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ABSTRACT

This study investigates the application of Long Short-Term Memory (LSTM) networks to

predict call waiting times at General Practitioner (GP) posts in the Netherlands, a critical facet of

healthcare service quality and patient experience. The LSTM model showed a better

performance over ARIMAX forecasting methods (Barteková, 2023), exhibiting a Mean Absolute

Error (MAE) as low as 1.76 and a Root Mean Squared Error (RMSE) of 2.82 for one-day-ahead

forecasts.

The findings underline the promise of LSTM networks in healthcare applications.

Notably, the developed LSTM model could be integrated into web-based platforms to facilitate

optimal healthcare resource allocation, thereby enhancing service quality and patient satisfaction.

Furthermore, these results inspire confidence in the potential of deep learning methods to address

complex forecasting problems in a variety of fields.
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1. Introduction

Waiting to receive consultation from healthcare professionals can be quite stressful,

especially in situations when time plays a vital role in urgent cases. In addition, a survey

conducted by Hill and Joonas, involving 200 patients, revealed that the length of the wait time

significantly influences patients' perceptions of the care quality and overall likeability of the

healthcare provider’s office (Hill & Joonas, 2006). Further study shows that long wait time not

only frustrates the patients but also decreases their personal productivity (Oostrom, Einav, &

Finkelstein, 2017). Along the same line, another researcher sampled 5030 patients and measured

the patient satisfaction ratings in the US and found that the “longer waiting times were associated

with lower patient satisfaction (Anderson, Camacho, & Balkrishnan, 2007). Given these factors,

having accurate wait time estimations becomes critical. With the wait time prediction, healthcare

providers can proactively manage patient traffic and coordinate staff schedules. Patients,

concurrently, can utilize the information to strategically plan their visits ensuring the healthcare

resources are more available for genuine emergencies. Forecasting wait time predictions serves

the interests for both the healthcare providers and patients. By setting better expectations and

managing potential wait times, healthcare providers can enhance patient satisfaction, improve

overall healthcare experiences, and ultimately contribute to better patient outcomes.

In the Netherlands, the General Practitioner (GP), is usually the first point of contact

when someone has any health concerns before going to any specialized medical care (Schellevis,

Westert et al.). GP plays a crucial role in the Dutch health-care system. Although not mandatory,

the majority of citizens in the Netherlands are registered with a GP and benefit from the services

provided from them. They ensure quality care for the general public and are expected to be easily

accessible for the patients (Tikkanen et al., 2020). Outside of regular GP office hours, the “GP

posts'' are established by a group of GPs to serve the local communities. They aim to provide

after-hours care, specifically from 5 pm to 8 am during weekdays and full 24 hours during the

weekends (Uden et al., 2006). A single regional telephone number to contact the GP is available

for the public. Patients are strongly advised to phone the GP posts prior to visiting in person.

Patients who call the GP posts undergo a triage process facilitated by triage nurses (Uden et al.,

2006). This process adheres to a protocol established by the Dutch Association of General

Practitioners and is conducted under the supervision of a GP (Kool, Homberg, & Kamphuis,
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2008). As such, it is common for patients to experience some wait time before they are being

triaged and further consulted by a triage nurse for their symptoms.

Waiting time holds varying definitions across different contexts. In healthcare, it typically

refers to the duration from when a health issue is first identified to when it is subsequently

treated (Fogarty & Cronin, 2008). However, within a call center setting, "waiting time"

represents the period before an incoming call is answered (Zhan & Ward, 2014). The focus of

this thesis lies in examining the call waiting time related to the GP post in the Netherlands. Here,

a patient's phone interaction can be broken down into three phases: (I) the span from when the

patient makes the call until it is picked up, (II) the point from which the patient is welcomed and

connected to the appropriate triage nurse, and (III) the actual consultation period with the nurse.

The primary goal of this research is to predict the duration of the first phase: the waiting time

from when a patient places a call until it is answered.

Currently, a considerable number of academic writings exist on wait time predictions at

one stop service providers such as banks or post offices using advanced analytics and machine

learning algorithms (Sanit-in & Saikaew, 2019). In a study conducted by Kyritsis & Deriaz

(2019), they investigated the application of machine learning in banks to predict client waiting

times, and its generalization in various industries. Furthermore, in the healthcare domain, the

scholarly community tends to focus on exploring predictive analysis for emergency rooms (Arha,

2017) and outpatient visits (Lin et al., 2019). Several studies also emphasized on identifying the

main cause of the wait time and potential interventions to address them (Park & Kwag, 2009).

However, research directly related to the wait time predictions for the triage call system in

General Practitioner (GP) posts or equivalent primary care settings are relatively sparse. We hope

our work can contribute to this under explored area and bring insights for future work.

1.1 Research Question

Traditionally, queueing theory has been the go-to model for predicting wait times across

various settings. This mathematical model is, however, anchored on several specific

assumptions, such as the statistical distributions of arrival and service mechanisms, and the

constant mean arrival rate over time (Adan & Resing, 2002). While these assumptions can

simplify the modeling process, they may not always be reflective of real-world conditions, which

often possess a more complex dynamism. As a potential solution, Kyritsis & Deriaz (2019)
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demonstrated the feasibility of machine learning as a practical substitute for queueing theory in

estimating waiting times. This research underpins a shift towards more flexible methodologies.

Time series as defined by William Wei (2013), is a sequence of data points collected over

time, and time series analysis involves analyzing these data points focusing on either their

description or their potential for forecasting and inferences (Wei, 2013). Our study aims to utilize

historical data for the prediction of future wait times, a task inherently based on a chronological

sequence. Thus, we delve into state-of-the-art machine learning algorithms for time series

analysis. As discussed in the research by De Gooijer and Hyndman (2006), the time series

analysis encompasses a wide range of techniques, from linear approaches like ARIMA to

nonlinear models such as the artificial neural networks (ANNs). While my colleague Barteková

(2023) investigates the use of linear ARIMA models in predicting wait times on calls at the GP

post, this study focuses on the application of the nonlinear approach which is expected to be

advantageous when the data has an unknown functional relationship and are difficult to fit

(Darbellay & Slama, 2000). Hence, we hypothesize that using the neural network approach may

prove effective in predicting future wait times based on historical data. Given these

considerations, we intend to compare the effectiveness of the linear regression prediction model,

such as ARIMA (Barteková, 2023), with Recurrent Neural Network algorithms like LSTM.

Thus, the focus of our inquiry narrows down to the following pivotal research question:

● Can the wait time on calls at the GP post be predicted using a LSTM model?

In translating our research question into a data science context, we approached the task

by identifying which historical variables from the GP post call data can effectively be used to

train a LSTM model, and then determining if the model can produce accurate forecasts for future

wait times when tested on unseen data.

This thesis is organized into six main sections. The first section covers the context of the

study and the research question. Secondly, we will review relevant academic literature, focusing

on predictive analysis in healthcare, and the Long Short-Term Memory (LSTM) networks as one

type of the Recurrent Neural Network (RNN). The third section describes the data, and the fourth

section describes the method used including data preprocessing and fine-tuning of the model. In

the fifth section, we present the results with performance metrics and compare findings. The final

section provides a discussion of these results, highlighting their implications and limitations.
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In adherence to ethical guidelines and to protect the privacy of the patients, all data used in

this research do not contain any Personally Identifiable Information (PII) or Sensitive Personal

Identifiable Information (SPII). The GP post remains anonymous, and access to the predictive

modeling code is restricted and remains on the server of the host company to comply with data

security and confidentiality protocols.

2. Literature Review
In this section, we investigate several key areas that formed the backbone of our case

study: predicting call wait times for a GP Post in the Netherlands. Given that our case sits in the

intersection of wait time predictions in healthcare and Recurrent Neural Networks (RNNs),

particularly Long Short-Term Memory (LSTM) networks, we will further look into the following

topics. First, we examine the role and importance of predictive analysis in healthcare,

considering its applications on both patient outcomes and system efficiency. Next, we focus on

the specific domain of wait time predictions, highlighting the challenges and opportunities

therein. We then offer a discussion on RNNs and their effectiveness in sequence prediction

problems. Lastly, we will give an overview of the LSTM networks, a special type of RNN. By

exploring these topics, we aim to provide a general overview of the current state of the art

academic work and its relevance to our case.

2.1 Predictive Analysis in Healthcare and Wait Time Predictions

From student performance prediction (Albreiki et al., 2021) to demand forecasting for

inventory planning (Tiwari et al.,2018), numerous areas have extensively leveraged the

application of predictive analysis. As defined by Mishra & Silakari (2012), predictive analysis

uses diverse statistical and analytical methodologies to construct models that can anticipate

future events based on past data. In healthcare, the use of predictive analysis spans a range of use

cases, from detecting brain tumors (Sapra et al., 2013) to assessing stroke risks associated with

type 2 diabetes (Kothari et al., 2002). Beyond its direct applications in patient diagnosis and

treatment, some research has also sought to enhance healthcare resource allocations to optimize

patient experiences (Bates et al., 2018). For example, a bed management prediction model was

developed by Kumar et al (2008) which helped the hospital planners to better anticipate bed

demand based on historical bed occupancy data. Further, in recent years, machine learning has

emerged as a powerful tool for modeling and predicting wait times in emergency rooms

7



(Gonçalves et al., 2019; Ameur et al., 2023), and outpatient clinics (Joseph et al., 2022; Li et al.,

2021). Lin et al. (2021) utilized the data collected from a pediatric ophthalmology outpatient

clinic and used several machine learning models, including random forest, elastic net, gradient

boosting machine, support vector machine to predict wait time. Their study demonstrated the

possibility to use machine learning models for improved predictions in outpatient clinics.

Given our case for GP posts is more similar to emergency departments due to the “after

hours operating" nature, we took a closer look at urgent care wait time prediction. Kuo et al.

(2020) investigated four machine learning algorithms for emergency department wait time

prediction. The study revealed that these algorithms, compared to a baseline multiple linear

regression model, reduced the mean square error by approximately 20%. In a similar context,

Gonçalves et al. (2018) conducted a study using the Random Forest algorithm to predict the

emergency waiting times, utilizing data from a Portuguese hospital and concluded on the high

effectiveness of the algorithm.

2.2 Recurrent Neural Network and Long Short-Term Memory (LSTM) models

2.2.1 RNN

While traditional machine learning models have shown promising results on wait time

predictions, the recent advancements in deep learning have shown to substantially improve

prediction modelings. In a systematic review conducted by with Hewamalage el at. (2021), they

confirmed that Recurrent Neural Network (RNNs) outperforms statistical benchmarks in many

forecasting situations and a great option for practitioners. In the context of wait time prediction,

Kyritsis & Deriaz (2019) developed a fully connected neural network that achieved a mean

absolute error of 3.35 minutes for wait time predictions and confirmed that such algorithm can be

used as an alternative to queueing theory for wait time prediction. In addition, Cheng & Kuo

(2020) utilized Long Short-Term Memory (LSTM) recurrent neural networks to predict

Emergency Department wait times predictions and found the model reduced the average mean

error by 3 minutes compared to a linear regression model.

As illustrated by LeCun, Bengio, and Hinton (2015) with their noteworthy publication on

deep learning, RNNs can be conceptualized as a special subclass of neural network with

feedback loop-like recurrent units within its hidden states. The recurrent nature allows the RNN

structure to be more suitable for sequential data.
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Figure 1 - taken from Deep Learning by LeCun, Bengio, and Hinton (2015).

X is the input; S is the hidden state and O is the output. t-1, t, t+1 are timestamps denoting the sequence. Xt is the

input at time t, and Ot is the output at time t. St can be updated by all the information combined from the previous

layer St-1 and Xt of the current layer.

When we unfold the RNN, it can be taken as a deep forward neural network. The St can

be calculated by applying f() on the weighted sum of these inputs noted as f(WSt-1+UXt). The f()

is known as the activation function. Common activation functions are Relu, Sigmoid(σ), and

tangent hyperbolic function (Sharma et al., 2017). The values of W, U and V are weights and

biases shared across all layers and they are iteratively optimized and learned using the gradient

backpropagation method (Narendra & Parthasarathy, 1991). However, RNNs have been

historically noted for their issues with gradient explosion and vanishing. In other words, as the

network increases in time steps, the gradients tend to either expand excessively or diminish

substantially through training (Bengio et al. 1994)

2.2.2 LSTM

The Long Short-Term Memory (LSTM) model, an evolution of Recurrent Neural

Networks (RNNs), was designed to handle long-term dependencies and address the gradient

problems inherent in RNNs (Hochreiter & Schmidhuber, 1997). In addition to a hidden state (ht

in Figure 2 below), LSTMs introduce a cell state (Ct) for managing and preserving long term

memory throughout the learning process. LSTM also uses the gate mechanisms to decide which

information to retain or discard. (ft, it and ot in Figure 2)
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Figure 2: LSTM Unit (Ingolfsson, 2021)

The hidden state from the previous timestamp is ht-1 and the Xt from the current timestamp are

combined before passing through gates with activation functions noted as Sigmoid(σ) and the

tangent hyperbolic function (tanh) and with various weight (w) and bias (b) terms. They are

calculated as:

Forget Gate (ft): this gate operates based on the sigmoid function which ranges between 0

to 1. A sigmoid output near 1 signifies high retention of information, while a value close to 0

implies information should be discarded from the internal cell state (Ĉt).

Input gate(it ): Similarly, this gate controls what information should be added to Ĉt with

the sigmoid function, but with a different set of Wi and Bi.

The internal cell state (Ĉt), often referred to as the "candidate gate," uses the tanh

function to normalize the combined data. This data consists of the previous combined hidden

state (ht-1) and the current input Xt data adjusted by corresponding weights and bias terms. The

output from this process, due to the tanh function, falls between -1 and 1 and it represents the

potential new information that could be added to the cell state. The extent of this addition is

determined by the output from the input gate (it ) by the point wise multiplication (red ⊗ in Figure

2)

The latest cell state Ct is updated from a combination of the previous cell state, Ct-1,

regulated by the output from the forget gate (ft) , and the product of the input gate (it ) with the

previous cell state (Ct-1). It allows the model to determine what information to keep from the

prior cell and what new information to be integrated from the current input.
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Output Gate (ot ): It goes through a similar mechanism with the sigmoid activation

function and determines much information to pass down to the hidden state (ht).

After the latest cell state Ct passes through the tanh activation function and multiplied by

the results from Ot, the hidden state (ht) is updated.

Figure 3 shows how the aforementioned LSTM unit is chained together in the network

sequences compared to the plain RNN structure.

Figure 3 LSTM and RNN comparison (Zhang et al., 2020)

3. Data Description
The data we used in this study was collected from a local GP post office, and it consisted

of two primary datasets - 'shift data' and 'call data'. The 'shift data' provided information about

shift types and their respective start and end times over a few months. The 'call data', covering a

longer duration, recorded various metrics, including line type (normal or emergency), call start

and end times, answer time, wait time, call length, and urgency level as determined by the

triagist. Some records in the 'call data' file contained missing values in the 'wait time' column.

Additionally, an external 'calendar data' was also used, providing detailed time

information (month, day, hour, second), classification of days into weekdays or weekends, and

indication of holidays.
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4. Method

4.1 Data Preparation and Feature Selection

4.1.1 Data Preprocessing

We enhanced the dataset by adding the calendar data with the intention to build a

multivariate model (Barteková, 2023). This strategy has been suggested for improving model

prediction accuracy by Zhao et al., 2022 for their research on predicting hospital visits with deep

learning models. Furthermore, for the practical application of our LSTM model, we mapped the

shift schedule data onto the call data based on the start and end time intervals derived from the

shift table. The merged dataset resulted in the addition of a "Number of Shifts" variable,

reflecting the number of shifts per hour for overlapping records.

In our approach to handle missing values for the “wait time” column (Barteková, 2023),

we first derived an estimated 'wait time' from the difference between the 'start call' and 'call

answered' columns, utilizing this estimate to fill in the missing records. Subsequently, we

compared this estimated 'wait time' with the recorded 'wait time' to compute the “delay”. After

calculating the average delay value, we adjusted our initial estimates for the missing 'wait time'

entries by this average delay, thereby refining our imputation process.

In addition, we identified any wait time values that were less than 1 second or exceeded 2

hours as outliers (Barteková, 2023). Given that these outliers did not indicate any underlying

phenomena or provide additional insights that would be lost upon their removal, we decided to

exclude them from our dataset.

Furthermore, we utilized 'start_call' as the foundation for our timestamps. However,

considering these timestamps merely marked the occurrence of random incoming calls, we

adjusted them to an hourly basis (Barteková, 2023). This adjustment was not only integral to

facilitating model building and training, but also crucial in making the prediction outcomes more

meaningful and interpretable for end users.

After these preprocessing steps, we conducted some exploratory analysis to understand

the characteristics and patterns in our processed dataset better. Details of this exploratory

analysis can be found in the appendix (Fig 10-12).

4.1.2 Feature Engineering
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Feature engineering, as outlined by Verdonck et al. (2021), is an indispensable process in

machine learning that deals with transforming raw data into a format that is both comprehensible

and actionable for algorithms. It involves creating insightful features from raw variables that can

better expose underlying patterns, thus enhancing the algorithm's predictive accuracy and

interpretability.

Recognizing that the GP post only operates during specific hours and days, we created an

'open' variable (Barteková, 2023) that indicates whether the post is open or closed at a particular

hour. To ensure the completeness of our time series data, we filled in the gaps in the timestamps

for these hours when the GP post is closed, resulting in a record for every hour from March 1,

2023, to June 1, 2023.This additional feature provides contextual information that can help

improve our model's understanding and prediction of the data.

Furthermore, to enhance data comprehension and representation, we converted the wait

time from seconds to minutes. As a result of these feature engineering steps, we obtained a clean

dataframe with 2232 records ready for model training.

The preprocessing and feature engineering stages of this research were significantly

contributed by my colleague, Katarína Barteková. Her extensive work, including parallel

research on a family of ARIMAX models (Barteková, 2023), played a crucial role in shaping our

approach.

4.1.3 Data Split

The final dataset was then divided into training, validation, and testing sets. Specifically,

as shown in figure 5, we allocated 55% of the data for model training, 10% for model validation

during the training process, and the remaining 35% for final model evaluation. This rigorous

preprocessing approach ensured that our LSTM model was trained on a robust, high-quality

dataset, which ultimately enhances the reliability and accuracy of its predictions.

Figure 4: Distribution of wait time length, represented in minutes, per hourly interval highlighting the data split.
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4.2 Model Development

4.2.1 Model Architecture

Guided by the findings from a study conducted by Yadav, A., Jha, C. K., & Sharan, A.

(2020), which experimented with one to seven hidden layers for LSTM models, we opted for a

single-layer architecture for our model. Yadav et al. found that a single hidden layer is generally

sufficient, with additional layers needed only for exceptionally complex problems. Considering

the nature of our dataset and the task at hand, a one-layer architecture seemed fitting for our

study. The architecture of our LSTM model is described as follows:

● The input layer accepts a sequence of 5 time steps back from the past, each with 7

features. These 7 features were selected based on their relevance to wait time and the

domain knowledge provided by the host company. These 7 features include the average

hourly wait time in minutes, hour of the day, day of the week, the season, whether it’s a

holiday, whether the post office is open and the number of shifts scheduled for the hour.

A detailed description of each can be found in the appendix (Table3).

● The one hidden LSTM layer has 50 units, also known as “neurons” that help capture

and store the contextual information from the sequence data for the LSTM layer.

● The output layer has one neuron which provides the final output indicating the predicted

average waiting time for that hourly interval.

4.2.2 Evaluation Metrics

Botchkarev (2018) reviewed the performance metrics in machine learning regression and

forecasting in the past 25 years and highlighted the predominance of Mean Square Error (MSE),

Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute

Percentage Error (MAPE) metrics being the most popular. Given that our predicted outcomes

will contain values that are zero or near-zero, leading to infinitely large MAPE, we chose to

exclude it from our analysis. Instead, we chose MSE as our model's loss function, which is

highly sensitive to large errors and effectively penalizes and reduces them during training.

Additionally, we used RMSE and MAE for performance evaluation. These metrics provide

critical insights into the average magnitude of errors and are expressed in the same units as our

target variable. Despite the availability of numerous metrics, our decision to use these three is
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justified by their widespread use in the field and their unique ability to provide better insight into

prediction accuracy.

● MSE: the average of squared difference between the predicted ŷi and actual values yi
(Marmolin, 1986)

● RMSE: the square root of the MSE (Willmott & Matsuura, 2005)

● MAE: the average of the absolute difference between model prediction yi and actual
value xi (Willmott & Matsuura, 2005)

4.2.3 Hyperparameter Tuning

The model's hyperparameters were optimized using a random search of the Keras Tuner

library. This process involved testing randomly selected hyperparameter combinations and

evaluating them based on the model’s loss function (Bakhashwain & Sagheer, 2021).

The learning rate and number of units (“neurons”) in each layer are crucial

hyperparameters in training the neural network. The learning rate determines how much the

weights are updated during each iteration of training. Too small can make the convergence too

slow while too large can overshoot the optimal values, leading to the divergent training (Smith,

2017).

In their work, Siami-Namini, Tavakoli, & Namin (2018) define an epoch as the entire

iteration through a given dataset for training. This process involves adjusting the model's weights

to improve prediction accuracy and minimize cost, and is repeated multiple times. We ran our

LSTM model for 50 epochs in search of the optimal combination of learning rate and units, with

the aim of achieving the smallest MSE. The selected combination was then utilized for the final

model construction. Figure 5 displays a scatter plot of the tuning process outcomes for the top 20
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trials. A more detailed summary of the tuning results can be found in the appendix (Table 4).

Figure 5 Hyperparameter Tuning Results Visualization

4.2.4 Model Evaluation

In this subsection, we evaluate the performance of our model using two key statistical

metrics, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). The results from

this evaluation, as well as our interpretations of these results, are detailed here.

The LSTM model's performance was assessed using the test dataset, which comprised

35% of the total data obtained from the data splitting process. The test data was hidden during

model training thus serves as a good indicator of the model’s generalization capabilities. The

resulting MSE from the loss function is 14.04, with an MAE of 2.19 and RMSE of 3.75. Given

our target outcome is measured in minutes, these values are represented with two decimal places

for practical significance. This level of precision provides ample detail for our purposes while

ensuring the results remain meaningful and easy to interpret.

Figure 6 presents a comparison of the predicted hourly wait times and actual values in the test dataset.
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5. Results and Discussion

5.1 Answering the Research Question

Our LSTM model with a single layer demonstrated an effective performance in

predicting the call wait time at the GP post. The model exhibited a significant ability to capture

the inherent complexity and temporal dependencies within the data. These findings indicate that

the LSTM model is a promising deep learning approach for forecasting future wait times,

offering practical implementation potential.

5.2 Results and Discussions

Our models, designed to predict wait times one day, one week, and one month in

advance, aimed to support efficient staff scheduling at the GP post. These forecasting scenarios

were simulated and evaluated against actual data up until June 1, 2023. For the one-day-ahead

prediction, the model was trained with data up to 24 hours prior to June 1. Similarly, for a

week-ahead forecast, the model was trained with data from 168 hours (24 hours * 7 days) prior,

and for the one-month-ahead prediction, data from 730 hours (24 hours * 30 days) back were

used.

The performance of each scenario, evaluated using Mean Absolute Error (MAE) and

Root Mean Squared Error (RMSE), is summarized in the Table1 below:

Table 1 showing the performance metrics of each prediction

Figure 7 - One Day into the Future
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Figure 8 - One Week into the Future

Figure 9 - One Month into the Future

5.3 Comparison of models

The same dataset for predicting wait time has also been explored using a variety of

ARIMA models, with the detailed methodology and results available in Katarína's work (2023).

The performance metrics of the LSTM models for the three scenarios mentioned previously are

presented alongside those of the best performing SARIMA model detailed below (Table 2) for

reference.
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Table 2 performance comparison with SARIMAX

In this project, while the "number of calls" feature was collected historically along with

other features and used in training a separate model (the details of which can be found in the

appendix Fig 13-16), it was not included in the primary model presented here. This is due to the

practical limitations in real-world scenarios: at the time of making future predictions (such as one

day, one week, or one month into the future), the number of calls could be unknown.

6. Conclusion and Future Work

This study demonstrates the LSTM model's capabilities in predicting patient wait times

at a GP post in the Netherlands. Notably, the 'emergency level' of calls wasn't used in training

due to the dataset's hourly intervals and the varying types of emergencies within each hour.

Including this variable could potentially refine wait time predictions, The model also limits to a

single GP post and potential variance in performance could occur due to its distinct conditions

across different locations.

In the pursuit of model improvement, a more comprehensive dataset especially if data

collection expands both in terms of timeframe and number of GP posts, exploration of RNN

variant with deeper architectures, as suggested by Zhao et al., 2022, could be potential directions.

These enhancements might lead to better performance.

In conclusion, this study underscores the potential of LSTM applicability in healthcare

resource planning. With further research and development, these models could be refined and

extended to address a broader range of predictive scenarios, bringing us closer to improving

healthcare operations management with more data-driven techniques.
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APPENDIX

Author contributions:
Data provider: Esculine (external company), Data preprocessing (performed for original dataset,
external dataset for comparison): Katarína Barteková, Feature Engineering: feature Number of
shifts: Jackie Tian, all other features (time index, average waiting time per hour, season, week
day, holiday, hour, minute, open/not open, number of incoming calls): Katarína Barteková,
LSTM model development: Jackie Tian, ARIMA-family models: Katarína Barteková

Exploratory Data Analysis:

Figure 10

Figure 11 Figure 12

Employing a variety of visualization techniques, we examined the patterns and trends
within the wait time data, our target variable, in the dataset that had undergone preprocessing.
These visualizations are based specifically on the more recent three months' data. Figure 10
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provides a boxplot, revealing the distribution of these wait times across different days of the
week. It notably indicates that Saturdays are particularly busy.

Our histogram in Figure 11 reveals that most wait times generally cluster within the 0-5
minute range. Yet, despite the average wait time being approximately 3.24 minutes, we observe a
wide spread in the data. This spread signifies a considerable degree of variability in wait times.
The median wait time, more resistant to outliers, stands at 0.67 minutes. The contrast between
the mean and median, combined with the broad spread visible in our boxplot (Figure 12),
indicates the presence of outliers and a skewed distribution. These aspects were taken into
account with the construction of our predictive model. Note, the statistics such as mean and
spread reported in these figures are specific to this preprocessed, recent dataset.

Table 3: Detailed Description of the features:

Table 4: Hyperparameter Random Search Summary Table
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Model with Calls

Figure 13: Performance on testing dataset:

Figure 14: One day into the Future:

Figure 15: One Week into the Future
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Figure 16:One Month into the Future:

Performance Comparison of the Model With the Number of Calls vs SARIMAX

Table 5: One Day into the Future:

Table 6: One Week into the Future:

Table 7: One Month into the Future:

Packages Used in the Analysis:

Tensorflow: 2.7.0, Keras: 2.7.0, pandas: 1.2.4, numpy: 1.22.4, sklearn: 1.0.2
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