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Abstract

Food waste monitoring is an important step towards reducing the amount of
food lost every year. Automated solution to monitor food waste in catering
institutions have shown great results in reducing food waste in their kitchen.
However, developing such solutions using machine learning is difficult due
to the lack of publicly-available food waste data. Through artificial intelli-
gence, Orbisk provides data-driven insight to catering institutions on how
to effectively reduce their food waste. Their hardware solution is placed at
many hospitality and catering centres to collect images of food before it is
thrown away. These images are passed through Orbisk’s annotation pipeline
where they are annotated, either by neural network models or manual an-
notators. As a result, Orbisk compiled a huge dataset of food waste images
that is used to train their deep learning models. In this thesis, I utilise this
dataset to implement a multi-task transformer framework (FoodWasteAI) to
process food waste images. The FoodWasteAI architecture is inspired by the
Mask2Former model but can handle segmentation, classification and regres-
sions tasks concurrently. The model is trained and evaluated on Orbisk’s
data which is comprised of more than 900,000 manually annotated images.
The model achieves good results on all tasks, most notably, the ingredient
segmentation task achieves 27.6 mAP on 740 different ingredient labels. In
addition, the model achieves 4% better performance in a test simulation as
compared to Orbisk’s current AI models. This is done using 35% less pa-
rameters and 25% faster training time. To summarize, this research forms
a solid foundation in automated food waste processing using deep learning
models.

Keywords— Food waste, Computer vision, Deep learning, Instance seg-
mentation, Vision transformers, Multi-task learning
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Chapter 1

Introduction

1.1 Problem Statement

According to the United Nations (UN), ending world hunger is listed as the
second most important sustainable goal to ensure human well-fare and pros-
perity [1]. However, one-third of all the food produced globally for human
consumption is wasted every year, which accounts for over 1.3 billion tons
of food being wasted, or 185 kg per person per year [2]. Food waste refers
to food that is fit for humans to consume but that ends up being discarded
[3]. Around 17% of all food produced is thrown away by consumers which
contributes to one trillion euros of economic loss [2], [4]. More importantly,
the Food and Agriculture Organization of the United Nations (FAO) indicate
that 828 million people worldwide are facing hunger and more than 3.1 bil-
lion people do not have access to healthy diet [5]. They estimate that reduc-
ing food waste to zero would provide enough food to feed over two billion
people [6].

In addition to these issues, food waste is responsible for 8 - 10% of all green-
house gases (GHGs) that affect global warming [7]. According to the UN, if
food waste was a country, it would be the third most GHGs emitter behind
China and the US. Moreover, 30% of world’s agricultural land is used to grow
food that is never consumed [4]. Consequently, agriculture is the leading
cause of deforestation. According to the World Wild Life (WWF) organiza-
tion, 17% of the Amazon rain forest has been converted for cattle ranching [8].
All in all, food waste contributes to global warming and deforestation which
leads to negative effects on both the economical and humanitarian levels.

In Europe, the Netherlands is the 5th worst country when it comes to throw-
ing away food with over 161 kg per capita as compared to the European
average of 127 kg per capita [9]. In 2013, the food catering industry in the
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Netherlands was responsible for 446,000 tons of food waste [10]. According
to Rabobank in 2020, the hospitality sector is responsible for 14% of the food
waste generation in the Netherlands [11]. One of the reasons behind wasting
food in that sector is the lack of information regarding what food is wasted
and at what stage. In fact, food waste monitoring is one of the prominent
solutions to gain insight and reduce food waste for businesses [6], [12]. In
a study by Leverenz et al. (2020), the authors reported a reduction of over
64% in food wastage mass by simply implementing a self-reporting system
during breakfast buffets in four German hotels [13]. Their study shows that
monitoring systems can provide valuable insight and incentive for the staff
to reduce food waste in kitchens.

As a result, many start-ups propose automated solutions to monitor food
waste in kitchens. Orbisk is a start-up on a mission to reshape the world’s
food system by cutting down on food waste. The company provides valuable
insight in the kitchen on what and how much food is thrown away during the
different processing stages. Using an automated food waste monitoring sys-
tem, Orbisk is able to empower customers with data-driven decisions on the
best methods to reduce their food waste. Their AI solution consists of a cam-
era placed on top of the waste bin that records the food being thrown away,
then it sends the images to their image recognition pipeline in the cloud to
perform the necessary predictions. Their clients have access to a dashboard
that showcases important statistics about their food waste performance, in
addition to providing action-oriented feedback on how best to lower their
waste.

1.2 Orbisk AI Pipeline

Orbisk’s main hardware solution is called Orbi, which is a camera on top of
a waste-bin powered by a Raspberry Pi and connected to a scale as shown in
Figure 1.1. The device uses a motion sensor to activate the camera whenever
an object is held in front of it. Whenever the camera captures an image, the
device records the weight from the scale and sends the image and weight
information to Orbisk’s annotation process where the deep learning image
recognition models start.

Currently at Orbisk, there are two deep learning models working together to
annotate the food waste images. The first model is a multi-task model that
works on the whole image to predict five labels: has-waste, waste-stream,
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FIGURE 1.1:
The Orbi with a
waste bin on it.

Image from [14].

FIGURE 1.2:
Sample images taken
with Orbi. Image

from [14].

container-type, image-quality and visual-weight. The other model is an in-
gredient recognition model that generates a mask and a label for each ingre-
dient of food in the image. It is worth noting that these models run sequen-
tially on each image and a decision rule is used to decide whether to accept
their predictions or to send the image for manual annotation instead.

1.2.1 Multi-Task Model

The multi-task model at Orbisk uses a convolutional neural network (CNN)
architecture called ResNeSt50 [15] as the backbone to encode the image and
five head layers to perform each task. The first task is a binary classification
for the presence of waste on the image. The second task is a 27-label classifi-
cation problem to predict the type of container in the image. The third task is
to predict the waste-stream of the food which is the stage at which the food
is thrown away, whether it is served, unused, peeled, etc. The fourth task is
to predict the image-quality out of six different categories. Finally, a visual
weight value is assigned to the image to indicate the weight of waste present
on the image.

1.2.2 Ingredient Recognition Model

The ingredient recognition model uses Mask-RCNN architecture [16] to pro-
duce a mask and a label for each ingredient instance in the image. The
model works by encoding the image, then generating bounding box anchors
across the image. A region-proposal network then ranks the bounding boxes
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according to how likely they are to contain an object and applies a non-
maximum suppression algorithm to obtain the good proposals. The network
then uses the remaining proposals and the encoded features to select the most
appropriate bounding box and label for each ingredient in the image. A mask
head is used to generate a mask for each bounding box. After that, the masks
are processed to merge adjacent masks that contain the same ingredient.

1.3 Research Motivation

The current setup at Orbisk introduces a few issues in terms of performance,
costs and maintenance. Addressing these issues is the focus of this project.

1.3.1 Performance

Due to the similarity of tasks that the models perform at Orbisk, there is great
inter-dependency between them. Combining all tasks in one model forces the
model to focus on features that are more general to all tasks instead of over-
fitting on the noise [17]. Moreover, this helps the model to generalize well
to new tasks in the future, since representations that perform well on many
tasks, are more likely to perform well on new tasks in the same domain [18].
An earlier research I conducted at Orbisk that investigated the effect of com-
bining three classification tasks into one multi-task CNN model showcased
that the multi-task model’s performance at each task is equal or better than a
single-task model performing that task. The preliminary results of that study
can be found in Appendix D.

At Orbisk, they use a CNN architecture as the backbone for both the multi-
task and ingredient recognition models. While CNNs established themselves
in many vision tasks, Min et al. (2020) concluded that the discriminative
details in food images are too subtle for current CNN-based architectures to
distinguish [19]. Indeed, classifying food ingredients is a highly challenging
task due to the intrinsic variability in food appearance [20], [21]. Different
food ingredients, e.g. sugar and salt, can appear very similar in images [22].
In addition, most food ingredients are non-rigid, so they can easily deform
to various shapes.

In computer vision, local features of an image correspond to patches of nearby
pixels, while global features refer to the image as a whole [23]. While local
features are useful to many computer vision tasks, classifying food images
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can benefit from modeling global features as they allow the model to distin-
guish the subtle differences between food instances [19]. While CNNs are
perfectly capable of recognising the local features of an image, they do not
perform well when trying to detect global features [24].

On the other hand, transformers are inherently able to model global features
due to their ability to process the input as a whole using positional encoding
and self-attention [25]. In NLP tasks, they showcased a much higher per-
formance as compared to other neural network architectures such as long-
short term memory (LSTM) and recurrent neural networks (RNN). Mean-
while in computer vision tasks, vision transformers (ViT) outperform CNNs
in various high-level problems such as classification and segmentation [26].
More recently, newer models adapted new methods to incorporate global
self-attention with local ones in order to further enhance the performance
[27]–[29]. This thesis aims to contribute to these efforts by investigating ViT-
based networks in food waste image processing.

1.3.2 Costs

With the current design at Orbisk, the two models need to be re-trained on
the new data every few months. This is to ensure that the models incor-
porate data that come from new customers. Moreover, two forward passes
per image are needed to obtain the required labels. Having one model that
predicts all the needed labels will save training time. Depending on the de-
sign, training time may reduce by up to N, where N is the number of tasks
combined. In addition, inference costs on cloud and price per image will be
reduced since each image passes through one model instead of two. All in
all, a multi-task model will greatly save deployment costs and makes it faster
to re-train and replace running models.

1.3.3 Maintenance

Currently, the code base for the models are separate. In addition, it contains
many duplicate code (e.g. data-loader class) to allow the training and in-
ference for each model. Implementing a multi-task model will simplify the
code base and makes it easier to maintain. Loading data, creating model and
training will be done once which simplifies the code logic and its readability.
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Furthermore, updating the models in the pipeline would only involve train-
ing, packaging and deploying one model instead of two. All of this reduces
thetime needed for maintenance.

1.4 Research Approach

1.4.1 Research Questions

This thesis focuses on three objectives. Firstly, I aim to apply single-task
transformer-based models to a complex and imbalanced dataset of food waste
images to examine its performance and cost. Secondly, I aim to study the ef-
fectiveness of combining the classification and regression tasks in one model
and compare it to a multi-task variant that combines all tasks. Finally, I aim
to improve upon Orbisk’s current AI pipeline by proposing one model that
handles all the tasks and trained end-to-end. Accordingly, the thesis address
the following question:

"Can a multi-task transformer framework be used to jointly handle
segmentation, classification and regression tasks in food waste images

without sacrificing accuracy?"

Currently at Orbisk, there are four classification, one regression and one seg-
mentation tasks that are performed by their AI pipeline. One of the primary
objective of this research is to investigate the effectiveness of combining all
these tasks into one model in terms of accuracy and costs. This means a base-
line is needed to compare the multi-task models with. Therefore, the thesis
addresses the following sub-question:

RQ1: "How do the single-task transformer models perform in terms of
accuracy and cost on each task?"

At Orbisk, they only combine the classification and regression tasks together
into one model, leaving the segmentation task to be done by a dedicated
model. The thesis aims to understand whether this setup is ideal for their
tasks. More specifically, the aim is to understand whether combining all tasks
into one model improves the performance for all tasks as compared to only
combining the classification and regression tasks together. Hence, the thesis
addresses the following sub-question:

RQ2: "Does combining all tasks in one model yield better performance
than separating them into two models?"
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Finally, a comparison between the proposed multi-task framework and Or-
bisk’s current setup is conducted using a test simulation. The simulation
analyses how the models perform in a production environment using unseen
data. Hence, the following sub-question is addressed in this thesis:

RQ3: "How does the proposed multi-task framework which combines all
tasks perform in a test simulation with real-world data?"

1.4.2 Research Method

RQ1 concerns the application of single-task models that is trained for each
task at Orbisk. These models will be used as a baseline for all the subsequent
experiments. RQ2 aims to provide a deeper understanding on how these
tasks relate to each other. Two model instances will be trained. The first one
combines all classification and regression tasks and trains them together in
one model. The second model will be trained on all tasks. These models will
be compared to each other and to the models proposed in RQ1. Finally, the
best multi-task framework will be compared to the current setup at Orbisk
to assess how it performs in the real world setup. A simulation experiment
using unseen data will be conducted to both the proposed multi-task frame-
work and the current setup to determine which one performs best.

For both RQ1 and RQ2, the models’ performance will be validated using
the accuracy metric for all classification tasks, weighted mean absolute per-
centage error (WMAPE) for the regression task and mean average precision
(mAP) metric for the segmentation task. For RQ3, the picture accuracy and
food picture accuracy of the models will be used. These metrics are defined
in Section 3.3.

1.5 Thesis Outline

The thesis is organised as follows. Firstly, previous work relating to food
waste monitoring, image recognition and multi-task learning is discussed.
Then, the methodology section describes the datasets and models to be used
along with their detailed architecture. Thereafter, the experimental setup
along with the ablation studies are outlined. Afterwards, the results of these
experiments are presented. Finally, a discussion of the results is conducted
along with the limitations and future work, before ending with the conclu-
sion.
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Chapter 2

Related Work

2.1 Food Waste Monitoring

Food waste monitoring and tracking provides necessary information for de-
tailed prevention plans and helps in tracking the performance of such plans
[30], [31]. There has been a lot of research in this field to measure how ef-
fective food waste tracking is for addressing the food waste issue. Bharucha
(2018) conducted a qualitative study with 63 restaurants in Mumbai to inves-
tigate the problem of food waste in restaurants and how they are handling
it [32]. He interviewed restaurant owners to enquire about how the food
waste is handled at their property. His study showed that 75% of restaurants
prepare 10 - 20% more food than they actually need. High-end restaurants
prepare even more food in case they need to serve additional crowds than
previously estimated. Therefore, these restaurants are more incentivized to
participate in food waste reduction initiatives. He concluded that micro-
management solutions are more effective than large-scale ones in reducing
food waste in Indian kitchens.

Another study conducted by Filimonau et al. (2020) explored the food waste
management practices in 22 Shanghai restaurants [33]. The study outlined
that preparation is the most wasteful phase of restaurant business. Moreover,
all restaurants were unable to provide exact figures on the amount of food
wasted at their venues. The authors highlight that the lack of data is a big
obstacle towards effective mitigation policies. Eriksson et al. (2019) studied
the effect of food waste quantification on food waste reduction [34]. The
authors compiled data from 735 restaurants, canteens and hotels in Europe
that use different techniques to record their food waste. Their methods of
tracking ranged from spreadsheets to internet-powered services. The results
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of the study show that 61% of restaurants were effective at reducing their
food waste output with the help of their food waste quantification set-ups.

2.1.1 Qualitative Food Waste Monitoring

Many contributions to monitor the amount of food waste at various levels of
the supply chain collect data through participant interviews or self-reporting
from the target venues [13], [33], [35], [36]. A study by Filimonau and Ermo-
laev (2021), showed that the restaurant sector in Russia contributes around
7% of of the country’s total food waste output [37]. The study recruited 21
dining facilities across different food service categories in Kemerovo, Russia.
During the study, the authors interviewed the top executives of these facili-
ties to give feedback on the state of food waste at their venues. The authors
discovered that the 57% of the interviewees mention plate waste as a main
driver for food waste, while 52% of them mention over-production of meals
as a main driver. In addition, to set a benchmark for the food waste gen-
erated in various categories of the Russian food services, the authors used
the financial records of food waste collection provided by the study partici-
pants. In Hungary, Filimonau and Sulyok (2021) conducted a similar study
where they asked participants to evaluate the food waste problem at their
venues [38]. Their results were consistent with prior studies in identifying
plate waste and overcooking as the main drivers of food waste.

2.1.2 Fully-Automated Food Waste Monitoring

Another method to monitor food waste is through automated devices that
track food as it is thrown. Martin-Rios et al. (2021) conducted a study to
understand the use of technological advancements to monitor food waste in
hospitality, restaurant and catering services [39]. They highlight that most
of the monitoring systems in the mentioned industries use manual labor to
identify the amount of food waste generated. This is done by three main
mechanisms: (1) having a staff member stand next to the trash bin to record
the food waste, (2) having different colored trash bins to categorise the food
waste then weighing them at the end of the day, and (3) having a tablet at-
tached to a scale where the staff can place the food and type in the correct
category of waste before disposing it. In addition, the authors discussed five
fully-automated solutions to track food waste, namely LeanPath, LightBlue,
Winnow Solution, Kitro, and Orbisk. They concluded that the use of tech-
nology is particularly important for the food service industry as it provides
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executives with insight on how to optimise their catering processes. Their
conclusion is further supported by the study done by Eriksson et al. (2019)
where they indicated that catering services that use more automated set-ups
to measure their food waste recorded more data and were able to reduce their
food waste more [34].

2.2 Deep Learning in Computer Vision

Deep learning is a subset of machine learning in which models are designed
to automatically select useful features to make good predictions. Classical
machine learning algorithms rely on structured features that are usually de-
fined by experts to make predictions. Deep learning algorithms, however,
can automatically "learn" from the data which features are useful to make
correct predictions for their task. This is done using multiple layers that pro-
vide different level of abstraction for the data [40]. As a result, deep learning
models have dramatically improved the state-of-the-art (SOTA) performance
on many tasks, such as speech, visual recognition, and many other domains
such as genomics. In this section, I outline the relevant deep learning ap-
proaches mentioned in this thesis. In addition, I provide an overview on
how they are trained and optimised on data.

2.2.1 Artificial Neural Networks

Artificial neural networks (ANN) are the heart of deep learning algorithm.
These neural networks are modeled after the brain cells using an artificial
neuron called the perceptron. The perceptron was first proposed by Rosen-
blatt (1958), where he outlined the basic principles of its design. A perceptron
is modeled after the brain cells and is able to capture the statistical measure-
ments obtained from a large volume of data. Neural networks make use of it
by defining layers with many perceptrons where each one in a layer is con-
nected to all perceptrons in the previous and following layers as shown in
Figure 2.2. The first layer is called the input layer, which takes the inserted
data. The final layer is called the output layer and it is responsible for mak-
ing predictions. The layers in-between the input and output layers are called
hidden layers.

The ANN is called deep due to the presence of an arbitrary number of hid-
den layers that provide multiple level of representations for the inserted data.
The connections between the perceptrons from one layer to the other are
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FIGURE 2.1: Artificial neural network with input layer, one hid-
den layer and one output layer.

called weights. Similar to brain cells, these weights are responsible for un-
derstanding the relationship between the features and are, therefore, learned
using a large volume of data. Each perceptron accepts an input and process
it to provide an output to the following layer. The processing of each per-
ceptron is governed by an activation function that decides the value that is
passed through to the next layer. There are many types of activation func-
tions that are used depending on the task, such as ReLU [41], Sigmoid and
Softmax [42]. Their exact formula can be found in Appendix A.

2.2.2 Convolutional Neural Networks

Convolutional neural networks (CNN) are a type of ANNs that specialize
in data with a grid-like structure, such as images. The CNNs replace the
conventional perceptrons with kernels that are applied on the input. These
kernels are matrix-like filters with learnable weights that are adjusted during
training to fit the processed data. A CNN contains at least one convolutional
layer which consists of an arbitrary number of fixed-sized kernels. Given
an input of X with size Rnxn and a kernel K with size Rmxm, the output is a
feature map F of with size Rqxq, where q = m−n+2p

s , p is any padding applied
to the feature map and s is the stride that the kernel takes on the input X.
Each value in F is the summation of element-wise multiplication between the
kernel and input. More formally, Fx,y = ∑ Xi,j ⊙ K where Fx,y is the element
in F at position x, y, Xi,j is a sub-section of X that overlap with K and ⊙ is the
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FIGURE 2.2: CNN architecture. Image from [43].

element-wise operation.

2.2.3 Vision Transformers

Vision transformers (ViT) are another type of ANNs proposed by Dosovit-
skiy et al. (2021) [44] where they successfully trained a transformer model
on images and attained strong results. Transformer models were originally
developed for natural-language processing (NLP) tasks in which the text is
fed to the model in a sequence of tokens. A key characteristic of transformer
models is the use of encoders and decoders. Encoders are blocks of con-
secutive layers that aim to provide a good representation of the input. The
decoders take that representation and process it to obtain the desired output.
Each encoder or decoder consists of mainly two layers, a self-attention layer
(SA) followed by a multi-layer perceptron (MLP). There might be additional
layers depending on the architecture.

The self-attention layer is a mechanism that enables the model to obtain the
global dependencies between data. It allows the model to focus on different
regions of the input depending on its relevance to the task at hand. ViTs
have two additional component to help represent an image, namely the patch
and positional embeddings. Each image is split into smaller patches and
each patch is represented by an embedding vector. Each embedding vector is
combined with the positional embedding of the corresponding patch before
being fed to the model.

2.2.4 Training

All the ANN-based methods have weights between their layers which de-
termines how well the models’ predictions are. Optimising these weights is
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FIGURE 2.3: ViT architecture. Image from [44].

the training phase of the model. The weights are optimised using an algo-
rithm called back-propagation proposed by Rumelhart et al. (1986) [45]. This
procedure iteratively adjusts the model’s weight using a quantifiable error
obtained from the model’s predictions and the ground-truth labels. The er-
ror can be obtained using a variety of algorithms depending on the task. For
instance, classification tasks tend to use categorical cross-entropy loss (Equa-
tion A.1.

After obtaining the loss, the back-propagation algorithm is used to find the
weights’ gradients by moving backwards through the model. Partial differ-
entiation is used to arrive at the gradient value of each weight that minimizes
the loss. After finding the gradient of each weight, a gradient descent algo-
rithm is used to update the model’s weights. The gradient descent algorithm
was first outlined by Cauchy et al. in 1847 [46]. Since then, a variety of sim-
ilar algorithms are developed, such as Adam [47] and Adagrad [48]. The
standard gradient descent algorithm is shown in Equation 2.1.

wi ← wi − α
∂

∂wi
L(w) (2.1)

where the wi is a weight value in the model, L(w) is the loss function used
to train the model and α is the learning rate of the model which is a hyper-
parameter.

To summarize, the data is fed to the model in batches and the model anal-
ysis the patterns in the data and makes predictions for every data sample.
These predictions are then compared to the ground-truth label to obtain the
loss value. The back-propagation algorithm uses this value to calculate the
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weights’ gradients that minimize this loss. A gradient descent algorithm is
then used to update the model’s weights in order to produce better predic-
tions.

2.2.5 Transfer Learning

Generally, the deep learning algorithm is trained in a supervised manner on
a specific dataset that contains data for a specific task. For instance, a CNN
model developed to recognize cats and dogs would be trained on a dataset
with cats and dogs images. The dataset is usually split into training, valida-
tion and test sets. The training set is used to train different model versions.
The validation dataset comprises unseen data that is used to evaluate each
version to identify the best performing model. Finally, the test set is used
to get a general understanding of the model’s performance on unseen data.
However, with certain tasks, the amount of available data can be very small.
This means that splitting the dataset into three subsets would leave very few
images for training.

One solution to overcome this issue is using transfer learning [49]. Trans-
fer learning is the process in which a model trained on a similar but non-
identical task is fine-tuned on another task using a fewer number of data.
For instance, a model trained to recognize cats and dogs with great accuracy
can be fine-tuned to classify different car types. The fine-tuning process in-
volves loading a model with it pre-trained weights then training it on a new
dataset with fewer samples. This way, the model’s weight are not randomly
initialized and instead are trained to handle a task domain. The fine-tuning
process then slightly adjusts the weights to better fit the type of task within
this domain. Transfer learning has been applied in various applications to
utilize the strong performance of foundational models on many tasks [50],
[51].

2.3 Food Recognition in Deep Learning

Fully-automated food waste monitoring solutions require food (waste) im-
ages. Due to the limited work on food waste recognition using deep learn-
ing, this section focuses on food recognition. The similarity between food
and food waste images offer comparable challenges and insight on how to
address them. The introduction of AlexNet [52] in 2012 presented a break-
through in the field of computer vision and its applications. This opened
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the door for many contributions to address a variety of topics. Kagaya et
al. (2014) conducted one of the earlier studies on how deep learning can be
effectively applied to food recognition [53]. Since then, more research has
been made to improve upon their work, either by collecting diverse data or
utilising state-of-the-art architectures.

2.3.1 Food Recognition with Convolutional Neural Network

Food recognition using CNNs research has seen many notable contributions
over the past years. Kagaya et al. (2014) applied a CNN-based model to
a custom-build dataset with 10 food classes [53]. Using local response nor-
malisation, they managed to obtain a score of 73.7% accuracy. NutriNet is
proposed by Mezgec and Seljak (2017), where they modified AlexNet and
applied their model on various food image datasets [54]. Their results show
that the model was able to classify 520 different food items with an accuracy
of 86.72%, while using fewer parameters than AlexNet. Another work by
Pouladzadeh et al. (2017) proposed a mobile food recognition system that
classifies 30 different categories of food [55]. The system is able to detect
multiple food instances in the same image using region proposal algorithms
to generate candidate regions before ranking them based on the extracted
CNN features and predicted food classes. Their system achieves an accuracy
of 94.11%. Similarly, FoodAI was proposed by Sohoo et al. (2019) as an API
service to power a component of a mobile App developed by the Singapore’s
Heath Promotion Board [56]. Their food recognition system uses an ensem-
ble of SENet [57] and ResNeXt-50 [58] to classify 756 different food items
with an accuracy of 83.2% top-1 accuracy and 95.7% top-5 accuracy. The
model was pre-trained on ImageNet and fine-tuned on 400,000 food images.

2.3.2 Food Recognition with Transformers

With the introduction of the transformer architecture to the field of computer
vision, more research was dedicated to investigate the architecture’s capabil-
ities in food recognition. Zhu et al. (2020) successfully used a supervised
transformer network to classify food items in refrigerator images [59]. They
proposed a RectNet architecture to rectify the refrigerator images before us-
ing a fully convolutional network (FCN) for recognizing each food item in
the image. Their results show a 3 - 5% improvement compared to other base-
line methods. Another work by Song et al. (2022) introduced a noise-robust
locality transformer for food image retrieval [60]. Their approach addresses
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the fine-grained characteristics of food images by proposing a patch attention
module (PAM) and local perception unit (LPU). PAM aims to lower the im-
pact of the noise by redistributing low weights to noisy patches, while LPU
uses convolution to extract local features to obtain fine-grained information.
The authors applied their approach on the Food-101 dataset in which their
method obtained 8% higher mean average precision compared to the Swin-
small [61] architecture.

In another work, LTBDNN was introduced by Sheng et al. (2022) as a light-
weight transformer framework for food image recognition [62]. The authors
proposed a token generation method that uses the convolution operation on
the original image then applies the unfold operation on the corresponding
feature map. As a result, the model is able to learn global representations and
spatial-inductive bias. Moreover, the authors used a transformer grouping
technique which utilises two transformers in parallel with bridge connection.
This method allows the model to extract food image features from differ-
ent perspectives simultaneously, which helps it learn global features of food
images more comprehensively. Wu et al. (2021) introduced a multi-model
framework for food segmentation using a recipe learning module (ReLeM)
to incorporate recipe information [63]. The authors compiled food images
from Recipe1M to create the FoodSeg103 dataset and tested various CNN
and Transformer-based methods on it. Their results show that applying the
ReLeM module improves all the models’ performance.

2.3.3 Food Datasets

Over the years, the scale of food datasets has grown quickly. One of the ear-
liest compilation of food images was done by Matsuda et al. (2012) in their
UEC Food100 dataset, which contains 12,740 images in 100 dish categories
[64]. Bossard et al. (2014) introduced the Food-101 dataset, which contains
101,000 images for 101 classes [65]. In 2020, the ISIA Food-500 was intro-
duced which scaled-up the number of food images by a factor of four by hav-
ing 400,000 images belonging to 500 categories [19]. More recently, Food2K
dataset was introduced which contains over one million images belonging
to 2,000 categories making it the largest food recognition dataset [66]. More-
over, there are recipe-related datasets like Recipe1M which contains 900,000
images and one million recipe [67]. Recipe1M+ is a subsequent work that
expands the dataset to 13 million images. However, the last two datasets
are build mainly for recipe generation research as they do not have category
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labels for images. In addition, the other datasets contain only image-level
categories without further annotation to support ingredient-level classifica-
tion and segmentation.

There are a few datasets that contain food mask annotations. UNIMIB2015
dataset was created to enable food recognition and left-over estimation re-
search [68]. The dataset contains 1,000 images of food trays before and after
consumption with 15 distinct food categories. A subsequent work by Ciocca
et al. (2017) produced UNIMIB2016 dataset, which has 1,027 food tray im-
ages with 73 food classes [69]. UECFoodPix [70] and UECFoodPixComplete
[71] are two datasets that contain 10,000 food images and their correspond-
ing masks in order to facilitate segmentation research. Wu et al. (2021) intro-
duced an ingredient-level food dataset called FoodSeg103 that contains 7,118
images with more than 40,000 masks spanning 103 different food items [63].

Although these datasets provide more fine-grained information about the
contents of food images, they still lack the necessary annotations that are
needed for the tasks at Orbisk. In addition, the datasets do not contain food
waste images, which will hinder the model’s performance. Therefore, in
this thesis, I utilise Orbisk’s internal dataset to train and evaluate my deep-
learning framework. Orbisk has more than 900,000 images manually anno-
tated with ingredient-level masks and labels, image-level food mask and cat-
egories for the container-type, waste-stream and image-quality. At the end
of my work, I aim to disclose a subset of Orbisk’s data to facilitate future
research in food waste monitoring.

2.3.4 Summary and Limitations

To summarize, recent work on food recognition in deep learning focused on
two main methods to improve food classification and segmentation. Many
contributions such as [19], [62], [72] identified the need for incorporating
global features to provide more meaningful representations to the model.
These contributions showed that global features provide more useful clues
to the model to distinguish between food items that look similar in local re-
gions. Furthermore, other work focused on providing context alongside im-
age features to help the model distinguish between food items. In a work by
Bettadapura et al. (2015), the authors used the location and extra information
about the restaurant as features to classify the food [73]. Their results show a
huge improvement when these information are used alongside food images.
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Dataset
No. of
Images

No. of
Classes Label

Dish /
Ingredient

Food-101 101,000 101 C.L. Dish
ISIA Food-500 399,726 500 C.L. Dish
Food2K 1,000,000 2,000 C.L. Dish
Recipe1M 887,706 - Recipe Dish
Recipe1M+ 13,735,679 - Recipe Dish
UEC Food100 12,740 100 B.B. Dish
UNIMIB2015 1,000 15 B.B. Ingredient
UNIMIB2016 1,027 73 B.B. Ingredient
UECFoodPix 10,000 102 Mask Ingredient
UECFoodPixComplete 10,000 102 Mask Ingredient
FoodSeg103 7,118 103 Mask Dish + Ingredient
Orbisk 900,000 783 Mask Ingredient

TABLE 2.1: Summary of all food datasets. The label column
indicates the type of annotation each image has. B.B. stands
for bounding box and C.L. means class label. The last column
indicates whether the dataset has dish or ingredient level anno-

tation.

Paper Model Dataset Task

Kagaya et al. (2014) [53] CNN Custom Classification
Mezgec and Seljak (2017) [54] CNN UNIMIB2016 Classification
Pouladzadeh et al. (2017) [55] CNN Custom Segmentation
Sohoo et al. (2019) [56] CNN Custom Classification
Zhu et al. (2020) [59] ViT + CNN Custom Segmentation
Song et al. (2022) [60] ViT Food-101 Image retrieval
Sheng et al. (2022) [62] ViT Food-101 Classification
Wu et al. (2021) [63] ViT FoodSeg103 Segmentation

TABLE 2.2: Summary of contributions on food recognition in
deep learning.

In addition, the work by Wu et al. showed how recipe information provides
more context for the model to perform better on food segmentation [63].

Given all this work, there are still limitations facing automatic food image
processing. Most public datasets and frameworks focus on classifying food
dishes in images by providing a dish label for each image. Such a label does
not provide fine-grained information regarding the ingredients presented in
the image. Moreover, other contributions tried to address ingredient recog-
nition but suffered from low performance measures due to the high visual
similarity between ingredients.
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2.4 Multi-Task Learning with Neural Networks

In deep learning, neural networks are usually trained on one task e.g. classi-
fication and segmentation. The training is done using an optimisation func-
tion, for instance cross-entropy loss, to quantify the error of the model during
training. This type of learning is called single-task learning (STL). Although
this is a popular method to address important tasks using deep learning,
in a setting with multiple models performing different tasks with the same
data, this approach disregards any relationship between these tasks. While
acceptable results can be achieved learning one task at a time, the model’s
performance on each task is limited due to the inability to leverage the inter-
dependency information between the tasks [17].

On the other hand, multi-task learning (MTL) involves the optimisation of
more than one criterion. This learning process aims to create models that
can handle multiple tasks, while leveraging task-specific signals contained
in the training data to improve model’s generalization [74]. Consequently,
the model is able to form a more general representation of the input data
that represents all learned tasks. MTL is used across many domains, such as
natural language processing [75] and computer vision [76]–[78] to improve
the generalization and performance of deep learning models.

There are two main paradigms to implement MTL for deep learning, soft-
and hard-parameter sharing. Soft-parameter sharing uses a model for each
task, but regularises the distance between the models’ parameters to encour-
age them to be similar using either trace norm [79] or l2 norm [80]. Alter-
natively, hard-parameter sharing uses the same hidden layers for all tasks
but adds task-specific output layers. Caruana (1993) was one of earliest re-
searchers to propose this setup, where he showcased that it provides domain-
specific inductive bias which contributes to more powerful learning [81]. He
showed that this paradigm of MTL reduces overfitting on the shared parame-
ters, i.e. the shared hidden layers, as they need to build good representations
for all tasks. In another work, J. Baxter (2000) showed that the risk of overfit-
ting on the shared parameters is an order N (N is the number of tasks) smaller
than overfitting on the task-specific ones [18]. Moreover, sharing some hid-
den layers between all tasks greatly reduces the number of parameters to
optimise during training.
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(A) Soft-parameter sharing (B) Hard-parameter sharing

FIGURE 2.4: Simplified soft and hard parameter sharing archi-
tectures. Image from [17].

2.4.1 Learning Task Relationships

Since the introduction of the hard-parameter sharing paradigm by Caruana
(1993), it has been the default choice for many MTL research. Long et al.
(2015) propose an improved method to address task relationships [82]. They
developed a multi-linear relationship network (MRN), which can be seen in
Figure 2.5, that uses matrix priors between the task-specific fully connected
layers to allow the model to learn the relationships between the tasks.

Another interesting work by Misra et al. (2016) starts out with two separate
model architectures then use a cross-stitch unit that helps the model deter-
mine how to share information between the networks [83]. The cross-stitch
unit uses a linear combination of the output of the networks’ layers to learn
the optimal combination of shared and task-specific representations. The
model architecture can be seen in Figure 2.6.

FIGURE 2.5: Multi-linear relationship network architecture.
Image from [82]
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FIGURE 2.6: Cross-Stitch architecture. Image from [83]

FIGURE 2.7: Fully adaptive feature sharing network. Image
from [84].

However, this setup still relies on a pre-defined sharing structure which can
prove limiting for novel tasks. Therefore, Lu et al. (2016) proposed a bottom-
up approach that starts with a thin network structure then applies a greedy
algorithm during training to incentivize the grouping of tasks as can be seen
in Figure 2.7 [84]. This method is limited however, since the greedy algorithm
may not yield globally optimal solution. In addition, this setup prevents
the model from learning more complex relationships between tasks since it
assigns a branch to each task.

2.4.2 Multi-Task Learning in Computer Vision

Deep-learning approaches revived the research in MTL in computer vision.
Many contributions focus on combining different tasks, for example classifi-
cation, semantic segmentation, instance segmentation and regression, in one
model to improve performance and efficiency. Teichmann et al. proposed a
deep learning model called MultiNet capable of handling semantic segmen-
tation, classification and detection [85]. In another work by Sermanet et al.,
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FIGURE 2.8: Multi-task transformer architecture. Image
from [77]

the authors developed a CNN-inspired network for classification, localiza-
tion and detection [86]. Scene understanding also saw many notable con-
tributions such as [87] and [88]. All these approaches use a hard-parameter
sharing design as basis for their models.

More recently, transformer-based frameworks for multi-task vision tasks took
over CNN as the state-of-the-art models. Hu and Singh (2021) introduced
UniT which is an end-to-end framework that handles many tasks across dif-
ferent domains [89]. The framework encodes the input using a modality-
specific encoder then feeds the representations to a shared decoder before
making predictions using task-specific heads. The authors evaluated the
model using seven tasks and eight datasets spanning different domains like
object detection, language only tasks and vision and language reasoning
tasks. Their framework produced strong performances on each task with
notably fewer parameters. Similarly, Bhattacharjee et al. (2022) proposed
an end-to-end multi-task learning transformer that uses a shared attention
mechanism between the model’s decoders in order to learn the dependen-
cies between tasks [77]. As can be seen in Figure 2.8, the model consists
of a shared encoder transformer with four transformer stages inspired by the
Swin architecture [61]. All task decoders have the same architecture with four
transformer stages but different task-specific heads. Their results show that
the transformer-based model outperforms the state-of-the-art CNN baseline
[90].

Another work by Ye and Xu (2022) introduced an inverted pyramid multi-
task transformer for dense scene understanding (InvPT) [78]. The authors
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proposed an architecture that consists of three stages, shared encoder, task-
specific preliminary decoders and an InvPT decoder as seen in Figure 2.9.
The encoder takes an image and outputs encoded representations that are
shared between all tasks. The self-attention mechanism in transformers helps
obtain global feature representations, therefore the authors experimented with
ViT [44] and Swin as encoders [61]. The task-specific decoders consist of two
blocks, each containing a 3 x 3 convolution layer followed by batch normal-
isation and ReLU activation function (Conv-BN-ReLU). These decoders pro-
duce task-specific features and preliminary predictions. These features and
predictions are combined and concatenated to be fed as a sequence to the
InvPT transformer decoder.

FIGURE 2.9: Inverted pyramid multi-task transformer architec-
ture. Image from [78]

The InvPT decoder uses UP-Transformer blocks together with cross-scale
self-attention message passing and multi-scale encoder feature aggregation
in a unified network module. As a result, the model learns refined task-
specific representations within global spatial and task contexts. The final pre-
dictions are done using task-specific linear projection layers after the InvPT
decoder.

2.4.3 Multi-Task Learning Optimisation

In MTL, the model is trained for more than one objective. The most com-
monly used approach is to calculate the loss for each task using a suitable
loss function then compute the weighted sum of all these losses to optimise
the model’s parameters. The total loss used for back-propagation can be seen
in Equation 2.2. Many notable prior work use this method due to its simplic-
ity [77], [78], [85]–[88]. However, using this approach requires tuning these
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weights to identify the best combination of weights, which is another opti-
misation step. This is crucial, since the model’s performance is sensitive to
the weights’ values [91].

LTotal(W) = ∑
i

θiLi(W) (2.2)

where θi is the weight of task i and Li(W) is the loss of task i.

The past few years saw some contributions that aim to automate the process
of tuning the tasks’ weights. The approaches are divided into two categories:
weight adaptation and Pareto optimization (PO). Weight adaptation tech-
niques focus on changing the weights during training using a pre-defined
heuristics, such as uncertainty estimation [91], gradient normalization [92]
and weight average [93]. On the other hand, PO methods aim at formulating
the MTL as a multi-objective optimization problem and try to find a Pareto
stationary solution [94]–[96].

The work by Kendall et al. (2018) showcases that the intrinsic task-dependent
uncertainty provides information about the relative confidence between tasks
[91]. The authors propose learnable task weights using a joint likelihood for-
mulation of this uncertainty. In classification tasks, they define their likeli-
hood as a scaled version of the model output through the softmax function
So f tmax( 1

σ2 f W(x)). Consequently, they provide an expression for an opti-
mization function that integrates the learnable tasks’ weights as follows:

L(W, σ1, σ2) ≈
1
σ2

1
L1(W) +

1
σ2

2
L2(W) + log σ1σ2 (2.3)

whereL(W, σ1, σ2) is the minimisation objective (back-propagated loss),L1(W),
L2(W) are the task losses and σ1σ2 are the tasks’ observation noise parame-
ters.

2.4.4 Multi-Task Learning in Food Image Processing

MTL in food image processing is relatively an unexplored area of research
due to the lack of multi-task food datasets. Zhang et al. (2016) proposed dish
identifier, cooking-method recognizer and a multi-label ingredient detector
that share the low level layers in a CNN [97]. They compared their results
against prior work that used handcrafted features and reported 57.25% top-1
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accuracy for the dish identification task and 69.5% for the cooking-method
recognition. Another work by Ege and Yanai (2018) investigated the role of
MTL in food calorie estimation and food dish detection using CNN-based
model [98]. Since there is no food dataset annotated with bounding boxes
and food calorie information, the authors used two datasets together to train
their model. Their work showed that a multi-task model trained to detect
food and predict food calorie produces better results with fewer parameters
than two sequential models trained on food detection and food calorie esti-
mation. More recently, Liang et al. (2021) proposed a multi-view attention
network (MVANet) that is trained on Chinese food recognition, ingredient
recognition and recipe generation [99]. The authors developed a a multi-
view attention fusion (MVAF) mechanism that allows the extraction and fu-
sion of multiple semantic features from different tasks. The model consists
of stacked multi-view attention blocks that process the image representation
produced by the convolution layer. Afterwards, three task-specific heads are
used to compute the output for each task, and their aggregated loss is used
to optimise the model’s parameters.

To summarize, there has been a few attempts at applying multi-task learn-
ing in food image processing in order to provide more context for the model
to distinguish between similar looking food items. However, this area of

FIGURE 2.10: Multi-view attention network architecture. Im-
age from [99]
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research is still under-explored. All the work outlined in the previous sec-
tion uses CNNs to encode the image features but there has not been a study
on how ViT perform in this domain. The self-attention in ViT is a strong
tool to provide more global features of food images and has been used suc-
cessfully for single-task food recognition [60], [63]. Moreover, the studies on
multi-task learning for food recognition focus on classification tasks without
addressing segmentation. In this thesis, I aim to bridge this gap and pro-
vide a a framework that uses related tasks as context to help the model dis-
tinguish between food items. In addition, I aim to incorporate classification
and segmentation tasks to investigate which tasks benefit from the multi-task
learning paradigm.
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Chapter 3

Methodology

3.1 Data

In this thesis, I will use Orbisk’s own dataset which has 933,207 food waste
images manually annotated. The dataset is a comprehensive collection of
annotated food waste images that surpass existing benchmark datasets on
food image segmentation. It surpasses them in terms of image volume and
ingredient coverage as it has 90x the number of images and 7x the number of
ingredients. The dataset is verified by Orbisk’s internal quality control team
that periodically reports any inconsistencies in annotations.

3.1.1 Collection

The images are collected using Orbisk’s Orbi as shown in Figure 1.1. The
camera is triggered using a motion sensor that detects movement in front of
the image. Once it’s triggered, the camera takes an image with 1920x1440
resolution and the weight from the scale is recorded. The image registra-
tion is saved in the cloud database as a JPEG file. After that, the image is
passed through the annotation pipeline to obtain the required information
from the image. The annotation pipeline first runs the image through Or-
bisk’s AI models to get their predictions. An image confidence model is used
to evaluate these predictions and decide whether to trust them or not. If the
predictions are not trusted, the image is sent to the manual annotators to
manually check the image and correct the AI labels. In this thesis, only man-
ually annotated images are used for the training and testing of the proposed
model.
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3.1.2 Annotation

Ingredients The most important annotation on the image is the ingredient
polygon. Each ingredient of food present in the image is annotated using the
polygon coordinates that surround the ingredient along with the ingredient
label and category. There are 740 distinct ingredients at Orbisk spread across
21 categories. In total, there are 1,242,333 polygon instances in the dataset.
The distribution of ingredients and categories is seen on Figures 3.1, 3.2.

FIGURE 3.1: The distribution of the 21 frequent ingredients.

FIGURE 3.2: The distribution of all ingredient categories.
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Has-waste In addition to the ingredients’ annotation, each image is labeled
with a binary has-waste value. This annotation indicates whether the image
has waste or not. The has-waste distribution is seen on Figure 3.3.

Weight Every image in the dataset gets a weight value indicating the weight
of food in the image. The weight values are obtained using Orbisk’s weight
logic algorithm. The algorithm uses data obtained from the scale and infor-
mation about the image registration to calculate the weight of the thrown
food. The value represents the weight of all food in the image. The dis-
tribution of weight is seen on Figure 3.4. The weight values are shown in
kilograms.

FIGURE 3.3: The distribution of the has-waste annotation.

FIGURE 3.4: The distribution of the weight annotation.



Chapter 3. Methodology 30

Waste-stream To gather more information about the nature of food waste
in an image, Orbisk tracks the type of waste thrown under the waste-stream
label. This label specifies at which step the food was disposed. The label
values and their frequency can be seen on Figure 3.5.

Image-quality Moreover, each image is annotated with an image-quality
value. This value indicates the quality of the image taken. Poor images are
flagged to check with the client whether the hardware solution is optimally
placed. The distribution of their values is see on Figure 3.6.

FIGURE 3.5: The distribution of waste-stream label

FIGURE 3.6: The distribution of the image-quality annotation.
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Container-type Finally, Orbisk keeps track of the container present in the
image. The container-type label has 27 distinct values summarizing the dif-
ferent containers the food waste is in. The distribution of this annotation can
be seen on Figure 3.7.

3.1.3 Pre-processing

The dataset is split into training, validation and test sets. The number of
images and masks in every set can be seen in Table 3.1. For every image,
the ground truth polygons are formatted as a list of (x, y) coordinates tensor
while the ingredient labels is a tensor of label indices. For the has-waste,
container-type, image-quality and waste-stream annotations, they are for-
matted as a tensor with the label index. The weight annotation is represented
as a tensor with the weight value in kilograms. Each image is normalized us-
ing mean values of 123.675, 116.28, 103.53 and standard deviation of 58.395,
57.12, 57.375 for the red, green and blue channels respectively. In addition,
the images are resized to 640x480 pixels.

3.2 Mask2Former Models

Cheng et al. (2021) developed Mask2Former transformer models to provide a
unified framework for all segmentation tasks, namely panoptic, instance and

FIGURE 3.7: The distribution of the container-type annotation.
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Set Images Polygons

Train 823,712 1,096,572
Validation 50,034 66,105
Test 59,461 79,656

TABLE 3.1: Summary of the train, validation and test splits.

segmentation tasks [100]. Standard neural network models focus on solv-
ing only one task at a time and do not generalize to address all tasks. For
instance, Mask-RCNN [16] and DETR [101] focus on the instance segmen-
tation domain, while FCN [102] addresses semantic segmentation instead.
This leads to duplicate optimization of different models to solve similar tasks.
Universal architectures, on the other hand, aim to develop architectures capa-
ble of handling multiple tasks at the same time. MaskFormer [103] and K-net
[104] are examples of such networks build to learn multiple segmentation
tasks in parallel. These networks still need to be trained separately for dif-
ferent tasks, but their architecture, loss and training procedure can stay the
same.

The Mask2Former framework uses a mask classification approach to group
each pixel into segments by predicting N binary masks with N correspond-
ing labels. Inspired by the DETR architecture, each segment is represented by
C dimensional vector ("object query") that can be processed by a transformer
decoder that is trained with prediction objective. Hence, the Mask2Former
consists of three components. Firstly, a backbone is used to obtain low-resolution
feature embeddings from an image. Secondly, a pixel-decoder gradually up-
samples these features to generate the high-resolution embeddings needed
for accurate segmentation. Finally, a Transformer decoder attends to these
features and processes the object queries. The final binary masks are de-
coded from the per-pixel embeddings with the object queries using a hyper-
parameter to specify the maximum number of masks per image to predict.

These three components are modular and they can be exchanged with the
latest SOTA components. Consequently, there are multiple variants of the
Mask2Former framework with varying performance measures and complex-
ity. Table 3.2 summarizes the different variants of Mask2Former.

The Mask2Former makes a significant contribution to the transformer decoder
in order to improve the accuracy. It uses a masked-attention layer within
each decoder block to extract localized features within the foreground region
of the predicted mask for each each query. This layer replaces the normal
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Backbone Epochs mAP Parameters FLOPs

ResNet-50 [105] 50 43.7 44M 226G
ResNet-101 [105] 50 44.2 63M 293G
Swin-T [61] 50 45.0 47M 232G
Swin-S [61] 50 46.3 69M 313G
Swin-B [61] 50 46.7 107M 466G

TABLE 3.2: Summary of Mask2Former variants on the COCO
dataset [106]. The mean average precision metric (mAP) is de-

scribed in the following section.

cross-attention layer that attends to the full feature map and it showcased a
significant improvement across all segmentation tasks. An overview of the
Mask2Former architecture can be seen in Figure 3.8a.

3.2.1 FoodWasteAI Model

In this thesis, I build upon the Mask2Former architecture, and modify it to ad-
dress all tasks Orbisk. More precisely, the FoodWasteAI architecture uses the
same meta architecture as Mask2Former with additional heads connected to
the backbone for each task. The backbone provides a low-resolution feature
vector that is decoded by each task’s head to arrive at the required prediction.
The model is trained in an end-to-end fashion using the annotation data of
each task.

Three post-processing steps are used to refine the ingredient masks produced
by the model and eliminate the false-positive predictions. The first step is fil-
tering out the low-scoring masks using a score threshold αscore. Any masks
with a lower confidence score than the threshold are removed from the pre-
dictions. The second step is joining overlapping polygons that share the same
label. This way, if there two overlapping masks with the same label, they are
merged and predicted as one mask instead of multiple. The joining threshold
is called αjoin. Finally, a non-maximum suppression (NMS) algorithm is used
to suppress overlapping polygons with lower confidence score. The NMS
overlapping threshold is called αnms.
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(A) Mask2Former architecture Image from [100].

(B) FoodWasteAI architecture.

3.3 Evaluation Metrics

This thesis addresses three research sub-questions that require the use of dif-
ferent metrics. To evaluate the model’s performance on the different tasks,
the common metrics reported in academic papers are used. In addition, the
models are compared using business metrics to evaluate their performance
in the test simulation.
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3.3.1 Academic Metrics

Classification In this thesis, I use top-1 and top-5 accuracy to report the
performance of all classification tasks. Top-1 accuracy measures the amount
of predictions that are exactly the target class [107]. This metric is the most
commonly reported metric in image classification research [25], [26], [61].

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

where TP is true positive, meaning that the model correctly predicts the posi-
tive class. TN is the true negative which means the model correctly predicted
the negative class. FP and FN are the false positive and negative respectively,
which means when the model falsely predicts the positive or negative classes.

Regression For the regression task, I use the weighted mean absolute per-
centage error as described in Equation 3.2. This metric is used to evaluate the
performance of regression models by calculating the absolute error relative to
the ground-truth values. Given the task at hand, the weighted error is more
informative regarding the relative error in weight that the model makes.

WMAPE =
∑n

t=1 |yt − ŷt|
∑n

t=1 |yt|
(3.2)

where yt is the ground-truth value and ŷt is the predicted value.

Instance Segmentation In this thesis, I report the COCO mean average pre-
cision (mAP) for the instance segmentation tasks. COCO mAP measures
the average precision of detection across a range of intersection over union
(IoU) values. More precisely, the metric calculates the average precision (AP)
across all classes and 10 IoU thresholds in the range of 0.5 - 0.95 with a step
size of 0.05. The IoU measures the overlap between two masks or bounding
boxes as shown in Equation 3.4. The mAP metric is widely used in instance
segmentation research [100], [101], [103].

Precision =
TP

TP + FP
(3.3)

where TP is true positive and FP is false positive.
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IoU =
|A ∩ B|
|A ∪ B| (3.4)

where A is the predicted mask and B is the ground-truth mask.

mAP =
1

10

9

∑
i=0

AP@(0.5 + i · 0.05) (3.5)

where AP is the AP across all classes.

Model size To measure the model size, the number of parameters in the
model will be reported. Number of parameters in the model provides infor-
mation about the efficiency and complexity of the model. This metric is used
in research to showcase the model’s size and speed [27], [58]. Therefore, it
helps in estimating the costs of hosting the model on the cloud and edge de-
vices. This metric is computed by counting the total number of parameters
in the model.

3.3.2 Business Metrics

To evaluate the performance of the model in Orbisk’s pipeline, the overall
picture accuracy will be reported. Picture accuracy (PA) represents the per-
centage of images in which the model predicted all polygons and ingredients
correct. This is calculated by counting the number of images for which the
model’s predictions were correct on the polygon and ingredient level then
dividing it by the total number of images the model received. PA is valuable
to Orbisk as it allows them to understand how accurate the model is on an
image level.

In addition to PA, the food picture accuracy metric will be reported. This
metric is similar to PA but it involves only images with food waste. All im-
ages without food are discarded and not used in this metric. As a result, it
measure how accurate the model predictions are when there’s food waste on
the image.

PA =
I
N

(3.6)

where I is the number of images with all polygons and ingredients correctly
predicted (images with no waste still count), and N is the total number of
images received.
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FPA =
Î
N̂

(3.7)

where Î is the number of images with all polygons and ingredients correct,
and N̂ is the total number of images with food received.

3.4 Software

In this thesis, the code was done in python. Developing the models is done
with the Openmmlab framework which is built on top of PyTorch. More
specifically, I utilized their mmdetection [108] and mmpretrain [109] libraries.
The training configurations are declared using their config-file structure. The
training runs are logged to mlflow [110] which is hosted on Orbisk’s cloud
services. Data visualization is done using the fiftyone library [111]. The mod-
els are trained on Orbisk’s servers, which has three Nvidia A5000 GPUs, in
addition to one Nvidia RTX 2090 GPU.
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Chapter 4

Experiments

This section outlines the experiments setup done in this thesis. Firstly, I de-
scribe how the single-task models are trained and evaluated. This experi-
ment addresses the first research sub-question. Secondly, I outline the train-
ing and evaluation procedure for two FoodWasteAI variants. The first vari-
ant (FoodWasteAI-Cls) combines all tasks except ingredient segmentation
into one model. The second variant (FoodWasteAI-All) combines all tasks
into one model trained end-to-end. Finally, I compare the FoodWasteAI-All
model to Orbisk’s current setup in a test simulation.

The objective of these experiments is to understand how effective multi-task
learning is in food waste detection and what are its shortcomings. The ex-
periments highlight which tasks benefit from the multi-task paradigm and
whether all tasks can be efficiently handled by one model. With that in
mind, all the models trained in the experiments have the same architecture
described in Figure 3.8b. This is to ensure a fair comparison between the sin-
gle and multi-task models trained in these experiments. In the baseline ex-
periments, single-task models are trained to understand how well the model
performs on each task separately and to analyse the benefits of the multi-task
learning experiments. The main difference in experiments are which heads
are switched on and used for both training and validation.

The backbone used for all models is the Swin-T [61] model pre-trained on
the ImageNet-1k dataset [112]. This backbone shows incredible results across
various applications in classification and segmentation tasks and is relatively
efficient to train. For the task-heads, a single linear layer followed by a soft-
max activation is used for all classification and regression tasks. As for the
segmentation head, the pixel and transformer decoders used in Mask2Former
[100] are used to predict the masks. A summary of all models used in this
thesis is highlighted in Table 4.1.



Chapter 4. Experiments 39

Model ID Tasks Training time
No. of
parameters

FoodWasteAI-HW Has-waste 36h 27.52M
FoodWasteAI-CT Container-type 36h 27.53M
FoodWasteAI-WS Waste-stream 36h 27.53M
FoodWasteAI-IQ Image-Quality 36h 27.53M
FoodWasteAI-VW Visual-weight 36h 27.52M
FoodWasteAI-IS Ingredient-segmentation 146h 47.65M
FoodWasteAI-Cls All Cls. and Reg. tasks 36h 27.56M
FoodWasteAI-All All tasks 156h 47.69M
Orbisk’s Setup All tasks 204h 73.78M

TABLE 4.1: Summary of all models trained. The FoodWasteAI-
Cls combines all classification and regression tasks. Note that

Orbisk’s setup is comprised of two models.

The experiments use the same training loop configuration to train the model.
The weight-decay Adam (AdamW) optimizer is used to update the models’
weights in back-propagation. A learning rate of 0.0001 and a weight decay of
0.05 are used. A linear parameter-scheduler is used in the first 500 iterations
to warm up the model with a start factor of 0.001. Afterwards, the multi-
step learning-rate scheduler is used for the remainder of the training with a
gamma factor of 0.1 at 90% and 95% of the training iterations. The models
are trained for 123,000 iterations each with a batch size 15.

To handle the high memory consumption of the masks needed in training the
segmentation head, a distributed training with three Nvidia GeForce A5000
GPUs are used. Each GPU handles a batch size of 5. Every 12,300 iterations,
the validation set is used to obtain the model’s performance thus far. In to-
tal, 10 validation logs are performed during a full training. All training and
validation performances are logged to the Mlflow server hosted on Orbisk’s
cloud computing resources.

Due to the dynamic nature of images at Orbisk, the training data is fed to the
model using an infinite sampler strategy. The training data is shuffled then
fed to the model and when all training data are consumed, they are reshuf-
fled and fed again. Since the data at Orbisk is continuously changing, this
strategy ensures that the exact number of training data can be specified us-
ing a batch size and an iteration number. As mentioned above, the number
of iterations is 123,000 and a batch size of 15 (5x3) meaning that the train-
ing phase uses 1,845,000 samples. On the other hand, the validation set is
fed using a default sampling strategy where all the validation data is passed
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Model Batch Size Learning Rate Iterations Heads

Single-task 5x3 0.0001 123,000 1
FoodWasteAI-Cls 5x3 0.0001 123,000 5
FoodWasteAI-All 5x3 0.0001 123,000 6

TABLE 4.2: Summary of hyper-parameters used in the experi-
ments. Note that the batch size indicates the number of images

per GPU x the number of GPUs used.

through the model once without shuffling.

4.1 Single-Task Models

Due to the lack of food waste detection in machine learning, there is no com-
parable baseline performance available. Hence, this experiment serves as a
baseline for the FoodWasteAI framework proposed in this thesis. The experi-
ment aims to showcase the performance of the model on each task separately.
For this, the validation set is used to evaluate each model’s performance. This
should give a point of reference when analysing the FoodWasteAI-All perfor-
mance. Combining all tasks in an end-to-end training may yield a better or
worse performance than the single-task training.

4.1.1 Classification

All model variants in this category are trained using the categorical cross-
entropy loss which is defined in Appendix A. This loss is used in many clas-
sification problem to quantify the error in the model’s prediction and update
its weights.

FoodWasteAI-HW This model is trained on the has-waste task, which is a
binary classification problem to classify whether there is food in the image
or not. This task is trained using the has-waste annotation of each image as
described in Section 3.1.2.

FoodWasteAI-CT This variant is trained on the container-type task, which
is a 27-class classification problem that identifies the type of container present
in an image. The container-type annotations are used to train this model.
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FoodWasteAI-WS The waste-stream task has six classes which summarize
the type of waste visible in the image. Similarly, the waste-stream anno-
tations, as described in Section 3.1.2 is used to calculate the loss and back-
propagate it through the model.

FoodWasteAI-IQ Finally, the last classification task is the image-quality.
This is a six-class problem which indicates the quality of the image. The
image-quality annotations are used to calculate the cross-entropy loss which
is used to update the model’s weights.

4.1.2 Regression

FoodWasteAI-VW The visual-weight task is a regression problem focusing
on predicting the weight of the food waste in an image. This task is trained
using the weight annotations of the image as described in Section 3.1.2. The
task head is a linear layer initialised using a normal distribution. The loss
from this head is calculated using the smooth l1 loss function as described in
Appendix A. Only this loss is back-propagated through the model to update
its weights.

4.1.3 Segmentation

FoodWasteAI-IS The ingredient segmentation task involves predicting in-
stance masks with a corresponding label for each ingredient in the image.
For this, the ingredient annotations described in Section 3.1.2 are used to train
the model. The architecture and hyper-parameters of the pixel decoder and
transformer decoder used in the Mask2Former paper are left unchanged. The
post-processing steps outlined in Section 3.2.1 are omitted in this experiment.
The model is trained using a combination of mask loss and classification loss.
The mask loss uses binary cross-entropy and dice loss as described in Equa-
tion 4.1. The total loss adds the mask loss to a weighted classification loss as
described in Equation 4.2.

Lmask = λceLce + λdiceLdice (4.1)

where λce = 5.0 and λdice = 5.0.

Ltotal = Lmask + λclsLcls (4.2)
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where λcls = 2.0.

4.2 FoodWasteAI

This section outlines the two version of FoodWasteAI models that are trained
on multiple tasks. The first variant is trained on the classification and regres-
sion tasks only, while the second variant is trained on all tasks. Both variants
use the same architecture defined in Figure 3.8b with the appropriate heads
turned on. The validation set is used to evaluate the models’ performance.
The loss used to train each model is a linear combination of each task’s loss,
which were described in the previous subsection. More specifically, the total
loss for the model is calculated as shown in Equation 4.3

Ltotal =
n

∑
i=0

λiLi (4.3)

where λi = 1.0 and Li is the loss for task i.

4.2.1 FoodWasteAI-Cls

This model variant trains on all tasks except the segmentation one. This is
equivalent to Orbisk’s multi-task model which focuses on predicting the ap-
propriate label on an image level. The importance of this model is that it pro-
vides a glimpse on how effective multi-task learning is for this set of tasks
as compared to the single-task models. Moreover, it showcases whether the
Swin transformer backbone has the capacity to handle more than one task
concurrently. The model uses the same backbone as the single-task models,
with the appropriate task heads enabled. The performance of each task is
evaluated using the corresponding metric as discussed in Section 3.3.

4.2.2 FoodWasteAI-All

This model combines all tasks into one model. Similar to the previous vari-
ant, this variant adopts the same architecture with all task heads enabled.
The three post-processing steps are not used in this experiment. The perfor-
mance of this model is evaluated using the evaluation metric for each task
type as outlined in Section 3.3.
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4.3 FoodWasteAI v.s. Orbisk’s Setup

The last experiment runs the FoodWasteAI-All model in a test experiment in
order to simulate its performance in a production environment. The model
is used with the test set, which has not been seen by the model before, in or-
der to understand the model’s performance on an image and polygon level.
In addition, the model is compared to Orbisk’s current AI models to under-
stand the limitations of such model in a real-world application. The picture
accuracy (PA) and food picture accuracy (FPA), described in Section 3.3, are
used as the main evaluation metrics.

4.4 Ablation Studies

This section outlines the ablation studies conducted in this thesis. The first
one investigate the effect of adding augmentations to the training set before
feeding it to the model. The second study investigated the effect of the post-
processing steps used to refine the masks predictions. A list of the these
experiments are found in Table 4.3.

4.4.1 Augmentations

This study investigates the effects of augmentations on the model’s perfor-
mance. Models V0-V5 are used in this study. Due to the long time it takes

ID Post-processing Augmentations Dataset

V0 - - Subset
V1 - Contrast Subset
V2 - Brightness Subset
V3 - Rotation Subset
V4 - Flip Subset
V5 - Contrast & Brightness Subset

V6 - - Full
V7 Filtering - Full
V8 Join & NMS - Full
V9 Filtering & Join - Full
V10 Filtering & NMS - Full
V11 Filtering, Join & NMS - Full

TABLE 4.3: Summary of ablation experiments conducted. The
"Dataset" column specifies whether the full dataset or a subset
of it is used. The subset dataset is defined in the Section 4.4.1.
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each model to train, a lower number of iterations is used for the training.
More specifically, each model variant is trained for 9,000 iterations and eval-
uated on 5,000 validation samples. All other hyper-parameters are fixed ac-
cording to the model’s description in the above section. On average, it takes
each model 4 hours to train and validate.

The contrast and brightness augmentations shifts their value by 20% either
positively or negatively. The rotation augmentation randomly chooses an
angle between−45◦ - +45◦. The flipping augmentation flips the image either
vertically, horizontally or both. The probability of each augmentation is 0.33.

4.4.2 Mask Post-Processing

This study analysis the effectiveness of the post-processing steps to refine
the predicted masks for the ingredient segmentation task. The Mask2Former
model produces 100 predictions per image, which means that there are a
lot of false-positive predictions. To remove them, the three post-processing
steps defined in Section 3.2.1 are used. Each step eliminates a portion of the
false-positive predictions, but may accidentally remove some correct masks.
To understand whether each step is effective in increasing the model’s per-
formance, variants V6-V10 are used to predict masks on the validation set.
Their performance is analyzed using the picture accuracy (PA) and food pic-
ture accuracy metrics (FPA). In addition, the filtering step is analysed us-
ing score thresholds in the 0.1-0.9 range to understand the sensitivity of the
masks’ confidence scores.
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Chapter 5

Results

This section presents the results of the experiments conducted in this the-
sis. Firstly, I present the performance of single-task models trained on each
task and how it compares to the multi-task models variants. Moreover, I
delve deeper in analyzing the performance of the FoodWasteAI model and
showcase quantitative and qualitative results of the model’s prediction. Af-
terwards, I present the results of the test simulation on the FoodWasteAI
and Orbisk’s current setup. Finally, the results of the ablation studies are
reported in the final section. Table 5.1 summarizes the performance of all
models trained in this thesis on the validation set.

Model VW WS CT HW IQ IS

Single-Task 0.71 87.50 86.34 94.43 90.64 27.20
FoodWasteAI-Cls 0.69 87.59 85.66 94.20 90.48 -
FoodWasteAI-All 0.72 87.67 85.16 94.23 90.29 27.30
FoodWasteAI-All+ 0.72 87.59 85.07 94.19 90.11 27.60

TABLE 5.1: Summary of FoodWasteAI results and the baseline
single-task models. Each model is evaluated on the Visual-
Weight (VW), Waste-Stream (WS), Container-Type (CT), Has-
Waste (HW), Image-Quality (IQ) and Ingredient-Segmentation
(IS) tasks. The Visual weight task is evaluated using the
WMAPE (Equation 3.2), the ingredient segmentation task uses
mAP (Equation 3.5) and the other tasks use accuracy (Equation
3.1). The "+" version is with augmentations on the training set.

5.1 Single-Task Models

The single-task models are trained for 123,000 iterations and their training
and validation performance is recorded 10 times throughout the training run.
The academic metrics are used to evaluate these models and compare them
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to the multi-task variants. The complete history of the single-task models can
be found in Appendix B.

As we can see in Table 5.1, the single-task models performed decently on
all tasks. Most notably, they outperformed the multi-task variants on the
Container-type, Has-waste and Image-quality tasks.

5.2 FoodWasteAI

This section dives deeper in the results of the FoodWasteAI model. More
specifically, an analysis of the ingredient segmentation task is performed to
understand how well the model performs on the ingredients’ predictions.

5.2.1 Quantitative results

The confusion matrix for both ingredient labels and categories can be seen in
Figures 5.1a, 5.1b. The figures show all 21 categories and the top-25 ingredient
labels. The remaining labels are squashed into on label called "ingredients-
outside-top-25". The category confusion matrix shows that the model is able
to grasp the difference between the different category values. The model’s
prediction match the ground-truth categories with high frequency as can be
seen on the diagonal values. The mismatch between the categories is not
substantial but evident in some categories. For instance, "Meals and Com-
ponents" is predicted wrongly instead of "Salads", "Vegetables" and "Soup &
Sauce".

On the hand, the ingredient labels are harder to analyze due to the large num-
ber of classes. However, upon analyzing the top-25 classes in terms of their
frequency, it is shown that the model is good at differentiating them apart,
with most non-diagonal cells having a value of 0 or 1. Nonetheless, there are
some labels that have relatively large frequency of mismatch. The "sauceun-
known_white" is misclassified as "potatoproduct_mashed", "sauce_mayonnaise"
and "milkproduct_yoghurt" with frequencies of 21, 43 and 62 respectively.
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(A) Ingredient categories.

(B) Ingredient labels.

FIGURE 5.1: Confusion matrix for ingredients’ categories and
labels on the validation set.
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5.2.2 Qualitative results

(A) Image 1 (B) Image 2

(C) Image 3 (D) Image 4

(E) Image 5 (F) Image 6

(G) Image 7 (H) Image 8

FIGURE 5.2: Qualitative results of FoodWasteAI on validation
set. The prediction of the other tasks is found in the top-left
corner. For each task, the confidence score is in brackets next
to the predicted label. The green box showcases the has-waste
label, the blue box shows the contain-type, the purple one is for
the waste-stream task, the red is for the image-quality and the

brown showcases the visual weight in log-scale.
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5.3 FoodWasteAI v.s. Orbisk’s Setup

This section presents the results of the test simulation conducted on both the
FoodWasteAI model and Orbisk’s current models. This experiment simu-
lates a production environment where the test set is used to understand how
well the model performs when deployed. The business metrics are used to
compare both setups.

5.3.1 Quantitative Analysis

To understand the performance of the model on the segmentation task, the
confusion matrix on the top-25 labels and categories is computed. The re-
maining ingredients are squashed into on label called "ingredients-outside-
top-25". Figures 5.3a, 5.3b showcase these results. They show that the model
is able to distinguish well between the different ingredient categories. This is
shown by the high numbers across the diagonal, which indicate a match be-
tween the predicted and actual category. Moreover, the other cells have a rel-
atively low number which further suggests that the model’s predictions are
accurate on the category level. However, there seems to be some categories
that the model predicts wrong more than others. For instance, the "Meals and
Components" category is predicted 254 times where the actual category was
"Vegetables". In addition, there seems to be a correlation between the "Soup
& Sauce" and "Meals and Components" category as the model wrongly mixes
them with each other.

On the other hand, the ingredient labels matrix showcases similar results.
The non-diagonal values are mostly either 0 or 1, which indicates that there
is low confusion among the different label values. The most confused labels
seem to be "bread_lightbrown_slice" and "bread_darkbrown_slice". More-
over, "vegetablemix_cuttingwaste" appears to be mistaken for "fooddump",
"vegetablemix_other" and "salad_withvegetables". However, this is under-
standable due to the high visual similarity between these labels.

Model
Picture

Accuracy
Food Picture

Accuracy
Ingredient
Accuracy

Polygon
Precision

Polygon
Recall

Orbisk setup 40.6 26.6 59.1 74.4 62.2
FoodWasteAI 43.7 30.7 67.7 62.6 60.4

TABLE 5.2: Results of the FoodWasteAI model and Orbisk’s
current setup in the test simulation.
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Figures 5.4a, 5.4b present the precision of true-positive polygons’ ingredients
and categories. As can be seen, the "Unkown" category is the worst perform-
ing one. This is further shown in the precision figure of the ingredient labels
as the "unkownlabel" is the worst performing label.
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(A) Ingredient categories.

(B) Ingredient labels.

FIGURE 5.3: Confusion matrix for ingredients’ categories and
labels on the test set.



Chapter 5. Results 52

(A) Ingredient categories.

(B) Ingredient labels.

FIGURE 5.4: Precision of ingredients’ categories and labels on
the test set.
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5.3.2 Qualitative Analysis

This subsection presents the FoodWasteAI predictions on eight images from
the test set.

(A) Image 1 (B) Image 2

(C) Image 3 (D) Image 4

(E) Image 5 (F) Image 6

(G) Image 7 (H) Image 8

FIGURE 5.5: Qualitative results of FoodWasteAI on test set.
The prediction of the other tasks is found in the top-left cor-
ner. For each task, the confidence score is in brackets next to
the predicted label. The green box showcases the has-waste la-
bel, the blue box shows the contain-type, the purple one is for
the waste-stream task, the red is for the image-quality and the

brown showcases the visual weight in log-scale.
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5.4 Ablation Studies

This section showcases the results of the ablation studies conducted in this
thesis. As mentioned in the previous section, there are two main ablation
studies. The first one investigates which augmentation should be applied
during training. The second experiment validates the effectiveness of the
three post-processing techniques used to refine the mask predictions.

5.4.1 Augmentations

There are 4 augmentation techniques used in this study, namely, brightness-
shift, contrast-shift, rotation and flipping. A variant without any augmenta-
tions is added for reference. The results of the augmentation experiments
can be found in Table 5.3. The results show that the Brightness and Con-
trast augmentations produced the best results. The Brightness augmentation
yielded better results on the Visual-Weight and Container-Type tasks. On the
other hand, the Contrast augmentation produced better results on the Waste-
Stream, Has-Waste and Ingredient-Segmentation tasks.

Upon combining both augmentation, the results show that the performance
deteriorates on all tasks. Most notably, the Instance-Segmentation task scores
much lower than it does with Contrast or Brightness augmentation alone.
Therefore, only Contrast augmentation is used to train the main model using
the full dataset.

ID Augmentation VW WS CT HW IQ IS

V0 No Augmentations 0.84 75.94 61.62 86.46 85.89 5.40
V1 Contrast 0.84 76.29 62.36 87.09 86.17 5.70
V2 Brightness 0.83 75.25 62.70 86.64 86.28 5.20
V3 Rotation 0.85 74.37 58.58 86.03 84.58 3.30
V4 Flip 0.84 75.22 60.80 86.68 86.41 5.10
V4 Brightness & Contrast 0.83 75.81 62.62 87.27 85.70 4.80

TABLE 5.3: Summary of augmentation results on a subset
of the dataset. The FoodWasteAI-All model is evaluated on
the Visual-Weight (VW), Waste-Stream (WS), Container-Type
(CT), Has-Waste (HW), Image-Quality (IQ) and Ingredient-
Segmentation (IS) tasks. The Visual weight task is evaluated
using the WMAPE (Equation 3.2), the ingredient segmentation
task uses mAP (Equation 3.5) and the other tasks use accuracy

(Equation 3.1).
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5.4.2 Mask Post-processing

Mask post-processing aims to filter out bad predictions from good ones. The
FoodWasteAI model predicts 100 masks with corresponding label for each
image. To obtain good predictions, a score filtering process takes place, fol-
lowed by joining overlapping masks with the same label. Finally, a non-
maximum suppression algorithm suppresses overlapping masks with the
lower score. This subsection investigates the effectiveness of these three steps
and analysis the sensitivity of the score threshold used for filtering out pre-
dictions.

Table 5.4 showcases the performance of the model on the validation set using
the different post-processing strategies. The V6 experiment acts as a control
experiment where no post-processing is applied. Applying the Filtering op-
eration (threshold = 0.5), improves the results substantially as it removes a
vast number of false positive masks predicted by the model. Moreover, the
NMS algorithm helps remove more of these masks as evident by the increase
in Food Picture Accuracy by 10%. The Join improves the results slightly, with
around 0.6% increase in Food Picture Accuracy.

To understand how sensitive the model is to the Filtering threshold, different
values in the range of 0.1 - 0.9 are used while the NMS and Join steps are
enabled. Table 5.5 summarizes these results. They show that as the Filtering
threshold increases, the polygon precision increases since the model is more
confident in the prediction, but the recall decreases substantially. This is the
result of missing out on a lot of true positive masks that do not satisfy the
threshold value. However, we can clearly see that the Picture Accuracy and
Food Picture Accuracy are optimised around the 0.4 - 0.5 range.

ID
Filtering
threshold

Join
threshold

NMS
threshold

Piture
Accuracy

Food Picture
Accuracy

V6 - - - 20.1 0.0
V7 0.5 - - 35.4 19.9
V8 - 0.0 0.4 24.8 6.1
V9 0.5 0.0 - 36.1 20.8
V10 0.5 - 0.4 43.3 30.2
V11 0.5 0.0 0.4 43.8 30.8

TABLE 5.4: Analysis of the three post-processing steps used in
the model.
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Score
threshold

Picture
Accuracy

Food Picture
Accuracy

Ingredient
Accuracy

Polygon
Precision

Polygon
Recall

0.1 40.4 26.4 59.4 48.6 68.9
0.2 42.2 28.7 61.5 53.7 68.6
0.3 43.2 30.1 63.0 57.3 67.8
0.4 43.8 30.8 64.6 60.0 65.7
0.5 43.8 30.8 64.6 60.0 65.7
0.6 43.2 30.1 69.6 65.0 56.8
0.7 41.7 28.1 73.4 67.6 49.9
0.8 39.1 24.7 78.8 71.2 40.5
0.9 32.9 16.7 87.2 78.2 25.2

TABLE 5.5: Results of different filtering thresholds for the
masks predicted by the model.

FIGURE 5.6: Polygon Precision and Recall against filtering
thresholds in the range 0.1 - 0.9.
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FIGURE 5.7: Picture Accuracy and Food Picture Accuracy
against filtering thresholds in the range 0.1 - 0.9.
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Chapter 6

Discussion

This thesis investigated the capabilities of computer vision models to de-
tect food waste ingredients along with five image-level tasks in a supervised
end-to-end framework. The focus of the study was to understand the effec-
tiveness of multi-task learning on a large food waste dataset compiled by
Orbisk. The outcome of this research can facilitate more efficient and ac-
curate detection of food waste images, which would provide a deeper in-
sight on the food waste problem. To tackle the six tasks presented in this
study, a Mask2Former architecture [100] was altered to accommodate the
other five tasks and trained in a supervised manner. Furthermore, the model
is equipped with three post-processing algorithms that were not part of the
original Mask2-Former model in order to further refine the masks and labels
the model predicts. The challenge is to simplify the food waste processing
pipeline by incorporating one model only without sacrificing the accuracy of
predictions.

6.1 Findings and Interpretation

The main research question is "Can a multi-task transformer framework be used
to jointly handle segmentation, classification and regression tasks in food waste im-
ages without sacrificing accuracy?". The first step to answer the question is to
establish a baseline for the performance of a comparable model on each task
alone. Furthermore, the transformer framework was trained on subsets of
tasks to validate its capability to handle multiple tasks together. Finally, the
multi-task framework (FoodWasteAI) was placed in a test simulation using
unseen data to analyse its performance as compared to Orbisk’s current AI
models.
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The first two sub-questions were answered with the first two experiments
and using the models’ performance on the validation set. The final sub-
question was addressed with the last test simulation where it competed with
Orbisk’s model on unseen data. In this section, the findings and results from
this thesis is discussed along with an interpretation on how the models per-
formed.

6.1.1 Multi-task Learning

One main focus of this thesis is to investigate the effectiveness of the multi-
task learning paradigm on food waste images. This paradigm has been used
successfully in a wide range of problems to incorporate similar tasks under
the same model. For instance, several frameworks were proposed to handle
scene detection [77], [78], tasks across different domains [89] and Food detec-
tion [99]. However, there is no in-depth research on combining segmentation,
classification and regression tasks on food images.

To establish a baseline, single-task models were trained on each task sepa-
rately and two variants of FoodWasteAI were trained on multiple tasks to-
gether. From Table 5.1, it can be seen that the single-task models performed
slightly better on three classification tasks, namely container-type, has-waste
and image-quality. On the other hand, the multi-task models outperformed
the single-task ones on the remaining three tasks.

The has-waste task did not benefit from the multi-task learning paradigm,
where it scored 0.2% higher accuracy with the single-task model as compared
to the best FoodWasteAI variants. Similarly, the performance on the image-
quality task deteriorated in multi-task models, with a decrease of 0.16% than
its single-task counterpart. Most notably, the container-type task suffered
the most reduction in performance in the multi-task variants, with a 0.68%
decline as compared to the single-task model. On the other hand, the waste-
stream task benefited from the combined training, which saw the FoodWasteAI
perform with 0.17% increase in performance. The visual-weight saw a very
margin increase in performance, with about 0.02 rise in the WMAPE met-
ric. Most importantly, the FoodWasteAI model performed 0.1% better on the
instance-segmentation task than its single-task baseline.



Chapter 6. Discussion 60

All in all, the difference in performance on each task between the Food-
WasteAI and the single-task baselines is relatively negligible and can be at-
tributed to random fluctuations in the model’s parameters due to the ran-
dom shuffling of the training data. However, it showcases the ability of the
Swin backbone to handle multiple tasks in parallel and provide good repre-
sentations for each task’s head to decode a correct prediction. Furthermore,
the FoodWasteAI-All model shows very similar performance on all classifi-
cation and regression tasks as compared to the FoodWasteAI-Cls. This fur-
ther proves that the ingredient-segmentation task does not have a substantial
detriment on the other tasks when trained together.

6.1.2 FoodWasteAI

The FoodWasteAI architecture is inspired by the hard-parameter sharing pro-
posed by Caruana (1993) [81]. The main advantage of such architecture is the
simplicity and modularity of its parts. Most of the computations are done
in a backbone model to arrive at a low-resolution feature vector that can be
decoded by task heads to arrive at good predictions. This design showcased
good results on all tasks mentioned in this study. The classification tasks
have a strong performance with an accuracies in the range of 85% - 90%. The
segmentation task also witnessed a a very strong mAP score of 27.6%. The
current SOTA performance on the COCO instance segmentation dataset is
56%. However, the COCO dataset has 80 instance categories as compared to
the 740 categories present in Orbisk’s dataset.

Upon diving deeper in the ingredient-segmentation performance, the model
seems to understand the different visual clues between the different ingre-
dient labels and categories. From Figure 5.4a, it can be seen that the model
performs substantially well on "Drinks", "Cheese", "Snacks", "Fruit", "Sand-
wiches" and "Vegetables". All these categories have a relatively distinct visual
appearance which may explain this performance. On the other hand, the
"Unknown" category shows the worst precision among all categories. This
can be explained by the ambiguity of the category as it comprises any un-
known ingredients, which may have very different visual appearance.

When analysing the precision in ingredient labels (Figure 5.4b), this ambigu-
ity is further proven as the "unknownlabel" has the lowest precision among
all labels. Other labels that suffer from low precision score are "sauceunknown_-
brown_withvegetable", "chicken_fillet" and "noodles_short_withpieces". One
possible reason for the low precision score is that these labels share the same
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category with other similar labels that have very margin visual discrepancy.
For instance, there are multiple "sauce", "chicken" and "noodle" labels that
describe different ways in which these ingredients are prepared. Conversely,
the model performs well on "egg_cuttingwaste", "pizza_cuttingwaste", "bread-
bun_croissant", "lemon_cut" and "cucumber_cut". Most of these labels are for
chopped ingredients. This may explain their high precision score as they tent
to have a distinct look.

6.1.3 Test Simulation

An important step in developing machine learning models is to evaluate
them in real-world settings. This provides an understanding in the appli-
cability of such models to address important applications such as food waste
monitoring. The FoodWasteAI model is placed in a test simulation using
unseen data to analyse its performance and compare it to Orbisk’s current
setup. The FoodWasteAI showed 3.1% increase on picture accuracy and 4.1%
increase on food picture accuracy. This means that around one in three food
images get all their ingredients correctly detected and classified.

These results are achieved with a remarkable reduction in model parameters
and training time. Using single-task models to handle each task would result
in having six models to train and deploy. This would account for 185.15M
parameters to train and 326 hours of training time using the same GPU con-
figurations used in this thesis. On the other hand, the FoodWasteAI model
is able to achieve similar results on each task using only 47.69M parameters
and a training time of 156 hours. This accounts for 75% reduction in param-
eters and 53% less training time. Moreover, the inference time is massively
reduced as well since each image is passed through one model instead of six.
When compared to Orbisk’s current setup, the model outperforms them in
the test simulation while using 35% less parameters and 25% less training
time.

To summarize, the main research question regarding the applicability of ViT
to handle multiple tasks together is answered positively. The FoodWasteAI
model is applied successfully on six different tasks using the Orbisk food
waste dataset. Although the performance can be further improved, the Food-
WasteAI outperforms Orbisks’s current models on a test simulation while
being substantially more efficient to train.



Chapter 6. Discussion 62

6.1.4 Ablation Studies

The three post-processing algorithms used to refine the ingredient predic-
tions, showcased a substantial improvement over the default Mask2Former
decoding strategy. Although it is convenient to specify the maximum num-
ber of predictions per image, in some applications, such as food waste detec-
tion, it is unknown how many instances are visible on each image. The fil-
tering stage allowed the model to filter out a lot of wrong predictions which
improved the accuracy substantially. This step alone resulted in 15 - 20% in-
crease in the business metrics. The NMS step also had a strong impact on
the metrics with an improvement of 8 - 10%. The Join algorithm only had a
slight effect on the accuracy but it still enhanced the results. During the qual-
itative analysis, the predictions obtained without these post-processing steps
showed that for each ingredient, many masks were laid on top of each other
with varying label values. Therefore merging or removing these masks was
important in order to reduce the number of false-positive predictions made
by the model.

The second ablation study investigated the effect of augmentations on the
model’s performance on each task. Given the limited time, each model vari-
ant was trained for a small number of iterations and evaluated on a sub-
set of the validation set. The results show that only Contrast augmentation
has a strong effect on the model’s performance and helps it perform bet-
ter. The Brightness augmentation also showed promising results but after
combining it with the Contrast augmentation, it had a strong negative ef-
fect on the instance-segmentation task. Flipping and rotation augmentations
produced bad results on the waste-stream, container-type and ingredient-
segmentation tasks. One reason for this effect is the sensitivity of these tasks
to the food location in the image. All in all, the final FoodWasteAI model
is trained with Contrast augmentations only on the training set and uses the
three post-processing algorithms to optimise the ingredient predictions.

6.2 Limitations

Although this study showcases promising results, they should be viewed
alongside potential limitations. These limitations pertain to the model archi-
tecture used and the dataset collection which is done by Orbisk’s devices.
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6.2.1 FoodWasteAI

Although the model was designed with simplicity and modularity in mind,
this choice might be detrimental to the its performance. The model only
shares the backbone among the tasks. Bhattacharjee et al. (2022) showcased
that an attention mechanism shared among the task heads improves the per-
formance significantly [77]. In addition, Ye and Xu (2022) also showed that
using the heads predictions to further refine the model’s output results in
better quality predictions. Moreover, the classification and regression heads
used in FoodWasteAI are simple linear layers that decode the feature vector
from the backbone. A more sophisticated head design can have a great effect
on the model’s performance on these tasks.

While training the models in this research, it was observed that the model
does not converge properly at the end of the training cycle. Given the long
training time each model requires and the limited hardware resources, the
models could not be trained for longer. Given time and/or extra resources,
the models should be trained longer in order for them to fully converge and
fit the data. For reference, the Mask2Former model is trained for 50 epochs
on the COCO dataset [106] which accounts for 368,750 iterations. This is three
times longer than the training iterations of FoodWasteAI.

In this thesis, the backbone of choice was the Swin transformer due to its
great results and applicability to various tasks. However, a deeper analysis
of different backbones should be conducted to understand the effect of this
component on the model’s performance. Furthermore, larger models such
as Swin-B and Swin-L were shown by to yield better results on classification
and segmentation tasks [26], [61], [77], [78], [100]. However, they require
even more time and resources to train.

The FoodWasteAI uses a simple linear combination of all tasks’ losses in or-
der to update the model’s weights. Although this method is effective in train-
ing the model, it can result in significant drawbacks if the tasks’ losses are not
on the same scale. This will lead to one task dominating the other tasks which
is undesired. There has been research in this area that aims help the model
understand how to weigh each task. They range from fully learnable weights
[91] to adaptive regularisation of gradient magnitudes [92]. Such methods el-
evate the need to find the optimum weights for each task which takes a long
time depending on the speed of training. Given the limited time of this re-
search and the long training time of the model’s, only linear combination is
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used to train the model.

6.2.2 Orbisk Dataset

Although the theoretical findings of this research is generic, they are influ-
enced by the conditions of Orbisk’s data collection. Therefore, the gener-
alizability of these results should be considered when interpreting the re-
sults. The Orbisk food waste dataset is a collection of images taken by their
hardware devices placed in catering and hospitality institutes, mainly in the
Netherlands. Consequently, this places a bias on the type of food waste im-
ages taken as it tends to be Dutch food.

Given that the Orbi is a camera put on top of the waste bin, most images
have the food waste somewhere in the middle of the frame with the bin and
floor in the background. As a result, a model trained on these images may
struggle to deal with food waste images taken in a different environment.

The Orbisk’s dataset is manually annotated by their external annotators that
are instructed to annotate each image using a predefined guideline on how
they should annotate. This guideline is designed to optimise Orbisk’s busi-
ness process and may not provide the perfect annotations for each image. In
addition, given the nature of how the images are taken, some of them suffer
from technical imperfections such as motion blur, occlusions and inconsistent
lighting conditions.

6.3 Future Direction

The findings and limitations provide interesting paths for future research.
Firstly, the model architecture can be altered to accommodate more sophis-
ticated method of combining the tasks. Implementing a shared attention
mechanism between tasks in order to allow each task head to influence the
other heads. This may lead to promising results as shown by [77], [78], [99].
Furthermore, identifying the optimal backbone to use would provide richer
features to the task heads.

Another promising direction is using a multi-modality approach. One such
cases is the Segment anything model which uses a variety of prompts to pro-
cess and segment the image [113]. The model allows prompts to be fed along-
side the image and the model process them to provide an output. OneFormer
is another framework that uses multi-modal input to process an image [114].
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The model is trained once and can be used for any instance, semantic or
panoptic segmentation tasks by providing a task token with the image. A
similar approach can be used with FoodWasteAI in order to specify which
tasks the model should perform on the image.

Finally, one future research can investigate the effect of iterative fine-tuning
on continuous data that arrives periodically. For instance, Orbisk receives
new images every day from their clients and their models are retrained pe-
riodically to accommodate these new images. An interesting study can re-
search different techniques to optimise this re-training step in order to im-
prove performance and reduce training time.
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Chapter 7

Conclusion

This thesis presented a multi-task learning framework trained to handle six
different tasks concurrently. The motivation behind this work is to provide
an understanding of the effectiveness of multi-task learning to process food
waste images. The model is able to outperform the current AI models at
Orbisk with substantially less parameters and training time. In addition, the
FoodWasteAI performs better than the single-task counterparts on three out
of the six tasks presented in this study. All in all, the FoodWasteAI is ready
to replace Orbisk’s current models, which would boost their AI accuracy and
efficiency.

Moving forward, the limitations of this research should be addressed to build
upon the work presented. Incorporating a sophisticated mechanism to fuse
the heads together would allow each task head to integrate the other tasks’
output in its prediction. Furthermore, improving the automated detection of
food waste would provide an important insight on how to effectively reduce
wasting food.
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Appendix A

Losses and Activation Functions
Equations

Cross-entropy Loss

Lce = −
M

∑
c=1

yo,c log(po,c) (A.1)

where M is the number of classes, y is a binary indicator whether the label
c is the correct classification label for observation o and p is the predicted
probability of observation o is of class c.

Smooth L1 Loss

Lδ =

1
2(y− ŷ)2 if |(y− ŷ)| < δ

δ((y− ŷ)− 1
2 δ) otherwise

(A.2)

where y is the predicted values, ŷ is the ground-truth value and δ = 2.0

ReLU

f (x) = max(0, x) =

xi if x ≥ 0

0 if x < 0
(A.3)

Sigmoid

f (x) =
1

1 + e−x+ (A.4)

Softmax
f (xi) =

exi

∑j exj
(A.5)
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Appendix B

Training History

Single-Task Models

FIGURE B.1: The performance history on the has-waste task
during training.
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FIGURE B.2: The performance history on the container-type
task during training.

FIGURE B.3: The performance history on the waste-stream task
during training.

FIGURE B.4: The performance history on the image-quality task
during training.
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FoodWasteAI

FIGURE B.5: History of total loss during training.

FIGURE B.6: History of task losses during training. Note that,
"loss_cls", "loss_dice" and "loss_mask" are all used to train the

segmentation head.

FIGURE B.7: History of has-waste task during training.
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FIGURE B.8: History of container-type task during training.

FIGURE B.9: History of waste-stream task during training.

FIGURE B.10: History of image-quality task during training.
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Appendix C

Task Labels and Augmentations

Waste-stream label Image-quality label

Unused ingredient Good
Prepared food Blurry
Peels Overexposed
Served food Underexposed
Mixed Camera issue
None None

TABLE C.1: The waste-stream and image-quality labels used at
Orbisk.

Container-type label

Bottle Container metal gastronorm Crate
Bowl ceramic Container metal square Dishwasher tray
Bowl glass Container plastic Dustpan
Bowl metal Cup glass Multiple
Bread basket Cutting board No container
Carafe Cup mug Original packaging
Other Tray metal Pan
Plate Tray plastic bin
Sieve Tray wood Tray ceramic
Tray cardboard None

TABLE C.2: The container-type labels used at Orbisk.
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(A) Original and Contrast

(B) Brightness

(C) Flip

(D) Rotation

FIGURE C.1: Augmentations used in the ablation study. a
shows the original image on the right and the contrast on the
left. The contrast factor is chosen uniformly from 0.8 - 1.2. b
brightness factor is chosen uniformly from 0.8 - 1.2. c random
flipping horizontally, vertically or both. d random rotation cho-

sen uniformly from -45° - 45°.
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Appendix D

Preliminary Results

These preliminary results were conducted as a research internship at Orbisk
prior to starting my thesis. These results show the positive impact of multi-
task learning on the classification tasks in the Orbisk’s dataset. The best
multi-task variants produced better performance per task than the single-
task ones. This shows that the classification tasks benefit from the combined
training.

Weights Accuracy

ID
Waste

Stream
Container

Type
Has

Waste
Waste

Stream
Container

Type
Has

Waste
Combined

1 0.333 0.333 0.333 88.0 87.6 95.0 81.7
2 0.212 0.212 0.516 87.8 87.5 95.0 81.5
3 0.107 0.107 0.787 87.4 86.9 95.0 80.8
4 0.212 0.576 0.212 87.8 87.8 94.8 81.8
5 0.155 0.422 0.422 87.8 87.7 94.9 81.8
6 0.090 0.245 0.665 87.5 87.5 95.0 81.1
7 0.107 0.787 0.107 87.6 88.0 95.0 81.5
8 0.090 0.665 0.245 87.6 88.0 94.9 81.7
9 0.063 0.468 0.468 87.6 87.8 95.0 81.5

10 0.576 0.212 0.212 88.1 87.4 94.8 81.7

TABLE D.1: Performance of the first 15 models trained in the
preliminary study. Best performance in each task is highlighted
in bold font. "Combined" specifies the percentage of images

that have all tasks correctly predicted.
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Weights Accuracy

ID
Waste

Stream
Container

Type
Has

Waste
Waste

Stream
Container

Type
Has

Waste
Combined

11 0.422 0.155 0.422 88.1 87.3 94.9 81.6
12 0.245 0.090 0.665 87.6 86.8 94.9 80.8
13 0.422 0.422 0.155 88.1 87.8 95.0 81.9
14 0.245 0.665 0.090 87.7 87.9 94.7 81.9
15 0.787 0.107 0.107 87.9 86.8 94.9 81.0
16 0.665 0.090 0.245 87.9 86.7 94.9 80.9
17 0.468 0.063 0.468 87.8 86.6 94.9 80.9
18 0.665 0.245 0.090 87.8 87.3 94.7 81.5
19 0.468 0.468 0.063 88.1 88.0 94.8 82.2
20 1 0 0 87.6 2.5 43.3 0.7
21 0 1 0 16.3 88.0 55.1 1.6
22 0 0 1 0.4 5.4 94.7 0.0
23 auto auto auto 88.0 87.5 94.9 81.7

TABLE D.2: Performance of remaining models trained in the
preliminary study. Best performance in each task is highlighted
in bold font. "Combined" specifies the percentage of images
that have all tasks correctly predicted. "auto" means that the

automatic weight objective function in Equation 2.3 is used.
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