with

boundary, where the “tailored vector fields” are those tangent to the boundary.

Every construction on TM using vector fields as derivations and their Lie brackets can be generalized

to Lie algebroids, like differential forms and the de Rham differential, or connections, parallel transport

and holonomy. Of course, a Lie algebroid connection, or A-connection, on a vector bundle E → M will

be a consistent way of taking directional derivatives of sections of E along directions given by A. To

define parallel transport we already run into a problem: in the classical case, a section σ of E along a

smooth curve γ : [0, 1] → M was said to be parallel if its derivative in the direction of γ̇(t) vanished for

all t. But following the “tailored tangent bundle” principle, we should substitute γ̇, which is a section

of TM along γ, by the “tailored velocity” of γ, a section of A along γ. These are called A-paths, and

it is along them that we can parallel transport. As in the classical case, this leads to the notion of Lie

algebroid holonomy: linear automorphisms of the fiber Ex which are parallel transport along A-paths

whose base paths are closed loops at x.

The Lie algebroid holonomy presents some remarkable new features, when compared with the clas-

sical holonomy. First of all, the Ambrose–Singer theorem does not hold anymore. This was proven by

Fernandes [Fer02], and here we give a new proof of this fact. For Lie algebroid holonomy, the curvature

endomorphisms do not span the holonomy algebra, but we have to add new terms coming from the fact

that the anchor might not be injective. The classical Ambrose–Singer theorem gives that a flat connection

(one whose curvature vanishes identically) must have a discrete holonomy group. The Ambrose–Singer

theorem for Lie algebroids gives instead that flat connections can still have non-discrete holonomy, if the

anchor is not injective. We give explicit original examples of such behavior.

On the other hand, Lie algebroid holonomy is a leafwise object. Any Lie algebroid comes with an

involutive (possibly singular) distribution on the base manifold: the image of the anchor. This integrates

to a (possibly singular) foliation on M . The smooth curves on M that can be lifted to A-paths, i.e.,

those having a “tailored velocity” in A, must stay in a single leaf, and so the Lie algebroid holonomy only

sees what is happening at the leaf level. Hence, the holonomy can jump from leaf to leaf. We also give

original examples of such behavior.

3
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The thesis is organized as follows. Chapter 1 is devoted to introducing the basic language of connec-

tions and holonomy that we will be using throughout the entire text. We start with the general notion of

connections, parallel transport and holonomy on vector bundles, as well as curvature. We also prove the

Ambrose–Singer theorem. Finally, we particularize to the case of the tangent bundle and consider Rie-

mannian geometry: we introduce torsion, the Levi-Civita connection, the Riemann and related curvatures

and geodesics.

Chapter 2 goes into the Riemannian theory of submanifolds that we will need for Olmos’s proof of

Simons’s theorem. Whereas Section 2.1 is absolutely fundamental to follow the proof, Section 2.2 is only

necessary for the first step in Olmos’s proof (Proposition 3.47). If willing to take some details of the

proof of Proposition 3.47 in faith, Section 2.2 can be skipped in a first reading.

In Chapter 3 we finally give the proof of Berger’s theorem and study some of its consequences. In

Section 3.1 we start by describing reducible spaces and what their holonomy looks like, including the

de Rham decomposition theorem. Then we pass on to symmetric spaces, in Section 3.2: we establish

some of their basic geometric properties and study their underlying Lie theoretic nature, and from here

we conclude what their holonomy is. Lastly, Section 3.2.3 contains again some details for one of the

main ingredients for the proof of Proposition 3.47. The other main ingredient in such proof is studied in

Section 3.3: the normal holonomy theorem. This is the analog of the pointwise de Rham decomposition

theorem for the normal holonomy of a submanifold. Finally, in Section 3.4 we prove Simons’s theorem

using the previous machinery. In Section 3.5 we deduce Berger’s theorem about Riemannian holonomy

from Simons’s holonomy theorem. Using the classification of transitive actions on the sphere, we recast

Berger’s theorem in its original fashion: as Berger’s list of possible holonomy groups for a Riemannian

manifold. As it has already been stated, different holonomy groups give different geometric properties to

the manifold. These special geometries (Kähler, Calabi–Yau, hyperkähler and quaternionic Kähler) are

explored in Section 3.6 and we give some examples.

In Chapter 4 we turn to Lie algebroid connections and holonomy. We first give the basic defini-

tions, examples and properties of Lie algebroids, including the induced singular foliation. In Section 4.2

we introduce Lie algebroid connections, parallel transport and holonomy. We give a new proof of the

Ambrose–Singer-Fernandes theorem, by following the “tailored tangent bundle” principle, adapting the

proof of the classical Ambrose–Singer theorem to the Lie algebroid case, replacing TM by A. We finally

give original examples of flat Lie algebroid connections having non-discrete holonomy and of holonomy

jumps between leaves.

In order to keep the flow of the text, we have included in Appendix A the proofs of some results

formulated or used in the main body which require uninteresting computations. Also, although in the

main text we focus on the view of connections as covariant derivatives, for completeness we have added

an introduction to linear Ehresmann connections in Appendix B.
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Holonomy

Consider the trivial rank r vector bundle E = M × Rr over a smooth manifold M . Sections of E can

be identified with C∞(M,Rr). On such a bundle there is a canonical notion of what it means to take

the derivative of a section σ ∈ C∞(M,Rr) in the direction of v ∈ TxM , it is just σ∗v. This expression is

R-linear on v and satisfies the following Leibniz rule in σ: if f ∈ C∞(M), then

(fσ)∗v = f(x)σ∗v + (vf)σ(x).

The “constant” or “parallel” sections of the bundle are those whose directional derivatives in all directions

vanish. In this case, they are the constant maps.

On a general vector bundle E → M over a smooth manifold M there is no canonical way of taking

directional derivatives. A choice of such directional derivatives is what we call a connection on E. The

name connection comes from the fact that it allows us to compare different fibers of E through the

concept of parallel transport.

In this chapter we review the basic concepts of connection and curvature, we introduce parallel

transport and holonomy, we state and prove the Ambrose–Singer theorem and finally we particularize all

these constructions to the tangent bundle.

1.1. Connections

For a vector bundle E →M , we write Ωk(M,E) for the space of E-valued k-differential forms:

Ωk(M,E) := Γ(ΛkT ∗M ⊗ E).

5
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Definition 1.1. A connection on a vector bundle E →M is an R-linear operator ∇ : Γ(E)→ Ω1(M,E)

satisfying the Leibniz rule

∇(fσ) = df ⊗ σ + f∇σ, for f ∈ C∞(M) and σ ∈ Γ(E).

We denote ∇σ(u) by ∇uσ, for u ∈ TM . A section σ ∈ Γ(E) is called parallel if ∇σ = 0. �

Every vector bundle admits a connection, for instance by taking the canonical connection described

above on trivializing charts and gluing them together with a partition of unity, see for instance [Tu17,

Thm. 10.6]. Also, as a consequence of the Leibniz rule we have that if ∇ and ∇′ are two connections on

E, then ∇−∇′ : Γ(E)→ Ω1(M,E) is C∞(M)-linear, so that actually ∇−∇′ ∈ Ω1(M,EndE).

A connection on E immediately induces a connection on E∗, defined by

∇uλ(σ) := u(λ(σ))− λ(∇uσ), for λ ∈ Γ(E∗), σ ∈ Γ(E) and u ∈ TM .

On the other hand, if E′ → M is another vector bundle with connection ∇′, then both ∇ and ∇′

induce a connection ∇ on E ⊗ E′ given by

∇u(σ ⊗ σ′) := ∇uσ ⊗ σ′ + σ ⊗∇′uσ′, for σ ∈ Γ(E), σ′ ∈ Γ(E′) and u ∈ TM .

In particular, they induce a connection ∇′ on every tensor product E⊗k⊗E∗⊗l⊗E′: if T ∈ Γ(E⊗k⊗
E∗⊗l ⊗ E′), then for λi ∈ Γ(E∗), σi ∈ Γ(E) and u ∈ TM , it is given by

∇′uT (λ1, . . . , λk, σ1, . . . , σl) = ∇′u(T (λ1, . . . , λk, σ1, . . . , σl))

−
k∑
i=1

T (λ1, . . . ,∇uλi, . . . , λk, σ1, . . . , σl)

−
l∑
i=1

T (λ1, . . . , λk, σ1, . . . ,∇uσi, . . . , σl).

(1.1)

This seems to potentially introduce some ambiguity, since T can be considered as a section of E⊗k ⊗
E∗⊗l⊗E′ or as a section of E⊗p⊗E∗⊗q⊗ (E⊗(k−p)⊗E∗⊗(l−q)⊗E′), for 0 ≤ p ≤ k and 0 ≤ q ≤ l, which

have two a priori different connections. It is a routine exercise to check that they actually agree, so that

∇′uT is perfectly well defined.

A connection can be extended to higher degree forms in a unique manner, by imposing that the

Leibniz rule be satisfied.

Definition 1.2. On a vector bundle E → M with a connection ∇, the covariant differential is the

unique R-linear operator D : Ωk(M,E)→ Ωk+1(M,E) satisfying the Leibniz rule

D(α⊗ σ) = dα⊗ σ + (−1)kα ∧∇σ, for α ∈ Ωk(M) and σ ∈ Γ(E). �

Explicitly, it is given by a Koszul-type formula: if α ∈ Ωk(M,E) and Xi ∈ X(M), then

Dα(X0, . . . , Xk) =
∑
i

(−1)i∇Xi(α(X0, . . . , X̂i, . . . , Xk))

+
∑
i<j

(−1)i+jα([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk).

The space Ω•(M,E) has several module structures, and it is interesting to know how these structures

behave under the covariant differential. First of all, the wedge product of forms induces a graded Ω•(M)-

module structure on Ω•(M,E), by defining a wedge product as

Ωk(M)× Ωl(M,E) −→ Ωk+l(M,E)

(α, β ⊗ σ) 7−→ (α ∧ β)⊗ σ.

6
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Also, the composition of endomorphisms turns Ω•(M,EndE) into a graded ring, by defining

Ωk(M,EndE)× Ωl(M,EndE) −→ Ωk+l(M,EndE)

(α⊗A, β ⊗B) 7−→ (α ∧ β)⊗AB,

and this in turn induces a Ω•(M,EndE)-module structure as well on Ω•(M,E) by

Ωk(M,EndE)× Ωl(M,E) −→ Ωk+l(M,E)

(α⊗A, β ⊗ σ) 7−→ (α ∧ β)⊗Aσ.

Lemma 1.3. The covariant differential is a degree 1 derivation of both the Ω•(M)-module and the

Ω•(M,EndE)-module structures on Ω•(M,E), by which we mean that for all α ∈ Ωk(M), A ∈ Ωl(M,EndE)

and β ∈ Ωm(M,E) we have that the following Leibniz rules hold:

D(α ∧ β) = dα ∧ β + (−1)kα ∧Dβ and D(A ∧ β) = DA ∧ β + (−1)lA ∧Dβ.

Proof. We will prove the results for decomposable forms. To that effect, let α ∈ Ωk(M), β ∈
Ωm(M) and σ ∈ Γ(E). Then

D(α ∧ (β ⊗ σ)) = D((α ∧ β)⊗ σ) = d(α ∧ β)⊗ σ + (−1)k+mα ∧ β ∧∇σ

= dα ∧ (β ⊗ σ) + (−1)kα ∧ (dβ ⊗ σ + (−1)mβ ∧∇σ)

= dα ∧ (β ⊗ σ) + (−1)kα ∧D(β ⊗ σ).

For the second Leibniz rule, we first prove it for A ∈ Γ(EndE) and σ ∈ Γ(E). By the definition

of the induced connection on EndE, we have that for all X ∈ X(M),

∇XA(σ) = ∇X(Aσ)−A(∇Xσ).

This exactly means that DA ∧ σ = D(A ∧ σ) − A ∧ Dσ, as wanted. Let now α ∈ Ωl(M) and

β ∈ Ωm(M). Then

D((α⊗A) ∧ (β ⊗ σ)) = D((α ∧ β)⊗Aσ) = d(α ∧ β)⊗Aσ + (−1)l+mα ∧ β ∧D(A ∧ σ)

= (dα ∧ β)⊗Aσ + (−1)l(α ∧ dβ)⊗Aσ

+ (−1)m+lα ∧ β ∧ (DA ∧ σ +A ∧Dσ)

= (dα⊗A+ (−1)lα ∧DA) ∧ (β ⊗ σ)

+ (−1)l(α⊗A) ∧ (dβ ⊗ σ + (−1)mβ ∧∇σ)

= D(α⊗A) ∧ (β ⊗ σ) + (−1)l(α⊗A) ∧D(β ⊗ σ),

and this ends the proof.

Definition 1.4. The curvature F of a connection ∇ on E is the R-linear operator F : X2(M) →
Γ(EndE) given by

F (X,Y )σ = ∇X∇Y σ −∇Y∇Xσ −∇[X,Y ]σ, for X,Y ∈ X(M) and σ ∈ Γ(E).

We say that (E,∇) is flat if F = 0. �

Remark 1.5. It is straightforward to see, using the Leibniz rule for ∇, that actually F is C∞(M)-linear,

so that F ∈ Ω2(M,EndE).

One way to think of F is as the obstruction of D to square to zero, as the following shows.

Proposition 1.6. For all α ∈ Ω•(M,E) we have that D2α = F ∧ α.

7
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Proof. Let σ ∈ Γ(E). Then the Koszul formula gives that, if X,Y ∈ X(M),

D2σ(X,Y ) = ∇X∇Y σ −∇Y∇Xσ −∇[X,Y ]σ = F (X,Y )σ = (F ∧ σ)(X,Y ).

If now α ∈ Ωk(M), then by the Leibniz rule and because F is a 2-form,

D2(α⊗ σ) = D(dα⊗ σ + (−1)kα ∧∇σ)

= d2α⊗ σ + (−1)k+1dα ∧∇σ + (−1)kdα ∧∇σ + α ∧D2σ

= α ∧ F ∧ σ = F ∧ (α⊗ σ),

as wanted.

An interesting property of F is that it is always D-closed.

Proposition 1.7 (Second Bianchi identity). DF = 0.

Proof. By Proposition 1.6 and the Leibniz rule in Lemma 1.3, for any σ ∈ Γ(E) we have that

D3σ = D(F ∧ σ) = DF ∧ σ + F ∧∇σ = DF ∧ σ +D3σ,

from where we get DF = 0.

Connections which are compatible with additional structures on E present special features. The ones

we will be using are metric connections.

Definition 1.8. A metric 〈·, ·〉 on the bundle E is a section of the symmetric product S2E∗ which

is fiberwise nondegenerate, meaning that for every x ∈ M , if v ∈ Ex is such that 〈v, w〉 = 0 for all

w ∈ Ex, then v = 0. If it is not only fiberwise nondegenerate but fiberwise positive-definite, meaning

that 〈v, v〉 > 0 for all nonzero v ∈ Ex, then we call it a positive metric.

A connection ∇ on E is metric (or compatible with the metric) if

X〈σ, ν〉 = 〈∇Xσ, ν〉+ 〈σ,∇Xν〉, for all σ, ν ∈ Γ(E) and X ∈ X(M). �

Proposition 1.9. Let ∇ be a metric connection on E. Then the curvature is skew-symmetric with respect

to the metric, by which we mean that 〈F ∧ σ, ν〉 + 〈σ, F ∧ ν〉 = 0, for all σ, ν ∈ Γ(E). If so(E) is the

subbundle of EndE given by skew-symmetric endomorphisms, then F ∈ Ω2(M, so(E)).

Proof. Direct computation: for all X,Y ∈ X(M),

〈F (X,Y )σ, ν〉 = 〈∇X∇Y σ −∇Y∇Xσ −∇[X,Y ]σ, ν〉

= −〈∇Y σ,∇Xν〉+ 〈∇Xσ,∇Y ν〉+ 〈σ,∇[X,Y ]ν〉

+X〈∇Y σ, ν〉 − Y 〈∇Xσ, ν〉 − [X,Y ]〈σ, ν〉

= 〈σ, F (Y,X)ν〉+X〈∇Y σ, ν〉 − Y 〈∇Xσ, ν〉 − [X,Y ]〈σ, ν〉

− Y 〈σ,∇Xν〉+X〈σ,∇Y ν〉

= 〈σ, F (Y,X)ν〉+ (XY − Y X − [X,Y ])〈σ, ν〉

= −〈σ, F (X,Y )ν〉 �

A metric on E induces an isomorphism E ∼= E∗ by sending v ∈ E to 〈v, ·〉 ∈ E∗. This induces a

metric on E∗ and, hence, on every tensor product E⊗k ⊗ E∗⊗l by

〈v1 ⊗ · · · ⊗ vk ⊗ ξ1 ⊗ · · · ⊗ ξl, w1 ⊗ · · · ⊗ wk ⊗ ζ1 ⊗ · · · ⊗ ζl〉 := 〈v1, w1〉 . . . 〈vk, wk〉〈ξ1, ζ1〉 . . . 〈ξl, ζl〉.

If a connection ∇ on E is metric, then the induced connections on tensor products and duals are also

metric.

One last construction that we will use is the induced connection on a pullback bundle.
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Lemma 1.10. Let E →M be a vector bundle with a connection ∇, and φ : N →M a smooth map from

a smooth manifold N . Then φ∗E has a connection φ∗∇, the pullback connection, given by

(φ∗∇)(φ∗σ) := φ∗(∇σ), for σ ∈ Γ(E).

Proof. We need only check that it is well defined by checking the Leibniz rule for a section φ∗(fσ),

for f ∈ C∞(M). Since φ∗ commutes with the differential,

(φ∗∇)(φ∗(fσ)) = φ∗(∇(fσ)) = φ∗(df ⊗ σ + f∇σ) = dφ∗f ⊗ φ∗σ + φ∗fφ∗(∇σ).

Explicitly,

(φ∗∇)u(φ∗σ) = ∇φ∗uσ, for u ∈ TM .

Of course, not every section of φ∗E can be written as φ∗σ for some σ ∈ Γ(E), but they can all be written

as finite C∞(M)-linear combinations of such pullback sections.

Not surprisingly, the curvature of the pullback connection is the pullback of the curvature.

Lemma 1.11. Let E be a vector bundle with a connection ∇ and curvature F , and φ : N →M a smooth

map from a smooth manifold N . Then the curvature of φ∗∇ is φ∗F ∈ Ω2(N,Endφ∗E).

Proof. Write∇ for φ∗∇, D̄ for its covariant differential and F̄ for its curvature. Then if α ∈ Ωk(M)

and σ ∈ Γ(E), we have that

D̄φ∗(α⊗ σ) = D̄(φ∗α⊗ φ∗σ) = dφ∗α⊗ φ∗σ + (−1)kφ∗α ∧∇(φ∗σ)

= φ∗(dα⊗ σ + (−1)kα ∧∇σ) = φ∗D(α⊗ σ).

Then, by Proposition 1.6, we have that

F̄ ∧ φ∗σ = D̄2φ∗σ = φ∗D2σ = φ∗(F ∧ σ) = φ∗F ∧ φ∗σ,

so F̄ = φ∗F .

As a last comment, there is an alternative viewpoint to connections as horizontal distributions over

the total space E of the bundle. Although we will not use it in this work, it is a fundamental viewpoint,

and we have decided to include an introduction to it in Appendix B.

1.2. Parallel transport and holonomy

One might wonder (rightly) why a connections is called so. The reason is that it allows to compare

(connect) different fibers of the bundle E. This is done through parallel transport.

Let E →M be a vector bundle with a connection ∇. Let γ : [0, 1]→M be a smooth curve. A section

of E along γ is just a section of γ∗E. Explicitly, a section along γ is a smooth map σ : [0, 1] → E such

that σ(t) ∈ Eγ(t). It is said to be parallel along γ if (γ∗∇)σ = 0. For (γ∗∇)σ we will also use the

following notations interchangeably

(γ∗∇)σ = ∇γ̇σ =
∇
dt
σ = σ̇.

If (xi)i are local coordinates on M and {σi}i is a local frame for E, then in these coordinates and this

frame we can write γ̇(t) = γ̇i(t) ∂
∂xi and σ(t) = σi(t)σi(γ(t)), for some smooth functions γ̇i, σi : [0, 1]→ R.

Let Γkij be smooth local functions such that ∇ ∂

∂xi
σj = Γkijσk. Then

σ̇(t) = (γ∗∇) d
dt

(σiγ∗σi) = σ̇i(t)σi(γ(t)) + σi(t)∇γ̇(t)σi(γ(t))

= (σ̇i(t) + Γijk(γ(t))σk(t)γ̇j(t))σi(γ(t)),

so that the equation for σ to be parallel is locallly a first order linear ODE. These always have a unique

solution defined on the whole interval of definition of the equation. Hence, we have proved the following.

9
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Lemma 1.12. Let γ : [0, 1]→M be a smooth curve. Then for every v ∈ Eγ(0), there is a unique parallel

section σv along γ such that σv(0) = v.

This gives the sought way to connect different fibers.

Definition 1.13. Let γ : [0, 1]→M a smooth curve. Then parallel transport along γ is the map

τγ : Eγ(0) −→ Eγ(1)

v 7−→ σv(1),

where σv is the unique parallel section along γ starting at v given by Lemma 1.12. �

Observe that parallel transport can be defined as well over piecewise smooth curves, by doing sequen-

tially parallel transport along the smooth parts of the curve.

Parallel transport has very nice properties.

Proposition 1.14. Let E be a vector bundle with connection. Then

1. parallel transport along a smooth curve γ in M is a linear isomorphism, with inverse τγ−1 , where

γ−1(t) := γ(1− t); ,

2. parallel transport is invariant under reparameterization, i.e., if f : [0, 1]→ [0, 1] is a diffeomorphism

with f(0) = 0 and f(1) = 1, then τγ◦f = τγ ,

3. if γ and α are two composable curves in M , then τγ·α = τατγ ;

4. if the connection is metric, then parallel transport is isometric, i.e., 〈τγv, τγw〉 = 〈v, w〉 for all

v, w ∈ Eγ(0).

Proof. 1 and 2 follow from the fact that if σ is parallel along γ then t 7→ σ(1− t) is parallel along

γ−1 starting at σ(1) and ending at σ(0), and σ ◦ f is parallel along γ ◦ f . On the other hand, if ν

is a parallel section along α starting at σ(1), then

t 7→

{
σ(2t), 0 ≤ t ≤ 1

2

ν(2t− 1), 1
2 ≤ t ≤ 1

is a parallel section along γ · α starting at σ(0) and ending at ν(1) = τα(σ(1)) = τατγ(σ(0)). This

gives 3.

For 4, assume that the connection is metric. Then the pullback connection to γ∗E is also

metric, so that, if σ and ν are parallel sections along γ,

d

dt
〈σ, ν〉 = 〈σ̇, ν〉+ 〈σ, ν̇〉 = 0.

Hence, 〈σ(0), ν(0)〉 = 〈σ(1), ν(1)〉, and this ends the proof.

Observe that this proof also gives that if {ei}i is a (orthonormal) basis for Eγ(0) then there is a unique

(orthonormal) parallel frame {σi}i along γ such that σi(0) = ei. This procedure can be used to prove a

useful formula to compute the action of a connection.

Proposition 1.15. 1. Let x ∈ M , v ∈ TxM and σ ∈ Γ(E). Let γ : [0, 1] → M be a smooth curve

with γ(0) = x and γ̇(0) = v, and let τt be parallel transport along γ from x to γ(t). Then

∇vσ =
d

dt

∣∣∣∣
t=0

τ−1t (σ(γ(t))).

2. Let γ : [0, 1]→M be a piecewise smooth curve and let τt be parallel transport along γ from γ(0) to

γ(t). Then for any σ ∈ Γ(γ∗E) we have that

σ̇(t) = τt
d

dt
(τ−1t σ(t)).

10



Jaime Pedregal 1.2. Parallel transport and holonomy

Proof. For 1, let {σi}i be a parallel frame along γ. Then parallel transport is given by τt(λ
iσi(0)) =

λiσi(t). Write σ(γ(t)) = σi(t)σi(t) for some smooth functions σi : [0, 1]→ R. Then,

∇vσ =
∇
dt

∣∣∣∣
t=0

σ(γ(t)) =
∇
dt

∣∣∣∣
t=0

σi(t)σi(t) = σ̇i(0)σi(0)

=
d

dt

∣∣∣∣
t=0

σi(t)σi(0) =
d

dt

∣∣∣∣
t=0

τ−1t (σ(γ(t)).

For 2, let again {σi}i be a parallel frame along γ and write σ(t) = σi(t)σi(t). Then

σ̇(t) = σ̇i(t)σi(t) = τt(σ̇
i(t)σi(0)) = τt

d

dt
(σi(t)σi(0)) = τt

d

dt
(τ−1t σ(t)).

Parallel transport along loops at a point plays a very important role in geometry, and it gives rise to

one of our main objects of study. Let Πx,y denote the set of piecewise smooth curves in M from x to y.

Definition 1.16. Let E →M be a vector bundle with a connection ∇. The holonomy group of ∇ at

x ∈M is defined as

Holx(∇) := {τγ : γ ∈ Πx,x}.

The restricted holonomy group of ∇ at x is defined as

Hol0x(∇) := {τγ : γ ∈ Πx,x is null-homotopic}. �

Proposition 1.17. Let E → M be a vector bundle with a connection ∇ and x ∈ M . Then Holx(∇)

is a Lie subgroup of GL(Ex) whose connected identity component is Hol0x(∇). In particular, Hol0x(∇) is

normal in Holx(∇).

Proof. That both Holx(∇) and Hol0x(∇) are subgroups of GL(Ex) is a direct consequence of Propo-

sition 1.14. We now show that Hol0x(∇) is an arcwise connected subgroup of GL(Ex), which implies

that it is a Lie subgroup [Yam50]. Let γ : [0, 1]2 →M be a smooth homotopy with fixed endpoints

starting at the constant path on x (every null-homotopic path is smoothly null-homotopic [Lee12,

Thm. 6.29]). By a similar argument as in Lemma 1.12 and using the smooth dependence on initial

conditions of ODE theory, for each v ∈ Ex there is σ ∈ Γ(γ∗E) such that ∇∂tσ = 0 and σ(s, 0) = v

for all s. Then, if τs is parallel transport along γs := γ(s, ·), we have that τsv = σ(s, 1), which is

smooth on s. Since γ0 is the constant path, then σ(0, t) ∈ Ex does not depend on t, and therefore

τ0v = σ(0, 1) = σ(0, 0) = v. We conclude that τs is a smooth path in Hol0x(∇) from τ1 to the

identity, as wanted.

Since Hol0x(∇) is a subgroup of Holx(∇), this also endows Holx(∇) with the structure of a Lie

group by translating the smooth structure of Hol0x(∇) by left or right multiplication.

Consider now the map π1(M) → Holx(∇)/Hol0x(∇) given by [γ] 7→ τ−1γ Hol0x(∇). It is easily

seen to be a surjective group homomorphism. Since π1(M) is countable [Lee11, Thm. 7.21], then

Holx(∇)/Hol0x(∇) is also countable. Hence, the image of the identity component of Holx(∇) by

the projection Holx(∇) → Holx(∇)/Hol0x(∇) is connected and contains id Hol0x(∇), from which

we conclude that indeed Hol0x(∇) is the identity component of Holx(∇). The fact that it is normal

follows from the fact that the identity component of a Lie group is always normal.

Therefore, the following definition makes sense.

Definition 1.18. Let E →M be a vector bundle with a connection ∇. The holonomy algebra holx(∇)

of ∇ at x ∈M is defined as the Lie algebra of Holx(∇). �

The holonomy group is independent of the base point in the following sense.

Proposition 1.19. Let E → M be a vector bundle with a connection ∇ and let x, y ∈ M be connected

by a piecewise smooth curve γ in M . Then

Holx(∇) = τ−1γ Holy(∇)τγ .
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Proof. If α is a loop at y, then γ ·α · γ−1 is a loop at x, and all loops at x can be obtained in this

way.

The holonomy group is very intricately related to the geometry of E. It is closely related, on the

one hand, to parallel sections of the bundle, and, on the other, to the curvature of E, as we will see in

the next section. A parallel section clearly gives an Holx(∇)-invariant vector in Ex. The correspondence

goes the other way around as well: every Holx(∇)-invariant vector in Ex defines a parallel section, and

all parallel sections of E arise in this manner.

Theorem 1.20 (Holonomy principle). Let M be connected, E → M a vector bundle with a connection

∇ and x ∈M . Then the following vector spaces are isomorphic:

1. the space of parallel sections of E,

2. the space of Holx(∇)-invariant vectors in Ex,

3. the space of sections invariant under parallel transport, i.e., sections σ ∈ Γ(E) such that τγ(σ(γ(0))) =

σ(γ(1)) for all piecewise smooth curves γ in M .

Proof. We first show the equivalence of 2 and 3. Map a section σ ∈ Γ(E) invariant under parallel

transport to σ(x). This vector is invariant under Holx(∇). Indeed, if γ is a loop at x, then

τγ(σ(x)) = σ(γ(1)) = σ(x).

The map is injective: if y ∈ M and γ is a smooth curve from x to y, then if σ(x) = 0 we have

that σ(y) = σ(γ(1)) = τγ(σ(x)) = 0, so σ = 0. The map is also surjective: let v ∈ Ex be

Holx(∇)-invariant and define σ(y) := τγv, where γ is any smooth curve from x to y. Since v

is Holx(∇)-invariant, this section is well defined. It is also smooth, because around y one can

take concatenations of γ with radial curves from y in some chart, and parallel transport depends

smoothly on these curves. Lastly, this σ is invariant under parallel transport: if γ is any piecewise

smooth curve in M and α is a smooth curve from x to γ(0), then

σ(γ(1)) = τα·γv = τγταv = τγ(σ(γ(0))).

We now show the equivalence of 1 and 3. If σ ∈ Γ(E) is invariant under parallel transport, then

Proposition 1.15 gives that for any v ∈ TyM , if γ is a smooth curve with γ(0) = y and γ̇(0) = v,

and γt : [0, 1]→M is defined by γt(s) = γ(st), then

∇vσ =
d

dt

∣∣∣∣
t=0

τ−1γt (σ(γ(t))) =
d

dt

∣∣∣∣
t=0

τγ−1
t
σ(γ−1t (0)) =

d

dt

∣∣∣∣
t=0

σ(γ−1t (1)) =
d

dt

∣∣∣∣
t=0

σ(x) = 0.

Conversely, if σ ∈ Γ(E) is parallel and γ is a piecewise smooth path in M , then, since γ∗σ is

parallel along γ,

τγ(σ(γ(0))) = σ(γ(1)),

so σ is invariant under parallel transport.

Corollary 1.21. Let M be connected, E →M a vector bundle with a metric connection ∇ and x ∈M .

Then Holx(∇) ⊆ O(Ex). Moreover, if E is orientable, then Holx(∇) ⊆ SO(Ex).

Proof. Write g or 〈·, ·〉 for the metric on E. Then for every σ, ν ∈ Γ(E) and X ∈ X(M),

∇Xg(σ, ν) = X〈σ, ν〉 − 〈∇Xσ, ν〉 − 〈σ,∇Xν〉 = 0.

Then, by the holonomy principle, gx is Holx(∇)-invariant, meaning that for all γ ∈ Πx,x and

u, v ∈ Ex,

τ−1γ gx(u, v) = 〈τγu, τγv〉 = gx(u, v) = 〈u, v〉,
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i.e., Holx(∇) ⊆ O(Ex).

If E is orientable, let ω be the global frame for detE∗ defined on y ∈ M by ω(e1, . . . , en) = 1

for any oriented orthonormal basis {ei}i of Ey. Let {σi}i be any orthonormal local frame for E

and X ∈ X(M). Then

∇Xω(σ1, . . . , σn) = X(ω(σ1, . . . , σn))−
∑
i

ω(σ1, . . . ,∇Xσi, . . . , σn).

The first term vanishes because ω(σ1, . . . , σn) = 1 identically. On the other hand, the only term

that survives in the second term is the one corresponding to the component of∇Xσi in the direction

of σi, which is

〈∇Xσi, σi〉 =
1

2
X〈σi, σi〉 = 0,

since 〈σi, σi〉 = 1 identically. Hence, by the holonomy principle, ωx is Holx(∇)-invariant, which

gives that Holx(∇) ⊆ SO(Ex).

1.3. Ambrose–Singer theorem

We will now explore the relation between holonomy and curvature. Simply put: curvature determines

the holonomy. This is the celebrated Ambrose–Singer theorem, to which we now turn. In this exposition

we follow [Bal02], which is elementary, avoiding the use of any integrability theorems. Let E → M be

a vector bundle with connection ∇ and let γ : [0, 1]2 → M is a smooth map. If we consider coordinates

(s, t) on [0, 1]2, then for σ ∈ Γ(γ∗E) we use the notations

∇
∂s
σ := (γ∗∇) ∂

∂s
σ and

∇
∂t
σ := (γ∗∇) ∂

∂t
σ.

Lemma 1.22. Let γ : [0, 1]2 → M be a piecewise smooth homotopy. Let τs,t be parallel transport along

γs := γ(s, ·) from γs(t) to γs(1) and let

Fs,t := τs,tF

(
∂

∂t
γ(s, t),

∂

∂s
γ(s, t)

)
τ−1s,t ∈ gl(Eγs(1)).

Then for any σ ∈ Γ(γ∗E) with ∇∂tσ = 0 and ∇
∂sσ(·, 0) = 0 we have that

∇
∂s
σ(s, 1) =

(∫ 1

0

Fs,tdt

)
σ(s, 1).

Proof. To make things clearer, Figure 1.1 shows a sketch of the situation. Using Proposition 1.15,

Lemma 1.11 and the fact that ∇∂tσ = 0, we compute:

d

dt

(
τs,t
∇
∂s
σ(s, t)

)
= τs,t

∇
∂t

∇
∂s
σ(s, t) = τs,tF

(
∂

∂t
γ(s, t),

∂

∂s
γ(s, t)

)
σ(s, t) = Fs,tσ(s, 1).

Then, since τs,1 = id and ∇
∂sσ(·, 0) = 0,

∇
∂s
σ(s, 1) = τs,1

∇
∂s
σ(s, 1)− τs,0

∇
∂s
σ(s, 0) =

∫ 1

0

d

dt

(
τs,t
∇
∂s
σ(s, t)

)
dt =

(∫ 1

0

Fs,tdt

)
σ(s, 1).

Corollary 1.23. Let γ : [0, 1]2 → M be a piecewise smooth homotopy with fixed endpoints and let τs be

parallel transport along γs. Then

d

ds
τs =

(∫ 1

0

Fs,tdt

)
τs.
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Figure 1.1: Homotopy γ.

Proof. Let σ ∈ Γ(γ∗E) with ∇
∂tσ = 0 and ∇

∂sσ(·, 0) = 0. Notice that since γ has fixed endpoints,

the covariant derivative with respect to s at the endpoints is just derivation with respect to s.

Hence, σ(·, 0) is constant and, by Lemma 1.22,

∇
∂s
σ(s, 1) =

d

ds
(σ(s, 1)) =

d

ds
(τsσ(s, 0)) =

(
d

ds
τs

)
σ(s, 0)

=

(∫ 1

0

Fs,tdt

)
σ(s, 1) =

(∫ 1

0

Fs,tdt

)
τsσ(s, 0),

and this gives the result.

We will now see that curvature gives information on the rate of change of parallel transport along

“homotopies of square loops”. To make this precise, let z ∈ M and u, v ∈ TzM . By a homotopy of

square loops we mean the following: given a smooth map f : U →M from an open neighborhood U of 0

in R2 containing [0, 1]2 such that f(0) = z, ∂f
∂x (0) = u and ∂f

∂y (0) = v, we consider the piecewise smooth

homotopy with fixed ends γ : [0, 1]2 →M given by

γs(t) =


f(4st, 0), 0 ≤ t ≤ 1

4 ,

f(s, s(4t− 1)), 1
4 ≤ t ≤

1
2 ,

f(s(3− 4t), s), 1
2 ≤ t ≤

3
4 ,

f(0, 4s(1− t)), 3
4 ≤ t ≤ 1.

(1.2)

A sketch of a homotopy of square loops can be seen in Figure 1.2.

Figure 1.2: Homotopy of square loops based at z in the direction of u, v ∈ TzM .

Proposition 1.24. Let γ be a homotopy of square loops as in (1.2) and let τs be parallel transport along

γs. Then

d

ds

∣∣∣∣
s=0

τs = 0 and
d2

ds2

∣∣∣∣
s=0

τs = 2F (v, u).

14



Jaime Pedregal 1.3. Ambrose–Singer theorem

Proof. Direct computation, using the skew-symmetry of F , gives

F

(
∂

∂t
γ(s, t),

∂

∂s
γ(s, t)

)
=


0, t ≤ 1

4 or t ≥ 3
4 ,

4sF (∂f∂y ,
∂f
∂x )(s, s(4t− 1)), 1

4 ≤ t ≤
1
2 ,

4sF (∂f∂y ,
∂f
∂x )(s(3− 4t), s), 1

2 ≤ t ≤
3
4 .

Hence, by Corollary 1.23,

d

ds

∣∣∣∣
s=0

τs =

(∫ 3/4

1/4

F0,tdt

)
τ0 = 0.

Also, 1
sFs,t → 4F (v, u) uniformly in t as s → 0 since τ0,t = id because γ0 is the constant path.

Then,

d2

ds2

∣∣∣∣
s=0

τs =

(∫ 3/4

1/4

d

ds

∣∣∣∣
s=0

Fs,tdt

)
τ0 = 2F (v, u).

Theorem 1.25 (Ambrose–Singer). Let x ∈ M and denote by Πx the set of piecewise smooth curves

[0, 1]→M starting at x. Then

holx(∇) = span{τ−1γ F (u, v)τγ : γ ∈ Πx and u, v ∈ Tγ(1)M}.

Proof. Write g for the right-hand side of the equality. Let γ ∈ Πx and u, v ∈ Tγ(1)M , and let α

be a homotopy of square loops based at γ(1) in the direction of u and v. Write γs := γ · αs · γ−1,

which is a contractible loop at x for each s. Let g(s) := τ−1γ τ√sτγ , where τs is parallel transport

along αs. By Proposition 1.24 we have that τs = id + F (v, u)s2 + o(s2), which implies that

g(s) = id + τ−1γ F (v, u)τγs+ o(s), i.e.,

d

ds

∣∣∣∣
s=0

g(s) = τ−1γ F (v, u)τγ .

Hence, g is smooth outside of s = 0 and continuously differentiable at s = 0, so it is a C1 curve

inside Hol0x(∇). Therefore, g ⊆ holx(∇).

Now we show that g is actually an ideal of holx(∇). Indeed, if t 7→ τt is a smooth curve in

Hol0x(∇) starting at id with velocity X ∈ holx(∇), then

[
X, τ−1γ F (u, v)τγ

]
=

d

dt

∣∣∣∣
t=0

τtτ
−1
γ F (u, v)τγτ

−1
t ∈ g.

In particular, g is a Lie subalgebra. Let G be the unique connected Lie subgroup of Hol0x(∇)

integrating g [DK00, Thm. 1.10.3]. Let γ be a piecewise smooth homotopy with fixed endpoints

starting at the constant path and let τs be parallel transport along γs. Then Corollary 1.23 gives

that
d

ds
τs =

(∫ 1

0

Fs,tdt

)
τs.

Since the integrand lies in g for all s and t, the integral lies in g for all s, and so τs ∈ G for all s.

Indeed, if we write X(s) ∈ g for the integral, then τs is a solution to a initial value problem for

the time dependent vector field on G given by (g, s) 7→ X(s)g, and the flow of such a vector field

always lies in G. Hence, Hol0x(∇) ⊆ G, so holx(∇) ⊆ g, and this ends the proof.

With this powerful theorem at hand, we can easily prove that a bundle is flat if and only if it admits

a local parallel frame around every point (there are more fundamental proofs of this result, which do not

require the Ambrose–Singer theorem, see Corollary B.4).

Corollary 1.26. A vector bundle E → M with a connection ∇ is flat if and only if there is a parallel

local frame around every point in M , meaning a frame {σi}i with ∇σi = 0.

15
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Proof. If {σi}i is a local parallel frame, then F (X,Y )σi = 0 for all X,Y ∈ X(M), where F is the

curvature of ∇. Hence E is flat. Conversely, if E is flat and x ∈M , then by the Ambrose–Singer

theorem we have that Hol0x(∇) = 1, which by the holonomy principle means that on a simply

connected neighborhood of x there is a parallel frame.

1.4. Connections on the tangent bundle

Let M be a manifold and consider its tangent bundle TM . Connections on TM have the special feature

that its space of sections is precisely X(M). This allows for the following definition.

Definition 1.27. Let ∇ be a connection on TM . Then its torsion is defined as the R-linear operator

T : X2(M)→ X(M) given by

T (X,Y ) = ∇XY −∇YX − [X,Y ], for X,Y ∈ X(M). �

Remark 1.28. It is straightforward to see that actually T is C∞(M)-linear, so that T ∈ Ω2(M,TM).

A connection on TM induces a connection on all spaces of tensor fields

T(k,l)(M) := Γ(TM⊗k ⊗ T ∗M⊗l)

by eq. (1.1).

Let R be the curvature of ∇. Then R can be regarded as a (1, 3)-tensor field, since Ω2(M,EndTM) ⊆
T(1,3)(M). It has some very interesting properties.

Proposition 1.29. The following hold, if X,Y, Z,W ∈ X(M) and S stands for cyclic permutations in

the arguments:

1. R(X,Y ) = −R(Y,X),

2. (First Bianchi identity) R(X,Y )Z + S(X,Y, Z) = T (T (X,Y ), Z) +∇XT (Y, Z) + S(X,Y, Z),

3. (Second Bianchi identity) ∇XR(Y,Z) +R(T (X,Y ), Z) + S(X,Y, Z) = 0,

4. if ∇ is metric, then 〈R(X,Y )Z,W 〉 = −〈R(X,Y )W,Z〉,

5. if ∇ is metric and torsion-free (meaning T = 0), then 〈R(X,Y )Z,W 〉 = 〈R(Z,W )X,Y 〉.

Proof. 1 is just the fact that R is a 2-form, whereas 4 is Proposition 1.9. For the first Bianchi

identity, we explicitly write

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

R(Y,Z)X = ∇Y∇ZX −∇Z∇YX −∇[Y,Z]X,

R(Z,X)Y = ∇Z∇XY −∇X∇ZY −∇[Z,X]Y,

and sum:

R(X,Y )Z + S(X,Y, Z) = ∇X(T (Y,Z) + [Y,Z])−∇[X,Y ]Z + S(X,Y, Z)

= T (X, [Y,Z]) +∇X(T (Y,Z)) + S(X,Y, Z)

= T (X, [Y,Z]) +∇XT (Y,Z) + T (∇XY, Z) + T (Y,∇XZ) + S(X,Y, Z)

= T (T (X,Y ), Z) +∇XT (Y,Z) + S(X,Y, Z).

For the second Bianchi identity, recall that the general second Bianchi identity (Proposition 1.7)

states that DR = 0, where D is the covariant differential. Then the Koszul formula for D gives

0 = DR(X,Y, Z)W = ∇X(R(Y,Z))W −R([X,Y ], Z)W + S(X,Y, Z)

= ∇X(R(Y,Z)W )−R(Y,Z)∇XW −R([X,Y ], Z) + S(X,Y, Z)

= ∇XR(Y,Z)W +R(∇XY,Z)W +R(Y,∇XZ)W −R([X,Y ], Z) + S(X,Y, Z)

= ∇XR(Y,Z)W +R(T (X,Y ), Z)W + S(X,Y, Z).
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Lastly, if ∇ is metric and torsion-free, then, using the first Bianchi identity and 1 and 4

repeatedly,

〈R(X,Y )Z,W 〉 = −〈R(Y,Z)X,W 〉 − 〈R(Z,X)Y,W 〉 = 〈R(Y,Z)W,X〉+ 〈R(Z,X)W,Y 〉

= −〈R(Z,W )Y,X〉 − 〈R(W,Y )Z,X〉 − 〈R(X,W )Z, Y 〉 − 〈R(W,Z)X,Y 〉

= 2〈R(Z,W )X,Y 〉+ 〈R(W,Y )X,Z〉+ 〈R(X,W )Y, Z〉

= 2〈R(Z,W )X,Y 〉 − 〈R(Y,X)W,Z〉 = 2〈R(Z,W )X,Y 〉 − 〈R(X,Y )Z,W 〉,

and this gives the result.

Another special feature of connections on TM is that if γ is a smooth curve in M , then γ̇ is a vector

field along γ, so that it makes sense to consider its acceleration γ̈ := ∇γ̇ γ̇.

Definition 1.30. A geodesic is a curve γ in M such that γ̈ = 0. �

Written in coordinates, the equation of a curve to be geodesic is a second order ODE. Hence, there

is always a unique local solution, i.e., for every x ∈ M and v ∈ TxM , there is a unique geodesic

γv : (−ε, ε)→M , for some ε > 0, such that γv(0) = x and γ̇v(0) = v. Even more, let

U := {v ∈ TM : γv is defined up to time 1} ⊆ TM.

Then U is an open set [Pet16, Lem. 5.2.6] containing the zero section of TM , and we define the exponential

map exp : U → M by exp v := γv(1). It is a smooth map, by the smooth dependence of solutions to

ODEs on initial parameters [Pet16, Thm. 5.2.3]. Notice that we can write, then, γv(t) = exp(tv) for

small enough t. The restriction of exp to U ∩ TxM is denoted by expx.

A connection on TM is said to be (geodesically) complete if every geodesic can be defined on the

whole real line, i.e., if exp is defined on all of TM .

Definition 1.31. A pseudo-Riemannian metric on a manifold M is a metric on TM . A Riemma-

nian metric on M is a positive metric on TM . A (pseudo-)Riemannian manifold is a pair (M, g),

where M is a manifold and g a (pseudo-)Riemannian metric on M . A (local) isometry of (M, g) is a

(local) diffeomorphism ϕ of M such that ϕ∗g = g. �

An important class of vector fields over Riemannian manifolds, that we will use later on, are those

that preserve the metric infinitesimally.

Definition 1.32. A Killing vector field on a pseudo-Riemannian manifold (M, g) is a vector field

X ∈ X(M) such that LXg = 0, i.e., such that

X〈Y,Z〉 = 〈[X,Y ], Z〉+ 〈Y, [X,Z]〉, for all Y, Z ∈ X(M). �

Lemma 1.33. Let (M, g) be a pseudo-Riemannian manifold and X ∈ X(M). Then X is Killing if and

only if its flow {φt}t acts by local isometries, by which we mean that for all x ∈M there is a neighborhood

U of x in M and ε > 0 such that φt is an isometry on U for t ∈ (−ε, ε).

Proof. WriteMt := {x ∈M : the maximal integral curve of X through x is defined up to time t}.
Then Mt is open and φt : Mt → M−t is a diffeomorphism with inverse φ−t [Lee12, Thm. 9.12].

Let x ∈ M and let U be a neighborhood of x in M such that for all y ∈ U the integral curve

of X through y is defined in (−ε, ε) (one can take U to be any relatively compact neighborhood

of x). Observe, then, that for all t ∈ (−ε, ε) we have that U ⊆ Mt and we can consider φt as a

diffeomorphism from U onto its image.

If the flow acts by local isometries, then

(LXg)x =
d

dt

∣∣∣∣
t=0

(φ∗t g)x =
d

dt

∣∣∣∣
t=0

gx = 0.

Since this argument can be repeated for any x ∈M , then X is Killing.
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Conversely, if X is Killing, then for all t ∈ (−ε, ε) and y ∈ U we have that

d

dt
(φ∗t g)y =

d

ds

∣∣∣∣
s=0

(φ∗tφ
∗
sg)y = (φ∗tLXg)y = 0,

so (φ∗t g)y = (φ∗0g)y = gy.

Pseudo-Riemannian manifolds have the special property that there is only one metric and torsion-free

connection.

Proposition 1.34. Let (M, g) be a pseudo-Riemannian manifold. There is a unique metric and torsion-

free connection on TM , called the Levi-Civita connection. It is given by the Koszul formula

〈∇XY, Z〉 =
1

2
(X〈Y,Z〉+ Y 〈Z,X〉 − Z〈X,Y 〉 − 〈X, [Y,Z]〉+ 〈Y, [Z,X]〉+ 〈Z, [X,Y ]〉). (1.3)

Proof. It is easy to see that if a connection on TM is metric and torsion-free, then it must satisfy

the Koszul formula, so it is unique. For existence, one can (patiently) check that the Koszul

formula can be used to define a metric and torsion-free connection on TM .

The curvature of the Levi-Civita connection is usually called the Riemann curvature of M , and its

holonomy the Riemannian holonomy of M , denoted by Holx(M). Because it is metric, the Levi-Civita

connection interacts nicely with isometries of M .

Lemma 1.35. Let (M, g) be a pseudo-Riemannian manifold with Levi-Civita connection ∇ and ϕ an

isometry of M . Then

∇ϕ∗X(ϕ∗Y ) = ϕ∗(∇XY ), for all X,Y ∈ X(M).

In particular,

R(ϕ∗X,ϕ∗Y )ϕ∗Z = ϕ∗(R(X,Y )Z) and ∇ϕ∗XR(ϕ∗Y, ϕ∗Z)ϕ∗W = ϕ∗(∇XR(Y,Z)W ),

for all Z,W ∈ X(M).

Proof. We have that [ϕ∗X,ϕ∗Y ] = ϕ∗[X,Y ], because for any f ∈ C∞(M),

[ϕ∗X,ϕ∗Y ]f = ϕ∗X(Y (f ◦ ϕ) ◦ ϕ−1)− ϕ∗Y (X(f ◦ ϕ) ◦ ϕ−1)

= XY (f ◦ ϕ) ◦ ϕ−1 − Y X(f ◦ ϕ) ◦ ϕ−1

= ϕ∗[X,Y ]f.

We also have that

(ϕ∗X)〈ϕ∗Y, ϕ∗Z〉 = (ϕ∗X)(〈Y,Z〉 ◦ ϕ−1) = X〈Y,Z〉 ◦ ϕ−1

Then the Koszul formula for ∇ gives

〈∇ϕ∗Xϕ∗Y, ϕ∗Z〉 = 〈∇XY,Z〉 ◦ ϕ−1 = 〈ϕ∗(∇XY ), ϕ∗Z〉.

A pseudo-Riemannian manifold is called (geodesically) complete if its Levi-Civita connection is so.

The renowned Hopf–Rinow theorem [Pet16, Thm. 5.7.1] gives altervative characterizations of such a

fact in the case of a Riemannian manifold. For a piecewise smooth curve γ : [0, 1] → M (here M is

Riemannian), we define its length as

L(γ) :=

∫ 1

0

‖γ̇(t)‖dt.

Then the distance from x to y is defined as

d(x, y) := inf{L(γ) : γ ∈ Πx,y}.

This actually makes M into a metric space whose topology coincides with the manifold topology of M

[Pet16, Thm. 5.3.8]. Then the Hopf–Rinow theorem states that geodesic and metric completeness agree.
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Theorem 1.36 (Hopf–Rinow). Let (M, g) be a Riemannian manifold endowed with the Levi-Civita con-

nection. Then the following are equivalent:

1. M is geodesically complete,

2. expx is defined on all of TxM for some x ∈M ,

3. M satisfies the Heine-Borel property, i.e., every closed bounded set is compact,

4. M is metrically complete.

Moreover, if M is complete, then any two points in M can be joined by a length-minimizing geodesic.

Infinitesimal variations of geodesics by geodesics satisfy a special equation, Jacobi’s equation, which

will be useful for us in Chapter 3.

Definition 1.37. A Jacobi field along a geodesic γ in a Riemannian manifold (M, g) is a vector field

J ∈ Γ(γ∗TM) such that J̈ + R(J, γ̇)γ̇ = 0, where the covariant derivative is taken with respect to the

Levi-Civita connection. �

Proposition 1.38. Let (M, g) be a Riemannian manifold and γ a geodesic in M .

1. For every v, w ∈ Tγ(0)M , there is a unique Jacobi field J along γ (at least when t is close enough

to 0) with J(0) = v and J̇(0) = w.

2. Let {γs}s∈(−ε,ε) be a smooth family of geodesics with γ0 = γ. Then the vector field t 7→ d
ds

∣∣
s=0

γs(t)

is a Jacobi field along γ. Moreover, every Jacobi field along γ arises in this way.

Proof. Let {ei}i be a parallel frame for TM along γ, and write J(t) = J i(t)ei(γ(t)) and γ̇(t) =

ai(t)ei(γ(t)) for some smooth J i, aj : [0, 1] → R, and R(ei, ej)ek = Rlijkel for some smooth

Rlijk : [0, 1]→ R. Then

J̈ +R(J, γ̇)γ̇ = (J̈ i + J lajakRiljk)ei.

Hence, the equation for J to be Jacobi is a second order ODE, so it has a unique local solution

whenever J(0) and J̇(0) are fixed.

Let now {γs}s∈(−ε,ε) be a smooth family of geodesics with γ0 = γ and let J(t) := d
ds

∣∣
s=0

γs(t).

Then, since ∇ is torsion-free,

J̇(t) =
∇
dt

(
d

ds

∣∣∣∣
s=0

γs(t)

)
=
∇
∂t

∣∣∣∣
s=0

∂

∂s
γs(t) =

∇
∂s

∣∣∣∣
s=0

γ̇s(t),

and therefore, since γs is a geodesic,

J̈(t) =
∇
dt

(
∇
∂s

∣∣∣∣
s=0

γ̇s(t)

)
= R(γ̇(t), J(t))γ̇(t).

Conversely, let J be a Jacobi field along γ. If γ starts at x ∈ M , let α be the geodesic with

α(0) = x and α̇(0) = J(0), and let X,Y be parallel vector fields along α with X(0) = γ̇(0) and

Y (0) = J̇(0). Define now γs(t) := expα(s)(t(X(s) + sY (s))) for small enough s. Then γ0 = γ and

γs is a geodesic for all s, so that I(t) := d
ds

∣∣
s=0

γs(t) defines a Jacobi field, by the above proven.

Moreover, I(0) = α̇(0) = J(0) and

İ(0) =
∇
∂s

∣∣∣∣
s=0

(X(s) + sY (s)) = Y (0) = J̇(0),

so that actually I = J .
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Remark 1.39. If γ is a geodesic of a pseudo-Riemannian manifold M and X is a Killing vector field,

then γ∗X is a Jacobi field along γ, since we can write, if {φt}t is the flow of X,

X(γ(t)) =
d

ds

∣∣∣∣
s=0

φs(γ(t)),

and {φs ◦ γ}s is a smooth family of geodesics around γ for small enough s, by Lemma 1.33.

Back to curvature, one can define simpler curvatures on a pseudo-Riemannian manifold that carry

partial information about the Riemann curvature.

Definition 1.40. Let (M, g) be a pseudo-Riemannian manifold and R its Riemann curvature. The

sectional curvature of M is the map κ ∈ C∞(Gr2(TM)) given by

κ(v, w) :=
2〈R(w, v)v, w〉
‖v ∧ w‖2

=
〈R(w, v)v, w〉

‖v‖2‖w‖2 − 〈v, w〉2
,

for v, w ∈ TxM linearly independent. Here Gr2(TM) refers to the Grassmannian bundle of planes on

TM .

The Ricci curvature of M is the symmetric tensor field Ric ∈ T(0,2)(M) given by

Ric(v, w) := tr(u 7→ R(u, v)w).

The scalar curvature of M is the smooth map scal ∈ C∞(M) given by

scal(x) := tr Ricx,

viewing Ric ∈ Γ(EndTM) using the metric. �

If {ei}i is an orthonormal basis for TxM , then

Ric(v, w) =
∑
i

〈R(ei, v)w, ei〉, for v, w ∈ TxM ,

and scal(x) =
∑
i,j〈R(ei, ej)ej , ei〉 =

∑
i,j κ(ei, ej).

While the Ricci and the scalar curvatures carry less information than R, the sectional curvature carries

exactly the same amount of information.

Proposition 1.41. The sectional curvature determines the Riemann curvature.

Proof. Let u, v, w, z ∈ TxM . Then an easy computation, using the first Bianchi identity, gives

6〈R(v, z)w, u〉 =

=
∂2

∂t∂s

∣∣∣∣
t=s=0

(〈R(u+ tv, w + sz)(w + sz), u+ tv〉 − 〈R(u+ tz, w + sv)(w + sv), u+ tz〉),

and the derivative on the righthand side can be computed using only the sectional curvature.
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2

Riemmanian Geometry of Submanifolds

Olmos’s proof of Simons’s theorem on holonomy, which will be explained in Section 3.4, relies on the

theory of Riemannian submanifolds. Given a Riemannian manifold (M, g), any submanifold M of M

inherits a metric from g and the Levi-Civita connection of M is related to that of M . One can also

consider the normal bundle of M , whose fiber at x ∈M is composed by all the vectors in TxM which are

orthogonal to all of TxM . This bundle also inherits a connection from the Levi-Civita connection on M .

In particular, we will show that the fundamental objects to study submanifolds in Riemannian geometry

are the tangential and normal parts of ∇XY , where X,Y ∈ X(M), which are, respectively, the Levi-

Civita connection on M and the second fundamental form of M , and the tangential and normal parts of

∇Xξ, where X ∈ X(M) and ξ ∈ X(M) is normal to M , which are, respectively, the Weingarten operator

and the normal connection on M . All these objects are related by the fundamental equations of local

submanifold theory, Theorem 2.4. They are fundamental in the sense that every four objects satisfying

these relations (or, rather, their simplified version when M has constant sectional curvature) give a local

isometric immersion into a space of constant sectional curvature, i.e., they completely characterize the

submanifold locally [BCO16, Thm. 1.1.2].

We also study the basic properties of submanifolds of constant principal curvatures, in Section 2.2.

This material will be needed in Chapter 3, in the proof of Proposition 3.47. If such proof is not to be

looked at in detail, Section 2.2 may be safely skipped.

2.1. Fundamental equations

Let (M, g) be a Riemannian manifold and let (M, g) ↪→ (M, g) be a submanifold with the induced

Riemannian metric (by which we mean that g is the pullback of g by the inclusion). Denote by ∇ the
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Levi-Civita connection on M . We will denote by TM⊥ the normal bundle to TM , with fibers

TxM
⊥ := {v ∈ TxM : 〈v, TxM〉 = 0}.

Hence we have the orthogonal decomposition TM |M = TM ⊕ TM⊥. For u ∈ TM |M we will denote by

u> its projection to TM and by u⊥ its projection to TM⊥.

Lemma 2.1. Let M ↪→M be a submanifold. Then the Levi-Civita connection on M is given by

∇XY = (∇XY )>, for X,Y ∈ X(M),

where on the right hand side X and Y are taken to be any extensions of X,Y ∈ X(M) to vector fields on

M .

Proof. Let X and Y be extensions of X and Y , respectively. If f ∈ C∞(M) and f ∈ C∞(M) is

an extension of f , then dfx = dfx|TxM for x ∈ M , since for any v ∈ TxM we can pick a smooth

curve γ in M such that γ(0) = x and γ̇(0) = v, and

dfx(v) =
d

dt

∣∣∣∣
t=0

f(γ(t)) =
d

dt

∣∣∣∣
t=0

f(γ(t)) = dfx(v).

Therefore, for any x ∈M we have that Xf(x) = dfx(X(x)) = dfx(X(x)) = Xf(x), i.e., Xf is an

extension of Xf , and the value of Xf at x can be computed using any extensions X and f . Then,

since [X,Y ] ∈ X(M), we have that

[X,Y ]f(x) = X(Y f)(x)− Y (Xf)(x) = X(Y f)(x)− Y (Xf)(x) = [X,Y ]f(x),

so that [X,Y ] is an extension of [X,Y ], independently of the chosen extensions X and Y . Finally,

the Koszul formula (1.3) for ∇ gives, if Z ∈ X(M) and Z is an extension,

〈∇XY,Z〉 =
1

2
(X〈Y,Z〉 − Y 〈Z,X〉 − Z〈X,Y 〉 − 〈X, [Y,Z]〉+ 〈Y, [Z,X]〉+ 〈Z, [X,Y ]〉)

=
1

2
(X〈Y , Z〉 − Y 〈Z,X〉 − Z〈X,Y 〉 − 〈X, [Y , Z]〉+ 〈Y , [Z,X]〉+ 〈Z, [X,Y ]〉)

= 〈∇XY ,Z〉 = 〈(∇XY )>, Z〉,

so the nondegeneracy of the metric on M gives the result. Since all the terms in the Koszul formula

are independent of the chosen extensions, the formula for the Levi-Civita connection of M does

not depend on them either.

The fundamental elements for studying the geometry of Riemannian submanifolds are the second

fundamental form, the normal connection and the Weingarten or shape operator, which we now introduce.

We let X⊥(M) := Γ(TM⊥) stand for the space of sections of the normal bundle, called normal vector

fields on M .

Definition 2.2. Let M ↪→ M be a submanifold. The second fundamental form of M is defined as

the map II : X(M)2 → X⊥(M) given by

II(X,Y ) := (∇XY )⊥, for X,Y ∈ X(M).

We define the normal connection ∇⊥ : X(M)× X⊥(M)→ X⊥(M) on TM⊥ as

∇⊥Xξ := (∇Xξ)⊥, for X ∈ X(M) and ξ ∈ X⊥(M).

Finally, we define the Weingarten operator on the direction of ξ ∈ X⊥(M) as the map Wξ :

X(M)→ X(M) given by

WξX := −(∇Xξ)>, for X ∈ X(M). �
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Hence we can write, for X,Y ∈ X(M) and ξ ∈ X⊥(M),

∇XY = ∇XY + II(X,Y ) and ∇Xξ = ∇⊥Xξ −WξX.

The first equation is called Gauss’s formula and the second Weingarten’s equation.

Lemma 2.3. 1. The second fundamental form, the normal connection and the Weingarten operator

are all independent of the chosen extensions of the vector fields involved.

2. The normal connection defines a connection on the bundle TM⊥.

3. II and W are C∞(M)-linear, and moreover II is symmetric. Hence, II defines a section of S2T ∗M⊗
TM⊥ and W a section of T ∗M⊥ ⊗ T ∗M ⊗ TM .

4. For all X,Y ∈ X(M) and ξ ∈ X⊥(M) we have that

〈II(X,Y ), ξ〉 = 〈WξX,Y 〉.

5. For all ξ ∈ X⊥(M), the operator Wξ is self-adjoint.

Proof. 1 follows as in the proof of Lemma 2.1. Since they are independent of extensions, we

will denote the extensions by the same name as the objects on M . For 2, let X ∈ X(M) and

ξ ∈ X⊥(M). Clearly ∇⊥Xξ is C∞(M)-linear on X, because ∇Xξ is so. On the other hand, if

f ∈ C∞(M), then

∇⊥X(fξ) = (∇X(fξ))⊥ = (Xf)ξ⊥ + f(∇Xξ)⊥ = (Xf)ξ + f∇⊥Xξ.

To see that II is symmetric, let X,Y ∈ X(M). Then, since ∇ is torsion-free and [X,Y ] ∈ X(M),

II(X,Y ) = (∇XY )⊥ = (∇YX + [X,Y ])⊥ = (∇YX)⊥ = II(Y,X).

Also, II(X,Y ) is clearly C∞(M)-linear on X, since ∇XY is so, and since II is symmetric, it

is also C∞(M)-linear on Y . On the other hand, if ξ ∈ X⊥(M), the expression WξX is again

C∞(M)-linear on X, while

WfξX = −(∇X(fξ))> = −((Xf)ξ + f∇Xξ)> = fWξX.

This establishes 3. A simple computation gives 4, since ∇ is metric and 〈Y, ξ〉 = 0:

〈II(X,Y ), ξ〉 = 〈∇XY, ξ〉 = −〈Y,∇Xξ〉 = 〈WξX,Y 〉.

And now 5 immediately follows from the symmetry of II:

〈WξX,Y 〉 = 〈II(X,Y ), ξ〉 = 〈II(Y,X), ξ〉 = 〈X,WξY 〉.

Since (TM⊥,∇⊥) is a bundle with connection, we call its holonomy the normal holonomy of M ,

and denote it by Hol⊥x (M) (and by Hol⊥0x (M) its restricted version).

Let R, R and R⊥ be the curvatures of TM , TM and TM⊥, respectively. The fundamental equations

to study the geometry of submanifolds are the following:

Theorem 2.4 (Gauss–Codazzi–Ricci equations). Let M ↪→M be a submanifold. Then for X,Y, Z, V ∈
X(M) and ξ, η ∈ X⊥(M), we have that

1. (Gauss’s equation) (R(X,Y )Z)> = R(X,Y )Z −WII(Y,Z)X +WII(X,Z)Y , or, equivalently,

〈R(X,Y )Z, V 〉 = 〈R(X,Y )Z, V 〉+ 〈II(Y, V ), II(X,Z)〉 − 〈II(X,V ), II(Y,Z)〉;
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2. (Codazzi’s equation) (R(X,Y )Z)⊥ = ∇⊥X II(Y,Z)−∇⊥Y II(X,Z);

3. (Ricci’s equation) (R(X,Y )ξ)⊥ = R⊥(X,Y )ξ + II(WξX,Y )− II(X,WξY ), or, equivalently,

〈R(X,Y )ξ, η〉 = 〈R⊥(X,Y )ξ, η〉 − 〈[Wξ,Wη]X,Y 〉;

4. (R(X,Y )ξ)> = (∇YW )ξX − (∇XW )ξY .

Proof. Direct computation, using that ∇ is torsion-free:

R(X,Y )Z = ∇X(∇Y Z + II(Y, Z))−∇Y (∇XZ + II(X,Z))−∇[X,Y ]Z

= R(X,Y )Z + II(X,∇Y Z)−WII(Y,Z)X +∇⊥X(II(Y, Z))

− II(Y,∇XZ) +WII(X,Z)Y −∇⊥Y (II(X,Z))− II([X,Y ], Z)

= R(X,Y )Z −WII(Y,Z)X +WII(X,Z)Y +∇⊥X II(Y,Z)−∇⊥Y II(X,Z).

Gauss’s and Codazzi’s equation immediately follow. The second form of Gauss’s equation follows

from Lemma 2.3(4). For Ricci’s equation, we compute as well:

R(X,Y )ξ = ∇X(∇⊥Y ξ −WξY )−∇Y (∇⊥Xξ −WξX)−∇[X,Y ]ξ

= R⊥(X,Y )ξ −W∇⊥Y ξX −∇X(WξY )− II(X,WξY )

+W∇⊥XξY +∇Y (WξX) + II(Y,WξX) +Wξ[X,Y ]

= R⊥(X,Y )ξ + II(WξX,Y )− II(X,WξY ) + (∇YW )ξX − (∇XW )ξY.

Ricci’s and the last equation follow immediately. The second form of it is again an application of

Lemma 2.3(4).

When the ambient space M has constant sectional curvature, i.e., κ = k for some k ∈ R, it is called a

space form. Since sectional curvature determines the Riemann curvature, it follows [Pet16, Prop. 3.1.3]

that M has constant sectional curvature k ∈ R if and only if the Riemann curvature is given by

R(X,Y )Z = k(〈Y, Z〉X − 〈X,Z〉Y ), for X,Y, Z ∈ X(M).

For a submanifold M ↪→M of a space form, the Codazzi and Ricci equations take particularly nice forms:

∇⊥X II(Y,Z) = ∇⊥Y II(X,Z) and 〈R⊥(X,Y )ξ, η〉 = 〈[Wξ,Wη]X,Y 〉,

for X,Y, Z ∈ X(M) and ξ, η ∈ X⊥(M).

2.2. Principal curvatures and curvature normals

There are some types of submanifolds with special properties that we shall consider. The first type we

are interested in are those which are “composed of geodesics”.

Definition 2.5. A submanifold M ↪→ M is called totally geodesic if every geodesic of M is also a

geodesic of M . �

Lemma 2.6. A submanifold is totally geodesic if and only if its second fundamental form vanishes.

Proof. Let M be the submanifold with second fundamental form II. For any curve γ on M , Gauss’s

formula gives ∇γ̇ γ̇ = ∇γ̇ γ̇ + II(γ̇, γ̇). If II vanishes, then ∇γ̇ γ̇ = 0 implies that ∇γ̇ γ̇ = 0, and so

M is totally geodesic. Conversely, if M is totally geodesic, then II(v, v) = 0 for all v ∈ TM . Since

2 II(u, v) = II(u+ v, u+ v)− II(u, u)− II(v, v)

for all u, v ∈ TM , then II vanishes identically.
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For instance, the complete totally geodesic submanifolds of Euclidean space Rn are the affine sub-

spaces, since geodesics are straight lines.

The second type of submanifolds we are interested in are those whose eigenvalues of the Weingarten

operators are locally constant.

Definition 2.7. The principal curvatures of a submanifold M ↪→ M at x ∈ M in the direction of

ξ ∈ TxM
⊥ are the eigenvalues of Wξ. We say that M has constant principal curvatures if the

eigenvalues of Wξ(t) are constant for any parallel normal vector field ξ along any piecewise smooth curve

in M . �

In particular, on a manifold with constant principal curvatures the eigenvalues of Wξ are constant for

any local parallel normal vector field ξ. The reason why we are interested in submanifolds with constant

principal curvatures is because the following construction works especially well in this case.

Let M ↪→M be a submanifold. Define

TxM
⊥
0 := {ξ ∈ TxM⊥ : gξ = ξ, for all g ∈ Hol⊥0x (M)}.

In general, if E → N is a vector bundle with a connection ∇ and E′ → N is a subbundle of E, then E′

is said to be parallel if it is invariant under parallel transport, i.e., if τγ(E′γ(0)) = E′γ(1) for all piecewise

smooth curves γ in N . Equivalently, if for all σ ∈ Γ(E′) and X ∈ X(N) we have that ∇Xσ ∈ Γ(E′). It

is the necessary and sufficient condition for the possibility of restricting ∇ to a connection on E′.

Lemma 2.8. The bundle TM⊥0 whose fiber at x ∈ M is TxM
⊥
0 is a smooth parallel flat subbundle of

TM⊥.

Proof. For x ∈ M , let {ξi}i be a basis for TxM
⊥
0 and U be a simply connected neighborhood of

x in M . Since ξi is Hol⊥0x (M)-invariant, then by the holonomy principle it can be extended to a

∇⊥-parallel smooth normal vector field on U which we also call ξi. If y ∈ U and η ∈ TyM⊥0 , let

γ be a curve from y to x in U . Then τ⊥γ η ∈ TxM
⊥ is easily seen to lie in TxM

⊥
0 , so τ⊥γ η is a

linear combination of {ξi(x)}i, and hence η is a linear combination of {ξi(y)}i. Therefore, {ξi(y)}i
is a basis for TyM

⊥
0 , which gives that TM⊥0 is smooth and parallel. Moreover, since {ξi}i is a

∇⊥-parallel frame, then Corollary 1.26 gives that TM⊥0 is flat.

From now on, let M be a space form. Let ξ ∈ TxM
⊥
0 . Then by Ricci’s equation we have that

[Wξ,Wη] = 0 for all η ∈ TxM⊥. This means that {Wξ : ξ ∈ TxM⊥0 } is a commuting family of self-adjoint

operators, which means that there is a decomposition into common eigenspaces

TxM = E1(x)⊕ · · · ⊕ Eg(x)(x), (2.1)

that is, there are unique linear functionals λi(x) ∈ T ∗xM⊥0 and vectors ηi(x) ∈ TxM⊥0 such that

Wξvi = λi(x)(ξ)vi = 〈ηi(x), ξ〉vi, for ξ ∈ TxM⊥0 and vi ∈ Ei(x).

The vectors ηi(x) are called curvature normals at x.

Proposition 2.9. Let M ↪→M be a connected submanifold with constant principal curvatures, where M

is a space form. Then

1. the function g on the decomposition (2.1) is constant and the corresponding curvature normals are

well-defined smooth ∇⊥-parallel vector fields;

2. if moreover M = Rn and M is not contained in a proper totally geodesic submanifold, then the

curvature normals at x span TxM
⊥
0 for all x ∈M .

Proof. The integer g(x) is the number of different common eigenspaces on x ∈ M . This means

that there is some ξ ∈ TxM⊥0 for which Wξ has g(x) different eigenvalues. We can extend ξ to a
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∇⊥-parallel normal vector field on a simply connected neighborhood U of x, which we also call ξ.

Since M has constant principal curvatures, then Wξ has constant eigenvalues on U , which means

that for any y ∈ U we have that g(y) ≥ g(x), since TyM has to split at least into g(x) eigenspaces.

Let η ∈ TyM⊥0 be such that Wη has g(y) different eigenvalues. By the same argument, we can

extend it to a ∇⊥-parallel normal vector field on U , and since Wη has constant eigenvalues on

U then g(x) ≥ g(y), which gives g(y) = g(x). Since M is connected, this finally gives that g is

constant.

Let x ∈ M and let ηi(x) ∈ TxM
⊥
0 be a curvature normal at x. On a simply connected

neighborhood U of x, ηi(x) can be extended to a smooth ∇⊥-parallel vector field ηi. Let ξ be a

∇⊥-parallel vector field on U , so that Wξ has constant eigenvalues. Then at y ∈ U , the number

〈ηi(x), ξ(x)〉 is an eigenvalue of Wξ(y). Let v ∈ TxM be an eigenvector of such an eigenvalue. The

function 〈ηi, ξ〉 is constant on U , since for any X ∈ X(U) we have that

X〈ηi, ξ〉 = 〈∇⊥Xηi, ξ〉+ 〈ηi,∇⊥Xξ〉 = 0.

Hence,

Wξ(y)v = 〈ηi(x), ξ(x)〉v = 〈ηi(y), ξ(y)〉v,

so that ηi(y) is also a curvature normal at y ∈ U . Since M can be covered by simply connected

charts, then ηi can be globally defined.

Suppose now that M = Rn. For x ∈ M , define Vx := {ξ ∈ TxM⊥ : Wξ = 0}. To see that it

defines a smooth subbundle of TM⊥, let ξ1, . . . , ξl ∈ Vx be a basis and extend them to local smooth

vector fields by parallel transporting along radial geodesics, i.e., define ξi(expx v) := τ⊥1 (ξi(x)),

where τ⊥t is parallel transport from x to expx(tv) along s 7→ expx(sv), where v ∈ TxM . Then

the vector fields {ξi}i are pointwise linearly independent. To see that they generate V pointwise,

let η ∈ Vy, where y = expx v, and let η(t) := τ⊥t (τ⊥1 )−1η. Then η(t) is parallel along the radial

geodesic from x to y and η(1) = η. Since M has constant principal curvatures, then Wη(t) has

constant eigenvalues, and since Wη(1) = Wη = 0, then Wη(0) = 0. Write η(0) = ηiξi(x), for

some constants ηi ∈ R. Then η = η(1) = τ⊥1 (η(0)) = ηiτ⊥1 (ξi(x)) = ηiξi(y). Therefore {ξi}i
is a smooth frame for V . Moreover, V is parallel and flat. Indeed, if ξ is a parallel section of

TM⊥ along a piecewise smooth curve γ with ξ(0) ∈ V , then Wξ(t) has constant eigenvalues, so

Wξ(1) = Wτ⊥γ (ξ(0)) = 0 because Wξ(0) = 0. Moreover, if ξ ∈ Vx, then the Ricci equation implies

that R⊥(v, w)ξ = 0 for all v, w ∈ TxM , so V is flat.

Let ξ ∈ Γ(V ) be ∇⊥-parallel. Then ∇Xξ = dξ(X) = ∇⊥Xξ −WξX = 0 for every X ∈ X(M),

so actually ξ is constant as a map ξ : M → Rn. Since V is flat, there is a local parallel frame

around every x ∈ M , by Corollary 1.26, which means that there is an affine subspace W ⊆ Rn

such that Vx = W for all x ∈ M . Hence, TxM ⊆ V ⊥x = W⊥, where ⊥ is taken in Rn, which in

turn means that M ⊆ W⊥. Since M is not contained in a proper totally geodesic submanifold,

then necessarily W⊥ = Rn, i.e., Vx = 0 for all x ∈M .

Now, ξ ∈ TxM⊥0 satisfies Wξ = 0 if and only if all its eigenvalues are zero, i.e., if and only if

〈ηi(x), ξ〉 = 0 for all i. That is,

Vx ∩ TxM⊥0 = span{ηi(x)}⊥i ,

where ⊥ is taken inside of TxM
⊥
0 . Since Vx = 0, we conclude that span{ηi(x)}i = TxM

⊥
0 , as

wanted.

Example 2.10 (Sphere). Consider the sphere Sn with the metric induced by the standard Euclidean

metric 〈·, ·〉 on Rn+1. Then TxSn = (Rx)⊥, for x ∈ Sn. Let E ∈ X(Rn+1) denote the Euler vector field,

given by E(x) = x. Then E(x) ∈ Tx(Sn)⊥ for all x ∈ Sn. If X ∈ X(Sn), then WEX = −(∇XE)> =

−X> = −X, i.e., WE = −id. Hence, Sn has constant principal curvatures. Moreover, WEX = −X =

〈−E,E〉X, so the curvature normal is −E. H
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Remark 2.11. A manifold which is not contained in a proper totally geodesic submanifold is called full.

The space V ⊥x , with ⊥ taken inside of TxM
⊥, is known as the first normal space of M at x, and it

coincides with the span of the image of II,

V ⊥x = span{II(v, w) : v, w ∈ TxM} ⊆ TxM⊥.
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3

Berger’s Holonomy Theorem

We now turn to Berger’s classification theorem of holonomy groups. The theorem states that if M is

an irreducible, not locally symmetric, oriented and connected Riemannian manifold of dimension n ≥ 2,

then one of the following must hold:

1. Hol0(M) = SO(n),

2. n = 2m for m > 0 and Hol0(M) = U(n),

3. n = 2m for m > 0 and Hol0(M) = SU(n),

4. n = 4m for m > 0 and Hol0(M) = Sp(n),

5. n = 4m for m > 0 and Hol0(M) = Sp(n) Sp(1),

6. n = 7 and Hol0(M) = G2,

7. n = 8 and Hol0(M) = Spin(7).

The theorem was first proven by Berger [Ber55]. The proof was very algebraic and relied heavily on

the classification of Lie groups and its representations, which made it quite complex. Some years later

Simons [Sim62] offered a new (still algebraic) proof, and it was not until forty years later that Olmos

[Olm05] found a geometric proof of Simons’s theorem. It is Olmos’s proof that we will present here. We

will not follow [Olm05] exactly, but rather a polished version of the proof one can find in [BCO16].

In this chapter we will make sense of what it means for a Riemannian manifold to be reducible and

(locally) symmetric, and we will see what this tells us about its holonomy. Then we will turn to the

more technical side of the proof of Simons’s theorem, using the machinery developed in Chapters 1 and 2.

Finally, we will give precise invariant definitions of the groups in Berger’s list and describe what types
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of special geometries each groups gives rise to. These include Kähler, Calabi–Yau, hyperkähler and

quaternionic Kähler geometries. We will give some examples of each of them.

3.1. Reducible spaces

The main aim of this section is to prove that having a reducible holonomy representation implies that

the manifold is locally a product. If the manifold is complete, it is even globally a product. This is de

Rham’s decomposition theorem.

Definition 3.1. A connected Riemannian manifold M is reducible if its holonomy representation is

reducible. It is irreducible if its restricted holonomy representation is irreducible. �

Proposition 3.2. Let M be reducible, x ∈M and Dx a nontrivial Holx(M)-invariant subspace of TxM .

Define a distribution D by setting Dy := τγDx, where γ is any piecewise smooth curve from x to y. Then

1. D is a well-defined involutive smooth distribution,

2. the maximal integral submanifold N of D through x is totally geodesic.

Proof. If α were another piecewise smooth curve from x to y, then α · γ−1 is a loop at x, so

τ−1γ ταDx = Dx, i.e., τγDx = ταDx. This shows well-definedness. To see that it is smooth, let

y ∈M and let U be a normal neighborhood about y. Let {vi}i be a basis for Dy and define vector

fields {Xi}i in U by Xi(expy u) = τuvi, where u ∈ TyM is small enough such that expy u ∈ U
and τu is parallel transport from y to expy u along the geodesic t 7→ expy(tu). Since τu depends

smoothly on u, the vector fields {Xi}i are smooth on U . It is clear that they form a frame for D.

To see involutivity, let X,Y ∈ Γ(D). Since [X,Y ] = ∇XY − ∇YX, it is enough to see that

∇XY ∈ Γ(D). Let y ∈M and γ the integral curve of X through y. Then, if τt is parallel transport

from y to γ(t) along γ, by Proposition 1.15 we have that

∇XY (y) =
d

dt

∣∣∣∣
t=0

τ−1t (Y (t)).

Since Y (t) ∈ Dγ(t) and τ−1t Dγ(t) = Dy, we have that, indeed, ∇XY (y) ∈ Dy. This gives 1.

By Frobenius’s integrability theorem ([Lee12, Thm. 19.12] for instance), D is integrable. Let

N be the maximal integral submanifold of D through x. Let y ∈ N and v ∈ TyN , and let γ be the

maximal geodesic starting at y with velocity v. Then γ̇ is parallel along γ, so γ̇(t) = τtv ∈ Dγ(t).

Since D is a regular distribution, this easily implies that γ does not leave N . For a complete

proof of this fact (also in the possibly singular setting) see Proposition 4.16. Hence, N is totally

geodesic.

Proposition 3.3. Let M be reducible, x ∈M and Dx a nontrivial Holx(M)-invariant subspace of TxM .

Let D be the distribution corresponding to Dx and D′ the distribution corresponding to D⊥x . Let N (resp.

N ′) be the maximal integral submanifold of D (resp. D′) through x. Then there are open neighborhoods

V in M , U in N and U ′ in N ′ of x such that V is isometric to U × U ′.

Proof. First observe that, because parallel transport is isometric, D and D′ are everywhere orthog-

onal. Let (W ′, (x1, . . . , xk, yk+1, . . . , yn)) be coordinates about x such that { ∂
∂xi }

k
i=1 is a frame for

D|W ′ and (W ′′, (z1, . . . , zk, xk+1, . . . , xn)) coordinates about x such that { ∂
∂xi }

n
i=k+1 is a frame for

D′|W ′′ . Then (W ′ ∩W ′′, (x1, . . . , xn)) are also coordinates about x.

Let V be the cube given by |xi| < ε, for i = 1, . . . , n and ε > 0 small enough such that

V ⊆ W ′ ∩W ′′. Let U be the cube in N given by |xi| < ε, for i = 1, . . . , k, and U ′ be the cube in

N ′ given by |xi| < ε, for i = k + 1, . . . , n. Then as smooth manifolds V = U × U ′. To see that
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they are also isometric we have to show that 〈X,Y 〉 = 0 if X ∈ Γ(D) and Y ∈ Γ(D′) and that

X〈Y,Z〉 = 0 if either X ∈ Γ(D) and Y,Z ∈ Γ(D′) or X ∈ Γ(D′) and Y,Z ∈ Γ(D′).

Since D and D′ are orthogonal, it is clear that 〈X,Y 〉 = 0 if X ∈ Γ(D) and Y ∈ Γ(D′). On

the other hand, if X ∈ Γ(D) and Y ∈ Γ(D′), we can assume them to be coordinate vector fields,

so that [X,Y ] = 0, and then, since the Levi-Civita connection is torsion-free,

∇XY −∇YX = ∇XY −∇YX − [X,Y ] = 0.

By the same reasoning as in the proof of Proposition 3.2 we have that ∇XY ∈ Γ(D′) and ∇YX ∈
Γ(D), so actually both vanish. Then, if Z ∈ Γ(D′) is another coordinate vector field,

X〈Y,Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉 = 0.

The other case is analogous.

Proposition 3.4. In the same situation as in Proposition 3.3, there are normal subgroups G and G′ of

Hol0x(M) such that Hol0x(M) = G×G′, where G acts trivially on D⊥x and G′ trivially on Dx. Moreover,

Hol0x(N) ⊆ G and Hol0x(N ′) ⊆ G′.

Proof. Let γ be a contractible loop at x and let g be the extension of τγ |Dx to all of TxM by acting

trivially on D⊥x and g′ the extension of τγ |D⊥x to all of TxM by acting trivially on Dx. We will

show that both g and g′ lie in Hol0x(M).

Suppose first that γ is a lasso, that is, of the form α · β · α−1, where α is a piecewise smooth

curve from x to some y ∈M and β is a contractible loop at y small enough so that it is contained

in a decomposable open set V = U × U ′ as in Proposition 3.3. Let β̃ (resp. β̃′) be the projection

of β unto U (resp. U ′) and let γ̃ := α · β̃ ·α−1 and γ̃′ := α · β̃′ ·α−1. Since τβ = τβ̃ × τβ̃′ and both

D and D′ are preserved by parallel transport, then τγ = τγ̃ × τγ̃′ as well. Also, τγ̃ (resp. τγ̃′) acts

trivially on D⊥x (resp. Dx). Hence, g = τγ̃ and g′ = τγ̃′ , so both lie indeed in Hol0x(M).

Parallel transport along a contractible loop always equals a finite product of parallel transport

along such lassos [KN63, Vol. 1, App. 7], so g, g′ ∈ Hol0x(M) for any contractible loop γ. Let now

G be the subgroup of Hol0x(M) consisting of extensions of τγ |Dx to all of TxM by acting trivially

on D⊥x for all τγ ∈ Hol0x(M) and similarly for G′. Then we just proved that Hol0x(M) = G × G′

with G acting trivially on D⊥x and G′ trivially on Dx. It is easy to check that G and G′ are normal

in Hol0x(M).

Lastly, let γ be a contractible loop contained in N . Suppose first that it is a lasso γ = α·β ·α−1,

with both α and β in N and with β small enough so that it is contained in a decomposable

open set V = U × U ′. Then τβ is the identity on D′α(1), so for any v ∈ D⊥x we have that

τγv = τ−1α τβταv = τ−1α ταv = v, so that τγ is the identity on D⊥x . Since parallel transport along a

contractible loop equals a finite product of parallel transport along such lassos, we finally obtain

that Hol0x(N) ⊆ G. The case for Hol0x(N ′) is analogous.

We have seen that if M is reducible then it can be locally written as a product. If M is 1-connected

and complete, then M can actually be written globally as a product. This is de Rham’s decomposition

theorem, originally proved in [dR52]. Several different proofs and generalizations have been given [KN63,

Wu64, Mal72], but here we follow [Pan92], which seems to be the most elementary, avoiding the use of

much machinery.

Lemma 3.5. In the same situation as in Proposition 3.3, with M connected and complete, let v ∈ Dx

and v′ ∈ D⊥x . Let τ : D′x → D′y be parallel transport along any curve in N from x to y := expx v and τ ′ :

Dx → Dz parallel transport along any curve in N ′ from x to z := expx v
′. Then expy(τv′) = expz(τ

′v).

Proof. First observe that τ and τ ′ are well defined by Proposition 3.4. Let V be the parallel vector

field along t 7→ expx(tv′) with V (0) = v and define γ : [0, 1]2 → M by γ(s, t) = exp(tV (s)). It is

30



Jaime Pedregal 3.1. Reducible spaces

enough to see that γ(·, 1) is geodesic and that ∂
∂sγ(0, ·) is parallel along γ0 (in Figure 3.1 you can

see a sketch of the situation). Indeed, if this were the case then

expy(τv′) = expy

(
∂

∂s
γ(0, 1)

)
= expy

(
d

ds

∣∣∣∣
s=0

γ(s, 1)

)
= γ(1, 1) = expz(V (1)) = expz(τ

′v).

Figure 3.1: Proof of Lemma 3.5.

To this end, let s0 ∈ [0, 1] and pick a neighborhood W of γ(s0, 0) isometric to a product U×U ′,
in the fashion of Proposition 3.3. Projecting to U and U ′, write γ(s, t) = (β(s, t), β′(s, t)). We will

see that actually β depends only on t and β′ only on s.

Since the integral submanifolds of D and D′ (the distributions induced by Dx and D⊥x , respec-

tively) are totally geodesic, then for each s,

∂

∂t
γ(s, t) =

d

dt
(exp(tV (s))) ∈ Dγ(s,t).

Hence, we have that ∂
∂tβ
′(s, t) = 0, i.e., β′ depends only on s. Similarly,

∂

∂s
γ(s, 0) =

d

ds
(expexpx(sv

′)(0)) =
d

ds
(expx(sv′)) ∈ D′γ(s,0),

so ∂
∂sβ(s, 0) = 0, i.e., β(s, 0) is constant on s. Finally, ∂

∂tγ(·, 0) is parallel along γ(·, 0), because

∂

∂t
γ(s, 0) =

d

dt

∣∣∣∣
t=0

exp(tV (s)) = V (s),

which gives that ∇∂s
∂
∂tβ(s, 0) = 0. Since β(s, 0) is constant on s, then all the vectors ∂

∂tβ(s, 0)

belong to the same tangent space of U , so actually ∂
∂s

∂
∂tβ(s, 0) = 0, i.e., ∂

∂tβ(s, 0) does not depend

on s. Now we have that β(s, ·) is a geodesic in U starting at β(s, 0) with velocity ∂
∂tβ(s, 0); since

neither of these two things depends on s, we conclude that β(s, t) does not depend on s. Hence

we can finally write (in W ) γ(s, t) = (β(t), β′(s)).

Observe that β′ is a geodesic in U ′, because γ(s, 0) = (β(0), β′(s)) = expx(sv′). Hence, for

each fixed t we have that γ(·, t) = (β(t), β′(·)) is geodesic. Along it, ∂
∂tγ(·, t) = (β̇(t), 0) is parallel.

We now split [0, 1]2 into a finite amount of sufficiently small squares such that the image by γ

of each square is contained into one such W decomposable as a product. For all the squares with t

small enough, we just proved that γ(·, t) is geodesic and ∂
∂tγ(·, t) is parallel along it, for each fixed

t. These conditions are enough to prove the same for the following row of squares, with bigger t.

Inductively, we can prove that γ(·, t) is geodesic and ∂
∂tγ(·, t) is parallel along it for all t ∈ [0, 1].

This gives that γ(·, 1) is geodesic and that ∂
∂sγ(0, ·) is parallel along γ0, since

∇
∂t

∂

∂s
γ(0, t) =

∇
∂s

∂

∂t
γ(0, t) = 0.
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Theorem 3.6 (de Rham’s decomposition). Let M be a 1-connected and complete reducible Riemannian

manifold. Let x ∈M and let N and N ′ be the maximal integral submanifolds through x of the distributions

induced by a nontrivial Holx(M)-invariant subspace of TxM and its orthogonal. Then M is isometric to

N ×N ′.

Proof. Let D and D′ be the mentioned distributions. For any x ∈M , denote by N(x) and N ′(x)

the maximal integral submanifolds through x. For y = expx v, with v ∈ Dx, let τx,y : D′x → D′y
be parallel transport along any curve in N(x) from x to y, and for z = expx v

′, with v′ ∈ D′x, let

τ ′x,z : Dx → Dz be parallel transport along any curve in N ′(x) from x to z. Then Lemma 3.5 reads

expy(τx,yv
′) = expz(τ

′
x,zv). Define now F zx : N(x)→ N(z) by F zx (y) = expy(τx,yv

′) = expz(τ
′
x,zv).

It is smooth and satisfies (as is easy to check) F ax = F az ◦ F zx for any a ∈ N ′(x), from where we

see that it is a diffeomorphism. It is moreover an isometry. Indeed, let u ∈ TyN(x) = Dy and

γ(t) = expy(tu). Then, by Lemma 3.5, since F zx (y) = expy(τx,yv
′),

expγ(t)(τy,γ(t)τx,yv
′) = expF zx (y)(τ

′
y,F zx (y)

tu),

so that

F zx∗u =
d

dt

∣∣∣∣
t=0

F zx (γ(t)) =
d

dt

∣∣∣∣
t=0

expγ(t)(τx,γ(t)v
′)

=
d

dt

∣∣∣∣
t=0

expγ(t)(τy,γ(t)τx,yv
′) =

d

dt

∣∣∣∣
t=0

expF zx (y)(τ
′
y,F zx (y)

tu)

= τ ′y,F zx (y)u.

Similarly we can define isometries Gyx : N ′(x) → N ′(y) by Gyx(z) = expz(τ
′
x,zv). Observe that

F zx (y) = Gyx(z).

We now fix x ∈ M and define F : N(x) × N ′(x) → M by F (y, z) = F zx (y) = Gyx(z). It is a

local isometry, as a consequence of Proposition 3.3 and because each F zx and Gyx are isometries.

Since M is complete, N(x) × N ′(x) is connected and complete. Hence, F is a local isometry

from a complete manifold to a connected manifold, which implies that it is actually a Riemannian

covering map [Pet16, Lem. 5.6.4]. Since M is simply connected, necessarily F is an isometry.

3.2. Symmetric spaces

Symmetric spaces, as their name suggests, are Riemannian manifolds which are symmetric, in the follow-

ing sense: about every point of the manifold there is an isometric involution which inverts the direction

of geodesics, called a geodesic symmetry, leaving the point fixed. As we will see, these spaces are always

homogeneous and their geometric properties are very intimately linked to the Lie theoretic data of their

isometry group. This will allow us to compute the holonomy of irreducible symmetric spaces.

In Section 3.2.3 we prove that the orbits of the holonomy representation of irreducible symmetric spaces

are submanifolds with constant principal curvatures. We will need this in the proof of Proposition 3.47.

3.2.1. Definitions and basic properties

Definition 3.7. A Riemannian manifold (M, g) is a symmetric space if for every x ∈ M there is an

isometry σx such that σ2
x = id, σx∗(x) = −id and σx(x) = x. It is a locally symmetric space if the

isometry σx only exists on a neighborhood of x. �

Remark 3.8. On a Riemannian manifold M , let Ux be a neighborhood of x ∈ M such that expx :

B(0, ε) → Ux is a diffeomorphism. Then the map σx : Ux → Ux defined by σx(expx v) = expx(−v) is

called the geodesic symmetry at x. A locally symmetric space is one where such a map is an isometry.

A symmetric space is one where such a map can be extended to a global isometry.
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Lemma 3.9. Symmetric spaces are complete.

Proof. Let M be a symmetric space and x ∈M . Let γ be a geodesic starting at x. Then σx ◦ γ is

the unique geodesic starting at x with velocity −γ̇(0), and so σx(γ(t)) = γ(−t).
If we write γs(t) := γ(t+ s), whenever it is defined, then

σγ(s/2)σx(γ(t)) = σγ(s/2)(γ(−t)) = σγ(s/2)

(
γs/2

(
−t− s

2

))
= γs/2

(
t+

s

2

)
= γ(t+ s).

Then if γ is defined up to time T , it can be extended up to 2T by applying σγ(s/2)σx for 0 ≤ s ≤ T .

Hence M is complete.

Corollary 3.10. Let M be a connected symmetric space and x ∈ M . Then there is only one isometry

σx with σ2
x = id, σx∗(x) = −id and σx(x) = x.

Proof. Let σx and σ′x be two such isometries. Then g = σ′xσ
−1
x is an isometry fixing x and whose

differential at x is id. Let y ∈ M and γ a geodesic starting at x with γ(1) = y, which exists

because M is complete and by the Hopf–Rinow theorem. Then g ◦ γ is a geodesic starting at x

with velocity γ̇(0), and so g ◦ γ = γ. Hence, g(y) = g(γ(1)) = γ(1) = y. Therefore g = id.

Hence it makes sense to speak of σx as the geodesic symmetry at x.

Example 3.11 (Euclidean space). Consider Euclidean space Rn with the standard Euclidean product.

The map σx(y) = 2x− y is a geodesic symmetry defined on all of Rn, so it is a symmetric space. H

Example 3.12 (Sphere). Consider the sphere Sn with the metric induced by the standard Euclidean

metric 〈·, ·〉 on Rn+1. Let σx(y) := 2〈y, x〉x − y (reflection about the line Rx). It is immediate to check

that σx is a geodesic symmetry. H

Example 3.13 (Hyperbolic space). Consider Minkowski space R1,n, i.e., Rn+1 with the nonpositive

metric

((t, x), (s, y)) := −ts+ 〈x, y〉,

for t, s ∈ R, x, y ∈ Rn and 〈·, ·〉 the standard Euclidean product on Rn. Consider the hyperboloid model

for hyperbolic space

H n := {(t, x) ∈ R1,n : −t2 + ‖x‖2 = −1, t > 0}.

Then T(t,x)H
n = {(λ, v) ∈ Rn+1 : −λt + 〈v, x〉 = 0}. The restriction of (·, ·) to T(t,x)H

n is positive

definite. Indeed, if λ = 0, then ((λ, v), (λ, v)) = ‖v‖2 > 0, and if λ 6= 0, then v 6= 0, because −λt+〈v, x〉 =

0 and t > 0, and in this case,

λ2 =
|〈v, x〉|2

t2
≤ ‖v‖2 ‖x‖

2

t2
= ‖v‖2 ‖x‖2

1 + ‖x‖2
< ‖v‖2,

so that

((λ, v), (λ, v)) = −λ2 + ‖v‖2 > 0.

The reflection σx(y) = −y − 2 (y, x)x is the geodesic symmetry in this case. H

Example 3.14 (Lie groups). Let G be a Lie group with a bi-invariant metric, i.e., a Riemannian metric

such that left and right translations, Lg and Rg, are isometries for every g ∈ G. Let σe(h) := h−1, for

h ∈ G and where e ∈ G is the identity element. Then clearly σ2
e = id, σe∗(e) = −id and σe(e) = e.

Moreover, since σe ◦ Lg = Rg−1 ◦ σe, then

σe∗(g) ◦ Lg∗(e) = Rg−1∗(e) ◦ σe∗(e),

so that σe∗(g) is a linear isometry. Hence, σe is the geodesic symmetry at e. For g ∈ G, we set

σg := Lg ◦ σe ◦ Lg−1 , that is, σg(h) = gh−1g. H
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Example 3.15 (Projective spaces). Let K stand for R, C or H. Let K× := K r {0} act on Kn+1 by

scalar multiplication. Then we define the K projective space as KPn := (Kn+1r{0})/K×. By restricting

to unit vectors, we have the following equalities

RPn = Sn/{±1}, CPn = S2n+1/S1, HPn = S4n+3/S3.

In general, if G is a Lie group acting freely and properly by isometries on a symmetric space (M, g),

then it is easy to see that there is a unique metric g′ on the orbit space M/G such that the projection

p : M → M/G is a Riemmanian submersion, that is, such that the linear isomorphism (ker p∗(x))⊥ ∼=
Tp(x)(M/G) is an isometry for all x ∈M . If in addition the action is such that σhx = hσxh

−1 for all x ∈M
and h ∈ G, then (M/G, g′) is symmetric, with geodesic symmetry at p(x) given by σp(x) ◦ p := p ◦ σx.

Let 〈·, ·〉 stand for the standard Euclidean (resp. Hermitian, quaternionic) inner product on Rn+1

(resp. Cn+1, Hn+1). Then the map σx(y) = 2〈y, x〉x − y is a geodesic symmetry of Sn (resp. S2n+1,

S4n+3). The Riemannian metric on S2n+1 (resp. S4n+3) is the restriction of the Euclidean metric Re〈·, ·〉
on Cn+1 ∼= R2n+2 (resp. of Re〈·, ·〉 on Hn+1 ∼= R4n+4). Observe that this geodesic symmetry coincides

with that of Example 3.12 only in the case of Sn. It is immediate to see that they satisfy σhx = hσxh
−1.

We conclude that KPn is a symmetric space. H

Lemma 3.16. Let M be a connected symmetric space and G = Isom0(M) the identity component of the

isometry group of M . Then G acts transitively on M , so M = G/H, where H = Gx is the isotropy group

of some x ∈M . Moreover, H is compact.

Proof. Any two points x, y ∈M can be joined by a geodesic γ : [0, 1]→M . Then σγ(1/2)σx(x) =

σγ(1/2)σx(γ(0)) = γ(1) = y. By the Myers-Steenrod theorem [MS39], Isom(M) is a finite-

dimensional Lie group. Moreover, the map t 7→ σγ(t/2)σx is a continuous map [0, 1] → Isom(M)

from id to σγ(1/2)σx, so that actually σγ(1/2)σx ∈ G. Hence M = G/H with H = Gx. That H is

compact is the content of [KN63, Vol. 1, Chap. 1, Cor. 4.8].

From now on we fix a connected symmetric space M and write M = G/H for G = Isom0(M) and

H = Gx for a fixed x ∈ M . Since M is complete, then g := LieG is the Lie algebra of Killing fields,

i.e., vector fields X ∈ X(M) such that LXg = 0. Since H is the subgroup of isometries fixing x, then

h := LieH is

h = {X ∈ g : X(x) = 0}.

Let σ : G → G be conjugation by σx, that is, σ(g) = σxgσ
−1
x = σxgσx. Then σ2 = id and σ(h) = h

for all h ∈ H. Indeed, if h ∈ H and y ∈M , let γ : [0, 1]→M be a geodesic from x to y; then

σ(h)(y) = σxhσx(γ(1)) = σx(h ◦ γ(−1)) = h(γ(1)) = h(y).

Consider as well σ∗ := Ad(σx) : g→ g.

Proposition 3.17. We have that h = ker(σ∗ − id). If p := ker(σ∗ + id), then g = h ⊕ p satisfying the

Cartan relations

[h, h], [p, p] ⊆ h and [h, p] ⊆ p. (3.1)

Moreover, p = {X ∈ g : ∇X(x) = 0} and p ∼= TxM .

Proof. Let X ∈ h. Its flow is given by Exp(tX), where we use Exp to denote the Lie group

exponential, not to be confused with exp, the exponential map in the Riemannian manifold M .

Since Exp(tX) ∈ H for each t, we have that

σ∗X =
d

dt

∣∣∣∣
t=0

σ(Exp(tX)) =
d

dt

∣∣∣∣
t=0

Exp(tX) = X.

Conversely, if σ∗X = X, then

X(x) = σ∗X(x) =
d

dt

∣∣∣∣
t=0

σx Exp(tX)σx(x) = σx∗(X(x)) = −X(x),
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so X(x) = 0 and X ∈ h.

Since σ∗ is involutive, meaning σ2
∗ = id, then its eigenvalues are ±1. Then the decomposition

of g into σ∗ eigenspaces is g = h ⊕ p. The Cartan relations follow from the fact that σ∗ is a Lie

algebra homomorphism.

Finally, let X ∈ g be such that ∇X(x) = 0. Let γ(t) = expx(tX(x)) be the unique geodesic

starting at x with velocity X(x) and let Y ∈ X(M) be given by

Y (y) :=
d

dt

∣∣∣∣
t=0

σγ(t/2)σx(y).

Then Y ∈ g. Let v ∈ TxM and let α be any curve starting at x with velocity v. Then

∇vY (x) = ∇ ∂
∂s

∂

∂t

∣∣∣∣
s=t=0

σγ(t/2)σx(α(s)) = ∇ ∂
∂t

∂

∂s

∣∣∣∣
s=t=0

σγ(t/2)σx(α(s))

=
∇
dt

∣∣∣∣
t=0

(σγ(t/2)σx)∗v.

If V is a parallel vector field along γ with V (0) = v, then σx∗V is parallel along γ (traversed

in the inverse direction) with σx∗V (0) = −v, so that σx∗V (t) = −V (−t). Similarly, if we write

Vt/2(s) = V (s+ t
2 ), then Vt/2 is parallel along γt/2 with initial value V ( t2 ), and hence σγ(t/2)∗Vt/2

is parallel along γt/2 with initial value −V ( t2 ). Therefore σγ(t/2)∗Vt/2(s) = −Vt/2(−s). This finally

gives

(σγ(t/2)σx)∗V (s) = σγ(t/2)∗(−V (−s)) = −σγ(t/2)∗
(
Vt/2

(
−s− t

2

))
= Vt/2

(
s+

t

2

)
= V (s+ t).

Then (σγ(t/2)σx)∗v = (σγ(t/2)σx)∗V (0) = V (t), which implies ∇vY (x) = 0. Moreover,

Y (x) =
d

dt

∣∣∣∣
t=0

σγ(t/2)σx(x) = γ̇(0) = X(x).

Killing fields are determined by their value and the value of their covariant derivative at a point,

since so it is for Jacobi fields, and Killing fields are Jacobi fields along geodesics (they are infinites-

imal variations of the geodesic by geodesics). Hence X = Y .

If we let σ̃ : G×G→ G be given by σ̃(g, h) = σ(g)h, then

σ̃∗(X,X) = σ∗X +X =
d

dt

∣∣∣∣
t=0

σ̃(σγ(t/2)σx, σγ(t/2)σx) = 0,

so X ∈ p.

Conversely, if X ∈ p, let Y be as before. Then X − Y ∈ h ∩ p = 0, so that X = Y . Then

∇X(x) = ∇Y (x) = 0.

Finally, consider p → TxM the evaluation at x. If X ∈ p is such that X(x) = 0, then

X ∈ h ∩ p = 0, which gives that the map is injective. For any v ∈ TxM , let γ(t) = expx(tv) and

let Y be as before. Then Y (x) = v and ∇Y (x) = 0, so that Y ∈ p. This gives surjectivity and

ends the proof.

As said, many geometric properties of M are very closely related to the Lie theoretic data of G and

H. For instance, the curvature of M can be computed using the Lie bracket on p.

Proposition 3.18. Let R be the Riemann curvature of M . Then

(R(X,Y )Z)(x) = −[[X,Y ], Z](x), for X,Y, Z ∈ p.
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Proof. Let X,Y ∈ p and γ(t) = expx(tY (x)). As in the proof of Proposition 3.17, we have that

the flow of Y is given by σγ(t/2)σx. Then

Y (γ(t)) =
d

ds

∣∣∣∣
s=0

σγ(s/2)σx(γ(t)) =
d

ds

∣∣∣∣
s=0

γ(t+ s) = γ̇(t).

Since X is Killing, and Killing fields are Jacobi fields (Remark 1.39), we have that Jacobi’s equation

(Definition 1.37) at time 0 gives ∇Y∇YX +R(X,Y )Y = 0 at x. If Z ∈ p, then we have that at x

0 = ∇Y+Z∇Y+ZX +R(X,Y + Z)(Y + Z)

= ∇Z∇YX +R(X,Z)Y +∇Y∇ZX +R(X,Y )Z

= R(X,Z)Y +R(X,Y )Z +R(Z, Y )X + 2∇Y∇ZX +∇[Z,Y ]X.

Since [p, p] ⊆ h, then [Z, Y ](x) = 0, and hence 0 = 2(R(X,Y )Z +∇Y∇ZX)(x). Finally, at x,

R(X,Y )Z = −R(Y, Z)X +R(X,Z)Y = ∇Z∇XY −∇Z∇YX

= ∇Z [X,Y ] = ∇[X,Y ]Z + [Z, [X,Y ]] = −[[X,Y ], Z],

as wanted.

Corollary 3.19. The Ricci curvature of M is given by

Ric(X,Y )(x) = − tr((adX adY )|p), for X,Y ∈ p.

Proof. Simple computation using Proposition 3.18 (here Z ∈ p):

Ric(X,Y )(x) = tr(Z(x) 7→ (R(Z,X)Y )(x)) = tr(Z 7→ −[[Z,X]Y ]) = − tr((adX adY )|p).

Lastly, we show that locally symmetric spaces are determined by the parallelism properties of its

curvature. Recall that if R is the Riemann curvature of a Riemannian manifold M , then when we view

R as a EndTM -valued 2-form on M it is D-closed, where D is the covariant differential (Definition 1.2)

of the Levi-Civita connection ∇. On the other hand, ∇ can be extended to act on tensor fields on

M , and hence it makes sense to consider ∇R as a (1, 4)-tensor field on M . Recall that, as we saw in

Proposition 1.29, the fact that DR = 0 gives the second Bianchi identity for R:

∇XR(Y,Z) +∇YR(Z,X) +∇ZR(X,Y ) = 0, for X,Y, Z ∈ X(M).

Proposition 3.20. A Riemannian space is locally symmetric if and only if its Riemann curvature is

parallel.

Proof. Let M be locally symmetric with curvature R. Let x ∈ M and σx the (local) geodesic

symmetry. Since σx∗(x) = −id and σx is a local isometry, we have that for all u, v, w, z ∈ TxM ,

by Lemma 1.35,

−∇uR(v, w)z = σx∗(∇uR(v, w)z) = ∇σx∗uR(σx∗v, σx∗w)σx∗z = ∇uR(v, w)z,

which gives ∇uR = 0.

Conversely, let M be such that ∇R = 0. Let γ be a geodesic and {Ei}i a parallel orthonormal

frame along it. Then, since ∇γ̇R = 0, we have that ∇γ̇(R(Ei, γ̇)γ̇) = 0, i.e., R(Ei, γ̇)γ̇ is parallel

along γ. Hence, there are constants {aji}i,j such that R(Ei, γ̇)γ̇ = ajiEj . The Jacobi equation for

a field J = biEi along γ is, then, b̈i + aijb
j = 0.

Let Ux be a neighborhood of x ∈ M such that expx : B(0, ε) → Ux is a diffeomorphism.

We want to show that σx : Ux → Ux given by σx(expx v) = expx(−v) is an isometry. Let

y = expx v ∈ Ux and u = expx∗(v)w ∈ TyUx, for v, w ∈ TxM . Then

u =
d

ds

∣∣∣∣
s=0

expx(v + sw).
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Consider the Jacobi field J(t) = d
ds

∣∣
s=0

expx(t(v + sw)) along t 7→ expx(tv). Then u = J(1). Let

{ei}i be an orthonormal basis of TxM and extend it to a parallel orthonormal frame {Ei}i along

the geodesic. Then the coefficients for the equation of J are 〈R(ei, v)v, ej〉. On the other hand,

σx∗u =
d

ds

∣∣∣∣
s=0

σx(expx(v + sw)) =
d

ds

∣∣∣∣
s=0

expx(−v − sw).

Consider the Jacobi field J̃(t) = d
ds

∣∣
s=0

expx(t(−v−sw)) along t 7→ expx(−tv). Then σx∗u = J̃(1).

The coefficients of the equation of J̃ along this geodesic with respect to the frame {−Ei}i are

〈R(−ei,−v)(−v),−ej〉 = 〈R(ei, v)v, ej〉. Observe that J(0) = J̃(0) = 0 and that J̇(0) = w

and ˙̃J(0) = −w. So the equations for the coefficients of J with respect to {Ei}i and of J̃ with

respect to {−Ei}i are the same with the same initial conditions. By the uniqueness of solutions

to ODEs we obtain that the solution is the same. In particular, since both are coefficients with

respect to an orthonormal frame, we get that their norm coincides at every time t. In particular,

‖σx∗u‖ = ‖J̃(1)‖ = ‖J(1)‖ = ‖u‖. Then σx is an isometry, since

2〈u, v〉 = ‖u+ v‖2 − ‖u‖2 − ‖v‖2.

3.2.2. Isotropy representation and holonomy

Back to our globally symmetric space M , observe that, if we let Ch stand for conjugation by h in G,

then, since σ(h) = σxhσx = h,

σ ◦ Ch(g) = σxhgh
−1σx = hσxgσxh

−1 = Ch ◦ σ(g),

which gives that σ∗Ad(h) = (σ ◦ Ch)∗ = (Ch ◦ σ)∗ = Ad(h)σ∗. This implies that the decomposition

g = h⊕ p is Ad(H)-invariant.

Consider the isotropy representation H × TxM → TxM given by (h, v) 7→ h∗v.

Lemma 3.21. The isotropy representation is faithful. With the identification TxM ∼= p, it corresponds

to the adjoint representation of H on p.

Proof. Let h ∈ H be such that h∗(x) = id. Let y ∈M and γ a starting at x with γ(1) = y. Then

h ◦ γ is a geodesic starting at x with velocity γ̇(0), and so h ◦ γ = γ. Hence, h(y) = h(γ(1)) =

γ(1) = y. Therefore h = id and the isotropy representation is faithful.

Also, if X ∈ p, then

Ad(h)X(x) =
d

dt

∣∣∣∣
t=0

hExp(tX)h−1(x) = h∗(X(h−1(x)) = h∗(X(x)),

so indeed the isotropy representation corresponds to the adjoint representation of H on p.

Corollary 3.22. Let n be an ideal of g with n ⊆ h, then n = 0.

Proof. By the Cartan relations (3.1), we have that [n, p] ⊆ n ∩ p ⊆ h ∩ p = 0. Then n ⊆ ker(ad :

h→ gl(p)). By Lemma 3.21, this kernel is 0.

Theorem 3.23. If g is semisimple and M simply connected, then the holonomy representation of M is

equivalent to the isotropy representation. In particular, Hol(M) = H.

Proof. Since ∇R = 0 by Proposition 3.18, then the holonomy principle (Theorem 1.20) implies

that τ−1γ Ry = Rx for any path γ from x to y. Then the Ambrose–Singer theorem (Theorem 1.25)

gives

hol(M) = span{Rx(u, v) : u, v ∈ TxM} = imRx.
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By Proposition 3.18, this is exactly ad[p, p]|p, and by the Cartan relations (3.1), we conclude that

hol(M) ⊆ ad h, when regarding ad h inside gl(p).

It is easy to see that [p, p] ⊕ p is an ideal of g, since by the Jacobi identity and the Cartan

relations,

[[p, p], h] ⊆ [[p, h], p] ⊆ [p, p].

Since the Killing form of g is nondegenerate by Cartan’s criterion ([Kna02, Thm. 1.45] for in-

stance), then the orthogonal of [p, p]⊕ p with respect to the Killing form is also an ideal of g, and

it lies inside of h. By Corollary 3.22, this ideal must vanish, and hence [p, p]⊕p = g, i.e., [p, p] = h.

Therefore, hol(M) = ad h. Since the adjoint representation corresponds to the isotropy repre-

sentation by Lemma 3.21 and this one is faithful, we conclude that the holonomy representation

is equivalent to the isotropy representation and hol(M) = h. Since M = G/H is simply connected

and G is connected, then H is also connected, and this finally gives Hol(M) = Hol0(M) = H.

An interesting case is when M is irreducible and at least 2-dimensional, because then g is semisimple.

Observe that in this case M has nonvanishing curvature, because if it did not we would have that

hol(M) = imRx = 0, so Hol(M) = 1, and since M is irreducible it should have to be 1-dimensional.

Proposition 3.24. If M is irreducible of dimension at least 2 then g is semisimple.

Proof. The first part of the proof of Theorem 3.23 gives that hol(M) ⊆ ad h. Since hol(M) acts

irreducibly on TxM ∼= p, so does ad h on p. Suppose the radical r of g is nonzero and let k+1 be the

level where the descending series of r terminates, i.e., such that r(k) 6= 0 and r(k+1) = [r(k), r(k)] = 0.

Since r(k) is an ideal, then [h, r(k) ∩ p] ⊆ r(k) ∩ p, so r(k) ∩ p is ad h-invariant.

If r(k) ∩ p = 0, then r(k) is an ideal of g inside of h, so by Corollary 3.22 it must vanish, which

is not possible. If r(k) ∩ p = p then p ⊆ r(k) and [p, p] ⊆ r(k+1) = 0. Then by Proposition 3.18 we

have that imRx = ad[p, p]|p = 0, which cannot be because dimM ≥ 2.

3.2.3. Orbits of s-representations

In submanifold theory, 1-connected semisimple symmetric spaces are of great importance, where we call

a symmetric space semisimple if its algebra of Killing vector fields is semisimple.

Definition 3.25. A representation of a Lie group is called an s-representation if it is equivalent to the

isotropy representation of a 1-connected semisimple symmetric space. �

In words of [BCO16], for many reasons, orbits of s-representations play in submanifold theory the

same role as symmetric spaces in Riemannian geometry. We will now focus on showing that orbits of

irreducible s-representations are submanifolds with constant principal curvatures.

Following the notation of the rest of the section, let M = G/H be a 1-connected irreducible symmetric

space of dimension at least 2, and write g = h ⊕ p for its Cartan decomposition. Here G = Isom0(M)

and H = Gx for some x ∈M . Then g is semisimple by Proposition 3.24. Let B denote the Killing form

of g, which is nondegenerate [Kna02, Thm. 1.45]. We recall that it is given by

B(X,Y ) := tr(adX adY ).

It is symmetric, and it is also invariant under Lie algebra automorphisms of g. Indeed, if θ is such an

automorphism, then

B(θX, θY ) = tr(ad(θX) ad(θY )) = tr(θ(adX adY )θ−1) = tr(adX adY ) = B(X,Y ).

In particular, it holds for σ∗ = Ad(σx). This gives that B(p, h) = 0, because if X ∈ p and Y ∈ h, then

B(X,Y ) = B(σ∗X,σ∗Y ) = −B(X,Y ).

This in turn implies that B|h and B|p are nondegenerate.
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Lemma 3.26. B|h is negative definite.

Proof. Let X ∈ h. By the Cartan relations (3.1) we have that (adX)2|h and (adX)2|p are linear

endomorphisms of h and p, respectively. Hence,

B(X,X) = tr(adX)2|h + tr(adX)2|p.

The first term is Bh(X,X), where Bh is the Killing form of h. Since H is compact, by Lemma 3.16,

then there is an Ad(H)-invariant inner product on h, with respect to which adX|h is skew-self-

adjoint. Hence, adX|h diagonalizes with imaginary eigenvalues, and Bh(X,X) is the sum of the

squares of such eigenvalues, so that Bh(X,X) ≤ 0. If it is 0, then adX|h = 0 and B(X, ·) = 0. By

the nondegeneracy of B, this can only happen if X = 0.

As for the second term, consider the inner product 〈·, ·〉 on p given by

〈Y,Z〉 := 〈Y (x), Z(x)〉, for Y,Z ∈ p.

It is Ad(H)-invariant, since by Lemma 3.21, if h ∈ H,

〈Ad(h)Y,Ad(h)Z〉 = 〈h∗(Y (x)), h∗(Z(x))〉 = 〈Y,Z〉.

Then adX|p is skew-self-adjoint with respect to this product, and the same reasoning as with

adX|h gives that tr(adX)2|p ≤ 0 and it is 0 if and only if X = 0.

For X ∈ p, consider the linear functional B|p(X, ·). Then there is X∗ ∈ p such that B|p(X, ·) = 〈X∗, ·〉,
where 〈·, ·〉 is the Ad(H)-invariant product given as in the proof of Lemma 3.26. Then the linear map

p → p given by X 7→ X∗ is self-adjoint with respect to 〈·, ·〉, by the symmetry of B. Therefore, there is

an eigenspace decomposition p = p1⊕· · ·⊕ pm. Let λi be the real eigenvalue corresponding to pi, and let

Xi ∈ pi. Recall that because B is Ad(G)-invariant then adX is skew-self-adjoint for every X ∈ g. Then

if Y ∈ h and Z ∈ p we have that

B([Y,Xi], Z) = −B(Xi, [Y,Z]) = −λi〈Xi, [Y,Z]〉 = λi〈[Y,Xi], Z〉.

Hence, pi is ad h-invariant. Since M is irreducible and the holonomy representation coincides with the

adjoint representation of H on p, by Theorem 3.23 and Lemma 3.21, then pi = p, i.e., there is λ ∈ R such

that B(X,Y ) = λ〈X,Y 〉 for all X,Y ∈ p. Since B is nondegenerate, we must have that λ 6= 0.

We consider now the product B′ on g which coincides with −B if λ < 0 and which is −B|h + B|p if

λ > 0. It is Ad(G)-invariant and positive definite. We need a final lemma.

Lemma 3.27. Let N ↪→ N̄ be a submanifold and g ∈ Isom(N̄) with g(N) = N . Then if ξ ∈ TxN⊥ and

v ∈ TxN , we have that Wg∗ξg∗v = g∗Wξv. In particular, Wg∗ξ and Wξ have the same eigenvalues.

Proof. Lemma 1.35 gives that ∇g∗Xg∗Y = g∗∇XY for X,Y ∈ X(M). Since g preserves N , then

if X ∈ X(N) and ξ ∈ X⊥(N) we finally have that

Wg∗ξg∗X = −(∇g∗Xg∗ξ)> = −(g∗∇Xξ)> = −g∗(∇Xξ)> = g∗WξX.

Proposition 3.28. Let X ∈ p be nonzero. Then the Ad(H)-orbit of X in p is a submanifold with

constant principal curvatures.

Proof. Let B′ be as described above and consider the Ad(H)-orbit of X, call it N , as a submanifold

of the Euclidean space (p, B′|p). The tangent space of N at X is [h, X], and Z ∈ p lies in TXN
⊥

if and only if for all Y ∈ h we have that

B′([Y,X], Z) = B′(Y, [X,Z]) = 0.

39



Chapter 3. Berger’s Holonomy Theorem Jaime Pedregal

Since B′ is nondegenerate, then [X,Z] = 0, i.e., TXN
⊥ = zp(X) := {Z ∈ p : [Z,X] = 0}. Let n

be the orthogonal complement of zh(X) := {Y ∈ h : [Y,X] = 0} in h with respect to B′|h. Then

[n, TXN
⊥] ⊆ TXN . Indeed, if Z,W ∈ TXN⊥, then

[[Z,W ], X] = −[[W,X], Z]− [[X,Z],W ] = 0,

so [Z,W ] ∈ zh(X), and therefore if Y ∈ n then

B′([Y, Z],W ) = B′(Y, [Z,W ]) = 0,

i.e., [Y,Z] ∈ TXN .

Let now h : [0, 1] → H be a piecewise smooth curve and consider X(t) = Ad(h(t))X. Since

h = n ⊕ zh(X), there are piecewise smooth curves n, z : [0, 1] → H such that h(t) = n(t)z(t) and

such that Ln(t)−1∗ṅ(t) ∈ n and Lz(t)−1∗ż(t) ∈ zh(X) for all t, where Lh is left translation by h ∈ H
in H. Then

d

dt
(Ad(z(t))X) =

d

ds

∣∣∣∣
s=0

Ad(z(t)) Ad(z(t)−1z(t+ s))X

= Ad(z(t))[Lz(t)−1∗ż(t), X] = 0,

so actuallyX(t) = Ad(n(t))X. Let Z ∈ TXN⊥ and consider Z(t) = Ad(n(t))Z. Then [X(t), Z(t)] =

Ad(n(t))[X,Z] = 0, so Z(t) ∈ TX(t)N
⊥. Also, by a similar computation as before,

d

dt
Z(t) = Ad(n(t))[Ln(t)−1∗ṅ(t), Z] ∈ Ad(n(t))[n, TXN

⊥] ⊆ Ad(n(t))TXN = TX(t)N,

which means that Z(t) is actually∇⊥-parallel. Since WZ and WAd(n(t))Z have the same eigenvalues

by Lemma 3.27, we conclude that N has constant principal curvatures.

Remark 3.29. The sectional curvature of M at x on the plane spanned by orthonormal X,Y ∈ p is

κ(X,Y ) = −〈[[Y,X], X], Y 〉 = − 1

λ
B([[Y,X], X], Y ) =

1

λ
B([X,Y ], [X,Y ]).

Since B|h is negative definite, then κ ≥ 0 if λ < 0 and κ ≤ 0 if λ > 0 (and κ 6= 0 because M is irreducible

and dimM ≥ 2, as noted earlier). Symmetric spaces with κ ≥ 0 (resp. κ ≤ 0) are said to be of the

compact (resp. noncompact) type.

Notice that, in particular, for an irreducible symmetric space M the scalar curvature is nowhere

vanishing, since scal(x) =
∑
i,j κ(ei, ej), for {ei}i an orthonormal basis for TxM .

3.3. Normal Holonomy Theorem

A key step towards the proof of Simons’s theorem is the normal holonomy theorem, originally proved by

Olmos in [Olm90]. Essentially, this theorem states that the action of the normal holonomy on the normal

space splits orthogonally into a trivial action and an s-representation.

Theorem 3.30 (Normal holonomy theorem). Let M ↪→ M be a submanifold of a space form and

x ∈M . Then there is an orthogonal decomposition TxM
⊥ = V0⊕· · ·⊕Vk and compact normal subgroups

Gi ⊆ Hol⊥0x (M), for i = 1, . . . , k, such that

1. Hol⊥0x (M) = G1 × · · · ×Gk,

2. Gi acts trivially on Vj if i 6= j,

3. Gi acts irreducibly on Vi as an s-representation.
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Another way to put it, which distills what we are interested in, is the following. Recall that if M ↪→M

is a submanifold, we defined

TxM
⊥
0 := {ξ ∈ TxM⊥ : gξ = ξ, for all g ∈ Hol⊥0x (M)}.

Corollary 3.31. Let M ↪→M be a submanifold of a space form and x ∈M . Let TxM
⊥
s be the orthogonal

space to TxM
⊥
0 inside of TxM

⊥. Then Hol⊥0x (M) acts on TxM
⊥
s as an s-representation.

The proof we give here is the original proof given by Olmos as presented in [BCO16, Chap. 3]. It

uses the theory of holonomy systems developed by Simons in [Sim62].

Definition 3.32. Let (V, 〈·, ·〉) be a Euclidean vector space. An algebraic curvature tensor on V is

a (1, 3)-tensor R : V × V → EndV such that for all u, v, w, z ∈ V ,

1. R(u, v) = −R(v, u),

2. 〈R(u, v)w, z〉 = −〈R(u, v)z, w〉,

3. 〈R(u, v)w, z〉 = 〈R(w, z)u, v〉,

4. (Bianchi identity) R(u, v)w +R(v, w)u+R(w, u)v = 0.

We define its scalar curvature as the number

scal(R) :=
∑
i,j

〈R(ei, ej)ej , ei〉,

where {ei}i is any orthonormal basis of V . We denote by R(V ) the vector space of algebraic curvature

tensors on V . �

Of course, algebraic curvature tensors are defined to mimic the behavior of the Riemann curvature at

a point.

If G ⊆ GL(V ) is a Lie group acting on V , then the corresponding action on R(V ) is given by

(gR)(u, v) = g−1R(gu, gv)g, for g ∈ G,

and the action of g := LieG by

(XR)(u, v) = R(Xu, v) +R(u,Xv) + [R(u, v), X], for X ∈ g.

Definition 3.33. A holonomy system is a triple (V,R,G), where (V, 〈·, ·〉) is a Euclidean space, G ⊆
SO(V ) is a compact and connected Lie subgroup and R ∈ R(V ) is such that imR ⊆ g. In this case we

say that G is the holonomy group of the system and that g is its holonomy algebra.

We say that the system is irreducible if G acts irreducibly on V . We say that it is symmetric if

gR = R for all g ∈ G, or, equivalently, if XR = 0 for all X ∈ g. �

It was Cartan the first to notice, although not using the formalism of holonomy systems, that irre-

ducible symmetric holonomy systems can always be represented by irreducible 1-connected symmetric

spaces. This is known as Cartan’s construction. We first need a proposition, which computes explicitly

the Levi-Civita connection of a bi-invariant metric on a Lie group.

Proposition 3.34. Let G be a Lie group with a bi-invariant metric, meaning a metric for which left and

right translations are isometries. Then the Levi-Civita connection is the connection given by

∇XY =
1

2
[X,Y ]

on left-invariant vector fields X,Y ∈ X(G).

The Riemannian exponential is given by expg(Lg∗ξ) = gExp ξ, for g ∈ G and ξ ∈ g, where Exp is the

Lie group exponential and Lg is left translation by g in G. In particular, G is geodesically complete.
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Proof. Since the metric is left and right invariant, then its restriction to g := LieG, which we call

〈·, ·〉g, is Ad(G)-invariant, i.e., if ξ, η ∈ g, then, if Rg denote left and right translation by g ∈ G

〈Ad(g)ξ,Ad(g)η〉g = 〈Lg∗Rg−1∗ξ, Lg∗Rg−1∗η〉 = 〈ξ, η〉g.

This gives, then, that ad ξ is skew-self-adjoint with respect to 〈·, ·〉g for every ξ ∈ g. Also, if

Y,Z ∈ X(G) are left-invariant, then 〈Y,Z〉 = 〈Y (e), Z(e)〉g identically. Hence, if X,Y, Z ∈ X(G)

are left-invariant,

X〈Y, Z〉 = 0 =
1

2
(〈[X(e), Y (e)], Z(e)〉g + 〈Y (e), [X(e), Z(e)]〉g)

=
1

2
(〈[X,Y ], Z〉+ 〈Y, [X,Z]〉) = 〈∇XY,Z〉+ 〈Y,∇XZ〉,

and since being metric is a tensorial property in all three arguments and TG is parallelizable by

left-invariant vector fields, we conclude that ∇ is metric. Also, if X,Y ∈ X(G) are left-invariant,

∇XY −∇YX − [X,Y ] =
1

2
[X,Y ]− 1

2
[Y,X]− [X,Y ] = 0,

so ∇ is torsion-free.

Let g ∈ G and consider γ(t) := gExp(tξ), with ξ ∈ g. Let ξL be the unique left-invariant

vector field whose value at the identity e ∈ G is ξ, given by ξL(g) = Lg∗ξ. Then

γ̇(t) =
d

ds

∣∣∣∣
s=0

gExp(tξ) Exp(sξ) = Lg Exp(tξ)∗ξ = ξL(γ(t)),

so that

∇γ̇ γ̇ = ∇ξLξL(γ(t)) =
1

2
[ξL, ξL](γ(t)) = 0.

Therefore, γ is geodesic. We conclude that expg(Lg∗ξ) = gExp ξ.

Theorem 3.35 (Cartan’s construction). Let (V,R,G) be an irreducible symmetric holonomy system with

R 6= 0. Then there is an irreducible 1-connected Riemannian symmetric space M such that (V,R,G) =

(TxM,Rx,Holx(M)) for any x ∈M , where Rx is the Riemann curvature at x. In particular, g = imR.

Proof. Let l := g⊕ V and define a bracket on l by taking the Lie bracket on g and extending it to

l by [X, v] := Xv and [v, w] := −R(v, w) for X ∈ g and v, w ∈ V . This new bracket in l is in fact

a Lie bracket. We must only check the Jacobi identity. For X,Y ∈ g and v ∈ V we have that

[X, [Y, v]] + [Y, [v,X]] + [v, [X,Y ]] = XY v − Y Xv − [X,Y ]v = 0.

For X ∈ g and v, w ∈ V it is

[X, [v, w]] + [v, [w,X]] + [w, [X, v]] = −[X,R(v, w)] +R(v,Xw) +R(Xv,w) = (XR)(v, w) = 0,

by symmetry of the system. For u, v, w ∈ V it is

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = R(v, w)u+R(w, u)v +R(u, v)w = 0,

by the Bianchi identity. Observe that the decomposition l = g⊕ V satisfies the Cartan relations

[V, V ], [g, g] ⊆ g, [g, V ] ⊆ V.

Actually, l is semisimple. Indeed, if n ⊆ l is an ideal such that n ⊆ g, then the Cartan relations

imply that nV = [n, V ] ⊆ n ∩ V = 0, so n = 0. This is an analogue of Corollary 3.22. Hence,

an analogue proof to that of Proposition 3.24, using that R 6= 0, now gives that l is semisimple,

since the action of adl g on V coincides with the action of g on V , which is irreducible. Also, an

analogue of the proof of Theorem 3.23 gives that [V, V ]⊕ V = l, so [V, V ] = g.
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Since g is compact, we have that B|g is negative definite, where B is the Killing form of l.

Then, the same argument as that prior to Lemma 3.27 gives an Ad(L)-invariant positive definite

product 〈·, ·〉l on l.

Let L be the 1-connected Lie group integrating l and G′ the unique connected subgroup of L

integrating g, i.e., G′ = 〈Exp g〉 [DK00, Thms. 1.14.3 & 1.10.3]. Let M = L/G′, which is a smooth

manifold. Define σ∗ : l→ l by X + v 7→ X − v. It is an involution with eigenspaces g and V . Let

π : L → M be the projection. For any x = π(h) ∈ M , elements of TxM are of the form π∗Rh∗ξ

for ξ ∈ l, where Rh is right translation by h in L. Then we can define a Riemannian metric on M

by

〈π∗Rh∗ξ, π∗Rh∗η〉 := 〈ξ, η〉l, for ξ, η ∈ l.

The Ad(L)-invariance of 〈·, ·〉l ensures that this is well defined.

Actually, M is a symmetric space. Let σ : L→ L be the homomorphism lifting σ∗ to L [DK00,

Cor. 1.10.5]. The isometry at x = π(h) is given by σx ◦ π = π ◦ Rh ◦ σ ◦ Rh−1 . It is clear that

σ2
x = id and σx(x) = x, since σ2 = id and σ sends the identity to the identity. Also, since actually

TxM ∼= V , any tangent vector is of the form π∗Rh∗v, for v ∈ V , which then gives that

σx∗(π∗Rh∗v) = π∗Rh∗σ∗v = −π∗Rh∗v

for any v ∈ V , so σx∗(x) = −id. Lastly, σx is an isometry: for any ξ, η ∈ l and k ∈ L we have that

〈σx∗π∗Rk∗ξ, σx∗π∗Rk∗η〉 = 〈π∗Rh∗σ∗Rh−1∗Rk∗ξ, π∗Rh∗σ∗Rh−1∗Rk∗η〉

= 〈π∗RRh◦σ◦Rh−1 (k)∗ξ, π∗RRh◦σ◦Rh−1 (k)∗η〉 = 〈ξ, η〉l.

Let now Rx denote the Riemann curvature of M at x. Suppose that we have proved the

following equality

Rx(π∗Rh∗u, π∗Rh∗v)π∗Rh∗w = π∗Rh∗(R(u, v)w), for u, v, w ∈ V . (3.2)

Then, as in the proof of Theorem 3.23, the Ambrose–Singer theorem and the holonomy principle

imply that

holx(M) = imRx ∼= imR ⊆ g.

But g = [V, V ] = imR, so g = holx(M), and hence Holx(M) = G. This also gives that M is

irreducible.

It only remains to prove (3.2). Consider in L the following metric: (Lk∗ξ, Lk∗η) := 〈ξ, η〉l, for

k ∈ L. It is of course left-invariant, but it is actually also right-invariant:

(Rk∗ξ,Rk∗η) =
(
Lk∗Ad(k−1)ξ, Lk∗Ad(k−1)η

)
= 〈Ad(k−1)ξ,Ad(k−1)η〉l = 〈ξ, η〉l.

Let ∇L be its Levi-Civita connection, given by Proposition 3.34. Since M = L/G′, any vector

field X ∈ X(M) is π-related to a vector field X̃ ∈ X(L). Consider the connection ∇ on M such

that ∇XY is π-related to ∇L
X̃
Ỹ for every X,Y ∈ X(M), i.e.,

∇XY (π(k)) = π∗(∇LX̃ Ỹ (k)), for k ∈ L.

It is immediate to see that if X,Y, Z ∈ X(M), then 〈Y,Z〉 ◦ π = (Ỹ , Z̃), so that X〈Y, Z〉 ◦ π =

X̃(Ỹ , Z̃). This directly implies that ∇ is metric. Also, since [X,Y ] is π-related to [X̃, Ỹ ], one also

easily sees that ∇ is torsion-free. Hence, ∇ is the Levi-Civita connection of M .

From Proposition 3.34 we also get that

expπ(h)(π∗Rh∗ξ) = π(hExp(Ad(h−1)ξ)).
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Let v ∈ V and let γ(t) := π(hExp(tAd(h−1)v)) be the geodesic starting at π(h) with velocity

π∗Rh∗v. According to the proof of Proposition 3.17, the corresponding Killing vector field X with

vanishing covariant derivative at π(h) is given at π(k), for k ∈ L, by

X(π(k)) =
d

dt

∣∣∣∣
t=0

σγ(t/2)σπ(h)(π(k))

=
d

dt

∣∣∣∣
t=0

π ◦RhExp(tAd(h−1)v/2) ◦ σ ◦RExp(−tAd(h−1)v/2)h−1 ◦Rh ◦ σ ◦Rh−1(k)

=
d

dt

∣∣∣∣
t=0

π(kh−1σ(hExp(−tAd(h−1)v/2)h−1)hExp(tAd(h−1)v/2))

=
1

2
π∗Lk∗Ad(h−1)v − 1

2
π∗Lk∗Ad(h−1)σ∗Ad(h) Ad(h−1)v

= π∗Lk∗Ad(h−1)v = π∗((Ad(h−1)v)L(k)),

where ξL is the unique left-invariant vector field in L with value ξ ∈ l at the identity of L.

If u, v, w, z ∈ V , since [(Ad(h−1)u)L, (Ad(h−1)v)L] = (Ad(h−1)[v, w])L and using Proposi-

tion 3.18 one finally sees that

〈Rx(π∗Rh∗u, π∗Rh∗v)π∗Rh∗w, π∗Rh∗z〉 = −〈[[u, v], w], z〉l = 〈R(u, v)w, z〉l,

and this gives (3.2).

Remark 3.36. In the previous proof, one actually has that Isom0(M) = L. Indeed, first of all notice

that since R 6= 0 necessarily V is at least of dimension 2, and hence so is M . By Proposition 3.24, then,

M is also a semisimple symmetric space. The proof of Theorem 3.23 now gives that, if h⊕p is the Cartan

decomposition of the algebra of Killing vector fields on M , as in the previous section, then h = [p, p].

But in the previous proof we have seen that p ∼= V as Lie algebras, and so l = [V, V ]⊕ V = [p, p]⊕ p, so

L = Isom0(M).

If M ↪→ M is a submanifold of a space form and x ∈ M , we can view its normal curvature at x as a

linear map R⊥ : Λ2TxM → Λ2TxM
⊥ by means of the formula

〈R⊥(u ∧ v), ξ ∧ η〉 = 〈R⊥(u, v)ξ, η〉, for u, v ∈ TxM and ξ, η ∈ TxM⊥.

Then its adjoint R⊥∗ : Λ2TxM
⊥ → Λ2TxM with respect to 〈·, ·〉 is given, by Ricci’s equation (see

Theorem 2.4), by R⊥∗(ξ ∧ η) = [Wξ,Wη], where here we view Λ2TxM ⊆ TxM
⊗2 ∼= EndTxM , using the

metric. With this identification, the product on Λ2TxM is given by 〈A,B〉 = − 1
2 tr(AB). The adapted

normal curvature at x is defined to be R̃⊥ := R⊥ ◦R⊥∗ : Λ2TxM
⊥ → Λ2TxM

⊥, and it is given by

〈R̃⊥(ξ1 ∧ ξ2), ξ3 ∧ ξ4〉 = 〈[Wξ1 ,Wξ2 ], [Wξ3 ,Wξ4 ]〉 = −1

2
tr([Wξ1 ,Wξ2 ][Wξ3 ,Wξ4 ]),

for ξi ∈ TxM⊥.

Lemma 3.37. R̃⊥ is an algebraic curvature tensor on TxM
⊥ with nonpositive scalar curvature. More-

over, its scalar curvature vanishes if and only if R̃⊥ vanishes.

Proof. The three conditions on (skew)symmetry on the arguments are clear, since tr(AB) =

tr(BA). The Bianchi identity can be easily checked by writing all the terms and noting that every

term cancels with some other one because again tr(AB) = tr(BA).

Also, if {ξi}i is an orthonormal basis of TxM
⊥, then

scal(R̃⊥) = −1

2

∑
i,j

tr([Wξi ,Wξj ][Wξj ,Wξi ]) =
1

2

∑
i,j

tr([Wξi ,Wξj ]
2).

Since both Wξi and Wξj are self-adjoint, then [Wξi ,Wξj ] is skew-self-adjoint, so it diagonalizes

with imaginary eigenvalues. Then tr([Wξi ,Wξj ]
2) equals minus the sum of some squares, which is
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always nonpositive and only vanishes when every eigenvalue vanishes, i.e., when [Wξi ,Wξj ] = 0.

Thus, scal(R̃⊥) is nonpositive and vanishes only when [Wξi ,Wξj ] = 0 for all i, j, which means that

R̃⊥(ξi ∧ ξj) = 0 for every i, j, that is, R̃⊥ = 0.

Observe that

im R̃⊥ = R⊥(imR⊥∗) = R⊥(imR⊥∗ ⊕ kerR⊥) = R⊥(imR⊥∗ ⊕ (imR⊥∗)⊥) = imR⊥.

Hence, by the Ambrose–Singer theorem, g := hol⊥x (M) is spanned by

{(τ⊥γ R̃⊥)(ξ1, ξ2) : γ ∈ Πx(M) and ξi ∈ TxM⊥}.

We now prove three lemmas that we will need in the proof of the Normal Holonomy Theorem. We

let G := Hol⊥0x (M).

Lemma 3.38. Let S = {τ⊥γ R̃⊥ : γ ∈ Πx(M)} and let TxM
⊥ = V0 ⊕ · · · ⊕ Vk be the unique, up to order,

orthogonal decomposition with G acting trivially on V0 and irreducibly on Vi, for i 6= 0. Then for any

R ∈ S and ξ, η ∈ TxM⊥, if we denote by ξi, ηi the projections of ξ, η onto Vi, respectively, we have that

1. R(ξi, ξj) = 0 if i 6= j,

2. R(ξ, η) =
∑
iR(ξi, ηi),

3. R(ξi, ηi)Vj = 0 if i 6= j,

4. R(ξi, ηi)Vi ⊆ Vi.

Proof. For any ξ′, η′ ∈ TxM
⊥ we have that 〈R(ξi, ξj)ξ

′, η′〉 = 〈R(ξ′, η′)ξi, ξj〉. Since G acts on

Vi and R(ξ′, η′) ∈ g, then R(ξ′, η′)ξi ∈ Vi and so 〈R(ξi, ξj)ξ
′, η′〉 = 0 if i 6= j. This gives 1, and

2 follows immediately. By Bianchi’s identity and 1, if i 6= j, then R(ξi, ηi)ξj = −R(ηi, ξj)ξi −
R(ξj , ξi)ηi = 0, which proves 3. Finally, 4 is just a consequence of Vi being invariant under G and

R(ξi, ηi) ∈ g.

Lemma 3.39. Using the notation of Lemma 3.38, let gi be the span of {R(ξi, ηi) : ξi, ηi ∈ Vi, R ∈ S},
for i 6= 0. Then

1. [gi, gj ] = 0 if i 6= j,

2. g = g1 ⊕ · · · ⊕ gk and every gi is an ideal in g,

3. giVj = 0 if i 6= j,

4. gi acts irreducibly on Vi.

Proof. If i 6= j, then [R(ξi, ηi), R(ξj , ηj)]Vl = 0 for every l, by Lemma 3.38(3). This proves 1. That

g = g1 + · · ·+ gk follows from Lemma 3.38(2) and from the fact that

g = span{R(ξ, η) : ξ, η ∈ TxM⊥, R ∈ S},

by the Ambrose–Singer theorem. To see that the sum is actually direct, observe that if R(ξi, ηi) =

R′(ξj , ηj), for some R,R′ ∈ S and ξi, ηi ∈ Vi and ξj , ηj ∈ Vj , with i 6= j, then R(ξi, ηi)Vi =

R′(ξj , ηj)Vi = 0, by Lemma 3.38(3). This means that R(ξi, ηi) acts trivially on TxM
⊥, since it

already acts trivially on any Vj with i 6= j, by Lemma 3.38(3) again. Now,

[g, gi] = [g1, gi] + · · ·+ [gk, gi] = [gi, gi].

The same reasoning that showed that gi ∩ gj = 0 shows as well that [gi, gi] ∩ gj = 0, for i 6= j,

from where it follows that [gi, gi] ⊆ gi. Therefore, gi is an ideal of g, giving 2. Lemma 3.38 and

the fact that G acts irreducibly on each Vi easily give 3 and 4.

45



Chapter 3. Berger’s Holonomy Theorem Jaime Pedregal

Lemma 3.40. Let G ⊆ SO(V ) be a connected Lie subgroup acting irreducibly and R ∈ R(V ) with

imR ⊆ g. Then G is compact, and it acts on V as an s-representation if scal(R) 6= 0.

Proof. That G is compact follows from the fact that any connected Lie subgroup of SO(n) acting

irreducibly on Rn is closed in SO(n) (see for instance [KN63, Vol. 1, App. 5, Thm. 2]). Since G

is compact, there is a Haar measure µ on G. Let

R′ :=

∫
G

(gR)dµ(g).

Then, since scal(gR) = scal(R) for any g ∈ G, we have that scal(R′) = scal(R)µ(G) 6= 0 if

scal(R) 6= 0. Also, R′ is G-invariant. Hence, (V,R′, G) is an irreducible symmetric holonomy

system. By Cartan’s construction, Theorem 3.35, the G-action on V corresponds to the holon-

omy representation of a 1-connected semisimple Riemannian symmetric space. Since in this case

the holonomy and the isotropy representations coincide, we conclude that the G-action is an

s-representation.

We can finally give the sought proof.

Proof. (Of the Normal Holonomy Theorem, Theorem 3.30) Let TxM
⊥ = V0 ⊕ · · · ⊕ Vk and g =

g1 ⊕ · · · ⊕ gk be as in Lemmas 3.38 and 3.39. Let Gi be the connected Lie subgroup of G with

Lie algebra gi. These groups are normal in G because the gi are ideals in g by Lemma 3.39(2).

Moreover, G = G1 × · · · × Gk. By Lemma 3.39(3) and Lemma 3.39(4) we have that Gi acts

trivially on Vj and irreducibly on Vi, for i 6= j. Finally, for each i let Ri ∈ S be such that

Ri|Vi 6= 0, which exists because gi does not act trivially on Vi. Since scal(Ri) = 0 if and only if

Ri = 0, by Lemma 3.37, then we can apply Lemma 3.40 to Gi ⊆ SO(Vi) and conclude that Gi is

compact (and hence G is so as well) and acts on Vi as an s-representation.

3.4. Simons’s Holonomy Theorem

In this section we finally prove Simons’s holonomy theorem, from which Berger’s holonomy theorem can

be deduced. A holonomy system (V,R,G) is called (non)transitive if G acts (does not act) transitively

on the unit sphere of V .

Theorem 3.41 (Simons’s holonomy theorem). An irreducible nontransitive holonomy system is neces-

sarily symmetric.

The proof we give here is the geometric proof found by Olmos [Olm05], or rather an enhanced version

of it presented in [BCO16]. It is long and technical. The two main ingredients are: if V is a Euclidean

vector space equipped with the Levi-Civita connection, G ⊆ SO(V ) is a compact connected Lie subgroup

acting irreducibly on V and v ∈ V is nonzero, then:

1. for every w ∈ Gv and g ∈ G there is a smooth curve γ inGv from w to gw such that g∗|Tw(Gv)⊥ = τ⊥γ ;

this is is Proposition 3.47, towards which we already worked in Section 2.2 and Section 3.2.3;

2. there is some normal vector ξ ∈ Tv(Gv)⊥ with ξ /∈ Rv such that

V =
∑
t∈R

Tv+tξ(G(v + tξ))⊥;

this is Lemma 3.49.

3.4.1. Exponential map and equivariant vector fields

Let M be a Riemannian manifold with a connection ∇ on TM , and denote by π the projection TM →M .

Let U be the subset of vectors v ∈ TM such that the unique geodesic starting at π(v) with velocity v is
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defined up to time 1, and define exp′ : U →M ×M by sending v to (π(v), exp v). It is a diffeomorphism

from a neighborhood of the zero section of TM onto a neigborhood of the diagonal in M ×M [Pet16,

Thm. 5.5.1], by the inverse function theorem.

Let now N be a submanifold of M and exp⊥ : U ∩ TN⊥ → M the projection unto the second

component of the restriction of exp′ to U ∩TN⊥. It is easy to see again that exp⊥ maps diffeomorphically

a neighborhood of the zero section of TN⊥ onto its image in M . Such an image is called a tubular

neighborhood for N . If N is compact, then it can be taken to be the image by exp⊥ of the ε-ball bundle

{ξ ∈ TN⊥ : ‖ξ‖ < ε} for some ε > 0.

This gives a way of computing the isotropy of the slice representation.

Lemma 3.42. Let M be a Riemannian manifold and G ⊆ Isom(M) a compact Lie subgroup. For x ∈M ,

consider the slice representation Gx × Tx(Gx)⊥ → Tx(Gx)⊥ given by (g, ξ) 7→ g∗ξ. Then if the norm of

ξ ∈ Tx(Gx)⊥ is small enough, the isotropy group of ξ is (Gx)ξ = Gexpx ξ.

Proof. For any g ∈ G, since g takes geodesics to geodesics, we have that g expx v = expgx(g∗v) for

every v ∈ TxM . In particular, if g ∈ (Gx)ξ, then g expx ξ = expx ξ, so g ∈ Gexpx ξ.

To show the converse, let ε > 0 be such that the ε-ball bundle gives a tubular neighborhood of

the orbit Gx. Let ‖ξ‖ < ε and g ∈ Gexpx ξ. Then ‖g∗ξ‖ < ε as well and

exp⊥ ξ = expx ξ = g expx ξ = expgx(g∗ξ) = exp⊥(g∗ξ).

Since exp⊥ is a diffeomorphism on the ε-ball bundle, this gives that ξ = g∗ξ, and therefore also

x = gx. That is, g ∈ (Gx)ξ.

It also gives that on compact isometric orbits any normal vector can be extended to an equivariant

normal vector field.

Proposition 3.43. Let V be a Euclidean vector space equipped with the Levi-Civita connection ∇, let

G ⊆ SO(V ) be a compact connected Lie subgroup and v ∈ V nonzero. Then for any ξ ∈ Tv(Gv)⊥ the

formula ξ̃(gv) := g∗ξ defines a normal vector field ξ̃ ∈ X⊥(Gv). It is the unique equivariant normal vector

field with value ξ at v.

Proof. Let C := {w ∈ V : 1
2‖v‖ ≤ ‖w‖ ≤

3
2‖v‖}, which is compact in V . Then there is ε′ > 0 such

that for all w ∈ C the ε′-ball bundle gives a tubular neighborhood of Gw. Let ε := min( 1
2‖v‖, ε

′)

and ξ ∈ Tv(Gv)⊥ with ‖ξ‖ < ε. Then we can apply Lemma 3.42 to ξ to obtain that (Gv)ξ =

Gexpv ξ = Gv+ξ. Hence, Gv+ξ ⊆ Gv.
Let X ∈ g. The infinitesimal generator of the G-action at any w ∈ V is given by XV (w) = Xw.

Therefore Tw(Gw) = {Xw : X ∈ g}. Then, since ξ ∈ Tv(Gv)⊥, which means that 〈Xv, ξ〉 = 0,

and g ⊆ so(V ), we have that

〈X(v + ξ), ξ〉 =
1

2
(〈Xξ, ξ〉+ 〈ξ,Xξ〉) = 0,

so ξ ∈ Tv+ξ(G(v + ξ))⊥. Also, v + ξ ∈ C, so that ξ lies in the tubular neighborhood of G(v + ξ).

Hence, Lemma 3.42 now gives that (Gv+ξ)−ξ = Gv, so that Gv ⊆ Gv+ξ. Therefore, (Gv)ξ =

Gv+ξ = Gv, which means that the slice representation of Gv on Tv(Gv)⊥ is trivial. This gives that

ξ̃ is well defined: if gv = hv for some g, h ∈ G, then h−1g ∈ Gv, so h−1∗ g∗ξ = ξ, i.e., g∗ξ = h∗ξ.

Let now ξ ∈ Tv(Gv)⊥ be of any length. Then there is some η ∈ Tv(Gv)⊥ with ‖η‖ < ε and λ ∈ R
such that ξ = λη. Then η̃ is well defined by the above argument. But ξ̃(gv) = g∗ξ = λg∗η = λη̃(gv),

so ξ̃ is well defined as well.

Finally, if η were another equivariant vector field with value ξ at v, then η(gv) = (g∗η)(gv) =

g∗(η(g−1gv)) = g∗ξ = ξ̃(gv).
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3.4.2. Transvections

Let M ↪→M be a submanifold. A transvection of M is an isometry g of M such that g(M) = M and

such that for every x ∈ M there is a curve γ in M from x to g(x) such that g∗|TxM⊥ = τ⊥γ . Let now V

be a Euclidean vector space, G ⊆ SO(V ) a compact connected Lie subgroup and v ∈ V nonzero. The

proof of Simons’s theorem given in [BCO16] is based on the following fact: every g ∈ G is a transvection

of the orbit Gv if the action is irreducible, as we will now show. We need, though, some preliminaries.

The first fact we need is that if a connected Lie subgroup of SO(n) acts as an s-representation then it

equals the connected component of the identity of its normalizer. This is a consequence of the following

fact, for which we need some notions that will be introduced in Section 3.6, so it can be skipped in a

first reading and revisited afterwards. Recall that the normalizer of a subgroup H of a group G is the

subgroup {g ∈ G : gHg−1 = H}.

Proposition 3.44. Let M be a Riemannian manifold irreducible at x ∈ M . Let n be the Lie algebra of

the normalizer of Hol0x(M) inside SO(TxM). Then holx(M) 6= n if and only if M is Kähler and Ricci-flat

in a 1-connected neighborhood of x.

Proof. As already described in Section 3.3, the metric on EndTxM is given by 〈A,B〉 = − 1
2 tr(AB).

Let g := holx(M) and let l be its orthogonal complement in n. First, g is an ideal of n, because if

A ∈ n and B ∈ g, then, since Exp(tA) Exp(sB) Exp(−tA) ∈ Hol0x(M) for all s and t,

d2

dtds

∣∣∣∣
s=t=0

Exp(tA) Exp(sB) Exp(−tA) =
d2

dtds

∣∣∣∣
s=t=0

Exp(sAd(Exp(tA))B)

=
d

dt

∣∣∣∣
t=0

Ad(Exp(tA))B = [A,B] ∈ g.

Also, the metric 〈·, ·〉 is Ad-invariant, since the adjoint action in GL(TxM) is given by conjugation,

so that if g ∈ GL(TxM),

〈Ad(g)A,Ad(g)B〉 = −1

2
tr(gAg−1gBg−1) = 〈A,B〉.

Hence, l is also an ideal of n, because if A ∈ n, B ∈ l and C ∈ g, then

〈[A,B], C〉 = −〈B, [A,C]〉 = 0.

Therefore, [l, g] = 0. Assume that l 6= 0 and let Jx ∈ l be nonzero. Then J2
x is self-adjoint and

commutes with g, and so also with Hol0x(M), because the endomorphism exponential is given by

a series. If Ex is an eigenspace of eigenvalue λ ∈ R (these exist because J2
x is self-adjoint), then

Ex is Hol0x(M)-invariant. Since M is irreducible, we must have that Ex = TxM , so that J2
x = λid.

Since for all v ∈ TxM we have that 〈J2
xv, v〉 = λ‖v‖2 = −〈Jxv, Jxv〉 = −‖Jxv‖2, we must have

λ < 0, and by rescaling we may take J2
x = −id.

By the holonomy principle, there is a parallel complex structure J on a simply connected

neighborhood of x. Hence, M on that neighborhood is Kähler, by Proposition 3.67. Observe

that if X and Y are local vector fields around x and {Ei}i is a local orthonormal frame, using

Proposition 3.72,

〈R(X,Y ), J〉 = −1

2
tr(R(X,Y )J) = −1

2

∑
i

〈Ei, R(X,Y )JEi〉

=
1

2

∑
i

〈JEi, R(X,Y )Ei〉 = −1

2

∑
i

〈JEi, R(Y,Ei)X〉 −
1

2

∑
i

〈JEi, R(Ei, X)Y 〉

= −1

2
Ric(Y, JX) +

1

2
Ric(X, JY ) = Ric(X, JY ).

But if γ is a curve inside this neighborhood from x to y, since parallel transport is a linear isometry,

then

〈R(X,Y )y, Jy〉 = 〈τ−1γ R(X,Y )yτγ , Jx〉 = 0,
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because Jx ∈ l and, by the Ambrose–Singer theorem, τ−1γ R(X,Y )yτγ ∈ g. Hence, M is locally

Ricci-flat at x.

Conversely, assume that M is locally Kähler and Ricci-flat around x. Let J be the complex

structure. Then, since J is parallel, it is invariant under conjugation by elements of Hol0x(M),

so [Jx, g] = 0, i.e. Jx ∈ n. Since M is Ricci-flat, then by the previous argument using the

Ambrose–Singer theorem, Jx is orthogonal to g. We conclude, then, that g 6= n.

Corollary 3.45. Let G ⊆ SO(n) be a connected Lie subgroup acting irreducibly as an s-representation.

Then G equals the connected component of the identity of its normalizer in SO(n).

Proof. Let M be a 1-connected irreducible symmetric space such that the G-action is equivalent

to the isotropy (or holonomy) representation of M . By Remark 3.29, M cannot be Ricci-flat, so

the result now follows from Proposition 3.44.

The last ingredient we need is a result by Olmos, whose proof falls outside the scope of this thesis.

Here we adapt the statement to our needs.

Proposition 3.46 ([BCO16, Cor. 5.1.8]). Let V be a Euclidean vector space equipped with the Levi-Civita

connection, G ⊆ SO(V ) a compact connected Lie subgroup acting irreducibly on V and v ∈ V nonzero.

If dimTw(Gv)⊥0 ≥ 2, for some w ∈ Gv, then Gv is the orbit of an s-representation.

In particular, if dimTw(Gv)⊥0 ≥ 2, then Gv has constant principal curvatures by Proposition 3.28.

Proposition 3.47. Let V be a Euclidean vector space equipped with the Levi-Civita connection, G ⊆
SO(V ) a compact connected Lie subgroup acting irreducibly on V and v ∈ V nonzero. Then for every

w ∈ Gv and g ∈ G there is a piecewise smooth curve γ in Gv from w to gw such that g∗|Tw(Gv)⊥ = τ⊥γ .

Proof. Let g ∈ G and let ∇ be the Levi-Civita connection on V and ∇ and ∇⊥ the Levi-Civita

and normal connections on Gv. Then, as in the proof of Lemma 3.27, we have that g∗(∇XY ) =

∇g∗Xg∗Y , for X,Y ∈ X(Gv). This immediately gives that for every w ∈ Gv,

Hol⊥0w (Gv) = g∗|−1Tw(Gv)⊥
Hol⊥0gw(Gv)g∗|Tw(Gv)⊥ .

Let w ∈ Gv and let g̃ : [0, 1] → G be a smooth curve from the identity to g. Let γ(t) := g̃(t)v.

Let Tw(Gv)⊥ = V0 ⊕ · · · ⊕ Vk be the decomposition given by the normal holonomy theorem

(Theorem 3.30), and let Tgw(Gv)⊥ = W0 ⊕ · · · ⊕Wk be the corresponding decomposition. Since

both representations are equivalent, with the equivalence being given by conjugation by τ⊥γ , we

can assume that the representations Vi and Wi are equivalent. Let i 6= 0. Since Hol⊥0w (Gv) acts

on Vi we can regard it as being inside of SO(Vi). Then (τ⊥γ )−1g∗|Vi is in the identity component

of the normalizer of Hol⊥0w (Gv) in SO(Vi), since

(τ⊥γ )−1g∗|Vi Hol⊥0w (Gv)g∗|−1Vi τ
⊥
γ = (τ⊥γ )−1 Hol⊥0gw(Gv)−1τ⊥γ = Hol⊥0w (Gv).

Since Hol⊥0w (Gv) acts on Vi as an irreducible s-representation, Corollary 3.45 gives that actually

(τ⊥γ )−1g∗|Vi lies in Hol⊥0w (Gv), i.e., there is a null-homotopic curve αi in Gv such that g∗|Vi =

τ⊥γ τ
⊥
αi . Since τ⊥αj , for j 6= i, acts trivially on Vi, we also have that g∗|Vi = τ⊥γ τ

⊥
α , with α = α1 ·. . . αk

null-homotopic. Hence, on Tw(Gv)⊥s = V1 ⊕ · · · ⊕ Vk we have that

g∗|Tw(Gv)⊥s
= τ⊥γ τ

⊥
α .

It only remains to see that it also holds on Tw(Gv)⊥0 . First of all, note that Gv ⊆ S(‖v‖), where

S(r) is the sphere of radius r in V . Hence, the radial vector field ξ(w) = w is a normal vector field

of Gv. Moreover, it is ∇⊥-parallel, since ∇Xξ = X, so that ∇⊥Xξ = X⊥ = 0 for all X ∈ X(Gv).

Hence, dimTw(Gv)⊥0 ≥ 1.
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If dimTw(Gv)⊥0 = 1, then ξ is the only normal ∇⊥-parallel vector field. Since Wξ = −id, we

have that Wξ has constant eigenvalues, and hence Gv would have constant principal curvatures. If

dimTw(Gv)⊥0 > 1, then Proposition 3.46 gives that Gv has constant principal curvatures as well.

Observe that if η is a curvature normal, then g∗η is so as well. Indeed, if E(w) is the corresponding

eigenspace of η, so that

Wξu = 〈η(w), ξ〉u, for ξ ∈ Tw(Gv)⊥0 and u ∈ E(w),

then, by Lemma 3.27,

Wg∗ξg∗u = g∗Wξu = 〈g∗η(gw)), g∗ξ〉g∗u.

Hence t 7→ g̃(t)∗η(w) is a smooth family of curvature normals at w. Since there is only a finite

amount of curvature normals, we conclude that g∗η = η, i.e., η is G-equivariant. Since the

curvature normals span T (Gv)⊥0 pointwise and they are∇⊥-parallel, by Proposition 2.9, then for all

ξ ∈ Tw(Gv)⊥0 we have that the corresponding G-equivariant vector field given by Proposition 3.43

is ∇⊥-parallel. Hence,

τ⊥γ τ
⊥
α ξ = τ⊥γ ξ = g∗ξ,

and this ends the proof.

3.4.3. Proof of Simons’s theorem

We finally prove Simons’s theorem. Here we follow [BCO16, Sec. 8.2] closely.

First of all, the fact that G lies in the group of transvections of the orbit Gv has the following

consequence, which will be key in the proof.

Proposition 3.48. Let V be a Euclidean vector space equipped with the Levi-Civita connection, G ⊆
SO(V ) a compact connected Lie subgroup acting irreducibly and v ∈ V nonzero. Let X ∈ g and define

X̄ : Tv(Gv)⊥ → Tv(Gv)⊥ by

X̄ξ :=
∇⊥

dt

∣∣∣∣
t=0

Exp(tX)∗ξ,

where ∇⊥ is the normal connection of the orbit Gv. Then X̄ ∈ hol⊥v (Gv).

Proof. We can write X̄ as

X̄ =
d

dt

∣∣∣∣
t=0

(τ⊥t )−1 Exp(tX)∗|Tv(Gv)⊥ ,

where τ⊥t is∇⊥-parallel transport along the curve t 7→ Exp(tX)v up to time t. By Proposition 3.47,

for each t there is a curve γt in Gv such that Exp(tX)∗|Tv(Gv)⊥ = τ⊥γt , and so

(τ⊥t )−1 Exp(tX)∗|Tv(Gv)⊥ ∈ Hol⊥v (Gv)

for each t. Then X̄ ∈ hol⊥v (Gv).

Observe that actually, since elements of G are linear isometries,

X̄ξ =

(
∇
dt

∣∣∣∣
t=0

Exp(tX)∗ξ

)⊥
=

(
d

dt

∣∣∣∣
t=0

Exp(tX)ξ

)⊥
= XV (ξ)⊥,

that is, X̄ is the orthogonal projection unto Tv(Gv)⊥ of XV |Tv(Gv)⊥ .

In what follows, we prove three technical lemmas.

Lemma 3.49. Let V be a Euclidean vector space, G ⊆ SO(V ) a compact connected Lie subgroup that is

not transitive on the unit sphere of V and v ∈ V nonzero. Then there is some normal vector ξ ∈ Tv(Gv)⊥

with ξ /∈ Rv such that

V =
∑
t∈R

Tv+tξ(G(v + tξ))⊥.

Moreover, v ∈ Tv+tξ(G(v + tξ))⊥ for all t ∈ R.
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Proof. First we see that v ∈ Tv+tξ(G(v+ tξ))⊥ for all t ∈ R. Since Tv+tξ(G(v+ tξ)) = {X(v+ tξ) :

X ∈ g} and because g ⊆ so(V ), we have that for all X ∈ g,

〈v,X(v + tξ)〉 =
1

2
(〈v,Xv〉+ 〈Xv, v〉)− t〈Xv, ξ〉 = 0.

Let S be the sphere of V of radius ‖v‖. Since G ⊆ SO(V ) and the orbit of SO(V ) through v is

S, we have that Gv is a submanifold of S. If Tv(Gv)⊥ = Rv = TvS
⊥, then dimGv = dimS and

Gv would be an open submanifold of S. But it is also a compact submanifold of S, and hence

topologically closed in S. The connectedness of S would give then that Gv = S, which cannot be

because G is not transitive. Therefore, Tv(Gv)⊥ 6= Rv and we can pick some ξ ∈ Tv(Gv)⊥ rRv.

Note as well that the Weingarten operator in the direction of v is −id, since v is the value of

the radial vector field at v. Hence, by perturbing ξ by some multiple of v we can assume that

detWξ 6= 0.

Define now

U :=

(∑
t∈R

Tv+tξ(G(v + tξ))⊥

)⊥
.

We aim at showing that U = 0.

Write γ(t) = v + tξ for simplicity. To any X ∈ g we can associate a vector field along γ given

by

JX(t) := XV (γ(t)) = Xv + tXξ.

Since U ⊆ Tγ(t)(Gγ(t)) for all t ∈ R, any element in U can be written as Xv for some X ∈ g. For

any such X, since JX(t) ∈ Tγ(t)(Gγ(t)) for any fixed t ∈ R, and Xv ∈ U , we have that

〈JX(t), η〉 = 〈Xv, η〉+ t〈J̇X(0), η〉 = t〈J̇X(0), η〉 = 0,

for any η ∈ Tγ(t)(Gγ(t))⊥, which gives that J̇X(0) ∈ Tγ(t)(Gγ(t)) for all t 6= 0. To see that also

J̇X(0) ∈ Tv(Gv), note that Tγ(t)(Gγ(t)) → Tv(Gv) as t → 0. Indeed, if we write γ(t)/‖γ(t)‖ =

h(t)v for some smooth curve h : R→ SO(V ), then

Tγ(t)(Gγ(t)) = {Xγ(t) : X ∈ g} =

{
X

γ(t)

‖γ(t)‖
: X ∈ g

}
= {Xh(t)v : X ∈ g}

−→ {Xv : X ∈ g} = Tv(Gv).

Hence, J̇x(0) ∈ U .

Let now ξ̃ be the equivariant vector field normal to Gv with value ξ at v. Then for all g ∈ G
and f ∈ C∞(Gv) we have that

XV (gv)(ξ̃f) =
d

dt

∣∣∣∣
t=0

ξ̃f(Exp(tX)gv) =
d

dt

∣∣∣∣
t=0

g∗ξ(f ◦ Exp(tX))

= g∗ξ

(
d

dt

∣∣∣∣
t=0

f ◦ Exp(tX)

)
= g∗ξ(XV f) = ξ̃(gv)(XV f),

i.e., [ξ̃, XV ] = 0 on Gv. Therefore,

J̇X(0) =
∇
dt

∣∣∣∣
t=0

JX(t) = ∇ξXV = ∇XV (v)ξ̃ = ∇⊥Xv ξ̃ −Wξ(Xv) ∈ U.

From all this we conclude that ∇⊥U ξ̃ = 0 and WξU ⊆ U .

Since Wξ is self-adjoint, we have as well that Wξ(U
⊥ ∩ Tv(Gv)) ⊆ U⊥ ∩ Tv(Gv). For any

Y ∈ g such that Y v ∈ U⊥ ∩ Tv(Gv) we have that J̇Y (0) = ∇⊥Y v ξ̃ − Wξ(Y v) ∈ U⊥, because

∇⊥Y v ξ̃ ∈ Tv(Gv)⊥ ⊆ U⊥. Hence, JY (t) = Y v + tJ̇Y (0) ∈ U⊥.

Let now X1, . . . , Xk ∈ g be such that {Xiv}i is an eigenbasis for Wξ|U , with respective eigen-

values {λi}i. Note that λi 6= 0 for all i, since detWξ 6= 0. Then JXi(t) = (1 − λit)Xiv. For any
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Z ∈ g, write Z = X + Y , with X in the span of {Xi}i and with Y such that Y v ∈ U⊥ ∩ Tv(Gv).

Then

JZ(t) =
∑
i

JXi(t) + JY (t) =
∑
i

(1− λit)Xiv + JY (t).

For every i, at time t = 1/λi we have 〈JZ(t), Xiv〉 = (1 − λit)‖Xiv‖2 = 0. Hence, Xiv ∈
Tγ(1/λi)(Gγ(1/λi))

⊥, since Tγ(t)(Gγ(t)) = {Zγ(t) : Z ∈ g} = {JZ(t) : Z ∈ g}. Then Xiv ∈
U ∩ U⊥ ∩ Tv(Gv) = 0. This finally gives U = 0, as wanted.

Lemma 3.50. Let (V,R,G) be a holonomy system. Then

1. Tv(Gv)⊥ is invariant under R for all v ∈ V , that is,

R(Tv(Gv)⊥, Tv(Gv)⊥)Tv(Gv)⊥ ⊆ Tv(Gv)⊥;

2. the restriction of R to Tv(Gv)⊥ is invariant under Hol⊥0v (Gv).

Proof. Let v ∈ V . Then for any u,w ∈ V and ξ ∈ Tv(Gv)⊥ we have that, since R(u,w) ∈ g,

〈R(u,w)v, ξ〉 = 0 = 〈R(v, ξ)u,w〉,

so R(v, ξ) = 0. Then the Bianchi identity gives that R(ξ, η)v = −R(η, v)ξ − R(v, ξ)η = 0 for any

ξ, η ∈ Tv(Gv)⊥, which means that R(ξ, η) ∈ gv, where gv is the isotropy algebra of v, given by

gv = {X ∈ g : Xv = 0}. For any X ∈ gv, Y ∈ g and ξ ∈ Tv(Gv)⊥ we have that

〈Xξ, Y v〉 = −〈ξ,XY v〉 = −〈ξ, [X,Y ]v〉 = 0,

and hence gvTv(Gv)⊥ ⊆ Tv(Gv)⊥. This gives 1.

Let γ be a piecewise smooth curve in Gv and let ξ be a ∇⊥-parallel vector field normal to Gv

along γ. Then
d

dt
ξ(t) =

∇
dt
ξ =
∇⊥

dt
ξ −Wξ(t)(γ̇(t)) ∈ Tγ(t)(Gγ(t))

(here ∇ is the Levi-Civita connection of V ).

Let ξi, for i = 1, 2, 3, 4, be vector fields of such kind. Because R is a constant tensor on V ,

then R(γ(t)) is ∇-parallel, so

0 = 〈
(
∇
dt
R(γ(t))

)
(ξ1(t), ξ2(t))ξ3(t), ξ4(t)〉

=
d

dt
〈R(ξ1(t), ξ2(t))ξ3(t), ξ4(t)〉 − 〈R

(
d

dt
ξ1(t), ξ2(t)

)
ξ3(t), ξ4(t)〉

− 〈R
(
ξ1(t),

d

dt
ξ2(t)

)
ξ3(t), ξ4(t)〉 − 〈R(ξ1(t), ξ2(t))

d

dt
ξ3(t), ξ4(t)〉

− 〈R(ξ1(t), ξ2(t))ξ3(t),
d

dt
ξ4(t)〉.

Since d
dtξi(t) ∈ Tγ(t)(Gγ(t)), then 1 gives that d

dt 〈R(ξ1(t), ξ2(t))ξ3(t), ξ4(t)〉 = 0, and this immedi-

ately implies 2.

Lemma 3.51. Let (V,R,G) be a holonomy system, X ∈ g and W ⊆ V a subspace which is invariant

under both R and XR. Let X̄ be the orthogonal projection unto W of XV |W . Then (XR)|W = X̄ ·R|W .

Proof. Let w1, w2, w3 ∈ W and ξ ∈ W⊥. Then 〈R(w1, ξ)w2, w3〉 = 〈R(w2, w3)w1, ξ〉 = 0 and

〈R(w1, w2)ξ, w3〉 = −〈R(w1, w2)w3, ξ〉 = 0. Let P : V → V be orthogonal projection unto W .

Explicitly, X̄ is given by PXw on w ∈W . Then, if w4 ∈W ,

〈(XR)(w1, w2)w3, w4〉 = 〈XR(w1, w2)w3 −R(Xw1, w2)w3 −R(w1, Xw2)w3 −R(w1, w2)Xw3, w4〉

= 〈PXR(w1, w2)w3 −R(X̄w1, w2)w3 −R(w1, X̄w2)w3 −R(w1, w2)X̄w3, w4〉

= 〈(X̄ ·R|W )(w1, w2)w3, w4〉,

and this gives the result.
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Theorem 3.52 (Simons). Every nontransitive irreducible holonomy system is symmetric.

Proof. Let (V,R,G) be a nontransitive holonomy system and X ∈ g. Let v ∈ V be nonzero,

ξ ∈ Tv(Gv)⊥ as in Lemma 3.49 and γ(t) = v + tξ. Write Wt := Tγ(t)(Gγ(t))⊥, Rt := R|Wt
,

(XR)t := (XR)|Wt
and X̄t for the orthogonal projection unto Wt of XV |Wt

. Since (V,XR,G) is

also a holonomy system, then a combination of Lemmas 3.50 and 3.51 gives that (XR)t = X̄tRt.

By Proposition 3.48, X̄t ∈ hol⊥γ(t)(Gγ(t)), so Lemma 3.50 gives that X̄tRt = 0.

By Lemma 3.49 any w ∈ V can be written as w =
∑
i wi with wi ∈ Wti , for some ti ∈ R, and

where this sum is finite. Then, since v ∈Wti again by Lemma 3.49,

(XR)(v, w)v =
∑
i

(XR)(v, wi)v =
∑
i

(XR)ti(v, wi)v = 0.

Since this holds for any v 6= 0, XR has vanishing sectional curvatures, so XR = 0, by Proposi-

tion 1.41. Since X was arbitrary, we conclude that indeed (V,R,G) is symmetric.

3.5. Berger’s Holonomy Theorem

We finally prove Berger’s holonomy theorem for Riemannian manifolds. We then study the transitive

actions on the sphere so as to give the original version of the theorem, in the form of a list. We end by

considering the special geometries that arise from having the different holonomies in Berger’s list.

3.5.1. Berger’s theorem

The argument for Berger’s theorem will boil down to a contradiction on the dimension of the manifold.

It will rely on the following remark.

Remark 3.53. If V is a Euclidean vector space and G ⊆ SO(V ) is a connected compact Lie subgroup

acting irreducibly on V then any orbit Gv with v 6= 0 must have dimension at least 2 unless dimV ≤ 2.

Indeed, if dimGv = 0 then Rv is G-invariant and hence V = Rv. If dimGv = 1, then any g ∈ Gv must

be the identity on Gv, because by the Hopf–Rinow theorem Gv is geodesically complete, so that g|Gv
is totally determined by g∗|Tv(Gv), which is the identity because Tv(Gv) is 1-dimensional. The subspace

span(Gv) is G-invariant and contains v, so V = span(Gv), which implies that g is globally the identity.

Hence Gv is trivial and therefore dimG = 1. Since G is abelian and acts irreducibly, then dimV is at

most 2.

An easy consequence of Cartan’s construction is the following, which we will also need in the proof

of Berger’s theorem.

Lemma 3.54. Let (V,R,G) and (V,R′, G) be two irreducible symmetric holonomy systems of dimension

at least 2 with R 6= 0. Then R′ is a scalar multiple of R.

Proof. If R′ = 0, it is clear. If R′ 6= 0, then by Cartan’s construction both R and R′ have

nonvanishing scalar curvatures by Remark 3.29. Hence there is some λ ∈ R such that R′′ := R′−λR
has vanishing scalar curvature. Since (V,R′′, G) is also irreducible and symmetric of dimension at

least 2, if R′′ 6= 0 Cartan’s construction would give that R′′ has nonvanishing scalar curvature.

Hence R′′ = 0.

Theorem 3.55 (Berger). An irreducible Riemannian manifold of dimension at least 2 whose restricted

holonomy group is not transitive on the unit sphere is locally symmetric.

Proof. Let M be such a manifold and let x ∈M be such that Rx 6= 0, which is possible because M

is irreducible and of dimension at least 2. Any connected Lie subgroup of SO(n) acting irreducibly
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on Rn is closed in SO(n) [KN63, Vol. 1, App. 5, Thm. 2], from where it follows that Hol0x(M) is

compact. Then (TxM,Rx,Hol0x(M)) is an irreducible nontransitive holonomy system. By Simons’s

theorem it is symmetric, and so by Theorem 3.35 we have that holx(M) = imRx.

Let v ∈ TxM and γ any curve with γ(0) = x and γ̇(0) = v. Then if we denote by τt the parallel

transport along γ from x to γ(t),

∇vR =
d

dt

∣∣∣∣
t=0

τ−1t (Rγ(t)),

where we recall that τ−1t (Rγ(t))(u,w) = τ−1t Rγ(t)(τtu, τtw)τt for u,w ∈ TxM . This formula

together with the Ambrose–Singer theorem and the fact that Rγ(t) is also symmetric for any t

by Simons’s theorem gives that ∇vR is a symmetric algebraic curvature tensor with im∇vR ⊆
holx(M). Hence (TxM,∇vR,Hol0x(M)) is also an irreducible symmetric holonomy system.

By Lemma 3.54 there is λ ∈ T ∗xM such that ∇vR = λ(v)Rx for all v ∈ TxM . Let u ∈ TxM
be such that λ(v) = 〈u, v〉 for all v ∈ TxM and denote by U⊥ its orthogonal complement in

TxM . Suppose u 6= 0. Since Hol0x(M) acts nontransitively on the sphere we must have that

dimTxM ≥ 3, because the only nontrivial connected compact Lie subgroup of SO(2) is itself and

it acts transitively on the sphere.

Let v ∈ TxM and w, z ∈ U⊥. Then by the second Bianchi identity (Proposition 1.29),

0 = ∇vR(w, z) +∇wR(z, v) +∇zR(v, w)

= 〈u, v〉R(w, z) + 〈u,w〉R(z, v) + 〈u, z〉R(v, w)

= 〈u, v〉R(w, z),

so R(w, z) = 0. So for all v1, v2 ∈ TxM we have that 〈R(v1, v2)w, z〉 = 〈R(w, z)v1, v2〉 = 0, i.e.,

R(v1, v2)w ∈ Ru. Since imRx = holx(M) and holx(M)w is the tangent space to the orbit of

Hol0x(M) through w, we get that this orbit is at most 1-dimensional. By Remark 3.53 this would

mean that dimTxM ≤ 2, which cannot be. Hence, u = 0 and ∇vR = 0 for all v ∈ TxM .

Let S := {x ∈M : Rx 6= 0} 6= ∅. Then the complement of S is an open set of M where

R vanishes, so that ∇R = 0 also outside of S. Hence ∇R = 0 everywhere and M is locally

symmetric by Proposition 3.20.

3.5.2. Transitive actions on the sphere

By Berger’s theorem, the restricted holonomy group of an irreducible and not locally symmetric Rie-

mannian manifold is transitive on the sphere. The transitive actions on the sphere were classified by

Montgomery and Samelson [MS43] and Borel [Bor49]. The list is given in Table 3.1.

Group SO(n) U(n) SU(n) Sp(n) Sp(1) Sp(n) U(1) Sp(n) G2 Spin(7) Spin(9)

Sphere it acts on Sn−1 S2n−1 S2n−1 S4n−1 S4n−1 S4n−1 S6 S7 S15

Table 3.1: Transitive actions on the sphere.

From this list, two cases can be thrown away for the classification of holonomy. On the one hand, if a

Riemannian manifold has holonomy inside of Sp(n) U(1), then it necessarily lies inside of Sp(n) [Bes02,

10.66]. On the other hand, it was shown by Alekseevskii [Ale68] and Brown and Gray [BG72] that a

Riemannian manifold with holonomy Spin(9) is necessarily symmetric. We are left, then, with seven

possible cases.

We will now define the relevant groups arising in the classification, and in the following section we

will explore what special properties each type of holonomy confers to the geometry of the manifold.
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(Special) orthogonal group

Let V be an oriented Euclidean space with metric 〈·, ·〉. Recall that the special linear group is defined as

the group of orientation-preserving isomorphisms of V :

SL(V ) := {τ ∈ GL(V ) : τvol = vol for some nonzero vol ∈ ΛnV ∗},

where τ acts on V ∗ by τλ(v) := λ(τ−1v). Observe that if τ ∈ GL(V ) preserves some nonzero vol ∈ ΛnV ∗,

then it preserves any other element in ΛnV ∗, since this is a real line.

Then we recall that the orthogonal group of V is defined as the metric preserving isomorphisms:

O(V ) := {τ ∈ GL(V ) : 〈τv, τw〉 = 〈v, w〉 for all v, w ∈ V }

and the special orthogonal group of V as

SO(V ) := SL(V ) ∩O(V ).

We write O(n) and SO(n) when V = Rn with the standard Euclidean structure.

(Special) unitary group

Let now dimV = 2n and J be an orthogonal linear complex structure on V , that is, J ∈ EndV such that

J2 = −id and 〈Jv, Jw〉 = 〈v, w〉, for all v, w ∈ V . Define ω ∈ Λ2V ∗ by ω(v, w) := 〈v, Jw〉 (it is indeed a

2-form, since J is orthogonal). From V we can produce two different complex vector spaces. On the one

hand, we can define complex scalar multiplication on V by (a+ ib)v := av + bJv, for v ∈ V . We call the

resulting vector space V (C), with complex dimension n. The complex general linear group of V is then

defined as

GL(V, J) := GL(V (C)) = {τ ∈ GL(V ) : τJ = Jτ}.

On V (C) we can define a Hermitian metric by h(v, w) := 〈v, w〉 + iω(v, w). By Hermitian we mean

that h(v, w) = h(w, v) for all v, w ∈ V (C), that it is C-linear in the first component and that it is

positive-definite. We define, then, the unitary group of V as

U(V, J) := {τ ∈ GL(V (C)) : h(τv, τw) = h(v, w) for all v, w ∈ V (C)}

= GL(V, J) ∩O(V ).

To be able to define the special unitary group of V , we need to consider the complexification VC :=

V ⊗R C, with complex dimension 2n. We can extend J by C-linearity to a complex endomorphism of

VC. Since its minimal polynomial is x2 + 1, it diagonalizes with eigenvalues ±i. Let V 1,0 and V 0,1 be the

eigenspaces of eigenvalues i and −i, respectively. It is very easy to see that

V 1,0 = {v − iJv : v ∈ V } and V 0,1 = {v + iJv : v ∈ V }.

Since VC = V 1,0 ⊕ V 0,1, we can identify (V 1,0)∗ with the annihilator (V 0,1)◦, i.e.,

(V 1,0)∗ = {α ∈ V ∗C : α(Jv) = iα(v) for all v ∈ V },

and similarly,

(V 0,1)∗ = {α ∈ V ∗C : α(Jv) = −iα(v) for all v ∈ V }.

Hence it makes sense to consider elements of (V 1,0)∗ as “holomorphic” forms and elements of (V 0,1)∗ as

“antiholomorphic” forms, and to define (p, q)-forms (p times holomorphic and q times antiholomorphic)

as elements of

Λp,qV ∗ := span
(
Λp(V 1,0)∗ ∧ Λq(V 0,1)∗

)
.
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This gives a decomposition of forms

ΛkV ∗C =
⊕
p+q=k

Λp,qV ∗.

Conjugation can be defined on VC as the map λv 7→ λv, for λ ∈ C and v ∈ V . It is conjugate-linear as a

map VC → VC. Then we can define a Hermitian metric on VC by h(v, w) := 〈v, w〉, for v, w ∈ VC, where on

the right-hand side 〈·, ·〉 has been extended by C-linearity to VC. We call this metric h as well because of

the following reason: the map v 7→ (v− iJv)/
√

2 gives an isomorphism of complex vector spaces between

V (C) and V 1,0, and it is actually an isomorphism of Hermitian vector spaces: for all v, w ∈ V (C),

1

2
h(v − iJv, w − iJw) =

1

2
〈v − iJv, w + iJw〉 = 〈v, w〉+ i〈v, Jw〉 = h(v, w).

Let now Ω ∈ Λn,0V ∗ be nonzero. Then Ω∧Ω = µvol for some µ ∈ C×. If τ ∈ U(V, J) and we also call

τ its complex extension to VC, then, since Λn,0V ∗ is a complex line, there is λ ∈ C such that τΩ = λΩ.

Since τ preserves 〈·, ·〉, and hence h, we get that

h(Ω,Ω) = h(τΩ, τΩ) = |λ|2h(Ω,Ω),

i.e., |λ|2 = 1. Therefore,

µτvol = τ(µvol) = τ(Ω ∧ Ω) = |λ|2Ω ∧ Ω = µvol,

which implies that τvol = vol. We conclude that actually U(V, J) = GL(V, J) ∩ SO(V ).

We define the complex special linear group as

SL(V, J) := {τ ∈ GL(V, J) : τΩ = Ω for some nonzero Ω ∈ Λn,0V ∗}.

Observe that if τ ∈ GL(V, J) preserves some Ω ∈ Λn,0V ∗, then it preserves any other element in Λn,0V ∗,

since this is a complex line. Finally, the special unitary group of V is defined as

SU(V, J) := SL(V, J) ∩U(V, J) = SL(V, J) ∩ SO(V ).

We write U(n) and SU(n) when V = R2n = Cn with the canonical complex structure.

Symplectic group and Sp(n) Sp(1)

Let now dimV = 4n and let I, J and K be orthogonal linear complex structures such that IJ = K. Let

ωI , ωJ and ωK be the corresponding 2-forms, respectively. From V we can construct the quaternionic

vector space V (H) by defining quaternionic scalar multiplication on V by (a + ib + jc + kd)v := av +

bIv + cJv + dKv, for v ∈ V . On it we can define a quaternionic metric given by

`(v, w) := 〈v, w〉+ iωI(v, w) + jωJ(v, w) + kωK(v, w), for v, w ∈ V (H).

By quaternionic we mean that `(v, w) = `(w, v) for all v, w ∈ V (H), that it is H-linear in the first

component and that it is positive-definite. We recall that conjugation on H is given by a+ ib+ jc+ kd =

a− ib− jc− kd. Then we define the symplectic group of V as

Sp(V, I, J) := {τ ∈ GL(V (H)) : `(τv, τw) = `(v, w) for all v, w ∈ V (H)}

= {τ ∈ O(V ) : τI = Iτ, τJ = Jτ}

= GL(V, I) ∩GL(V, J) ∩O(V ).

Just as we had that actually U(V, J) ⊆ SO(V ), we also have here that Sp(V, I, J) ⊆ SU(V, I) (and the

same holds for SU(V, J) and SU(V,K)). Indeed, consider the 2-form ω = ωJ + iωK . If we write Λp,qI V ∗
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for the (p, q)-forms with respect to I, then we have that ω ∈ Λ2,0
I V ∗: for every u, v ∈ V we have that

ω(u− iIu, v + iIv) = 〈u− iIu, Jv − iKv〉+ i〈u− iIu,Kv + iJv〉

= 〈u− iIu, Jv − iKv〉 − 〈u− iIu, Jv − iKv〉 = 0,

ω(u+ iIu, v + iIv) = 〈u+ iIu, Jv − iKv〉+ i〈u+ iIu,Kv + iJv〉

= 〈u+ iIu, Jv − iKv〉 − 〈u+ iIu, Jv − iKv〉 = 0.

Also, we have that

ω(u− iIu, v − iIv) = 〈u− iIu, Jv + iKv〉+ i〈u− iIu,Kv − iJv〉

= 2〈u− iIu, Jv + iKv〉 = 4(〈u, Jv〉+ i〈u,Kv〉),

so that ω is nondegenerate. Then ωn ∈ Λ2n,0
I V ∗ is nonzero and, if τ ∈ Sp(V, I, J), then τωJ = ωJ and

τωK = ωK , because τ ∈ U(V, J) and τ ∈ U(V,K). Therefore τωn = ωn. Hence, τ ∈ SU(V, I). We

conclude that actually

Sp(V, I, J) = SU(V, I) ∩ SU(V, J) ∩O(V ).

If V = R4n = Hn with the standard quaternionic structure, then we write Sp(n) := Sp(V, I, J). In

this case, if A∗ denotes the quaternionic adjoint of a matrix A, by which we mean its conjugate transpose,

then Sp(n) = {A ∈ GL(n,H) : A∗A = id}. Since the norm on H is given by |q|2 := qq, and this coincides

with the standard Euclidean norm, then we have that Sp(1) = {q ∈ H : |q| = 1} = S3.

Back to V , consider the action of Sp(V, I, J) × Sp(1) on V given by (τ, q)v := τ(qv). Observe that

it is not an H-linear action. The kernel of the action is {(id, 1), (−id,−1)}. Then we define the group

Sp(V, I, J) Sp(1) as the image of such an action, which is isomorphic to Sp(V, I, J)×Sp(1) modulo Z2.

The following characterization will be useful for the treatment of Sp(V, I, J) Sp(1) for holonomy purposes.

It was first considered by Kraines [Kra66].

Proposition 3.56. Let Q := ω2
I + ω2

J + ω2
K , where ω2 := ω ∧ ω. Then

Sp(V, I, J) Sp(1) = {g ∈ SO(V ) : gQ = Q}.

Proof. Let τ ∈ Sp(V, I, J) and q ∈ Sp(1). It is clear that τQ = Q. Write q = a + ib + jc + kd,

with a2 + b2 + c2 + d2 = 1. Straightforward computation gives that

qωI = (a2 + b2 − c2 − d2)ωI + 2(bc− ad)ωJ + 2(ac+ bd)ωK ,

qωJ = 2(ad+ bc)ωI + (a2 − b2 + c2 − d2)ωJ + 2(cd− ab)ωK ,

qωK = 2(bd− ac)ωI + 2(ab+ cd)ωJ + (a2 − b2 − c2 + d2)ωK .

Then, straightforward computation again gives that qQ = Q. For instance, the coefficient of ω2
I

in qQ is

(a2 + b2 − c2 − d2)2 + 4(ad+ bc)2 + 4(bd− ac)2 = (a2 + b2 + c2 + d2)2 = 1,

while the coefficient of ωI ∧ ωJ is

2(bc− ad)(a2 + b2 − c2 − d2) + 2(ad+ bc)(a2 − b2 + c2 − d2) + 4(bd− ac)(ab+ cd) = 0.

Therefore, we have that elements of Sp(V ) Sp(1) preserve Q.

The converse is shown in [Sal89, Lem. 9.1] using representation theoretical techniques.
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G2 and Spin(7)

Typically, G2 and Spin(7) are called the exceptional holonomy groups. Both can described using

the normed division algebra of octonions O. Recall that this is the algebra obtained by applying the

Cayley-Dickson construction to H. More specifically, we introduce a new imaginary unit ` satisfying

`2 = −1 and the relations

p(`q) = `(pq), (p`)q = (pq)`, (`p)(q`) = −pq,

for p, q ∈ H, and we consider pairs of quaternions p+ `q for p, q ∈ H. The product and conjugation rules

are

(p+ `q)(p′ + `q′) = pp′ − q′q + `(p′q + pq′) and p+ `q = p− `q.

For a very nice account of octonions and its applications to geometry and topology see [Bae02].

Recall that the norm on O is given by |a|2 := aa for a ∈ O. It satisfies the parallelogram law: if

a, b ∈ O, then

|a+ b|2 + |a− b|2 = (a+ b)(a+ b) + (a− b)(a− b) = 2(|a|2 + |b|2),

so it comes from an inner product on O given by the polarization identity, which gives 〈a, b〉 = Re(ab),

where Re is the real part, given by Re a := 1
2 (a+ a). It is routine to check that actually | · |2 equals the

Euclidean norm on R8, and hence the inner product is the Euclidean product on R8.

The algebra O is not associative, but it is alternative, in the sense that the associator

[a, b, c] := (ab)c− a(bc), for a, b, c ∈ O,

is alternating, meaning that it vanishes whenever two arguments coincide [Har90, Lem. 6.11]. Moreover,

Artin’s theorem states that any subalgebra of O generated by two elements is associative (see [Har90,

Thm. 6.39] for a proof).

By an automorphism of O we mean an algebra automorphism of O, i.e., an element g ∈ GL(O) such

that g(ab) = g(a)g(b) for all a, b ∈ O. Notice that, since g(1) = g(1)2, we have that g(1) = 1. From this

one can also deduce that g preserves the imaginary octonions

ImO := {a ∈ O : Re a = 0} = {a ∈ O : a = −a}.

Indeed, it is easy to show that for a ∈ O we have that a2 ∈ R if and only if a ∈ R or a ∈ ImO. Let

a ∈ ImO be nonzero, then, since g(1) = 1 and a = −a,

g(a)2 = g(a2) = −|a|2g(1) = −|a|2,

so g(a) ∈ R or g(a) ∈ ImO. If g(a) = λ ∈ R, then g(λ−1a) = 1, so a = λ, which cannot be because

a ∈ ImO. Hence, g preserves ImO. This implies, then, that g(a) = g(a), which in turn implies that g

preserves the norm.

Definition 3.57. The group G2 is the automorphism group of O. �

Since the elements of G2 preserve the inner product and ImO, we can regard G2 as sitting inside

SO(ImO) ∼= SO(7).

Alternatively, one can characterize G2 by a geometrical property. On ImO the product a×b := Im(ab)

defines a cross product, by which we mean that it is R-bilinear, skew-symmetric and such that 〈a, a×b〉 = 0

for all a, b ∈ ImO. The last equality follows from a straightforward computation:

Re(a Im(ab)) =
1

4
(a(ab− ba) + (ba− ab)a) =

1

4
(−|a|2b− aba+ |a|2b+ aba) = 0.

Proposition 3.58. G2 = {g ∈ SO(ImO) : g(a× b) = g(a)× g(b) for all a, b ∈ O}.
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Proof. If g ∈ G2, then g(a × b) = g(Im(ab)) = Im(g(a)g(b)) = g(a) × g(b). Conversely, assume

that g ∈ SO(ImO) preserves the cross product, and extend g to all of O by g(1) = 1. Then for

a, b ∈ ImO,

g(ab) = −g(ab) = −〈a, b〉 − g(a× b) = −〈g(a), g(b)〉 − g(a)× g(b) = −g(a)g(b) = g(a)g(b),

which already gives that g ∈ G2.

The dimension of G2 is 14 [Bae02].

To introduce Spin(7), we need the broader notion of an isotopy of O.

Definition 3.59. An isotopy of O is a triple (g1, g2, g3) ∈ SO(O)3 such that g1(ab) = g2(a)g3(b) for all

a, b ∈ O. The group of isotopies of O we denote by IsoO. �

Indeed, it is a group: if (g1, g2, g3), (f1, f2, f3) ∈ IsoO, we define their product as (g1f1, g2f2, g3f3),

which is indeed an isotopy:

g1f1(ab) = g1(f2(a)f3(b) = g2f2(a)g3f3(b).

Observe that G2 embeds into IsoO, by sending g ∈ G2 to (g, g, g). Actually, we have the following third

characterization of G2.

Proposition 3.60. G2 = {(g1, g2, g3) ∈ IsoO : g2(1) = g3(1) = 1}.

Proof. The inclusion from left to right is obvious. Conversely, let (g1, g2, g3) ∈ IsoO be such that

g2(1) = g3(1) = 1. For all a ∈ O, then, we have that

g1(a) = g1(a1) = g2(a)g3(1) = g2(a) = g1(1a) = g2(1)g3(a) = g3(a).

Hence (g1, g2, g3) = (g1, g1, g1) and g1 ∈ G2.

We are now ready to introduce Spin(7).

Definition 3.61. The group Spin(7) is the subgroup {(g1, g2, g3) ∈ IsoO : g2(1) = 1} of IsoO. �

From Proposition 3.60 we immediately see that G2 is a subgroup of Spin(7). Observe as well that

if (g1, g2, g3) ∈ Spin(7), then g1(a) = g1(1a) = g2(1)g3(a) = g3(a), so g1 = g3. Actually, we also

have the converse: if (g, g2, g) ∈ IsoO, then g(1) = g2(1)g(1), and by Artin’s theorem, we get that

|g(1)|2 = g2(1)|g(1)|2, i.e., g2(1) = 1. Hence,

Spin(7) = {(g1, g2, g3) ∈ IsoO : g1 = g3}.

Proposition 3.62. 1. The map Spin(7) → SO(ImO) sending (g1, g2, g3) to g2|ImO is a two-to-one

and surjective group morphism. It is the universal covering map of SO(ImO).

2. The map Spin(7)→ SO(O) sending (g1, g2, g3) to g1 is an injective group morphism.

Proof. Let (g, g2, g) ∈ Spin(7) be such that g2|ImO = id|ImO. Since g2(1) = 1, we have that g2 = id.

From this we get that g(a) = g(a1) = g2(a)g(1) = ag(1), i.e., g is multiplication by c := g(1) from

the right. Then g(ab) = (ab)c = g2(a)g(b) = a(bc) for all a, b ∈ O. This can only happen if c ∈ R.

Indeed, write c = p+ `q for some p, q ∈ H. Then for any p′ ∈ H we have that

(p′`)c = (`p′)(p+ `q) = −qp′ + `(pp′),

p′(`c) = p′(`(p+ `q)) = p′(−q + `p) = −p′q + `(p′p).

Hence, both p and q commute with all of H, which immediately gives that p, q ∈ R. Moreover,

((`i)(`j))c = −k(p+ `q) = −kp+ `(kq),

(`i)((`j)c) = (`i)((`j)(p+ `q)) = (`i)(qj + `(pj)) = pji+ `(qji),
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which gives that actually q = 0. Hence, c ∈ R. Since g ∈ SO(O), then |c| = 1, from where we

conclude that c = ±1. Hence, the kernel of the map in item 1 is {(id, id, id), (−id, id,−id)}, as

wanted.

To see that it is a surjective morphism, recall that by the Cartan-Dieudonné theorem (for in-

stance [Mei13, Thm. 1.1]), any element of O(ImO) can be written as a finite product of reflections.

Then any element of SO(ImO) is a product of an even number of reflections. The reflection in

ImO with respect to the hyperplane orthogonal to a ∈ ImO with |a| = 1 can be simply written as

σa(b) = b− 2〈b, a〉a = b− (ba+ ab)a = aba, for b ∈ ImO.

Let La denote left multiplication by a ∈ O. Then −σa ∈ SO(ImO), for a ∈ ImO with |a| = 1, is

the image of (La, sa, La), where sa ∈ SO(O) is given by −σa on ImO and sa(1) = 1. To see that

this triple is indeed an isotopy, it suffices to check it on b, c ∈ ImO. We aim at proving that

a(bc) = −(aba)(ac).

This follows from the Moufang identity (xyx)z = x(y(xz)), for all x, y, z ∈ O, since then we have

that, by Artin’s theorem,

−(aba)(ac) = −a(b(a(ac))) = |a|2a(bc) = a(bc).

To prove Moufang’s identity, notice that (xyx)z−x(y(xz)) vanishes whenever two of the variables

coincide, by Artin’s theorem, so that, since (xyx)z − x(y(xz)) = [xy, x, z] + [x, y, xz] and the

associator is alternating,

0 = (x(y + z)x)(y + z)− x((y + z)(x(y + z)))

= (xyx)z − x(y(xz)) + (xzx)y − x(z(xy))

= [xy, x, z] + [x, y, xz] + [xz, x, y] + [x, z, xy]

= 2([xy, x, z] + [x, y, xz]).

Lastly, since the map Spin(7) → SO(ImO) is a 2-sheeted covering map, then the index of

π1(Spin(7)) in π1(SO(ImO)) is 2 [Hat02, Prop. 1.32], and since π1(SO(ImO)) = Z2 [Sep07,

Thm. 1.24], then Spin(7) is simply connected.

To see 2, assume that g = id. Then a = g(a1) = g2(a)g(1) = g2(a), so that g2 = id, and this

ends the proof.

It follows, then, that dim Spin(7) = 21.

For holonomy purposes, there are equivalent definitions of G2 and Spin(7) as stabilizers of a certain

3-form and a 4-form. Define

φ(a, b, c) := 〈a, bc〉, for a, b, c ∈ ImO.

Then φ ∈ Λ3(ImO)∗, and it is immediate to see that G2 lies in the stabilizer of φ. Actually, we have that

G2 = {g ∈ GL(ImO) : gφ = φ}

[Bry87, Sec. 2, Thm. 1]. If we denote by 1 the element of O∗ such that 1(1) = 1 and 1(ImO) = 0, then

consider

ψ := 1 ∧ φ+ ∗φ,

where ∗ is the Hodge star operator with respect to 〈·, ·〉. Then ψ ∈ Λ4O∗ and

Spin(7) = {g ∈ GL(O) : gψ = ψ}

[Bry87, Sec. 2, Thm. 4].
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3.5.3. Berger’s list

Knowledge of the transitive actions on the sphere gives the following reformulation of Berger’s theorem

(which is actually the original formulation by Berger).

Theorem 3.63 (Berger’s list). Let M be an irreducible, not locally symmetric, orientable and connected

Riemannian manifold of dimension n ≥ 2. Then one of the following holds:

1. Hol0(M) = SO(n),

2. n = 2m for m > 0 and Hol0(M) = U(n),

3. n = 2m for m > 0 and Hol0(M) = SU(n),

4. n = 4m for m > 0 and Hol0(M) = Sp(n),

5. n = 4m for m > 0 and Hol0(M) = Sp(n) Sp(1),

6. n = 7 and Hol0(M) = G2,

7. n = 8 and Hol0(M) = Spin(7).

3.6. Special geometries

Each of the infinite families appearing in Berger’s list gives rise to a special type of geometry, meaning

Riemannian manifolds with special geometric properties. We will now give a review of these.

3.6.1. Kähler manifolds

Definition 3.64. An almost complex structure on a manifoldM is an endomorphism J ∈ Γ(EndTM)

such that J2 = −id. An almost Hermitian structure on a Riemannian manifold (M, g) is an almost

complex structure J on M which is orthogonal with respect to g, that is, such that 〈Ju, Jv〉 = 〈u, v〉
for all u, v ∈ TM . An almost complex (resp. Hermitian) manifold is a pair (M,J) (resp. a triple

(M, g, J)) such that J is an almost complex structure on M (resp. an almost Hermitian structure on

(M, g)). �

The canonical examples of almost complex structures are those induced by complex manifolds, i.e.,

manifolds locally modeled on Cn such that the transition functions are holomorphic. If (U, (zj)j) is a

local chart for a complex manifold and we write zj = xj + iyj so that (U, (xj , yj)j) is a local chart for

the underlying even-dimensional real manifold, then we can define an almost complex structure J by

J ∂
∂xj := ∂

∂yj , which is easily seen to be well defined globally.

Definition 3.65. An almost complex structure on a manifold M is called integrable if it can be induced

by the structure of a complex manifold on M . In that case we call J a complex structure and the pair

(M,J) a complex manifold. A Hermitian structure J on (M, g) is an integrable almost Hermitian

structure, and in that case the triple (M, g, J) is called a Hermitian manifold. �

A deep result by Newlander and Nirenberg [NN57] states that integrability is equivalent to the van-

ishing of the Nijenhuis tensor N ∈ Ω2(M,TM), defined by

N(X,Y ) := J [X,Y ]− [JX, Y ]− [X, JY ]− J [JX, JY ] for X,Y ∈ X(M).

Equivalently, J is integrable if and only if the distribution TM1,0, defined by TxM
1,0 := (TxM)1,0 ⊆

TxMC, is involutive with respect to the Lie bracket (extended by C-linearity).
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Consider an almost Hermitian manifold (M, g, J) and define a (0, 2)-tensor field ω by ω(u, v) :=

〈u, Jv〉, for u, v ∈ TM . It is actually a 2-form, since

ω(u, v) = 〈u, Jv〉 = −〈Ju, v〉 = −ω(v, u),

because J is orthogonal and squares to −id. It is moreover nondegenerate, because if ω(u, v) = 0 for

all v ∈ TxM , then 〈u, v〉 = 0 for all v ∈ TxM , so u = 0. This form is the Kähler form of the almost

Hermitian manifold.

Definition 3.66. A Kähler structure on a Riemannian manifold (M, g) is a Hermitian structure J

whose Kähler form is closed, in which case the triple (M, g, J) is called a Kähler manifold. �

We now give a characterization of Kähler structures on a manifold M in terms of its holonomy. It is

a consequence of the following.

Proposition 3.67. An almost Hermitian manifold (M, g, J) is Kähler if and only if ∇J = 0, where ∇
is the Levi-Civita connection of (M, g). Moreover, if ω is the Kähler form of (M, g, J), then ∇J = 0 if

and only if ∇ω = 0.

Proof. Since ∇ is torsion-free, then [X,Y ] = ∇XY − ∇YX. Also, the induced connection on

EndTM is given by ∇XJ(Y ) = ∇X(JY ) − J∇XY . This allows for the Nijenhuis tensor to be

written as

N(X,Y ) = ∇Y J(X)−∇XJ(Y ) + J(∇JY J(X)−∇JXJ(Y )).

On the other hand, the fact that ∇ is metric and the Koszul formula for dω give that

dω(X,Y, Z) = 〈Y,∇XJ(Z)〉 − 〈X,∇Y J(Z)〉+ 〈X,∇ZJ(Y )〉.

It is now clear that if ∇J = 0 then M is Kähler.

Conversely, assume that M is Kähler. Then dω = 0 implies that 〈X,∇Y J(Z) − ∇ZJ(Y )〉 =

〈Y,∇XJ(Z)〉. It is easy to see, using Proposition 1.15, that if A,B ∈ Γ(EndTM), then ∇X(AB) =

(∇XA)B+A∇XB, from where we see that J∇XJ + (∇XJ)J = ∇XJ2 = −∇X id = 0. Therefore,

since N(Z, Y ) = 0,

0 = 〈X,N(Z, Y )〉 = 〈X,∇Y J(Z)−∇ZJ(Y )〉+ 〈X, J(∇JY J(Z)−∇JZJ(Y ))〉

= 〈Y,∇XJ(Z)〉 − 〈X,∇JY J(JZ)−∇JZJ(JY )〉

= 〈Y,∇XJ(Z)〉 − 〈JY,∇XJ(JZ)〉

= 2〈Y,∇XJ(Z)〉.

Hence, ∇J = 0, as wanted.

Lastly, an easy computation gives that ∇Xω(Y,Z) = 〈Y,∇XJ(Z)〉, so ∇J = 0 if and only if

∇ω = 0.

Corollary 3.68. A connected Riemannian manifold M of dimension 2n admits a Kähler structure if

and only if Hol(M) ⊆ U(n).

Proof. Let J be a Kähler structure on M . Then ∇J = 0, by Proposition 3.67. Let γ be a piecewise

smooth curve on M and X ∈ Γ(γ∗TM) parallel. Then ∇dt (JX) = J̇X + JẊ = 0, so τγJ = Jτγ .

Let x ∈ M and consider U(n) as {τ ∈ O(TxM) : τJ = Jτ}. If γ is a loop at x, we have that

τγJ = Jτγ , while 〈τγu, τγv〉 = 〈u, v〉 by Proposition 1.14, so τγ ∈ U(n).

Conversely, assume that Hol(M) ⊆ U(n), by which we mean that for x ∈ M there is an

orthogonal linear complex structure Jx on TxM with respect to which Holx(M) ⊆ U(n). If γ is a

loop at x, the action of τγ on Jx is τγJxτ
−1
γ , and this equals Jx because τγ ∈ U(n). Hence, Jx is

Holx(M)-invariant. By the holonomy principle, Theorem 1.20, there is a unique parallel section J

with value Jx at x, and it is straightforward to see that it squares to −id and is orthogonal with

respect to the metric. By Proposition 3.67, then, J is a Kähler structure on M .
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Example 3.69 (Riemann surfaces). Let (Σ, g) be an orientable Riemannian surface. Let ω be its Rie-

mannian volume form, defined by taking the value 1 on any oriented orthonormal basis. Since it is a

volume form, ω is nondegenerate. It is also closed, since dω ∈ Ω3(Σ) = 0.

Consider the maps

g[ : TΣ −→ T ∗Σ, ω[ : TΣ −→ T ∗Σ.

v 7−→ ivg v 7−→ ivω

Since both g and ω are nondegenerate, both maps are isomorphisms. Denote by g] and ω] their inverses.

They satisfy the relation g] ◦ ω[ = −ω] ◦ g[. To see this, let u ∈ TxΣ be nonzero and let v := g] ◦ ω[(u),

i.e. v is the unique vector in TxΣ such that ω(u,w) = 〈v, w〉 for all w ∈ TxΣ. Then 〈u, v〉 = ω(u, u) = 0

and ‖v‖2 = ω(u, v). Since ω is the Riemannian volume form we have that

ω

(
u

‖u‖
,
v

‖v‖

)
= ±1 =

‖v‖
‖u‖

.

Since u is nonzero, we must have that ‖u‖ = ‖v‖. Any w ∈ TxΣ can be written as w = λu + µv for

λ, µ ∈ R. Then

ω(v, w) = λω(v, u) = −λ‖u‖2 = 〈−u,w〉,

which means that ω[(v) = −g[(u). Therefore, ω] ◦ g[(u) = −v = −g] ◦ ω[(u).

We define now J := g]◦ω[ ∈ End(TΣ). It is an almost complex structure: J2 = −g]◦ω[◦ω]◦g[ = −id.

Any almost complex structure on Σ is integrable, because if X is a nonvanishing local vector field, then

{X,JX} is locally a frame for TΣ, and

N(X, JX) = J [X, JX]− [JX, JX] + [X,X] + J [JX,X] = 0.

The complex structure J is characterized by the formula iJug = iuω for all u ∈ TΣ. Hence, it is

actually a Hermitian structure on (Σ, g), since

g(Ju, Jv) = ω(u, Jv) = −ω(Jv, u) = −g(J2v, u) = g(u, v).

Its Kähler form is −ω, because g(u, Jv) = −ω(u, v), and since ω is closed, we conclude that (Σ, g, J) is

Kähler.

The computation above allows us to give the following more geometric definition of J : it rotates a

vector u ∈ TxΣ an angle of π/2 such that {u, Ju} is positively oriented. H

Example 3.70 (Complex projective space). Consider complex projective space CPn as in Example 3.15.

The orbit of (z0, . . . , zn), which is the complex line through (z0, . . . , zn) and the origin, we denote by

[z0 : . . . : zn]. Complex charts on CPn are given as follows: let Ui := {[z0 : . . . : zn] : zi 6= 0}, which is

open in CPn, and define ϕi : Ui → Cn by

ϕi([z
0 : . . . : zn]) :=

1

zi
(z0, . . . , ẑi, . . . , zn).

The inverse, as can be readily checked, is given by

ϕ−1i (z1, . . . , zn) = [z1 : . . . : zi : 1 : zi+1 : . . . : zn].

The change of coordinates ϕij := ϕi ◦ ϕ−1j for i > j is given by

ϕij(z
1, . . . , zn) =

1

zi
(z1, . . . , zj , 1, zj+1, . . . , ẑi, . . . , zn),

which is holomorphic. Hence, CPn is a complex manifold.

Consider the Fubini-Study form on Cn, defined by

ω̃ :=
i

2
∂∂ log(1 + ‖z‖2),
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where z = (z0, . . . , zn) and ‖z‖2 is computed using the standard Hermitian product on Cn, given by

〈z, w〉 :=
∑
j z

jwj . Obviously ω̃ ∈ Ω1,1(Cn) and it is closed. Explicitly, as an easy computation shows, it

is given by

ω̃ =
i

2(1 + ‖z‖2)2

(1 + ‖z‖2)
∑
j

dzj ∧ dzj −
∑
j,k

zjzkdzj ∧ dzk


=
i

2(1 + ‖z‖2)2
(
(1 + ‖z‖2)∂∂‖z‖2 − ∂‖z‖2 ∧ ∂‖z‖2

)
.

The corresponding symmetric tensor is, then

g̃ = ω̃(·, J ·) =
1

(1 + ‖z‖2)2

(1 + ‖z‖2)
∑
j

dzjdzj −
∑
j,k

zjzkdzjdzk

 ,

where by dzjdzk we mean the symmetric product dzjdzk = 1
2 (dzj⊗dzk+dzk⊗dzj). Then g̃ is a complex

Riemannian metric on Cn, by which we mean a symmetric (0,2)-tensor on the complexification of T ∗Cn

such that g̃(ξ, ξ) > 0 for all nonzero ξ ∈ T ∗Cn ⊗C. Observe that a complex Riemannian metric contains

the same information as a real Riemannian metric, since we can obtain the latter from the former by

restricting to the real tangent bundle and the former from the latter by extending to the complexified

tangent bundle by C-bilinearity.

It is clear that g̃ is symmetric and C-bilinear, it only remains to see that it is positive-definite. Let

ξ =
∑
j(v

j ∂
∂zj + wj ∂

∂zj
) be nonzero and write v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ Cn. Then, using the

Cauchy-Schwarz inequality for 〈·, ·〉,

g̃(ξ, ξ) =
1

2(1 + ‖z‖2)2

(1 + ‖z‖2)
∑
j

(vjvj + wjwj)−
∑
j,k

(zjzkvjvk + zjzkwkwj)


=

1

2(1 + ‖z‖2)2
(
(1 + ‖z‖2)(‖v‖2 + ‖w‖2)− |〈v, z〉|2 − |〈w, z〉|2

)
≥ ‖v‖

2 + ‖w‖2

2(1 + ‖z‖2)2
> 0.

Hence, ω̃ is a Kähler form on Cn. It is invariant under ϕij : if i > j, then

log(1 + ‖ϕij(z)‖2) = log

(
1 +

1

|zi|2
(|z1|2 + · · ·+ |̂zi|2 + . . . |zn|2 + 1)

)
= log

(
1

|zi|2
(1 + ‖z‖2)

)
= log(1 + ‖z‖2)− log zi − log zi,

so ∂∂ log(1 + ‖ϕij(z)‖2) = ∂∂ log(1 + ‖z‖2). Hence, the local forms {ϕ∗i ω̃}i on CPn glue to a well-defined

Kähler form ω on CPn, with corresponding metric g.

Lastly, we want to check that this structure actually coincides with the symmetric space structure on

CPn given in Example 3.15. First of all, recall that the standard Euclidean metric on Cn+1 is given by

Re〈·, ·〉. The tangent space to the orbit of the C×-action at z ∈ Cn+1 is given by {λz : λ ∈ C} ⊆ TzCn+1.

A vector v ∈ TzCn+1 is, then, orthogonal to the orbit if and only if 〈v, z〉 = 0. Indeed, if λ = a+ ib, then

Re〈v, λz〉 = aRe〈v, z〉+ b Im〈v, z〉,

and this vanishes for all a, b ∈ R if and only if 〈v, z〉 = 0.

Define now a 2-form on Cn+1 r {0} by

ω̊ :=
i

2‖z‖4
(
‖z‖2∂∂‖z‖2 − ∂‖z‖2 ∧ ∂‖z‖2

)
=

i

2‖z‖4

‖z‖2∑
j

dzj ∧ dzj −
∑
j,k

zkzjdzk ∧ dzj
 .
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It is closed and (1, 1). If p : Cn+1 r {0} → CPn is the projection, an easy computation using that

‖ϕi ◦ p(z)‖2 =
‖z‖2

|zi|2
− 1.

shows that p∗ω = ω̊.

Let g̊ be the (0, 2)-tensor corresponding to ω̊. It is not complex Riemannian, since a very similar

computation as before gives that if ξ =
∑
j(v

j ∂
∂zj + wj ∂

∂zj
) is nonzero, then

g̊(ξ, ξ) =
1

2‖z‖4
(
‖z‖2(‖v‖2 + ‖w‖2)− |〈v, z〉|2 − |〈w, z〉|2

)
≥ 0,

by Cauchy-Schwarz, but it can be zero when v = λz and w = µz for any λ, µ ∈ C. In the case that ξ is

a real vector, i.e., ξ = ξ, then µ = λ, and we have that ξ = λz is tangent to the orbit of C× through z.

On the other hand, if ξ is normal to the orbit, then, since 〈v, z〉 = 0,

g̊(ξ, ξ) =
‖v‖2

‖z‖2
= ‖v‖2 = Re ‖v‖2.

Hence, restricted to the normal space to the orbit, g̊ coincides with the restriction of the Euclidean metric

to S2n+1 (the so-called round metric). The metric on CPn given in Example 3.15 was defined as the metric

whose pullback along p coincided with the round metric on the normal space to the orbit. Since p∗g = g̊,

we conclude that g is the sought metric. H

Example 3.71 (Complex submanifolds of Kähler manifolds). Let (M, g, J) be a Kähler manifold and

consider i : N ↪→M a complex submanifold, by which we mean a submanifold such that J(TxN) ⊆ TxN .

Then i∗J is a complex structure on N . Let ω be the Kähler form of M . Then i∗ω is the Kähler form of

(N, i∗g, i∗J). It is closed, since the differential commutes with pullbacks. Hence N is Kähler as well.

In particular, smooth complex projective varieties are Kähler. H

The curvature of a Kähler manifold interacts nicely with the complex structure.

Proposition 3.72. If (M, g, J) is Kähler, then for all X,Y, Z,W ∈ X(M) the following hold:

1. R(X,Y )J = JR(X,Y ),

2. 〈R(JX, JY )Z,W 〉 = 〈R(X,Y )JZ, JW 〉,

3. Ric(JX, JY ) = Ric(X,Y ).

Proof. Since ∇J = 0, then ∇X(JY ) = J∇XY , from where we get that for all Z ∈ X(M),

R(X,Y )JZ = ∇X∇Y (JZ)−∇Y∇X(JZ)−∇[X,Y ](JZ) = JR(X,Y )Z.

Using the symmetry properties of R and the just proven property,

〈R(JX, JY )Z,W 〉 = 〈R(Z,W )JX, JY 〉 = 〈R(Z,W )X,Y 〉

= 〈R(X,Y )Z,W 〉 = 〈R(X,Y )JZ, JW 〉.

Lastly, if {Ei}i is a local orthonormal frame for TM , then

Ric(JX, JY ) =
∑
i

〈R(Ei, JX)JY,Ei〉 =
∑
i

〈R(JEi, X)Y, JEi〉 = Ric(X,Y ),

since {JEi}i is also an orthonormal frame for TM .
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3.6.2. Calabi–Yau manifolds

On an almost complex manifold (M,J) we can define the bundles of (p, q)-forms Λp,qT ∗M just as we did

in Section 3.5.2. Its space of sections we denote by Ωp,q(M), whose elements we call differential (p, q)-

forms. The canonical bundle of M is the complex line bundle Λn,0T ∗M over M . We also consider

(p, q)-multivector fields, that is, sections of Λp,qTM . Recall that α ∈ Ω1(M,C) belongs to Ω1,0(M) if

and only if it vanishes on X0,1(M).

Definition 3.73. A Calabi–Yau structure on a Riemannian manifold (M, g) is a Kähler structure J

whose canonical bundle admits a nowhere vanishing parallel section Ω, in which case the tuple (M, g, J,Ω)

is called a Calabi–Yau manifold. �

Proposition 3.74. A connected Riemannian manifold M of dimension 2n admits a Calabi–Yau structure

if and only if Hol(M) ⊆ SU(n). Moreover, if M is Kähler then it is Ricci-flat if and only if Hol0(M) ⊆
SU(n).

Proof. The first part follows easily from the holonomy principle and a similar argument to that of

the proof of Corollary 3.68. For the second part, assume that M is Kähler and let {Ej , JEj}j be

a local orthonormal frame for TM . Let Vj := (Ej − iJEj)/
√

2, with dual forms V j , and define

Ω := V 1 ∧ · · · ∧ V n, which is a local frame for the canonical bundle. Since Λn,0T ∗M is a complex

line bundle, then its curvature, the one induced from the Levi-Civita connection on M , can be

considered as a 2-form F ∈ Ω2(M,C), whose value on X,Y ∈ X(M) can be computed locally as

F (X,Y )Ω(V1, . . . , Vn). It is a straightforward computation (see Proposition A.1) to show that

F (X,Y )Ω(V1, . . . , Vn) =
∑
j

Ω(V1, . . . , R(Y,X)Vj , . . . , Vn).

Then, since {Vj}j is an orthonormal frame, we have that, using Bianchi’s first identity and Propo-

sition 3.72,

F (X,Y )Ω(V1, . . . , Vn) =
∑
j

h(R(Y,X)Vj , Vj) =
1

2

∑
j

〈R(Y,X)(Ej − iJEj), Ej + iJEj〉

= i
∑
j

〈R(Y,X)Ej , JEj〉

= −i
∑
j

〈R(X,Ej)Y, JEj〉 − i
∑
j

〈R(Ej , Y )X, JEj〉

= −i
∑
j

〈R(Ej , X)JY,Ej〉 − i
∑
j

〈R(JEj , X)JY, JEj〉

= −iRic(X, JY ).

Hence, F (X,Y ) = −iRic(X, JY ). The form (u, v) 7→ Ric(u, Jv) is sometimes called the Ricci

form of M . Hence we see that the canonical bundle is flat if and only if M is Ricci-flat. By the

Ambrose–Singer theorem, this means that the restricted holonomy group of the canonical bundle

is trivial if and only if M is Ricci-flat. If γ is a null-homotopic loop at x ∈M and Ω ∈ Λn,0T ∗xM ,

then τγΩ is exactly the parallel transport along γ of Ω, so that Ω is invariant under τγ viewed

as parallel transport on the canonical bundle if and only if τγ ∈ SU(n). This finally gives the

result.

Our definition of a Calabi–Yau manifold is the most natural one from the point of view of holonomy.

However, there is another typical definition of Calabi–Yau manifolds in the literature: a Kähler manifold

whose canonical bundle is holomorphically trivial.

To make sense of this other definition, consider the decomposition Ωk(M,C) =
⊕

p+q=k Ωp,q(M). It

gives projections Ωp+q(M,C) → Ωp,q(M). The composition of d : Ωp,q(M) → Ωp+q+1(M,C) with the
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projections Ωp+q+1(M,C) → Ωp+1,q(M) and Ωp+q+1(M,C) → Ωp,q+1(M) give the Dolbeault opera-

tors

∂ : Ωp,q(M)→ Ωp+1,q(M), and ∂ : Ωp,q(M)→ Ωp,q+1(M).

A (p, 0)-form is called holomorphic if it lies in the kernel of ∂. A nonvanishing holomorphic section

of the canonical bundle is called a holomorphic volume form. Hence, the alternative definition of

Calabi–Yau is that of a Kähler manifold admitting a holomorphic volume form. We will now see that

the two notions of Calabi–Yau manifolds agree somewhat on compact manifolds. By “agree somewhat”

we mean the following: a compact connected manifold admitting Kähler structures admits a Calabi–Yau

structure in the first sense if and only if it admits one in the second sense, but these two structures might

be different!

First of all, an alternative formulation of the Newlander-Nirenberg theorem states that an almost

complex manifold (M,J) is complex if and only if d = ∂ + ∂. In such case, from d2 = 0 one directly

deduces that ∂2 = 0, ∂
2

= 0 and ∂∂ + ∂∂ = 0.

Second, we need to consider formal adjoints of some operators. To do this, first remember that the

Riemannian metric on M induces a metric on any tensor bundle over M , as in the end of Section 1.1.

When M is compact and orientable, we can define an inner product on T(k,l)(M), the L2-product, by

〈T, S〉2 :=

∫
M

〈T, S〉vol, for T, S ∈ T(k,l)(M),

where vol is the canonical volume form of M , characterized by taking the value 1 on any oriented

orthonormal basis. The formal adjoint of an operator on tensors P is another operator P ∗ such that

〈PT, S〉2 = 〈T, P ∗S〉2. Such an adjoint is unique, by the positive definiteness of the L2-product.

Proposition 3.75. The formal adjoint of the connection ∇ : T(k,l)(M) → T(k,l+1)(M) is the operator

∇∗ : T(k,l+1)(M)→ T(k,l)(M) given by

∇∗T (θ,X1, . . . , Xl) = −
∑
i

∇EiT (θ,Ei, X1, . . . , Xl)

on T ∈ T(k,l)(M), where θ ∈ T(0,k)(M), Xi ∈ X(M) and {Ei}i is any orthonormal frame.

Proof. See Proposition A.3.

For differential forms we adapt the metric, so as to take into account their skew-symmetry: we define

〈α1 ∧ · · · ∧ αk, β1 ∧ · · · ∧ βk〉∧ := det(〈αi, βj〉)i,j .

It is straightforward to check that for α, β ∈ Ωk(M) we have that 〈α, β〉 = k!〈α, β〉∧. We let d∗ :

Ωk+1(M)→ Ωk(M) stand for the formal adjoint of the de Rham differential d with respect to 〈·, ·〉∧.

Proposition 3.76. For α ∈ Ωk(M) we have that

dα(X0, . . . , Xk) =
∑
i

(−1)i∇Xiα(X0, . . . , X̂i, . . . , Xk), for Xi ∈ X(M).

Moreover, d∗ = ∇∗.

Proof. See Proposition A.4.

With the adjoints of ∇ and d, we can form the corresponding Laplacians: the rough Laplacian ∇∗∇
and the Hodge Laplacian ∆ := dd∗ + d∗d. These two are related by the Weitzenböck formula. We

define the Weitzenböck operator on α ∈ T(0,k)(M) by

Ricα(X1, . . . , Xk) :=
∑
i,j

R(Ei, Xj)α(X1, . . . , Xj−1, Ei, Xj+1, . . . , Xk),
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for Xj ∈ X(M) and {Ei}i any orthonormal frame. We call it Ric, following [Pet16], because on 1-forms

it is the Ricci curvature: if α ∈ Ω1(M), with dual Y ∈ X(M), and X ∈ X(M), then

Ricα(X) =
∑
i

R(Ei, X)α(Ei) =
∑
i

〈Y,R(X,Ei)Ei〉 = Ric(Y,X).

Proposition 3.77 (Weitzenböck). For α ∈ Ωk(M) we have that ∆α = ∇∗∇α+ Ricα.

Proof. See Proposition A.5.

The next ingredient is a very special fact for compact Kähler manifolds, where the assumption of

compactness is key here. Just as we did for d, we can consider the formal adjoints of ∂ and ∂ and their

Laplacians ∆∂ = ∂∂∗ + ∂∗∂ and ∆∂ = ∂ ∂
∗

+ ∂
∗
∂. It is a very remarkable fact that on compact Kähler

manifolds ∆ = 2∆∂ = 2∆∂ . For a proof see [Wel08, Chap. V, Sec. 4]. It allows us to prove the following.

Proposition 3.78. On a compact Ricci-flat Kähler manifold, being parallel, closed and holomorphic are

equivalent notions for (p, 0)-forms.

Proof. Let (M, g, J) be compact Ricci-flat Kähler and α ∈ Ωp,0(M). If ∇α = 0, then dα = 0 by

Proposition 3.76 and ∂α = 0 because d = ∂ + ∂. Assume now that α is holomorphic, i.e., ∂α = 0.

Then, since ∂
∗
α = 0, because α is a (p, 0)-form, we have that ∆∂α = 0. But since M is compact

Kähler, this also means that ∆α = 0. If we prove that Ricα = 0, then the Weitzenböck formula

gives that ∇∗∇α = 0, and this in turn would give that

〈α,∇∗∇α〉2 = ‖∇α‖22 = 0,

which implies that ∇α = 0. See Proposition A.7 for a proof of Ricα = 0.

Corollary 3.79. A compact Ricci-flat Kähler structure is Calabi–Yau if and only if it admits a holo-

morphic volume form.

The last ingredient is the celebrated Calabi–Yau theorem. This theorem was conjectured by Calabi

in 1954 [Cal56, Cal57], and he gave a proof of the uniqueness part. In 1976 Yau proved existence

[Yau77, Yau78]. To state it, recall that the first Chern class of an almost complex manifold (M,J) is

the cohomology class

c1(M) := − 1

2πi
[F ] ∈ H2(M,C),

where F denotes the curvature of the canonical bundle of M with respect to any connection on TM ,

for instance the Levi-Civita connection (the first Chern class is independent of the chosen connection on

TM [Tu17, Thm. 23.3]). In Proposition 3.74 we proved that if M is Kähler, then its Ricci form lies in

2πc1(M).

Theorem 3.80 (Calabi–Yau). Let M be a compact Kähler manifold with Kähler form ω and ρ a real

closed (1, 1)-form on M with ρ ∈ 2πc1(M). Then there is a unique Kähler metric on M with Kähler

form in [ω] ∈ H2(M,R) whose Ricci form is ρ.

For a proof see for instance [Joy07].

Corollary 3.81. A compact connected complex manifold (M,J) admitting Kähler structures admits a

Calabi–Yau structure if and only if it admits a holomorphic volume form.

Proof. If M admits a Calabi–Yau structure (g,Ω), then ∂Ω = 0 because dΩ = 0 by Proposi-

tion 3.76. Conversely, assume that M admits a holomorphic volume form. Then the canonical

bundle of M is trivial as a complex vector bundle, so c1(M) = 0. By the Calabi–Yau theorem, there

is a metric on M which is Kähler and Ricci-flat, and the result now follows from Corollary 3.79.
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Observe that we are not claiming that if (M, g, J) is compact Kähler admitting a holomorphic volume

form Ω, then (M, g, J,Ω) is Calabi–Yau, because to be able to use the Calabi–Yau theorem we need to

be able to change g. What we are actually claiming is the following: if (M, g) is a compact Riemannian

manifold with Hol(M, g) ⊆ U(n), then we can find a Kähler structure J on M , by Corollary 3.68, and

there is a holomorphic volume form Ω on M with respect to J if and only if there is some metric g′ such

that Hol(M, g′) ⊆ SU(n), i.e., such that (M, g′, J,Ω) is Calabi–Yau.

Example 3.82 (Smooth projective varieties). Let p be a homogeneous polynomial of degree d in Cn+1.

Then Z := p−1(0)r {0} is invariant under the action of C×, since p is homogeneous. Assume that Z is a

smooth complex hypersurface of Cn+1 r {0}. Then it defines a complex hypersurface of CPn, call it Y .

Let O(−1) be the tautological bundle on CPn, defined by

O(−1) := {(z, `) ∈ CPn × Cn+1 : z ∈ `}.

It is a holomorphic line bundle over CPn. Let O(1) := O(−1)∗ and define O(k) := O(1)⊗k and O(−k) :=

O(k)∗ for k ≥ 0. Then O(k + l) = O(k)⊗O(l) and O(0) is the trivial bundle. By [Huy05, Prop. 2.4.1],

the space of homogeneous polynomials of degree d is isomorphic to the space of holomorphic sections

of O(d). Then the adjunction formula [Huy05, Prop. 2.2.17] and the fact that the holomorphic normal

bundle of Y is isomorphic to O(d) [Huy05, Prop. 2.4.7] gives that, if KY is the canonical bundle of Y

and KCPn that of CPn, then KY = (KCPn ⊗ O(d))|Y . Since KCPn = O(−n − 1) [Huy05, Prop. 2.4.3],

we conclude that KY = O(d − n − 1)|Y . Hence, if d = n + 1, we have that KY is trivial and so, by the

Calabi–Yau theorem, Y admits a Kähler Ricci-flat structure. If in addition Y is simply connected, then

it is Calabi–Yau.

An example of this is Fermat’s quintic 3-fold: let p(z) =
∑4
i=0(zi)5. Then dp =

∑4
i=0 5(zi)4dzi,

which vanishes only at 0 ∈ C5, so that p−1(0) r {0} is a complex hypersurface projecting to a complex

hypersurface Y of CP4. Since 5 = 4 + 1, then Y admits a Kähler Ricci-flat structure. H

3.6.3. Hyperkähler and quaternionic Kähler manifolds

We finally turn to the holonomy groups related to the quaternions.

Definition 3.83. A hyperkähler structure on a Riemannian manifold (M, g) is a triple of Kähler

structures (I, J,K) such that IJ = K, in which case the tuple (M, g, I, J,K) is called a hyperkähler

manifold. �

Proposition 3.84. A connected Riemannian manifold M of dimension 4n admits a hyperkähler structure

if and only if Hol(M) ⊆ Sp(n).

Proof. It follows easily from the holonomy principle and a similar argument to that of the proof

of Corollary 3.68.

An explicit example is the following.

Example 3.85 (Gibbons-Hawking ansatz). First introduced in [GH78]. The exposition here follows

[GW00]. Let U ⊆ R3 be an open set with H1(U,R) = 0 and let π : M → U be a principal S1-bundle. Let

θ be a connection 1-form on M , i.e., θ ∈ Ω1(M, iR) such that θ( ∂∂t ) = i, where ∂
∂t (x) = d

dt

∣∣
t=0

eitx. Then

its curvature dθ ∈ Ω2(M, iR) is basic, meaning that there is some α ∈ Ω2(U, iR) such that dθ = π∗α. Let

V ∈ C∞(U) be a positive function such that ∗dV = α/2πi, where ∗ is the Hodge star operator [Wel08,

Chap. V, Sec. 1]. Define now, if θ0 := θ/2πi and we write the pullback forms π∗dxi simply as dxi,

ω1 := dx1 ∧ θ0 + V dx2 ∧ dx3,

ω2 := dx2 ∧ θ0 + V dx3 ∧ dx1,

ω3 := dx3 ∧ θ0 + V dx1 ∧ dx2.
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Then ω2
i = 2V dx1∧dx2∧dx3∧θ0 is nowhere zero and ωi∧ωj = 0 for all i 6= j. Also, an easy computation

shows that dωi = 0; for instance:

dω1 = −dx1 ∧ α

2πi
+ dV ∧ dx2 ∧ dx3 = 0,

since ∗dV = α/2πi.

Recall from Section 3.5.2 that if (I, J,K) is a hyperkähler structure, then ωJ + iωK is a holomorphic

symplectic (2, 0)-form with respect to I (and similarly for ωK + iωI with respect to J and ωI + iωJ with

respect to K). If we write

ω2 + iω3 = (dx2 + idx3) ∧ (θ0 − iV dx1),

ω3 + iω1 = (dx3 + idx1) ∧ (θ0 − iV dx2),

ω1 + iω2 = (dx1 + idx2) ∧ (θ0 − iV dx3),

from here we can read off three integrable complex structures given on the complexified cotangent bundle

of M by

J1(dx2) = dx3, J1(dx1) = V −1θ0,

J2(dx3) = dx1, J2(dx2) = V −1θ0,

J3(dx1) = dx2, J3(dx3) = V −1θ0.

These define a hyperkähler structure on M :

J1J2(dx3) = J1(dx1) = V −1θ0 = J3(dx3),

J1J2(dx2) = J1(V −1θ0) = −dx1 = J3(dx2).

The metric is given by g = ω1(·, J1·) = ω2(·, J2·) = ω3(·, J3·). Explicitly,

g = V ((dx1)2 + (dx2)2 + (dx3)2) + V −1θ20.

Observe that, since SU(2) = Sp(1), then these spaces are also examples of Calabi–Yau manifolds. H

Definition 3.86. A quaternionic Kähler structure on a Riemannian manifold (M, g) is a parallel

form Q ∈ Ω4(M) such that around every x ∈ M there is a neighborhood on which there are almost

complex structures I, J and K with IJ = K and such that Q = ω2
I + ω2

J + ω2
K . The triple (M, g,Q) is

then called a quaternionic Kähler manifold. �

Proposition 3.87. A connected Riemannian manifold M of dimension 4n admits a quaternionic Kähler

structure if and only if Hol(M) ⊆ Sp(n) Sp(1).

Proof. It follows easily from the holonomy principle and a similar argument to that of the proof

of Corollary 3.68, using the characterization of Sp(n) Sp(1) in Proposition 3.56.

The fundamental example of a quaternionic Kähler manifold is HPn, which is also symmetric by

Example 3.15. This is one of the simplest examples of a quaternionic Kähler symmetric space, also

known as Wolf spaces [Wol65]. It has been conjectured by LeBrun and Salamon [LS94] that these are the

only examples of complete quaternionic Kähler manifolds with positive scalar curvature. This conjecture

has been proven in dimensions 4 [Hit81], 8 [PS91] and 12 [HH02]. On the other hand, there are plentiful

examples of complete non-compact quaternionic Kähler manifolds with negative scalar curvature which

are not symmetric [LeB91, Ale75].
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4

Lie Algebroid Connections and Holonomy

Lie algebroids were introduced by Pradines [Pra67] as the infinitesimal version of a Lie groupoid. One

way to think of Lie algebroids is as a generalization of the tangent bundle. They are vector bundles

A→M endowed with a structure that mimics that of TM : a Lie bracket on its space of sections and a

way to take derivatives of smooth functions of M in the directions of A, i.e., a bundle map ρ : A→ TM ,

called the anchor. Both objects are related via a Leibniz rule. This framework unifies several different

geometries: foliations, manifolds with boundary, Poisson geometry, principal bundles. . .

In this chapter we first introduce the basics of Lie algebroids, including the induced singular foliation

on the base manifold, and then we pass to Lie algebroid connections and holonomy. The latter were

introduced by Fernandes first for Poisson manifolds [Fer00] and later for general Lie algebroids [Fer02]. He

proved, among other things, that the Ambrose–Singer theorem does not hold for Lie algebroid connections.

Rather, there are some additional terms coming from the kernel of the anchor. This makes it possible

for flat Lie algebroid connections to have non-discrete holonomy. In the final section we give a proof of

the Ambrose–Singer–Fernandes theorem in the spirit of Section 1.3, different from Fernandes’s proof in

[Fer00], and we give original examples of a flat Lie algebroid connection with non-discrete holonomy and

of holonomy jumps from leaf to leaf.

4.1. Basic definitions and facts

Definition 4.1. A Lie algebroid on M is a vector bundle A → M together with a vector bundle

morphism ρ : A→ TM , called the anchor, and a Lie bracket [·, ·] on its space of sections such that the

following Leibniz rule holds:

[a, fb] = f [a, b] + (ρ(a)f)b, for a, b ∈ Γ(A) and f ∈ C∞(M).
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The kernel of ρx : Ax → TxM is called the isotropy at x. �

The Leibniz rule implies that the anchor is a Lie algebra morphism at the level of sections.

Lemma 4.2. Let A→M be a Lie algebroid with anchor ρ. Then ρ([a, b]) = [ρ(a), ρ(b)] for all a, b ∈ Γ(A).

Proof. On the one hand, if a, b, c ∈ Γ(A) and f ∈ C∞(M),

[[a, b], fc] = f [[a, b], c] + (ρ([a, b])f)c.

On the other hand,

[[b, fc], a] = [f [b, c] + (ρ(b)f)c, a] = −[a, f [b, c] + (ρ(b)f)c]

= −f [a, [b, c]]− (ρ(a)f)[b, c]− (ρ(b)f)[a, c]− (ρ(a)ρ(b)f)c,

and
[[fc, a], b] = −[f [a, c] + (ρ(a)f)c, b] = [b, f [a, c] + (ρ(a)f)c]

= f [b, [a, c]] + (ρ(b)f)[a, c] + (ρ(a)f)[b, c] + (ρ(b)ρ(a)f)c.

The Jacobi identity for the bracket now gives that

0 = (ρ([a, b])f − [ρ(a), ρ(b)]f)c,

which establishes the claim.

Example 4.3 (Tangent bundle). The tangent bundle TM → M is a Lie algebroid with the identity as

anchor and the Lie bracket as bracket on sections. H

Example 4.4 (Lie algebras). A Lie algebra is a Lie algebroid over a point, with trivial anchor and bracket

given by the Lie bracket of the Lie algebra. H

Example 4.5 (Regular foliations). Let F be a rank r involutive regular distribution on M , i.e., a subbun-

dle F ⊆ TM such that [Γ(F ),Γ(F )] ⊆ Γ(F ). This is equivalent, by the Frobenius integrability theorem

[Lee12, Thm. 19.12], to a regular foliation, i.e., a decomposition of M into disjoint connected embedded

submanifolds {Li}i∈I such that for every point x ∈ M there is a chart (U,ϕ) such that for each i ∈ I
there is some λi ∈ Rn−r, where n = dimM , with

U ∩ Li = ϕ−1(Rr × {λi}).

Then F → M is a Lie algebroid with anchor the inclusion F → TM and bracket the restriction of the

Lie bracket to Γ(F ). H

Example 4.6 (Action Lie algebroid). Let G be a Lie group, with Lie algebra g, acting smoothly on a

manifold M . For ξ ∈ g, denote by ξM the corresponding infinitesimal generator of the action on M , i.e.,

ξM (x) :=
d

dt

∣∣∣∣
t=0

Exp(tξ) · x, for x ∈M ,

where Exp is the Lie group exponential. Then the trivial vector bundle M × g→M can be made into a

Lie algebroid with the anchor given by ρ(x, ξ) := ξM (x) and the bracket by

[f, g](x) := [f(x), g(x)]g + g∗(ξM (x))− f∗(ξM (x)),

where we have identified Γ(M × g) with C∞(M, g) and [·, ·]g is the Lie bracket of g. H

As a generalization of TM , we can extend to A some notions typically defined on TM .

Definition 4.7. Let A→M be a Lie algebroid with anchor ρ. The sections of ΛkA∗ we call differential

A-forms and we denote them by Ωk(A). If E →M is a vector bundle, the sections of ΛkA∗ ⊗E we call

E-valued differential A-forms and we denote them by Ωk(A,E).

We define the A-differential on A-forms as the unique linear map dA : Ωk(A)→ Ωk+1(A) such that
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1. dA(α ∧ β) = dAα ∧ β + (−1)kα ∧ dAβ, for α ∈ Ωk(A) and β ∈ Ωl(A),

2. dAf = df ◦ ρ, for all f ∈ C∞(M) and

dAα(a, b) = ρ(a)(α(b))− ρ(b)(α(a))− α([a, b])

for all α ∈ Ω1(A) and a, b ∈ Γ(A). �

When we do not wish to emphasize which Lie algebroid is being considered, we will talk of LA-forms

and LA-differential.

Lemma 4.8. The A-differential satisfies d2A = 0 and it is given by the Koszul formula

dAα(a0, . . . , ak) =
∑
i

(−1)iρ(ai)(α(a0, . . . , âi, . . . , ak))

+
∑
i<j

(−1)i+jα([ai, aj ], a0, . . . , âi, . . . , âj , . . . , ak),

for α ∈ Ωk(A) and ai ∈ Γ(A).

Proof. See Lemma A.8

Definition 4.9. Let A→M be a Lie algebroid. We define the kth A-cohomology as

Hk(A) :=
ker(dA : Ωk(A)→ Ωk+1(A))

im(dA : Ωk−1(A)→ Ωk(A))
. �

A Lie algebroid morphism is a vector bundle morphism that descends to cohomology.

Definition 4.10. Let A → M and B → N be Lie algebroids. A vector bundle morphism Φ : A → B

covering φ : M → N is a Lie algebroid morphism if dAΦ∗ = Φ∗dB , where the pullback Φ∗ : Ωk(B)→
Ωk(A) is given on α ∈ Ωk(B) by

(Φ∗α)x(a1, . . . , ak) = αφ(x)(Φ(a1), . . . ,Φ(ak)), for ai ∈ Ax. �

Hence, a Lie algebroid morphism Φ : A → B induces a map on cohomology Φ∗ : Hk(B) → Hk(A).

Observe that the anchor map is always a Lie algebroid morphism: if α ∈ Ωk(M), then

dAρ
∗α(a0, . . . , ak) =

∑
i

(−1)iρ(ai)α(ρ(a0), . . . , âi, . . . , ρ(ak))

+
∑
i<j

(−1)i+jα(ρ([ai, aj ]), ρ(a0), . . . , âi, . . . , âj , . . . , ρ(ak))

= dα(ρ(a0), . . . , ρ(ak)) = ρ∗dα(a0, . . . , ak).

At first, one might have expected a simpler definition of a Lie algebroid morphism, something along the

lines of “a vector bundle morphism preserving the anchors and the brackets.” This definition, though,

does not make sense when the morphism is not covering a diffeomorphism. Indeed, if A → M and

B → N are Lie algebroids with anchors ρA and ρB , respectively, and Φ : A → B is a vector bundle

morphism covering φ : M → N , then “preserving anchors” would just mean that ρB ◦ Φ = φ∗ ◦ ρA,

while “preserving brackets” would mean Φ([a, b]) = [Φ(a),Φ(b)], for a, b ∈ Γ(A). But observe that if

a ∈ Γ(A), then Φ(a) ∈ Γ(φ∗B), and in general φ∗B has no canonical Lie algebroid structure. If φ is

a diffeomorphism, though, then φ∗B ∼= B is a Lie algebroid, and these two notions of Lie algebroid

morphism agree: Φ : A → B covering a diffeomorphism φ : M → N is a Lie algebroid morphism if and

only if ρB ◦ Φ = φ∗ ◦ ρA and Φ([a, b]) ◦ φ−1 = [Φ(a) ◦ φ−1,Φ(b) ◦ φ−1] (the insertion of φ−1 gives the

identification of φ∗B with B).
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4.1.1. Singular foliation

In this section we mainly follow [AS09]. As we will see, every Lie algebroid defines a foliation on the

base manifold. This foliation can be singular, i.e., the dimension of its leaves may vary. More precisely,

it defines a foliation in the sense of Stefan-Sussmann [Ste74, Sus73], which we now introduce.

For a vector bundle E →M , let Γ0(E) denote the space of compactly supported sections. We consider

Γ(E) and Γ0(E) as C∞(M)-modules. If F ⊆ Γ0(E) is a submodule and ϕ : N → M a smooth map,

the pullback ϕ∗F of F along ϕ is the submodule of Γ0(ϕ∗E) generated by the elements of the form

fϕ∗σ, for f ∈ C∞0 (N) and σ ∈ F . When ϕ is the inclusion of a submanifold N of M , we call ϕ∗F the

restriction of F to N and write FN .

Definition 4.11. A foliation F on a manifold M is a locally finitely generated submodule of X0(M)

which is closed under the Lie bracket. Explicitly, it is a submodule F ⊆ X0(M) such that

1. for every x ∈M there is a neighborhood U of x such that FU is finitely generated: there are vector

fields X1, . . . , Xk ∈ X(U) such that FU = C∞0 (U)X1 + · · ·+ C∞0 (U)Xk,

2. [F ,F ] ⊆ F .

The pair (M,F ) is called a foliated manifold.

The tangent space Fx to the leaf at x is the image of the evaluation map F → TxM given by

X 7→ X(x).

For X ∈ F , let φXt denote its flow at time t. Then the exponential of X is expX := φX1 ∈ Diff(M).

Let exp F be the subgroup of Diff(M) generated by the elements of the form expX for X ∈ F . Then

the leaves of F are the orbits of exp F . �

By definition, x, y ∈M lie on the same leaf if and only if there are X1, . . . , Xk ∈ F such that

y = φXk1 ◦ · · · ◦ φX1
1 (x).

Observe that, as it stands now, it is not clear that the leaves are actually submanifolds of M and that

the so-called tangent spaces to the leaves are actually the tangent spaces to any submanifold.

Proposition 4.12. Let F be a foliation on M . The dimension of the tangent spaces to the leaves is lower

semi-continuous. That is, for every x ∈M there is a neighborhood U of x such that dimFx ≤ dimFy for

every y ∈ U .

Proof. Since F is locally finitely generated, let U be a neighborhood of x such that there are

X1, . . . , Xk ∈ X(U) generating FU . Then dimFx = dim span{X1(x), . . . , Xk(x)}. This equals the

rank of the matrix whose ith column is the components of Xi(x) with respect to some coordinate

chart on U (possibly making U smaller). This rank is computed using the minors of the matrix.

By continuity of the determinant map, a minor which is nonzero at x will continue to be nonzero

on U , possibly after shrinking U , so this means that the rank cannot decrease on U . Hence,

dimFx ≤ dimFy for any y ∈ U .

Definition 4.13. Let F be a foliation on M and ϕ : N →M a smooth map. We denote by ϕ−1(F ) the

submodule of X0(N) defined by

ϕ−1(F ) := {X ∈ X0(N) : ϕ∗X ∈ ϕ∗F},

where ϕ∗X ∈ Γ0(ϕ∗TM) is given by (ϕ∗X)(x) := ϕ∗(X(x)).

We say that ϕ is transverse to F if the map ϕ∗F×X0(N)→ Γ0(ϕ∗TM) given by (X,Y ) 7→ X+ϕ∗Y

is surjective. �

Observe that a submersion onto M is transverse to any foliation on M .
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Proposition 4.14 ([AS09, Prop. 1.10]). Let F be a foliation on M and ϕ : N → M a smooth map.

Then ϕ−1(F ) is closed under Lie brackets, and if ϕ is transverse to F then ϕ−1(F ) is locally finitely

generated.

It is obvious that for all x ∈ N we have that ϕ−1(F )x = {v ∈ TxN : ϕ∗v ∈ Fϕ(x)}.

The following local normal form for foliations allows us to define the smooth structure on the leaves.

Proposition 4.15 ([AS09, Prop. 1.12]). Let F be a foliation on M and x ∈ M . Let q := dimTxM −
dimFx. Then there is a neighborhood U of x, a q-dimensional foliated manifold (N,G ) and a submersion

ϕ : U → N with connected fibers such that FU = ϕ−1(G ). Moreover, we have that the tangent space of

the leaf of N at ϕ(x) is 0, that kerϕ∗(x) = Fx and that each fiber of ϕ is contained in a leaf of F .

If U , (N,G ) and ϕ are as in Proposition 4.15 around x ∈ M , then we take ϕ−1(ϕ(x)) as a chart for

the leaf through x. These charts indeed constitute a smooth atlas for the leaf through x [AS09, Prop.

1.14]. From Proposition 4.15 it is clear that the tangent space to the leaf through x with this smooth

structure if precisely Fx.

Proposition 4.15 also allows us to prove that curves tangent to the leaves stay on the leaves.

Proposition 4.16. Let F be a foliation on M . Then x, y ∈M lie on the same leaf if and only if there

is a piecewise smooth curve tangent to the leaves joining them, i.e., if there is γ : [0, 1] → M piecewise

smooth with γ(0) = x and γ(1) = y such that γ̇(t) ∈ Fγ(t) for all t ∈ [0, 1].

Proof. Let X ∈ F . Then for every z ∈ M the smooth curve given by γ(t) := exp(tX)(z) is

tangent to the leaves. Indeed, exp(tX)(z) = φXt (z), so

γ̇(t) =
d

dt
exp(tX)(z) = X(φXt (z)) ∈ FφXt (z) = Fγ(t).

If x, y ∈ M lie on the same leaf, then there are X1, . . . , Xk ∈ F such that y = φXk1 ◦ · · · ◦
φX1
1 (x). Define xi recursively by x0 := x and xi := φXi1 (xi−1), so that y = xk, and let γi(t) :=

exp(tXi)(xi−1). Then the concatenation γ1 · . . . · γk is the sought curve.

Conversely, assume there is γ : [0, 1]→ M piecewise smooth with γ(0) = x and γ(1) = y such

that γ̇(t) ∈ Fγ(t). Let U , (N,G ) and ϕ be as in Proposition 4.15. Shrinking U if necessary, assume

that FU is generated by X1, . . . , Xk ∈ X(U). Since γ̇(t) ∈ Fγ(t), write γ̇(t) = γ̇i(t)Xi(γ(t)) for t

close enough to 0. Let {Xt}t∈[0,1] be the time-dependent vector field on U given by Xt := γ̇i(t)Xi.

Then γ is an integral curve of Xt.

Consider α := ϕ ◦ γ and write Gz for the tangent space to the leaf of G at z ∈ N . Let

Yt := ϕ∗Xt ∈ Γ(ϕ∗N). Since FU = ϕ−1(G ), we have that Yt(ϕ(x)) ∈ Gϕ(x) = 0 for t close enough

to 0. The curve t 7→ (t, α(t)) in R × N is an integral curve of the vector field (t, z) 7→ (1, Yt(z))

starting at (0, ϕ(x)). Since Yt(ϕ(x)) = 0, the curve t 7→ (t, ϕ(x)) is also an integral curve starting

at (0, ϕ(x)). By the uniqueness of solutions to ODEs we have that α(t) = ϕ(x) for t close enough

to 0. Hence, γ(t) ∈ ϕ−1(ϕ(x)), which is contained in the leaf of F through x. Since [0, 1] is

compact, we can repeat this argument a finite amount of times to conclude that γ(t) lies in the

leaf of x for all t. In particular, y = γ(1) does.

Back to Lie algebroids, any Lie algebroid A → M with anchor ρ defines a foliation on M by setting

F := ρ(Γ0(A)). Indeed, it is locally finitely generated, since A is locally trivial, and it is closed under

the Lie bracket by Lemma 4.2. The leaves of A are the leaves of the induced foliation.
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4.2. Lie algebroid connections

4.2.1. Lie algebroid connections and parallel transport

Following the “generalization of the tangent bundle” approach to Lie algebroids, the following definition

is the most natural definition of a Lie algebroid connection.

Definition 4.17. Let A→M be a Lie algebroid and E →M a vector bundle. An A-connection on E

is an R-linear operator ∇ : Γ(E)→ Ω1(A,E) satisfying the Leibniz rule

∇(fσ) = dAf ⊗ σ + f∇σ.

We denote ∇σ(a) by ∇aσ, for a ∈ A. A section σ ∈ Γ(E) is called parallel if ∇σ = 0.

If 〈·, ·〉 is a metric on E, we say that an A-connection is metric or compatible with the metric if

ρ(a)〈σ, ν〉 = 〈∇aσ, ν〉+ 〈σ,∇aν〉, for all σ, ν ∈ Γ(E) and a ∈ Γ(A).

The curvature of ∇ is the 2-form F ∈ Ω2(A,EndE) given by

F (a, b)σ := ∇a∇bσ −∇b∇aσ −∇[a,b]σ, for a, b ∈ Γ(A) and σ ∈ Γ(E). �

When we do not wish to emphasize which Lie algebroid we are considering, we will just talk of

LA-connections. For a vector bundle E → M and a Lie algebroid A → M , there always exists an A-

connection on E. Indeed, if ∇ is a connection on E, then ∇aσ := ∇ρ(a)σ, where ρ is the anchor and

σ ∈ Γ(E), defines an A-connection on E. From now on, we fix a Lie algebroid A→M with anchor ρ and

a vector bundle E →M with an A-connection ∇.

Definition 4.18. An A-path is a curve a : [0, 1] → A such that γ̇a(t) = ρ(a(t)), where γa(t) is the

projection of a(t) to M . We say that a goes from γa(0) to γa(1). �

Intuitively, an A-path a is just a “correct velocity” for γa, when we regard A as a generalization of

TM . Observe that by Proposition 4.16, there is an A-path from x to y in M if and only if x and y lie on

the same leaf.

Lemma 4.19. A smooth map a : [0, 1] → A is an A-path if and only if ã : T [0, 1] → A given by

ã( ddt ) = a(t) is an LA-morphism.

Proof. The map a is an A-path if and only if d
dtf(γa(t)) = df(ρ(a(t))) for all f ∈ C∞(M). The

left-hand side is d(ã∗f)( ddt ), while the right-hand side is ã∗dAf( ddt ). So a is an A-path if and only

if ã∗ commutes with the differentials at the level of functions. Since there are no 2-forms on [0, 1]

because it is 1-dimensional, ã∗ always commutes with the differentials at the level of k-forms, for

k ≥ 1.

We will often write ã as adt.

To be able to define parallel transport, we need to be able to take derivatives of sections along A-paths.

Lemma 4.20. Let B → N be a Lie algebroid and Φ : B → A a vector bundle morphism covering

φ : N →M and preserving anchors, i.e., such that ρA ◦ Φ = φ∗ ◦ ρB. If a vector bundle E →M carries

a A-connection, then φ∗E inherits a B-connection Φ∗∇ given by (Φ∗∇)(φ∗σ) := Φ∗(∇σ) for σ ∈ Γ(E).

Proof. We need only check that it is well defined by checking the Leibniz rule for a section φ∗(fσ),

for f ∈ C∞(M). Since, Φ∗ commutes with differentials at the level of functions, because ρA ◦Φ =

φ∗ ◦ ρB , then

(Φ∗∇)(φ∗(fσ)) = Φ∗(∇(fσ)) = Φ∗(dAf ⊗ σ + f∇σ) = dBφ
∗f ⊗ φ∗σ + φ∗fΦ∗(∇σ).
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A section of E along the A-path a is just a section of γ∗aE. We say that it is parallel along a if

(a∗∇)σ = 0. This notion makes sense precisely because of Lemmas 4.19 and 4.20. For (a∗∇)σ we will

also use the following notations interchangeably

(a∗∇)σ = ∇aσ =
∇
dt
σ = σ̇.

If {ai}i is a local frame for A and {σi}i a local frame for E, then in these frames we can write a(t) =

ai(t)ai(γa(t)) and σ(t) = σi(t)σi(γa(t)), for some smooth functions ai, σi : [0, 1]→ R. Let Γkij be smooth

local functions such that ∇aiσj = Γkijσk. Then

σ̇(t) = (a∗∇) d
dt

(σi(t)γ∗aσi(t)) = σ̇i(t)σi(γa(t)) + σi(t)∇a(t)σi(γa(t))

= (σ̇i(t) + Γijk(γa(t))σk(t)aj(t))σi(γa(t)),

so that the equation for σ to be parallel is locallly a first order linear ODE. These always have a unique

solution defined on the whole interval of definition of the equation. Hence, we have proved the following.

Lemma 4.21. Let a : [0, 1] → A be an A-path. Then for every v ∈ Eγ(0), there is a unique parallel

section σv along a such that σv(0) = v.

With this we can define parallel transport along a (allowed to be piecewise smooth) as in Sec-

tion 1.2: the map τa : Eγa(0) → Eγa(1) given by τav := σv(1). The basic properties of parallel transport

also hold in this case (Proposition 1.14), where the A-path a traversed in reverse order is

a−1(t) := −a(1− t),

and the concatenation of two A-paths a and b with γa(1) = γb(0) is defined as

a · b(t) :=

{
2a(2t), 0 ≤ t ≤ 1

2

2b(2t− 1), 1
2 ≤ t ≤ 1.

The analog of Proposition 1.15 is the following.

Proposition 4.22. 1. Let x ∈ M , b ∈ Ax and σ ∈ Γ(E). Let a : [0, 1] → A be an A-path with

γa(0) = x and a(0) = b, and let τt be parallel transport along a from x to γa(t). Then

∇bσ =
d

dt

∣∣∣∣
t=0

τ−1t (σ(γa(t))).

2. Let a : [0, 1] → A be a piecewise smooth A-path and let τt be parallel transport along a from γa(0)

to γa(t). Then for any σ ∈ Γ(γ∗aE) we have that

σ̇(t) = τt
d

dt
(τ−1t σ(t)).

4.2.2. Holonomy

As in the classical case, parallel transport leads to the concept of holonomy group. If A → M is a Lie

algebroid, let ΠA
x,y denote the set of piecewise smooth A-paths a with γa(0) = x and γa(1) = y.

Definition 4.23. Let A→M be a Lie algebroid and E →M a vector bundle with an A-connection ∇.

The A-holonomy group of ∇ at x ∈M is defined as

Holx(∇) := {τa : a ∈ ΠA
x,x}.

If we let L be the leaf through x, then the restricted A-holonomy group at x is

Hol0x(∇) := {τa : a ∈ ΠA
x,x with γa null-homotopic in L}. �
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In order to prove that Holx(∇) and Hol0x(∇) are Lie subgroups of GL(Ex), we need to know how to

“lift” homotopies γ : [0, 1]2 → M to some kind of “homotopies of A-paths”. One way to do this is the

following.

Let x ∈M and let L be the leaf through x. Since the rank of ker ρ does not change along L, we have

that ker ρ is a vector bundle over L. Then there is a short exact sequence of vector bundles over L

0 −→ ker ρ −→ AL −→ TL −→ 0, (4.1)

where AL is the restriction of A to L.

If we consider coordinates (s, t) on [0, 1]2, a vector bundle morphism Φ : T [0, 1]2 → A can be written

uniquely as Φ = adt+ bds, for a, b : [0, 1]2 → A. Explicitly, a(s, t) = Φ( ∂∂t ) and b(s, t) = Φ( ∂∂s ).

Lemma 4.24. Let η : TL → AL be a splitting of the short exact sequence (4.1), i.e., a vector bundle

morphism such that ρ ◦ η = id. Then

1. if γ : [0, 1]→ L is a curve, then a = η(γ̇) is an A-path over γ,

2. if γ : [0, 1]2 → L is a homotopy, then Φ = adt+ bds given by a = η( ∂∂tγ) and b = η( ∂∂sγ) is a vector

bundle morphism with ρ ◦ Φ = γ∗. In particular, as := a(s, ·) is an A-path over γs := γ(s, ·) for

every s, and if γ̇s(t) = 0 then as(t) = 0.

Proof. The first claim is clear. For the second, ρ ◦ Φ( ∂∂t ) = ρ ◦ η( ∂∂tγ) = γ∗(
∂
∂t ) and similarly for

∂
∂s , so ρ ◦Φ = γ∗. Since γ̇s(t) = ∂

∂tγ(s, t), that as is an A-path over γs is a consequence of the first

claim.

Proposition 4.25. Let E be a vector bundle with an A-connection ∇ and x ∈ M . Then Holx(∇) is

a Lie subgroup of GL(Ex) whose connected identity component is Hol0x(∇). In particular, Hol0x(∇) is

normal in Holx(∇).

Proof. That both Holx(∇) and Hol0x(∇) are subgroups of GL(Ex) is a direct consequence of the

properties of parallel transport (cfr. Proposition 1.14). We now show that Hol0x(∇) is an arcwise

connected subgroup of GL(Ex), which implies that it is a Lie subgroup [Yam50]. Let L be the

leaf through x and let γ : [0, 1]2 → L be a smooth homotopy with fixed endpoints starting at the

constant path on x (every null-homotopic path is smoothly null-homotopic [Lee12, Thm. 6.29]).

Let Φ = adt+ bds : T [0, 1]2 → A be as in Lemma 4.24, which exists because short exact sequences

of vector bundles are always split. By a similar argument as in Lemma 4.21 and using the smooth

dependence on initial conditions of ODE theory, for each v ∈ Ex there is σ ∈ Γ(γ∗E) such that
∇
∂tσ = 0 and σ(s, 0) = v for all s. Then, if τs is parallel transport along as, we have that

τsv = σ(s, 1), which is smooth on s. Since a0(t) = 0 ∈ Ax for all t, then σ(0, t) ∈ Ex does not

depend on t, and therefore τ0v = σ(0, 1) = σ(0, 0) = v. We conclude that τs is a smooth path in

Hol0x(∇) from τ1 to the identity, as wanted.

Since Hol0x(∇) is a subgroup of Holx(∇), this also endows Holx(∇) with the structure of a Lie

group by translating the smooth structure of Hol0x(∇) by left or right multiplication.

Consider now the map π1(L)→ Holx(∇)/Hol0x(∇) given by [γ] 7→ τ−1a Hol0x(∇), where a is as

in Lemma 4.24 (for a fixed splitting). It is easily seen to be a surjective group homomorphism.

A similar argument as in the proof of Proposition 4.25, using that π1(L) is countable, gives that

Hol0x(∇) is the identity component of Holx(∇).

Therefore, the following definition makes sense.

Definition 4.26. Let E be a vector bundle with an A-connection ∇. The holonomy algebra holx(∇)

of ∇ at x ∈M is defined as the Lie algebra of Holx(∇). �

Because parallel transport can only be done between fibers of points on the same leaf, the holonomy

principle in this case is “leafwise”. The proof is identical to the classical case.

78



Jaime Pedregal 4.2. Lie algebroid connections

Theorem 4.27 (Holonomy principle). Let M be connected and E → M a vector bundle with an A-

connection ∇. Let x ∈M and L the leaf through x. Then the following vector spaces are isomorphic:

1. the space of parallel sections of EL,

2. the space of Holx(∇)-invariant vectors in Ex,

3. the space of sections on L invariant under parallel transport, i.e., sections σ ∈ Γ(EL) such that

τa(σ(γa(0))) = σ(γa(1)) for all piecewise smooth A-paths a on M .

4.2.3. Ambrose–Singer–Fernandes theorem

A remarkable fact is that the Ambrose–Singer theorem for LA-holonomy picks up some extra terms,

which imply that a flat A-connection does not necessarily have a discrete holonomy. This was already

observed by Fernandes [Fer00, Fer02]. Here we give a different proof, in the spirit of Section 1.3.

Let A → M be a Lie algebroid with anchor ρ and E → M be vector bundle with an A-connection

∇. To understand what these extra terms are, observe that a ∈ ker ρx defines and endomorphism of the

fiber Ex, as the following shows.

Lemma 4.28. Let a ∈ ker ρx. Then ∇a defines an endomorphism of Ex, defined by ∇av := ∇aσ(x),

where σ ∈ Γ(E) is such that σ(x) = v.

Proof. Let σ ∈ Γ(E) be such that σ(x) = v. Any other section of E with value v at x can be

written as σ + ν, for some ν ∈ Γ(E) with ν(x) = 0. Then

∇a(σ + ν)(x) = ∇aσ(x) +∇aν(x).

So it is enough to see that ∇aν(x) = 0. Let {σi}i be a frame for E and write ν = νiσi. Then

νi(x) = 0 for all i, and hence, because ρ(a) = 0,

∇aν(x) = νi(x)∇aσi(x) = 0.

As we will see, the proof is completely analogous to that of Section 1.3, but these new terms suddenly

appear in the computations. To understand why they appear, recall that the key for our proof of the

Ambrose–Singer theorem was Lemma 1.22, and this one relied on the fact that the curvature of the

pullback connection is the pullback of the curvature, Lemma 1.11. For LA-connections, though, this does

not hold. We will just compute the case we are interested in.

Lemma 4.29. Let E → M be a vector bundle with an A-connection ∇ and curvature F and let Φ =

adt+ bds : [0, 1]2 → A be a vector bundle morphism over γ : [0, 1]2 → M with ρ ◦ Φ = γ∗. Then there is

a smooth map c : [0, 1]2 → A with ρ ◦ c = 0 such that

∇
∂t

∇
∂s
− ∇
∂s

∇
∂t

= F (a, b) +∇c.

Explicitly, it is given as follows: consider (s, t)-dependent sections as,t, bs,t ∈ Γ(A) such that as,t(γ(s, t)) =

a(s, t) and bs,t(γ(s, t)) = b(s, t), then

c(s, t) =

(
∂

∂t
bs,t −

∂

∂s
as,t + [as,t, bs,t]

)
(γ(s, t)).

Proof. The proof that ∇∂t
∇
∂s −

∇
∂s
∇
∂t is C∞([0, 1]2)-linear is straightforward, so we need only check

that the claim holds for pullback sections γ∗σ, for σ ∈ Γ(E). Consider a local frame {ei}i for A

and write a(s, t) = ai(s, t)ei(γ(s, t)) and b(s, t) = bi(s, t)ei(γ(s, t)) for some ai, bi : [0, 1]2 → R. Set
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as,t := ai(s, t)ei and bs,t = bi(s, t)ei. Then

∇
∂t

∇
∂s

(γ∗σ) =
∇
∂t

(∇b(s,t)σ) =
∇
∂t

(bi(s, t)γ∗(∇eiσ))

=
∂bi

∂t
(s, t)γ∗(∇eiσ) + bi(s, t)∇a(s,t)∇eiσ

=
(
∇ ∂

∂t bs,t
σ +∇as,t∇bs,tσ

)
(γ(s, t)).

Similarly,
∇
∂s

∇
∂t

(γ∗σ) =
(
∇ ∂

∂sas,t
σ +∇bs,t∇as,tσ

)
(γ(s, t)).

Hence, (
∇
∂t

∇
∂s
− ∇
∂s

∇
∂t

)
(γ∗σ) = F (as,t, bs,t)(γ(s, t)) +∇ ∂

∂t bs,t−
∂
∂sas,t+[as,t,bs,t]

σ(γ(s, t)).

It only remains to see that ρ ◦ c = 0. Let Ts,t := ρ(as,t) and Ss,t := ρ(bs,t). Then Ts,t(γ(s, t)) =
∂
∂tγ(s, t) and Ss,t(γ(s, t)) = ∂

∂sγ(s, t), since ρ ◦ Φ = γ∗. Therefore,

ρ ◦ c(s, t) =

(
∂

∂t
Ss,t −

∂

∂s
Ts,t + [Ts,t, Ss,t]

)
(γ(s, t)).

Since γ∗ commutes with differentials, we have that for all α ∈ Ω1(M),

0 = (dγ∗ − γ∗d)α

(
∂

∂t
,
∂

∂s

)
=

∂

∂t

(
α

(
∂

∂s
γ

))
− ∂

∂s

(
α

(
∂

∂t
γ

))
− dα

(
∂

∂t
γ,

∂

∂s
γ

)
=

∂

∂t
(α(Ss,t)(γ(s, t)))− ∂

∂s
(α(Ts,t)(γ(s, t)))− dα(Ts,t, Ss,t)(γ(s, t))

= α

(
∂

∂t
Ss,t

)
(γ(s, t)) +

(
∂

∂t
γ

)
(α(Ss,t))− α

(
∂

∂s
Ts,t

)
(γ(s, t))−

(
∂

∂s
γ

)
(α(Ts,t))

− Ts,t(γ(s, t))(α(Ss,t)) + Ss,t(γ(s, t))(α(Ts,t)) + α([Ts,t, Ss,t])(γ(s, t))

= α(ρ ◦ c(s, t)).

Hence, ρ ◦ c = 0, as wanted.

We may now start the proof of the Ambrose–Singer–Fernandes theorem.

Lemma 4.30. Let Φ = adt+ bds : T [0, 1]2 →M be a vector bundle morphism over γ : [0, 1]2 →M with

ρ ◦ Φ = γ∗, and let τs,t be parallel transport along the A-path as from γs(t) to γs(1). Let c : [0, 1]2 → A

be as in Lemma 4.29 and let

Fs,t := τs,tF (a(s, t), b(s, t)) τ−1s,t ∈ gl(Eγs(1)) and As,t := τs,t∇c(s,t)τ−1s,t ∈ gl(Eγs(1)).

Then for any σ ∈ Γ(γ∗E) with ∇∂tσ = 0 and ∇
∂sσ(·, 0) = 0 we have that

∇
∂s
σ(s, 1) =

(∫ 1

0

(Fs,t +As,t)dt

)
σ(s, 1).

Proof. Using Proposition 4.22, Lemma 4.29 and the fact that ∇∂tσ = 0, we compute:

d

dt

(
τs,t
∇
∂s
σ(s, t)

)
= τs,t

∇
∂t

∇
∂s
σ(s, t) = τs,t(F (a(s, t), b(s, t)) +∇c(s,t))σ(s, t)

= (Fs,t +As,t)σ(s, 1).
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Explicitly, parallel transport along as from γs(t) to γs(1) is given by parallel transport along the

A-path r 7→ (1− t)as(r(1− t) + t), covering r 7→ γs(r(1− t) + t). Then, since τs,1 = id, because it

is parallel transport along the A-path r 7→ 0 ∈ Aγs(1), and ∇
∂sσ(·, 0) = 0,

∇
∂s
σ(s, 1) = τs,1

∇
∂s
σ(s, 1)− τs,0

∇
∂s
σ(s, 0) =

∫ 1

0

d

dt

(
τs,t
∇
∂s
σ(s, t)

)
dt

=

(∫ 1

0

(Fs,t +As,t)dt

)
σ(s, 1). �

Corollary 4.31. Let Φ = adt+ bds : T [0, 1]2 →M be a vector bundle morphism over a piecewise smooth

homotopy γ : [0, 1]2 → M with fixed endpoints, with ρ ◦ Φ = γ∗ and such that if ∂
∂sγ(s, t) = 0 then

b(s, t) = 0, and let τs be parallel transport along as. Then

d

ds
τs =

(∫ 1

0

(Fs,t +As,t)dt

)
τs.

Proof. For any γ with fixed endpoints, such a lift Φ always exists by Lemma 4.24. Let σ ∈ Γ(γ∗E)

with ∇
∂tσ = 0 and ∇

∂sσ(·, 0) = 0. Notice that since γ has fixed endpoints, then b(s, 0) = 0 and

b(s, 1) = 0 for all s, so that the covariant derivative with respect to s at the endpoints is just

derivation with respect to s. Hence, σ(·, 0) is constant and, by Lemma 4.30,

∇
∂s
σ(s, 1) =

d

ds
(σ(s, 1)) =

d

ds
(τsσ(s, 0)) =

(
d

ds
τs

)
σ(s, 0)

=

(∫ 1

0

(Fs,t +As,t)dt

)
σ(s, 1) =

(∫ 1

0

(Fs,t +As,t)dt

)
τsσ(s, 0),

and this gives the result.

We now want to consider the analog of the homotopies of square loops. Let z ∈M , let L be the leaf

through z and let a, b ∈ Az. Let f : U → L be a smooth map from an open neighborhood U of 0 in R2

with f(0) = z and Φ̄ = ādx + b̄dy : T [0, 1]2 → A a vector bundle morphism over f with ρ ◦ Φ̄ = f∗ and

such that ā(0, 0) = a and b̄(0, 0) = b, which exists by Lemma 4.24. Then the homotopies of square loops

in this case can be defined as follows: let q : [0, 1]2 → [0, 1]2 be the map

q(s, t) =


(4st, 0), 0 ≤ t ≤ 1

4 ,

(s, s(4t− 1)), 1
4 ≤ t ≤

1
2 ,

(s(3− 4t), s), 1
2 ≤ t ≤

3
4 ,

(0, 4s(1− t)), 3
4 ≤ t ≤ 1,

then

γ := f ◦ q and Φ := Φ̄ ◦ q∗. (4.2)

Then Φ : T [0, 1]2 → A is a vector bundle morphism with ρ ◦ Φ = γ∗. Write Φ = adt + bds (not to be

confused with a, b ∈ Az, the difference is clear from context) and consider (x, y)- and (s, t)-dependent

sections āx,y, b̄x,y, as,t, bs,t ∈ Γ(A) such that

āx,y(f(x, y)) = ā(x, y), b̄x,y(f(x, y)) = b̄(x, y), as,t(γ(s, t)) = a(s, t) and bs,t(γ(s, t)) = b(s, t).

It is straightforward to see that the relations among these are

as,t =


4sā4st,0, 0 ≤ t ≤ 1

4 ,

4sb̄s,s(4t−1),
1
4 ≤ t ≤

1
2 ,

−4sās(3−4t),s,
1
2 ≤ t ≤

3
4 ,

−4sb̄0,4s(1−t),
3
4 ≤ t ≤ 1;

bs,t =


4tā4st,0, 0 ≤ t ≤ 1

4 ,

ās,s(4t−1) + (4t− 1)b̄s,s(4t−1),
1
4 ≤ t ≤

1
2 ,

(3− 4t)ās(3−4t),s + b̄s(3−4t),s,
1
2 ≤ t ≤

3
4 ,

(1− t)b̄0,4s(1−t), 3
4 ≤ t ≤ 1.
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Proposition 4.32. Let (Φ, γ) be a homotopy of square loops as in (4.2) and let τs be parallel transport

along as. Then there is c ∈ ker ρz such that

d

ds

∣∣∣∣
s=0

τs = 0 and
d2

ds2

∣∣∣∣
s=0

τs = 2F (b, a)− 2∇c.

Explicitly, c is given as follows: let c̄ : [0, 1]2 → A be as in Lemma 4.29 for Φ̄, then c = c̄(0, 0).

Proof. Direct computation, using the skewsymmetry of F and the formulas for as,t and bs,t, gives

F (a(s, t), b(s, t)) =


0, t ≤ 1

4 or t ≥ 3
4 ,

4sF (b̄, ā)(s, s(4t− 1)), 1
4 ≤ t ≤

1
2 ,

4sF (b̄, ā)(s(3− 4t), s), 1
2 ≤ t ≤

3
4 .

On the other hand, it is an easy but somewhat lengthy computation to show that the map c :

[0, 1]2 → A from Lemma 4.29 for Φ is given by

c(s, t) =


0, t ≤ 1

4 or t ≥ 3
4 ,

−4sc̄(s, s(4t− 1)), 1
4 ≤ t ≤

1
2 ,

−4sc̄(s(3− 4t), s), 1
2 ≤ t ≤

3
4 .

Hence, by Corollary 1.23,

d

ds

∣∣∣∣
s=0

τs =

(∫ 3/4

1/4

(F0,t +A0,t)dt

)
τ0 = 0.

Also, if we let c := c̄(0, 0) ∈ Az, then 1
s (Fs,t+As,t)→ 4F (b, a)−4∇c uniformly in t as s→ 0 since

τ0,t = id because γ0 is the constant path. Then,

d2

ds2

∣∣∣∣
s=0

τs =

(∫ 3/4

1/4

d

ds

∣∣∣∣
s=0

(Fs,t +As,t)dt

)
τ0 = 2F (b, a)− 2∇c.

Theorem 4.33 (Ambrose–Singer–Fernandes). Let x ∈M and denote by ΠA
x the set of piecewise smooth

A-pahts [0, 1]→ A starting at x. Then

holx(∇) = span{τ−1e F (a, b)τe : e ∈ ΠA
x and a, b ∈ Aγe(1)}

+ span{τ−1e ∇cτe : e ∈ ΠA
x and c ∈ ker ργe(1)}.

Proof. Analogous to that of the Ambrose–Singer theorem, Theorem 1.25.

The new terms are genuinely a new feature of A-holonomy, they cannot be absorbed into the curvature

terms, since there are examples of flat A-connections with non-discrete holonomy. The easiest example

might be the following.

Example 4.34. If the anchor is trivial, then an A-connection on a vector bundle E → M is just an

element in Ω1(A,EndE). Let A = g be a Lie algebra over a point and E = V a vector space. An

A-connection on E is then a linear map B : g→ gl(V ). Its curvature is

F (ξ, η) = [B(ξ), B(η)]−B([ξ, η]), for ξ, η ∈ g.

Hence, it is flat if and only if B is a Lie algebra morphism (a representation). Any smooth curve

a : [0, 1] → g is an A-path, and a smooth curve v : [0, 1] → V is parallel along a if and only if

v̇(t) +B(a(t))v(t) = 0. If we write τt for parallel transport along a, then it satisfies τ̇t = −B(a(t))τt.

If a is the constant path with value ξ ∈ g, then v(t) = e−tB(ξ)v(0) is the parallel section along a.

Hence, we have that eB(g) ⊆ Hol(B). Consider now 〈eB(g)〉, the Lie subgroup of GL(V ) generated by

eB(g). Its Lie algebra is the Lie subalgebra of gl(V ) generated by B(g). Consider the time-dependent

vector field (g, t) 7→ −B(a(t))g defined on 〈eB(g)〉. Its flow is contained in 〈eB(g)〉, and since τt is a flow

line of such a vector field, we conclude that τt ∈ 〈eB(g)〉 for all t, i.e., Hol(B) = 〈eB(g)〉.
Here we can see three different cases:
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1. If B is flat, let G be the 1-connected Lie group integrating g and let eB : G → GL(V ) be the Lie

group morphism integrating g, given by eB(Exp ξ) = eB(ξ). Then 〈eB(g)〉 = eB(〈Exp g〉) = eB(G).

In this case, hol(B) = B(g), and this corresponds to the isotropy summand in the Ambrose–Singer–

Fernandes theorem.

2. If B is not flat but B(g) is a Lie subalgebra of gl(V ), then we still have hol(B) = B(g). In this

case, the curvature summand in the Ambrose–Singer–Fernandes theorem can be absorbed into the

isotropy summand.

3. If B is not flat and B(g) is not a Lie subalgebra of gl(V ), then we have that hol(B) is the Lie

subalgebra generated by B(g). In this case the curvature summand cannot be absorbed into the

isotropy summand. The curvature terms come from conjugation: if ξ, η ∈ g then

d2

dsdt

∣∣∣∣
s=t=0

etB(ξ)esB(η)e−tB(ξ) = [B(ξ), B(η)],

and these terms might not lie in B(g), i.e., they might not come from the isotropy.

Let us illustrate this with a particular example. Consider g = su(2) and V = C2. Consider the basis

of su(2)

σ1 =

(
0 i

i 0

)
, σ2 =

(
0 1

−1 0

)
, σ3 =

(
i 0

0 −i

)
,

with commutation relations [σ1, σ2] = −2σ3 (and cyclic permutations).

The map B sending σj to σj+1 (here indices are taken mod 3) is a representation, and since B(su(2)) =

su(2), we have that Hol(B) = SU(2). The map B sending σ1 to itself and permuting σ2 and σ3 is not a

representation, but we still have B(su(2)) = su(2), so still Hol(B) = SU(2). The map B sending σ1 and

σ2 to 0 and σ3 to itself is not a representation either, and B(su(2)) = Rσ3, which is a subalgebra. In this

case, Hol(B) = U(1), where U(1) ∼= eRσ3 ⊆ SU(2). Lastly, if B is the map taking σ1 to id and letting σ2

and σ3 unchanged, then B is not a representation and B(su(2)) = span{id, σ2, σ3} is not a subalgebra.

Then hol(B) is the Lie algebra generated by B(su(2)), which is R⊕ su(2). Hence,

Hol(B) = R>0 × SU(2) = {A ∈ GL(2,C) : A∗A ∈ R>0id}. H

Also, since A-holonomy is a leafwise property, it can jump from leaf to leaf, as the next examples

show.

Example 4.35. Reconsider Example 4.34 with changing basepoint. That is, consider A = [0, 1]×g as the

Lie algebroid over [0, 1] with trivial anchor and bracket given by [a, b](t) := [a(t), b(t)], for a, b : [0, 1]→ g.

The connection is now given by a smooth collection of linear maps Bt : g→ gl(V ).

For g = su(2), consider the map given by

Bt(σ1) := tid + (1− t)σ1,

Bt(σ2) := tσ2 + (1− t)σ3,

Bt(σ3) := tσ3 + (1− t)σ2.

From Example 4.34 we already now that Hol(B0) = SU(2) and Hol(B1) = R>0 × SU(2). If t 6= 0, 1, then

we have that

[Bt(σ1), Bt(σ2)] = 2(1− t)(−tσ3 + (1− t)σ2),

from where we conclude that hol(Bt) = R⊕ su(2). Hence,

Hol(Bt) =

{
SU(2), t = 0

R>0 × SU(2), t > 0
H
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Example 4.36 (Action Lie algebroid). Let G be a Lie group acting smoothly on M and consider the

action Lie algebroid A = M×g (Example 4.6). A smooth map a : [0, 1]→ A, which we write as a = (γ, ξ)

for γ : [0, 1]→M and ξ : [0, 1]→ g, is an A-path if and only if

ξ(t)M (γ(t)) = γ̇(t).

Let E = M × V be the trivial vector bundle over M , with V a vector space. Then any A-connection on

E is of the form ∇ = ρ∗d+ β, for some β ∈ Ω1(A,EndE), i.e., identifying Γ(E) ∼= C∞(M,V ),

∇ξw(x) = w∗(ξM (x)) + βx(ξ)w(x), for ξ ∈ g, w ∈ C∞(M,V ) and x ∈M .

Since both A and E are trivial, then β is a family of linear maps βx : g→ gl(V ) depending smoothly on

x ∈M .

From here we get that a section σ = (γ, v) of E along γ, where v : [0, 1]→ V , is parallel if and only if

v̇(t) + βγ(t)(ξ(t))v(t) = 0.

With this we can do some explicit computations in some easy examples.

Consider the action of S1 = {w ∈ C : |w| = 1} on C by complex scalar multiplication. Since the Lie

algebra of S1 is R and gl(R) = R, we get that β ∈ C∞(C). In this case the anchor is ρ(z, λ) = iλz, and

the parallel transport equation for a section σ = (z, µ) along z reads

µ̇+ β(z)λµ = 0.

Since everything is 1-dimensional, we can integrate this equation to get

µ(1) = exp

(
−
∫ 1

0

β(z(t))λ(t)dt

)
µ(0).

If z is the constant loop at 0, then parallel transport along the A-path given by the constant λ(t) = λ ∈ R
reduces to µ(1) = e−β(0)λµ(0). Hence,

Hol0(β) =

{
R>0, β(0) 6= 0

{1}, β(0) = 0
.

If z is a loop away from 0, then the A-path a = (z, λ) satisfies λ = −iż/z. Hence,

µ(1) = exp

(
i

∫ 1

0

β(z(t))
ż(t)

z(t)
dt

)
µ(0).

Different choices of β give now different jumping behavior of the holonomy. Here we give some examples:

1. If β = 0, then Holz(β) = {1} for all z ∈ C.

2. If β = 1, then if z(t) is not the constant loop at 0 and it has winding number k ∈ Z around 0, then

µ(1) = e−2πkµ(0), so

Holz(β) =

{
R>0, z = 0

{e2πk : k ∈ Z}, z 6= 0.

3. If β(z) = |z|2, then

Holz(β) =

{
{1}, z = 0

{e2π|z|2k : k ∈ Z}, z 6= 0.

4. If β(z) = |z|2 − 1, then

Holz(β) =


R>0, z = 0

{e2π(|z|2−1)k : k ∈ Z}, z 6= 0 and |z| 6= 1

{1}, |z| = 1.

H
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This last example shows that the jumps of holonomy from leaf to leaf can be as wild as we like, when

we consider general LA-connections. A natural question to ask is if the LA-holonomy group can have a

more controlled behavior in special situations. For instance, if A→M is a Lie algebroid, we can consider

A-connections ∇ on A. In such situation it makes sense to define the torsion of ∇ as in the classical case:

T ∈ Ω2(A,A) given by

T (a, b) := ∇ab−∇ba− [a, b], for a, b ∈ Γ(A).

Then the same proof as Proposition 1.34 gives that, if A is endowed with a metric, there is a unique

A-connection on A which is metric and torsion-free, which we call the Levi-Civita connection of A. An

open question is whether the holonomy of the Levi-Civita connection exhibits a more regular behavior.

Other open questions regarding LA-holonomy, that could be used as guiding questions for future work,

are the following. Is there a Berger-type list for LA-holonomy, at least for the Levi-Civita connection?

If we let Holx(A) be the LA-holonomy group at x of the Levi-Civita connection of a Lie algebroid A,

then if Holx(A) acts irreducibly on Ax, the triple (Ax, Rx,Holx(A)), where Rx is the curvature of the

Levi-Civita connection, is an irreducible holonomy system. Therefore, Simons’s theorem (Theorem 3.41)

can be applied to this triple. Does this give any useful information on the geometry of A? Lastly, it is

still open how relevant LA-holonomy is in applications to geometry and physics.
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A

Some computations

Here we present the proofs of some results formulated or used in the main text, whose proofs require long

and uninteresting computations, which would break the flow of the main reading.

A.1. Computations of Section 3.6

Proposition A.1. Let (M,J) be an almost complex manifold, let F be the curvature of the Levi-Civita

connection on the canonical bundle Λn,0T ∗M and let Ω ∈ Ωn,0(M). Then for all X,Y ∈ X(M) and

Xi ∈ X1,0(M),

F (X,Y )Ω(X1, . . . , Xn) =
∑
j

Ω(X1, . . . , R(Y,X)Xj , . . . , Xn),

where R is the Riemann curvature.

Proof. Straightforward computation, where the dots . . . indicate the presence of the vector fields

{Xi}i:

F (X,Y )Ω(X1, . . . , Xn) = X(∇Y Ω(. . . ))−
∑
j

∇Y Ω(. . . ,∇XXj , . . . )

− Y (∇XΩ(. . . )) +
∑
j

∇XΩ(. . . ,∇YXj , . . . )

− [X,Y ](Ω(. . . )) +
∑
j

Ω(. . . ,∇[X,Y ]Xj , . . . )

= XY (Ω(. . . ))−
∑
j

X(Ω(. . . ,∇YXj , . . . ))

−
∑
j

(
Y (Ω(. . . ,∇XXj , . . . ))− Ω(. . . ,∇Y∇XXj , . . . )

)
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+
∑
j,k 6=j

Ω(. . . ,∇YXj , . . . ,∇XXk, . . . )

− Y X(Ω(. . . )) +
∑
j

Y (Ω(. . . ,∇XXj , . . . ))

+
∑
j

(
X(Ω(. . . ,∇YXj , . . . ))− Ω(. . . ,∇X∇YXj , . . . )

)
−
∑
j,k 6=j

Ω(. . . ,∇XXj , . . . ,∇YXk, . . . )

− [X,Y ](Ω(. . . )) +
∑
j

Ω(. . . ,∇[X,Y ]Xj , . . . )

=
∑
j

Ω(. . . ,∇Y∇XXj −∇X∇YXj +∇[X,Y ]Xj , . . . )

=
∑
j

Ω(. . . , R(Y,X)Xj , . . . ),

as wanted.

To ease the computation of adjoints, we will make repeated use of the following lemma.

Lemma A.2. Let E →M be a vector bundle and ∇ a metric connection on E, where the metric can be

real or Hermitian. Then around every point x ∈M there is a local orthonormal frame {σi}i for E which

is normal at x, meaning that ∇wσi = 0 for all i and w ∈ TxM .

Proof. Let (U,ϕ) be a chart for M centered at x and {ei}i an orthonormal basis for Ex. Define

local sections σi by σi(ϕ
−1(v)) := τ1ei, where τt is parallel transport from x to ϕ−1(tv) along

s 7→ ϕ−1(sv). It is a smooth frame, by the smooth dependence of solutions to ODEs on parameters.

Since τt is a linear isometry, the frame is orthonormal. Lastly, using Proposition 1.15, we get that

for any w ∈ T0(ϕ(U)),

∇ϕ−1
∗ wσi =

d

dt

∣∣∣∣
t=0

τ−1t (σi(ϕ
−1(tw)) =

d

dt

∣∣∣∣
t=0

ei = 0,

so the frame is normal at x.

Also, recall the definition of the divergence of a vector field X ∈ X(M): it is the smooth function divX

such that LXvol = (divX)vol (here LX is the Lie derivative, with the sign convention that LXY = [X,Y ],

for Y ∈ X(M)). Explicitly, it is given by divX = 1
2 trLXg, as can be easily checked using an orthonormal

frame {Ei}i:
divX = (divX)vol(E1, . . . , En) = LXvol(E1, . . . , En)

= X(vol(E1, . . . , En))−
∑
i

vol(E1, . . . ,LXEi, . . . , En)

= −
∑
i

〈[X,Ei], Ei〉 =
1

2

∑
i

LXg(Ei, Ei).

By Stokes’s theorem and Cartan’s formula for the Lie derivative, we have that∫
M

(divX)vol =

∫
M

diXvol = 0.

Proposition A.3 (3.75). The formal adjoint of the connection ∇ : T(k,l)(M) → T(k,l+1)(M) is the

operator ∇∗ : T(k,l+1)(M)→ T(k,l)(M) given by

∇∗T (θ,X1, . . . , Xl) = −
∑
i

∇EiT (θ,Ei, X1, . . . , Xl)

on T ∈ T(k,l)(M), where θ ∈ T(0,k)(M), Xi ∈ X(M) and {Ei}i is any orthonormal frame.
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Proof. It is straightforward to see that the formula for ∇∗ does not depend on the orthonormal

frame. Let {Ei}i be an orthonormal frame which is normal at x ∈ M , as in Lemma A.2, and let

{Ei}i denote its dual frame. If a = (a1, . . . , am) is a multiindex of length |a| := a1 + · · ·+ am, we

use the shorthand notation

Ea := Ea1 ⊗ · · · ⊗ Eam and Ea := Ea1 ⊗ · · · ⊗ Eam .

Let S ∈ T(k,l+1)(M) and define a 1-form α by α(X) := 〈T, iXS〉. Then, at the point x, if a

runs through all the multiindices of length k and b through all the ones with length l,

−∇∗α =
∑
j

∇Ejα(Ej) =
∑
j

Ej(〈T, iEjS〉)

=
∑
j

(〈∇EjT, iEjS〉+ 〈T,∇Ej iEjS〉)

=
∑
j

∑
a,b

(∇EjT (Ea, Eb)S(Ea, Ej , Eb) + T (Ea, Eb)∇Ej iEjS(Ea, Eb)).

Since

∇Ej iEjS(Ea, Eb) = iEj∇EjS(Ea, Eb) + S(Ea,∇EjEj , Eb)

= ∇EjS(Ea, Ej , Eb),

then

−∇∗α =
∑
j

∑
a,b

(∇EjT (Ea, Eb)S(Ea, Ej , Eb) + T (Ea, Eb)∇EjS(Ea, Ej , Eb))

= 〈∇T, S〉 − 〈T,∇∗S〉.

Let now Y be the vector field dual to α with respect to g. Then, at x,

div Y = −
∑
j

〈[Y,Ej ], Ej〉 = −
∑
j

〈∇Y Ej −∇EjY,Ej〉

=
∑
j

Ej〈Y,Ej〉 =
∑
j

Ej(α(Ej)) = −∇∗α.

Hence, we conclude that

〈∇T, S〉2 − 〈T,∇
∗S〉2 =

∫
M

(div Y )vol = 0.

Proposition A.4 (3.76). For α ∈ Ωk(M) we have that

dα(X0, . . . , Xk) =
∑
i

(−1)i∇Xiα(X0, . . . , X̂i, . . . , Xk), for Xi ∈ X(M).

Moreover, d∗ = ∇∗.

Proof. First, we have that

∇Xiα(X0, . . . , X̂i, . . . , Xk) = Xi(α(X0, . . . , X̂i, . . . , Xk))−
∑
j 6=i

α(X0, . . . ,∇XiXj , . . . , X̂i, . . . , Xk).
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Since

∑
i,j 6=i

(−1)iα(X0, . . . ,∇XiXj , . . . , X̂i, . . . , Xk) =

=
∑
i<j

(−1)iα(X0, . . . , X̂i, . . . ,∇XiXj , . . . , Xk)

+
∑
j<i

(−1)iα(X0, . . . ,∇XiXj , . . . , X̂i, . . . , Xk)

=
∑
i<j

(−1)i+jα(−∇XiXj , X0, . . . , X̂i, . . . X̂j , . . . , Xk)

+
∑
j<i

(−1)i+jα(∇XiXj , X0, . . . , X̂j , . . . , X̂i, . . . , Xk)

=
∑
i<j

(−1)i+jα(∇XjXi −∇XiXj , X0, . . . , X̂i, . . . X̂j , . . . , Xk)

= −
∑
i<j

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . X̂j , . . . , Xk),

then the Koszul formula for dα finally gives the result.

As for the second claim, we have that, if β ∈ Ωk−1(M),

〈α, dβ〉∧ =
1

k!
〈α, dβ〉

=
1

k!

∑
i1,...,ik

α(Ei1 , . . . , Eik)
∑
j

(−1)j+1∇Eij β(Ei1 , . . . , Êij , . . . , Eik)

=
1

k!

∑
j

〈α,∇β〉 =
1

(k − 1)!
〈α,∇β〉.

Hence,

〈α, dβ〉∧2 =
1

(k − 1)!
〈α,∇β〉2 =

1

(k − 1)!
〈∇∗α, β〉2 = 〈∇∗α, β〉∧2 .

Proposition A.5 (Weitzenböck, 3.77). For α ∈ Ωk(M) we have that ∆α = ∇∗∇α+ Ricα.

Proof. Consider an orthonormal frame {Ei}i which is normal at x, as in Lemma A.2. The formula

follows from a somewhat lengthy computation. Let Xi ∈ X(M). First of all, by Proposition 3.76,

dd∗α(X1, . . . , Xk) =
∑
j

(−1)j+1∇Xjd∗α(X1, . . . , X̂j , . . . , Xk)

= −
∑
j,i

(−1)j+1Xj(∇Eiα(Ei, X1, . . . , X̂j , . . . , Xk))

+
∑
j,i,l 6=j

(−1)j+1∇Eiα(Ei, X0, . . . ,∇XjXl, . . . , X̂j , . . . , Xk)

=
∑
j,i

(−1)j∇Xj∇Eiα(Ei, X0, . . . , X̂j , . . . , Xk).
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On the other hand,

d∗dα(X1, . . . , Xk) = −
∑
i

∇Eidα(Ei, X1, . . . , Xk)

= −
∑
i

Ei(dα(Ei, X1, . . . , Xk)) +
∑
i,j

dα(Ei, X1, . . . ,∇EiXj , . . . , Xk)

= −
∑
i

Ei(∇Eiα(X1, . . . , Xk))−
∑
i,j

(−1)jEi(∇Xjα(Ei, X1, . . . , X̂j , . . . , Xk)

+
∑
i,j

∇Eiα(X1, . . . ,∇EiXj , . . . , Xk)

+
∑
i,j

(−1)j∇∇EiXjα(Ei, X1, . . . , X̂j , . . . Xk)

+
∑
i,l,j 6=l

(−1)j∇Xjα(Ei, . . . , X̂j , . . . ,∇EiXl, . . . , Xk)

= −
∑
i

∇Ei∇Eiα(X1, . . . , Xk)−
∑
j

(−1)j∇Ei∇Xjα(Ei, X1, . . . , X̂j , . . . , Xk)

+
∑
i,j

(−1)j∇∇EiXjα(Ei, X1, . . . , X̂j , . . . Xk).

That computes the left-hand side of the equality. As for the right-hand side, the first term is

∇∗∇α(X1, . . . , Xk) = −
∑
i

∇Ei∇α(Ei, X1, . . . , Xk)

= −
∑
i

Ei(∇Eiα(X1, . . . , Xk)) +
∑
i,j

∇Eiα(X1, . . . ,∇EiXj , . . . , Xk)

= −
∑
i

∇Ei∇Eiα(X1, . . . , Xk),

and the second term

Ricα(X1, . . . , Xk) =
∑
i,j

(−1)j+1R(Ei, Xj)α(Ei, X1, . . . , X̂j , . . . , Xk)

= −
∑
i,j

(−1)j∇Ei∇Xjα(Ei, X1, . . . , X̂j , . . . , Xk)

+
∑
i,j

(−1)j∇Xj∇Eiα(Ei, X1, . . . , X̂j , . . . , Xk)

+
∑
i,j

(−1)j∇∇EiXjα(Ei, X1, . . . , X̂j , . . . , Xk).

This finally establishes the result.

Proposition A.6. Let (M, g, J) be a Kähler manifold and X,Y, Z,W ∈ X1,0(M). Then h(R(X,Y )Z,W ) =

h(R(X,W )Z, Y ).

Proof. Let X,Y, Z,W ∈ X(M). Then, using Proposition 3.72 we have that

h(R(X − iJX,Y + iJY )(Z − iJZ),W − iJW ) =

= 4〈R(X,Y )Z −R(JX, Y )JZ,W 〉+ 4i〈R(X,Y )Z −R(JX, Y )JZ, JW 〉.

By the Bianchi identity and again Proposition 3.72,

〈R(X,Y )Z −R(JX, Y )JZ,W 〉 = −〈R(Y,Z)X +R(Z,X)Y,W 〉

+ 〈R(Y, JZ)JX +R(JZ, JX)Y,W 〉

= 〈R(X,W )Z, Y 〉+ 〈R(JX,W )JZ, Y 〉,

and the same holds with JW instead of W . This already gives the result.
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Proposition A.7. Let (M, g, J) be a compact Ricci-flat Kähler manifold and α ∈ Ωp,0(M). Then

Ricα = 0.

Proof. It is easy to see that, in general, if X ∈ X(M) and Y ∈ X(M,C), then R(X,Y )Ω1,0(M) ⊆
Ω1,0(M). Hence, Ricα can only take nonzero values when evaluated on (1, 0)-vector fields. It will

now suffice to prove that Ric(α1 ∧ · · · ∧αk)(X1, . . . , Xk) = 0 for αj ∈ Ω1,0(M) and Xj ∈ X1,0(M).

Let Yj ∈ X1,0(M) be the corresponding vector field to αj with respect to h, i.e., such that

αj(X) = h(X,Yj) for all X ∈ X(M,C). Notice that if αj = βj + iJβj , for some βj ∈ Ω1(M), then

Yj = Wj − iJWj , where Wj ∈ X(M) is dual to βj , so that if {El}l is an orthonormal frame, we

have that ∑
l

αj(El)El =
∑
l

βj(El)El − i
∑
l

βj(JEl)

=
∑
l

〈Wj , El〉El + i
∑
l

〈JWj , El〉El

= Wj + iJWj = Yj .

Then we may compute

Ric(α1 ⊗ · · · ⊗ αk)(X1, . . . , Xk) =
∑
l,j

R(El, Xj)(α
1 ⊗ · · · ⊗ αk)(X1, . . . , El, . . . , Xk)

=
∑
l,j,i

α1 ⊗ . . . R(El, Xj)α
i ⊗ · · · ⊗ αk(X1, . . . , El, . . . , Xk)

=
∑
l,j,i 6=j

α1(X1) . . . R(El, Xj)α
i(Xi) . . . α

j(El) . . . α
k(Xk)

+
∑
l,j

α1(X1) . . . R(El, Xj)α
j(El) . . . α

k(Xk)

=
∑
j,i 6=j

α1(X1) . . . h(R(Xj , Yj)Xi, Yi) . . . α̂j . . . α
k(Xk)

+
∑
l,j

α1(X1) . . . h(R(Xj , El)El, Yj) . . . α
k(Xk).

The second term is determined by the Ricci curvature and the Ricci form, as follows: let Xj =

Zj − iJZj for Zj ∈ X(M). Then, using Proposition 3.72,∑
l

h(R(Xj , El)El, Yj) =
∑
l

〈R(Zj − iJZj , El)El,Wj + iJWj〉

= 2 Ric(Zj ,Wj) + 2iRic(Zj , JWj).

Since M is Ricci-flat, this term vanishes.

We can now write

Ric(α1 ∧ · · · ∧αk)(X1, . . . , Xk) =

=
∑
j,i 6=j

∑
σ∈Sk

(sgnσ)ασ(1)(X1) . . . h(R(Xj , Yσ(j))Xi, Yσ(i)) . . . α̂σ(j) . . . α
σ(k)(Xk).

For σ ∈ Sk and j and i 6= j, let σ′ ∈ Sk be σ composed with the transposition (ji), i.e., such that

σ′(j) = σ(i), σ′(i) = σ(j) and σ′(l) = σ(l) for any l 6= i and l 6= j. Then the term corresponding

to σ is

(sgnσ)ασ(1)(X1) . . . h(R(Xj , Yσ(j))Xi, Yσ(i)) . . . α̂σ(j) . . . α
σ(k)(Xk),

and the term corresponding to σ′ is

−(sgnσ)ασ(1)(X1) . . . h(R(Xj , Yσ(i))Xi, Yσ(j)) . . . α̂σ(i) . . . α
σ(k)(Xk).

Since h(R(X,Y )Z,W ) = h(R(X,W )Z, Y ) for X,Y, Z,W ∈ X1,0(M) (Proposition A.6), we finally

conclude that Ricα = 0.
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A.2. Computations of Section 4.1

Lemma A.8 (4.8). The A-differential satisfies d2A = 0 and it is given by the Koszul formula

dAα(a0, . . . , ak) =
∑
i

(−1)iρ(ai)(α(a0, . . . , âi, . . . , ak))

+
∑
i<j

(−1)i+jα([ai, aj ], a0, . . . , âi, . . . , âj , . . . , ak),

for α ∈ Ωk(A) and ai ∈ Γ(A).

Proof. We first prove the Koszul formula. The formulas for functions and 1-forms in the definition

of dA are exactly Koszul’s formula in those degrees. We prove the general formula by induction

on the degree. Assume that dA is given by the Koszul formula on Ωk(A) and let α ∈ Ω1(A) and

β ∈ Ωk(A). We will make use of the following explicit formulas, which are easy to deduce: if

γ ∈ Ω2(A) and ai ∈ Γ(A), then

α ∧ β(a0, . . . , ak) =
∑
i

(−1)iα(ai)β(a0, . . . , âi, . . . , ak)

γ ∧ β(a0, . . . , ak+1) = −
∑
i<j

(−1)i+jγ(ai, aj)β(a0, . . . , âi, . . . , âj , . . . , ak+1).

Then, if we use the short-hand notation β(̂i) or β(̂i, ĵ) to denote the absence of the arguments ai

or ai and aj in β, then

dAα ∧ β(a0, . . . , ak+1) = −
∑
i<j

(−1)i+jdAα(ai, aj)β(̂i, ĵ)

=
∑
i<j

(−1)i+j(α([ai, aj ]) + ρ(aj)α(ai)− ρ(ai)α(aj))β(̂i, ĵ).

and
α ∧ dAβ(a0, . . . , ak+1) =

∑
i

(−1)iα(ai)dAβ(̂i)

=
∑
i<j

(−1)i+j(α(aj)ρ(ai)− α(ai)ρ(aj))β(̂i, ĵ)

+
∑
i

∑
j<l
i 6=j,l

(−1)i+j+lα(ai)β([aj , al], î, ĵ, l̂).

Therefore,

dA(α ∧ β)(a0, . . . , ak+1) = (dAα ∧ β − α ∧ dAβ)(a0, . . . , ak+1)

=
∑
i<j

(−1)i+j
(
ρ(aj)(α(ai)β(̂i, ĵ))− ρ(ai)(α(aj)β(̂i, ĵ))

)

+
∑
j<l

(−1)j+l

(α([aj , al])β(ĵ, l̂)−
∑
i

i 6=j,l

(−1)iα(ai)β([aj , al], î, ĵ, l̂)


=
∑
i

(−1)iρ(ai)α ∧ β(̂i) +
∑
j<l

(−1)j+lα ∧ β([aj , al], î, ĵ, l̂),

and this last line is the Koszul formula. (To be fair, in the sum involving j < l and i 6= j, l we

should have split the sum in three pieces according to whether i < j or j < i < l or l < i, and

adapted the signs, but this is irrelevant for the final result).

We now prove that d2A = 0 by induction on the degree. For a function f ∈ C∞(M) we have

that for all a, b ∈ Γ(A),

d2Af(a, b) = ρ(a)dAf(b)− ρ(b)dAf(a)− dAf([a, b]) = ρ(a)ρ(b)f − ρ(b)ρ(a)f − [ρ(a), ρ(b)]f = 0,
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by Lemma 4.2. For α ∈ Ω1(A), using Koszul’s formula and Jacobi’s identity it is straightforward

to see that d2Aα = 0. Assume now that d2A = 0 up to degree k and let α ∈ Ω1(A) and β ∈ Ωk(A).

Then

d2A(α ∧ β) = dA(dAα ∧ β − α ∧ dAβ) = d2Aα ∧ β + dAα ∧ dAβ − dAα ∧ dAβ + α ∧ d2Aβ = 0.
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B

Ehresmann connections

There is an alternative viewpoint to connections which, although we do not use it in the text, is interesting

to know. In this appendix we show that the notion of a linear Ehresmann connection is equivalent to

our notion of connection, and that the curvature is an obstruction to the integrability of the Ehresmann

connection.

In this section we will be using local formulas for both the connection and its curvature. If U is a

trivializing chart for E, then local sections of E over U are identified with C∞(U,Rr), for r the rank of

E. Over the trivialization, we can always consider the canonical connection on the trivial bundle, which

is just the differential, and since the difference of two connections is an EndE-valued 1-form, we conclude

that there is some Γ ∈ Ω1(U, gl(r,R)) such that for x ∈ U and v ∈ TxM ,

∇vσ = σ∗v + Γ(v)(σ(x)), for σ ∈ C∞(U,Rr).

Then we can explicitly compute the curvature as follows: for X,Y ∈ X(U) and σ ∈ C∞(U,Rr),

F (X,Y )σ = ∇X(Y σ + Γ(Y )σ)−∇Y (Xσ + Γ(X)σ)− [X,Y ]σ − Γ([X,Y ])σ

= XY σ + Γ(X)Y σ +X(Γ(Y ))σ + Γ(Y )Xσ + Γ(X)Γ(Y )σ

− Y Xσ − Γ(Y )Xσ − Y (Γ(X))σ − Γ(X)Y σ − Γ(Y )Γ(X)σ

− [X,Y ]σ − Γ([X,Y ])σ

= (dΓ + Γ ∧ Γ)(X,Y )σ,

where Γ∧ Γ(X,Y ) := Γ(X)Γ(Y )− Γ(Y )Γ(X). The 1-form Γ is called the local connection 1-form for

the trivialization over U .

Denote by V E → E the vertical bundle of E, with fibers VvE := kerπ∗(v), where π : E → M is

the projection and v ∈ E. Since the fibers of E are vector spaces, for each v ∈ Ex there is a canonical

identification VvE ∼= Ex, by sending w ∈ Ex to d
dt

∣∣
t=0

(v + tw). Actually, V E ∼= π∗E. In the following
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we use this identification implicitly. By the definition of V E, there is a short exact sequence of vector

bundles over E

0 −→ V E −→ TE
π∗−→ π∗TM −→ 0. (B.1)

A splitting of this sequence is a vector bundle morphism h : π∗TM → TE such that π∗ ◦ h = id.

Moreover, we say that it is linear if for all v ∈ E and t 6= 0 we have that htv = St∗ ◦hv, where St : E → E

is fiberwise scalar multiplication by t.

Let us deduce the local expression for such a linear splitting. Let U be a trivializing chart for E.

Then we can assume that M = U , TM = U × Rn (where n = dimM), E = U × Rr (where r is

the rank of E), TE = U × Rr × Rn × Rr and π∗TM = U × Rr × Rn. With this notation, the map

π : U × Rr → U is given by (x, v) 7→ x and its differential π∗ : U × Rr × Rn × Rr → U × Rr × Rn by

(x, v, w, u) 7→ (x, v, w), and h is a map U × Rr × Rn → U × Rr × Rn × Rr. The fact that π∗ ◦ h = id

implies that h(x, v, w) = (x, v, w, g(x, v, w)), for some g : U × Rr × Rn → Rr, and the fact that it is a

vector bundle morphism implies that g is linear on w. Under these identifications, scalar multiplication

by t sends (x, v) to (x, tv), whereas St∗ : U × Rr × Rn × Rr → U × Rr × Rn × Rr sends (x, v, w, u) to

(x, tv, w, tu). Hence, being a linear splitting translates into

h(x, tv, w) = (x, tv, w, g(x, tv, w)) = St∗(h(x, v, w)) = (x, tv, w, tg(x, v, w)).

Therefore, g is homogeneous of degree 1 on v. This implies that it is actually linear on v:

g(x, v, w) =
d

dt

∣∣∣∣
t=0

tg(x, v, w) =
d

dt

∣∣∣∣
t=0

g(x, tv, w) = dg(x,0,w)(0, v, 0).

These properties allow us to see that connections on E are exactly linear splittings of (B.1).

Proposition B.1. Connections on a vector bundle π : E → M are in bijective correspondence with

linear splittings of (B.1).

Proof. Let h : π∗TM → TE be a linear splitting and define a connection on E by

∇wσ := σ∗w − hσ(x)(w) ∈ Vσ(x)E ∼= Ex, for w ∈ TxM and σ ∈ Γ(E).

Under the above local identifications, the isomorphism π∗E ∼= V E is the map U × Rr × Rr →
U × Rr × Rn × Rr given by (x, v, u) 7→ (x, v, 0, u). The section σ is a map σ : U → U × Rr given

by σ(x) = (x, f(x)), for f : U → Rr smooth, and its differential σ∗ : U ×Rn → U ×Rr ×Rn ×Rr

is given by (x,w) 7→ (x, f(x), w, dfx(w)). Locally, then, the expression for ∇ is

∇wσ = (x, f(x), 0, dfx(w)− g(x, f(x), w)).

This defines a connection on E|U .

For the converse, let ∇ be a connection on E. Define h : π∗TM → TE as follows: for v ∈ Ex
and w ∈ TxM , we set hv(w) := σ∗w −∇wσ, where σ ∈ Γ(E) is such that σ(x) = v. Here we view

∇wσ ∈ Ex as an element of VvE. Let us write it locally: let σ(y) = (y, f(y)) and, if we now let

w ∈ TxM be (x,w) ∈ U ×Rn, we can write ∇wσ = (x, dfx(w) + Γ(w)v), where Γ ∈ Ω1(U, gl(r,R))

is the local connection 1-form of ∇ and v = f(x) ∈ Rr. When we view ∇wσ as an element of the

vertical bundle, it is (x, v, 0, dfx(w) + Γ(w)v), so finally we have the local expression

h(x, v, w) = (x, v, w,−Γ(w)v),

which defines a linear splitting.

An Ehresmann connection is a choice of a horizontal bundle over E, i.e., a subbundle H ⊆ TE
such that TE = V E ⊕H. It is said to be linear if moreover we have that St∗(Hv) = Htv, for all v ∈ E
and t 6= 0. As a consequence of Proposition B.1 we have that connections are the same thing as linear

Ehresmann connections on E.
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Corollary B.2. Connections on a vector bundle π : E → M are in bijective correspondence with linear

Ehresmann connections on E.

Proof. Let∇ be a connection on E and let h : π∗TM → TE be the corresponding linear splitting of

(B.1) given by Proposition B.1. Let H := im h. Since h is a splitting, it is fiberwise injective, so H is

a subbundle of TE. Let v ∈ Ex and w ∈ TxM . Then hv(w) ∈ VvE if and only if π∗(hv(w)) = w = 0,

i.e., Hv ∩ VvE = 0. Since dim(VvE ⊕ Hv) = dimE − dimM + dimM = dimE = dimTvE, we

conclude that TE = V E ⊕H, so H is an Ehresmann connection. Moreover, if t 6= 0,

St∗(hv(w)) = (St ◦ σ)∗w − St∗∇wσ = (tσ)∗w −∇w(tσ) = htv(w),

so H is linear.

For the converse, let H be a linear Ehresmann connection on E. Then π∗|H is a vector bundle

isomorphism between H and π∗TM . Let h := (π∗|H)−1. It is a splitting of (B.1): π∗ ◦ h =

π∗|H ◦ (π∗|H)−1 = id. Also, since H is linear, we have that

π∗|Hv = (π ◦ St)∗|Hv = π∗|Htv ◦ St∗,

which gives that h is a linear splitting.

From this point of view, the curvature of ∇ is the obstruction for its linear Ehresmann connection to

be integrable.

Proposition B.3. Let π : E → M be a vector bundle and ∇ a connection on E, with corresponding

linear Ehresmann connection H. Then (E,∇) is flat if and only if H is an integrable distribution on E.

Proof. Let h be the linear splitting given by ∇. Then locally we have that

h(x, v, w) = (x, v, w,−Γ(w)v),

as in the proof of Proposition B.1. If we define α ∈ Ω1(E|U ,Rr) by the formula α(x,v)(w, u) :=

u + Γ(w)v, for w ∈ TxM and u, v ∈ Rr, then clearly H(x,v) = im h(x,v) = kerα(x,v). Let us write

elements of X(E|U ) as pairs (X,V ), (Y,W ), for X,Y ∈ X(U) and V,W ∈ X(Rr) ∼= C∞(Rr,Rr). If

φXt and φVt are the flows of X and V , respectively, then on (x, v) ∈ E|U we have that

(X,V )(α(Y,W )) =
d

dt

∣∣∣∣
t=0

α(Y,W )(φXt (x), v) +
d

dt

∣∣∣∣
t=0

α(Y,W )(x, φVt (v))

=
d

dt

∣∣∣∣
t=0

(W (v) + Γ(Y (φXt (x)))v)

+
d

dt

∣∣∣∣
t=0

(W (φVt (v)) + Γ(Y (x))φVt (v))

= (X(Γ(Y )))(x)v +W∗(V (v)) + Γ(Y (x))V (v).

Observe that (X,V ) is a section of kerα if and only if V (v) = −Γ(X(x))v for all (x, v) ∈ E|U .

Then, if (X,V ) and (Y,W ) are both sections of kerα, we have that on (x, v),

α([(X,V ), (Y,W )]) = −dα((X,V ), (Y,W ))

= −(X(Γ(Y )))(x)v −W∗(V (v))− Γ(Y (x))V (v)

+ (Y (Γ(X)))(x)v + V∗(W (v)) + Γ(X(x))W (v)

+ [V,W ](v) + Γ([X,Y ](x))v

= −(dΓ + Γ ∧ Γ)(X,Y )(x)v = −F (X,Y )(x)v.

Hence, H is involutive if and only if F = 0, which, by the Frobenius integrability theorem [Lee12,

Thm. 19.12], means that H is integrable if and only if F = 0.
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Corollary B.4. A vector bundle E → M with a connection ∇ is flat if and only if there is a parallel

local frame around every point in M , meaning a frame {σi}i with ∇σi = 0.

Proof. If {σi}i is a local parallel frame, then F ∧σi = D2σi = 0 for all i, where F is the curvature

of ∇. Hence E is flat.

Conversely, assume that E is flat. Let H be the linear Ehresmann connection of ∇. By

Proposition B.3, H is integrable. First of all, note that the zero section is an integral manifold of

H. Indeed, using the local expressions used throughout this section,

H(x,0) = im h(x,0) = {(x, 0)} × Rn × {0},

and this is exactly the tangent space to the zero section at (x, 0). Second, let L(x,v) be the (local)

leaf through (x, v), and consider π : L(x,v) → U . Then the differential of π restricted the tangent

space of L(x,v) at (x, v), which is exactly H(x,v), is an isomorphism onto TxU , with inverse h(x,v).

Hence, locally π gives a diffeomorphism between L(x,v) and U . This means that L(x,v) can be

written as the graph of some smooth function f : U → Rr, i.e., L(x,v) = {(x, f(x)) : x ∈ U}.
This function defines a parallel section of E over U . Indeed, since tangent vectors to the graph

at (x, f(x)) are of the form (w, dfx(w)) and elements of H(x,f(x)) are of the form (w,−Γ(w)f(x)),

then dfx(w) = −Γ(w)f(x), which leads to

∇wf = (x, dfx(w) + Γ(w)f(x)) = (x, 0).

By the same argument, the converse is also true: if σ(x) = (x, f(x)) is a (local) parallel section,

then its graph is a leaf of H.

Fix now x ∈ U and let {ei}i be a basis for Rr. Let σi be the parallel section corresponding to

the leaf L(x,ei). It only remains to see that {σi(y)}i is a linearly independent set for all y ∈ U .

Assume that there are real numbers {λi}i such that λiσi(y) = 0 for some y ∈ U . Then the leaf

defined by the parallel section λiσi must be the zero section, which means that λiσi(x) = λiei = 0.

Hence, λi = 0, and this ends the proof.
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