
Utrecht University

Improving the Automatic Speech Recognition Model Whisper
with Voice Activity Detection

by

Isa Dielen

to obtain the degree of Master of Science
in Applied Data Science

at Utrecht University.
In cooperation with the Dutch National Police

Daily Supervisors Examiners
D.S. Islakoglu (Utrecht University) Dr. I.R. Karnstedt-Hulpus (first)
N. Hulzebosch (External) V.J. Shahrivari (second)

Student Number: 9481141

preface

Given my academic background in Criminology and Applied Data Sciences, optimising an
Automatic Speech Recognition (ASR) model for the Dutch National Police proved to be an
excellent match. This project covers a topic that greatly intrigues me and aligns with my in-
tended professional path within this specific domain. The learning curve that I went through
in a relatively short time frame of just 10 weeks is immense, and I am very thankful the de-
partment TROI for giving me this opportunity. This project marks the end of my academic
career, and the past year at Utrecht University have inspired me and created a lot of memo-
rable memories that I will prosper for the rest of my life.

Throughout this research, I have further developed my programming skills in Python and
gained a lot of knowledge regarding Automatic Speech Recognition models, and the advanta-
geous the pre-processing technique voice activity detection can bring to such models. From
the start of my thesis, I was given a lot of freedom to explore different opportunities, which
has helped me in defining the scope of this study, setting boundaries, and has sparked my
intrinsic motivation to make this project a success.

However, of course, I could not have completed this research on my own. Therefore, I would
like to express my appreciation to my daily supervisors from the Utrecht University Duygu
Islakoglu and Vahid Shahrivari for providing me with expert knowledge and for their guid-
ance throughout this research. The weekly meetings in which they asked critical questions
really helped me in improving the quality of my work. They were always very approachable,
and very quick in offering help. Additionally, I would like to extend my biggest gratitude to
the external supervisor Nils Hulzebosch, since the comprehensiveness of this research could
not have been possible without his assistance. Nils debugged one of the tested algorithms in
this study for almost 1.5 week, after which I was able to extend the number of experiments in
my research and provide a more complete story on the performance of different ASR models.
Additionally, I would like to thank Hilde Spits for giving me the opportunity to do my grad-
uate project at TROI Amsterdam.

Last but not least, I would also like to thank Dr. Ioana Karnstedt-Hulpus for evaluating our
poster presentation and my final thesis as the first examiner, and Vahid Shahrivari as the
second examiner. I am very much looking forward to your evaluation!

Isa Dielen
July 7, 2023
Amsterdam

abstract

The Dutch National Police possesses a substantial amount of audio data, and transcribing
these audio files manually for analysis purposes is very labour intensive. That is why the
department TROI developed an application that uses Whisper, a state-of-the-art Automatic
Speech Recognition model, to automatically transcribe these audio files. Although the accu-
racy of Whisper is quite high, its execution time is relatively slow, posing a challenge when
needing to transcribe large amounts of audio files. Considering Whisper’s minimalist strat-
egy for data pre-processing, it is conceivable that incorporating advanced pre-processing tech-
niques could further optimize its performance in terms of running time, without a consider-
able comprise in accuracy. Therefore, this research aims to investigate the influence of the
pre-processing method voice activity detection on Whisper’s performance.

The experiments in this research compare the performance of Whisper, Faster-Whisper and
WhisperX on Dutch long-form audio data of two datasets: CGN and NFI-FRITS. Faster-
Whisper and WhisperX both incorporate a voice activity detection model, Silero VAD and
PyAnnote VAD, respectively. Additional experiments with hyperparameter tuning and test-
ing the voice activity detection models are conducted. The evaluation metrics used in this
research are Word Error Rate, precision, recall, F1 score and Real-Time Factor.

The results demonstrate that both Faster-Whisper and WhisperX outperform the baseline
Whisper model. They exhibit improved WER, precision, recall, F1-score, and RTF, indicating
the advantages of incorporating voice activity detection models within the Whisper frame-
work. Generally, WhisperX is outperforming Faster-Whisper across the different datasets and
settings, on almost all performance metrics. Furthermore, the effects of tuning speech proba-
bility thresholds in Faster-Whisper and WhisperX are not clear, as they do not show a specific
trend. The comparison between Silero and PyAnnote VAD shows variations in precision and
recall, where PyAnnote VAD, as incorporated in WhisperX, is outperforming on precision,
and Silero VAD, as incorporated in Faster-Whisper, is outperforming on recall.

In conclusion, incorporating a voice activity detection model as a pre-processing technique
enhances the performance of Whisper by improving transcription accuracy measured by the
Word-Error Rate, precision, recall, and F1-score, and reducing the execution time measured
by the Real-Time Factor. However, the effects of tuning the speech probability threshold
combined with Faster-Whisper and WhisperX, are limited. Future research is recommended
to examine alternative voice activity detection models, test the memory usage of the mod-
els, investigate differences between Whisper implementations, and look into alternative pre-
processing techniques.

The code is available on this Github page: https://github.com/isadielen/MSc WhisperVAD.

https://github.com/isadielen/MSc_WhisperVAD

C O N T E N T S

List of Figures ii
List of Tables iii
List of Abbreviations 1

1 Introduction 1

1.1 Research Objectives . 2

1.2 Thesis Outline . 2

2 Background & Related Work 3

2.1 ASR systems . 3

2.2 Voice Activity Detection . 4

2.3 Evaluation Metrics . 5

2.4 Literature Review . 7

2.4.1 Whisper . 7

2.4.2 Faster-Whisper and Silero VAD . 9

2.4.3 WhisperX and PyAnnote VAD . 9

3 Data 11

3.1 Data Description . 11

3.2 Data Collection Methods . 12

3.3 Data Pre-processing and Handling . 13

3.3.1 Audio File Conversion and Feature Extraction 13

3.3.2 Data Cleaning . 14

3.3.3 Data Transformation . 14

3.3.4 Ethics and Privacy . 15

4 Methodology 16

4.1 General research setup . 16

4.2 Experiments . 17

4.2.1 Whisper, Faster-Whisper, and WhisperX 17

4.2.2 Silero and PyAnnote . 19

4.3 Evaluation metrics implementation . 20

5 Performance Results 23

5.1 Results on CGN Component C . 23

5.2 Results on CGN Component G . 25

5.3 Results on NFI-FRITS . 26

5.4 Results of threshold tuning . 27

5.5 Results Silero and Pyannote . 28

6 Discussion 30

6.1 Performance of Whisper, Faster-Whisper, and WhisperX on Word Error Rate . . 30

6.2 Performance of Whisper, Faster-Whisper, and WhisperX on precision, recall,
and F1-score . 31

6.3 Performance of Whisper, Faster-Whisper, and WhisperX on Real-Time Factor . . 32

6.4 The effects of Threshold tuning within Faster-Whisper and WhisperX 32

6.5 The effects of Threshold tuning in Silero VAD and PyAnnote VAD 33

6.6 Shortcomings and Limitations . 34

7 Conclusion 35

7.1 Conclusion . 35

4

contents

7.2 Recommendations for future work . 36

Bibliography 38

a Results Experiments CGN Comp C 42

b Results Experiments CGN Comp G 43

c Results Experiments NFI-FRITS 44

d Results Experiments VAD models CGN Comp C 45

e Results Experiments VAD models CGN Comp G 46

f Results Experiments VAD models NFI-FRITS 47

i

L I S T O F F I G U R E S

Figure 2.1.1 Basic structure of an ASR . 3

Figure 2.2.1 Voice activity detection model . 5

Figure 2.4.1 Whisper pipeline . 7

Figure 2.4.2 Pipeline of WhisperX . 10

Figure 4.1.1 Research Pipeline . 16

Figure 4.2.1 Different experiments of this study . 17

Figure 4.2.2 A visual overview of the hyperparameters in PyAnnote (left) and Silero

VAD (right). Green segments are considered speech. 18

Figure 4.2.3 Timestamps in an original transcription of CGN Component G 19

Figure 4.3.1 Example JiWER alignment using the process words() function 21

Figure 5.1.1 WER vs RTF on CGN Comp C for Whisper, Faster-Whisper, and Whis-
perX . 24

Figure 5.2.1 WER vs RTF on CGN Comp G for Whisper, Faster-Whisper, and Whis-
perX . 25

Figure 5.3.1 WER vs RTF on NFI-FRITS for Whisper, Faster-Whisper, and WhisperX.
Outliers removed. 27

Figure 5.5.1 Precision, Recall, and F1-score of Silero and PyAnnote VAD for different
datasets . 29

ii

L I S T O F TA B L E S

Table 2.3.1 Word Error Rate example . 5

Table 2.4.1 Architecture details of the Whisper model family [5] 8

Table 3.1.1 Components CGN dataset . 11

Table 3.1.2 Datasets used in research . 12

Table 3.3.1 Words/symbols in orthographic transcriptions CGN dataset 14

Table 3.3.2 Original vs cleaned transcription . 15

Table 4.2.1 Thresholds WhisperX (L) and Faster-Whisper (R) 19

Table 4.3.1 Description of the mutations of the JiWER alignment output 21

Table 5.1.1 Performance metrics CGN Component C, thresholds in VAD are in
default settings: for Faster-Whisper: 0.500, for WhisperX: Onset = 0.500,
Offset = 0.363 . 24

Table 5.2.1 Performance metrics CGN Component G, thresholds in VAD are in
default settings: for Faster-Whisper: 0.500, for WhisperX: Onset = 0.500,
Offset = 0.363 . 26

Table 5.3.1 Performance metrics NFI-FRITS, thresholds in VAD are in default set-
tings: for Faster-Whisper: 0.500, for WhisperX: Onset = 0.500, Offset =
0.363 . 27

Table A.0.1 Performance metrics CGN Comp C, tuning the threshold values, condi-
tion on previous text for Faster-Whisper and WhisperX set to True . . . 42

Table B.0.1 Performance metrics CGN Comp G, tuning the threshold values, condi-
tion on previous text for Faster-Whisper and WhisperX set to True . . . 43

Table C.0.1 Performance metrics NFI-FRITS, tuning the threshold values, condi-

tion on previous text for Faster-Whisper and WhisperX set to True . . . 44

Table D.0.1 Performance metrics CGN Comp C, tuning the threshold values in
Silero VAD and pyannote VAD. *DSR: Detected Speech Ratio, calcu-
lated by the predicted segments containing speech, divided by the total
speech in audio file . 45

Table E.0.1 Performance metrics CGN Comp G, tuning the threshold values in
Silero VAD and pyannote VAD. *DSR: Detected Speech Ratio, calcu-
lated by the predicted segments containing speech, divided by the total
speech in audio file . 46

Table F.0.1 Performance metrics NFI-FRITS, tuning the threshold values in Silero

VAD and pyannote VAD. *DSR: Detected Speech Ratio, calculated by
the predicted segments containing speech, divided by the total speech
in audio file . 47

iii

list of abbreviations

ASR Automatic Speech Recognition

CGN Corpus Gesproken Nederlands

FN False negative

FP False positive

NFI-FRITS Netherlands Forensic Institute’s Forensically Realistic Intercepted Telephone
Speech

RTF Real-time factor

TROI Team Rendement Operationale Informatie

TP True positive

VAD Voice Activity Detection

WER Word Error Rate

1

1 I N T R O D U C T I O N

In recent years, there has been a growing interest in automatic speech recognition (ASR) sys-
tems, with its influence extending to various domains such as health, education, and robotics
[1]. Within speech science and engineering, speech recognition is one of the fastest develop-
ing fields, driven by the human desire to automate simple tasks that require human-machine
interactions [2, 3], such as creating transcripts of audio files. ASR refers to computer and
software-based techniques that automatically convert spoken words into text [4]. With the
rapid progress of technologies, ASR systems are incorporated within multiple applications
due to their functionality and user-friendly nature [1].

Whisper [5] is a state-of-the-art and innovative Automatic Speech Recognition (ASR) model
developed by OpenAI1 and released in September 2022. It consists of an encoder-decoder
transformer architecture [6]. The model’s efficacy is rooted in its extensive training on an im-
pressive dataset of 680,000 hours of multilingual audio of speech [7, 8]. This dataset includes
a vast 540,000 hours of English speech and a substantial 117,000 hours spanned across 96 di-
verse languages [9]. The rich, multifaceted training data helps Whisper’s ability in rendering
precise textual transcriptions and illustrates the significant, yet often underestimated, poten-
tial of scaling supervised pre-training in the realm of speech recognition [5]. In addition to
Whisper, multiple re-implementations are developed including Faster-Whisper2, WhisperX3,
and Whisper-Jax.4

The Criminal Investigation Department of the Dutch National Police among others collects
and analyses audio data for the purpose of detecting criminal offenses. This department pos-
sesses a substantial amount of audio data, including seized data. Transcribing these audio
files manually for analysis purposes is very labour-intensive, and that is why the department
TROI5 of the Dutch National Police is working on ways to convert the speech to text automat-
ically using an ASR system, enabling detectives to quickly search for relevant information in
audio files.

The Dutch National Police are unable to employ ASR models that run on cloud platforms
since police data is too sensitive to send to the cloud. Therefore, an ASR model must be able
to run locally in a closed environment. Prior to the launch of Whisper, there existed alterna-
tive open-source models such as Wav2Vec [10] which operated on local systems; however, the
level of quality provided by these models was significantly lower compared to that of Whisper
[5].

Although the accuracy of Whisper is quite high, the problem of this model lies in its extensive
execution time. The execution time is roughly 1.5 times real-time, meaning that the execution

1 https://openai.com/research/whisper
2 https://github.com/guillaumekln/faster-whisper
3 https://github.com/m-bain/whisperX
4 https://github.com/sanchit-gandhi/whisper-jax
5 TROI (Team Rendement Operationele Informatie) is a specialized department employing experts in data science,

data analysis, and software development. TROI aims to facilitate applications for the analysis of large volumes
of data, enabling detectives to effectively work through this information. For instance, one of their applications
makes it possible to find specific concepts such as weapons in images.

1

https://openai.com/research/whisper
https://github.com/guillaumekln/faster-whisper
https://github.com/m-bain/whisperX
https://github.com/sanchit-gandhi/whisper-jax

CHAPTER 1. INTRODUCTION

time of Whisper for an audio file of 9 hours is 6 hours. This protracted duration poses an
inconvenience to the application, especially given the large volume of audio files. Therefore,
TROI is looking for ways to optimize this algorithm in terms of speed without compromising
on its accuracy.

Considering the minimalist strategy for data pre-processing employed by Whisper [5], it is
conceivable that incorporating advanced pre-processing techniques could further optimize its
performance. This potential enhancement could expedite the execution time of Whisper with-
out a considerable compromise in accuracy. Despite the extensive research conducted on ASR
models in general, little to no research has been focused specifically on Whisper, mainly due to
its novelty. Additionally, no prior research has been focused on comparing the performance of
three distinct implementations, Whisper, Faster-Whisper, and WhisperX on Dutch long-form
audio data. Accordingly, a more thorough understanding of Whisper’s performance, or a re-
implementation that incorporates a pre-processing technique on Dutch long-form audio data,
will fill this research gap and could ultimately lead to an advice for the Dutch National Police
on which implementation and pre-processing techniques to use.

1.1 research objectives

The main objective of the underlying research is to compare the performance of the baseline
model Whisper to (1) Faster-Whisper and (2) WhisperX on Dutch long-form audio data. The
performance will be evaluated based on the following metrics: Word Error Rate, precision,
recall, F1-score, and speed in terms of Real-Time Factor, which will be defined in Chapter 2.3.
Therefore, the main research question is the following:

How do state-of-the-art enhanced Whisper models including the pre-processing technique
voice activity detection perform compared to the baseline model Whisper on Dutch long-
form audio in terms of Word Error Rate, precision, recall, F1-score and Real-Time Factor?

1.2 thesis outline

This research exists of six chapters and the content is organized as follows. First, Chapter 2

provides background information on ASR systems and how these systems can be evaluated.
Additionally, an overview of the current research on Whisper and its re-implementations is
provided. Chapter 3 discusses the data used in this research, including the steps taken for
data preparation, as well as the ethical and legal considerations associated with the data.
Subsequently, in Chapter 4, the methodology used in this work is elaborated on and the
different steps required to reach the research objectives are laid out. Chapter 5 presents the
main results of Whisper and its re-implementations on the different performance metrics.
Furthermore, Chapter 6 discusses the findings as presented in the aforementioned results
chapter, while also explaining certain limitations inherent in this research. Finally, Chapter
7 sets out the main conclusions and provides an answer to the research question. Moreover,
suggestions are made for possible future research.

2

2 B A C KG R O U N D & R E L AT E D W O R K

The purpose of this chapter is to provide background information on ASR systems and
discuss metrics that can be used to evaluate the performance of such a system. Additionally,
this chapter reviews the literature available on Whisper and two re-implementations called
Faster-Whisper and WhisperX. First, Section 2.1 briefly explains the four different modules
in a basic ASR system, followed by Section 2.2 which explains voice activity detection as a
pre-processing techniques. Section 2.3 elaborates on five different metrics that can be used to
evaluate the performance of an ASR system. Finally, Section 2.4 reviews the available litera-
ture on Whisper and two re-implementations, Faster-Whisper and WhisperX.

2.1 asr systems

In this section, a brief discussion will be provided for each module of an ASR system. An ASR
system allows a computer to take an audio file or direct speech from a microphone as input
and convert it into text. An ideal ASR is capable of perceiving the given input and identifying
the spoken words in the input accurately [11]. An ASR system consists of different modules:
a pre-processing module, a feature extraction module, a classification model, and a language
model. The specific architecture of an ASR system is determined by the choice of models
employed within each module [1]. Figure 2.1.1 represents a basic structure of an ASR system.
The following paragraphs will explain the modules in more detail.

Figure 2.1.1: Basic structure of an ASR
[11]

Pre-processing is the first and most important phase in developing an efficient ASR system
[2, 12, 13]. Pre-processing techniques modify the input speech signal so that it becomes more
suitable for feature extraction analysis, i.e., the next module of the ASR system. The goal
of pre-processing a speech signal is to make an ASR system computationally more efficient
and enhance the accuracy [2]. There are several pre-processing techniques according to liter-
ature, and some of the most mentioned techniques are (1) Voice Activity Detection, (2) Noise

3

CHAPTER 2. BACKGROUND & RELATED WORK

Removal (i.e., denoising), (3) Pre-emphasis, (4) Framing, (5) Windowing and (6) Normaliza-
tion. The work of [12] states that this is also the order in which a speech signal should be
pre-processed.

After pre-processing, the clean speech signal is passed through the feature extraction module
[11]. The feature extraction module is responsible for determining the valuable components
of an audio signal that contribute to identifying linguistic content, while eliminating irrele-
vant information. This process involves transforming speech signals into a stream of feature
vectors containing coefficients that carry the necessary information for identifying a given ut-
terance [14, 15, 11]. Utterances are the speaking of a word, and can be a single word, a few
words, a sentence, or even multiple sentences [14].

Furthermore, as third component the classification model is an important component of an
ASR system, since it utilizes the extracted features from the preceding module to predict the
corresponding text. Its primary task is to classify and determine the phoneme or word spo-
ken in the input signal. The classifier learns the relationship between the given input audio
features and their associated text or phonemes [11].

The language model is the last module of the ASR [11]. A language model helps to organize
words to form meaningful sentences. The model indicates how likely a sequence of words can
appear together [4]. Language models use structural constraints of a language to predict the
probabilities of the occurrence of a word for a specific word sequence. Although a classifier
and a language model are similar, they serve distinct purposes. A classifier is responsible
for mapping speech signals to its closes possible word sequence, whereas a language model
focuses on the occurrence probability of word sequences. It checks how likely a particular
sequence of words is to occur naturally in a given language [11].

2.2 voice activity detection

Since the quality of speech recognition algorithms highly depends on the efficiency of the
speech signal pre-processing [2, 12], it is important to discuss pre-processing techniques in
the light of enhancing the performance of the Whisper algorithm. According to the work of
[12], voice activity detection (VAD) is the initial pre-processing technique among several tech-
niques as discussed in Section 2.1. The decision is made to only focus on the voice activity
detection technique as a pre-processing step. According to the literature, voice activity de-
tection is a key pre-processing technique used to detect speech segments within an utterance
[16]. It involves segmenting an audio signal into parts that contain speech and unvoiced parts
[17, 12].

As illustrated in Figure 2.2.1, the voice activity detection model generates outputs for each
segment in an audio file, representing the model’s estimation of speech presence probabilities
(”Voice Activity Estimate” in image).1 Adjusting the threshold value within the voice activity
detection model, if incorporated into an ASR model, influences the transcription process of the
ASR. Higher threshold values result in fewer segments being considered as speech, thereby
reducing the number of segments that the ASR model transcribes.

Voice activity detection techniques are used to reduce the computational costs and response
time of speech recognition models by only passing detected speech frames into the recogni-
tion algorithm [18], so that the non-speech parts are not transcribed. It is expected that by

1 https://wiki.aalto.fi/pages/viewpage.action?pageId=151500905

4

https://wiki.aalto.fi/pages/viewpage.action?pageId=151500905

CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.2.1: Voice activity detection model

incorporating a voice activity detection model into an ASR model, the transcription speed
will increase. Prioritizing only this technique allows a deeper exploration of the performance
of ASR models in combination with this pre-processing technique.

2.3 evaluation metrics

After offering a thorough understanding of the structure of ASR systems, the following sec-
tion delves into the evaluation of these systems. Evaluating the accuracy of an ASR model
can be challenging, since the output of an ASR may not have the same length as the manually
created transcription used as the ground truth [11]. Various metrics are employed to assess
the performance of an ASR model, including the Word Error Rate, Precision, Recall, F1-score,
and Real-Time Factor. This subsection will discuss how these evaluation metrics are built up.

Word Error Rate

The Word Error Rate (WER) is a widely used metric for estimating the performance of an ASR
system [19], as it calculates errors on the word level rather than on the sentence level [11]. The
WER is the ratio of incorrect words in the ASR output to the total number of words processed
[20]. The lower the WER the better the model. The WER can be calculated as follows [21]:

WER =
I + D + S

N
(2.1)

Incorrect words may result from substitutions (S), insertions (I), and deletions (D). N is the
total number of words in the ground truth [11]. To illustrate the calculation of the WER,
consider the following two sentences in Table 2.3.1:

Table 2.3.1: Word Error Rate example

Transcript Text

Re f erence ”The conference is scheduled for next Monday”
Prediction ”The conference is next Sunday”

5

CHAPTER 2. BACKGROUND & RELATED WORK

In this example, the output of the ASR model has two deletions (”scheduled” and ”for”), and
one substitution (”Monday” becomes ”Sunday”). The WER can then be calculated as follows:

WER =
0+ 2+ 1

7
= 0.429 (2.2)

Precision, Recall, and F1-score

The following three performance metrics are based on true positives (TPs), false positives
(FPs), and false negatives (FNs). TPs represent words correctly detected by the ASR model,
overlapping with the ground truth [22]. FPs are words detected by the ASR model but not
present in the ground truth. This is also called hallucination.2 FNs are words that exist in the
ground truth but go undetected by the model .3 To illustrate TP’s, FP’s, and FN’s consider
again the two sentences stated above. In this example, there are four true positives (”The”,
”conference”, ”is”, and ”next”), two false negatives (”for” and ”next”), and zero false positives
(i.e., no words are added).

Precision refers to the ratio of correctly predicted words by the ASR model among all predicted
words [23]. Precision is also known as the positive predictive value and can be calculated as
follows [24, 23, 25]:

Precision =
True Positives

TruePositives + FalsePositives
(2.3)

A high precision value indicates that, of all the positive predictions the ASR model made,
a high proportion of them are correct, suggesting a low occurrence of false positives. Con-
versely, a low precision value indicates that, of all the positive predictions the model made, a
significant portion of them are incorrect, indicating that the model is generating many false
positives relative to true positives.

Recall, also known as sensitivity or true positive rate, refers to the ratio of correctly predicted
words by the ASR model to the actual positive instances. The actual positive instances are all
the words that should have been predicted by the ASR model, reflecting the words spoken in
the audio [23, 24]. Recall can be calculated as follows [23, 25]:

Recall =
True Positives

TruePositives + FalseNegatives
(2.4)

A high recall value indicates that the ASR model successfully recognizes all the actual words of
the audio file. In contrast, a low recall value indicates that the model is omitting a considerable
number of words from the input audio.

The F1-score is a combination of the two metrics as described above: precision and recall [23].
The F1-score can be calculated as follows [23, 25]:

F1score = 2 ∗ Precision ∗ Recall
Precision + Recall

(2.5)

The F1-measure is a weighted combination of precision and recall, and shows the overall accu-
racy of the speech segment detection [23, 25]. The higher the F1-score, the higher the overall
accuracy of the output of the ASR model.

2 https://github.com/openai/whisper/blob/main/model-card.md
3 https://www.italk2learn.com/evaluating-the-performance-of-automatic-speech-recognition-systems/

6

https://github.com/openai/whisper/blob/main/model-card.md
https://www.italk2learn.com/evaluating-the-performance-of-automatic-speech-recognition-systems/

CHAPTER 2. BACKGROUND & RELATED WORK

Real-Time Factor

The last performance metric that this research will look into is the Real-Time Factor (RTF).
RTF is the most commonly used metric for calculating the speed of a proposed model and can
be computed as follows:

RTF =
P
I

(2.6)

where P is the time taken by the model to process the input and I is the duration of the input
audio. If RTF equals 1, then the input audio was processed in ”real time” [11].

2.4 literature review

The purpose of this section is to provide a review of the literature available on the performance
of Whisper and the re-implementations Faster-Whisper and WhisperX that both incorporate
the pre-processing technique of voice activity detection.

2.4.1 Whisper

The Whisper algorithm, as shortly discussed in Chapter 1, has a transformer architecture
which involves a two-part process: the encoder, which transforms speech inputs into context-
rich representations, and the decoder, which interprets these representations into correspond-
ing language tokens [8].

Figure 2.4.1: Whisper pipeline
[5]

7

CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.4.1 visualizes this pipeline. Whisper is designed for multitasking, starting with the
dual functions of discerning the language spoken and detecting the presence of speech. Sub-
sequent stages define the task to be performed - whether transcription or translation - and
incorporate timestamps [5]. In the Whisper pipeline in Figure 2.4.1, the top part represents
the encoder-decoder architecture, whereas the bottom represents the multitask training format.
This systematic approach allows Whisper to effectively fulfill a variety of tasks, including tran-
scription, translation, language identification, and voice activity detection [9, 5].

Different model sizes are used to train in order to study the scaling properties of Whisper
(see Table 2.4.1) [5]. Training on a diverse dataset covering a broad distribution of audio from
different environments, recording setups, speakers, and languages significantly improves the
robustness of a speech recognition model. This makes it possible to achieve high-quality re-
sults on unseen datasets, without dataset-specific finetuning. Table 2.4.1 illustrates the afore-
mentioned model sizes [5].

Table 2.4.1: Architecture details of the Whisper model family [5]

Whisper

Model Layers Width Heads Parameters

Tiny 4 384 6 39M
Base 6 512 8 74M

Small 12 768 12 244M
Medium 24 1024 16 769M

Large 32 1280 20 1550M

Whisper exhibits strong performance across various tasks and languages; however, it has a few
shortcomings that are addressed within this research. Firstly, although Whisper demonstrates
quite good performance in terms of Word Error Rate for Dutch (i.e., 9.3, 5.8, 12.9, 6.7, 22.4, 41.2)
when compared to other relatively low-resources languages, this validation is not representa-
tive of the underlying research because of diverse characteristics of the five tested datasets
by Whisper. The first dataset, Multilingual LibriSpeech (MLS), comprises read aloud audio-
books [26]. Common Voice 5.1, the second dataset, involves Dutch audio data of read aloud
sentences that are displayed on a screen [27]. VoxPopuli, the third dataset, contains recordings
of speeches from European Parliament events [28]. The fourth dataset, FLEURS, consists of
parallel speech recordings of sentences from Wikipedia, read by three native speakers [29].
Lastly, the CoVoST2 dataset, a multilingual speech translation corpus, offers translated speech
recordings, including Dutch, with multiple speakers reading donated sentences [30]. It is im-
portant to note that these datasets differ significantly from data that the Dutch National Police
encounters. Therefore, different datasets will be used, as discussed in Chapter 3.

Moreover, an additional limitation identified in Chapter 1 is the considerable execution time
associated with Whisper. Another problem relates to the occurrence of hallucinations in Whis-
per’s output, with the ASR model generating texts that are not actually present in the corre-
sponding audio input.2 In an attempt to address these problems, there are re-implementations
of Whisper to improve execution time and reduce hallucinations. Two re-implementations are
Faster-Whisper and WhisperX, both including a voice activity detection model as part of their
framework, are discussed in the upcoming subsections.

8

CHAPTER 2. BACKGROUND & RELATED WORK

2.4.2 Faster-Whisper and Silero VAD

Faster-whisper4 is a re-implementation of Whisper which uses CTranslate2
5, a C++ and Python

library that enables an efficient inference with Transformer models [6]. At present, little to no
official paper has been published regarding the usage and performance of Faster-Whisper.
Consequently, the available information about this re-implementation is derived solely from
their GitHub page.4

Faster-Whisper, as opposed to the original Whisper implementation, incorporates a pre-processing
technique, namely a voice activity detection model called Silero VAD [31]. Silero VAD employs
a neural network and is pre-trained on large corpora that include over 100 languages. Silero
VAD is a multi-head attention based neural network6 and outputs a probability of a segment
being speech, which is considered speech above a pre-defined threshold. The threshold is
selected by the user of the model and determines if there is speech in the given audio. If
the speech probability of an audio chunk is higher than the set threshold, it is assumed to
be speech. Depending on the desired result, thresholds should be fine-tuned for a specific
data set or domain. Silero VAD is compared to other voice activity detection models such as
SpeechBrain, WebRTC, and a commercial model, and it shows improvements on both preci-
sion and recall.7 Additionally, the model performs well on audio files from different domains
with various background noise and quality levels.8

Faster-Whisper is compared to the original Whisper implementation on CPU and GPU using
different evaluation metrics, including time and memory usage. On both the large-v2 model
on GPU and the small model on CPU, Faster-Whisper is up to 4 times faster than the original
Whisper model for the same accuracy while using less memory.9

2.4.3 WhisperX and PyAnnote VAD

Another re-implementation of Whisper is WhisperX [22], proposed by the research group Vi-
sual Geometry Group of the Oxford University. The developers created this re-implementation
to overcome several challenges of the original Whisper, such as drifting, hallucination, and
repetition [22]. WhisperX has, among other things, incorporated the PyAnnote VAD as a
pre-processing technique [32] consisting of a recurrent neural network [33]. PyAnnote VAD
outputs yt = 0 if there is no speech at time t and yt = 1 if there is speech at time t. Times-
tamps with prediction scores greater than a tunable threshold ΘVAD are marked as speech [32].
PyAnnote 2.0 for voice activity detection is compared to models that are specifically trained
for voice activity detection and it shows - in general - better results on false alarm rate, missed
detection rate, precision, recall, and F1-score [34]. After the segmentation of the voice activity
detection, the input audio is then cut and merged into approximately 30-second input chunks
with boundaries that lie on minimally active speech regions. The resulting speech segments
are transcribed with Whisper [22]. Figure 2.4.2 illustrates the pipeline of WhisperX.

The WhisperX large-v2 model is compared to previous state-of-the-art work in speech tran-
scription, namely the original Whisper large-v2 model and Wav2Vec2.0 base model. The devel-
opers of WhisperX used several evaluation metrics, including WER, speed, precision and re-

4 https://github.com/guillaumekln/faster-whisper
5 https://github.com/OpenNMT/CTranslate2/
6 https://thegradient.pub/one-voice-detector-to-rule-them-all/
7 https://github.com/snakers4/silero-vad/wiki/Quality-Metrics#info
8 https://github.com/snakers4/silero-vad
9 https://github.com/guillaumekln/faster-whisper

9

https://github.com/guillaumekln/faster-whisper
https://github.com/OpenNMT/CTranslate2/
https://thegradient.pub/one-voice-detector-to-rule-them-all/
https://github.com/snakers4/silero-vad/wiki/Quality-Metrics#info
https://github.com/snakers4/silero-vad
https://github.com/guillaumekln/faster-whisper

CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.4.2: Pipeline of WhisperX
[22]

call, and they compared the three models on three different datasets. The first dataset is called
AMI Meeting Corpus, which consist of recordings of meetings [35]. Switchboard-1 Telephone
Speech Corpus (SWB), the second dataset, consists of two-sided telephone conversations [36].
Finally, TED-LIUM 3 consists of 11 TED talks [37]. The overall results of WhisperX show
significant improvements on the WER compared to both Wav2Vec2.0 and the original Whis-
per. Besides, WhisperX outperforms both Wav2Vec2.0 and Whisper in transcription speed.
The developers of WhisperX also looked into the specific effects of the implementation of a
voice activity detection model. These results show that a voice activity detection model as a
pre-processing technique is beneficial for the general transcription quality, and this benefit is
more pronounced on word segmentation precision and recall. Finally, batched inference with
voice activity detection as in WhisperX provides an almost twelve-fold speed increase with no
performance loss, since each segment in the batch can be independently transcribed, which
overcomes the limitations of buffered transcription as in the original Whisper [22].

According to the literature reviewed, Whisper is showing promising results on the Word Error
Rate for Dutch audio files. However, the datasets on which it was tested have different charac-
teristics from the data used in this research. In addition, the execution time of Whisper is quite
high, and the output suffers from hallucination. Two re-implementations have been proposed,
called Faster-Whisper and WhisperX, both of which include a voice activity detection model,
to overcome these shortcomings. This research aims to conduct a comprehensive comparison
between Whisper, Faster-Whisper, and WhisperX on Dutch long-form audio data, which has
not been previously explored in the existing literature.

10

3 DATA

This chapter describes the data used in this research to compare the performance of differ-
ent Whisper implementations. The research focuses on audio data including speech, and its
corresponding transcriptions derived from two different datasets: CGN [38] and NFI-FRITS
[39]. These datasets are similar to the data that the Dutch National Police encounters. Both
datasets are explained within this chapter, however, it is important to note that direct access
to the NFI-FRITS dataset is restricted, and there is limited publicly accessible information due
to the sensitive nature of this data. As a result, the focus of this section will mainly be on the
CGN dataset.

3.1 data description

The NFI-FRITS dataset, provided by the Dutch National Police, consists of recordings of tele-
phone speech intercepted by Dutch law officials during police investigations. It contains foren-
sically realistic material, i.e., audio data from intercepted telephone speech originating from
real police investigations [39]. The audio files are accompanied by their transcriptions. The
dataset includes approximately 165 hours of annotated speech in 4188 different audio files. It
consists of diverse speech material, including Dutch, Moroccan, Arabic, Berber, and Turkish.
The recordings involve a total of 604 speakers, with 117 female and 427 male [39].

The Spoken Dutch Corpus (CGN) is an open-source dataset that includes recordings of ev-
eryday conversations on various subjects and in a variety of situations, along with their an-
notations and transcriptions [40]. The dataset aims to meet the needs of diverse research
disciplines and applications [41]. Accordingly, the dataset includes (fragments of) radio and
television programs, interviews, lectures, and telephone conversations. Table 3.1.1 provides
an overview of all the components within this open-source dataset [39].

Table 3.1.1: Components CGN dataset

CGN

Component Description

Comp A Spontaneous conversations (face-to-face)
Comp B Interviews with teachers of Dutch
Comp C Spontaneous telephone conversations (recorded via a switchboard)
Comp D Spontaneous telephone conversations (recorded on minidisk)
Comp E Simulated business negotiations
Comp F Interviews, discussions, debates (broadcast)
Comp G (Political) Discussions, debates, meetings (non-broadcast)
Comp H Lessons recorded in a classroom
Comp I Live (e.g. sport) commentaries (broadcast)
Comp J News reports / reportages (broadcast)
Comp K News (broadcast)
Comp L Commentaries / columns / reviews (broadcast)
Comp M Ceremonious speeches / sermons
Comp N Lectures / seminars
Comp O Read speech

11

CHAPTER 3. DATA

The CGN dataset consists of approximately 900 hours of recorded audio along with corre-
sponding transcriptions. It includes various types of speech components, including mono-
logues and dialogues, with the number of speakers per component varying per audio file.1

The CGN dataset comprises both Dutch and Flemish audio files, with approximately 76.23%
of the files in Dutch and 23.77% in Flemish, on average [41].

To accommodate computational and time constraints of this research, the NFI-FRITS and CGN
datasets are segmented. Regarding the CGN dataset, Component C and G are used. Compo-
nent C was expected to be most similar to the data in the NFI-FRITS dataset, and Component
G was included for the purpose of generalizability of the results. From these components,
only the Dutch audio files are used. Regarding the NFI-FRITS dataset, the subset that is used
in this research consists only of Dutch conversations between 2 speakers. In this research,
NFI-FRITS and CGN are used to refer to these subsets. Table 3.1.2 provides basic statistics of
the subsets employed in this research.

Table 3.1.2: Datasets used in research

Data Min Mean Max Total

NFI-FRITS
Seconds 57.41 172.83 624.61 39404.34

Minutes 0.96 2.88 10.41 656.74

Num Files 228

CGN Comp C
Seconds 209.11 556.24 599.81 199135.19

Minutes 3.49 9.27 10.00 3318.92

Num Files 358

CGN Comp G
Seconds 160.06 831.70 1788.98 74853.41

Minutes 2.67 13.86 29.82 1247.56

Num Files 90

3.2 data collection methods

The data collection methods are different for the NFI-FRITS and CGN datasets. For the NFI-
FRTIS dataset, audio files are obtained through the interception of telephone speech by Dutch
law officials during police investigations. The individuals speaking in these recordings were
likely unaware of being recorded. Background sounds such as periodic background sounds,
background speakers, and cross-talks are excluded from the audio files [39]. Unfortunately,
further details regarding the data collection method for these audio files are not publicly dis-
closed. In addition to the audio files, annotations, and transcriptions are collected. Native
annotators in the relevant languages listened to the audio files, identified speaker names and
genders (male/female), and processed sensitive information, including telephone numbers
and case names. Subsequently, the audio was processed again, and speech containing poten-
tially identifying information about an individual’s identity is removed by setting the digital

1 https://lands.let.ru.nl/cgn/doc Dutch/topics/design/design.htm#intro

12

https://lands.let.ru.nl/cgn/doc_Dutch/topics/design/design.htm#intro

CHAPTER 3. DATA

sample values to zero. Additional metadata, such as the level of background noise, age group,
language proficiency, and conversation type, are also added [39]. Alongside these annotations,
separate transcriptions are created for each speaker in the telephone conversations, although
specifics about this process remain undisclosed [39].

The CGN dataset comprises recordings obtained through diverse methods. Certain compo-
nents, such as interviews and discussions (f), are obtained from external parties, while face-to-
face conversations (a) are recorded between recruited volunteers in their home environments.
Another group of individuals was instructed to record data in various settings, such as shops,
workplaces, or restaurants. Additionally, components like classes and lectures are directly
recorded at educational institutions with permission given by the schools [42]. The CGN
dataset includes orthographic transcriptions for all recordings. These transcriptions provide a
verbatim record of the spoken content without correcting grammatical errors or filling in in-
complete words.2 Moreover, metadata such as gender, age, and geographical region are noted
[42]. In the process of creating the orthographic transcriptions, repetitions, slips, and hesita-
tions are explicitly represented; background noises, on the other hand, are only under certain
conditions reflected in the transcript. In order to align the orthographic transcription with the
corresponding speech signal, time markers are added at regular intervals of approximately
two to three seconds3. Moreover, additional notes are incorporated into the transcriptions, as
outlined in Table 3.3.1.

3.3 data pre-processing and handling

This section presents the procedures for the pre-processing and handling of the data in this
research. First, Subsection 3.3.1 discusses the conversion of audio files and the extraction of
features. Additionally, Subsection 3.3.2 elaborates on the data cleaning process followed by
Subsection 3.3.3 which discusses the transformation of the audio files and corresponding tran-
scriptions. Finally, Subsection 3.3.4 addresses the ethical and privacy considerations related to
the datasets used in this research.

3.3.1 Audio File Conversion and Feature Extraction

No prior conversion of audio files or feature extraction was necessary for either dataset. The
Whisper framework incorporates a built-in function that accepts various audio files formats,
including m4a, mp3, webm, mp4, mpga, wav, and mpeg.4 In the case of the NFI-FRITS
and CGN datasets, which are both in .wav format, no additional processing was required.
Furthermore, Whisper includes a feature execution function that directly operates on the raw
audio files. This function converts the audio files into Log-Mel Spectrograms; representations
that contain information about time, frequency, and amplitude. Thus, no additional feature
extraction method was employed.

2 https://taalmaterialen.ivdnt.org/wp-content/uploads/documentatie/cgn website/doc Dutch/topics/project/

orthography/index.htm
3 https://ivdnt.org/images/stories/producten/documentatie/cgn website/doc Dutch/topics/project/orthography/

index.htm
4 https://help.openai.com/en/articles/7031512-whisper-api-faq

13

https://taalmaterialen.ivdnt.org/wp-content/uploads/documentatie/cgn_website/doc_Dutch/topics/project/orthography/index.htm
https://taalmaterialen.ivdnt.org/wp-content/uploads/documentatie/cgn_website/doc_Dutch/topics/project/orthography/index.htm
https://ivdnt.org/images/stories/producten/documentatie/cgn_website/doc_Dutch/topics/project/orthography/index.htm
https://ivdnt.org/images/stories/producten/documentatie/cgn_website/doc_Dutch/topics/project/orthography/index.htm
https://help.openai.com/en/articles/7031512-whisper-api-faq

CHAPTER 3. DATA

3.3.2 Data Cleaning

No specific cleaning steps are performed on the audio files of either dataset. However, the
transcriptions are cleaned. For the NFI-FRITS dataset, some pre-processing of the transcrip-
tions has been carried out by the Dutch National Police. This involved the removal of words
that are in an exclusion list, such as ”UNK”, ”PERSON”, ”xxx”, ”ggg”, ”vvv”, and ”uh”.
Additionally, certain parts of words, such as ”-uh”, ”*s”, ”*x”, ”*u”, ”*a” are eliminated. Punc-
tuation marks are also removed and the text is transformed to lowercase.

The preparation of the original transcriptions involved several steps. The manual-generated
transcriptions of the CGN dataset differed in format from the output of Whisper and its re-
implementations. While Whisper’s output was sorted chronologically, the original transcripts
were sorted by speaker. This mismatch in formats posed challenges in accurately comparing
the outputs, as it could lead to incorrect alignments and with that incorrect calculations of er-
rors. To address this, the original transcriptions are sorted based on the provided time stamps.
Furthermore, in the subsequent step, the sentences are further cleaned using text processing
methods. The orthographic transcriptions of the CGN dataset contained additional words
or symbols which are represented in Table 3.3.1). These additional words and symbols are
removed.

Table 3.3.1: Words/symbols in orthographic transcriptions CGN dataset

Word/Symbol Meaning

∗d Dialect word
∗u Mispronounced word
∗a Incomplete word
∗v Foreign word
∗x Unintelligible word
∗z Word pronounced with a regional accent

ggg A sound produced by the speaker (e.g., laughing)
xxx One or more unintelligible word
Xxx An unintelligible proper noun

Besides, the original transcriptions included punctuation marks, which are also removed, and
the transcriptions are converted to lowercase. Table 3.3.2 illustrates an example of the outcome
of the cleaning process of a transcription of the CGN dataset. The transcriptions produced
by Whisper or a re-implementation undergo the same processing, which will be elaborated
upon in Chapter 4 in further detail. This ensures greater comparability between the original
transcriptions and the predictions generated by whisper or a re-implementation.

3.3.3 Data Transformation

Aforementioned, the audio files in the CGN dataset are in a format that is supported by Whis-
per (.wav). Hence, it was unnecessary to transform the audio files. The transcriptions in the
CGN dataset are in the .ort format.5 To enable a comparison between the original transcrip-
tions and the transcriptions provided by Whisper or a re-implementation, it was necessary to
parse the .ort files and extract necessary information, i.e., the speaker, start time, end time,
and transcription. This information was needed for further steps in this research, as will be

5 https://taalmaterialen.ivdnt.org/wp-content/uploads/documentatie/cgn website/doc Dutch/topics/index.htm

14

https://taalmaterialen.ivdnt.org/wp-content/uploads/documentatie/cgn_website/doc_Dutch/topics/index.htm

CHAPTER 3. DATA

Table 3.3.2: Original vs cleaned transcription

Transcription Meaning

Original [ja. ze zegt*x uh*x je raakt helemaal onder de indruk zei ze.
mmm. dus. mijn stem klinkt denk ik heel raar want ik ben
een beetje verkouden. mmm. ja. hoor je dat erg? beetje wel.
ja wel een beetje maar niet heel erg ja nou ja. ja. maar dat
weten ze dan toch wel. nou ja maar dat maakt toch niet uit.
ggg. ggg. nou. mensen ik ben verkouden. ggg. ggg. ggg.
ja. hoor je mij? ggg. ggg. oh. ja. ja]

Cleaned [ja ze zegt uh je raakt helemaal onder de indruk zei ze mmm
dus mijn stem klinkt denk ik heel raar want ik ben een
beetje verkouden mmm ja hoor je dat erg beetje wel ja wel
een beetje maar niet heel erg ja nou ja ja maar dat weten
ze dan toch wel nou ja maar dat maakt toch niet uit nou
mensen ik ben verkouden ja hoor je mij oh ja ja]

explained in Chapter 4. The specific format of the transcriptions in the NFI-FRITS dataset
has not been disclosed. However, the Dutch National Police provided the transcriptions in a
format suitable for subsequent analyses.

3.3.4 Ethics and Privacy

The speech content of the NFI-FRITS dataset has been anonymised by zeroing out fragments
that might disclose the real identity of speakers. On average, 3.85s of speech (2.7%) was nulled
as a result of the anonymisation procedure [39]. Besides, metadata that contain information
that can disclose the real identify of a particular speaker was deleted or replaced with salted
hashes or ID-numbers [39]. In the subset of the NFI-FRITS dataset used for this research, all
meta-data such as gender and accent, is removed.

In the CGN dataset, each speaker in the corpus are assigned a unique identification code.
Information about the speakers is included in the meta-data. The developers of the corpus
used descriptions that could not led to the identify of a speaker, ensuring that their anonymity
remains protected. They used a classification according to age, class, socio-economic class, etc.
[42]

Due to the sensitive nature of the NFI-FRITS dataset, specific findings cannot be publicly
disclosed in this research; however, a description of these results will be provided. This
research uses the CGN dataset to illustrate specific findings and provide examples.

15

4 M E T H O D O LO GY

The aim of this research is to evaluate the performance of Whisper and re-implementations
that incorporate a voice activity detection model into Whisper on Dutch long-form audio data.
This chapter describes the methodology used to evaluate the performance of Whisper, Faster-
Whisper, and WhisperX. . First, Section 4.1 explains the general research setup, after which
Section 4.2 explains the conducted experiments in this research. Finally, Section 4.3 discusses
the implementation of the different evaluation metrics used in this research.

4.1 general research setup

In order to conduct all experiments on the server of the Dutch National Police, specific re-
quirements must be satisfied for the chosen implementations. These requirements include:
being an open-source implementation, written in Python, regularly updated, accompanied by
a pre-trained model and properly licensed. Whisper, Faster-Whisper and WhisperX, includ-
ing Silero VAD and PyAnnote VAD, meet all of these requirements, making them suitable
for comparison in this research. Whisper, Faster-Whisper, and WhisperX are first compared
with their default settings. Additionally, the comparison explores the effects of adjusting
hyperparameters in the models i.e., condition on previous text, VAD filter, and VAD threshold

(threshold onset and threshold offset). All these experiments are conducted on the NFI-FRITS
and CGN dataset. Figure 4.1.1 illustrates the general research setup of the underlying re-
search. Considering the slow inference time on central processing units (CPUs) when using
larger models, and the availability of computational resources, the models are executed on a
Nvidia Titan RTX graphics processing unit (GPU).

Figure 4.1.1: Research Pipeline

As can be seen in Figure 4.1.1, the input for the models consists of the audio files from two
datasets along with their corresponding transcriptions. The audio files are transcribed by
Whisper, Faster-Whisper and WhisperX, while simultaneously monitoring the Real-Time Fac-
tor. Subsequently, the predictions and original transcriptions are compared in an evaluation
model to assess the WER, precision, recall, and F1-score.

16

CHAPTER 4. METHODOLOGY

4.2 experiments

This chapter discusses the conducted experiments within this study. First, Subsection 4.2.1
explains the experiments that are performed with Whisper, Faster-Whisper, and WhisperX,
as well as the hyperparameter tuning within these models. Subsection 4.2.2 outlines the
conducted experiments to assess the variation in performance between the two voice activity
detection models. These experiments aim to evaluate the impact of incorporating different
voice activity detection models within an ASR model. The focus lies on comparing the results
solely based on the output of these models, disregarding any analysis of the generated texts.

4.2.1 Whisper, Faster-Whisper, and WhisperX

This subsection discusses the details of the experiments that are conducted in this research.
Figure 4.2.1 illustrates these different experiments. Within Whisper and its re-implementations,
there are multiple hyperparameters that can be tuned. This research focuses on the follow-
ing hyperparameters condition on previous text, VAD filter, and threshold, as requested by the
Dutch National Police. These hyperparameters will be explained in this section. Other hy-
perparameters that can be tuned include model size, compute type, beam size, and batch size.
These are not tuned in this research, to limit the scope of work.

Figure 4.2.1: Different experiments of this study

Whisper, Faster-Whisper and WhisperX all offer different model sizes. To be able to compare
the performance of the three different implementations with each other, the decision was
made to use models of the same size. Larger models have been shown to achieve a better
accuracy [5], therefore this research uses the large-v2 model, which is the largest model at
time of this research.

First, the condition on previous text hyperparameter can be adjusted within the three different
models to True and False. If True, the previously generated output of the model is provided
as a prompt for the next predictions. Although this leads to more consistent texts, the model
becomes more prone to getting stuck in a failure loop such as repetition.1 Another risk of
setting this hyperparameter to True is hallucination, i.e., generating text while this text is
not being said in the original audio. Therefore, according to the work of [22], setting this
hyperparameter to False is beneficial for robust transcriptions. The default setting of this
hyperparameter for Whisper and Faster-Whisper is True, and for WhisperX it is False. In this
research, experiments are conducted with condition on previous text being set to True and False

for all three models to guarantee a fair comparison between the models.

Another hyperparameter that is tuned in this research is related to the voice activity detection

1 https://github.com/openai/whisper/blob/main/whisper/transcribe.py

17

https://github.com/openai/whisper/blob/main/whisper/transcribe.py

CHAPTER 4. METHODOLOGY

models used in Faster-Whisper and WhisperX. As explained in Subsection 2.4, both Faster-
Whisper and WhisperX incorporate an optional voice activity detection model (VAD filter).
By enabling the VAD filter in the models, parts of the audio without speech are filtered out.
By default, Faster-Whisper sets the VAD filter to False, while WhisperX sets the VAD filter to
True. In order to examine the effects of the voice activity detection model, experiments are
conducted with the model being enabled and disabled. In Faster-Whisper, the hyperparameter
VAD filter can easily be disabled, however, in WhisperX this hyperparameter is not explicitly
included. Therefore, the same effect is achieved by setting the speech probability threshold in
the voice activity detection model of WhisperX to 0. In this way, the voice activity detection
model is disabled, as it considers all segments to be speech.

Finally, experiments are performed to explore the effect of changing the threshold in the
voice activity detection model of Faster-Whisper and WhisperX. As described before, Faster-
Whisper incorporates the Silero VAD model to filter out parts of the audio without speech.2

Silero VAD outputs speech probabilities for each audio chunk, and probabilities above the
threshold value are considered as speech.3 The right column in Figure 4.2.2 illustrates this
threshold. The threshold parameter, a number between 0 and 1, in the transcribe function
of Faster-Whisper is adjusted. By setting the threshold to a high value, such as 0.9, it is
expected Whisper to be faster, as it will only process a limited number of audio chunk that
are classified as speech by the voice activity detection model. Consequently, Whisper will
have fewer chunks to transcribe. This adjustment in threshold value is expected to enhance
the precision of transcriptions, as the audio inputs are more likely to be speech instead of
other noises, which is expected to reduce hallucinations of Whisper. Conversely, it is expected
that the recall value will decrease due to an increase in false negatives, as Whisper may omit
numerous audio segments that do contain speech in case of a high threshold value in the
voice activity detection model. The default value in Silero VAD in Faster-Whisper is 0.5,
and multiple threshold values above and below 0.5 are used to test the influence on the
performance. By doing so, well-balanced research can be conducted.

WhisperX incorporates the PyAnnote VAD model.4 The threshold value functions differently
in PyAnnote VAD compared to Silero VAD in Faster-Whisper. The PyAnnote VAD model
uses two values, Onset and Offset, to determine the presence of speech in an audio chunk.
As illustrated in the left figure of Figure 4.2.2, the PyAnnote VAD model considers an audio
chunk as speech once it exceeds the Onset threshold, and it continues to be classified as speech
until it falls below the Offset threshold.5 The default values are Onset: 0.500 and Offset: 0.363.

Figure 4.2.2: A visual overview of the hyperparameters in PyAnnote (left)
and Silero VAD (right). Green segments are considered speech.

2 https://github.com/guillaumekln/faster-whisper/tree/ad58ba26ab8b3d871b8d4f9962cf8a669c3d41c1
3 https://github.com/guillaumekln/faster-whisper/blob/master/faster whisper/vad.py
4 https://github.com/m-bain/whisperX/tree/befe2b242eb59dcd7a8a122d127614d5c63d36e9
5 https://github.com/PyAnnote/PyAnnote-audio/blob/develop/tutorials/voice activity detection.ipynb

18

https://github.com/guillaumekln/faster-whisper/tree/ad58ba26ab8b3d871b8d4f9962cf8a669c3d41c1
https://github.com/guillaumekln/faster-whisper/blob/master/faster_whisper/vad.py
https://github.com/m-bain/whisperX/tree/befe2b242eb59dcd7a8a122d127614d5c63d36e9
https://github.com/PyAnnote/PyAnnote-audio/blob/develop/tutorials/voice_activity_detection.ipynb

CHAPTER 4. METHODOLOGY

To determine the optimal approach for tuning the Onset and Offset values, preliminary tests
are performed. These tests examined the output differences when scaling the Onset and
Offset values linearly, as well as when setting both values to an equal value (i.e., omitting the
margin between Onset and Offset), resulting in a threshold parameter similar to the threshold
parameter in the Silero voice activity detection model of Faster-Whisper. The results of these
preliminary tests indicated minimal variation in the output. Consequently, the decision was
made to set the Onset and Offset values to be identical. As an example, the Onset and Offset

values of 0.500 and 0.363 in Figure 4.2.2 become one threshold value of 0.5. This choice ensures
a fairer comparison between Faster-Whisper and WhisperX. As a result, the voice activity
detection threshold values in both Faster-Whisper and WhisperX are tuned in the same way,
as illustrated in Table 4.2.1.

Table 4.2.1: Thresholds WhisperX (L) and Faster-Whisper (R)

Onset/Offset Threshold
PyAnnote VAD Silero VAD

0.20 0.20

0.25 0.25

0.30 0.30

0.35 0.35

0.40 0.40

0.45 0.45

0.50 0.50

0.55 0.55

0.60 0.60

0.65 0.65

0.70 0.70

0.75 0.75

0.80 0.80

4.2.2 Silero and PyAnnote

In addition to comparing Whisper, Faster-Whisper, and WhisperX on the different perfor-
mance metrics, this research also examines the variation between the two voice activity de-
tection models employed in Faster-Whisper and WhisperX. Specifically, Silero VAD in Faster-
Whisper, and PyAnnote VAD in WhisperX. This analysis aims to determine whether any
performance differences observed between Faster-Whisper and WhisperX can be attributed to
variances in the voice activity detection models’ performance. This subsection discusses the
methods used for this comparison.

The original transcriptions of the CGN Component C and G datasets, as well as the NFI-FRITS
dataset, contain timestamps indicating the occurrence of spoken words. Figure 4.2.3 visualizes
these timestamps of one of the original transcriptions.

Figure 4.2.3: Timestamps in an original transcription of CGN Component G

19

CHAPTER 4. METHODOLOGY

Both Sileroand PyAnnote VAD models output the likelihood of speech occurrence within
specific segments of audio in probabilities. These models provide timestamps alongside the
detected speech segments. Two functions are implemented, which require an audio file and
a threshold value as inputs, and yield the start and end times of the identified speech seg-
ments in seconds. Experiments are conducted in which the threshold value is modified in
the same way as described in Table 4.2.1. Subsequently, the predicted speech timestamps are
compared with the original speech timestamps, as specified in the original transcriptions. A
more detailed description of this comparison is provided in Section 4.3.

4.3 evaluation metrics implementation

In this research, the experiments between Whisper and its re-implementations, involve provid-
ing audio files and their corresponding transcriptions as input to the developed functions, re-
sulting in a dataframe comprising five performance metrics, namely: Word Error Rate (WER),
precision, recall, F1-score, and Real-Time Factor (RTF), as described in Section 2.3. This sec-
tion describes the implementation of the different performance metrics in more detail for these
experiments. During the execution of an experiment, the RTF is monitored. The remaining
performance metrics are computed after the execution, as they require the model’s predictions
for calculation. Finally, this section discusses how the performance of the two voice activity
detection models is evaluated.

To determine the RTF, it is necessary to possess both the executing time of Whisper and the
duration of the audio file. A function is implemented to calculate the duration of the given
audio file in seconds by dividing the length of the audio file by its sample-rate. Eventually,
the Real-Time Factor per audio file is determined by dividing the running time per audio file
by the duration of the audio file.

After executing Whisper, the generated prediction undergoes processing. This process in-
cludes converting all the text to lowercase and removing punctuation marks. Additionally,
any numerical values present in the prediction are converted into their written form in Dutch.
This conversion is performed by using the telwoord package.6 This conversion is consistent
with the representation of numbers in the original transcriptions of the NFI-FRITS and the
CGN datasets. For instance, the number ”20” in a prediction is converted to the Dutch word
”twintig” (”twenty”). However, this method is not applicable for decimal numbers.

Subsequently, the original transcriptions and the predictions are aligned with the JiWER pack-
age7 which aligns a reference (original transcription) with a hypothesis (prediction of the ASR
model) on a word-level. Within the JiWER package, the Levenshtein distance is used which
is a measure of similarity between two strings. The algorithm finds the cost of the least expen-
sive set of insertions, deletions, or substitutions that would be needed to transform one string
into the other. The greater the Levenshtein distance, the more different the strings are [43, 44].
The time indications of the original transcription and a Whisper implementation often differ
too much which makes it difficult to map them to each other correctly. That is why all speech
in an audio file is considered as one sentence. By considering the text in both transcriptions
as one sentence, JiWER itself can create a proper alignment. Figure 4.3.1 represents a part of
the output of the JiWER function process words(), where ”REF” is the original transcription
and ”HYP” is the predicted transcription of Whisper.

6 https://pypi.org/project/telwoord/
7 https://jitsi.github.io/jiwer/ https://github.com/jitsi/jiwer

20

https://pypi.org/project/telwoord/
https://jitsi.github.io/jiwer/
https://github.com/jitsi/jiwer

CHAPTER 4. METHODOLOGY

Figure 4.3.1: Example JiWER alignment using the process words() function

As can be seen in Figure 4.3.1, the JiWER alignment outputs different mutations, including
insertions, deletions, substitutions and hits, which are measured on a word-level. Table 4.3.1 il-
lustrates the meaning of these mutations. Based on these numbers, the other four performance
metrics can be computed, namely the WER, precision, recall, and F1-score.

Table 4.3.1: Description of the mutations of the JiWER alignment output

Name Type Description

Hits (H) int The number of correct characters between
reference and hypothesis sentences

Substitutions (S) int The number of substitutions required to
transform hypothesis sentences to reference
sentences

Insertions (I) int The number of insertions required to trans-
form hypothesis sentences to reference sen-
tences

Deletions (D) int The number of deletions required to trans-
form hypothesis sentences to reference sen-
tences

As described in Section 2.3, precision can be calculated by dividing the true positives (hits) by
the sum of true positives and false positives (hits, substitutions and insertions). The recall is
calculated by dividing the true positives (hits) by the sum of true positives and false negatives
(hits, deletions and substitutions). The F1-score is the harmonic mean of precision and recall
[25]. When the ASR model fails to generate a transcription, the precision, recall, and F1 values
are assigned a value of 0, as it requires a penalty for such cases. Finally, the JiWER package
has a function called wer() to calculate the WER.8 This function calculates the WER as the sum
of substitutions, insertions and deletions divided by the hits, substitutions, and deletions.9

To compare the two voice activity detection models, the predicted timestamps are compared
to the timestamps in the original transcription using the PyAnnote.metrics library10. The eval-
uation of the voice activity detection classification task is conducted through the metrics Detec-

tionErrorRate and DetectionAccuracy11. Within these metrics, the inputs consist of segments
corresponding to the positive class, which represents speech segments, while gaps within the
inputs are considered as the negative class, representing non-speech segments. The original
timestamps (reference) are compared to the predicted timestamps (hypothesis) of the voice ac-
tivity detection model. During this comparison, true negatives, true positives, false negatives,

8 https://jitsi.github.io/jiwer/reference/measures/
9 https://github.com/jitsi/jiwer/blob/master/jiwer/process.py

10 https://github.com/PyAnnote/PyAnnote-metrics/tree/develop
11 https://github.com/PyAnnote/PyAnnote-metrics/blob/develop/PyAnnote/metrics/detection.py

21

https://jitsi.github.io/jiwer/reference/measures/
https://github.com/jitsi/jiwer/blob/master/jiwer/process.py
https://github.com/PyAnnote/PyAnnote-metrics/tree/develop
https://github.com/PyAnnote/PyAnnote-metrics/blob/develop/PyAnnote/metrics/detection.py

CHAPTER 4. METHODOLOGY

and false positives are calculated. In this case, true positives correspond to instances where
the original timestamps align with the predicted timestamps for speech, and true negatives
indicate instances where there is no speech detected by the voice activity detection model in
case there is also no speech detected in the original audio and its corresponding transcrip-
tion. False positives are the duration of non-speech incorrectly classified as speech, and false
negatives are the duration of speech incorrectly classified as non-speech [45]. Based on these
numbers, the performance metrics precision and recall are calculated in the way as described
in Section 2.3.

22

5 P E R F O R M A N C E R E S U LT S

The goal of this research is to compare the performance of Whisper with two re-implementations
that incorporate the pre-processing technique of voice activity detection. The most important
point of interest is therefore the extent to which the models, i.e., Whisper, Faster-Whisper,
and WhisperX, perform on the different performance metrics: Word Error Rate (WER), preci-
sion, recall, F1-score, and Real-Time Factor (RTF). Therefore, the purpose of this chapter is to
discuss the performance results of Whisper, Faster-Whisper, and WhisperX on CGN Compo-
nent C and G, and NFI-FRITS. Additionally, the performance results of the threshold tuning
within the voice activity detection models, and the performance results of the comparison
between Silero and PyAnnote are presented. This chapter is organized as follows: Section 5.1
discusses the results of the experiments with Whisper, Faster-Whisper and WhisperX on CGN
Component C, 5.2 discusses the results for CGN Component G, and 5.3 for the NFI-FRITS
dataset. Section 5.4 presents the results of tuning the threshold values in Faster-Whisper and
WhisperX. Finally, 5.5 discusses the results of the comparison between the two voice activity
detection models: Silero and PyAnnote. In the tables presented in this chapter, the most opti-
mal results are marked in bold. Model settings with ”def” indicate the default settings of the
model.

5.1 results on cgn component c

As mentioned above, this section discusses the results of the experiments with Whisper, Faster-
Whisper, and WhisperX on Component C of the CGN dataset. Component C consists of tele-
phone conversations that are recorded via a switchboard. To start with, Figure 5.1.1 illustrates
the results of the three different models on the Word Error Rate (Y-axis) and the Real-Time
Factor (X-axis).
The results in Figure 5.1.1 are for the models Whisper and WhisperX in their default settings,
meaning that the hyperparameter condition on previous text is set to True for Whisper and
False for WhisperX, while the VAD filter is set to On for WhisperX. For Faster-Whisper, the
condition on previous text is set to True, the VAD filter is enabled, and the default threshold of
0.5 is used. WhisperX has an Onset value of 0.5 and an Offset value of 0.363.

In terms of the RTF, WhisperX demonstrates better performance with a mean RTF value of
0.058, indicating that WhisperX, on average, achieves faster transcriptions of the audio files in
this dataset. Regarding the WER, Faster-Whisper achieves the best performance with a WER
of 0.0324 (see Table 5.1.1 for details). Additionally, WhisperX exceeds Whisper in WER perfor-
mance, with WhisperX achieving a WER of 0.326, while Whisper achieves a higher WER of
0.352.

As mentioned in the methodology Section (4), the hyperparameters condition on previous text
and VAD filter are also altered for the three models to assess the effects on the different per-
formance metrics. The results of this hyperparameter tuning for CGN Component C are
illustrated in Table 5.1.1.
Table 5.1.1 shows the performance comparison of different models. Faster-Whisper, with con-
dition on previous text set to True and VAD filter set to On, achieves the lowest WER of 0.324.

23

CHAPTER 5. PERFORMANCE RESULTS

Figure 5.1.1: WER vs RTF on CGN Comp C for Whisper, Faster-Whisper,
and WhisperX

Table 5.1.1: Performance metrics CGN Component C, thresholds in VAD are in default
settings: for Faster-Whisper: 0.500, for WhisperX: Onset = 0.500, Offset =

0.363

CGN Comp C

Model cond on prev text VAD WER Precision Recall F1 RTF

Whisper (=def) True N/A 0.352 0.813 0.667 0.729 0.172

WhisperX True On 0.326 0.849 0.685 0.758 0.056

WhisperX True Off 0.335 0.848 0.676 0.751 0.053

Faster-Whisper True On 0.324 0.838 0.693 0.758 0.084

Faster-Whisper (=def) True Off 0.327 0.836 0.692 0.756 0.087

Whisper False N/A 0.342 0.825 0.679 0.744 0.190

WhisperX (=def) False On 0.326 0.849 0.685 0.757 0.058

WhisperX False Off 0.335 0.848 0.676 0.751 0.052
Faster-Whisper False On 0.328 0.842 0.687 0.756 0.118

Faster-Whisper False Off 0.329 0.839 0.688 0.755 0.077

WhisperX, with the same settings and WhisperX in default settings, achieve the highest pre-
cision (0.849), while Faster-Whisper with condition on previous text set to True and VAD filter
set to On, achieves the highest recall value of 0.693. Both WhisperX and Faster-Whisper, with
these settings, attain the best F1-score of 0.758. In terms of RTF, WhisperX in all different
settings outperforms Whisper and Faster-Whisper, with RTF values of 0.052, 0.053, 0.056 and
0.058. This implies that these models can transcribe the audio files of CGN Component C
approximately three times faster than the baseline models Whisper, which have RTF values of
0.172 and 0.190.

24

CHAPTER 5. PERFORMANCE RESULTS

5.2 results on cgn component g

This section presents the results of the experiments on CGN Component G, which consists
of recordings of discussions, debates, and meetings. Figure 5.2.1 visualizes the results of the
three different models concerning the WER on the Y-axis and the RTF on the X-axis. The
aforementioned settings in Section 5.1 also apply to this figure.

As can be seen in Figure 5.1.1, WhisperX demonstrates superior performance in terms of
RTF, achieving a value of 0.047, Faster-Whisper outperforms Whisper, with RTF values of
0.087 and 0.161, respectively. These findings indicate that WhisperX achieves almost three
times faster transcriptions of audio files from CGN Component G compared to the baseline
Whisper model. WhisperX also outperforms the other models in terms of WER, achieving a
value of 0.171. Faster-Whisper achieves a slightly higher WER of 0.173, while Whisper exhibits
a WER of 0.179. Detailed results can be found in Table 5.2.1.

Figure 5.2.1: WER vs RTF on CGN Comp G for Whisper, Faster-Whisper,
and WhisperX

Similar to the analysis of CGN Component C, the hyperparameters condition on previous text
and VAD filter are altered for the three models for CGN Component G. The results of this
hyperparameter tuning are illustrated in Table 5.2.1.

Table 5.2.1 shows relatively small differences in WER between Faster-Whisper and WhisperX,
ranging from 0.171 to 0.173, while the baseline Whisper has higher WER values of 0.179 and
0.176. WhisperX outperforms the other models in precision with a value of 0.924. Faster-
Whisper, with condition on previous text set to False and VAD filter set to Off, achieves the high-
est recall value of 0.838. WhisperX consistently achieves the highest F1-score of 0.878 in three
of the four settings. Additionally, WhisperX demonstrates the best RTF performance with a
value of 0.047.

25

CHAPTER 5. PERFORMANCE RESULTS

Table 5.2.1: Performance metrics CGN Component G, thresholds in VAD are in default
settings: for Faster-Whisper: 0.500, for WhisperX: Onset = 0.500, Offset =

0.363

CGN Comp G

Model cond on prev text VAD WER Precision Recall F1 RTF

Whisper (=def) True N/A 0.179 0.914 0.832 0.870 0.161

WhisperX True On 0.171 0.924 0.837 0.878 0.051

WhisperX True Off 0.171 0.924 0.837 0.878 0.054

Faster-Whisper True On 0.173 0.922 0.836 0.876 0.087

Faster-Whisper (=def) True Off 0.173 0.920 0.837 0.876 0.065

Whisper False N/A 0.176 0.914 0.834 0.872 0.153

WhisperX (=def) False On 0.172 0.923 0.836 0.877 0.047
WhisperX False Off 0.171 0.924 0.837 0.878 0.053

Faster-Whisper False On 0.171 0.920 0.838 0.877 0.134

Faster-Whisper False Off 0.171 0.920 0.838 0.877 0.058

5.3 results on nfi-frits

This section presents the results of the experiments of Whisper, Faster-Whisper and WhisperX
on the NFI-FRITS dataset, which consists of recordings of telephone speech intercepted by
Dutch law officials during police investigations.

Figure 5.3.1 illustrates the performance of the three models in terms of the WER on the Y-axis
and the RTF on the X-axis. Remarkably, three predictions of the three models yielded a WER
higher than the value of 4, originating from a single audio file. Further investigation revealed
that the speakers in that audio file had a distinct accent, making it challenging to comprehend
the spoken content, even for a human. Considering the difficulties encountered while listen-
ing to this file, it is reasonable to expect similar challenges for ASR models, particularly in
the case of Dutch as a low-resource language. Consequently, this outlier audio file has been
excluded from 5.3.1.

As can be seen in Figure 5.3.1, WhisperX outperforms Faster-Whisper and Whisper on the
RTF. WhisperX achieves a RTF of 0.04, while Faster-Whisper and Whisper exhibit RTF values
of 0.083 and 0.235, respectively. This indicates that WhisperX transcribes the audio files of
NFI-FRITS about five times faster than the baseline model Whisper. Moreover, WhisperX ex-
ceeds Faster-Whisper and Whisper in terms of WER, with WER values of 0.448, 0.483, and
0.568 respectively (see Table 5.3.1). These findings indicate that WhisperX is the most effective
model for this particular dataset, according to its superior WER and RTF performance when
compared to Faster-Whisper and Whisper.

Similar to the analysis performed on CGN Components C and G, the hyperparameters con-
dition on previous text and VAD filter are adjusted for the three models in the experiments on
the NFI-FRITS dataset. The impact of this hyperparameter tuning is presented in Table 5.3.1.
As can be seen in Table 5.3.1, WhisperX with condition on previous text set to True and VAD filter
set to On demonstrates better performance in terms of WER, precision, recall, and F1-score
for this dataset. The WER of this model is 0.443, the precision is 0.697, the recall value is
0.645, and the F1-score is 0.668. The best model in terms of RTF is WhisperX in its default
setting, outperforming the other models with a RTF of 0.040. This is followed by WhisperX

26

CHAPTER 5. PERFORMANCE RESULTS

Figure 5.3.1: WER vs RTF on NFI-FRITS for Whisper, Faster-Whisper, and
WhisperX. Outliers removed.

Table 5.3.1: Performance metrics NFI-FRITS, thresholds in VAD are in default settings: for
Faster-Whisper: 0.500, for WhisperX: Onset = 0.500, Offset = 0.363

NFI-FRITS

Model cond on prev text VAD WER Precision Recall F1 RTF

Whisper (=def) True N/A 0.568 0.602 0.550 0.569 0.235

WhisperX True On 0.443 0.697 0.645 0.668 0.053

WhisperX True Off 0.460 0.688 0.626 0.653 0.051

Faster-Whisper True On 0.483 0.666 0.620 0.639 0.083

Faster-Whisper (=def) True Off 0.561 0.591 0.534 0.555 0.163

Whisper False N/A 0.543 0.616 0.573 0.590 0.276

WhisperX (=def) False On 0.448 0.695 0.645 0.667 0.040
WhisperX False Off 0.468 0.685 0.625 0.651 0.050

Faster-Whisper False On 0.477 0.669 0.629 0.646 0.065

Faster-Whisper False Off 0.545 0.603 0.562 0.577 0.121

with condition on previous text set to False and VAD filter set to Off, having a RTF of 0.050, and
WhisperX with condition on previous text set to True and VAD filter set to Off, having a RTF of
0.051.

5.4 results of threshold tuning

This section discusses the results of tuning the threshold value in the voice activity detection
model of Faster-Whisper and WhisperX. An overview of all results of the threshold tuning
can be found in the appendixes. Appendix A presents the results for CGN Component C,
Appendix B for CGN Component G, and Appendix C for NFI-FRITS.

27

CHAPTER 5. PERFORMANCE RESULTS

The performance of Faster-Whisper and WhisperX on CGN Component C does not show a
clear trend when tuning the threshold values, as can be seen in Appendix A. While Faster-
Whisper achieves better WERs and recall values with lower thresholds, WhisperX achieves
worse WERs and recall values with lower thresholds. However, regarding the precision, higher
thresholds in both models lead to higher values. Finally, regarding RTF only Faster-Whisper
shows the trend that lower thresholds lead to a lower RTF.

The relationship between tuning the threshold values and performance metrics for CGN Com-
ponent G is uncertain. While Faster-Whisper generally performs better with lower threshold
values across the performance metrics WER, precision, and F1-score, the impact of tuning
threshold values on WhisperX is unclear, as shown in Appendix B. Lower threshold values
tend to result in the lowest WER for WhisperX, but higher threshold values may improve
precision scores. The effects on recall, F1 scores, and RTF exhibit inconsistent patterns and are
inconclusive.

Finally, for the NFI-FRITS dataset, higher threshold values generally lead to better results for
both Faster-Whisper and WhisperX (see Appendix C. In Faster-Whisper, the lowest WER of
0.469 is achieved with a threshold of 0.75. For WhisperX, higher thresholds result in higher
precision, recall, and F1-scores. Additionally, both models exhibit improved RTF performance
with higher threshold values.

Although the adjustment of threshold values in Faster-Whisper and WhisperX has some im-
pact across the different performance metrics, the observed variations are relatively small. For
example, in CGN Component C, the most significant discrepancy between threshold values
(e.g. 0.25 and 0.80) in Faster-Whisper on the WER is 0.09, while for WhisperX, the discrepancy
in WER between threshold values 0.20 and 0.55 is 0.003. In CGN Component G, the differ-
ences are even smaller. For example, the precision metric shows a difference of 0.001 across
all threshold values in Faster-Whisper, while in WhisperX the discrepancy in recall values is
0.002. Overall, the influence of different threshold values on the performance metrics is most
outspoken in the NFI-FRITS dataset. For instance, in Faster-Whisper, there is a difference of
0.027 in precision when comparing threshold values of 0.20 and 0.70. Similarly, in WhisperX,
a difference of 0.005 in recall is observed when comparing threshold values of 0.30 and 0.50.

5.5 results silero and pyannote

In addition to the experiments with Whisper, Faster-Whisper, and WhisperX, experiments are
also conducted to test the performance of the voice activity detection models only. As afore-
mentioned, Faster-Whisper incorporates Silero VAD, while WhisperX incorporates PyAnnote

VAD. The predicted timestamps by Silero and PyAnnote VAD are compared to the original
timestamps as present in the original transcriptions, using the performance metrics precision,
recall, and F1-score. In these experiments, the threshold values are changed. An overview of
all results can be found in Appendix D, E, and F. In this section, only the main findings are
presented, and summarized in Figure 5.5.1.

As can be seen in Figure 5.5.1, regarding the precision metric, its value increases with higher
thresholds in all datasets. This pattern applies for both the Silero and PyAnnote VAD mod-
els. In each dataset, the PyAnnote VAD model consistently achieves higher precision values.
Conversely, the recall metric shows a decreasing trend with higher thresholds across all cases.
When comparing the two VAD models, the recall value of the PyAnnote model is consistently
lower than that of the Silero model across all datasets. Lastly, in terms of F1-scores, no general

28

CHAPTER 5. PERFORMANCE RESULTS

Figure 5.5.1: Precision, Recall, and F1-score of Silero and PyAnnote VAD for
different datasets

trend is observed across the datasets. For CGN Component C, both models exhibit decreas-
ing F1-scores with higher thresholds. However, for CGN Component G, an opposite trend is
observed, where the PyAnnote VAD model shows a decreasing recall value with higher thresh-
olds, while the Silero VAD model exhibits an increasing trend. In the NFI-FRITS dataset, the
recall value of the PyAnnote VAD model is consistently higher than that of the Silero VAD
model across all threshold values.

29

6 D I S C U S S I O N

The purpose of this chapter is to discuss the meaning of the research results as presented in
Chapter 5. As described in Chapter 1, the goal of this research is to assess the performance of
Whisper and two re-implementations, Faster-Whisper and WhisperX, that incorporate the pre-
processing technique of voice activity detection on Dutch long-form audio data. This section
interprets the results of the different experiments conducted in this research and discusses
how the results contribute to answering the research question by assessing the performance
of Whisper, Faster-Whisper and WhisperX. This chapter is organized as follows. First, in
Sections 6.1, 6.2, and 6.3, the performance results of Whisper and its re-implementations are
discussed in further detail. After that, Section 6.4 discusses the interpretation of the limited
effects of tuning the threshold values within the voice activity detection models. Section 6.5
discusses the potential explanations for the different results of the two voice activity detection
models Silero and PyAnnote. Finally, in Section 6.6, the main shortcomings and limitations of
this research are elaborated on.

6.1 performance of whisper, faster-whisper, and whisperx
on word error rate

By incorporating a voice activity detection model, two primary effects are anticipated that
both influence the WER. Firstly, as fewer segments of the audio file require transcription, it
is expected that the occurrence of hits, substitutions, and insertions will decrease, while the
number of deletions will increase. Secondly, by filtering out segments of poor audio quality,
the likelihood of hallucination, i.e., predicting words where none exist in the audio file, will
be reduced. Consequently, one can expect that the number of deletions and insertions will
decrease, while the number of hits will increase. The impact on the number of substitutions
remains unclear. In theory these effects can counteract each other, however, since the exact
increase or decrease of the number of deletions, insertions, substitutions, and hits was not
tracked accurately, it is hard to say which effect is stronger. However, since both effects result
in a decrease in insertions, one could hypothesise that an overall decrease in the WER can be
the result of the implementation of a voice activity detection model.

The hypothesis mentioned above is confirmed in the obtained results, as presented in Table
5.1.1, 5.2.1 and 5.3.1, since it shows that the WER decreases for Faster-Whisper and Whis-
perX compared to Whisper. However, considerable variations in WER still occur across the
different datasets examined. Specifically, the NFI-FRITS dataset exhibits substantially higher
WER values, approximately 0.5 on average, followed by CGN Component C with an average
WER of around 0.332, while CGN Component G displays the lowest WER, averaging around
0.173. This deviation can potentially be attributed to differences in audio quality between
datasets. In particular, the NFI-FRITS dataset contains audio files characterized by relatively
reduced clarity when compared to the relatively cleaner audio files in CGN Component C and
G. Furthermore, the audio files in CGN Component C and G appear to be more staged, with
mostly intelligible speech, whereas the NFI-FRITS dataset comprises recordings of individu-
als unaware of being recorded, resulting in lower audio quality due to their lack of concern.

30

CHAPTER 6. DISCUSSION

Regarding the contrasting WERs observed between CGN Component C and G, it appears
that Component G exhibits fewer instances of overlapping speech (i.e., speeches rather than
conversations) and fewer speaker switches, making the ASR model less prone to mistakes.

6.2 performance of whisper, faster-whisper, and whisperx
on precision, recall, and f1-score

By employing the voice activity detection model, the ASR model is also expected to achieve a
higher proportion of accurate transcriptions among all positive predictions, leading to higher
precision. The reason for this is that by employing a voice activity detection model, low-
quality segments are filtered out, making it easier for the ASR model to transcribe the audio
segments leading to a higher proportion of correct positive predictions. The experimental
findings presented in Table 5.1.1, 5.2.1 and 5.3.1, consistently demonstrate that, overall, Faster-
Whisper and WhisperX exhibit higher precision compared to the baseline Whisper model.
Moreover, when comparing the same model with only the VAD filter enabled and disabled, in
most cases, the enabled models demonstrate higher precision scores. These results align with
the initial expectations of achieving higher precision scores by the incorporation of a voice
activity detection model and indicate that out of all predicted words by Faster-Whisper and
WhisperX, a high proportion of them are correct.

However, by incorporating a voice activity detection model, some spoken words in the audio
file may not be recognized as speech and subsequently omitted by the ASR model. Con-
sequently, a relatively higher number of false negatives is expected, leading to a decrease
in the recall value. Contrary to expectations, the experimental results as illustrated in Ta-
ble 5.1.1, 5.2.1 and 5.3.1, indicate an increase in recall for almost all experiments where the
VAD filter is enabled. This unexpected outcome can potentially be attributed to the voice activ-
ity detection model effectively filtering out low-quality segments of the audio file, identifying
them as non-speech. Consequently, the voice activity detection models in Faster-Whisper and
WhisperX avoid transcribing these degraded segments and mitigates the occurrence of failure
loops. As a result, the overall recall value for the audio segment improves. These findings are
supported by the observation that when the VAD filter is disabled, certain audio files showed
highly anomalous transcriptions at segments in the beginning of the audio file. This poses sub-
stantial challenges in attaining accurate transcription for the entirety of the audio file, thereby
resulting in a relatively low recall value. By pre-segmentation of these specific segments in ad-
vance, there is a possibility of potentially achieving an overall higher recall value, as observed
in the experimental results of this research.

Based on the F1-score formula, since precision and recall are both in the numerator and de-
nominator, F1-score can either increase or decrease when the precision is increased and the
recall is decreased. However, since the results show that the recall increases as well, the F1-
score is also expected to increase since the effect of the numerator is larger than the effect of
the denominator. This trend is clearly showed throughout the results as Faster-Whisper and
WhisperX show higher for F1-scores when their precision and recall values increase compared
to the baseline Whisper.

31

CHAPTER 6. DISCUSSION

6.3 performance of whisper, faster-whisper, and whisperx
on real-time factor

Finally, it is hypothesized that the integration of a voice activity detection model into Whisper
would lead to a reduction in RTF since there are fewer speech segments to transcribe for the
ASR model.

The experimental results presented in Table 5.1.1, 5.2.1 and 5.3.1, demonstrate that both Faster-
Whisper and WhisperX exhibit lower RTF values compared to the baseline model Whisper,
across various settings and in all datasets. When the VAD filter is enabled (set to On) for
Faster-Whisper and WhisperX, the RTF is lower than that of Whisper, aligning with the initial
hypothesis. This indicates that both Faster-Whisper and WhisperX transcribe the audio files
faster than the baseline model Whisper. Additionally, even when the VAD filter is disabled (set
to Off) for Faster-Whisper and WhisperX, the RTF remains significantly lower than that of the
baseline model Whisper, which was expected initially, since Faster-Whisper and WhisperX
are implemented using CTranslate. Besides, a few cases exhibit an even lower RTF when
the VAD filter is disabled, when compared to the same model with the VAD filter enabled. A
possible explanation for this is the simultaneous execution of multiple experiments effecting
the RTF, as will be discussed in Section 6.6.

6.4 the effects of threshold tuning within faster-whisper
and whisperx

In addition to comparing Whisper and its re-implementations across various settings, exper-
iments are conducted to tune the threshold value of the voice activity detection model in
Faster-Whisper and WhisperX. One can expect that increasing the threshold value would gen-
erally lead to a lower RTF, as fewer speech segments require transcription. Furthermore, it
was anticipated that a higher threshold value would result in a larger decrease in WER com-
pared to a lower threshold. Finally, as fewer speech segments require transcriptions when the
thresholds increases, it was expected that the effects of an increasing precision and decreasing
in recall as described before, would be stronger when compared to lower thresholds.

In general, the results show that the performance of both models remains relatively stable
when evaluated at various threshold values. This implies that the selection of a specific thresh-
old has a limited impact on the model’s performance across different datasets. It seems that
these results can be explained by two effects that cancel each other out. For lower thresholds,
there are more audio segments considered as speech, but the quality of each segment is lower.
For Whisper, this means more audio segments to transcribe (leading to a higher recall), but
also more change to get stuck in failure loops or hallucinations (leading to a lower recall). At
the same time, for higher thresholds, there are less audio segments considered as speech, but
the quality of each segment is higher. For Whisper, this means less audio segments to tran-
scribe (leading to lower recall), but also more less to get stuck in failure loops or hallucinations
(leading to a higher recall).

Although minor performance differences exist across diverse thresholds, it is indefinable
whether a relatively high or low threshold value is optimal, as the ideal threshold varies
among datasets and depends on the prioritized performance metric. Consequently, finetun-
ing the threshold hyperparameter in the voice activity detection model yields slight varia-
tions in performance outcomes at different threshold values. Notably, the differences between

32

CHAPTER 6. DISCUSSION

threshold values are most distinct in the NFI-FRITS dataset (see Appendix C), indicating that
finetuning the threshold value in the voice activity detection model for this particular dataset
may have a bigger impact on the performance metrics compared to the other datasets. Gener-
ally, for the NFI-FRITS dataset, higher thresholds for both Faster-Whisper (0.75) and WhisperX
(0.55, 0.60, 0.70) demonstrate better performance when considering all performance metrics as
equally important.

The observed difference in the impact of threshold tuning on performance metrics between
the NFI-FRITS dataset and CGN, may be attributed to factors that are different between the
datasets, such as the level of background noise and other interference’s. While both NFI-FRITS
and CGN Component C datasets involve telephone conversations, the NFI-FRITS dataset, de-
rived from real police investigations, may exhibit higher levels of background noise and inter-
ference’s compared to CGN Component C. Consequently, the NFI-FRITS dataset would likely
require more precise threshold tuning in the VAD models to effectively separate speech from
noise, resulting in a greater impact on performance metrics.

6.5 the effects of threshold tuning in silero vad and pyan-

note vad

Given that WhisperX generally outperforms Faster-Whisper in terms of Word Error Rate, pre-
cision, recall, F1-score, and Real-Time Factor, it was hypothesized that this discrepancy may
be attributed to the usage of different voice activity detection models by Faster-Whisper and
WhisperX. To further investigate this hypothesis, additional experiments are conducted to as-
sess the performance disparities between the Silero VAD and PyAnnote VAD models, which
are employed by Faster-Whisper and WhisperX, respectively. It was expected that, in gen-
eral, the PyAnnote VAD model would exhibit better performance compared to the Silero VAD
model, considering the integration of PyAnnote within the WhisperX system.

Overall, the precision scores for both models and across all datasets exhibit an increasing
trend with higher thresholds, aligning with the aforementioned hypothesis. However, just
like for threshold tuning in the section above, the differences in performance between tuning
the threshold values are limited. Considering the consistently lower precision values of the
Silero VAD model across all datasets, it can be inferred that the Silero VAD model tends to
consider more segments as speech compared to the PyAnnote VAD model. This observation
finds support in the determined detected speech ratios presented in Appendices D, E, and F.
The detected speech ratio refers to the proportion of positive predictions, which correspond
to segments considered as speech by the voice activity detection model, divided by the total
speech segments indicated in the original transcription. A speech ratio exceeding 1 indicates
that the voice activity detection model identifies more segments as speech than actually exist
in the audio file. In general, the detected speech ratios for Silero VAD are consistently higher
across all thresholds compared to the detected speech ratios obtained with PyAnnote VAD,
supporting the aforementioned observation of higher precision values for Silero VAD. Fur-
thermore, it can be seen that higher thresholds lead to a decrease in detected speech ratio for
both models, which confirms that threshold tuning affects the number of segments that are
considered as speech. In contrast to previously discussed findings in Section 6.4, adjusting the
threshold value within the voice activity detection models, apart from the ASR models, has
clear effects. Increasing the threshold value demonstrates an improvement in precision scores,
across all datasets and for both Silero and PyAnnote VAD models.

33

CHAPTER 6. DISCUSSION

Additionally, the recall value decreases for both voice activity detection models and in all three
datasets as the threshold increases, which is in line with expectations. By higher thresholds,
more segments are considered as non-speech, which leads to more false negatives, and there-
fore a lower recall value. However, this is in contrast with the findings in Section 5.4, which
show limited to no effect on the recall when adjusting the threshold value. Additionally, there
is no clear upward or downward trend observable at an increasing or decreasing threshold.
As mentioned in Section 5.5, he recall value is lower for PyAnnote VAD across all datasets
and thresholds than for Silero VAD, leading to the conclusion that PyAnnote VAD is more
cautious about detecting segments as speech when compared to Silero VAD.

Finally, regarding the F1-scores, there is a different trend between the CGN Component C
and NFI-FRITS and CGN Component G. more specific, the F1-score for CGN Component G
of both Silero and PyAnnote VAD crosses at a threshold of 0.4, after which the F1-score of
Silero VAD is higher than the PyAnnote F1-score, which is in contrast with the findings in
the other datasets. Intuitively, one could be surprised by the results, but given the formula of
the F1-score, this finding can be explained due to the relative increase and decrease between
precision and recall for CGN Comp G.

6.6 shortcomings and limitations

With regard to shortcomings in this research, there are three main limitations that need to be
addressed. To start with, a limitation arises from the considerable amount of time dedicated
to debugging the WhisperX algorithm. Throughout the execution of the experiments, it was
discovered that, regardless of the hyperparameters tuned, WhisperX consistently returned
identical results. It turned out that the hyperparameters were updated, but not utilized in the
source code, which was a fundamental mistake by the designer of the model. Consequently,
due to the substantial time consumed by this issue, there was insufficient time available to
execute the experiments multiple times and compute the average output.

Another limitation of this research relates to not monitoring the memory usage of the various
models employed. Although WhisperX demonstrates promising results across diverse perfor-
mance metrics, it appears from preliminary experiments to consume more memory compared
to Faster-Whisper. Monitoring the memory usage would have provided a more comprehen-
sive understanding of the models’ performance. However, due to the simultaneous execution
of multiple programs, accurate monitoring of memory usage was not possible. The simulta-
neous execution of multiple programs during the research leads to another limitation, namely
that the RTF may not be fully representative, as this simultaneous execution may have affected
the RTF. Therefore, the RTF values in this study research not 100% reliable.

Other smaller limitations include the potential inadequacy of the JiWER package in scenar-
ios where transcriptions are missing or numerous. Moreover, the package treats misspelled
words as errors, even though the biggest part of the word is identical and the content is cor-
rect. Finally, despite pre-processing of the transcriptions, certain undesired annotations such
as ”peep” may remain. This leads to a potential higher number of detected errors, resulting
in a blurred representation of the performance of the models .

34

7 C O N C L U S I O N

This work aimed to assess the performance of Whisper and two re-implementations called
Faster-Whisper and WhisperX that both incorporate the pre-processing technique voice activ-
ity detection. This chapter is organized as follows. In Section 7.1, the contributions of this
work and the main findings are discussed. Next, in Section 7.2, based on the main conclu-
sions, a number of recommendations for future work are mentioned.

7.1 conclusion

Whisper, an automatic speech recognition model, demonstrates state-of-the-art performance
across multiple tasks and languages. Although the accuracy of the Whisper output is quite
high, the problem lies in its extensive execution time. TROI, a department of the Dutch Na-
tional Police, is looking for ways to optimize this model in terms of speed without comprising
its accuracy. Given Whisper’s minimalist strategy for data pre-processing, it is expected that
incorporating advanced pre-processing techniques could further optimize its performance.
Accordingly, this study aims to investigate the influence of incorporating the pre-processing
technique voice activity detection on Whisper’s performance. Therefore, the main research
question is:

How do state-of-the-art enhanced Whisper models including the pre-processing technique
voice activity detection perform compared to the baseline model Whisper on Dutch long-
form audio in terms of Word Error Rate, precision, recall, F1-score, and Real-Time Factor?

In this research, a comprehensive analysis between Whisper and two re-implementations
called Faster-Whisper and WhisperX, is conducted. Both Faster-Whisper and WhisperX inte-
grate a pre-processing technique known as voice activity detection. A voice activity detection
model provides a probability for each segment in an audio file, indicating the presence or
absence of speech. Consequently, specific parts of an audio file are filtered out prior to being
processed by the ASR model. This process reduces the number of audio segments that the
ASR model transcribes. This research assesses whether the incorporation of a voice activity
detection model into Whisper leads to an accelerated transcription speed, measured by the
Real-Time Factor. Additionally, the research examines the impact of this approach on various
performance metrics, including the Word Error Rate, precision, recall, and F1-score.

To reach the goal of this research, a literature review is conducted on Whisper and its re-
implementations. Subsequently, a series of experiments is conducted to compare the perfor-
mance of Whisper, Faster-Whisper, and WhisperX under default settings, utilizing various per-
formance metrics. Additionally, different hyperparameters within the models, namely condi-
tion on previous text, VAD filter, and threshold, are tuned to evaluate their impact on the perfor-
mance metrics. Moreover, the performance of the voice activity detection models, specifically
Silero employed in Faster-Whisper and PyAnnote utilized in WhisperX, is assessed through
experiments conducted solely on the timestamps generated by these models. The precision
and recall values are used to evaluate the performance of the voice activity detection models.

35

CHAPTER 7. CONCLUSION

In conclusion, both Faster-Whisper and WhisperX demonstrate better performance compared
to the original Whisper algorithm, as they effectively enhance the execution time measured
by the RTF and improve various performance metrics, namely the WER, precision, recall,
and F1-score. This indicates the advantages of incorporating a voice activity detection model
within the Whisper framework. Despite the expectation of lower recall values due to poten-
tial omission of speech segments, the recall value actually increases in nearly all cases for
Faster-Whisper and WhisperX compared to the baseline Whisper model, contrary to initial ex-
pectations. WhisperX is, in most cases, outperforming Faster-Whisper across different datasets
and settings.

The impact of tuning the threshold values Faster-Whisper and WhisperX is limited. By adjust-
ing these threshold values, only minor differences in performance are observed. Furthermore,
it was observed that finetuning the threshold values is dependent on the specific dataset.
Therefore, it can be concluded that incorporating of a voice activity detection model yields
more benefits in terms of improving on the various performance metrics compared to the
effect of finetuning the threshold value within this model.

Finally, it can be concluded that the dissimilarities in performance between Faster-Whisper
and WhisperX can be primarily attributed to their utilization of distinct voice activity detec-
tion models. The Silero VAD model as incorporated in Faster-Whisper is achieving higher
recall values, whereas the PyAnnote VAD model utilized by WhisperX is achieving higher
precision values.

7.2 recommendations for future work

A few suggestions can be made for future work:

• Examine alternative voice activity detection models
Future work could involve evaluating alternative voice activity detection models, such
as SpeechBrain1 or NeMo2, alongside Whisper. This would enable an assessment of the
impact of different voice activity detection models on the overall performance of the
model.

• Test memory usage
WhisperX exhibits promising results across different performance metrics. Nevertheless,
additional research is needed to compare the memory usage of various implementa-
tions of Whisper. Preliminary observations suggest that WhisperX consumes a higher
amount of memory compared to Faster-Whisper, thereby positioning Faster-Whisper as
an attractive choice in scenarios with limitations on resources.

• Investigate differences between the models Faster-Whisper and WhisperX
Based on the different results observed, where adjusting the thresholds in Faster-Whisper
and WhisperX showed no convincing effects, while similar adjustments in Silero and
PyAnnote VAD models, apart from the ASR models, showed clear trends, it is plausible
that inherent differences between Faster-Whisper and WhisperX contribute to these dif-
ferences in outcomes. However, investigating these differences was beyond the scope of
the current study. It is therefore recommended to investigate these variations in future
research.

1 https://speechbrain.github.io/
2 https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/speech classification/models.html

36

https://speechbrain.github.io/
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/speech_classification/models.html

CHAPTER 7. CONCLUSION

• Incorporate other pre-processing techniques
As discussed in Section 2.1, various pre-processing techniques, such as noise removal,
can be employed within an ASR model. Future research could focus on exploring the ef-
fects of integrating various pre-processing techniques into Whisper or a re-implementation.
It is expected that incorporating additional pre-processing techniques can further im-
prove the performance of the ASR model. However, the effectiveness of these techniques
depends on the characteristics of the dataset used to test the ASR model, as was also
found in this research.

37

B I B L I O G R A P H Y

[1] A. Dhouib, A. Othman, O. El Ghoul, M. K. Khribi, and A. Al Sinani, “Arabic automatic
speech recognition: A systematic literature review,” vol. 12, no. 17, p. 8898. [Online].
Available: https://www.mdpi.com/2076-3417/12/17/8898

[2] Y. A. Ibrahim, J. C. Odiketa, and T. S. Ibiyemi, “Preprocessing technique in automatic
speech recognition for human computer interaction: An overview.”

[3] S. Alharbi, M. Alrazgan, A. Alrashed, T. Alnomasi, R. Almojel, R. Alharbi,
S. Alharbi, S. Alturki, F. Alshehri, and M. Almojil, “Automatic speech recognition:
Systematic literature review,” vol. 9, pp. 131 858–131 876. [Online]. Available:
https://ieeexplore.ieee.org/document/9536732/

[4] S. Sen, A. Dutta, and N. Dey, Audio Processing and Speech Recognition: Concepts, Techniques
and Research Overviews, ser. SpringerBriefs in Applied Sciences and Technology. Springer
Singapore. [Online]. Available: http://link.springer.com/10.1007/978-981-13-6098-5

[5] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever, “Robust
speech recognition via large-scale weak supervision.”

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need.” [Online]. Available:
http://arxiv.org/abs/1706.03762

[7] M. Kadlčı́k, A. Hájek, J. Kieslich, and R. Winiecki, “A whisper transformer for audio
captioning trained with synthetic captions and transfer learning.” [Online]. Available:
http://arxiv.org/abs/2305.09690

[8] R. Olivier and B. Raj, “There is more than one kind of robustness: Fooling whisper with
adversarial examples.” [Online]. Available: http://arxiv.org/abs/2210.17316

[9] L. R. S. Gris, R. Marcacini, A. C. Junior, E. Casanova, A. Soares, and S. M.
Aluı́sio, “Evaluating OpenAI’s whisper ASR for punctuation prediction and topic
modeling of life histories of the museum of the person.” [Online]. Available:
http://arxiv.org/abs/2305.14580

[10] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A framework
for self-supervised learning of speech representations.” [Online]. Available: http:
//arxiv.org/abs/2006.11477

[11] M. Malik, M. K. Malik, K. Mehmood, and I. Makhdoom, “Automatic speech
recognition: a survey,” vol. 80, no. 6, pp. 9411–9457. [Online]. Available:
http://link.springer.com/10.1007/s11042-020-10073-7

[12] M. Labied, A. Belangour, M. Banane, and A. Erraissi, “An overview of automatic
speech recognition preprocessing techniques,” in 2022 International Conference on
Decision Aid Sciences and Applications (DASA). IEEE, pp. 804–809. [Online]. Available:
https://ieeexplore.ieee.org/document/9765043/

38

https://www.mdpi.com/2076-3417/12/17/8898
https://ieeexplore.ieee.org/document/9536732/
http://link.springer.com/10.1007/978-981-13-6098-5
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2305.09690
http://arxiv.org/abs/2210.17316
http://arxiv.org/abs/2305.14580
http://arxiv.org/abs/2006.11477
http://arxiv.org/abs/2006.11477
http://link.springer.com/10.1007/s11042-020-10073-7
https://ieeexplore.ieee.org/document/9765043/

BIBLIOGRAPHY

[13] A. Keerio, B. K. Mitra, P. Birch, R. Young, and C. Chatwin, “On preprocessing of speech
signals.”

[14] A. Y., K. A., Y. A., and N. Pandya, “Survey paper on different speech
recognition algorithm: Challenges and techniques,” vol. 175, no. 1, pp. 31–
36. [Online]. Available: http://www.ijcaonline.org/archives/volume175/number1/
vadwala-2017-ijca-915472.pdf

[15] M. Labied and A. Belangour, “Automatic speech recognition features extraction
techniques: A multi-criteria comparison,” vol. 12, no. 8. [Online]. Available: http://
thesai.org/Publications/ViewPaper?Volume=12&Issue=8&Code=IJACSA&SerialNo=21

[16] M. B. Akçay and K. Oğuz, “Speech emotion recognition: Emotional models,
databases, features, preprocessing methods, supporting modalities, and classifiers,”
vol. 116, pp. 56–76. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0167639319302262

[17] A. Ivry, B. Berdugo, and I. Cohen, “Voice activity detection for transient noisy
environment based on diffusion nets,” vol. 13, no. 2, pp. 254–264. [Online]. Available:
http://arxiv.org/abs/2106.13763

[18] “Research and development in intelligent systems XXXI: Incorporating applications and
innovations in intelligent systems XXII.” [Online]. Available: https://link.springer.com/
10.1007/978-3-319-12069-0

[19] T. Mishra, A. Ljolje, and M. Gilbert, “Predicting human perceived accuracy
of ASR systems,” in Interspeech 2011. ISCA, pp. 1945–1948. [Online]. Available:
https://www.isca-speech.org/archive/interspeech 2011/mishra11 interspeech.html

[20] R. Errattahi, A. El Hannani, and H. Ouahmane, “Automatic speech recognition
errors detection and correction: A review,” vol. 128, pp. 32–37. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1877050918302187

[21] A. Ali and S. Renals, “Word error rate estimation for speech recognition: e-WER,”
in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers). Association for Computational Linguistics, pp. 20–24. [Online].
Available: https://aclanthology.org/P18-2004

[22] M. Bain, J. Huh, T. Han, and A. Zisserman, “WhisperX: Time-accurate speech
transcription of long-form audio.” [Online]. Available: http://arxiv.org/abs/2303.00747

[23] S.-J. Lee and H.-Y. Kwon, “A preprocessing strategy for denoising of speech data
based on speech segment detection,” vol. 10, no. 20, p. 7385. [Online]. Available:
https://www.mdpi.com/2076-3417/10/20/7385

[24] S. Yadav, P. A. D. Legaspi, M. S. O. Alink, A. B. J. Kokkeler, and B. Nauta,
“Hardware implementations for voice activity detection: Trends, challenges and
outlook,” vol. 70, no. 3, pp. 1083–1096. [Online]. Available: https://ieeexplore.ieee.org/
document/9976339/

[25] N. Usha Rani and P. N. Girija, “Error analysis and improving the speech
recognition accuracy on telugu language,” in Advances in Communication, Network,
and Computing, V. V. Das and J. Stephen, Eds. Springer Berlin Heidelberg, vol.
108, pp. 301–308, series Title: Lecture Notes of the Institute for Computer

39

http://www.ijcaonline.org/archives/volume175/number1/vadwala-2017-ijca-915472.pdf
http://www.ijcaonline.org/archives/volume175/number1/vadwala-2017-ijca-915472.pdf
http://thesai.org/Publications/ViewPaper?Volume=12&Issue=8&Code=IJACSA&SerialNo=21
http://thesai.org/Publications/ViewPaper?Volume=12&Issue=8&Code=IJACSA&SerialNo=21
https://linkinghub.elsevier.com/retrieve/pii/S0167639319302262
https://linkinghub.elsevier.com/retrieve/pii/S0167639319302262
http://arxiv.org/abs/2106.13763
https://link.springer.com/10.1007/978-3-319-12069-0
https://link.springer.com/10.1007/978-3-319-12069-0
https://www.isca-speech.org/archive/interspeech_2011/mishra11_interspeech.html
https://linkinghub.elsevier.com/retrieve/pii/S1877050918302187
https://aclanthology.org/P18-2004
http://arxiv.org/abs/2303.00747
https://www.mdpi.com/2076-3417/10/20/7385
https://ieeexplore.ieee.org/document/9976339/
https://ieeexplore.ieee.org/document/9976339/

BIBLIOGRAPHY

Sciences, Social Informatics and Telecommunications Engineering. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-35615-5 46

[26] V. Pratap, Q. Xu, A. Sriram, G. Synnaeve, and R. Collobert, “Mls: A large-scale multilin-
gual dataset for speech research,” arXiv preprint arXiv:2012.03411, 2020.

[27] R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler, J. Meyer, R. Morais, L. Saunders,
F. M. Tyers, and G. Weber, “Common voice: A massively-multilingual speech corpus,”
arXiv preprint arXiv:1912.06670, 2019.

[28] C. Wang, M. Riviere, A. Lee, A. Wu, C. Talnikar, D. Haziza, M. Williamson, J. Pino,
and E. Dupoux, “Voxpopuli: A large-scale multilingual speech corpus for representation
learning, semi-supervised learning and interpretation,” arXiv preprint arXiv:2101.00390,
2021.

[29] A. Conneau, M. Ma, S. Khanuja, Y. Zhang, V. Axelrod, S. Dalmia, J. Riesa, C. Rivera, and
A. Bapna, “Fleurs: Few-shot learning evaluation of universal representations of speech,”
in 2022 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2023, pp. 798–805.

[30] C. Wang, J. Pino, A. Wu, and J. Gu, “Covost: A diverse multilingual speech-to-text trans-
lation corpus,” arXiv preprint arXiv:2002.01320, 2020.

[31]

[32] H. Bredin, R. Yin, J. M. Coria, G. Gelly, P. Korshunov, M. Lavechin, D. Fustes, H. Titeux,
W. Bouaziz, and M.-P. Gill, “pyannote.audio: neural building blocks for speaker
diarization.” [Online]. Available: http://arxiv.org/abs/1911.01255

[33] A. Sherstinsky, “Fundamentals of recurrent neural network (RNN) and long
short-term memory (LSTM) network,” vol. 404, p. 132306. [Online]. Available:
http://arxiv.org/abs/1808.03314

[34] H. Bredin and A. Laurent, “End-to-end speaker segmentation for overlap-aware
resegmentation.” [Online]. Available: http://arxiv.org/abs/2104.04045

[35] J. Carletta, S. Ashby, S. Bourban, M. Flynn, M. Guillemot, T. Hain, J. Kadlec, V. Karaiskos,
W. Kraaij, M. Kronenthal et al., “The ami meeting corpus: A pre-announcement,” in
International workshop on machine learning for multimodal interaction. Springer, 2005, pp.
28–39.

[36] J. Godfrey and E. Holliman, “Switchboard-1 release 2 ldc97s62,” Linguistic Data Consor-
tium, p. 34, 1993.

[37] F. Hernandez, V. Nguyen, S. Ghannay, N. Tomashenko, and Y. Esteve, “Ted-lium 3: Twice
as much data and corpus repartition for experiments on speaker adaptation,” in Speech
and Computer: 20th International Conference, SPECOM 2018, Leipzig, Germany, September
18–22, 2018, Proceedings 20. Springer, 2018, pp. 198–208.

[38] I. Schuurman, M. Schouppe, H. Hoekstra, and T. Van der Wouden, “Cgn, an annotated
corpus of spoken dutch,” in Proceedings of 4th International Workshop on Linguistically In-
terpreted Corpora (LINC-03) at EACL 2003, 2003.

[39] D. Van Der Vloed, J. Bouten, and D. Van Leeuwen, “NFI-FRITS: A forensic
speaker recognition database and some first experiments,” in The Speaker and
Language Recognition Workshop (Odyssey 2014). ISCA, pp. 6–13. [Online]. Available:
https://www.isca-speech.org/archive/odyssey 2014/vandervloed14 odyssey.html

40

http://link.springer.com/10.1007/978-3-642-35615-5_46
http://arxiv.org/abs/1911.01255
http://arxiv.org/abs/1808.03314
http://arxiv.org/abs/2104.04045
https://www.isca-speech.org/archive/odyssey_2014/vandervloed14_odyssey.html

BIBLIOGRAPHY

[40] N. Oostdijk, “Het corpus gesproken nederlands.”

[41] W. Ropke, “Training a speech-to-text model for dutch on the corpus gesproken neder-
lands ,.”

[42] N. Oostdijk, “The spoken dutch corpus. overview and first evaluation.”

[43] W. Heeringa, “Measuring dialect pronunciation differences using levenshtein distance.”

[44] R. Haldar and D. Mukhopadhyay, “Levenshtein distance technique in dictionary lookup
methods: An improved approach.” [Online]. Available: http://arxiv.org/abs/1101.1232

[45] H. Bredin, “pyannote.metrics: A toolkit for reproducible evaluation, diagnostic,
and error analysis of speaker diarization systems,” in Interspeech 2017. ISCA, pp.
3587–3591. [Online]. Available: https://www.isca-speech.org/archive/interspeech 2017/
bredin17 interspeech.html

41

http://arxiv.org/abs/1101.1232
https://www.isca-speech.org/archive/interspeech_2017/bredin17_interspeech.html
https://www.isca-speech.org/archive/interspeech_2017/bredin17_interspeech.html

A R E S U LT S E X P E R I M E N T S C G N C O M P C

Table A.0.1: Performance metrics CGN Comp C, tuning the threshold values,
condition on previous text for Faster-Whisper and WhisperX set to True

CGN Comp C

Model Threshold WER Precision Recall F1 RTF

Faster-Whisper 0.20 0.322 0.839 0.695 0.760 0.082

0.25 0.320 0.838 0.697 0.760 0.083

0.30 0.321 0.838 0.696 0.760 0.083

0.35 0.321 0.838 0.696 0.760 0.083

0.40 0.320 0.839 0.697 0.761 0.083

0.45 0.323 0.838 0.694 0.759 0.083

0.50 0.324 0.838 0.693 0.758 0.084

0.55 0.324 0.838 0.694 0.758 0.085

0.60 0.324 0.838 0.694 0.758 0.084

0.65 0.325 0.838 0.692 0.757 0.085

0.70 0.325 0.840 0.692 0.758 0.082

0.75 0.326 0.839 0.691 0.757 0.083

0.80 0.329 0.838 0.688 0.755 0.085

WhisperX 0.20 0.329 0.848 0.682 0.755 0.047

0.25 0.328 0.848 0.682 0.755 0.047

0.30 0.329 0.848 0.682 0.755 0.047

0.35 0.328 0.848 0.683 0.756 0.048

0.40 0.327 0.848 0.684 0.757 0.048

0.45 0.327 0.848 0.684 0.757 0.048

0.50 0.327 0.848 0.684 0.757 0.047

0.55 0.326 0.848 0.685 0.757 0.047

0.60 0.326 0.848 0.684 0.757 0.047

0.65 0.326 0.849 0.685 0.757 0.047

0.70 0.327 0.849 0.684 0.757 0.047

0.75 0.327 0.848 0.684 0.757 0.047

0.80 0.327 0.848 0.684 0.756 0.047

42

B R E S U LT S E X P E R I M E N T S C G N C O M P G

Table B.0.1: Performance metrics CGN Comp G, tuning the threshold values,
condition on previous text for Faster-Whisper and WhisperX set to True

CGN Comp G

Model Threshold WER Precision Recall F1 RTF

Faster-Whisper 0.20 0.172 0.922 0.837 0.877 0.077

0.25 0.172 0.922 0.836 0.877 0.087

0.30 0.174 0.921 0.835 0.876 0.088

0.35 0.172 0.922 0.836 0.876 0.088

0.40 0.173 0.922 0.836 0.876 0.088

0.45 0.172 0.922 0.836 0.877 0.088

0.50 0.173 0.922 0.836 0.876 0.087

0.55 0.172 0.922 0.836 0.877 0.087

0.60 0.173 0.921 0.835 0.876 0.087

0.65 0.173 0.921 0.835 0.876 0.087

0.70 0.173 0.921 0.836 0.876 0.088

0.75 0.173 0.921 0.835 0.876 0.086

0.80 0.174 0.922 0.835 0.876 0.087

WhisperX 0.20 0.171 0.922 0.836 0.877 0.047

0.25 0.171 0.923 0.836 0.877 0.047

0.30 0.172 0.922 0.836 0.876 0.046

0.35 0.172 0.922 0.836 0.876 0.046

0.40 0.172 0.922 0.835 0.876 0.046

0.45 0.172 0.922 0.835 0.876 0.046

0.50 0.172 0.923 0.836 0.877 0.046

0.55 0.172 0.922 0.835 0.876 0.046

0.60 0.172 0.923 0.836 0.876 0.046

0.65 0.172 0.923 0.835 0.876 0.046

0.70 0.173 0.923 0.835 0.876 0.046

0.75 0.173 0.922 0.834 0.876 0.047

0.80 0.174 0.923 0.834 0.875 0.046

43

C R E S U LT S E X P E R I M E N T S N F I - F R I T S

Table C.0.1: Performance metrics NFI-FRITS, tuning the threshold values,
condition on previous text for Faster-Whisper and WhisperX set to True

NFI-FRITS

Model Threshold WER Precision Recall F1 RTF

Faster-Whisper 0.20 0.504 0.654 0.606 0.624 0.092

0.25 0.497 0.658 0.616 0.632 0.086

0.30 0.502 0.656 0.610 0.628 0.085

0.35 0.496 0.658 0.611 0.629 0.087

0.40 0.487 0.666 0.616 0.635 0.086

0.45 0.485 0.669 0.624 0.642 0.085

0.50 0.483 0.666 0.620 0.639 0.083

0.55 0.488 0.668 0.618 0.637 0.080

0.60 0.485 0.671 0.620 0.640 0.077

0.65 0.483 0.672 0.618 0.639 0.076

0.70 0.475 0.681 0.623 0.646 0.075

0.75 0.469 0.678 0.625 0.647 0.075

0.80 0.476 0.678 0.615 0.640 0.076

WhisperX 0.20 0.447 0.695 0.642 0.665 0.041

0.25 0.445 0.696 0.644 0.667 0.040

0.30 0.443 0.698 0.641 0.666 0.040

0.35 0.443 0.698 0.644 0.668 0.041

0.40 0.443 0.696 0.645 0.668 0.040

0.45 0.443 0.697 0.643 0.667 0.040

0.50 0.443 0.697 0.646 0.668 0.040

0.55 0.443 0.698 0.646 0.669 0.040

0.60 0.443 0.697 0.646 0.669 0.040

0.65 0.444 0.698 0.646 0.668 0.040

0.70 0.443 0.700 0.645 0.669 0.040

0.75 0.443 0.700 0.642 0.668 0.040

0.80 0.443 0.700 0.643 0.668 0.040

44

D R E S U LT S E X P E R I M E N T S VA D M O D E L S
C G N C O M P C

Table D.0.1: Performance metrics CGN Comp C, tuning the threshold values in Silero

VAD and pyannote VAD. *DSR: Detected Speech Ratio, calculated by the
predicted segments containing speech, divided by the total speech in audio

file

CGN Comp C

Model Threshold Precision Recall F1 DSR*

Silero VAD 0.20 0.890 0.999 0.940 1.128

0.25 0.891 0.998 0.940 1.127

0.30 0.891 0.998 0.940 1.126

0.35 0.891 0.997 0.940 1.125

0.40 0.891 0.997 0.940 1.124

0.45 0.892 0.996 0.940 1.123

0.50 0.892 0.995 0.940 1.121

0.55 0.892 0.994 0.939 1.120

0.60 0.893 0.993 0.939 1.118

0.65 0.893 0.992 0.938 1.116

0.70 0.894 0.990 0.938 1.113

0.75 0.894 0.987 0.937 1.109

0.80 0.895 0.983 0.935 1.104

Pyannote VAD 0.20 0.955 0.982 0.967 1.030

0.25 0.962 0.977 0.969 1.016

0.30 0.968 0.972 0.969 1.005

0.35 0.972 0.967 0.969 0.995

0.40 0.976 0.962 0.968 0.986

0.45 0.979 0.957 0.967 0.978

0.50 0.981 0.952 0.965 0.971

0.55 0.983 0.946 0.964 0.963

0.60 0.985 0.941 0.961 0.956

0.65 0.986 0.935 0.959 0.948

0.70 0.988 0.928 0.956 0.939

0.75 0.989 0.920 0.952 0.930

0.80 0.991 0.910 0.948 0.919

45

E R E S U LT S E X P E R I M E N T S VA D M O D E L S C G N
C O M P G

Table E.0.1: Performance metrics CGN Comp G, tuning the threshold values in Silero

VAD and pyannote VAD. *DSR: Detected Speech Ratio, calculated by the
predicted segments containing speech, divided by the total speech in audio

file

CGN Comp G

Model Threshold Precision Recall F1 DSR*

Silero VAD 0.20 0.919 0.998 0.956 1.089

0.25 0.921 0.997 0.957 1.086

0.30 0.923 0.996 0.957 1.084

0.35 0.924 0.996 0.958 1.082

0.40 0.924 0.996 0.958 1.081

0.45 0.925 0.996 0.958 1.080

0.50 0.925 0.996 0.958 1.080

0.55 0.926 0.995 0.958 1.079

0.60 0.926 0.995 0.958 1.078

0.65 0.927 0.995 0.959 1.077

0.70 0.927 0.994 0.959 1.076

0.75 0.928 0.994 0.959 1.074

0.80 0.928 0.993 0.958 1.073

Pyannote VAD 0.20 0.958 0.972 0.963 1.018

0.25 0.961 0.966 0.962 1.009

0.30 0.963 0.961 0.961 1.001

0.35 0.965 0.957 0.960 0.994

0.40 0.967 0.953 0.958 0.988

0.45 0.969 0.949 0.957 0.982

0.50 0.971 0.944 0.956 0.976

0.55 0.972 0.940 0.954 0.970

0.60 0.973 0.936 0.952 0.964

0.65 0.975 0.931 0.950 0.957

0.70 0.976 0.926 0.948 0.950

0.75 0.978 0.920 0.946 0.942

0.80 0.980 0.912 0.942 0.933

46

F R E S U LT S E X P E R I M E N T S VA D M O D E L S
N F I - F R I T S

Table F.0.1: Performance metrics NFI-FRITS, tuning the threshold values in Silero VAD
and pyannote VAD. *DSR: Detected Speech Ratio, calculated by the predicted

segments containing speech, divided by the total speech in audio file

NFI-FRITS

Model Threshold Precision Recall F1 DSR*

Silero VAD 0.20 0.718 0.996 0.829 1.449

0.25 0.722 0.995 0.831 1.436

0.30 0.726 0.994 0.833 1.427

0.35 0.728 0.993 0.835 1.419

0.40 0.731 0.992 0.836 1.412

0.45 0.734 0.991 0.837 1.404

0.50 0.737 0.990 0.839 1.395

0.55 0.740 0.987 0.841 1.384

0.60 0.743 0.985 0.842 1.373

0.65 0.747 0.982 0.843 1.361

0.70 0.751 0.978 0.845 1.347

0.75 0.756 0.973 0.846 1.330

0.80 0.761 0.964 0.845 1.307

Pyannote VAD 0.20 0.848 0.975 0.903 1.183

0.25 0.867 0.968 0.911 1.145

0.30 0.883 0.961 0.917 1.115

0.35 0.896 0.954 0.921 1.089

0.40 0.905 0.947 0.923 1.069

0.45 0.913 0.940 0.924 1.051

0.50 0.920 0.933 0.924 1.035

0.55 0.926 0.926 0.923 1.020

0.60 0.931 0.918 0.922 1.005

0.65 0.937 0.910 0.921 0.990

0.70 0.942 0.901 0.919 0.975

0.75 0.947 0.890 0.915 0.958

0.80 0.952 0.878 0.911 0.939

47

	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Research Objectives
	1.2 Thesis Outline

	2 Background & Related Work
	2.1 ASR systems
	2.2 Voice Activity Detection
	2.3 Evaluation Metrics
	2.4 Literature Review
	2.4.1 Whisper
	2.4.2 Faster-Whisper and Silero VAD
	2.4.3 WhisperX and PyAnnote VAD

	3 Data
	3.1 Data Description
	3.2 Data Collection Methods
	3.3 Data Pre-processing and Handling
	3.3.1 Audio File Conversion and Feature Extraction
	3.3.2 Data Cleaning
	3.3.3 Data Transformation
	3.3.4 Ethics and Privacy

	4 Methodology
	4.1 General research setup
	4.2 Experiments
	4.2.1 Whisper, Faster-Whisper, and WhisperX
	4.2.2 Silero and PyAnnote

	4.3 Evaluation metrics implementation

	5 Performance Results
	5.1 Results on CGN Component C
	5.2 Results on CGN Component G
	5.3 Results on NFI-FRITS
	5.4 Results of threshold tuning
	5.5 Results Silero and Pyannote

	6 Discussion
	6.1 Performance of Whisper, Faster-Whisper, and WhisperX on Word Error Rate
	6.2 Performance of Whisper, Faster-Whisper, and WhisperX on precision, recall, and F1-score
	6.3 Performance of Whisper, Faster-Whisper, and WhisperX on Real-Time Factor
	6.4 The effects of Threshold tuning within Faster-Whisper and WhisperX
	6.5 The effects of Threshold tuning in Silero VAD and PyAnnote VAD
	6.6 Shortcomings and Limitations

	7 Conclusion
	7.1 Conclusion
	7.2 Recommendations for future work

	Bibliography
	A Results Experiments CGN Comp C
	B Results Experiments CGN Comp G
	C Results Experiments NFI-FRITS
	D Results Experiments VAD models CGN Comp C
	E Results Experiments VAD models CGN Comp G
	F Results Experiments VAD models NFI-FRITS

