
ONLINE TIMELY BIN PACKING

Master Thesis for Computing Science

Zhadyra Khattar

0033324

z.khattar@students.uu.nl

August 2023

1st supervisor: Dr. H. H. (Alison) Liu

2nd supervisor: Dr. H. Bodlaender

Department of Information and Computing Sciences

Faculty of Natural Sciences

mailto:<email>

Contents

Abstract 3

1 Introduction 4

1.1 Motivation . 5

2 Literature review 6

2.1 Online bin packing problem with buffer and bounded size re-
visited1 . 6

2.2 Online bin packing with delay and holding costs2 6

2.3 Bin stretching with migration on two hierarchical machines3 . 7

2.4 Online bin covering with limited migration4 8

2.5 Algorithms for the Relaxed Online Bin-Packing Model5 9

2.6 Online bin packing with overload cost6 9

2.7 A θ - Competitive Algorithm for Scheduling Packets with
Deadlines7 . 10

2.8 Online scheduling of packets with agreeable deadlines8 10

2.9 Online analysis of the TCP acknowledgment delay problem9 . 11

2.10 Online bin packing with arbitrary release times10 12

2.11 Online Scheduling with Hard Deadlines11 12

2.12 A Scheduling Model for Reduced CPU Energy12 13

2.13 Dynamic Bin Packing13 . 14

2.14 A New and Improved Algorithm for Online Bin Packing14 . . 14

3 Definitions 14

4 Pack-at-Deadline algorithm 15

4.1 Upper Bound of Pack-at-Deadline 16

4.2 Lower bound of Pack-at-Deadline 18

5 Lower bound of Online Timely Bin Packing (T-BPP) 21

6 Observations 23

7 Conclusion 24

8 Acknowledgements 25

References 26

2

Abstract

Within the traditional online bin packing problem context, items with
a positive size not greater than one are sequentially introduced. These items
are assigned to bins with a capacity of 1 unit each, ensuring that the cu-
mulative size of items placed in a bin remains within its capacity limit; the
goal is to use the fewest bins possible. This thesis investigates novel con-
figurations within the domain of online bin packing, Online Timely Bin
Packing Problem (T-BPP). We introduce a new concept of time slots,
whereby each item with a positive size not larger than one is characterised
by a release time and an associated deadline. Item is available for packing at
time slot t if it is released before t and its deadline is after t. At time slot t,
an online algorithm is free to allocate available items in a manner that aligns
with its strategy ensuring that the cumulative size of items placed in each
bin does not exceed one. Additionally, the utilisation of each bin is confined
to a single designated time slot, after which it becomes inaccessible. The
goal of T-BPP is to pack these items without missing their deadlines, with
the deadline established upon the item’s release, using the minimal number
of unit capacity bins. It is worth noting that this particular problem for-
mulation has not been explored previously, thus standing as a unique and
uncharted research area.

To address this problem, we present the Pack-at-Deadline algo-
rithm with a competitive ratio of 2 and a lower bound of 1.67. Furthermore,
our analysis demonstrates the existence of a lower bound of 1.2 for the prob-
lem.

3

1 Introduction

In the context of reality, the future is unknown. Consequently, a pre-
vailing characteristic of most real-world predicaments resides in the inability
to anticipate these impending inputs confidently. In the computational world,
these problems are called online problems. Given the online problem, an on-
line algorithm has to make an irrevocable decision based on previous events
with limited information about the future. The algorithm’s decision for an
arriving item based on the previously given input holds profound repercus-
sions for the algorithm’s broader performance trajectory.

In the last 30 years, the interest in online algorithms has increased
since competitive analysis was introduced. The linchpin of this analytical
framework resides in the conceptual construct of the competitive ratio. This
evaluative metric endows the observer with insights into the cost efficacy of
an online algorithm. In order to calculate the competitive ratio of the online
algorithm, its performance is compared against the performance of an optimal
offline algorithm, one endowed with prescient knowledge of all forthcoming
inputs. Within computer science, operations research, and economics, online
problems have engendered extensive scholarly contemplation15.

One widely recognised online problem is the online bin packing prob-
lem. In this scenario, we have a list of items released one by one with a
positive size not greater than 1, and an infinite sequence of bins, each with a
unit capacity. The online algorithm has to pack every item into the bin before
the following item is released, ensuring that the sum of item sizes in each bin
does not exceed one. The main objective is to use the fewest bins possible
for this arrangement14. This concept applies to various practical situations
where efficient resource utilisation is crucial. For instance, consider a setup
involving multiple processors with a fixed capacity, where tasks of varying
sizes are introduced sequentially. The primary objective is to allocate these
tasks to the processors such that the load of each processor does not exceed
its capacity and resource consumption is minimised. It is important to note
that specific costs are associated with turning the processors on and off6.

This thesis will focus on online timely bin packing problem (T-BPP).
We introduce the new concept of feasible time slots for items. That is item
i has an interval [ri, di], where ri and di are the release time and deadline
of item i, respectively. An online algorithm learns about the item’s interval
when it is released and must pack it without missing its deadline. Further-
more, at time slot t, the online algorithm can pack available items with
release time less or equal to t and a deadline greater or equal to t into the
bins in an offline manner. That means the algorithm can move items from

4

one bin to another during the packing process at time slot t and leave some
items unpacked if their deadline is after t. However, the cumulative size of
items placed in a bin must be at most the bin’s capacity, i.e. one. It is
crucial to note that each bin can only be used during a single time slot, after
which it cannot be accessed anymore. The goal of this problem is to pack
these items without missing their deadlines using the fewest bins of a unit
capacity.

The Subsection 1.1 of this thesis will describe the applications of the
problem. Further, in Section 2, the previous studies will be analysed and
compared to T-BPP. We will give problem definitions in Section 3. In Sec-
tion 4, we introduce our algorithm Pack-at-Deadline and scrutinise its
performance. In Section 5, we give a lower bound of T-BPP. In Section 6,
we give some observations that we have made while working on this thesis.
Finally, we conclude this thesis project in Section 7.

1.1 Motivation

Online timely bin packing problem (T-BPP) can be applied in many
real-case scenarios. In this section, we will describe some of these cases.

We can use the online timely bin packing concept in partitioning the
orders into trucks for delivery in logistics. Consider that we have products
that arrive at the company warehouse after the consumer makes an order.
Those products need to be dispatched from the warehouse before their dead-
line that is available at the time of an order’s arrival. However, trucks are
expensive and have a limited capacity. Therefore, the company wants to
minimise the number of trucks delivering orders. In this case, orders can be
seen as items and trucks as bins. Each order has an arrival/release time and
deadline, while trucks have the same capacity.

In the second scenario, consider a corporate entity that engages the
services of independent contractors. These contractors are engaged for spe-
cific days, during which the company pays them a full day’s, equivalent to
8 hours, salary to complete the assigned tasks. The tasks, characterised by
a maximum duration of 8 hours, possess predetermined deadlines, different
release times and lack the capacity for interruption once commenced. In
light of the financial commitment required to remunerate these freelancers,
the primary objective is to minimise the frequency of engaging their ser-
vices. Consequently, the imperative arises to effectively allocate the tasks
mentioned above among the available freelancers. In this context, the tasks
are analogous to items, while the freelancers can be seen as bins.

5

2 Literature review

This part will briefly explain the papers we studied while working on
this master’s thesis. Our review shows that although some settings might
seem similar to our problem’s settings, Online Timely Bin Packing (T-BPP)
has distinct features and hasn’t been explored before. Nevertheless, these
papers gave us a solid starting point, and some of the ideas they contained
were valuable in guiding us through our thesis project.

2.1 Online bin packing problem with buffer and bounded
size revisited1

The authors of this paper considered the existing online bin packing
variation with a buffer and items with bounded size. In this setting, there is
a buffer of a constant size and items with a size that ranges between (α, 0.5],
where 0 ≤ α < 0.5. The online algorithm can pack an item into an open bin
or place it in the buffer when it arrives. Moreover, at most one bin can be
opened at any time, and items from the buffer should be packed into the bin
when there is no more arriving item. Zhang et al.1 improved Zheng et al.16

results by decreasing the upper bound from 1.4444 to 1.4243 and increasing
the lower bound from 1.3333 to 1.4230. The authors considered two cases
with different buffer sizes. In the first case, the buffer size was |S| = 2, and
the proposed algorithm’s asymptotic competitive ratio (ACR) was equal to
1.4375. In the second case, the buffer size was |S| = 3, and the proposed
algorithm had an ACR of 1.4243.

The considered problem is similar to our proposed problem in that both
have the concept of buffers. However, in our case, the buffer size is unlimited,
while items have a deadline by which they need to be packed into the bins.

2.2 Online bin packing with delay and holding costs2

Ahlroth et al.2 studied the online bin packing problem that has the
delay and holding costs in addition to the bin opening cost. In this problem,
the item should be assigned to a bin immediately upon arrival, and it collects
a delay cost until the assigned bin is closed. Additionally, each opened bin
incurs a holding cost proportional to the time the bin was open. The authors
considered the linear costs case and the bilinear costs case. The delay cost
equals 1 and 2 for linear and bilinear cases, respectively, where sk is the size
of kth item.

6

D(k)(t) = d · t (1)

D(k)(t) = d · sk · t (2)

The holding cost 3 has the linear structure with a constant value h > 0 in
both cases for bin i.

Hi = h · t (3)

Ahlroth et al.2 came up with a lower bound of 2 for both cases even
when either one of (but not both) holding cost or delay cost rates is zero.
In the linear case, the authors came up with a Release-on-balance (ROB)
algorithm with parameter α, where for a fixed α > 0, each bin i is closed

when Hi + Di =
1

α
B, where B is the bin’s capacity. The competitive ratios

for ROB had the following value:

• competitive ratio is at most 7, when α =
5

2
, h ̸= 0 and d ̸= 0;

• competitive ratio is at most 4, when α = 3 and h = 0;

• competitive ratio is at most 5, when α = 4 and d = 0.

The authors developed the Fast release-on-balance algorithm for the
bilinear case. It has a competitive ratio of at most 3 when the delay cost is
bilinear and when there is no delay cost.

2.3 Bin stretching with migration on two hierarchical
machines3

The authors of this paper, Akaria & Epstein, considered semi-online
scheduling with migration on two machines with a hierarchy. There are
two machines with different hierarchies, and jobs require different grades of
service gj ∈ 1, 2 that correspond to a machine hierarchy. Machine M1 can
run jobs of all hierarchies, whilst machine M2 can only run jobs of hierarchy
2. When a new job j arrives, there is a possibility to migrate jobs from
one machine to another. However, the migrated jobs’ total processing time
should not be greater M · pj, where M > 0 is a fixed migration factor and
pj is the processing time of job j. The objective of this paper is to schedule
jobs in such a way that the makespan is minimised. The problem is semi-
online because authors assume that the algorithm already knows the optimal
makespan, which equals 1.

Akaria & Epstein3 proposed an algorithm that considers migration only
when an item of hierarchy 2 arrives. The idea of the algorithm is to find a

7

subset so that the load on machines are balanced and completion time does
not exceed 1 + µ, where µ is a function of M .

The authors reached the following results:

• For the case M ≥ 2.5, the lower and upper bounds of
2M + 5

2M + 3

• For the case
3

4
≤M <

5

2
, the lower and upper bounds of 1.25

• For the case
1

2
≤M <

3

4
, the lower and upper bounds of 2 - M

• For the case
2

3
≤M <

3

4
, the lower and upper bounds of 2 - M

• For the case 0 ≤M <
1

2
, the lower and upper bounds of

3

2

2.4 Online bin covering with limited migration4

As in the previous paper, Berndt et al. investigated the limited mi-
gration in an alteration - the online bin covering problem. Bins are covered
if the total load of the bin is greater or equal to the bin size, which is usu-
ally one. In the bin covering problem, given items of size between 0 and 1,
the goal is to partition those items into bins so that the number of covered
bins is maximised. The authors loosened the irreversibility requirement and
considered the migration of items with migration factor β. Moreover, the
authors considered four variants of the problem, dynamic or static versions
with amortised or non-amortized migration factors. In the static version,
only insertions are allowed; in the dynamic case, it is possible to depart and
insert items. Algorithms have a migration factor of β when they can migrate
β ·s(i) items when item i arrives, where s(i) is the size of item i. Furthermore,
we say that algorithm has an amortised migration factor of β when the total
size of items migrated by the algorithm is at most β · |S|, where S is the set
of items migrated by the algorithm. Berndt et al. proposed an algorithm
that has the main idea of keeping in balance the number of bins containing
two big items, one big item, and no medium items where big items have size

si ∈ (
1

2
, 1] and medium items have size si ∈ (ϵ,

1

2
]. The algorithm has a

tight bound of 1.5 for all cases except amortised static version. In this case,
the authors concluded that no online algorithm with a constant amortised
migration factor exists.

8

2.5 Algorithms for the Relaxed Online Bin-Packing
Model5

Gambosi et al. ”relaxed” a traditional online bin packing problem so
that repacking is possible. When a new item arrives, a constant number of
items can be moved from one bin to another. It is useful when we want
to revoke some operations by paying some cost. Moving cost leads to the
fact that the number of such movements is counted toward the cost of the
algorithm. The goal of the problem is to minimise the number of bins that
were opened and the total cost of the algorithm.

The authors provided two algorithms whose main idea is to nonuni-
formly partition the bin into 4 and 6 chunks and fill those partitions. The
moving cost is equal to the number of elements in the set being moved from
one bin to another.

They achieved the competitive ratio of 1.5 and 1.33 for algorithms with
4 and 6 partitions, respectively. Moreover, for the first algorithm, the space
and runtime complexities were linear, while, for the second one, space com-
plexity was linear and runtime complexity was O(nlogn).

Both papers, ”Online bin covering with limited migration” and ”Algo-
rithms for the Relaxed Online Bin-Packing Model”, consider migration but
have different contexts.

2.6 Online bin packing with overload cost6

Luo et al. introduced another variation of the bin packing problem
where overloading the bin is allowed6. Given a unit capacity bin and a list
of items of size between 0 and 1, the algorithm has to pack items into the
bins so that the total cost is minimised. The total load of the bin is allowed
to exceed its capacity. However, the algorithm acquires an extra cost equal
to c · max{wi − 1, 0} for overloading, where wi is the total load of the bin
i and c ≥ 0 is the overload cost factor. Moreover, there is a unit cost for
opening a new bin. Therefore, the total cost that the bin collects equals
1 + c ·max{wi − 1, 0}.

Luo et al. proposed First-Fit algorithm with a fixed overload (FFO).
It works the same way as First-Fit (FF) but permits the overloading. FFO
works as follows: whenever a new item comes, the algorithm packs it into the
first opened bin that fits that item with an overload; otherwise, FF opens a
new bin.

The authors gave the following results:

• Competitive ratio is max(1,c), if 0 ≤ c <
3

2

9

• Competitive ratio is 1.5 if
3

2
≤ c < 1 + 2

√
3

• Competitive ratio is 1.577 if 1 + 2
√

3 < c < 17

• Competitive ratio is 1.667 if 17 ≤ c

In our setting, overloading is not allowed. Furthermore, there are more
efficient ways to pack items than FF in Online Timely Bin Packing since
we have more information about items than the traditional Bin Packing
Problem.

2.7 A θ - Competitive Algorithm for Scheduling Pack-
ets with Deadlines7

Vesely et al. considered the online packet scheduling problem with
deadlines (PacketScheduling) and proposed a new algorithm with a tight
bound. In PacketScheduling, packets that arrive over time have deadlines
and non-negative weights representing their urgency and priority, respec-
tively. It is worth noting that only one packet can be transmitted in one
time slot. That means some packets can miss their deadlines and are dropped
irrevocably. Therefore, the goal of PacketScheduling problem is to create a
transmission schedule that maximises the total weight of packets that have
been transmitted successfully.

The authors introduced a new concept of the plan in their algorithm.
The plan is the subset of pending packets that can be feasibly scheduled
with the maximum weight. When an arbitrary packet p is chosen to be
transmitted from the plan, the new feasible packet p′ is inserted into the
plan so that the plan’s weight is maximised.

The problem was analyzed before by17,18,19, and20 where they pro-
posed a lower bound of 1.618. The algorithm given in this paper has an
upper bound of θ, where θ is 1.618, which means the analysis is tight.

This problem is similar to ours because arriving items also have a dead-
line. However, in our case, several items can be packed into a bin simultane-
ously and have the same priority (weight).

2.8 Online scheduling of packets with agreeable dead-
lines8

The problem statement in this paper is similar to the problem state-
ment in the previously described paper7 with minor differences. They are:

10

• The deadlines are agreeable, i.e. the deadline of the newly arriving job
is (slightly) greater than the deadline of the previous job

• The deadlines of jobs are s-bounded, i.e. each packet has at most s
span.

The authors provided three algorithms. They are MG (modified greedy),
RMG (randomised modified greedy), and TS (”two-speed”) algorithms. In
MG, they consider the most urgent and highest-priority jobs each time. If
wu ≥ wh/θ, then the algorithm sends an urgent job, here wu and wh are
the weights of urgent and high-priority jobs, respectively. In RMG, they also
consider the most urgent and highest-priority jobs. However, in this case, the
authors send the urgent job with the probability wu/wh and the high-priority
job with the remaining probability. In TS, both jobs are sent in parallel with
the assumption that it is allowed to send several jobs simultaneously.

The authors showed θ, 4/3, and 1-competitive asymptotic ratios for
MG, RMG, and TS respectively.

2.9 Online analysis of the TCP acknowledgment delay
problem9

Dooly et al. discussed TCP Acknowledgment delay problem. In this
problem, there are n arriving packets, and the goal is to divide those packets
into k partitions so there will be k acknowledgements. Packets can be de-
layed until they are acknowledged. However, their latency increases in that
case. Moreover, there are costs for acknowledgement and the latency of pack-
ets. However, the algorithm will be charged only once for acknowledging the
partition regardless of the number of packets in the partition that it acknowl-
edges. The goal of the problem is to partition n packets into k partitions
so that the cost is minimised. To ensure that all packets are acknowledged,
authors set the following constraints: k ≥ 1 and tk ≥ an.

To solve the TCP acknowledgement delay problem, the authors assume
an oracle exists that tells the arrival time of the following L items, where
L ≥ 0. The idea of the algorithm proposed by the authors is to balance the
acknowledgement and latency costs. That means the algorithm acknowledges
the packets when the latency cost equals the acknowledgement cost.

They reached the following results:

• Competitive ratio of 2 and 1 for L = 0 and L = 1 respectively for the
first algorithm

• Competitive ratio of 2 in all cases for the second algorithm.

11

The main difference of this problem with OnlineTimely Bin Packing
(T-BPP) lies in the fact that, in T-BPP, no oracle tells the arrival time of
the next item. Furthermore, T-BPP allows no latency, and each partition
size should not exceed one.

2.10 Online bin packing with arbitrary release times10

The online bin packing where items in I have random release times has
been considered by Shi and Ye. In this problem, bins have time axis [0, 1]
from bottom to top, and each time item is identified as pair of ai and ri.
Here, ai corresponds to the size of item i, and ri is the release time of an
item i. When item i arrives, it should be placed above ri in the bin. The
order in which items arrive is independent of their release times. Moreover,
to ensure that all items fit into the bins, they set the following constraint:
ai + ri ≤ 1 for item i, where i ∈ I. Authors assumed that all items have the
same size of 1/K, where K ≥ 1.

The authors considered ANY FIT (AF) first, but then they realised
that it could not have a constant competitive ratio in this problem. Therefore,
they proposed a new algorithm that puts the arriving item into the bin with
the smallest feasible time. If such a bin does not exist, it opens a new bin.
The authors proved that this problem has a tight bound of 2.

Even though this problem has a concept of a release time, it is different
from the release time inOnline Timely Bin Packing and bounded by one.
Furthermore, bins can be used in this paper’s settings unless they are full.

2.11 Online Scheduling with Hard Deadlines11

Goldman et al. considered the online scheduling of jobs with hard
deadlines in their paper. There is only one machine that executes jobs, and
it can execute one job at a time. Moreover, an online algorithm is unaware of
future jobs and must schedule a job that is already known non-preemptively.
Once the job is scheduled, the machine is unavailable for the amount of time
equal to the job’s length. Since every job has a deadline, jobs that miss their
deadlines are dropped. The goal of this problem is to maximise the total
resource utilisation.

The authors designed various cases and created different algorithms,
the results of which are depicted in the following table.

12

Table 1. Summary of results.
Job lengths Delay type Competitive ratio

1 Arbitrary 2
1 Min. delay 1 1.5

{1, k} Arbitrary 4

{1, k} Uniform (1 +
[k]

k
)

{1, 2, 22, ..., 2c} Arbitrary 3 (c + 1)

{1, 2, 22, ..., 2c} Uniform 2.5 (c + 1)

[1, 2c] Arbitrary 6 (c + 1)

[1, 2c] ”Uniform” 5 (c + 1)

Here, the delay is the time from arrival till the deadline, k > 1 is the real
number, and c is an integer. Uniform jobs’ delays are proportional to the
jobs’ sizes, while the last ”uniform” means that the delay is lg|J | proportional
to the job’s size.

2.12 A Scheduling Model for Reduced CPU Energy12

Yao et al. studied job scheduling that reduces the total energy usage
in the CPU. In their paper, the jobs have arrival times, deadlines, and the
number of required CPU cycles. All jobs are processed between their arrival
time and the deadline by a single processor that has variable speed. Moreover,
the energy usage per unit of time P is directly proportional to the convex
function of the processor speed. Once the job is scheduled, it cannot be
paused, meaning non-preemptive execution. The authors gave an offline
optimal algorithm and online AverageRateHeuristics(AV R) to solve the

problem online. In AV R, they gave each job j a density equal to dj =
Rj

bj − aj
where aj - arrival time, bj - deadline, Rj - required number of CPU cycles.
At time t, the dj(t) = dj if aj ≤ t ≤ bj. AV R schedules jobs at the earliest-
deadline policy where s(t) =

∑
j dj(t). They showed that the competitive

ratio for P(s) = sp where p ≥ 2 for AV R is between pp and 2(p− 1)pp.
This problem is different from ours because it uses a single processor,

while in our problem, we can use multiple bins. Moreover, the cost function
in Online Timely Bin Packing is a linear function of the input instance’s size,
while in this paper, it is proportional to the convex function of the input.

13

2.13 Dynamic Bin Packing13

Coffman et al. considered the dynamic allocation of bins where items
can arrive and depart at arbitrary times. It is not known when the item
arrives and when it departs. However, when the item arrives, it should be
packed immediately, and repacking is prohibited. When the item departs,
the bin gains si space where si is the size of the departed item.

The authors used the First−Fit(FF) algorithm to solve this problem
and conducted an analysis of its competitive ratio. The upper bound for FF

was equal to
k + 1

k
+

1

k − 1
log

k2

k2 − k + 1
where 1/k is the size of the largest

item. Moreover, they gave the lower bounds for FF and general case, which

are equal to
k + 1

k
+

1

k2
and 1 +

k + 2

k(k + 1)
, respectively.

This problem is similar to ours because items have release and depar-
ture times. However, our model gives the deadline/departure time at arrival
and does not allow to reuse the bins.

2.14 A New and Improved Algorithm for Online Bin
Packing14

Balogh et al.14 introduced a new, improved harmonic algorithm for
online bin packing and a more simplified analysis of the competitive ratio
using the weight functions. In previous approaches, mixing items of different
types was not allowed. However, their new algorithm, Advanced Harmonics
(AH), decreased the competitive ratio to 1.57829 by allowing the mix of types.

We considered this paper since we wanted to use weight functions to
find the competitive ratio for our approach. However, using the weight func-
tions in our setting is complicated due to the intricate nature of the problem
and the different possible scenarios that can arise.

3 Definitions

This section presents a compilation of definitions that will be subse-
quently applied in the context of this thesis.

Problem definition: Given a concept of feasible time slots of items,
there is a list of items L = {a1, a2, ..., an} with feasible interval Ii = [ri, di],
where ri is the release time of ai and di is the deadline of ai, and size si ∈ (0, 1]
for each ai ∈ L. Notice, ri ≤ rj where i < j. The information about Ii and
si becomes available when ai is released at time slot t = ri. We say ai is

14

available for packing at time slot t if ri ≤ t ≤ di. Furthermore, at time slot
t, the online algorithm can pack available items in an offline manner. This
implies that the online algorithm can move items between bins during the
packing process at time slot t and leave some items unpacked if their deadline
is after t. It is essential to highlight that each bin can be used during a single
time slot – after that, it becomes inaccessible for further use. Moreover, the
online algorithm has a feasible packing if it packs all items without missing
deadlines. The problem’s objective is to find a feasible packing that uses as
few bins as possible.

Performance analysis: We denote the cost of an online algorithm
ALG, the number of bins used by ALG, on an input L as ALG(L). The cost
of optimal offline algorithm OPT on an input L is denoted as OPT (L). The
asymptotic approximation ratio compares the cost of an online algorithm
against the optimal offline algorithm’s cost for inputs for which the optimal
offline algorithm’s cost is sufficiently large. The asymptotic approximation
ratio of ALG, denoted as c, equals15:

c = lim
N→∞

(
sup

L:OPT (L)≥N

ALG(L)

OPT (L

)
(4)

In this thesis, we will use the asymptotic approximation ratio, c, to measure
the performance of the online algorithm ALG.

Lower bound The lower bound is commonly articulated with the
competitive ratio. Specifically, for a given problem, it is established that the
competitive ratio of any online algorithm cannot surpass the associated lower
bound21.

Independent items Two items are independent if their intervals do
not overlap.

Trigger items The items with the deadline at time slot t that were
packed into the bin at time slot t.

The bin’s load The load of the bin is the cumulative size of items
placed in that bin.

Big bin Bin with the load greater
1

2
.

Small bin Bin with the load less or equal to
1

2
.

4 Pack-at-Deadline algorithm

This section defines our algorithm, Pack-at-Deadline, that packs
all available items at time slot t when there is a job with its deadline at t.

15

First, we give the algorithm and then analyse its competitive ratio and the
lower bound.

t← 0;
while there is still an item that will be released do

if there is/are an item/s with a release time equal to time slot t
then

Collect information about the item/s;
end
if there is an item with a deadline at time slot t then

Pack all available items into bins so that the number of
utilised bins is minimal and the total size of items placed in
each bin does not exceed one;

end
t← t + 1;

end
Algorithm 1: Pack-at-Deadline

4.1 Upper Bound of Pack-at-Deadline

In this subsection, we analyse the upper bound of the competitive ratio
for Pack-at-Deadline. We denote the number of bins used by Pack-
at-Deadline as ALG and the number of bins used by the optimal offline
algorithm as OPT .

Lemma 1. OPT ≥ k, where k is the number of time slots when Pack-at-
Deadline opens bins.

Proof Given the inherent characteristics of the algorithm, it becomes
evident that the intervals associated with trigger items across distinct packing
time slots do not overlap. This is primarily due to the fact that should such
overlap occur, these trigger items would invariably be accommodated within
the same time slot. Due to the non-overlapping nature of these intervals,
it becomes implausible for any algorithm to effectuate their simultaneous
packing within a single bin, necessitating the assignment of an individual
bin for each trigger item. Consequently, it follows that an optimal offline
algorithm mandates the utilisation of at least k bins. Hence, this lemma
holds.

Lemma 2. Pack-at-Deadline opens at most one small bin at time slot t.

16

Proof Assuming that Pack-at-Deadline initiates the opening of a
minimum of two small bins during time slot t, it becomes evident that the
cumulative load of any two small bins from this time slot remains below one.
Consequently, a potential exists to consolidate these loads within a single
bin. This inference implies a suboptimal utilisation of bins by Pack-at-
Deadline. Nonetheless, it is established that Pack-at-Deadline adheres
to an optimal bin utilisation strategy. Hence, it logically follows that Pack-
at-Deadline does not opt to open more than one small bin during time
slot t.

Lemma 3. OPT ≥ smin · (ALG − k′) where smin is the cumulative size of
items in the big bin with the smallest load opened by Pack-at-Deadline
and k′ is the number of small bins opened by Pack-at-Deadline.

Proof The number of big bins opened by Pack-at-Deadline equals
(ALG − k′). Since smin is the cumulative size of items in the big bin with
the smallest load, all big bins have a load of at least smin. Therefore, the
total size of all items in the input sequence is at least smin · (ALG − k′).
According to21, an optimal algorithm’s cost is at least the cumulative size of
all items in the input sequence. Therefore, this lemma holds.

Lemma 4. OPT ≥ smin ·(ALG −2·k′)+k′ where smin is the cumulative size
of items in the big bin with the smallest load opened by Pack-at-Deadline
and k′ is the number of small bins opened by Pack-at-Deadline.

Proof Considering that Pack-at-Deadline initiates the opening of
a small bin during time slot t due to the incompatibility of the items within
the small bin with the available space in the larger bins of the same time slot,
a crucial observation emerges. This observation entails that the cumulative
size of items housed in a small bin and any large bin from the corresponding
time slot exceeds the capacity of a single bin (i.e., greater than one).

Upon merging each small bin with any large bin from the same time
slot, established during the opening of the small bin, the ensuing inequality

materialises: OPT ≥ smin·(ALG −k′−
∑k′

j=1 1)+
∑k′

j=1 max
(
sbigj + ssmall

j , 1
)

,

wherein sbigj denotes the load of the large bin during time slot j, and ssmall
j

represents the load of the accompanying small bin during the same time slot.
It is noteworthy that sbigj + ssmall

j > 1 during time slot j when Pack-
at-Deadline simultaneously initiates the opening of large bins alongside a
small bin. During time slot j when Pack-at-Deadline exclusively triggers
the opening of a solitary small bin, even if there are not enough available
items at time slot j to fill that bin so that its load is greater than one, the
offline optimal algorithm would still opt to open that bin. Hence, it follows

17

that OPT > smin ·(ALG −k′−
∑k′

j=1 1)+
∑k′

j=1 1 = smin ·(ALG −2 ·k′)+k′.
Thus, we have this lemma.

Lemma 5. OPT ≥ k′ where k′ is the number of small bins opened by Pack-
at-Deadline.

Proof If Pack-at-Deadline opens a small bin at every time slot t
when it packs the items, from Lemma 2, it cannot open more than k small
bins where k is the number of time slots when Pack-at-Deadline opens
bins. Hence, k′ ≤ k. From Lemma 1, k′ ≤ k ≤ OPT .

Theorem 1. Pack-at-Deadline has a competitive ratio of 2.

Proof To prove theorem 1, we consider the following inequalities.

OPT ≥ smin · ALG− (2 · smin − 1) · k′ (5)

OPT ≥ k′ (6)

eq. (5) and eq. (6) come from Lemma 4 and Lemma 5 respectively.

After multiplying both sides of eq. (5) by
1

smin

, we have the following

inequality:
1

smin

·OPT ≥ ALG− 2 · smin − 1

smin

k′ (7)

After multiplying both sides of eq. (6) by
2 · smin − 1

smin

, we get:

2 · smin − 1

smin

·OPT ≥ 2 · smin − 1

smin

· k′ (8)

The sum of eq. (7) and eq. (8) is equal to:

2 ·OPT ≥ ALG (9)

Hence this theorem holds.

4.2 Lower bound of Pack-at-Deadline

In this subsection, we examine the lower bound of Pack-at-Deadline.

Theorem 2. The Pack-at-Deadline has a lower bound of
10

6
.

18

Proof To prove theorem 2, we consider instance I with the following
structure, given n is the sufficiently large positive integer and ϵ such that
1

6
− 2ϵ ≥ 1

7
:

• Set of n items with size of
1

6
− 2ϵ and interval [0, 2] denoted as X;

• Set of n items with size of
1

3
+ ϵ and interval [1, 2] denoted as Y ;

• Set of n items with size of
1

2
+ ϵ and interval [2, 2] denoted as Z;

• 1 item of size ϵ with interval [0, 0] denoted as trigger0;

• 1 item of size ϵ with interval [1, 1] denoted as trigger1;

• 1 item of size ϵ with interval [2, 2] denoted as trigger2;

trigger0, trigger1, and trigger2 items trigger Pack-at-Deadline to
pack items at three time slots.

At time slot t = 0, trigger0 and X are available for packing, and
trigger0 has a deadline. One bin can fit at most six items from X. Moreover,
the bin that contains six items from X and trigger0 has a load of less than
one. Thus, Pack-at-Deadline packs trigger0 with six items from X in

one bin and remaining n− 6 items from X in
n

6
− 1 bins. Therefore, Pack-

at-Deadline opens
n

6
bins at time slot t = 0.

At time slot t = 1, trigger1 and Y are available for packing, and
trigger1 has a deadline. One bin can fit at most two items from Y . Moreover,
the bin that contains two items from Y and trigger1 has a load of less than
one. Therefore, Pack-at-Deadline packs trigger1 with two items from

Y in one bin and remaining n − 2 items from Y in
n

2
− 1 bins. Therefore,

Pack-at-Deadline opens
n

2
bins at time slot t = 1.

At time slot t = 2, trigger2 and Z are available for packing, and
trigger2 has a deadline. One bin can fit exactly one item from Z. Moreover,
a bin that contains an item from Z and trigger2 has a load of less than
one. Therefore, Pack-at-Deadline packs trigger2 with an item from Z
in one bin and remaining n − 1 items from Z in n − 1 bins. Therefore,
Pack-at-Deadline opens n bins at time slot t = 2.

Overall, Pack-at-Deadline opens
10

6
·n bins. The partition done by

Pack-at-Deadline on input sequence I is demonstrated in fig. 1.

19

The optimal offline algorithm opens one bin for trigger0 at time slot
t = 0 and packs it together with six items from X. At time slot t = 1, it
opens one bin for trigger1 and packs it together with two items from X and
two items from Y . At time slot t = 2, it opens n bins to pack the remaining
items; that is n−8 bins to pack each of n−8 items from X, Y , and Z, six bins
to pack six items from Y and Z, two bins to pack the remaining items of Z
with trigger3. Overall, the optimal offline algorithm’s cost is equal to n+ 2.
The partition done by optimal offline algorithm OPT on input sequence I is
demonstrated in fig. 2.

The competitive ratio of Pack-at-Deadline for the input sequence
I is:

cI = lim
N→∞

10

6
· n

n + 2
=

10

6
(10)

Figure 1. Partition of I done by Pack-at-Deadline, Pack-at-Deadline(I)

20

Figure 2. Partition of I done by OPT, OPT(I)

5 Lower bound of Online Timely Bin Packing

(T-BPP)

Theorem 3. There is no online algorithm for T-BPP with a competitive
ratio less than 1.2.

Proof First, we assume that we have an arbitrary online algorithm
ALG with a competitive ratio of under 1.2. Next, we will introduce an
adversary demonstrating that no online algorithm can achieve a competitive
ratio of less than 1.2. This, in turn, will result in a contradiction with our
first statement.

Given a large enough integer n > 0, the instance I is structured as
follows:

• Set of n items with the interval [0, 0] and with the size of
1

2
− ϵ denoted

as X;

• Set of n items with the interval [0, n + 1] and with the size of
1

2
+ ϵ

21

denoted as Y ;

• Set of n items of size
1

2
− ϵ and with intervals [j + 1, j + 1] for item j

where j = 1, 2, ..., n denoted as Z.

fig. 3 demonstrates the instance I.

Figure 3. Instance I

An adversary releases sets X and Y at time slot t = 0 first. Based on
the decision made by an arbitrary online algorithm ALG at time slot t = 0,
the adversary further releases all items in set Z or keeps them unreleased at
time slot t = 1. Since we denote p as the fraction of items in Y , p · n items
from Y , that ALG packed with X at time slot t = 0, the remaining portion
of items in Y , (1− p) · n items from Y , is packed in [1, n + 2].

We consider two cases. In the first one, the adversary does not release
Z at time slot t = 1; in the second one, it releases Z at time slot t = 1.

In the first case, we denote the number of bins used by an arbitrary
online algorithm ALG and optimal offline algorithm OPT as ALG1 and
OPT1, respectively. In this case, ALG opens p · n bins to pack p · n items

from X and p ·n items from Y together at time slot t = 0, (1− p) · n
2

bins to

pack remaining (1−p)·n items from X at time slot t = 0 since two items from
X can fit into one bin, and (1− p) · n bins to pack the remaining items from
Y after time slot t = 0. Therefore, ALG1 can be described as the function
of p as in the equation below:

ALG1 = (p + (1− p) · 1

2
+ (1− p)) · n (11)

The OPT1 equals n since OPT packs one item from X and one item from Y
together n times at time slot t = 0.

In the second case, we denote the number of bins used by an arbitrary
online algorithm ALG and optimal offline algorithm OPT as ALG2 and

22

OPT2, respectively. When the adversary decides to release Z after time slot
t = 0, ALG opens p · n bins to pack p · n items from X and p · n items from

Y together at time slot t = 0, (1− p) · n
2

bins to pack remaining (1− p) · n
items from X at time slot t = 0 since two items from X can fit into one bin,
(1 − p) · n bins to pack the remaining fraction of items of Y and (1 − p) · n
items of Z together after time slot t = 0, and p ·n bins to pack the remaining
items in Z after time slot t = 0. Therefore, ALG2 can be described as the
function of p as in the equation below:

ALG2 = (p + (1− p) · 1

2
+ (1− p) + p) · n (12)

In the second scenario, the value of OPT2 is equivalent to
3

2
· n, as it opens

1

2
· n bins to accommodate X items at time slot t = 0, and subsequently

utilises n bins to accommodate one of the Y items and one of the Z items
together n times after the time slot t = 0.

We can see ALG1 is decreasing as p is increasing while ALG2 is in-
creasing as p is increasing.

ALG1 = (
3

2
− 1

2
· p) · n (13)

ALG2 = (
3

2
+

1

2
· p) · n (14)

By finding p when the competitive ratios of the first and second cases

are equal, we find the lowest competitive ratio of ALG. That is p =
3

5
. If

ALG packs more than 60% of Y at t = 0, then the adversary releases all
items in Z after time slot t = 0, otherwise, it does not release Z. By doing
that, the adversary ensures that no online algorithm ALG does better than
1.5− 0.5 · 0.6 = 1.2-competitiveness.

6 Observations

We made several observations when we studied the problem and we
present them in this section.

Observation 1. Prioritizing big items during the packing process makes the
algorithm’s overall performance potentially better

23

Given that big items occupy greater space within a bin, prioritising
them at packing guarantees adequate room allocation within bins. This
approach can result in more space for accommodating smaller items available
for packing, potentially decreasing the total number of bins required.

Moreover, an adversary may not present subsequent items if big items
are not assigned to the bins at the earlier time slots. As a result, they will be
packed in separate bins, causing space waste that could be utilised efficiently
by small items in earlier time slots.

Observation 2. Items that have closer deadlines should be given priority
over items with later deadlines.

By refraining from prematurely placing items with distant deadlines
into bins, we afford ourselves the adaptability to modify our approach in
response to potential changes in input from an adversary. The postponement
of packing for such items introduces an additional layer of complexity for the
adversary in terms of crafting input that undermines the effectiveness of our
decisions.

Observation 3. Using deterministic offline algorithms during the packing
process may help analyse the upper bound.

Given the inexhaustible range of approaches available to an adversary
to undermine an online algorithm’s decision, possessing an upper bound for
the cumulative input size is desirable. Therefore, using decisive offline algo-
rithms that set boundaries for item sizes during the packing process may offer
distinct advantages. An example of such algorithms that has demonstrated
results close to optimality includes the First-Fit-Decreasing (FFD) and
Modified-First-Fit-Decreasing (MFFD) algorithms, as explored by John-
son (1985)22. These algorithms yield local minimum solutions and offer the
additional advantage of simplicity in implementation alongside polynomial
time complexity.

7 Conclusion

We introduced a variant of the online bin packing problem with the new
concept of feasible intervals for items, Online Timely Bin Packing Problem
(T-BPP). In this thesis, given a list of items L = {a1, a2, .., an} and an infinite
number of unit capacity bins, each item ai is characterised by a feasible
interval Ii = [ri, di] and a positive size si ≤ 1, where ri and di are the release
time and deadline of ai, respectively. Given that bins can be used at a single

24

time slot after which they are inaccessible, an online algorithm has to pack
items into bins without missing deadlines so that the load of each utilised
bin is not larger than one. Items can be packed between their release time
and deadline, where the algorithm learns about the item’s deadline when it
is released. Given that the online algorithm packs items in an offline manner,
the objective of the problem is to pack items feasibly using as few bins as
possible.

We analysed the problem and gave an algorithm, Pack-at-Deadline,
with the worst-case asymptotic approximation ratio of 2. Furthermore,
we provided an instance to show that the competitive ratio of Pack-at-
Deadline is strictly greater than 1.67. We gave the lower bound for T-BPP,
which is equal to 1.2.

Additionally, we gave observations about the problem that might help

in further research, such as packing items with a size greater than
1

2
with a

high priority while packing items with a size smaller than
1

2
in an ascending

sorted order of their deadlines.
There are some open questions for further research; for instance, if the

decision tree model to design adversary helps to increase the lower bound of
T-BPPor if using offline bin packing algorithms that showed near to optimal
results such as MFFD22, in the packing process could help to decrease the
upper bound. Further research also includes relaxation of T-BPP, such as
allowing overloading or delays.

8 Acknowledgements

We thank Dr. Liu for her guidance throughout the thesis project with
the discussions of algorithms and their analysis.

25

References

[1] Zhang, M., Han, X., Lan, Y. & Ting, H.-F. Online bin packing prob-
lem with buffer and bounded size revisited. Journal of Combinatorial
Optimization 33, 530–542 (2017).

[2] Ahlroth, L., Schumacher, A. & Orponen, P. Online bin packing with
delay and holding costs. Operations Research Letters 41, 1–6 (2013).

[3] Akaria, I. & Epstein, L. Bin stretching with migration on two hierar-
chical machines. arXiv preprint arXiv:2206.06102 (2022).

[4] Berndt, S. et al. Online bin covering with limited migration. arXiv
preprint arXiv:1904.06543 (2019).

[5] Gambosi, G., Postiglione, A. & Talamo, M. Algorithms for the relaxed
online bin-packing model. SIAM journal on computing 30, 1532–1551
(2000).

[6] Luo, K. & Spieksma, F. C. Online bin packing with overload cost. In
Algorithms and Discrete Applied Mathematics: 7th International Con-
ference, CALDAM 2021, Rupnagar, India, February 11–13, 2021, Pro-
ceedings, 3–15 (Springer, 2021).

[7] Veselỳ, P., Chrobak, M., Jeż, L. & Sgall, J. A-competitive algorithm
for scheduling packets with deadlines. SIAM Journal on Computing 51,
1626–1691 (2022).

[8] Jeż, L., Li, F., Sethuraman, J. & Stein, C. Online scheduling of packets
with agreeable deadlines. ACM Transactions on Algorithms (TALG) 9,
1–11 (2012).

[9] Dooly, D. R., Goldman, S. A. & Scott, S. D. On-line analysis of the
tcp acknowledgment delay problem. Journal of the ACM (JACM) 48,
243–273 (2001).

[10] Shi, Y. & Ye, D. Online bin packing with arbitrary release times. The-
oretical computer science 390, 110–119 (2008).

[11] Goldman, S. A., Parwatikar, J. & Suri, S. Online scheduling with hard
deadlines. Journal of Algorithms 34, 370–389 (2000).

[12] Yao, F., Demers, A. & Shenker, S. A scheduling model for reduced cpu
energy. In Proceedings of IEEE 36th annual foundations of computer
science, 374–382 (IEEE, 1995).

26

[13] Coffman, E. G., Jr, Garey, M. R. & Johnson, D. S. Dynamic bin packing.
SIAM Journal on Computing 12, 227–258 (1983).

[14] Balogh, J., Békési, J., Dósa, G., Epstein, L. & Levin, A. A
new and improved algorithm for online bin packing. arXiv preprint
arXiv:1707.01728 (2017).

[15] Borodin, A. & El-Yaniv, R. Online computation and competitive analysis
(cambridge university press, 2005).

[16] Zheng, F., Luo, L. & Zhang, E. Nf-based algorithms for online bin
packing with buffer and bounded item size. Journal of Combinatorial
Optimization 30, 360–369 (2015).

[17] Andelman, N., Mansour, Y. & Zhu, A. Competitive queueing policies
for qos switches. In SODA, vol. 3, 761–770 (Citeseer, 2003).

[18] Chin, F. Y. & Fung, S. P. Online scheduling with partial job values:
Does timesharing or randomization help? Algorithmica (New York)
(2003).

[19] Hajek, B. On the competitiveness of on-line scheduling of unit-length
packets with hard deadlines in slotted time. In Proceedings of the 2001
Conference on Information Sciences and Systems (2001).

[20] Zhu, A. Analysis of queueing policies in qos switches. Journal of Algo-
rithms 53, 137–168 (2004).

[21] Algorithms for decision support lecture (2021).

[22] Johnson, D. S. & Garey, M. R. A 7160 theorem for bin packing. Journal
of complexity 1, 65–106 (1985).

27

	Abstract
	Introduction
	Motivation

	Literature review
	Online bin packing problem with buffer and bounded size revisitedzhang2017online
	Online bin packing with delay and holding costs ahlroth2013online
	Bin stretching with migration on two hierarchical machinesakaria2022bin
	Online bin covering with limited migration berndt2019online
	Algorithms for the Relaxed Online Bin-Packing Model gambosi2000algorithms
	Online bin packing with overload cost luo2021online
	A - Competitive Algorithm for Scheduling Packets with Deadlines vesely2022competitive
	Online scheduling of packets with agreeable deadlines jez2012online
	Online analysis of the TCP acknowledgment delay problem dooly2001line
	Online bin packing with arbitrary release times shi2008online
	Online Scheduling with Hard Deadlines goldman2000online
	A Scheduling Model for Reduced CPU Energy yao1995scheduling
	Dynamic Bin Packing coffman1983dynamic
	A New and Improved Algorithm for Online Bin Packing balogh2017new

	Definitions
	Pack-at-Deadline algorithm
	Upper Bound of Pack-at-Deadline
	Lower bound of Pack-at-Deadline

	Lower bound of Online Timely Bin Packing (T-BPP)
	Observations
	Conclusion
	Acknowledgements
	References

