
Automated Next-Step Hint Generation

For Introductory Programming Using

Large Language Models

Lianne Roest

Department of Information and Computing Sciences

Utrecht University

First Supervisor

Hieke Keuning

Second Supervisor

Johan Jeuring

A thesis submitted for the MSc degree in

Computing Science

July 2023

Acknowledgements

After devoting nine months to this project, I look back on it with a sense of

fulfilment and appreciation. First, I would like to express my gratitude to Dr.

Hieke Keuning for supervising this thesis. Her guidance and feedback helped

me to shape this work in a rapidly growing research field. Our meetings were

always enjoyable, and her insights on various aspects of the topic were incredibly

valuable. I would also like to thank Prof. Dr. Johan Jeuring and our study group

for our sessions where I could share the progress of my work and receive helpful

suggestions, and be inspired by other students working on similar projects. I

would like to thank Nienke, Kim, Tessa, Merve and Xavi for our countless

Dalton study sessions, they were an absolute pleasure. I also wish to thank my

family, who have always supported me. Lastly, I want to express my sincerest

appreciation to Stan for his help, belief and encouragement I received throughout

this project. To everyone mentioned, thank you for being part of this experience.

I am truly grateful, forever and always.

Abstract

With recent advances in their performances, large language models (LLMs) are

now more popular than ever. LLMs, such as ChatGPT, possess various skills,

such as answering questions, writing essays or solving programming exercises.

Recently, these models have become easily accessible, and researchers have ex-

pressed concerns regarding their impact on programming education. This work

explores how LLMs can contribute to programming education by supporting

students with automated next-step hints generated by LLMs. We investigate

prompt practices that lead to effective next-step hints and use these insights

to build our StAP-tutor. Furthermore, we evaluate our developed tool by con-

ducting a student experiment and performing expert assessments. Our findings

show that most LLM-generated feedback messages describe one specific next

step and are personalised to the student’s code and approach. However, the

hints may contain misleading information and lack sufficient detail when stu-

dents approach the end of the assignment. Hence, this work demonstrates the

potential for LLM-generated feedback, but further research is required to explore

its practical implementation.

CONTENTS

Contents

1 Introduction 1

1.1 Background . 1

1.2 Research questions . 3

2 Automated feedback 4

2.1 Providing effective feedback . 4

2.2 Feedback types . 5

2.3 Feedback techniques . 6

2.4 Data-driven next-step hints . 7

3 Large language models 10

3.1 The models of OpenAI . 10

3.2 LLM in programming education . 11

3.2.1 Creating supporting material . 12

3.2.2 Code explanations . 13

3.2.3 Providing student assistance . 13

4 Method 15

4.1 Student program dataset . 16

4.2 Prompt engineering . 18

4.3 Evaluation . 20

4.3.1 Student evaluation . 20

4.3.2 Expert assessment . 23

5 Prompt engineering 25

5.1 Engineering process . 25

5.1.1 Problem description and solution . 25

5.1.2 Instructions . 26

5.1.3 Temperature . 28

5.2 Choosing the best prompt . 28

5.3 Best prompt practices . 29

6 Evaluating next-step hints 31

6.1 StAP-tutor . 31

6.2 Student experiment . 32

6.2.1 Overall students’ impression . 32

i

CONTENTS

6.3 Expert assessment . 33

6.4 The quality of next-step hints generated by LLMs 35

7 Discussion 37

7.1 Generating next-step hints using LLMs . 37

7.2 Threats to validity . 37

7.2.1 Prompt engineering . 37

7.2.2 Experimental setup . 38

7.2.3 Reproducibility . 39

7.3 Future work . 39

8 Conclusion 41

Bibliography 42

ii

LIST OF TABLES

List of Tables

4.1 Description of the exercises used for prompt engineering 17

4.2 CountClump problem descriptions . 23

4.3 Evaluation Criteria . 24

5.1 Example hints for different prompt instructions 27

5.2 Ranking of prompts. We ranked the prompts with scores 1, 2, and 3, from

best to worst, respectively. 29

6.1 Inter-rater reliability for the expert evaluation 33

iii

LIST OF FIGURES

List of Figures

2.1 Examples of next-step hints from the ISnap environment [49, 35] 8

4.1 Method of this work . 15

4.2 Process of removing incomplete steps . 18

4.3 Example prompt with output . 19

4.4 Interaction with StAP-tutor: the student is asked to rate the hint. 21

5.1 Code snippet used to generate the hints from table 5.1 26

6.1 StAP Tutor interface . 31

6.2 Student ratings per question . 32

6.3 Feedback Type . 34

6.4 Level of detail . 34

6.5 Tone . 34

6.6 Counts for the additional information criteria. Categories C&T and T&E

are a combination of additions. So, a compliment and tip, or tip with expla-

nation, respectively. 34

6.7 Frequencies of binary evaluation metrics: Personalised, Appropriate, Specific

and Misleading Information . 35

iv

1. INTRODUCTION

1 Introduction

1.1 Background

Over the last decades, researchers have been developing a variety of digital tools and systems

that support students in learning how to program. Most of these tools provide automated

feedback on exercises done by students to facilitate their learning process [22]. There exists

a lot of variation in the type of feedback and how tools generate feedback. Feedback may

include hints for code edits, references to relevant concepts, or suggestions for reading

material. One specific category considered in this work is next-step hints. These hints

focus on helping students how to proceed when they are stuck while solving programming

assignments. For instance, the ITAP-tutor suggests: “In line 1 replace ’saturday’ with

’Saturday’ in the right side of the comparison operation” [52].

As mentioned before, feedback can be automatically generated with different techniques.

Generating next-step hints, specifically, is often associated with data-driven methods [50].

Data-driven approaches use data from students instead of predefined models. These models,

used by more traditional methods, are manually designed and precisely define what, when

and how feedback is provided to the students. Data-driven algorithms use student data

instead and, for example, compare incomplete student solutions to other student programs

to extract next-step hints [52]. These hints can then guide students closer to the correct

solution.

Some issues with data-driven approaches are that they often require a large amount of

data. Furthermore, more substantial limitations are that most hints are exact directions

for what the student should do, revealing the answer for the student and interfering with

learning opportunities. The hints only contain instructions on what to do and lack any

elaborations, as in the provided example before. Work from Price et al. showed that the

lack of explanations makes next-step hints difficult for novices to interpret and connect

to their current code [51]. Hints without explanations have a decreased following rate

while adding explanations can improve students’ understanding of the hints and perceived

relevance. In addition, it can benefit the overall learning process and the student’s trust

in the system [35]. Yet, these proposed approaches require a lot of manual labour, with a

handcrafted explanation per situation, nullifying the advantage of data-driven approaches

regarding developing time

In this work, we apply state-of-the-art data-driven language models to develop next-step

hints, i.e. large language models (LLMs). In the last few years, there has been a significant

increase in the development and, especially, in the performance of LLMs. LLMs are trained

1

1. INTRODUCTION

on enormous amounts of data and have shown to be very good at specific tasks, such as

generating text, images, and now also code [5]. Especially with the arrival of the models

from OpenAI (GPT-3, Codex, and GPT-4), LLMs have recently received much attention,

both in and outside the academic world. Several studies show that Copilot and Codex

perform relatively well at solving introductory programming assignments [9, 14]. Moreover,

as these models are also available for students, researchers express their concerns regarding

plagiarism, integrity, and learning in the programming education field [14, 3].

Novice programmers may be particularly susceptible to the ‘dangers’ of using LLMs

as their pair programmers. Using large language models might not benefit the student’s

learning process, as it prevents the student from working on the assignment themselves. In

addition, novice programmers do not have the skills yet to understand code and recognise

code of good quality. Therefore, students might not know how to design effective prompts

to get the desired results [11]. And finally, students might overestimate their coding abilities

using such LLMs [44], which can cause incorrect reflection on their programming perfor-

mance and possibly, more mistakes

With this study, we aim to give a positive turn to using LLMs in programming educa-

tion. We have built a tool that employs LLMs to generate next-step hints. By letting LLMs

create the feedback, we do not need to design our models and avoid the complex tasks that

data-driven methods often require, such as gathering data or training such a model. We gen-

erate next-step hints since our approach matches a data-driven approach, and data-driven

algorithms often produce next-step hints [50]. Data-driven feedback generation algorithms

often solely produce edit-based hints, which are precise instructions on what to do. With

our approach, we hope to enhance the provided feedback with additional information, such

as explanations. Furthermore, our tool allows students to use the potential and help of

LLMs but in a controlled way, without exposing them to too much information and choices

regarding promoting engineering. So far, other related research on LLMs in programming

education investigates the LLMs’ performance or generates supporting material using LLMs,

such as code explanations [33, 32] or programming exercises [53]. Many of these studies do

not report anything on the process of their prompt designing. We found two studies related

to the topic of generating feedback. One study concerns generating hints for syntax error

corrections [45], and the other explores generating fixes for student code by help requests

[18]. Yet no work exists on using LLMs to generate specifically next-step (semantic) hints.

2

1. INTRODUCTION

1.2 Research questions

Our main objective is to examine how we can use LLMs to generate high-quality next-step

hints. In this work, we specifically focus on introductory Python assignments, as Python is

a programming language often used for novice programming courses. We will experiment

with prompt engineering practices to generate next-step hints. We will use our findings

to build our tool, the StAP-tutor (Step Assisted Programming tutor). Finally, we will

evaluate the quality of the generated hints with an experiment and expert assessment. To

this end, we formulated the following main research question:

RQ1 To what extent can we use LLMs to generate informative and effective

next-step hints for Python introductory exercises?

Furthermore, we will analyse two sub-questions. Many studies on applying LLMs in pro-

gramming education do not report how they designed their prompts, the decisions made

during prompt engineering and why they made them. We will investigate different prompts

to get an overview of how one designs prompts for generating next-step hints. We aim to

create next-step feedback that is more than just suggestive edits, as often generated with

data-driven methods.

RQ2 What prompt characteristics are suitable for generating effective next-step

hints with LLMs?

Finally, we evaluate the quality of the LLM-generated next-step hints. We perform an

evaluation both by experts and by conducting student experiments. Students and teachers

do not necessarily agree on what feedback or hints are effective or helpful. With two different

evaluation methods, we consider both to obtain a global idea of the quality of the generated

hints.

RQ3What are students’ and experts’ perceptions of the quality of LLM-generated

next-step hints, and how do they rate them?

The remainder of this work is structured as follows. First, Chapters 2 and 3 discuss re-

lated work regarding providing effective feedback, generating automated feedback and using

LLMs in programming education. Then, we present a short overview of this work’s method

in Chapter 4. After this, we have a more in-depth discussion on our methods regarding

the prompt-engineering and hint generation with corresponding results in Chapters 5 and

6, respectively. Chapter 7 discusses the limitations of our work with possible directions for

future research. Finally, In Chapter 8, we give our conclusions.

3

2. AUTOMATED FEEDBACK

2 Automated feedback

Digital learning tools have been developed across multiple educational domains. Most fo-

cus on teaching in STEM, but others support learning languages, medicine or other skills.

Nevertheless, a substantial part of the systems teaches topics within computer science and

programming [8, 37]. Due to the ever-growing interest in programming, the demand for

teaching programming courses on a large scale has increased significantly. Hence, the inter-

est in developing programming teaching tools has increased as well.

The main focus of the research related to educational programming tools is providing

automated feedback [37]. We provide a short overview, first discussing effective feedback in

general, and then programming feedback types and generation techniques. Aside from feed-

back, other example features from educational programming tools are personalised course

material recommendations, adaptive testing or student evaluation. As our research is lim-

ited to providing automated hints, we centre the remainder of this section around feedback

for programming.

2.1 Providing effective feedback

Feedback is considered essential in the process of learning [17]. Feedback can enhance

learning by correcting misconceptions or mistakes. In addition, feedback can improve the

students’ motivation by providing positive comments or guidance when the student is stuck.

All feedback that consists of information or learning activities that support and facilitate

student learning is classified as formative feedback [19]. Its counterpart, summative feed-

back, consists of assessment activities, resulting in grades that evaluate the student’s per-

formance.

Various variables impact the effectiveness of formative feedback, such as its complexity

[54]. Complexity relates to giving elaborate or concise feedback. Elaborated feedback helps

students understand why something is wrong and can guide students in the right direction

through explanations or tips. As a counterpart, if feedback is too long, many learners will

not pay attention to it, rendering it useless. Another essential factor is timing. Feedback

can be provided by intervening or waiting: until the student requests feedback themselves

or finishes an assignment. Another variable of feedback is its nature, which can be positive

or negative. In contrast with negative feedback, positive feedback reinforces what students

are doing well, for example, to emphasise the student is correctly implementing assignment

requirements. Both can, however, have beneficial effects on learning [17].

Although many studies on effective feedback exist, defining effective feedback remains

complicated due to its many aspects. Besides, even students and teachers have different

4

2. AUTOMATED FEEDBACK

ideas about what feedback is effective. Dawson et al. performed a qualitative study of

teachers’ and students’ ideas and opinions of effective feedback [7]. Although teachers and

students agree that the overall purpose of feedback should improve student performance,

they have other beliefs on what makes feedback effective. While teachers believe in the im-

portance of timing, modalities and connected tasks, students prefer high-quality feedback

comments that make feedback effective. These comments should be detailed and person-

alised to the student’s work. Wisniewski et al. found that feedback is more effective when

it contains more information [57], which could correspond to the student’s preference for

more detailed feedback. Their work shows that simple reinforcement and punishment have

slight effects, while high-information feedback is the most helpful.

2.2 Feedback types

Keuning et al. conducted a systematic review of automated programming feedback in which

they identify feedback categories, feedback generation and evaluation methods [22]. With

their classifications, based on an earlier one created by Narciss [38], they find the following

feedback categories:

• Knowledge About Task Constraints: This first category entails hints related to the

task itself, the proper approach for the exercise or the fulfilment of the assignment’s

requirements.

• Knowledge About Concepts: Feedback that provides explanations on relevant knowl-

edge concepts. This category also includes illustrating examples that can help the

student’s understanding.

• Knowledge About Mistakes: Feedback covering all hints related to mistakes. Examples

are hints about errors, such as compiler errors. Mistakes regarding the solution and

style issues are also part of this category.

• Knowledge About How to Proceed : This feedback relates to guiding the student on

what to do next. The hints belonging to this group can be in different forms, such as

suggestions, questions or instructions. The goal of the hint can be to correct an error

or guide the student to take the next step towards a correct solution.

• Knowledge About Meta-cognition: The last category is on a more abstract level of

feedback and essentially covers insights into the student’s knowledge about their per-

formance and progress.

Keuning et al. found that most programming learning tool provides feedback with knowl-

edge about mistakes by implementing automated testing, as this approach is generally easy

to implement [22]. However, Hao et al. discovered that feedback of this type is not as

5

2. AUTOMATED FEEDBACK

effective compared to when more informative and detailed feedback is included [16]. Only

presenting mistakes as hints requires students to interpret the results themselves, which

may interfere with learning from their misconceptions.

This work focuses on generating hints for the fourth category: feedback on how to

proceed. Next-step hints support can prevent students from getting stuck while working

on their assignments, which is typically a problem for novice programmers. Other feedback

types do not provide this kind of support.

2.3 Feedback techniques

Over the years, many techniques have been developed for generating automated feedback,

with general approaches and approaches specific to the programming domain. Keuning

et al. identified three universal techniques for generating feedback and five domain-specific

to the field of programming

General feedback techniques:

• Model tracing : Tools that implement model tracing give immediate feedback at each

step during the problem-solving process [36]. Model tracing requires a definition for

production rules corresponding to correct steps, and buggy rules, representing typical

mistakes.

• Constraint-based modelling : Constraint-based modelling identifies errors in student

solutions given a set of constraints [36]. The technique checks if the solution state sat-

isfies all requirements. If not, based on the violated constraints, a tool implementing

this approach can provide predefined feedback belonging to those constraints.

• Data analysis: Data-driven approaches use large sets of student solutions from the

past to generate hints.

The first two approaches require a significant amount of manual labour. Every knowledge

component, production rule or constraint has to be defined by experts. Especially in the

domain of programming, where assignments often have different solutions, semantically or

syntactically, this can be a very time-consuming task. Data analysis approaches overcome

these issues by employing algorithms by learning patterns or strategies that lead to correct

solutions from data instead of predefining these strategies. More regarding data-driven

approaches will be discussed in section 2.4.

Programming-specific feedback techniques:

• Dynamic code analysis: Dynamic code analysis: Dynamic code analysis produces

feedback using automated testing and gives knowledge about mistakes. Generally,

automated testing compares the program output on several test cases to the expected

6

2. AUTOMATED FEEDBACK

output. Other techniques for automatic testing are unit testing and property-based

testing.

• Basic static analysis: With basic static analysis, a tool provides feedback without

running the student program. The most rudimentary feedback by static analysis is

syntactical errors generated by a compiler. In addition, static analysis can check

student programs on misunderstood concepts and other solution requirements, such

as required code structures [55].

• Program transformations: Program transformations can facilitate automated feed-

back generation. Program transformations help simplify programs to make it easier

to compare multiple programs. For example, to compare a student program to a

model solution. Examples of program transformations are normalisation or generat-

ing abstract syntax trees (ASTs).

• Intention-based diagnosis: With intention-based diagnosis, a tool tries to identify the

strategy of the student [26]. Intentions are defined as goals or plans and implemented

similarly to the rules from constrained-based modelling.

• External tools: Keuning et al. defined this category as tools that use other tools that

had not the same creator and are more advanced than standard compilers or static

analysis tools.

The choice of feedback technique determines, to some extent, the type of feedback generated.

For example, with model tracing, the core of the domain model is focused on production

rules which encapsulate progress. Therefore, feedback generated with model tracing is

often associated with knowledge of how to proceed, as this is also the core of the related

domain model. Similarly, knowledge of mistakes is often the result of automated testing. A

substantial part of the data-driven approaches is also related to generating hints associated

with knowledge of how to proceed,i.e., next-step hints. [50]. In general, data-driven methods

for programming operate as follows: first, it compares the current student state (from the

moment of the hint request) to a desired target state, often a correct solution. Then, an

algorithm identifies the differences or required edits to transfer from the current state to

the target state. From there, the algorithm extracts one or more next steps [34, 52].

2.4 Data-driven next-step hints

During the last few years, a growing number of studies showed interest in developing data-

driven approaches for generating feedback. As data-driven methods avoid needing experts

to create a complex domain model, they are considered less time-consuming than traditional

feedback techniques.

7

2. AUTOMATED FEEDBACK

Barnes et al. were one of the first researchers who used student data in their study

for automated hints [1]. Their approach used a Markov Decision Process to generate hints

for logic proofs. Data-driven approaches have since then also been applied within the

programming education domain. Note that although studies label themselves as data-

driven approaches, their actual implementation can vary in multiple ways. For example,

they may use different algorithms, methods for code comparisons etc.

However, some studies share similarities in their approaches, for instance, using abstract

syntax trees for their state-space representation (ASTs) [49, 34, 52]. In other words, they

used ASTs to represent source codes as states so they could easily compare students’ codes

and create suggestions on how to proceed. Rivers et al. developed the ITAP tutor that

followed this approach. By transforming student programs to ASTs and comparing the

current state to other student data, their algorithm constructs a path of edits to a correct

solution [52]. From this path of potential modifications, the algorithm can extract a hint

and presents it to the student to guide them in the right direction. All hints follow the

following format: [Location info] + [action verb 1] + [old val] + [action verb 2] + [new

val] + [context]. Applying this format produces hints as: “In line 1 replace ’saturday’ with

’Sunday’ in the right side of the comparison operation.”

Price et al. conducted several studies on data-driven next-step hints for their iSnap

environment, an extension of the Snap! environment, based on Scratch, a block-based

programming language [49, 48], shown in figure 2.1. Their algorithm generates a set of mul-

tiple edits the student could apply per request, again using ASTs. Other implementations of

data-driven approaches for next-step hints have other underlying techniques as their base,

such as program synthesis [25] and automated testing [39]. For example, Obermuller et al.

use automated tests to decide which solutions from the program pool are candidates for

hint generation.

Figure 2.1: Examples of next-step hints from the ISnap environment [49, 35]

8

2. AUTOMATED FEEDBACK

Note that although data-driven approaches are often associated with next-step hints,

other methods may also utilize the possibilities with historical data. For instance, Fossati

et al. researched the effects of feedback with positive and negative nature in a tutoring

system for linked lists. They employ historical student data to decide what feedback was

well-suited to the current state of the student [15].

As previously mentioned in section 2.3, data-driven methods are less time-consuming to

create than other feedback generation techniques. Another advantage is they can generate

hints for never-before-seen states, making them more applicable than traditional methods

[52, 48, 42]. Furthermore, they are not language specific. Consequently, they can be

implemented for various programming languages without too many alterations.

There are still some limitations to the current data-driven approaches. First, their hints

often only inform students what to do without further explanation or additional information.

This may cause uncertainty or confusion for students, with a chance of students not following

the given hints. This hypothesis was confirmed by Marwan et al. [35]. In their study, the

authors added textual explanations to their next-step hints, from which an example is

shown in figure 2.1. They found that when provided with explanations, the feedback had

a higher follow rate and interpretability score, and students had an improved perception of

its relevance. Unfortunately, these explanations had to be crafted by hand, annulling the

benefits of data-driven approaches compared to expert-driven ones. Additionally, Rivers

found that novice programmers wanted more elaborate feedback compared to experienced

students [52]. Data-driven approaches currently do not provide hints with details.

Second, Price et al. identify situations where data-driven hints perform poorly overall,

such as when students have code that diverges from obvious or standard solutions [50].

Finally, even though data-driven approaches are considered less time-consuming than tra-

ditional methods, they often remain very complex due to transformations and comparing

student programs. These shortcomings illustrate the possibility of improving existing data-

driven techniques.

9

3. LARGE LANGUAGE MODELS

3 Large language models

Very recent advances in AI, especially in the last decade, have enhanced the powers of large

language models. Large language models (LLMs) are deep-learning models. These models

are trained on enormous amounts of data and can generate output given a specific task with

the knowledge they were trained on. LLMs exist for different modalities, such as generating

natural language, images or code, often depending on the type of data the model is trained

with.

LLMs generate output given so-called prompts. A prompt defines a request, question

or instruction for what the user wants the model to generate. For example, when creating

an image, the user formulates the prompt: “Create a painting from a student sitting on

the beach but in a science fiction world”. During their training process, LLMs learn the

probabilities of token sequences and set the values from the parameters in their model

accordingly. Once trained and presented with a prompt, the model outputs the sequence of

tokens with the highest overall probability. This output is the image or text that the user

asked to generate. Note that the output LLMs generate are non-deterministic as LLMs

often include some randomness or noise in their predictions. These are incorporated since

randomness can sometimes yield better and more creative results.

Over the years, several LLMs have been created and published, some specifically de-

signed for code synthesis. Examples of such models are Alpha-Code [29], codeBERT [12],

and OpenAI’s Codex [41], which is a model built upon the GPT-3 model by OpenAI. Ope-

nAI and its large language models have received much attention recently because of the

release of ChatGPT and GPT-4. With its human-like conversations and easy accessibility,

especially ChatGPT has been immensively popular.

3.1 The models of OpenAI

OpenAI created several LLMs over the last years. GPT-3, released in May 2020, is one of

the first breakthrough models, with more than 10 times the parameters compared to other

language models from that time [4]. The first testing with GPT-3 focused on language-

related tasks and demonstrates that human evaluators had trouble distinguishing GPT-3

generated news articles from human-written texts [4].

OpenAI’s Codex is a fine-tuned model of the famous GPT-3 model. Its training data

contains an enormous amount of source code from publicly available sources, including

code in public GitHub repositories [41]. As a result, Codex can also produce source code

in addition to the ‘standard’ capabilities of its predecessor GPT-3 [5]. The initial research

on Codex shows that the fine-tuned model has improved performance on code synthesis

10

3. LARGE LANGUAGE MODELS

for a dataset with human-written programming problems [5]. In addition, other studies

confirmed the range of Codex’s capabilities, such as code repair [47] and code documentation

[58]. Since March 2023, the API for Codex is not in production anymore. Yet, GitHub

Copilot, an IDE plugin created by GitHub and OpenAI, still utilises Codex to give live

code suggestions in IDEs.

In November 2022, ChatGPT was released, which made human-like conversations with

LLMs possible. In March 2023, GPT-4 followed and now outperforms other existing LLMs

on several academic benchmarks with, among others, NLP and coding tasks [40].

The easiest way to access one of the models from OpenAI is via ChatGPT’s web interface.

Other than that, one can use GitHub’s Copilot or access the models via APIs available on the

OpenAI platform. Some models, such as ChatGPT-plus and GPT-4, are only accessible with

paid subscriptions. The main difference between these tools is that, for the API, much more

refined settings are possible. One can choose between the different base models of GPT-3

along with other more advanced parameter settings, such as temperature, custom stopping

sequences and the maximum number of tokens generated per request. The temperature

parameter determines the level of ‘creativity’. The higher the temperature, the more diverse

the generated answers are.

Naturally, the more settings and options available for the user to experiment with,

responses can also be increasingly divergent. Doderlein et al. find that with the right

parameter settings, the performance of Codex can significantly improve[11]. Moreover, their

study also shows a strong dependency on the optimal temperature and prompt variation.

The results indicate that this may also vary per programming language. Altogether, these

findings demonstrate the trade-off between user efforts and model performance and the need

for careful consideration when one uses these models.

3.2 LLM in programming education

Since the arrival of LLMs, multiple researchers have expressed their concerns about the

negative impact these models might have on programming education [14]. Recent work

shows that Codex performed as well as the top 25 % of the students in an introductory

programming course [14] and in a CS2 course on data structures and algorithms [13]. In

addition, other work suggests that Copilot can solve 60% of a set of beginner Python

assignments on the first try and solve 70% of the remaining exercises with adjustments and

refinements of the initial prompts given to Copilot [9].

In their paper publication of GPT-3, Chen et al. acknowledge that novice programmers

may be particularly susceptible to overreliance on LLMs [5]. Besides learning ‘to code’,

novice programmers need to develop skills, such as computational thinking, since program-

ming requires abstract, higher-order thinking and reflection. Relying too heavily on code

generation tools may hinder the development of such skills [10]. Furthermore, ChatGPT

11

3. LARGE LANGUAGE MODELS

and similar models produce syntactically incorrect code or contain constructs that are too

complex and not appropriate for beginners [10].

Using LLM may also interfere with the problem-solving process of students. Students’

focus may wander to how to get a LLM to do what the student wants instead of keeping

attention to solving the assignment [46]. Vaithilingam et al. studied more experienced

programming students using LLMs while coding [56]. They reported that students often

spent too much time reading the large code blocks suggested by Copilot and frequently

switching between thinking, reading, and debugging. However, novice programmers prob-

ably spend even more time comprehending generated code and get more easily confused.

In their experiment, novice students had difficulties understanding, editing, and debugging

code snippets created by Copilot. As mentioned earlier, this hinders the student’s solving

process and may interfere with learning opportunities.

In a study comparing two groups of students from which only one had access to Codex,

Kazemitbaar et al. found that students with access performed slightly better overall on

a taken post-test. However, students with access made significantly more errors in coding

tasks where students had to write code from scratch, possibly indicating an overreliance

[21]. In a similar comparison study, Perry et al. discovered that participants without access

to an LLM had written more secure code, while users with access believed they had written

more secure code [44].

These and similar findings are the base for worries about students’ integrity when they

have such a model accessible. Hence, these findings may be overwhelming and perhaps

overshadow all possibilities LLMs can bring to programming education. Fortunately, sev-

eral studies already illustrate these opportunities and how LLMs can support students and

teachers in programming education.

3.2.1 Creating supporting material

As a first example, Sarsa et al. let Codex generate programming assignments based on

existing exercises [53]. They provide Codex with prompts containing example exercises as

inputs. The authors use four base assignments with corresponding model solutions and unit

tests, contextual and technical keywords for the topic and learning subjects of the assign-

ments. They found that generated exercises by Codex were overall reasonable and had,

most of the time, correct corresponding solutions. When the assignments, solutions or test

cases contained some mistakes, the authors could often fix these mistakes. For example,

they tried regenerating the content by presenting the model the prompt. Moreover, even

the incorrect content could still inspire teachers, thus reducing the workload.

12

3. LARGE LANGUAGE MODELS

3.2.2 Code explanations

Besides clarifying programming error messages, several studies research generating expla-

nations for source code [53, 33, 32]. The ability to trace and explain code is an essential

part of learning to program and has a strong relationship with the ability to write code

[30]. Generating code explanations could assist students in learning to trace their code and

eventually explain their code on their own.

Sarsa et al. include generating explanations in their paper with the generation of pro-

gramming exercises but did a substantially smaller analysis on this subject [53]. They found

that Codex’s explanation often contains small mistakes related to incorrect or missing con-

ditional branches or invalid comparisons. The explorative study conducted by MacNeil et

al. resulted in a classification of the explanation types Codex generates [33]. They identify

eight distinctive types, among others, code summary, listing relevant programming concepts

and tracing the execution of code. Unfortunately, there was no report on prompt inputs

or the quality of the explanations, as the authors intend to evaluate this in their future

research.

Another study investigated incorporating code explanations generated by Codex and

GPT-3 in a web software development E-book [32]. Remarkably, the authors found that

GPT-3 produced higher-quality outputs than Codex. Codex tends to go off-topic and often

includes source code, while a requirement is that all explanations should be in plain English.

Another interesting finding was that adding examples to the prompt was not beneficial for

the quality of the explanations as the model overfitted the structure of the shots. The

study’s experiment shows that students consider the explanations relevant and helpful for

their learning process. Furthermore, LLM-created code explanations are significantly easier

to understand and contain more accurate code summaries compared to student-generated

ones [27]. This work points out how LLM-generated explanations potentially can help stu-

dents trace their code, as they can be produced automatically on demand.

3.2.3 Providing student assistance

After writing their code, students should be able to fix the bugs in their program. Zhang et

al. examined if Codex could solve students’ bugs in Python programs [59]. They formalise

a method for employing Codex, which first corrects the syntactical errors and then repairs

the semantic ones. During the process, they generated multiple corrections and applied the

one having the smallest token-edit distance to the student’s program. Their method could

repair 96.5 % of the student programs. Compared to the baseline model, constructed by

combining multiple state-of-the-art Python repair engines, the approach outperforms the

baseline with a lower token-edit distance.

Such fixes have the potential to help students when transforming them into feedback,

13

3. LARGE LANGUAGE MODELS

which is something Phung et al. did with their research [45]. With Codex, they create

feedback for syntax errors consisting of a fixed program with a corresponding natural lan-

guage explanation. Furthermore, they implement a run-time validation mechanism which

successfully determines whether the generated output is appropriate for sharing with the

student.

Another related study from Leinonen et al. uses Codex to clarify error messages [28].

Understanding programming error messages is an essential part of programming, yet, it is

also a difficult task, especially for novice programmers. The authors produce additional

explanations of the error messages with Codex, which clarify the reason for the error and

provide instructions on how to fix the error. With qualitative analysis, they found that 70%

of Codex’s explanations were valid. However, these results would differ with a temperature

parameter set to 0. Experimenting with this parameter showed that other values would

result in a significant decrease in performance, again demonstrating Codex’s performance’s

strong dependence on parameter settings.

Hellas et al. collected code from students’ help requests during an online programming

course and presented it with a prompt to an LLM, asking for suggestions on how to fix

it [18]. They found that GPT-3.5 outperforms Codex in most aspects. While both LLMs

often can find at least one issue, neither excels at finding them all. Interestingly, they

note that although the LLM is ordered not to, their responses frequently contain a model

solution. With supporting students as the main objective, this is naturally strictly undesired

outcome, preventing the students from creating a solution themselves.

The discussed studies show that LLMs may positively impact programming education,

with still many opportunities on how LLMs can contribute unexplored. This work will

hopefully join and complement these studies by generating next-step programming hints.

14

4. METHOD

4 Method

Our method for hint generation with LLMs consists of four components; data preprocessing,

prompt engineering, building the StAP-tutor and evaluation. The workflow of this process

is shown in Figure 4.1. We first needed a dataset of student programs for which we could

generate hints and experiment with prompt engineering. Section 4.1 discusses the process

of creating a suitable dataset. We used the dataset from Lyulina et al., which contains

snapshots of student programs for various exercises. We downsized this dataset such that

differences between consecutive entries were less fine-grained. We used two assignments from

the dataset, Pies and Brackets, for analysing different prompt strategies for generating next-

step hints. We investigated the effect of including model solutions and problem descriptions

and used different phrasings and temperature values, described in section 4.2.

After completing prompt engineering, we used the best practices we found to develop our

StAP-tutor. The StAP-tutor is a web interface where students can practice their Python

skills with the help of next-step hints. Finally, we conducted an experiment where students

worked on a new exercise and rated the feedback they received. We then evaluated the

generated hints with two experts and compared the results of those ratings with the ratings

from the students. We discuss our evaluation methods in section 4.3.

In the rest of this chapter, we discuss the steps of our method in more detail, starting

with the preprocessing of the TaskTracker-tool dataset. Then we provide a overview of the

phases of prompt engineering and our evaluation methods.

Preprocessing Prompt Engineering EvaluationStAP-Tutor

Filtering on
 programming Experience

TaskTracker dataset

Removing duplicate
programs

Removing uncompilable
programs

Removing programs with
incomplete steps

Exploring best
prompt practices

Prompt attributes

Prompt phrasings

Experimenting with
temperature parametrs

Student Experiment

Expert assessment

Hints generated
during experiment

Qualitative analysis
of the hints

Implementing findings
in webinterface

Optimal
Prompt

Web interface

Hint Generation
Module

Hint requests
Updated
dataset

Figure 4.1: Method of this work

15

4. METHOD

4.1 Student program dataset

Lyulina et al.. [31] provide a dataset with programs collected with their developed TaskTracker-

tool. After participants install the IDE plugin, the TaskTracker-toolcollects consecutive code

changes and IDE actions while they work on a programming task. The program is captured

every time it is altered by the participant. Thus, with every keystroke, a snapshot of the

participant’s code is saved to the dataset, which makes the dataset quite fine-grained. For

each assignment, the dataset consists of a CSV file for each participant, which consists of

rows of consecutive program snapshots.

The dataset consists of programs from 148 participants aged from 11 to 40. Their

programming experiences range from zero to more than six years of programming. The

researchers accepted solutions in languages Python, Java, Kotlin or C++. For this work,

we only considered the Python solutions and programs from participants with programming

experience of less than a half year, as we focused on generating hints for introductory

programming exercises. We selected two of the six exercises that required applying and

implementing the most operations and programming constructs: Pies and Brackets. Table

4.1 shows the description of the assignments, with an example test case and solution.

We performed data processing as we did not aim to give feedback or hints when students

were in the mid of writing a word or completing a step. In this work, we consider a

line as a completed step, for example, implementing the condition of a while-loop. We

wanted to generate hints for a set of student programs as diverse as possible. We performed

several operations on the dataset from the TaskTracker-toolto obtain our new dataset where

consecutive programs have more substantial steps in between. Figure 4.2 shows how we

deleted programs with incomplete lines. We merged programs that belong to the same

“state”, i.e., programs where the student was working on the same step. We performed the

following data processing operations:

1. Removing duplicate programs: We started by removing duplicate programs, as dupli-

cate snapshots belong to the same program state.

2. Removing uncompilable source code: We then filtered on source code with syntax

errors to remove programs that immediately caused errors. With this step, we also

removed programs that contained unfinished keywords. This step was necessary as we

aim to provide help for the next steps and not fix syntactically incorrect programs.

3. Removing programs with incomplete steps: Finally, we removed programs where stu-

dents worked on one specific line for a sequence of successive programs, so a number

line in the IDE, not a statement. We consider these programs to contain unfinished

step(s). From such a sequence of programs, we selected the last snapshot for our

dataset. We observed that students sometimes used print statements to trace their

code and shortly removed them after. When this happened, we chose not to include

16

4. METHOD

Table 4.1: Description of the exercises used for prompt engineering
Name Pies Brackets

Description A single pie costs A dollars and B
cents in the cafe. Calculate how many
dollars and cents one needs to pay for
N pies.

Input : The program receives three
numbers as an input

A - how many dollars a pie costs;
B - how many cents a pie costs;
N - how many pies do you need to buy

Output : Print out two numbers:
the cost of N pies in dollars and cents

Place opening and closing brackets
into the input string like this: for odd
length: example → e(x(a(m)p)l)e; for
even length: card → c(ar)d, but not
c(a()r)d.

Input : The program receives a
string of English letters (lowercase and
uppercase) as an input.

Output : Print out the string with
the brackets added.

Example
solution

A = int (input ())
B = int (input ())
N = int (input ())
p r i c e p e r p i e = (A ∗ 100) + B
t o t a l c o s t = p r i c e p e r p i e ∗ N
do l l a r s = t o t a l c o s t // 100
cent s = t o t a l c o s t % 100
print (do l l a r s , c ent s)

v = input ()
n = len (v)
r e s u l t = ””
for i in range (0 , n//2 − 1) :

r e s u l t += v [i] + ” (”

i f n % 2 == 0 :
r e s u l t += v [n//2 − 1]
r e s u l t += v [n//2]

else :
r e s u l t += v [n//2 − 1] + ” (”
r e s u l t += v [n//2]

for i in range (n//2 + 1 , n) :
r e s u l t += ”) ” + v [i]

print (r e s u l t)

Example
testcase

Input: 2 50 4
Output: 10

Input: example
Output: e(x(a(m)p)l)e

those snapshots in the dataset, as the print statements do not contribute to the pro-

gram’s functionality. In Figure 4.2, we see how we reduced a sequence of programs to

one snapshot in the final dataset. The first row represents a complete state for line 4.

After completing this step, the student proceeds with line 5 (the snapshots with the

blue outlines). We see that after three snapshots, line 5 is complete. However, the

student added and removed a print statement (red outline), from which we inferred

that it was merely included for debugging purposes. We chose the snapshot after

17

4. METHOD

removing the print statement as the final state for line 5 and selected this snapshot

in our final dataset.

Line 4 completed

Working on
 line 5

Row 4 finishedLine 5 completed

Row 4 finished
Adding and removing

print statement

Figure 4.2: Process of removing incomplete steps

Note that performing these operations does not necessarily result in perfect series of code

construction with line-by-line built programs. Firstly, students do not work linearly on

their assignments. They jump back and forward between lines, can start with a high-level

approach etc. In addition, in the final dataset, it is possible to have some jumps between

two consecutive programs. For example, when a student writes syntactically correct code

after finishing two steps, two successive programs have an addition of two lines of code

instead of one.

However, with our constructed dataset, we now have a set of programs that models

overall the step-wise progress of programming by students. In the next section, we explain

how we used these programs to design our prompts.

4.2 Prompt engineering

Our main priority was to get a general idea of how we should instruct the LLM to generate

our desired output. For our project, we used the gpt-3.5-turbo API. Whilst working on

this project, GTP-4 was released. However, we could not incorporate this model into this

work within the given timeframe. Instead of immediately starting with a strict criteria-based

evaluation, we explored many different prompts for different students. We used a subset

from our obtained dataset after processing. As mentioned before, we used two exercises:

Pies and Brackets. As the goal is to explore how the LLM behaves, we wanted a diverse

student set possible. From our preprocessed dataset, we selected three students for both

assignments. We sought students that varied in their approaches to the exercise and ability

to complete the assignment. We generated hints for two intermediate steps to limit the

number in the first iteration, which resulted in a range of 5 to 13 programs per student.

18

4. METHOD

The prompt always consisted of a student program, the source code for which we aimed

to generate the next-step hint. We first experimented with adding two attributes to the

prompt: problem description and model solution. We used the formatting of the prompt to

denote the different aspects of the prompt. Sarsa et al.. [53] noted that denoting parts of

their prompt yields better results. Finally, the prompt always had an instruction in which

we encapsulated the goal of the prompt. We show an example prompt in Figure 4.3.

--Description--
Place opening and closing brackets into the input string like
this: for odd length: example → e(x(a(m)p)l)e; for even
length: card → c(ar)d, but not c(a()r)d.
The program receives a string of English letters (lowercase
and uppercase) as an input.
Print out the string with the brackets added.

--Student Input--
v1 = input()

--Instruction--
Give a hint for the next step.

Output: Next, you can use an if statement to check the
length of the input string to determine if it is odd or even.

Figure 4.3: Example prompt with output

Furthermore, we started with three different phrasings for the instruction part. We formu-

lated these prompts and assumed that including the word “step” would specify the essence

of what the prompt should output. We decided to create minor variations to examine how

adding different keywords such as “student” or “hint” would affect the generated hints.

These premises led to the following three instructions:

1. “What is the next step?”

2. “Give a hint for the next step.”

3. “Explain the next step for a student”.

We then combined these instructions with four possible combinations of attributes to a

prompt: a prompt with no attributes, one of the two and both. Altogether, we created

3 · 4 = 12 different prompts for our initial round of analysing prompts. We generated

approximately 60 hints with every prompt, 10 for each of the three students for both

assignments. We initially set the temperature for this first iteration of prompt engineering

19

4. METHOD

to 0.1, as we wanted to limit the “creativity” of the language model and produce somewhat

consistent results to begin with.

The next step in prompt engineering focused on analysing the impact of the temperature

parameter on the generated hints. We investigated values from 0.1 to 0.9, with intermediate

increments of 0.2. This part was completed individually by the author of this work. We

examined all results and registered our impressions, findings and striking discoveries. For

this part of prompt engineering, we chose not to perform a strict evaluation based on

criteria. We preferred this approach as it allows for viewing a much higher amount of hints

and student programs. Furthermore, we did not know what to expect beforehand, and

this method let us familiarise ourselves with how adjustments to prompts will affect the

produced hint.

In the next chapter 5, we discuss this process in more detail, accompanied by intermedi-

ate results. After completing the prompt engineering, we built and integrated our findings

into the StAP-tutor. In the following section, we discuss how we evaluated our tool.

4.3 Evaluation

After building the StAP-tutor, we used it for two evaluations to assess the quality of the

generated hints: an evaluation by experts, and an evaluation by students through an ex-

periment. As described in section 2.1, teachers and students have different perspectives on

effective feedback. We, therefore, gathered data from both sides to get a complete view

of the hints’ quality. We first let students program freely work on an assignment with the

StAP-tutor. During this experiment, the students were also asked to rate the hint, and so

collecting a new dataset with the student programs with corresponding hints. We finally

evaluated the hints from the experiment with two experts based on several criteria and

compared the findings to the student’s opinions.

4.3.1 Student evaluation

We maintained an approach for the student experiment similar to the work of MacNeil et al.

[32], where students immediately evaluate explanations after appearing. After requesting

a hint, the interface immediately showed a pop-up with a rating request, as displayed in

Figure 4.4. We let students rate hints based on three statements:

1. The hint is clear.

2. The hint fits my work.

3. The hint is helpful.

We chose short and straightforward questions with a 5-point Likert scale to limit the re-

sistance to rate feedback and limit the time spent on answering. We specifically asked the

20

4. METHOD

students if the hints were clear and personalised, as we found in Chapter 2.1 that these

properties are associated with effective feedback according to students. Asking the students

about the helpfulness of the hints is self-evident. Finally, we included the option for the

participants to add a comment.

Figure 4.4: Interaction with StAP-tutor: the student is asked to rate the hint.

Three students participated in the experiment. The students were recruited based on

convenience sampling. Through former teaching and amicable relations, we found students

willing to participate in the experiment. All are first-year students in the Bachelor of

Artificial Intelligence at Utrecht University. This specific group of students already had some

programming experience and were, at that time, following a course that taught Python.

We considered experience in Python a prerequisite for our participants since the generated

hints should support students in how to proceed instead of identifying and fixing syntactical

errors.

Before carrying out the experiment, we evaluated our method with the Ethics and Pri-

vacy Quick Scan of the Utrecht University Research Institute of Information and Computing

Sciences. They classified this research as low-risk, with no fuller ethics review or privacy

assessment required.

Experimental setup

During the experiments, the students worked on an assignment individually in a private

room. All students worked on a provided device (Macbook Air 2021). The total duration of

the experiment was roughly one hour, from which the students worked on the assignments

21

4. METHOD

for 45 minutes. At the start of the experiment, we explained the goal of this research

and the experiment. We explicitly mentioned that the objective was to evaluate the hints,

not their programming experience. Then, we instructed the students on the experiment’s

workflow and assigned them a random number for saving data. We stimulated the students

to ask for as many hints as they wanted. Next, we asked them to request hints when they

thought they were starting the next step, which does not necessarily correspond to a real-

life situation. However, we wanted to prevent students from holding back, and gather as

many rated hints as possible. Furthermore, we assume this will not change the ratings of

the students.

To begin with the experiment, the student logged in with their assigned number. We let

the students work on a different assignment than used for prompt engineering. Hence, we

could validate if the prompt generates quality hints for this assignment and generalises to

other exercises. The exercise is called “clumpCount” and is publicly available on Coding-

Bat.org [43]. Its solution contains loops and implementing logic with conditionals, consisting

of several steps, making this exercise particularly suitable for generating next-step hints.

We made some adjustments to the problem description. We wanted the assignment to ex-

plicitly describe the input and output requirements, similar to the exercises used for prompt

engineering. We found that adding these complete descriptions helped with references to

variables from the problem description and student code. Accordingly, the exercise now in-

cluded reading input, which also serves as an extra step. The descriptions with and without

adjustments can be found in table 4.2.

After 45 minutes of working on the exercise, we asked several final questions about

the students’ overall impressions. We asked how they thought it went, how they would

compare using the StAP-tutor to using ChatGPT, thoughts on improvements and their

overall experience of the StAP-tutor. After the experiments, we collected the data for our

expert assessment, which we will discuss in the next section.

22

4. METHOD

Table 4.2: CountClump problem descriptions

System Description

CodingBat Say that a “clump” in an array is a series of 2 or more adjacent elements
of the same value. Return the number of clumps in the given array.
countClumps([1, 2, 2, 3, 4, 4]) → 2
countClumps([1, 1, 2, 1, 1]) → 2
countClumps([1, 1, 1, 1, 1]) → 1

StAP-tutor Say that a “clump” in an array is a series of 2 or more adjacent elements
of the same value. Return the number of clumps in the given array. For
example, an array with the numbers [2,2,3,5,6,6,2] has 2 clumps.
Input: The program receives a number n, followed by n lines with one
integer per line.
Output: Print out the number of clumps

Example solution n = int (input ())
l s t = []
for j in range (0 , n) :

l s t . append (int (input ()))

clump count = 0
i = 0
clump = False
while i < n − 1 :

cur r ent = l s t [i]
i f cur rent == l s t [i + 1] :

i f not clump :
clump = True
clump count += 1

else :
clump = False

i +=1

print (clump count)

4.3.2 Expert assessment

After conducting the experiments, we performed a qualitative evaluation of the hints by a

team of two experts. We created a list of evaluation criteria beforehand, shown in table

4.3. Before starting our evaluation, we assessed a randomly selected subset of six hints

to compare and check if we had similar understanding and interpretations of the criteria

and discussed until we had a final agreement. We adapted the classification of Keuning et

al. for the first criterion, omitting the category Knowledge of Meta-cognition since we did

not observe hints from this category during the prompt engineering phase. Furthermore,

we incorporated the Level-of-detail and Additional Information provided with the feedback

23

4. METHOD

as criteria. Regarding the hints’ phrasing, we evaluate the tone and measure the length

in the number of sentences. We do not consider longer hints to be better since we want

to prevent overloading the students with content, keeping the feedback informative but

concise. We consider the criteria Personalised, Appropriate, and Misleading Information

essential as they directly correlate with the hint’s effectiveness. Students prefer feedback

that is highly linked to their work. We encapsulate this in the criterion Personalised, for

which we check references to the student’s code or approach. We mark hints as Appropriate

when it fits the current state of the student program. The content should connect to the

student’s progress so far. We view misleading information as incorrect statements, which

can result in misconceptions among the student. For instance, hints can incorrectly state

that the student accurately implemented a step. As a result, this could damage the students’

understanding.

Table 4.3: Evaluation Criteria

Criteria Definition

Feedback type What type of feedback is the generated hint?

Information Does the hint contain additional information, such as an ex-
planation, tip or compliment?

Level-of-detail Is the hint bottom-out hint or a high-level description?

Personalised Does the hint refer to the student’s code or approach?

Appropriate Is the hint a suitable next step, given the current state of the
student program?

Specific Is the hint limited to only one next step?

Misleading information Does the hint contain misleading information?

Tone Is the phrasing of the hint direct, neutral or friendly?

Length What is the length of the hint in sentences?

Due to time constraints, one of the experts evaluated all other hints while the other assessed

half of the remaining hints. To validate our rating process, we documented the number of

agreements and calculated the inter-rater reliability per evaluation metric using Cohen’s

Kappa [6]. This metric expresses the agreement between two annotators on a classification

problem. In our case, we classify the hints on their quality based on our criteria.

24

5. PROMPT ENGINEERING

5 Prompt engineering

5.1 Engineering process

We performed prompt engineering as an iterative process, where we determined how to

proceed based on intermediate findings. In this section, we discuss the results of our design

process.

5.1.1 Problem description and solution

We first experimented with adding problem descriptions and model solutions to the prompt.

We found that only including the problem description resulted in the best outputs. A

prompt without a description and model solution led to the model guessing what the student

could do next, for example:

“The next step likely involves performing some mathematical operation using the

values assigned to v2, v3, and v4”.

The model attempted to provide a hint without addressing the overall purpose of the

code or the assignment. At the start of the exercise, these hints could serve as inspiration

for the student on what to do next. However, as the student continued with the assignment,

the model was unable to generate feedback that could support the student in completing

the exercise.

Adding one of the two attributes solved this problem and made the next-step hints more

related to the student code and assignment. However, the prompts with a model solution

often produce hints that advise students to compare their code to the model solution. For

instance:

“Think about how the student’s code is different from the model solution. What

changes need to be made to the student’s code to make it work correctly?”

Even after editing the prompts and explicitly commanding the model not to refer to the

solution, the model kept doing this. Another issue when including a model solution was

that model seemed incapable understand that the model solution is not strictly the only

possible solution. Using other variable names than provided in the description generated

hints concerning replacing the variable names. Or, the model would not recognise the

student had already implemented an operation but used different variable names than those

provided in the assignment. Finally, the feedback often centred around strictly following

the approach from the model solution even when students maintained another (allowed and

25

5. PROMPT ENGINEERING

correct) method. For instance, an obvious solution for solving the brackets exercise is using

a loop. One student was using join operations instead received several ‘tips’ to implement a

loop. Or, for the pies exercises, we found students did not compute the total costs in cents,

in contrast to the model solution. As a result, the students received:

“The student’s code seems to be attempting to calculate the cost of buying pies,

but it is not following the same approach as the model solution. Try suggesting

that the student should use the same formula as the model solution to calculate

the total cost of buying pies.”

We tried to indicate the solution as “Example solution” as we suspected “Model solution”

might indicate that this is the only solution. However, this did not solve the problem.

The mentioned issues above occurred when a model solution was in the prompt, with

or without a problem description. We, therefore, decided to continue our prompt design to

use prompts with only a problem description. Despite not containing a solution, the model

could still provide hints informing the students on their approach.

5.1.2 Instructions

While examining the effect of prompt attributes, we also analysed the influence of adding

different instructions. We started with three different instruction phrasings, shown in table

5.1 with corresponding hints. Figure 5.1 shows the student program for which the hints

were generated. Because we had no idea of effective prompts for hint generation, we first

wanted an initial idea of how phrasing would affect the generated feedback. For this part,

we did an explorative round where we documented our findings.

Figure 5.1: Code snippet used to generate the hints from table 5.1

As illustrated in table 5.1, the prompt instructions generated output with the same

subject but expressed differently. We did not discover when the instructions would produce

feedback with other suggestions content-wise. In almost all cases, the generated outputs

contained information on how to proceed, which was our starting point.

Accordingly, we analysed the results for three phrasings. We noticed specific patterns

for each instruction. The prompt instructions had only slight variations among each other,

consisting of a few different words. However, the generated feedback had notably different

26

5. PROMPT ENGINEERING

Table 5.1: Example hints for different prompt instructions
Prompt Hint

What is the next step The next step is to calculate the total cost
of N pies by adding v1 and v2.

Give a hint for the next step The next step should involve calculating
the total cost of N pies using the updated
values of v1 and v2, and then converting
the total cost into dollars and cents.

Explain the next step for a student It seems like you are trying to calculate the
total cost of N pies. You have correctly
multiplied the cents by the number of pies,
but you also need to multiply the dollars
by the number of pies. You can do this by
updating the value of v1 to be v1 multiplied
by v3. Then you can use the updated values
of v1 and v2 to calculate the total cost of
N pies.

results, especially regarding additional information and phrasing of the hints. The prompt:

“What is the next step?” frequently contained code, more than the other two prompts. In

addition, the phrasing was a bit more straightforward and blunt, which is also shown in

table 5.1. Consequently, we considered this prompt less suitable for supporting students.

Contrarily, “Explain the next step for a student” resulted in relatively longer hints while

sometimes also explaining the student’s code. However, even though code explanations can

help students understand to trace code, we regarded the explanations as undesired. We

aimed to assist with how to proceed, and the hint should focus on explaining that. The

phrasing of the generated feedback with this prompt was similar to “Give a hint for the

next step”. Both yielded more friendly and carefully phrased hints than the first instruction.

Furthermore, this instruction produced feedback formulated as a hint without revealing the

exact answer. For instance, “The next step involves computing the total costs in cents.”

Based on all these findings, we decided to further the prompt engineering by combining

keywords from the last two prompts, “hint” and “student”.

We again defined three prompts. Since we noted that the third prompt from the previous

section had some good elements, such as its phrasing and references to the student code,

we inserted the keyword “student” in our new instruction prompt. We decided to omit

“explain” as we presume it caused too long feedback and undesirable code explanations.

We decided to analyse the prompt: “Give this student a hint for the next step”. After briefly

experimenting with this new prompt, we found it often generated relatively long outputs.

So, we replaced it with two variations which instruct the model explicitly to create shorter

hints. Since we initially found that changing only a few words to the prompt produced a

27

5. PROMPT ENGINEERING

notable difference in the phrasing, we included two new instructions instead of just one:

1. “Give a hint for the next step.”

2. “Give this student a short hint for the next step.”

3. “Give this student a hint for the next step. The hint should be one or two sentences.”

We used these three instructions for our experiments with the temperature parameter.

5.1.3 Temperature

First, we explored different temperature values for the “Give a hint for the next step”

instruction (0.1, 0.3, 0.5, 0.7, and 0.9). We did a short comparison for prompts with only a

description and a description combined with a model solution. We hoped to rule out that

increasing the temperature would overcome the issues mentioned in section 5.1.1. However,

with a brief analysis, we still encountered the same problems and thus chose to continue

only with the description prompt.

To analyse the impact of temperature, we decided beforehand to focus on the effects

per prompt and determined the optimal value for the temperature independently for each

prompt. As the value for the temperature increased, we noted that hints tended to contain

unusual or unexpected suggestions. For example, we saw several recommendations for using

a stack in the brackets exercise, which is typically unnecessary and probably an unknown

data structure to novel programmers. However, we saw improvements too, where hints

were more tailored to the students and contained more references to their solutions. We

counted the number of useful and unhelpful suggestions. We noticed a shift from having

more disadvantages than advantages for every prompt around a temperature of 0.7. Hence,

we picked a temperature of 0.5 for our final prompts.

5.2 Choosing the best prompt

To ultimately choose the best prompt, we ranked the three prompts from the previous

section, all with a value for the temperature of 0.5. We did this in a team of two, this

work’s author and the supervisor. We first randomly picked ten student programs for both

exercises. Then, we compared the hints generated per program and ranked them from one

to three, best to worst, respectively. The final score for each prompt was the sum of its

total ratings, as shown in table 5.2. We decided to implement the most-right prompt from

the table in our StAP-tutor.

28

5. PROMPT ENGINEERING

Table 5.2: Ranking of prompts. We ranked the prompts with scores 1, 2, and 3, from best
to worst, respectively.

Give a hint for the
next step

Give this student a
short hint for the next
step.

Give this student a
hint for the next step.
The hint should be one
or two sentences.

Brackets 20 27 16
Pies 25 19 17

Total score 45 46 33

5.3 Best prompt practices

We discovered that LLMs might not always benefit from more information, as including a

model solution led to feedback that forced specific approaches from the solution. Program-

ming exercises have large solution spaces, and teachers can recognise valid solutions that

differ from the model solution. Furthermore, they can support and help students without

forcing them to change their approach. This adaptivity is probably not something that

LLMs possess. Once provided with a model solution, LLMs create hints that are always

related to that solution.

A similar error of LLMs was often to refer to the model solution as a hint, something

a teacher would never do. Even when we specified in the prompt that it could not refer to

the model solution, it still occurred several times. In their work, Hellas et al. encounter

the same problem [18]. For now, we believe that LLMs cannot handle or interpret certain

constraints very well. In another example, to shorten our hints, we included the sentence

“use at most three sentences”. This prompt produced only outputs with a length of exactly

three sentences.

Regarding the phrasing, we found that using several keywords, such as “hint” and “stu-

dent”, can help with personal references and a friendly tone. Presentation is an important

component of feedback. Students benefit from details and motivational words. Using these

keywords, we found that the hints contained explanations, tips and sometimes compliments.

For example:

“The formula for calculating the cost of N pies is correct, but you need to separate

the result into dollars and cents. Remember that 100 cents make 1 dollar. You

can use the modulo operator (%) to get the remainder when dividing by 100,

which gives the cent value.”.

Here, we see that the feedback compliments the student for correctly computing the

total costs and provides extra tips for the operations the students can use. Additionally,

using the keyword “hint” prevented hints that spoiled the answer, as we saw with using

prompts “What is the next step?”, which often produced code, while “Give a hint for the

next step” gives tips such as “the next step involves using a for a loop.”

29

5. PROMPT ENGINEERING

However, one should be careful with formulating the instruction. One error we encoun-

tered was that the model could not recognise when the student completed the assignment

and would always recommend a ‘next step’. We briefly experimented with adding something

to the prompt to overcome this problem. For instance, we experiment with the prompt “If

the student is done, give a compliment. Else, give a next step hint.” The hints for this

prompt would recognise situations where the model was incorrect before. However, we

found that all generated feedback was much longer and had (too) many compliments. So

adding “give a compliment” altered the complete outcome while we expected this to happen

for only some of the hints. We, therefore, chose not to continue with this prompt in our

experiments.

Finally, increasing the value for the temperature parameter might help produce better

feedback. Yet, there is a risk of unusual or useless suggestions, which can be harmful,

especially for novices. More experienced programmers could probably get inspiration from

such feedback and recognise some tips are unnecessary and not helpful. Novice programmers

might consider these hints the only truth and get dragged along with the proposed feedback.

Nevertheless, increasing the temperature also resulted in more references to the student’s

code and approach. Hence, choosing the temperature value depends on the context and

should be carefully experimented with before applying.

We will conclude this chapter by reflecting on our formulated research question regarding

prompt engineering:

RQ2 What prompt characteristics are suitable for generating effective next-step

hints with LLMs?

Prompt engineering is a complex process since there are limitless possibilities to experi-

ment with, and the LLMs output will vary with every change. Our most meaningful findings

are that including a problem description and keywords such as “hint” or “student” can help

generate next-step hints. In addition, we found that increasing the value of the temperature

parameter up until a certain level contributes to more personalized feedback. Furthermore,

our work could serve as a foundation for prompt engineering practices to generate other

types of automated feedback.

30

6. EVALUATING NEXT-STEP HINTS

6 Evaluating next-step hints

6.1 StAP-tutor

After choosing and discovering the best prompt practices, we built and implemented the

corresponding settings in our StAP-tutor (Step Assisted Programming Tutor). The StAP-

tutor is a web interface combined with a hint-generation module. The interface has various

functionalities, such as choosing exercises, requesting hints and checking your solution, as

shown in Figure 6.1. After starting an assignment, the student can ask for help by pressing

the hint button. This button sends a request to the hint-generating module, an API written

in Python. This API constructs a prompt for the current student program and calls the

OpenAI API, from which we chose the gpt-3.5-turbo model. Then, the API send the hint

back to the interface, where it is displayed to the student.

Figure 6.1: StAP Tutor interface

31

6. EVALUATING NEXT-STEP HINTS

6.2 Student experiment

We first tested our tool with the student experiment. The students requested 11, 20 and 17

hints, which sum up to 48 in total. Examining the student’s responses to the hint ratings,

shown in Figure 6.2, we notice the students often marked the hints as clear and fitted to

their work. However, the students were less convinced about the usefulness of the feedback.

About only half of the time, they tagged the hints as helpful. Some students included

a comment with an explanation. One reason was that the feedback was useful as it was

the same as at the beginning of the exercise, but the student had already made significant

progress. Another student commented that the hint contradicted a previously given hint,

suggesting that the work done by the student was for nothing.

Even though all students stated that the exercise corresponded with their current skills

and programming level, not one student had a correct solution at the end of the experiment.

The students had especially trouble with the logic for correctly counting the clumps, which

required tracking and implementing when to ‘count’ a clump with conditional statements.

The hint is useful The hint is clear The hint fits my work
0

5

10

15

20

N
um

be
r o

f H
in

ts

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 6.2: Student ratings per question

6.2.1 Overall students’ impression

After the experiment, we asked the students several final questions about their experiences

and opinions. Overall, they had a positive impression of the StAP-tutor and appreciated

the hints, especially at the beginning of the experiment. The students found that at the

start of the assignment, the feedback fits the student’s work and had practical suggestions

for what to do next. However, after a while, when the student was stuck with more complex

code, the hints were not helpful anymore. The students stated they needed more detail or

practical suggestions, while the feedback remained too vague. In addition, the students

indicated they found it difficult to program without additional information a standard IDE

provides, such as simple syntax errors or the output generated by their code.

32

6. EVALUATING NEXT-STEP HINTS

Notably, all students mentioned using the StAP-tutor to request multiple hints for the

same code. As the language model is not deterministic, it might help to regenerate a hint

when it is too vague or not necessarily helpful. They reported that regenerating creates

a different phrasing or provides more or new information. However, one of the students

stated that requesting the same hints for the same code could even be more helpful if those

hints entail more detailed content.

Finally, the students agreed that compared to ChatGPT, the StAP-tutor focuses more on

your existing code instead of providing a general solution with much additional information.

The students thought this might help with learning as this also reduces the temptation to

copy and paste the assignment and generate a whole solution. However, as one of the

students points out, an advantage of ChatGPT is that there is a possibility to ask more

specific questions yourself. The StAP-tutor automatically generates the prompts and has

no opportunity for student input.

6.3 Expert assessment

We started our expert evaluation by analysing if we had similar interpretations of the

evaluation criteria. We randomly selected a group of 19 hints and compared our ratings

based on the criteria, for which the agreements are shown in table 6.1. Additionally, we

computed the corresponding inter-rater reliability with Cohen’s Kappa. According to a

proposed interpretation from Landis et al., we interpret values from 0.21-0.40 as fair, 0.41-

0.60 as moderate, 0.61-0.80 substantial and 0.81-1.00 as almost perfect [24]. Overall, we

consider that there exists a substantial agreement between the ratings of the two experts

since we disagreed on only 13 out of the 152 values. The criteria Level-of-detail and Tone had

the lowest score, which was expected as these are assumably relatively subjective categories.

We discussed and made agreements on the clashing values. Then, we merged the ratings

with those for the remaining 29 hints. These hints were rated by only the author of this

work. We will analyse these results in the remainder of this section.

Table 6.1: Inter-rater reliability for the expert evaluation
Feedback
Type

Information Level-of-
detail

Personalized

Agreements 19/19 18/19 16/19 18/19
Cohen’s kappa 0.872 0.787 0.387 0.883

Appropriate Specific Misleading
Information

Tone

Agreements 18/19 18/19 17/19 15/19
Cohen’s kappa 0.855 0.642 0.683 0.467

33

6. EVALUATING NEXT-STEP HINTS

Proceed

39
(81.2%)

Mistake

7
(14.6%)

Task

2
(4.2%)

Proceed Mistake Task

Figure 6.3: Feedback Type

High-level

32
(66.7%)

Bottom-out
16

(33.3%)

High-level Bottom-out

Figure 6.4: Level of detail

Friendly

30
(62.5%)

Neutral
11

(22.9%)

Directive

7
(14.6%)

Friendly Neutral Directive

Figure 6.5: Tone

Looking at figures 6.3, 6.4, and 6.5, we see the frequencies for the criteria Feedback Type,

Level-of-detail and Tone. The majority of the generated hints correspond with the type

Knowledge About How To Proceed, which is ultimately the goal of this research project.

Moreover, we found that the hints are more often high-level than bottom-out. Note, in

contrast with the type of feedback, we did not particularly specify in the prompt the level

of detail we desired. Still, the model tended to generate feedback with more high-level hints

with these specific settings. Finally, we found that the feedback mostly had a friendly tone.

We interpreted the tone as friendly when the hints were more suggestive than directive. For

example: “You consider trying to change the condition of the for loop” instead of “Change

the for loop condition”.

No Tip Explanation C&T Compliment T&E
0

5

10

15

20

C
ou

nt

Figure 6.6: Counts for the additional information criteria. Categories C&T and T&E are a
combination of additions. So, a compliment and tip, or tip with explanation, respectively.

We found that friendly hints often contain additional information. Naturally, when feedback

has a motivating statement such as “Keep up the good work!”, we interpret this as friendly

or kind. Figure 6.6 shows the frequencies for every additional information category. We

occasionally noticed that feedback contained smaller tips in addition to the ‘main’ hint.

These tips would often refer to something the student was not yet working on. For example,

34

6. EVALUATING NEXT-STEP HINTS

“Also, try to think about the conditions under which a clump exists.” or “Don’t forget to

handle the cases where the clump ends and a new clump begins”.

All evaluation metrics with binary values are presented in Figure 6.7. We consider

these positive results, as feedback is frequently personalised, appropriate and specific. We

saw hints with explicit references to variables from the student code and suggestions that

referred to the current implementation of the student. Furthermore, the feedback usually

entailed only one specific step, which was appropriate regarding the student’s progress.

However, we should be cautious about hints containing misleading information. We noted

the misleading information was not notably wrong at first sight but more often subtle. For

example, feedback explained incorrectly why some part is incorrect: “The for loop of your

current code may reach an out-of-range index error if it reaches the end of the list without

finding a clump.”. Or, it gives suggestions that will not help to solve the problem: “You

need to make sure your program doesn’t break when the input array has only one element.”.

Finally, we found misleading information is often connected to hints that refer to edge cases,

while a correct solution did not require handling these cases separately.

Personalised Appropriate Specific Misleading Information
0

10

20

30

40

C
ou

nt

Yes
No

Figure 6.7: Frequencies of binary evaluation metrics: Personalised, Appropriate, Specific
and Misleading Information

6.4 The quality of next-step hints generated by LLMs

We found overall that the outcomes have promising results. A substantial part of the feed-

back was specific, which we see as a positive result since too complex feedback can prevent

students from attentively reading and comprehending the provided information. Addi-

tionally, for solving programming exercises, one can break down the problem into smaller

sub-tasks. This strategy helps students realise how to break down a complex problem into

subtasks and perform a sequence of operations that lead to a solution [23]. Students agreed

the hints were overall clear, and most feedback consisted of 1 or 2 sentences, with some

outliers to three sentences. Hence, we believe that LLM-generated feedback conforms to

35

6. EVALUATING NEXT-STEP HINTS

the right level of complexity and limited information and is easy for the students to un-

derstand. We showed that LLMs can respond to students’ help requests with appropriate

and potentially helpful answers, similar to the work of Hellas et al. [18]. Furthermore, the

hints are overall easy to understand, as LLM-generated explanations [27]. This work joins

other research by highlighting the potential and utility of applying LLMs in programming

education.

It was interesting to see how students interacted with the StAP-tutor. They let the tool

create multiple hints for the same code without intermediate changes. According to the

students, this would help when feedback was not clear or helpful. An advantage of using

LLMs for hint generation, their responses are not deterministic as opposed to other data-

driven hints [49, 52]. Hence, they can create various distinctive hints with the same prompt.

Depending on the prompt and the temperature, these hints may vary both in phrasing and

content. A different formulation might help the student understand the feedback if it was

initially not clear.

However, all students indicated they needed several times more support than provided

during the experiment. The used prompt tends to generate high-level hints. These hints

can help the students get started and support them with constructing an idea for an overall

approach. Yet, when approaching the end of the exercise, it is only logical that students

who are stuck do not benefit from feedback that explains how to. And in these cases, it

might be necessary to use a different prompt instead of generating multiple hints with the

same prompt. We will elaborate on this in section 7.3. Contrarily, another demonstrated

advantage of our prompt practices is they frequently include additional information, such as

compliments, tips and explanations. Furthermore, students mentioned they liked how the

hints occasionally added some ‘motivational words’, which made the interaction feel more

personal.

An obvious limitation of the current performance of LLM-generated hints is that they

occasionally contain misleading information. This issue is hard to resolve with further

prompt engineering as we believe it is not directly correlated to prompt practices but relates

to the overall capability of the LLM itself. We expect that as the performance of LLM

increases, what most certainly will happen, these limitations will resolve on their own.

However, when we use LLM in the context of teaching, we should be cautious about them

spreading incorrect information, as this could negatively impact the student’s learning. We

found it important the feedback was not overly confident and directive, so the student was

encouraged to think critically about the hint themselves.

RQ3What are students’ and experts’ perceptions of the quality of LLM-generated

next-step hints, and how do they rate them?

Both students and experts have positive impressions about the potential of using LLMs

for generating next-step hints. While the feedback succeeded at providing tailored support

well-fitted to the student, it was not always helpful and may contain misleading information.

36

7. DISCUSSION

7 Discussion

So far, we have discussed the method and results of our work. We made suggestions for the

best prompt practices and reflected on the quality of the generated hints from the StAP-

tutor. This chapter first reviews our main research question. Then, we will discuss the

limitations of our research regarding our prompt-engineering process, experimental set-up

and reproducibility of this work. Hereafter, we address how future research can address

these limitations and discuss several other directions for future work.

7.1 Generating next-step hints using LLMs

This work ultimately aims to put perspective on using LLMs in programming education.

More specifically, contributing work exploring other applications, we examined possibilities

concerning generating next-step hints.

RQ1 To what extent can we use LLMs to generate informative and effective

next-step hints for Python introductory exercises?

We found that the best method for generating next-step hints is by using prompts that refer

to a problem description and include keywords related to the context of this application, such

as “student” or “hint”. Furthermore, we can use LLM to generate personalised feedback

referring to the student’s code and approach. Compared to other data-driven approaches,

these models can generate personalised feedback with additional information while they do

not require large datasets or complex computational methods. In contrast with standard

hints, which are mere code edit suggestions, these hints contain compliments, explanations

and tips. This additional information was well-received by the students. Nevertheless,

there are still some points for improvement, as the LLM-generated feedback now may entail

misleading information. We expect that as the performance of LLM improves, this issue

will be less occurring. However, we should be cautious about using these incorporating

automatically generated feedback as it might harm the students’ understanding.

7.2 Threats to validity

7.2.1 Prompt engineering

As mentioned earlier, most of the studies that used LLMs in the context of program-

ming education did not report anything regarding prompt engineering and their evaluation.

37

7. DISCUSSION

Although we aimed for an extensive engineering process, we had to make some limiting

decisions. First, we primarily examined the effects of using different attributes, phrasings

and temperature values isolated from each other. This approach allowed us to analyse

the influence of these prompt characteristics independently. However, we acknowledge that

these factors can influence each other. For example, we first found that including a model

solution was not beneficial. However, this decision was based on a low temperature. We did

a short exploration to see whether the same problems would hold for higher temperature

values, but we did not extensively research this. As we did not observe clear improvements,

we ultimately decided not to include model solutions. Nevertheless, this example illustrates

our approach is not exhaustive, but we aimed to provide an overview of possible effective

prompt practices for generating programming feedback.

Secondly, we have only analysed a small set of prompt instructions by experimenting

with a few keywords. As we were content with the preliminary results, we chose not to

explore more instructions with completely different phrasings. Using other formulations

could have led to hints of different qualities. We chose an approach with relatively minor

changes as we registered that these would still impact the output of the LLM. With this

method, we aimed to provide guidelines for choosing a prompt instead of analysing the

behaviour of a large set of prompts.

Lastly, we executed the first part of prompt engineering without strict evaluation. We

created hints for two exercises, multiple students and code snapshots. We aimed for a general

impression of how the LLM would perform for a wide variety of code states. Consequently,

we did not generate multiple hints with the same settings for the student programs as this

was not feasible to do as well within our given time frame. As LLM are non-deterministic,

the output may variate for the same prompt, which we did not analyse. However, as we

had consistent findings in our evaluation, we believe that despite our method being more

explorative, our proposed guidelines for prompt engineering on this topic are valid.

7.2.2 Experimental setup

Regarding the evaluation, we performed the student experiments with just three students

due to a lack of time and voluntary participation. Furthermore, we only examined the

students’ opinions instead of objective factors indicating improved learning. We, therefore,

can not make strong statements about the effect of the hints. Such conclusions require a

long-term study on a large group of students and examination of pre-and post-tests with

a control group. However, setting up the evaluation of intelligent tutoring systems is a

complex task [2]. Additionally, analysis of students’ perceptions is currently the most

common method for evaluating the hints’ effectiveness [8]. Future work could support this

research with an extended evaluation.

In addition to the student experiments, we performed expert assessments. We aimed

to capture as many important factors for effective feedback into our evaluation criteria,

38

7. DISCUSSION

supported by the literature from section 2.1. Nevertheless, capturing effectiveness based

on a few characteristics is challenging since this depends on many factors. For instance,

students could ask for hints for themselves, while not necessarily proven to be the best

practice [20]. Implementing other methods for timing the feedback, however, require a

method for automating hint delivery, which was outside the scope of this work. We discuss

this and other possible extensions in section 7.3.

7.2.3 Reproducibility

Several studies on LLM-related topics face the problem that these models are constantly

updated, which might produce other results. During the execution of our experiments,

OpenAI released GPT-4. It was not feasible anymore to implement this new model in our

work. However, we did perform some minor experiments using GPT-4 and compared its

results with those generated by the GPT-3.5-turbo API. We found that the same prompt

for both models outputs, at first glance, different results. Different results do not necessarily

imply that the prompts found effective during this work will not work for another model. It

is unknown how prompts translate to new models. For instance, the phrasing and content

may vary and give other results than was desired. However, we primarily found that GPT-

4 created hints with good suggestions we had not seen before with our best prompts. We

expect our prompt practices also work for updated versions, but other research is required

to confirm this hypothesis.

7.3 Future work

We believe this work sets out various possibilities for future work regarding generating (next-

step) hints in programming education. Although not perfect, at this time, LLM-generated

hints certainly have potential, and we can explore plenty of options in further research. In

this section, we mention merely a few suggestions, yet there are many directions to continue

from this work.

As the students pointed out during their experiment, in some cases, the hints were

not as helpful as they needed details. Students may benefit from help described at different

levels of information depending on the context. Once students are stuck, they might require

more in-depth feedback that offers better guidance than high-level hints. During prompt

engineering, we did not aim to generate hints with a specific level of detail beforehand, as

we had no prior knowledge of what the prompts would generate. Our StAP-tutor eventually

used only one prompt for hint generation. The results demonstrated that our chosen prompt

outputs both bottom-out and high-level hints.

With this knowledge, future work could explore prompt engineering further, investigat-

ing the relation between prompts and the level of detail from the hints they generate. On

another note, one could study generating feedback according to the classification provided

39

7. DISCUSSION

by Keuning et al. [22], as mentioned in 2.3. To take this even a step further, one could

combine these findings with advanced methods for student modelling to provide person-

alised feedback and guidance based on the student’s progress. For instance, depending on

the number of hints requested for a specific state, a digital learning environment could use

a different prompt to obtain feedback providing more guided assistance. Other possible

advances are to generate positive and other types of feedback. Or to create hints for more

intermediate programming exercises. Implementing these ideas was out of the scope of this

research.

Another missing feature pointed out by students was the ability to influence the topic

of hints, which is possible when a student uses ChatGPT directly. Prather et al. found

similar frustrations by students while they work with Copilot [46]. We also noticed during

evaluation that hints occasionally did not correspond to the part of the code that students

were struggling with at that time. For example, the StAP-tutor suggested writing already-

written pieces of code. As a next step, the StAP-tutor could implement student control.

For instance, the interface could include an option for the students to indicate what exact

part of the code they want help with. Then, in further research, one could examine how to

present this additional information in the prompt such that the hints address that specific

part of the code.

More subtle suggestions for future work are adding few-shot learning or experimenting

with providing multiple solutions in the prompts. Both approaches were beyond the scope

of this research. To improve the performance of LLMs, one can include few-shot-learning

during the prompting process [4]. With few-shot-learning, one includes examples, so-called

shots, in the prompts. LLM could then learn and follow the structure or pattern provided

in the shots. However, we required a set of expert-validated example hints to implement

this approach, which we did not have for our dataset. Such annotated datasets are rare but

certainly have value for programming education research. Letting LLMs learn from expert

feedback might improve the quality of LLM-generated hints even more.

40

8. CONCLUSION

8 Conclusion

In this work, we investigated how to use LLMs to generate next-step hints for introduc-

tory programming exercises in Python. First, we explored various prompt practices to

discover what prompts would yield the best feedback. We analysed the effects of adding a

model solution and description to the prompt, using different instructions and varying the

value for the temperature parameter. According to our findings, it is best to only include a

problem description and use keywords such as “student” and “hint” in the prompt. In addi-

tion, increasing the temperature parameter might contribute to more personalised feedback.

However, too high values for the temperature may cause odd and unhelpful suggestions.

We then created the StAP-tutor based on these results. With our tool, students can

practice programming with multiple exercises. The ratings and discussion from our student

experiment indicated that students had an overall positive impression of the hints. The

LLM-generated feedback was personalised, appropriate and contained helpful additional

information such as tips and explanations. Our expert assessment support these findings,

but also found that the hints contained misleading information.

Although we employed two evaluation methods, we need a more methodical examination

of the hints’ quality. We can only then make validated statements about the effectiveness of

the LLM-generated feedback. Another limitation of this work is that the feedback was gen-

erally high-level, which becomes less valuable as students proceed with solving the problem.

One suggestion for future work is to examine whether other prompts may be more effective

in these cases and eventually recognise such situations. Furthermore, we can expand our

work by investigating generating multiple feedback types, incorporating student control in

the prompts or experimenting with few-shot learning.

In conclusion, our study highlights the potential of using LLM in programming education

by generating next-step hints. In conjunction with other related research, we demonstrated

that LLMs can have various applications within programming education by supporting both

students and teachers. Therefore, we should not concentrate on the complications of these

advances but on the practical value they bring to education in general instead.

41

BIBLIOGRAPHY

Bibliography

[1] Tiffany Barnes and John Stamper. “Toward automatic hint generation for logic proof

tutoring using historical student data”. In: Intelligent Tutoring Systems: 9th Inter-

national Conference, ITS 2008, Montreal, Canada, June 23-27, 2008 Proceedings 9.

Springer. 2008, pp. 373–382.

[2] Joseph E Beck et al. “Does help help? Introducing the Bayesian Evaluation and As-

sessment methodology”. In: Intelligent Tutoring Systems: 9th International Confer-

ence, ITS 2008, Montreal, Canada, June 23-27, 2008 Proceedings 9. Springer. 2008,

pp. 383–394.

[3] Brett A Becker et al. “Programming Is Hard-Or at Least It Used to Be: Educational

Opportunities and Challenges of AI Code Generation”. In: Proceedings of the 54th

ACM Technical Symposium on Computer Science Education V. 1. 2023, pp. 500–506.

[4] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural

information processing systems 33 (2020), pp. 1877–1901.

[5] Mark Chen et al. “Evaluating Large Language Models Trained on Code”. In: arXiv

e-prints (2021), arXiv–2107.

[6] Jacob Cohen. “A coefficient of agreement for nominal scales”. In: Educational and

psychological measurement 20.1 (1960), pp. 37–46.

[7] Phillip Dawson et al. “What makes for effective feedback: Staff and student perspec-

tives”. In: Assessment & Evaluation in Higher Education 44.1 (2019), pp. 25–36.

[8] Galina Deeva et al. “A review of automated feedback systems for learners: Classi-

fication framework, challenges and opportunities”. In: Computers & Education 162

(2021), p. 104094.

[9] Paul Denny, Viraj Kumar, and Nasser Giacaman. “Conversing with copilot: Exploring

prompt engineering for solving cs1 problems using natural language”. In: Proceedings

of the 54th ACM Technical Symposium on Computer Science Education V. 1. 2023,

pp. 1136–1142.

[10] Paul Denny et al. “Computing Education in the Era of Generative AI”. In: arXiv

preprint arXiv:2306.02608 (2023).

[11] Jean-Baptiste Döderlein et al. “Piloting Copilot and Codex: Hot Temperature, Cold

Prompts, or Black Magic?” In: arXiv e-prints (2022), arXiv–2210.

42

BIBLIOGRAPHY

[12] Zhangyin Feng et al. “CodeBERT: A Pre-Trained Model for Programming and Natu-

ral Languages”. In: Findings of the Association for Computational Linguistics: EMNLP

2020. 2020, pp. 1536–1547.

[13] James Finnie-Ansley et al. “My AI Wants to Know if This Will Be on the Exam:

Testing OpenAI’s Codex on CS2 Programming Exercises”. In: Proceedings of the 25th

Australasian Computing Education Conference. 2023, pp. 97–104.

[14] James Finnie-Ansley et al. “The Robots Are Coming: Exploring the Implications of

OpenAI Codex on Introductory Programming”. In: Australasian Computing Educa-

tion Conference. 2022, pp. 10–19.

[15] Davide Fossati et al. “Data driven automatic feedback generation in the iList in-

telligent tutoring system”. In: Technology, Instruction, Cognition and Learning 10.1

(2015), pp. 5–26.

[16] Qiang Hao et al. “Towards understanding the effective design of automated formative

feedback for programming assignments”. In: Computer Science Education 32.1 (2022),

pp. 105–127.

[17] John Hattie and Helen Timperley. “The power of feedback”. In: Review of educational

research 77.1 (2007), pp. 81–112.

[18] Arto Hellas et al. “Exploring the Responses of Large Language Models to Beginner

Programmers’ Help Requests”. In: arXiv preprint arXiv:2306.05715 (2023).

[19] Alastair Irons and Sam Elkington. Enhancing learning through formative assessment

and feedback. Routledge, 2021.

[20] Johan Jeuring et al. “Towards Giving Timely Formative Feedback and Hints to Novice

Programmers”. In: Proceedings of the 2022 Working Group Reports on Innovation and

Technology in Computer Science Education. 2022, pp. 95–115.

[21] Majeed Kazemitabaar et al. “Studying the effect of AI Code Generators on Support-

ing Novice Learners in Introductory Programming”. In: Proceedings of the 2023 CHI

Conference on Human Factors in Computing Systems. 2023, pp. 1–23.

[22] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. “A systematic literature review

of automated feedback generation for programming exercises”. In: ACM Transactions

on Computing Education (TOCE) 19.1 (2018), pp. 1–43.

[23] Theodora Koulouri, Stanislao Lauria, and Robert D Macredie. “Teaching introductory

programming: A quantitative evaluation of different approaches”. In: ACM Transac-

tions on Computing Education (TOCE) 14.4 (2014), pp. 1–28.

[24] J Richard Landis and Gary G Koch. “The measurement of observer agreement for

categorical data”. In: biometrics (1977), pp. 159–174.

43

BIBLIOGRAPHY

[25] Timotej Lazar and Ivan Bratko. “Data-driven program synthesis for hint generation

in programming tutors”. In: Intelligent Tutoring Systems: 12th International Confer-

ence, ITS 2014, Honolulu, HI, USA, June 5-9, 2014. Proceedings 12. Springer. 2014,

pp. 306–311.

[26] Nguyen-Thinh Le. “A classification of adaptive feedback in educational systems for

programming”. In: Systems 4.2 (2016), p. 22.

[27] Juho Leinonen et al. “Comparing Code Explanations Created by Students and Large

Language Models”. In: arXiv preprint arXiv:2304.03938 (2023).

[28] Juho Leinonen et al. “Using large language models to enhance programming error

messages”. In: Proceedings of the 54th ACM Technical Symposium on Computer Sci-

ence Education V. 1. 2023, pp. 563–569.

[29] Yujia Li et al. “Competition-level code generation with alphacode”. In: Science 378.6624

(2022), pp. 1092–1097.

[30] Raymond Lister, Colin Fidge, and Donna Teague. “Further evidence of a relationship

between explaining, tracing and writing skills in introductory programming”. In: Acm

sigcse bulletin 41.3 (2009), pp. 161–165.

[31] Elena Lyulina et al. “TaskTracker-Tool: A Toolkit for Tracking of Code Snapshots

and Activity Data During Solution of Programming Tasks”. In: Proceedings of the

52nd ACM Technical Symposium on Computer Science Education. SIGCSE ’21. Vir-

tual Event, USA: Association for Computing Machinery, 2021, pp. 495–501. isbn:

9781450380621. doi: 10.1145/3408877.3432534. url: https://doi.org/10.1145/

3408877.3432534.

[32] Stephen MacNeil et al. “Experiences from using code explanations generated by large

language models in a web software development e-book”. In: Proceedings of the 54th

ACM Technical Symposium on Computer Science Education V. 1. 2023, pp. 931–937.

[33] Stephen MacNeil et al. “Generating diverse code explanations using the gpt-3 large

language model”. In: Proceedings of the 2022 ACM Conference on International Com-

puting Education Research-Volume 2. 2022, pp. 37–39.

[34] Yana Malysheva and Caitlin Kelleher. “An Algorithm for Generating Explainable

Corrections to Student Code”. In: Proceedings of the 22nd Koli Calling International

Conference on Computing Education Research. 2022, pp. 1–11.

[35] Samiha Marwan et al. “The impact of adding textual explanations to next-step hints

in a novice programming environment”. In: Proceedings of the 2019 ACM conference

on innovation and technology in computer science education. 2019, pp. 520–526.

44

https://doi.org/10.1145/3408877.3432534
https://doi.org/10.1145/3408877.3432534
https://doi.org/10.1145/3408877.3432534

BIBLIOGRAPHY

[36] Antonija Mitrovic, Kenneth R Koedinger, and Brent Martin. “A comparative analy-

sis of cognitive tutoring and constraint-based modeling”. In: User Modeling 2003: 9th

International Conference, UM 2003 Johnstown, PA, USA, June 22–26, 2003 Proceed-

ings 9. Springer. 2003, pp. 313–322.

[37] Elham Mousavinasab et al. “Intelligent tutoring systems: a systematic review of char-

acteristics, applications, and evaluation methods”. In: Interactive Learning Environ-

ments 29.1 (2021), pp. 142–163.

[38] Susanne Narciss. “Feedback strategies for interactive learning tasks”. In: Handbook

of research on educational communications and technology. Routledge, 2008, pp. 125–

143.

[39] Florian Obermüller, Ute Heuer, and Gordon Fraser. “Guiding next-step hint genera-

tion using automated tests”. In: Proceedings of the 26th ACM Conference on Innova-

tion and Technology in Computer Science Education V. 1. 2021, pp. 220–226.

[40] OpenAI. “GPT-4 Technical Report”. In: ArXiv abs/2303.08774 (2023).

[41] OpenAI. OpenAI Codex. url: https://openai.com/blog/openai- codex/. (ac-

cessed: 30.12.2022).

[42] Benjamin Paassen et al. “The Continuous Hint Factory-Providing Hints in Vast and

Sparsely Populated Edit Distance Spaces”. In: Journal of Educational Data Mining

10.1 (2018), pp. 1–35.

[43] Nick Parlante. CodingBat. url: https://codingbat.com/python. (accessed: 24.02.2023).

[44] Neil Perry et al. “Do Users Write More Insecure Code with AI Assistants?” In: arXiv

preprint arXiv:2211.03622 (2022).

[45] Tung Phung et al. “Generating High-Precision Feedback for Programming Syntax

Errors using Large Language Models”. In: arXiv preprint arXiv:2302.04662 (2023).

[46] James Prather et al. “” It’s Weird That it Knows What I Want”: Usability and Inter-

actions with Copilot for Novice Programmers”. In: arXiv preprint arXiv:2304.02491

(2023).

[47] Julian Aron Prenner and Romain Robbes. “Automatic Program Repair with OpenAI’s

Codex: Evaluating QuixBugs”. In: arXiv preprint arXiv:2111.03922 (2021).

[48] Thomas W Price, Yihuan Dong, and Tiffany Barnes. “Generating data-driven hints

for open-ended programming.” In: International Educational Data Mining Society

(2016).

[49] Thomas W Price, Yihuan Dong, and Dragan Lipovac. “iSnap: towards intelligent

tutoring in novice programming environments”. In: Proceedings of the 2017 ACM

SIGCSE Technical Symposium on computer science education. 2017, pp. 483–488.

45

https://openai.com/blog/openai-codex/
https://codingbat.com/python

BIBLIOGRAPHY

[50] Thomas W Price et al. “A comparison of the quality of data-driven programming hint

generation algorithms”. In: International Journal of Artificial Intelligence in Educa-

tion 29 (2019), pp. 368–395.

[51] Thomas W Price et al. “Factors influencing students’ help-seeking behavior while

programming with human and computer tutors”. In: Proceedings of the 2017 ACM

Conference on international computing education research. 2017, pp. 127–135.

[52] Kelly Rivers and Kenneth R Koedinger. “Data-driven hint generation in vast solution

spaces: a self-improving python programming tutor”. In: International Journal of

Artificial Intelligence in Education 27 (2017), pp. 37–64.

[53] Sami Sarsa et al. “Automatic Generation of Programming Exercises and Code Expla-

nations Using Large Language Models”. In: Proceedings of the 2022 ACM Conference

on International Computing Education Research-Volume 1. 2022, pp. 27–43.

[54] Valerie J Shute. “Focus on formative feedback”. In: Review of educational research

78.1 (2008), pp. 153–189.

[55] Michael Striewe and Michael Goedicke. “A review of static analysis approaches for pro-

gramming exercises”. In: Computer Assisted Assessment. Research into E-Assessment:

International Conference, CAA 2014, Zeist, The Netherlands, June 30–July 1, 2014.

Proceedings. Springer. 2014, pp. 100–113.

[56] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. “Expectation vs. expe-

rience: Evaluating the usability of code generation tools powered by large language

models”. In: Chi conference on human factors in computing systems extended ab-

stracts. 2022, pp. 1–7.

[57] Benedikt Wisniewski, Klaus Zierer, and John Hattie. “The power of feedback revisited:

A meta-analysis of educational feedback research”. In: Frontiers in Psychology 10

(2020), p. 3087.

[58] Junaed Younus Khan and Gias Uddin. “Automatic Code Documentation Generation

Using GPT-3”. In: arXiv e-prints (2022), arXiv–2209.

[59] Jialu Zhang et al. “Repairing Bugs in Python Assignments Using Large Language

Models”. In: arXiv preprint arXiv:2209.14876 (2022).

46

	Introduction
	Background
	Research questions

	Automated feedback
	Providing effective feedback
	Feedback types
	Feedback techniques
	Data-driven next-step hints

	Large language models
	The models of OpenAI
	LLM in programming education
	Creating supporting material
	Code explanations
	Providing student assistance

	Method
	Student program dataset
	Prompt engineering
	Evaluation
	Student evaluation
	Expert assessment

	Prompt engineering
	Engineering process
	Problem description and solution
	Instructions
	Temperature

	Choosing the best prompt
	Best prompt practices

	Evaluating next-step hints
	StAP-tutor
	Student experiment
	Overall students' impression

	Expert assessment
	The quality of next-step hints generated by LLMs

	Discussion
	Generating next-step hints using LLMs
	Threats to validity
	Prompt engineering
	Experimental setup
	Reproducibility

	Future work

	Conclusion
	Bibliography

