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Taming the Elements:

An Analysis of Temperature Derivatives and Spatial Basis Risk in the Netherlands

Abstract

The key aim of this thesis discuss and apply a pricing model for temperature deriva-
tives with payoffs deriving from Dutch average daily temperatures. We first run a
thorough analysis of 52 years of daily average temperatures in nine dutch cities and
use a Ornstein-Uhlenbeck process with seasonal volatility to capture the features of
daily average temperatures. We use explicit pricing formulas and a Monte Carlo sim-
ulation to approximate the price of HDD and CAT options and propose an approach
to estimate the market price of risk that relies on the Newton-Raphson method. The
thesis also investigates the effects of spatial basis risk in the Netherlands and sug-
gests trading a new security which combines an exchange traded derivative and a
basis derivative, along with a discussion on accounting for this security in a profit
maximization framework.
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Introduction

As climate change and increasing global temperatures are becoming an increas-

ingly pressing global issue, this thesis delves into the intricate market of temperature

derivatives in the Netherlands, seeking to shed light on the complexities of this vital

department of risk management. Building upon the importance of risk management

in today’s economy, recent events such as the Russian Federation’s “special military

operation” have caused a surge in energy price volatility, which further emphasizes

the significance of understanding temperatures derivatives.

The energy crisis spurred by this event is characterized by unstable and un-

predictable behaviour of energy markets, particularly those of liquid and gaseous

fuels. Given that electricity generation technologies, and therefore supply and price

formation, rely primarily on natural gas, the exogenous shock to energy markets

has caused utility bills to soar to unprecedented levels, marking an unprecedented

increase in gas prices north of 150% July 2021 and July 2022 in the EU ( Council

of the EU & the European Council, 2023a). To address this challenge and pro-

mote greater stability and predictability in energy prices and costs, the European

Commission proposed a reform of the European electricity market through regula-

tions to “improve the Union’s electricity market design” and to “improve the Union’s

protection against market manipulation in the wholesale energy market” (European

Commission, 2023). Nevertheless, because of high gas grid congestion and storage

fullness at the north-west European hubs, the Title Transfer Facility (TTf) spot

price temporarily fell to e 30/MWh in late October but rose back to reach a peak

of e 150/MWh in early December and dropped back again to e 70/MWh. The

downward trajectory continued until mi-May 2023. Although, the EU reached gas

storage levels that puts it 5% or 5 bcm above its 5-year average, and that gas prices

began to normalize, the IEA warns against overly optimistic predictions amid the

existence of significant risks for 2024. That is, 5 bcm is the equivalent of “just two

days of EU gas demand during a cold spell” (International Energy Agency, 2022b).

This research considers another factor that contributes to the unpredictability

of energy prices: weather, which stems from the fact that past research shows that

energy demand depends greatly on temperature (Engle et al., 1992; Li & Sailor,

1995; Stoft, 2002; Zanotti et al., 2003). In addition, climate conditions have had an

aggravating effect on energy prices in the EU. According to the Council of the EU &
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the European Council (2023b), “Heatwaves during summer 2022 have put additional

pressure on energy markets”, which experienced both high demand for cooling and

low supply because of drought. Various factors influence energy supply and demand

in the Netherlands. Among the most significant of these are weather patterns and

temperature fluctuations. These have long been recognized as key drivers of en-

ergy demand. According to the International Energy Agency, the average surface

temperature in the Netherlands rose by 2.3°C between 1901 and 2020, a rate of

warming faster than the world’s average in the 20th century. The agency’s climate

hazard assessment argues that the country is enduring more frequent and intense

heatwaves, with higher expected temperatures during Dutch summers. Further-

more, the Netherlands is facing important shifts in the energy heating and cooling

demand, therefore shrinking the number of Heating Degree Days (HDDs) and ex-

tending the number of Cooling Degree Days (CDDs)1. These climate change-induced

shifts are thus poised to reduce energy consumption during winter, while boosting

electricity consumption in the summer. Moreover, given the Dutch energy policy’s

robust emphasis on augmenting the electrification of buildings, the projected surge

in electricity demand for cooling during summer season could stimulate stress on

the electricity grid (International Energy Agency, 2022a).

Nonetheless, with the advent of innovative financial instruments such as temper-

ature derivatives, the dynamics of energy markets have undergone a notable transi-

tion recently. Temperature derivatives are financial instruments that allow market

participants to manage their exposure to market volatility by hedging against the

risk of climate hazards, notably temperature fluctuations.

Climate change is indubitably a major contributor to the rise of diverse climate

patterns in many regions around the world, including the Netherlands, which has

far-reaching implications for the pricing and efficiency of energy. As such, investors

interested in mitigating temperature risk face an intricate challenge. That is to

say, trading temperature derivatives in the Netherlands is presently confined to one

reference city, Amsterdam. As it will be shown at a later stage in this research,

investors involved in trading temperature derivatives attempt to hedge away price

risk. Clearly, this poses an arduous geographical or spatial basis risk challenge for

parties who wish to hedge against temperature fluctuations in other Dutch cities.

In the context of temperature derivatives, basis risk arises when the underlying

asset or a random variable2 in general, that a financial instrument is based on, does

not exactly match the hedging needs of the hedger. In the case of temperature

derivatives, it occurs when the reference city’s temperature does not accurately

reflect the temperature at the actual hedging location. For instance, in a given winter

1HDDs and CDDs indicate the deviation of daily mean temperatures from a reference tempera-
ture of 18°C or 65°F.

2Temperature does not match the definition of what an asset is.
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season, the temperature of the city of Groningen may or may not be the same as

Amsterdam’s, geographical basis risk arises if it is not. Naturally, basis risk is greater

when the expected temperatures of both cities diverge. For example, say a European

natural gas importer is involved in a long-term contract of 15 years which binds them

to pay some 90% of the contracted gas. The importer has distributors active in the

Dutch market for space heating. However, suppose the city of Groningen experiences

a warm winter, then the importer faces basis risk due to the absence of publicly

traded temperature derivatives for Groningen, combined with a warm winter season

that resulted in low demand for heating in the city. Consequently, the importer

faces the challenge of having excess natural gas, which poses a considerable financial

risk known as quantity risk. However, they have the option to mitigate this risk by

investing in gas infrastructure, which is essential for managing seasonal variations in

demand and serve as means to hedge against quantity related risks (Zweifel et al.,

2017). This oversimplified scenario highlights the importance of managing basis risk

in energy markets particularly in the face of diverse climate patterns that may have

an impact on local demand. Moreover, it underscores the need for sophisticated

financial and climate engineering techniques, including the development of localized

temperature derivatives, to efficiently hedge against basis risk and circumvent the

impact of climate-related risks on energy markets and consumers.

Nevertheless, risk managers often find themselves in awkward situations, forced

to either hedge using the temperature of the reference city, Amsterdam for instance,

or buy over-the-counter (OTC) temperature derivatives from private contractors.

While the latter option offers highly localized temperature hedging thus eliminating

spatial basis risk, it brings about concerns on credit or default risk, transparency, and

fairness. In contrast, trading exchange listed weather derivatives, eliminates credit

risk since the payoff is guaranteed by a third party such as the Chicago Mercantile

Exchange (CME), and offers liquidity and fairly priced contracts. Furthermore,

a method to mitigate basis risk involves investing in basis derivatives, which are

based on the disparity or distance between between the weather index of a reference

weather station and the specific location of the first seeking to hedge against weather-

related exposure (Alexandridis & Zapranis, 2012).

Although Amsterdam is one of the few European cities for which temperature

derivatives are traded on the CME, almost no research exists that looks into fair

pricing of temperature derivatives in the Netherlands. While this double edged

sword provides the opportunity to be one of the first empirical studies to investigate

the subject, it also offers no indications on what models work best for Dutch data,

nor does it indicate what premises to take into account in the matter. Yet, because

of the Netherland’s reliance on natural gas, it is an essential topic. As the country

transitions towards renewable energy sources, current volatility in energy prices may

persist for an lengthy period of time, negatively impacting the Dutch economy and
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energy security. Taming the elements is about providing risk management insight for

energy companies and industries exposed to temperature risk in general, but also the

government, to mitigate these price fluctuations and march towards a more efficient,

resilient, and sustainable use of energy in the context of wars and crises in general.

That is, a more liquid temperature derivatives market will enable energy companies

to hedge against low demand in multiple locations in the country, therefore lowering

their losses and reducing the costs for the parties down the chain.

Finally, the inherent discrepancy between the temperature of Amsterdam and

that of other Dutch cities, provoked by climate change, constitutes a basis risk

concern and requires a more comprehensive understanding of the unique temperature

profile. Against this backdrop, this thesis seeks to provide a comprehensive analysis

of the dynamics of temperature derivatives and basis risk in different cities in the

Netherlands. Therefore, drawing on a range of quantitative methods such as time

series analysis, actuarial and arbitrage free pricing approaches, and Monte Carlo

simulations, the thesis examines the key drivers of temperature derivatives pricing,

analysing the impact of a variety of factors such as weather patterns, seasonal trends,

and market sentiment. The research also explores implications of these dynamics

for market participants, examining the challenges associated with managing basis

risk in the Netherlands.

The thesis comprises eight chapters. The first Chapter covers the basics of elec-

tricity, gaseous fuels, through introducing the fundamental concepts and gradually

building up to the weather derivatives market, where it is explained that the tem-

perature derivatives market derives from the existence of those markets as a way

to hedge against climate risk. The second Chapter, consists of an extensive review

of the literature, where pricing approaches and basis risk assessment methods are

discussed. In Chapter 3, the temperature data is presented and the methodology of

the analysis is introduced, namely, modeling techniques of seasonality, temperature,

and volatility. In Chapter 4 we conduct a basic data preprocessing to clean the

dataset and undertake time series analysis to describe the data both numerically

and graphically. That is, we apply classical methods to identify trends and season-

alities but also modern techniques such as Prophet and MSTL. Chapter 5 develops a

stochastic model that accurately describes the DAT. Specifically, the model analyt-

ically describes the behavior of the DAT process in the Netherlands, which will be

used, on the one hand, in Chapter 6 to simulate future DATs under the real world

measure P measure, and to derive pricing formulas for HDD and CAT indices under

the risk neutral measure Q in Chapter 7, on the other hand. Moreover, Chapter

7 proposes a new way of estimating the market price of risk of weather derivatives

which is conditional on the existence of a market price of the derivatives. Ultimately,

Chapter 8, investigates spatial basis risk. More specifically, we discuss the effects of

this risk and verify whether risk managers should worry about the risk that arises
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from the choice of the where the derivative contract in written.

Surprisingly, although the Netherlands is a comparatively small country, the

results indicate that the temperature options don’t have the same price for a given

seasonal strip3. Additionally, in the Netherlands, basis risk constitutes a major risk

as it is found that the differences in the seasonal temperatures can induce major

losses if the choice of the weather station is inaccurate. Nevertheless, Chapter 8

proposes a way to hedge the error that may arise from the choice of the wrong

station by trading a product where the underlying is a combination of one exchange

traded temperature derivative and one, or more, OTC basis temperature derivative.

3A seasonal strip is a contract period on which temperature derivatives are written.
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Theoretical Framework

The weather derivatives market predominantly comprises energy companies as its

primary participants. In fact, this market emerged from contracts created by energy

companies to hedge against meteorological scenarios such as warm winters and cold

summers. This chapter provides a detailed overview of gas and electricity markets

as explained by Zweifel et al. (2017), and an introduction to the weather deriva-

tives market following the theory the work of Alexandridis and Zapranis (2012) and

Jewson and Brix (2005).

1.1 Gas Markets

Natural gas is the third primary energy source after crude oil and hard coal. It is

crucial to the development of highly fuel-efficient industries with the lowest CO2

emissions. Nonetheless, the gaseous fuels market is subject to constraining supply

and demand properties. The lack of long-term contracts impacts the latter, whilst

the former depends on volatile seasonal space heating demand which is linked to

temperature levels.

1.1.1 Gas Infrastructure

The formula for an ideal gas is given by its pressure P , volume V , and temperature

measure τ and a constant c
PV

τ
= c

1.1.1.1 Properties of Gas

Low-density methane makes up a significant share of natural gas. As Table A.1

shows, there are two types of natural gas, with different densities, upper heating

values, and low heating values. Liquid gas primarily consists of byproducts derived

from oil refining, such as propane and butane. As they are heavier than air, these

components can be liquefied at moderate pressure and and distributed in pressur-

ized containers. In contrast, town gas primarily consists of hydrogen and carbon

monoxide (Zweifel et al., 2017).
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1.1.1.2 Reserves and Extraction

The world’s natural gas reserves are unevenly dispersed around the globe. In fact,

the area of the world that extends from the Middle east through the Caspian Region

to the north of the Russian Federation is known as the Strategic Energy Ellipse and

comprises more than half of conventional natural gas reserves (see B.1b).

Table 1.1: Production and Reserves of Natural Gas

Natural gas

reserves (2020)

Natural gas

production (2021)

Trillion

(m3)

Share

(%)

Billion

(m3)

Share

(%)

Russia 37.4 19.9 701.7 17.4

Iran 32.1 17.1 256.7 6.4

Qatar 24.7 13.1 177.0 4.4

United States 12.6 6.7 934.2 23.1

Canada 2.4 1.3 172.3 4.3

China 8.4 4.5 209.2 5.2

Saudi Arabia 6.0 3.2 117.3 2.9

United Arab Emirates 5.9 3.2 57.0 1.4

Netherlands 0.1 0.1 18.1 0.40

Germany * ** 4.5 0.1

World 188.1 100 4036.7 100

* less than 0.05

** less than 0.05%

Source: (BP, 2021) (BP, 2021)

1.1.2 Natural Gas Economy

The discovery of the large Groningen gas field in the Netherlands in 1959 was the

milestone in the history of European gas markets as it served as a catalyst in con-

necting to other fields in Siberian, the North Sea, and North Africa through high

pressure pipeline connections.

1.1.2.1 Gas Transportation

So far as long distances are concerned, natural gas is transported via high-

pressure pipelines. Zweifel et al. (2017) explains that the rate Q at which this

resource flows typically relies on the pressures P1 and P2 at the pipeline’s start and

end points, the diameter d of the pipeline and the distance l to be traversed

Q ∼
√

P 2
1 − P 2

2

l/d2

It is noteworthy that pipelines benefit from economies of scale, but their transporta-

tion capacity often surpasses the market potential and the financial capacity of one

2



company. As a result, several companies could build and use the same pipeline

in co-ownership while still being competitors. Additionally, the natural gas value

chain is characterized by the hold-up problem where the absence of vertical inte-

gration between two monopolistic participants in a specific market results in double

marginalization and hence a welfare loss. In other words, all market participants are

better-off with cooperative behaviour since the profits are super-additive and costs

are sub-additive.

An alternative to gas pipelines is Liquefied Natural Gas (LNG). For offshore

transportation, the latter is less costly than the former at distances beyond 2000

km, while onshore transportation using LNG technology becomes more competitive

at distances exceeding 3000 km. Nevertheless, Cayrade (2004) explains that, the

process of transporting LNG not only consumes around one third of the energy

contained in the chain itself, but also involves significant investments. For instance,

a complete LNG chain connecting Port Said to the port of Cartagena includes a

liquefaction plant at the export harbor, requiring an investment of approximately

$900 million. Additionally, there are two fleets of LNG vessels, which require an

investment outlay of $360 million, and a regasification facility in Cartagena, with a

cost of $320 million.

1.1.2.2 Gas Pricing

European natural gas markets have been governed by long-term take-or-pay con-

tracts (ToP contracts) of 15 to 30 years’ duration. These contracts require domestic

importers to import roughly 90% of the contracted quantity of gas, regardless of

unforeseen changes in demand, such as adverse weather conditions, whilst foreign

producers base their prices on heating oil, coal, and heavy oil in order to ensure gas

competitiveness in electricity markets. Consequently, these contracts allocate risk

such that importers bear quantity risk while producers deal with price risk.

The early 21st century witnessed European gas markets’ liberalization, thereby

instigating gas trade on spot and futures markets. Trading occurs on physical gas

hubs with concentrated pipelines such as Zeebrugge hub in Belgium, or virtual gas

hubs like the Title Transfer Facility in the Netherlands.

Due to the liquidity of gas markets, the spot price of gas hubs is an alternative

reference price to heating oil for gas contracts. Although the prices of the two

candidate references are correlated, seasonality affects gas prices more than prices

of heating oil in that the former exhibits price spikes in excessively cold winters and

hot summers, owing to substantial gas storage costs used to meet increased demand.

3



1.1.2.3 Third Party Access

Wholesale gas and electricity markets share several grid-related facets. However,

gas markets have some unique aspects. The gas year starts on October 1 at 6.00

a.m, coinciding with the start of the heating season and the space heating market,

and concludes on October 1st of the following year at 5:59 a.m. Nevertheless, as

shown in Table 1.2 demand profiles of some consumers is significantly higher than

that of others. Moreover, the minimum trading unit is a block of 1 MWh. Spot

markets trade day ahead contracts, while futures markets trade monthly, quarterly,

and yearly contracts.

Natural gas demand from end-users for space heating has strong seasonality. Full

Load Hours (FLH) or Full Load Days (FLD) are used to measure consumption as

follows

FLH =
Gas sales (m3/a)

max.load (m3/h)
and FLD =

Gas sales (m3/a)

max.load (m3/d)

Table 1.2: Capacity utilization by end-users of Natural gas

FLH (h/a) FLD (h/d)
Capacity

Utilization (%)

Private

households
1500–2000 60–95 16–26

Real estate

companies
1800–2700 75–110 20–30

Industrial

customers
2500–5000 100–210 27–58

Market average 3600 150 41

Natural gas

contracts with

nearby wells

3000–4000 125–167 34–46

Block delivery 8000–8760 340–365 >93

Source: Erdmann and Zweifel (2008)

Given the uncertainty due to gas demand fluctuations, expected consumption

can be effectively modeled using Heating Degree (HDD) days which yields accurate

prediction of daily temperatures exceeding a reference temperature.

1.2 Electricity Markets

1.2.1 Properties of Electricity

The economic point of view treats electricity as a non-homogeneous phenomenon

in contrast to the physical point of view. For the latter, electric power and electric

work are said to be homogeneous. For the former, however, prices are subject to

4



temporal and geographical fluctuations, hence making electricity a heterogeneous

product (Zweifel et al., 2017).

1.2.1.1 Electricity Substitutability

Electricity has a low elasticity demand (Praktiknjo, 2014), due to its limited sub-

stitutability by other energy sources. Explicitly, aside from its minor environmental

impact, it is the source with maximum energy which makes electric applications

more efficient than technologies based on fossil energy. Additionally, according to

the laws of thermodynamics, there is no theoretical limit to the amount of energy

that can be packed into a given space. As a result, electricity, being a versatile

form of energy, is able to generate high temperatures by converting electrical energy

into heat energy. Moreover, as a form of energy carried by electromagnetic fields, it

does not have mass associated with it, which implies that electricity can be easily

controlled and manipulated, enabling efficient and quick activation and deactivation

processes. Consequently, some of its features imply that auto-generating electric-

ity is more expensive than electricity provided by the grid in circumstances like

blackouts.

1.2.1.2 Electricity Storability

As a result of the highly sensitive electricity demand to time and space, loading

profiles of northern and southern countries differ, with daily peaks occurring at

different hours during the day depending on the season of the year. Zweifel et al.

(2017) explain that in order to levelize daily load curves, suppliers typically follow

these strategies:

• Storing in periods of low demand and supplying the stored electricity in periods

of high demand

• Undertake load management measures to implement varying service quality

• Shifting demand from peak to off-peak times using price differentiation

1.2.2 Electricity Generation

Ineffective load management, alongside the non-storability of electricity, result in un-

levelized load profiles, which hampers supply and demand balancing. Consequently,

power generators have to constantly adjust their electricity production to maintain

a balance between supply and demand, ensuring that there is enough electricity to

meet the needs of consumers at any given time.
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1.2.2.1 Power Generation Resources

Using magnetic induction, the principle behind producing electricity in power

plants, a sizable power plant could generate enough electricity to power approxi-

mately 200 000 houses. The characteristics of various producing technologies are

presented in Table 1.3.

The overall cost of electricity production, known as the levelized cost of elec-

tricity, is determined by three main factors: the investment required for the power

generation infrastructure, the rate at which the capacity if the infrastructure is uti-

lized, and the cost of fuel used for electricity generation. The first one is the initial

capital expenditure needed to build the power generation facility, the second one

refers to how much of the installed capacity is actually used over a given period of

time, while the last one is the expense incurred in obtaining the necessary fuel to

generate electricity. A power plant could theoretically generate up to 8760 MWh

of electricity annually. Nevertheless, power plants often run at low capacity fac-

tors. For instance, at low rates of capacity utilization, coal-fired plants incur higher

levelized costs tan gas-fired plants due to larger expenditure per unit of capacity.

However, Table 1.3 indicates that after 3000 hours of operation, coal-fired plants’

low fuel cost cause their levelized cost to fall below that of gas-fired plants.

Table 1.3: Properties of power generation

Fuel

efficiency (%)

Investment

outlay (e/kW)

Useful

life (years)

Fuel

cost (e/MWhel)

Hard

coal 700 MW
38-46 1250—1800 40 25-45

Lignite

700 MW
35-43 1350-1900 40 15-25

Nuclear

1400 MW
36 2400-5000 40 10-15

Gas

turbine 200 MW
28-42 450-700 20 75-100

CCGT* with

700 MW
>58 680-900 30 50-70

Hydro-power

100 MW
80-90 1500-4000 50-80 -

Wind power

onshore
40-50 1000-2500 20 -

Photovoltaics

1 MW
8-13 2000-4000 40 -

Fuel cells

(<100 kW)
30-50 High ∼5 60-120

* Combined-cycle gas turbines

Source: Erdmann and Zweifel (2008)
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1.2.2.2 Power Plant Operation

In the EU there is a liberalized market for electricity. The cost of fuel used to

produce an additional unit of electricity in this setting makes up the marginal cost,

which is negatively impacted by fuel costs and positively affected by fuel efficiency.

The EU, on the other hand, levies CO2 emission allowances on fossil fuels used in

the electricity production process.

The European Power Exchange (EPEX) is an efficient and effective day-ahead

electric power exchange that operates in in Europe, where the prices for electricity

are determined through the interaction of supply and demand. Participants in the

market submit their bids and offers for electricity on an hourly basis. The EPEX

then aggregates these orders to create a supply and demand curve for each hour.

The clearing price, at which the quantity of electricity is supplied matches the quan-

tity demanded, is determined by averaging the orders for each hour. This process

contributes to establishing a fair and transparent pricing mechanism for electricity

trading in the European market.

1.2.2.3 Electricity Trading

The largest European power exchanges are Nord Pool, the European Energy

Exchange, and Power Exchange Central Europe, each offering different products.

The electricity market offers two types of contracts. The first type involves physical

delivery of electricity, while the second requires cash-settlements. The main market

for physical delivery of energy within the next 24 hours is the day-ahead market.

Moreover, every market is divided into control areas, which helps to alleviate conges-

tion of the power grid. That is, when there is a congestion in the flow of electricity

within the grid, the prices in different control areas are calculated and adjusted to

help balance the grid.

The intraday market serves to ensure a demand and supply equilibrium. It

enables trading of electricity at prices that closely reflect real-time conditions such

that equilibrium of supply and demand is achieved. In other words, this market

provides a platform for participants to trade electricity on short notice, based on

the most up-to-date information about the market dynamics. This helps ensure that

the market responds efficiently to any fluctuations or changes in electricity supply

or demand that occur during the day (Alexandridis & Zapranis, 2012).

1.3 Weather derivatives Market

Insomuch as energy and temperature are correlated, the energy industry relies on

weather derivatives to hedge price and quantity risk of energy demand. Weather

derivatives are contracts that have a duration, weather station, weather variable,
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payoff function, premium, measurement agency, settlement agent, back-up station,

settlement date, and an index, and energy companies are one the biggest users of

these derivatives (J. C. Hull, 2003).

1.3.1 Weather Hedging Rationale

The weather derivatives market is a complement to the energy markets in that

analysis of energy demand often factors in the unpredictability of weather conditions.

In fact, in the microeconomic modeling of energy demand, aside from calendar ef-

fects, the business cycle, and fluctuations in income, temperature fluctuations are

included in the short term factors affecting this demand (seeB.3). Empirically, Ran-

son et al. (2014) showed that energy consumption for heating and cooling purposes

tends to be higher at both extremely low and extremely high temperatures, while

it is relatively lower at moderate temperatures. This characteristic, is further sup-

ported by evidence from various studies provided by Ranson et al. (2014). Not

only that, most of those studies predict two significant effects of climate change on

energy demand. First, there is an expected reduction in the demand for heating

energy, meaning that less energy will be required for heating purposes in certain re-

gions. This is likely due to projected increases in average temperatures, particularly

in colder climates, which would reduce the need for heating systems. Second, the

studies predict a notable increase in demand for cooling energy. As climate change

leads to higher temperatures, especially in warmer regions, there will be an elevated

need for cooling systems to litigate the impacts of heatwaves, This higher demand

for cooling is expected to offset, or even surpass, the reduced demand for heating in

terms of overall energy consumption (De Cian et al., 2013; Dowling, 2013; Hamlet

et al., 2010; Holland et al., 2011; Isaac & Van Vuuren, 2009).

Traded products on energy markets have unique physical features that expose

them to weather changes as shown in Table 1.4. In contrast, managing weather risk

can reduce different costs. For instance, a hydroelectric power generation company

using weather derivatives reduces its profit fluctuations which lowers the borrowing

interest rate, market valuation, and default risk.

Weather derivatives serve the same purpose as insurance contracts or catastrophe

bonds(CAT)1. Yet, aside from contractual differences, weather derivatives require

regular mark-to-market valuations. That is, Buckley et al. (2002) explain that a

weather derivative can be treated as either a hedging instrument so that payoff

is accounted for as an ordinary income, or as a derivative instrument such that

payoff is accounted for as a capital gain or loss. The latter involves mark-to-market

1CAT bonds’ payoff depends on a disaster’s realization. Investors take on a catastrophic risk
where the interest and the principal diminish if a particular category of catastrophic insurance
claims exceed a certain amount.
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accounting in that the security is considered a capital asset for which capital gain or

loss depends on changes of its market value2, and is taxed as such, whereas the former

is subject to corporation tax. Additionally, insurance contracts are based solely on

great catastrophes such hurricanes or floods, whereas weather derivatives are suitable

for highly likely and frequent weather conditions. Researchers such as Field et al.

(2012, Ch. 3) expound that the frequency, intensity, spacial extent, duration, and

timing of weather extremes are altering due to climate change. Therefore, industries

at risk are better-off using weather derivatives as they are more flexible.

Table 1.4: Weather exposures of industries

Industry Variable Risk

Agriculture
Temperature

Rainfall
High crop loss

Airline
Wind

Frost

Cancellation of flights

high operational costs

Construction

Temperature

Snowfall

Rainfall

Delayed schedules

Energy
Temperature

Rainfall
High crop loss

Hydroelectric power

generation
Precipitation

Lower revenue during

drought periods

Transportation
Wind

Snowfall

Cancellation of

shipping services

Source: Alexandridis and Zapranis (2012).

1.3.2 Risk Considerations

Weather derivatives are used to hedge against volumetric risks. In essence, there

is a strong relationship between hedged volumes energy demand and supply and the

underlying weather index. In Cao et al. (2003), it is shown that long-term supply

is affected by warming trends. Hence, it is clear that weather derivatives serve the

purpose of hedging against volume risk. Since the payoff of a weather derivative

does not depend on the amount of money lost but on the weather index, the payoff

will not compensate exactly for the money lost (Jewson & Brix, 2005). Weather risk

is unique in that it is extremely localized and difficult to predict accurately despite

advances in meteorological science. As a result, trading weather derivatives carries

significant risk. Namely, basis risk and counter party default risk.

The introduction of exchange traded weather derivatives improved the trans-

parency and fairness of this market. Nonetheless, weather contracts are based on a

reference temperature in a specific measurement site such as Amsterdam, London,

2This applies only to exchange-traded derivatives. The capital gain or loss is, otherwise, ac-
counted for when the derivative is expired or exercised.

9



and New York. Investors outside these cities face relative spatial basis risk. On the

other hand the OTC market offers more accurate hedging with customized weather

contracts, which are not priced fairly nor are they guaranteed against credit risk.

Spatial basis risk arises from the location of the weather station relative to the

hedging company. Hence, the risk shrinks when financial loss is highly correlated

with weather, and when contracts based on an optimal location are used for hedging.

1.3.3 Weather Derivatives Trading

Weather derivatives are traded on both primary and secondary markets, with pri-

mary market trades typically taking place OTC. In the secondary market, a consid-

erable amount of trading is also conducted OTC through voice-brokers. However,

due to the growing demand for weather derivatives, an organized market was es-

tablished in the Chicago Mercantile Exchange (CME). The CME provides investors

with standardized contracts that can be bought and sold more easily, providing more

liquidity and transparency in the trading of weather derivatives.

1.3.3.1 Traded products

This work is centered around temperature derivatives. Degree days, average temper-

atures, and cumulative averages are the most commonly used indices in temperature-

based contracts.

Degree Days The Heating Degree Day (HDD) index is the number of degrees of

Daily Average Temperature (DAT) that are below a reference temperature, while

Cooling Degree Days (CDD) index is the number of degrees of DAT that are above

a reference temperature. The daily average temperature is calculated as follows

DATn := Tn =
TMax
n + TMin

n

2
, ∀n ∈ {1, 2, . . . N} (1.1)

where TMax
n and TMin

n are the maximum and minimum temperatures, respectively.

Therefore, HDDs are used to measure the demand for heating in winter periods, and

CDDs are a measure of the demand for energy used for cooling in summer periods.

That is, for each n ∈ N

HDDn =

N∑

n=1

max(0, Tref −DATn) (1.2)

CDDn =

N∑

n=1

max(0, DATn − Tref ) (1.3)

For a given day, summing up its respective HDDs and CDDs yields the magnitude

of the deviation of its average temperature from the baseline (Jewson & Brix, 2005).
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The cumulative average temperature (CAT) index is mainly used in Europe

during summer periods. It is the sum of DATs over the period of a contract

CATn =
N∑

n=1

Tn (1.4)

1.3.3.2 Pay-off functions

Weather derivatives are not different from other classes of derivatives as they

can be based on calls, puts, etc. The pay-off of a weather derivative depends on the

strike price K, the tick size α, ϑ is the limit defined in currency terms and C and

F are the cap and floor estimated in units of the temperature index. The buyer of

an option receives a payoff ϕ which is a function of the cumulative index over the

contract period P

ϕ = f(DD) (1.5)

where heating and cooling degree seasons are defined as

DD = HDDP =
∑

n∈P
HDDn (1.6)

DD = CDDP =
∑

n∈P
CDDn (1.7)

Contracts traded OTC are usually capped by an upper limit C. For instance, the

payoff of a call option with cap, given a payoff rate α is

ϕ =





0 if DD < K

α(DD −K) if K ≤ DD ≤ C

ϑ if DD > C

(1.8)

Or, written more succinctly as

ϕ = min{α(DD −K)+, ϑ} (1.9)

Therefore, the option is at the money (ATM) when K is near the historical average

of DD, and out of the money (OTM) when K is far from this average. Similarly

the payoff of a put option given a floor F is given by

ϕ =





ϑ if DD < F

α(K −DD) if F ≤ DD ≤ K

0 if DD > K

(1.10)

11



Or, written concisely as

ϕ = min{α(K −DD)+, ϑ} (1.11)

This pay-off function has an economic value to the buyer in that it protects against

very low values of the index. Additionally, Jewson and Brix (2005) explain that

collars are structured as a combination of a long call and short put with the following

pay-offs where one longs the call option with a cap and shorts the put option with

a floor.

ϕ =





−ϑ if ϕ < C

α(DD −Kc) if C ≤ DD ≤ C

0 if Kc ≤ DD ≤ Kp

α(Kp −DD) if Kp ≤ DD ≤ F

ϑ if DD > F

(1.12)

which translates into

ϕ = min{α(DD −Kc)
+,−ϑ}+min{α(Kp −DD)+, ϑ} (1.13)
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Literature Review

The research on weather derivatives focuses on two key apprehensions, pricing and

risk.

2.1 Weather Derivatives Pricing

As regards the fair pricing of weather derivatives, there is no model that offers

a closed form formula for pricing. However, Jewson and Brix (2005) distinguish

between three main pricing approaches; historical burn analysis, index modelling

which is an extension of the first, and daily simulation. Burn analysis is an actuarial

method that consists of assessing how a contract would have performed in past years.

The approach determines the payoff of a weather derivative through accumulating

degree days over a different years and estimates the price as the average annual pay-

offs. Some researchers such as (Davis, 2001; Dorfleitner & Wimmer, 2010; Geman &

Leonardi, 2005) argue that modeling indices directly such as the HDD, CDD, or CAT

index is more accurate. This methodology estimates the distribution of the index,

and tests the hypothesis that the observations originate from such a distribution. If

the hypothesis is not rejected, the distribution can be used to represent the index

distribution (Jewson & Brix, 2005). While Geman and Leonardi (2005) find that

the hypothesis of normality is rejected for December HDDs in Paris and accepted

for December AccHDD indices, Jewson and Brix (2005) explain that there is a high

probability that the wrong distribution is used, because of the absence of theory on

what distribution is appropriate to fit the indices. In daily simulations, the mod-

els directly simulate the future behaviour of temperature. These dynamic models

show greater potential than the two other methods. In fact, according to Geman and

Leonardi (2005), modeling daily average temperature has an overall higher potential

accuracy in that it allows, for instance, a more accurate extrapolation of extremes,

and an easier incorporation of meteorological forecasts in the pricing process. In

this framework, either discrete or continuous processes can be used. Moreno (2000)

claims that since temperature values are recorded in discrete form, temperature

should be modeled with discrete processes. He conducted a numerical comparison

of a discrete mean-reverting process and an autoregressive process as suggested by

Carmona (1999) obtaining an acceptable goodness of fit for both models, whereas
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Bob (1998a, 1998b) is the first to suggest working with continuous stochastic models.

These models are often sub-Ornstein–Uhlenbeck equations of a more general mean-

reverting process in order to account for some essential attributes of temperature.

Modeling temperature data using continuous processes offers powerful forecasting

tools. In an approach similar to J. Hull and White (1990) research conducted by

Dornier and Querel (2000) uses a modified continuous Ornstein-Uhlenbeck stochas-

tic process that reverts back to historical mean temperature by adding a term for

changes in seasonal variations, Alaton et al. (2002) use the same approach while

implementing a sinusoid function to model average historical daily temperatures

through incorporating seasonalities in the mean, whereas Brody et al. (2002) suggest

including a fractional Brownian motion in the Ornstein-Uhlenbeck process. More

recently, Zapranis and Alexandridis (2008) use neural networks to estimate the pa-

rameters in a time dependent speed of mean reversion in the Ornstein-Uhlenbeck

process. Alaton et al. (2002) work on Swedish data and get a satisfactory fit of

the model for the data. Nonetheless, Alexandridis and Zapranis (2012) say that it

is a simplification of the real world which could lead to mispricing of options. In

fact, as Benth and Šaltytė-Benth (2005) noted, Alaton et al. (2002) observe that the

temperature differences are approximately normally distributed, but didn’t test for

it. Moreover, the normality hypothesis got rejected when Benth and Šaltytė-Benth

(2005) examine Norwegian temperature data, and they subsequently put forth using

a Lévy-based OU process which incorporates a Lévy noise instead of a Brownian

motion as Dornier and Querel (2000) do. Some other authors such as Cao and Wei

(2000) apply an econometric approach where they correct for trend and seasonality

in temperature and propose a discrete auto-regressive of the temperature residuals.

Similarly to the continuous process that Brody et al. (2002) suggest, results from

Caballero et al. (2002) show long-range correlation in the autocorrelation function

(ACF) of the temperature, therefore they propose modelling this dependence tem-

perature time series with ARMA processes. In their study, the long memory in

the ACF is captured with an autoregressive fractional integrated moving average

model (ARFIMA)1. Additionally, Caballero et al. (2002) use these processes on the

UK’s DATs and find that ARFIMA models perform effectively in terms of auto-

covariance. Nevertheless, Jewson and Caballero (2003) argue that the ARFIMA

model doesn’t capture the seasonality in the ACF of temperature, and apply a spe-

cial AR process called autoregressive on moving average (AROMA) to DATs. The

regression analysis involves using multiple moving averages of previously detrended

and deseasonalized temperatures to predict the detrended and deseasonlized tem-

perature at time t. This model which further incorporates seasonality (SAROMA)

also suggests a strong correlation of between temperature observations at multiple

lags. Moreover, some researchers like Benth et al. (2007) combined the econometric

1This is a process that generalize ARIMA models proposed by Box et al. (2015).
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approach and the continuous processes by using a continuous-time auto-regressive

process.

It is clear that fairly pricing temperature derivatives in Netherlands poses a chal-

lenge in terms of selecting the most appropriate model. Nonetheless, some authors

such as Tindall (2006) and Esunge and Njong (2020) combined multiple approaches

from above to model the speed of mean reversion and volatility in the pricing of

weather derivatives for Sydney, New York, Seattle, and Cincinnati.

2.2 Basis Risk and Credit Risk

In terms of risk concerns, hedgers using weather derivatives typically face two

types of risk, namely credit risk and basis risk. Exchange traded weather derivatives

mitigate the default risk of the counter-party. However, since contracts are not

necessarily written in the exact location the hedger wishes to cover, they often

need to bear a basis risk. This risk is of main concern, according to Manfredo and

Richards (2009), the effectiveness of a hedge is contingent on the behaviour of the

basis. Given the sensitive aspect of the underlying asset, basis risk is expected to

become virtually nil upon hedging. For instance, D’arcy and France (1992) analyse

hedging basis risk for insurance derivatives, namely futures based on catastrophe

losses. Their research about insurance futures contracts highlights the solvency

concerns that arise with insurance futures contracts, which are a comparable asset to

weather derivatives. Furthermore, they proposed a an index for an insurance future

that reduces risk substantially for insurers. Moreover, Major (1999) analyse the basis

risk between catastrophe futures and portfolios of insured homeowners’ building risks

running in the context of hurricane danger. Nevertheless, weather derivatives are a

relatively new financial instrument2 without extensive research on the topic of basis

risk associated with trading these instruments. With regard to rainfall derivatives,

Ritter et al. (2014) investigate the effectiveness of regional diversification in reducing

geographical basis risk of such products. Their analysis concludes that inferring

optimal portfolio weights from a multi-site rainfall model performs better than other

approaches, such as inverse distance weighting, in reducing spatial basis risk. Yang

et al. (2009) explore the basis risk of Heating Degree Day (HDD) and Cooling Degree

Day (CDD) weather derivatives and their hedging effectiveness in the United States’

energy market. Empirically, they find that although the RMS regional and CME

city weather indexes yield comparable result, risk managers could use the former as

a complement to the exchange-listed indexes. Additionally, Manfredo and Richards

(2009) argue that the choice of the weather station is “less critical in managing

2Weather derivatives started trading OTC in 1997. Their popularity drove the Chicago Mercan-
tile Exchange to introduce the first exchange-traded weather futures contracts in 1999. These can
be traded electronically on the CME’s GLOBEX 2 system.
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basis risk”. Instead, they suggest that non-linear-payoff weather derivatives could

be used solely or combined with linear payoff instruments to minimize the basis

risk between crop yields and weather. To counter the basis risk, hedgers can either

buy basis derivatives that rely on the disparity between the weather indices of two

distinct locations, or buy a location specific OTC contract.

In both cases, OTC trading involves taking into consideration the probability of

the counter-party failing to perform the contractual obligation, i.e. credit risk. The

predictability of default has been modeled by many researchers. In fact, advances

in artificial intelligence have made it easier to predict the default, Brockett et al.

(1994) use a back-propagation learning algorithm based on a feed forward network to

analyse the insolvency probabilities of insurers in the U.S. Furthermore, Cummins

and Mahul (2003) use expected utility theory and add to it through working on

an optimal hedging strategy when the insurer and the buyer have divergent beliefs

about the probability of total default of the insurer.

It is clear that there is a trade-off between basis risk and credit risk when the

indexed temperature and geographical location do not perfectly overlap. In, fact

Golden et al. (2007) study the efficiency of combining exchange-traded weather

derivatives and OTC weather derivatives to hedge spatial basis risk while accounting

for credit risk. To this end, they test the effectiveness of hedging ratios using both

linear and non linear hedging approaches. Their results suggest that with low basis

risk and high weather risk both linear and non-linear hedging techniques are highly

effective.

Overall, the literature behind temperature derivatives is relatively modest and

most of it revolves around the US market. Up until now, research is centered around

deriving accurate pricing formulas while the effect of geographical basis risk is of-

ten neglected. This thesis somewhat relies on the approach of Alaton et al. (2002)

since the model they propose describes essential DAT features. That is, the the-

sis contributes to the literature by conducting the research on temperature in the

Netherlands. In addition, the thesis adds to the literature by taking a different path

with calculating the market price of risk, which is estimated through a root finding

method. Moreover, basis risk is is deeply analysed and incorporated in the profit

maximization of both energy importers and exporters.
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Methodology and Data

The methods, data collection, and processing processes described bellow are

applied to the cities of Amsterdam, Utrecht, Rotterdam, Eindhoven, Groningen,

Maastricht, and Tilburg/Breda1. Daily values from the 1st of January 1971 to the

10th of February 2023 were extracted from the sources presented in section 3.2.

These cities were chosen based on population size and business attractiveness.

Nonetheless, The Hague, the third biggest Dutch city, is excluded from this study

because there is insufficient data to analyse.

3.1 Methodology

As discussed in the literature review, several approaches may be adopted to suc-

cessfully price temperature derivatives. It was also indicated that daily modeling

is more appropriate than other methods. Therefore, with reference to Jewson and

Brix (2005), this research will model Daily Average Temperatures (DATs) in several

steps.

3.1.1 Seasonality Modeling

In this subsection, potential sources of trends are discussed and identified. Moreover,

classical detrending methods but also more recent ones, such as Multiple Seasonal-

Trend decomposition using Loess (MSTL) and Facebook’s Prophet, are used to

detrend and remove seasonality from the dataset and compare their performance

in doing so. In a second phase, the thesis will detrend and model the seasonal

component as Fourier series, which is believed to yield more consistent results.

3.1.2 Temperature Modeling

Two main approaches exist to accomplish this task successfully. The first one is a

time series technique that relies on models such as the Autoregressive Moving Aver-

age Model (ARMA), while the second one stochastically represents temperature as

a mean reverting Ornstein-Uhlenbeck (OU) process. The stochastic representation

uses a sub-formula of the OU process which is adjusted to fit assumptions about

1Data is recorded by KNMI’s station Gilze-Rijen which lies at approximately 10km from both
cities.
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the underlying. Hence, this twist will be thoroughly discussed to understand the

dynamics involved in the modeling.

3.1.3 Volatility Modeling

Similarly to seasonality, several papers in the literature use Fourier series to model

DAT’s volatility. Nevertheless, the thesis will use a comparative approach in that

other methods involving parametric, local and non-parametric regression, and piece-

wise constant functions will be compared to each other, which will allow investigating

the underlying from the perspective of different studies in the literature.

3.1.4 Temperature Options Pricing

The statistical analysis used in the previous chapters will be used to fairly price

temperature options for each city in the Netherlands. To do so, some of the pricing

methods that are presented in the literature will be applied to the Dutch market,

namely

· Alaton approach with an Ornstein-Uhlenbeck process suggested by Alaton et

al. (2002)

· Monte Carlo simulation with Ornstein-Uhlenbeck process

3.1.5 Risk Inspection

Eventually, an important part of the study will be dedicated to looking into basis

risk in the Netherlands. To this end, the research will examine correlations between

the detrended data and the relationship between respective DATs and the long-term

historical DAT.

3.2 Data

Historical weather data is available and will be retrieved from the National Cen-

ters for Environmental Information which is a database of the National Oceanic and

Atmospheric Administration, but also from the Koninklijk Nederlands Meteorolo-

gisch Instituut (KNMI) which is the Netherland’s meteorological institute.

The reason both databases will be used is because the latter requires extra data

transformation to adjust the values which is computationally expensive. Conse-

quently, it will be used only for complementary reasons.

For every city, raw data comprises daily values for

· Maximum temperature of the day TMax
n

· Minimum temperature of the day TMin
n
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The first step in the research consists in calculating the daily average temperature

(DAT) for all cities according to the definition of HDDs and CDDs

DATn := Tn =
TMax
n + TMin

n

2
, ∀n ∈ {1, 2, . . . N} (3.1)

this new variable is our underlying “asset”.
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Data Cleaning and Visualisation

The development of the weather derivatives market is contingent on continuously

and accurately providing the data by national meteorological services (NMSs). Nev-

ertheless, aside from the Swiss Meteorological Service, NMSs rarely check for data

quality since they are mainly tasked with making forecasts.

4.1 Pre-processing

4.1.1 Missing Values

Each of the data subsets had missing maximum and minimum temperatures for

the same two dates. These dates are 2016 October 30 and 2019 March 18. Therefore,

the method suggested in Alexandridis and Zapranis (2012) was applied to fill the

missing data.

Let Tn be the missing temperature on day n. First, T
y
n, the average temperature

for day n is calculated across the N years is as follows

T
y
n =

1

N

N∑

y=1

T y
n (4.1)

Second, T
d
n, the average temperature of seven days before and after the day with

missing data is calculated as follows

T
d
n =

7∑

d=1

Tn−d

7∑

d=1

Tn+d

14
(4.2)

Subsequently, the missing value, T̃n, is replaced by the average of both averages as

follows

T̃n =
T
y
n + T

d
n

2
(4.3)

4.1.2 Erroneous Values

A common anomaly in temperature data is finding implausible values. If these

absurd values are left uncorrected it results in significant mispricing of weather
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derivatives.The following verification was applied to each subset to ensure the quality

of the data:

· Checking that daily maximums are not lower than daily minimums

· Checking that daily temperatures are within acceptable limits for the given

time of year and weather station

4.2 Underlying Dynamics

4.2.1 Warm and Cold Periods

In order to get a better understanding of the underlying’s dynamics, Figure 4.1

shows DATs’ behaviour in the last 13 years. The oscillatory character of DATs

depicted in Figure 4.1 shows that the underlying has a seasonal cycle of one year.

Moreover, descriptive statistics of temperature is provided in Table A.2. The Table

shows roughly similar metrics for all the cities. All cities have platykurtic and nega-

tively skewed DATs that fluctuate between -16.50(°C) and 31.50(°C), approximately.

Nevertheless, the measurements in Table A.2 describe a period that extends from

the 1st of January 1971 to the 10th of February 2023, which conceals subtle monthly

and seasonal differences which are discussed in the following subsection.

Figure 4.1: Daily average temperatures
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A closer inspection of Figure 4.2 indicates that the cold period in the cities

extends from October to April while the warm period begins in May and ends

in September. However, Figure 4.3 presents a more comprehensive evaluation of

temperature through a hierarchical ascendant classification which reveals a seasonal

discrepancy between Dutch cities. The figure shows that in Utrecht, Eindhoven,

Maastricht, Tilburg, Enschede, and Nijmegen the winter period starts in October

and ends in April and the summer period begins in May and concludes in September,

while the cities of Amsterdam, Rotterdam, and Groningen experience a lag in that

the cold season goes from November to April and the warm season lasts between

May and October.

The lag between summer and winter periods1 in the Netherlands suggests that

hedging temperature risk using Amsterdam’s temperature derivatives may be unre-

liable for other cities.

Figure 4.2: Monthly average temperature
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1Warm/cold is interchangeably used with summer/winter in this chapter
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Figure 4.3: Hierarchical classification of monthly DATs
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The lag between summer and winter periods2 in the Netherlands suggests that

hedging temperature risk using Amsterdam’s temperature derivatives may be unre-

liable for other cities. That is, on average, since 1971, hedgers based in Nijmegen

or speculators using Eindhoven’s temperature data are worse-off trading Schipol’s

HDDs or CATs because of the non-overlapping periods.

2Warm/cold is interchangeably used with summer/winter in this chapter
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4.2.2 Bimodal Distribution

Much of what could be said about DATs’ second and third standardised moments

is contained in the Jarque–Bera (JB) test results. The JB test is particularly useful

in financial and econometric analysis to check the assumption of normality in a

dataset where

· H0: The sample comes from a normal distribution with

unknown mean and variance

· H1: The sample does not come from a normal distribution

The JB statistic is defined as

Jarque Bera =
n

6

(
s2 +

(k − 3)2

4

)
(4.4)

Where n is the sample size, s is the sample skewness, and k is the sample kurtosis.

Equation 4.4 indicates that the JB test compares the observed skewness and kurtosis

of the data to what would be expected under a normal distribution. Hence, for all

cities, the DAT’s JB statistic is greater than 163 and the p-values are all zero,

therefore strongly rejecting the null hypothesis. In fact, Figure 4.4 confirms that

DATs have a bimodal distribution which derives from the sinusoidal character of the

data. That is, the two means are centered and reflect the peaks of the summer and

winter periods discussed in subsection 4.2.1 which is highlighted in Figure 4.5.

Figure 4.4: Distribution of the DATs
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In Figure 4.5, it is noticeable that, to a different degree, all the cities have a

slightly negatively skewed cold period temperature and slightly positively skewed

warm period temperature. Additionally, examining the three standards moments of

the DATs, it is evident from Figure 4.6 that the cold period is characterized by a

higher standard deviation than the warm period, which is in line with the results of

Benth and Šaltytė-Benth (2005), Benth et al. (2007), Benth and Benth (2007), and

Zapranis and Alexandridis (2008).

Figure 4.5: Distribution of winter and summer periods
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Figure 4.6: Standard deviation of the DATs
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As regards the third moment of the DATs, observing Figure 4.7, it is shown that

skewness is higher in summer periods and lower in winter periods. Naturally, warm

periods have their most extreme temperatures above the mean, while the coldest

temperatures are below it. Nevertheless, an interesting fact that could be derived

from the skewness representations in Figure 4.7 is that, in the summer, there is an

increased likelihood of experiencing warmer days compared to the average, while in

winter periods, there a higher probability of having days colder than the average

(Bellini, 2005).

Figure 4.7: Skewness of the DATs
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4.3 Stationarity and Autocorrelation

When it comes to temperature data, there is an ambiguity about the stationarity

of the time series. That is Table 4.1 presents the results of the augmented Dickey

Fuller (ADF) test applied to models of the form

∆yt = α+ βt+ δyt−1 +

p−1∑

i=1

δi∆yt−i + εt (4.5)

where y is temperature data indexed daily with t, α is a constant, β is the trend

coefficient, and p is the lag order of the autoregressive process. Th regression results

remain the same if a quadratic trend term is included or if α = 0 and/or β = 0. The

hypotheses of the ADF test are defined as

· H0:= γ = 0: The time series contains a unit root and is non-stationary.

· H1:= γ < 0: The time series is stationary of trend-stationary.

where the test statistic of the ADF tests is defined as

γ̂

SE

To determine the length of p, the test algorithm includes the number of lags that

minimises the Akaike Information Criterion (AIC) defined as

2k − ln(L) (4.6)

where k is the number of lagged differences included in Equation 4.5 and L is the

maximized value of the likelihood function of the model. The results in Table 4.1 all

show that the critical values are greater than the test statistic with p-values equal

to zero, hence it indicates that it is extremely likely that the temperature data is

stationary in all cities.
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Table 4.1: Augmented Dickey Fuller test results summary

ADF statistic Critical values p-value

1% 5% 10%

Amsterdam −9.12 −2.57 −1.94 −1.62 0.000

Rotterdam −4.26 −2.57 −1.94 −1.62 0.000

Utrecht −4.43 −2.57 −1.94 −1.62 0.000

Eindhoven −4.53 −2.57 −1.94 −1.62 0.000

Groningen −4.82 −2.57 −1.94 −1.62 0.000

Maastricht −4.63 −2.57 −1.94 −1.62 0.000

Tilburg −4.53 −2.57 −1.94 −1.62 0.000

Enschede 4.60 −2.57 −1.94 −1.62 0.000

Nijmegen −4.64 −2.57 −1.94 −1.62 0.000

Note: α = β = 0

The results in Table 4.1 do not confirm that temperature is a stationary process

per se, it would be counter-intuitive to assume so. That is, it is clear from the

analysis so far that daily and monthly temperature have a cyclic behaviour, therefore

it is highly unlikely that, even in the absence of a long-term trend, temperature is

stationary. In fact, the distribution of temperature is not the same across months

and seasons, hence it could be inferred that the joint distribution shifts in time.

On the other hand let Amsterdam’s daily average temperature be represented by a

matrix of the form 


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n




where m and n correspond are indexes of the year and day, respectively. In this case

it could be argued that temperature represented in the vector [ a1,1 a2,1 · · · am,1 ]
T

is stationary. The ambiguity described above corresponds to the phenomena of cy-

clostationarity, where temperature is described by multiple interleaved stationary

processes. More specifically, subsequent chapters discuss temperature time series

from a multivariate signal processing point of view. That is, this research is about

nine time series where multi-variate information in every single one is of interest.

Conditional modelling of multivariate time series helps with extracting features com-

mon to temperatures of all cities, and to price temperature derivatives as accurately

as possible, one needs to fully make use of the information contained in these signals.

Concerning serial correlation of the time series, let {yt}t≥0 be a moving average

(MA) of order p with respect to a white noise {wt}t≥0, then

y ∼ MA(p) := yt = wt + β1wt−1 +

p∑

i=2

βiwt−i (4.7)
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for some real numbers {β1, · · · , βp}. A main property of the MA process above is

that the autocorrelation function (ACF) vanishes for lags greater than p. However,

Figure 4.8 shows that this is not exactly the case, the serial correlation does not

disappear after a finite number of lags.

Figure 4.8: Autocorrelation of DATs
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Instead of fitting a MA model to the data, attention is shifted to autoregressive

(AR) model of the form

y ∼ AR(q) := yt = wt + γ1yt−1 +

q∑

i=2

γiyt−i (4.8)

where {yt}t≥0 is an AR process of order q with respect to a white noise {wt}t≥0, for

some real numbers {γ1, γ2, · · · , γq}. In this case the partial-autocorrelation function

(PACF) is used to find the lag order of the AR model as presented in Figure 4.9

. In fact, the PACF shows only the relationship between two observations in time

with relationships of intervening observations removed. Mathematically, given the

time series {yt}t≥0, the partial autocorrelation of lag s is the correlation of yt and

yt+s, with the linear dependence of yt through yt+s−1 on yt+1 not accounted for. For
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instance, this property is depicted through suppressing the effects of the first two

lags in Figure 4.8, where the partial autocorrelation of the third lag is as conveyed

by Figure 4.9. Essentially, already found variation is removed, before finding the

next correlation.

To find the order of the model defined in Equation 4.8 the AIC criterion in-

troduced in Equation 4.6 is used which, once again, finds a parsimonious balance

between best fit and the number of lags needed.

Figure 4.9: Partial autocorrelation of DATs
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As displayed in Figure 4.10, Beyond 17 lags the AIC is approximately constant,

hence it is optimal to fit an AR(7) model to the time series. The results of this

regression are presented in Table A.3.
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Figure 4.10: Autoregressive model order
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4.4 Identifying and Removing Trends

4.4.1 Sources of Trends

Almost all temperature time series exhibit long-run trends. Hence, detrending

meteorological data is a crucial step towards successfully model its dynamics. The

reasons behind these trends are summarized as follows:

· Urbanization. Many weather stations are in, or close to, urban spaces. Ur-

banization results in higher neighboring and downwind temperatures due to

higher absorption of solar radiation and lower cooling evaporation associated

with concrete, tarmac, and buildings.

· Anthropogenic climate change. Increasing levels of CO2 affect the atmospheric

circulation and cause warming around the globe.

· Predicted variability. Observed Trends may be part of a long-timescale cycle

occurring due to internal climate processes. That is, some components of
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long-term variability are not random. For example, oceanic changes might be

oscillatory and affect the atmosphere in a trendy fashion.

Therefore, the dynamics that affect temperature in each city may differ depending

on the magnitude of the factors outlined above in each location.

4.4.2 Data detrending

Parametric trends such as quadratic and exponential trends are commonly used

for detrending as they often yield satisfactory results. However, fitting non-parametric

trends such as moving averages and locally estimated scatterplot smoothing (LOESS)

is more suitable for datasets that go beyond 40 years such as the DAT time series

shown in Figure 4.11, where it can be seen that temperatures exhibit a clear upward

trend.

Figure 4.11: Temperature trend over time
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Therefore, to decompose the cities’ DAT into a trend, seasonal, and residual

component the seasonal trend decomposition using loess (STL) as outlined in R. B.

Cleveland et al. (1990) is best suited. The underlying algorithm of the STL method is

a locally estimated scatterplot smoothing (loess), which is a non-parametric smooth-

ing method proposed by W. S. Cleveland (1979) and developed by W. S. Cleveland

and Devlin (1988).
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In the case of temperature data, linear loess estimates the trend for a year yn given

other years xn by weighted regression

φ(x) =

p∑

n=1

wn(x)yn (4.9)

where nearby years have the most weight wn(x) which depends on the values of the

explanatory variable xi. Given a set N(x) of the q closest xn

wx(xn) = W

( |x− xn|
λq(x)

)
(4.10)

where λq(x) is the Euclidean distance of the qth farthest xi given by

λq(x) = max
xi∈N(x)

|xi − x|

and W is the tricube weight function

W (x) =




(1− x3)3 if 0 ≤ u ≤ 1

0 otherwise

The STL uses loess in recursive procedures. An inner loop that smooths the seasonal

and trend components through iteration, and an outer loop that reduces the effect

of outliers. The algorithm decomposes the times series, using either an additive or

multiplicative model, into a trend component Tn, seasonal component Sn, and a

residual Rn

yn = T̂n + Ŝn + R̂n (4.11)

yn = T̂n × Ŝn × R̂n (4.12)

Since the amplitude of the seasonality of DATs does not change over time but rather

evolves in an increasing fashion with roughly similar fluctuations, a seasonal trend

decomposition using Equation 4.11 can successfully break down the time series as

it is shown in Figure 4.12. The robustness factor in the STL decomposition is

the number of robustness iterations of the outer loop. That is, non-robust fitting

consists only of the inner loop and weighs all observations equally, while the robust

estimation reweighs the data using loess where it assigns relatively small weight to

observations with large outliers. However, it is outlined in R. B. Cleveland et al.

(1990) that in the absence of large transient variation, robustness iteration of the

outer loop can be omitted. Hence, from a parsimonious perspective, non-robust

detrending of DAT is sufficient since robust and non-robust fitting exhibit a minor

difference.

A more sophisticated approach is to use a multiple seasonal trend decomposition
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using loess (MSTL) which is a recent extension of STL suggested by Bandara et al.

(2021) where it assumed that the time series can be decomposed as

yn = T̂n +
P∑

i=1

Ŝi
n + R̂n (4.13)

where i is the number of seasonal cycles in yn. In the case of temperature data,

elements such as weekly seasonality could be particularly relevant given the role of

urbanization in rising temperature levels. In other words, DAT in urban areas could

be significant during weekdays and less pronounced on weekends. Additionally,

recurring phenomenons such as El Niño-Southern Oscillation (ENSO) which occurs

at irregular intervals of two to seven years is helpful. Although the effect of El Niño

on European temperatures is not entirely understood, the fact remains that multiple

seasonal effects factor in when dealing DAT time series. Equation 4.14 is used to

DAT data such that the seasonal cycle Ŝw
n represents weekly seasonality for effects

such as urbanization, Ŝm
n monthly seasonality to account for potential factors such

as monthly change in solar insolation, and, finally, Ŝy
n is for yearly seasonality. The

results of this decomposition are shown in Figure B.4.

yn = T̂n + Ŝw
n + Ŝm

n + Ŝy
n + R̂n (4.14)

Besides its ability to implement loess with multiple seasonal patterns, MSTL, as

show in Table 4.2, also achieves a very low Root Mean Square Error (RMSE) when

compared to other methods such as the Prophet approach (Taylor & Letham, 2018).

Nevertheless, STL is the most accurate model as it has the lowest RMSE.

Table 4.2: Root mean square error

RMSE

STL MSTL Prophet

Amsterdam 8.81e-16 1.74e-15 3.13

Rotterdam 8.72e-16 1.76e-15 3.22

Utrecht 8.80e-16 1.72e-15 3.33

Eindhoven 9.14e-16 1.79e-15 3.49

Groningen 8.36e-16 1.66e-15 3.39

Maastricht 9.22e-16 1.81e-15 3.54

Tilburg 8.94e-16 1.77e-15 3.45

Enschede 8.53e-16 1.68e-15 3.59

Nijmegen 8.88e-16 1.77e-15 3.46
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Figure 4.12: Seasonal Trend decomposition using Loess of average temperatures
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4.5 A Note on Residuals

It was established through Table 4.2 that STL achieved the lowest RMSE.

Nonetheless, to check whether model captured all the information in temperature

data, the residuals should satisfy two conditions:

· No autocorrelation

· Zero mean

Moreover, it is useful for the residuals be normally distributed and to have a constant

variance across time, although it is not necessary. In fact, looking at STL residuals

from the last 10 years3 in Figure 4.13 it can be seen that residuals form a Gaussian

white noise with zero mean and an approximately constant variance.

Figure 4.13: STL residuals
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Nevertheless, as regards the first condition, both the Ljung-Box and Box-Pierce

tests confirm that there is serial correlation in the residuals. These tests verify

3It gets harder do graphically analyse the residuals beyond 10 years
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whether or not the residuals are a white noise, and their statistics are defined as

QLB = T (T + 2)
ℓ∑

k=1

(T −K)−1r2k

QBP = T

ℓ∑

k=1

r2k

where T is the number of observations, rk is the autocorrelation of the series at

lag k, and ℓ is the number of lags. Hyndman and Athanasopoulos (2018) suggest

choosing ℓ as follows:

ℓ =





10 for non-seasonal data

2m for seasonal data

T/5 if 10, 2m > T/5

(4.15)

where m is the period of seasonality. Hence ℓ is chosen as

ℓ := min(10, T/5) = 10

The tests use the following hypotheses:

· H0: The residuals are independently distributed; there is no autocorrelation.

· H1: The residuals are not independently distributed; there is autocorrelation.

The large values of Ljung-box (LB) and Box-Pierce (BP) statistics in Table 4.3

indicate that the residuals do not come from a white noise process. Additionally,

the p-values of both tests are low enough to reject the null hypothesis in favor of

autocorrelation.

Table 4.3: Autocorrelation results

LB. stat p-value BP. stat p-value

Amsterdam 26714.174 0.000 26707.921 0.000

Rotterdam 25596.952 0.000 25591.061 0.000

Utrecht 25622.601 0.000 25616.732 0.000

Eindhoven 24813.059 0.000 24807.446 0.000

Groningen 25240.190 0.000 25234.351 0.000

Maastricht 26863.134 0.000 26856.993 0.000

Tilburg 24992.160 0.000 24986.469 0.000

Enschede 24582.664 0.000 24577.099 0.000

LB: Ljung-Box

BP: Box-Pierce
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The results in Table 4.3 suggest that STL may not did not account for all avail-

able information. This is further confirmed by the close-to-normal distribution of

the residuals shown in Figure 4.14, the distribution has a slightly longer left tail rel-

ative to the normal distribution which means that assuming normality for prediction

intervals may be inaccurate.

Figure 4.14: Distribution of STL residuals
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Daily Average Temperature Modeling

In chapter 4 different models were implemented to describe DAT dynamics. Based

on some assumptions about seasonality in temperature, statistical decomposition

algorithms such as STL, MSTL, and Prophet generated results that align with the

intuition. However, so much as non-parametric approaches allow fitting trends that

are data-specific, one cannot account for all seasonalities at the expense of over-

fitting the model.

5.1 Seasonal Variation

Following Cao, Wei, et al. (1999), Cao and Wei (2000), and Cao et al. (2003) it

is assumed that, besides being affected by global warming and urbanization, DAT

follows a yearly cycle in all cities as shown in Figure 4.1. Moreover, Figures 4.1, 4.2,

and 4.6 show that DAT moves around a seasonal mean from which it cannot deviate

for extended periods. Finally, DAT is more volatile during winter as depicted by

Figure 4.6.

As it can be seen in Figure 4.1, the DAT has a lot of noise. Hence, it can be

processed as signal through convolution in order to smooth out noisy data and

extract the underlying trend, whereby the DAT time series denoted as x̃ = {xt}t≥0

and a rectangular pulse δ(t) as defined in Manolakis and Ingle (2011) convolve to

smooth out noisy data. That is, the convolution is given by

(x ∗ δ)(t) =
∫ ∞

−∞
x(τ)δ(t− τ)dτ (5.1)

Denoting by h(t) the response of the system to the impulse δ, with a width w, height

1/w, and area
∫
δw(t)dt = 1, Equation5.1 becomes

(x ∗ h)(t) =
∫ ∞

−∞
x(τ)h(t− τ)dτ (5.2)

where

h(t) =





1
w , if |t| ≤ w

2

0, otherwise
(5.3)
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Since h(t) = 0 outside the window then

(x ∗ h)(t) =
∫ t+w

2

t−w
2

x(τ)h(t− τ)dτ (5.4)

Substituting for h(t) into Equation 5.4

(x ∗ h)(t) =
∫ t+w

2

t−w
2

x(τ)
1

w
dt =

1

w

∫ t+w
2

t−w
2

x(τ)dt (5.5)

The filtered signal given by this convolution reveals that DATs have quasi-uniform

peaks and troughs as shown in Figure 5.1.

Figure 5.1: Convolution of the DAT series
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The output of the linear time-invariant system in the section above can be rep-

resented as shifted orthogonal basis signals (Alaton et al., 2002). More explicitly,

following Tindall (2006), the annual cycle or seasonal mean of DAT θt, ∀t ∈ N, can
be represented by summing the linear trend shown in Figure 4.11a and a term for

the seasonal variation that depicts the periodicity of temperature as follows

θt = Tlinear + Tseasonal (5.6)
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where

Tlinear = A+Bt

Tseasonal = εC0 +
∑

i

Ci sin (ωt+ φ) +
∑

i

Di cos (ωt+ ζ)
(5.7)

Hence, from Equations 5.6 and 5.7 the seasonal mean can be described by a truncated

Fourier series of the form

θt = A+Bt+
∑

i

Ci sin (ωt+ φ) +
∑

i

Di cos (ωt+ ζ) (5.8)

where the effect of the coefficient C0 is captured in the linear trend (Tindall, 2006).

The seasonal variation in Tindall (2006) was estimated using only the first order of

Equation 5.8, that is

θt = A+Bt+ C sin (ωt+ φ) +D cos (ωt+ ζ) (5.9)

However, the framework used in Mraoua (2007), Esunge and Njong (2020), and

Alaton et al. (2002) suggests that the annual cycle can be captured by the first

order Fourier series of a sinusoid of the form

θt = A+Bt+ C sin (ωt+ φ) (5.10)

where ω ≈ 2π/365.25, φ is a phase shift that calibrates the sinusoid for the fact

that maximum and minimum temperatures do not occur on the first of January and

the first of July, respectively, and A is the amplitude of the sinusoid, i.e. the peak

deviation of the function from its center position, which should be chosen alongside

B, and C so that the curve fits the data.

5.2 Stochastic Representation

The time evolution of DAT is given by a stochastic differential equation (SDE)

given by Equation 5.11 and whose solution is a Gaussian mean-reverting Ornstein-

Uhlenbeck process

dTt = κ(θt − Tt)dt+ σtdWt, Tt0 = T0 > 0 (5.11)

where the DAT is given by Tt, κ ∈ R is the speed of mean reversion, θt is the

seasonal mean, σ is the daily volatility of temperature, and Wt is a Wiener process.

However, to account for the mean reverting aspect of temperature in the long-run,

it is important to ensure that temperature reverts back to its long-run mean θt
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Proposition 1.

dTt = κ(θt − Tt)dt+ σtdWt ≠⇒ lim
t→∞

E[Tt] = θt (5.12)

Proof 1. Let Wt be a BM, and let Ft be an associated filtration, where Θ and ∆

are adapted stochastic processes with respect to Ft, then T̃t (temperature1.) is an Ito

process of the form

T̃T = T̃0 +

∫ T

t
Θtdt+

∫ T

t
∆tdWt (5.13)

And let f = f(t, t̃) be a C2
t,t̃

function then

f(T, T̃T ) = f(0, T̃0) +

∫ T

0

∂f

∂t
(t, T̃t)dt+

∫ T

0

∂f

∂t̃
(t, T̃t)∆tdWt

+

∫ T

0

∂f

∂t̃
(t, T̃t)Θtdt+

1

2

∫ T

0

∂2f

∂t̃2
(t, T̃t)∆

2
tdt, ∀T ≥ 0

(5.14)

which, in differential notation, becomes

df(t, T̃t) =
∂f

∂t
(t, T̃t)dt+

∂f

∂t̃
∆tdWt +

∂f

∂t̃
Θtdt+

1

2

∂2f

∂T̃ 2
∆2

tdt

⇐⇒ ∂f

∂t
(t, T̃t)dt+

∂f

∂t̃
dT̃t +

1

2

∂2f

∂T̃ 2
(dT̃ )2

(5.15)

To derive the expected value of the temperature process2 , let f(t, t̃) = eκtt̃ and

substitute using Equation 5.11, hence

d(eκtT̃t) = df(t, T̃t)

= κeκtT̃tdt+ eκt
[
κ(θt − T̃t)dt+ σtdWt

]

= κeκtθtdt+ eκtσtdWt

(5.16)

and integrating over u ∈ [s, t] , t > s, we get

∫ t

s
d(eκtT̃t) = eκtT̃t − eκsT̃s

=

∫ t

s
κeκtθudu+ eκtσudWu

(5.17)

changing the the base of the Riemann integral to dθt and dividing through by eκt

1Here Tt in Equation 5.11 has been changed to T̃t for notation convenience
2eκt is similar to the integrating factor used to derive the moments of the Cox-Ingersoll-Ross

model (Jafari & Abbasian, 2017)
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gives

T̃t = T̃se
−κ(t−s) +

∫ t

s
e−κ(t−u)dθu +

∫ t

s
e−κ(t−s)σudWu

= T̃se
−κ(t−s) + θte

−κ(t−t) − θse
−κ(t−s) +

∫ t

s
e−κ(t−s)σudWu

= θt +
(
T̃s − θs

)
e−κ(t−s) +

∫ t

s
e−κ(t−s)σudWu

(5.18)

Since the expectation of the Ito integral is zero, we obtain

E[T̃t] = θt +
(
T̃s − θs

)
e−κ(t−s) (5.19)

which goes to show that, under the settings of a normal OU process, temperature

does not revert back to its long-term mean.

Proposition 2.

dTt =

(
dθt
dt

+ κ(θt − Tt)

)
dt+ σtdWt =⇒ lim

t→∞
E[Tt] = θt (5.20)

Proof 2. Multiplying through the modified OU process by the integrating factor

e
∫ t
0 kdu, we obtain

e
∫ t
0 kdudT̃u + e

∫ t
0 kdudθu − e

∫ t
0 kduκ(θu − T̃u)du = e

∫ t
0 kduσudWu (5.21)

Let us consider the Ito process Zt = e
∫ t
0 kdu(θu − T̃u), then, by the product rule, we

get

dZt = d
[
e
∫ t
0 kdu(θu − T̃u)

]
= e

∫ t
0 kduσudWu (5.22)

Therefore, we find

Zt = Z0 −
∫ t

0
e
∫ t
0 κduσudWu (5.23)

Substituting Zt = e
∫ t
0 kdu(θu − T̃u) for θ0 = T̃0, gives

e
∫ t
0 kdu(θt − T̃t) = e

∫ t
0 kdu(θ0 − T̃0)−

∫ t

0
e
∫ t
0 kduσudWu (5.24)

Therefore

T̃t = θt + e−
∫ t
0 kdu

∫ t

0
e
∫ t
0 kduσudWu (5.25)

Since the expectation of the Ito integral is zero, we arrive at

E[T̃t] = θt (5.26)

Hence, as Dornier and Querel (2000) showed, modifying the OU process 5.11,
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where mean reversion is modeled by the time-varying term

dθt
dt

= B + ωC cos(ωt+ φ) (5.27)

adjusts the drift in the SDE 5.11 so that 5.20 holds, that is

dTt =

(
dθt
dt

+ κ(θt − Tt)

)
dt+ σtdWt (5.28)

5.3 Parameter Estimation

5.3.1 Model Fitting

The parameters in Equation 5.10 can be estimated by applying the method of

least squares to the series of observations. That is, if we let A = a1, B = b2,

C cos(φ) = a3, and C sin(φ) = a4 then Equation 5.10 can be rewritten as

θt = a1 + a2t+ a3 sin(ωt) + a4 cos(ωt) (5.29)

Moreover it can be seen in Figure 5.2, that the models in Equation 5.29 and 5.9 fit

the data in an overlapping way. Therefore, in order to avoid overfitting the model,

θt is estimated by finding the vector ξ = (a1, a2, a3, a4) such that

A = a1

B = a2

C =
√

a23 + a24

φ = arctan

(
a4
a3

)
− π

where the estimation errors are minimized using the Levenberg–Marquardt algo-

rithm developed by Levenberg (1944) and Marquardt (1963), that is

argmin
ξ

∥Θ− F (X, ξ)∥22, ∀t (5.30)

where ∥.∥2 is the ℓ2 norm of Θ, the vector representing the elements in Equation

5.29, and X, the data vector.
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Figure 5.2: Sinusoidal representation of DAT’s annual cycle
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Consequently, the fitted coefficients for every city are as follows:

θt =





9.22 + 1.07e-4t+ 7.31 sin (ωt− 1.95) in Amsterdam

9.27 + 1.05e-4t+ 7.21 sin (ωt− 1.96) in Rotterdam

9.17 + 9.89e-5t+ 7.42 sin (ωt− 1.93) in Utrecht

9.36 + 9.73e-5t+ 7.67 sin (ωt− 1.91) in Eindhoven

8.40 + 9.98e-5t+ 7.54 sin (ωt− 1.94) in Groningen

9.25 + 1.13e-4t+ 7.90 sin (ωt− 1.90) in Maastricht

9.24 + 1.01e-4t+ 7.57 sin (ωt− 1.92) in Tilburg

8.59 + 1.04e-4t+ 7.66 sin (ωt− 1.91) in Enschede

9.17 + 9.54e-5t+ 7.72 sin (ωt− 1.91) in Nijmegen

(5.31)

The amplitude of these sine functions indicate that in the nine Dutch cities dur-

ing summer periods, temperature is typically 7.56°C higher than in winter periods.

Furthermore, the small values of B imply a weak linear trend. Nevertheless, it also

shows that, depending on the city, average temperature increases by 1°C every 24
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to 29 years3.

5.3.2 Estimating the Speed of Mean Reversion

To find the parameter κ in the modified OU process proposed by Dornier and

Querel (2000), Equation 5.28 can be approximated using the Euler-Maruyama scheme,

that is

Ti ≈ Ti−1 +

∫ ti

ti−1

dθt
dt

dt+

∫ ti

ti−1

κ(θti−1 − Tti−1)dt+

∫ ti

ti−1

σtidBt (5.32)

where Ti denotes the approximation of Tti and T0 = Tt0. Since the integrands are

approximated by their values at the left-side boundary of the integration interval,

we get

Ti ≈ Ti−1 + θti − θti−1 + κ(θti−1 − Tti−1)∆t+ σti∆Bt (5.33)

In Equation 5.33, The value ∆Bt is normally distributed with zero mean and variance

∆t, i.e. ∆Bt ∼ N (0, ∆t) . Let Zt

√
∆t be a sample from this distribution where

Zt ∼ N (0, 1) , then Equation 5.33 becomes

Ti ≈ Ti−1 + θti − θti−1 + κ(θti−1 − Tti−1)∆t+ σtiZt

√
∆t (5.34)

by setting ∆t = 1, we have that

Ti ≈ Ti−1 + θti − θti−1 + κ(θti−1 − Tti−1) + σtiZt (5.35)

by letting

Λj = Tj − θj

Equation 5.35 simplifies to

Λti = Λti−1 − κΛti−1 + σtiZt (5.36)

Equation 5.36 can be modeled as an AR(1) process of the detrended and desea-

sonalized temperatures with a zero constant such that

Λti = γΛti−1 + eti (5.37)

where κ = 1− γ

The model in Equation 5.37 can be intuitively apprehended by inspecting the

residuals of the model fitting in the last subsection. A closer look at Figure 5.3

shows that there is significant autocorrelation in the first lag term, therefore it is no

coincidence that the model is estimated as an AR(1) process.

3t is a daily index, hence the increase is approximately estimated as B × 365.25× years
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Figure 5.3: Partial autocorrelation of the AR model lags
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Using the results from the previous subsection, the results of the AR regression

5.37 are provided in Table 5.1.

Table 5.1: Autoregressive model results

City: Amsterdam No. Observations: 19034

Dep. Variable: Residual Log Likelihood -39509.286

Model: AR(1) AIC 79022.573

Method: Conditional MLE BIC 79038.280

Coef Std err z p > |z| [0.025 0.975]

residual.L1 0.7942 0.004 180.427 0.000 0.786 0.803

City: Rotterdam No. Observations: 19034

Dep. Variable: Residual Log Likelihood -40238.849

Model: AR(1) AIC 80481.699

Method: Conditional MLE BIC 80497.407

Coef Std err z p > |z| [0.025 0.975]

residual.L1 0.7891 0.004 177.303 0.000 0.780 0.798
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City: Utrecht No. Observations: 19034

Dep. Variable: Residual Log Likelihood -40707.873

Model: AR(1) AIC 81419.746

Method: Conditional MLE BIC 81435.454

Coef Std err z p > |z| [0.025 0.975]

residual.L1 0.7913 0.004 178.623 0.000 0.783 0.800

City: Eindhoven No. Observations: 19034

Dep. Variable: Residual Log Likelihood -41773.694

Model: AR(1) AIC 83551.389

Method: Conditional MLE BIC 83567.097

Coef Std err z p > |z| [0.025 0.975]

residual.L1 0.7869 0.004 175.973 0.000 0.778 0.796

City: Groningen No. Observations: 19034

Dep. Variable: Residual Log Likelihood -41297.792

Model: AR(1) AIC 82599.583

Method: Conditional MLE BIC 82615.291

Coef Std err z p > |z| [0.025 0.975]

residual.L1 0.7856 0.004 175.345 0.000 0.777 0.794

City: Maastricht No. Observations: 19034

Dep. Variable: Residual Log Likelihood -41262.055

Model: AR(1) AIC 82528.111

Method: Conditional MLE BIC 82543.819

Coef Std err z p > |z| [0.025 0.975]

residual.L1 0.8065 0.004 188.224 0.000 0.798 0.815

City: Tilburg No. Observations: 19034

Dep. Variable: Residual Log Likelihood -41554.043

Model: AR(1) AIC 83112.086

Method: Conditional MLE BIC 83127.794

Coef Std err z p > |z| [0.025 0.975]

residual.L1 0.7870 0.004 176.049 0.000 0.778 0.796

City: Enschede No. Observations: 19034

Dep. Variable: Residual Log Likelihood -42347.546

Model: AR(1) AIC 84699.092

Method: Conditional MLE BIC 84714.800

Coef Std err z p > |z| [0.025 0.975]

residual.L1 0.7868 0.004 175.924 0.000 0.778 0.796

City: Nijmegen No. Observations: 19034

Dep. Variable: Residual Log Likelihood -41650.776

Model: AR(1) AIC 83305.553

Method: Conditional MLE BIC 83321.261

Coef Std err z p > |z| [0.025 0.975]

residual.L1 0.7874 0.004 176.271 0.000 0.779 0.796

BIC: Bayesian information criterion
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In the regression Table 5.1, the coefficient, i.e γ, values are used to estimate the

speed of mean reversion for every city as

κ =





0.206 in Amsterdam

0.211 in Rotterdam

0.209 in Utrecht

0.213 in Eindhoven

0.214 in Groningen

0.194 in Maastricht

0.213 in Tilburg

0.213 in Enschede

0.213 in Nijmegen

(5.38)

5.3.3 Estimating the Volatility

The last step in modelling the underlying consists in completing the modified OU

process 5.28 through estimating σ. A quick look at Figures 5.4 and 5.5 show that

the variance is not constant. In other words temperature is more volatile towards

the beginning/end of the years.

Figure 5.4: DAT dynamics model fit
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Figure 5.5: Standard deviation of the DAT process
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5.3.3.1 Parametric Polynomial Regression

The volatility of the process can be estimated by fitting a curve to the data

points. Multiple approaches have been taken in this regard. For instance, Tindall

(2006) used a polynomial with 4 degree of freedom to Sydney Airport temperature

volatility. Polynomial regression is a useful tool as it allows fitting4 a p-degree

polynomial to the volatility of the process. However, the choice of the degree p,

i.e.the features, of the polynomial requires a parsimonious approach as to not over-

4Fitting is carried out using ordinary least squares
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fit or under-fit the data. That is, looking at Figure 5.6 it can be seen that the

second and third degree polynomials don’t capture the high and low points of the

data accurately, whereas the sixth and seventh degree polynomials produce absurd

fitting as outlined by Carmona (2014). On the other hand, the AIC score of each

polynomial are presented in Table 5.2 wherein it is suggested that the polynomial

with the degree p = 5 fits the data best and hence is a good estimator and predictor

of volatility.

Table 5.2: AIC results of the regeression polynomials

p= 2 p= 3 p= 4 p= 5 p= 6 p= 7

Amsterdam 367.05 327.91 251.85 235.40 810.62 1148.49

Rotterdam 324.73 285.58 241.97 221.01 815.55 1159.63

Utrecht 379.23 347.68 280.71 260.72 860.32 1190.76

Eindhoven 379.52 355.21 282.83 263.19 873.72 1202.51

Groningen 428.94 404.40 310.97 296.34 889.64 1213.93

Maastricht 346.54 334.14 303.69 290.48 878.65 1207.93

Tilburg 386.70 360.19 291.07 272.73 877.85 1215.20

Enschede 395.25 375.77 315.49 304.94 910.98 1235.44

Nijmegen 392.71 369.04 283.42 272.23 882.31 1214.73

Figure 5.6: Polynomial volatility curves
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5.3.3.2 Non-Parametric Basis Spline Interpolation

It was mentioned in the last subsection that the sixth and seventh degree poly-

nomials over-fit the data, in fact one of the drawbacks of polynomial regression is

that it tends to have a very high variance at the boundaries and hence produce

inaccuracies (Hastie et al., 2009). Moreover, the polynomial regression generates a

single polynomial that describes the entire volatility dataset. On the other hand,

Spline regression can be used to yield a piecewise continuous function composed of

multiple polynomials.

To achieve this, Basis-splines5 (B-splines) can be used. A B-spline of order k

uses several Bézier curves joined on end and is defined by

B(t) =
n∑

i=0

βiNi,k(t) (5.39)

where βi are de Boor points andNi,k(t) are basis functions defined using the following

Cox-de Boor recursion formula

Ni,0(t) =




1 iti < t < ti+1

0 otherwise

Ni,j(t) =
t− ti

ti+j − ti
Ni,j−1(t) +

ti+j+1 − t

ti+j+1 − ti+1
Ni+1,j−1(t)

(5.40)

where t = {ti|i ∈ Z} is a sequence of non-decreasing real numbers called knot

sequence6. In fact, constructing a smoother spline fit requires specifying the number

of knots for the target data. That is, it can be seen from Table 5.3 that although a

higher number of knots produces a lower residual sum of squares (RSS) data could

still be subject to over-fitting as conveyed by the 50 knots B-spline in Figure 5.7.

5Basis-spline is a curve approximation method
6Knots are joints of polynomial segments
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Figure 5.7: B-spline volatility curve fit
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Table 5.3: B-splines fitting residual sum of squares

t5 t10 t15 t20 t50

Amsterdam 37.364 32.140 29.202 27.410 18.184

Rotterdam 35.442 30.705 27.152 25.696 18.094

Utrecht 39.750 33.652 30.46 28.551 19.476

Eindhoven 40.702 35.186 31.938 29.977 21.123

Groningen 44.560 36.237 32.373 30.512 20.396

Maastricht 43.653 37.721 32.747 30.612 22.338

Tilburg 41.130 35.418 31.560 29.589 21.100

Enschede 45.750 39.908 36.305 34.075 23.538

Nijmegen 41.218 35.081 32.616 30.601 21.390

5.3.3.3 Step Function Approximation

Another method to estimate volatility is done with piecewise constant function.

More specifically, Alaton et al. (2002) use piecewise construction of constant monthly
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volatilities. In fact, the framework of Alaton et al. (2002) assumes that the quadratic

variation σ2 ∈ R+ remains approximately constant throughout the month but varies

across months. Hence, the volatility is a piecewise constant function defined by

σ̂µ
2 =

1

Nµ
+

Nµ−1∑

i=0

(Ti+1 − Ti)
2 (5.41)

Where µ is a monthly index, Nµ is the number of days in the month, and Ti are the

DATs of the month ∀i ∈ [1, · · · , Nµ]. As it can be seen in Figure 5.8 , the monthly

approximation of variation provides a good measure of volatility of the temperature

process.

Figure 5.8: Piecewise constant function volatility fit
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5.3.3.4 Stochastic Model of Volatility

A different way to estimate volatility is to model it as a separate OU process. This

approach was introduced by Bhowan (2003) where, following the same assumption
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of Alaton et al. (2002), the volatility process is of the form

dσµ = κσ(σ̃ − σµ)dµ+ ξσdWµ (5.42)

where, once again, µ is a monthly index, σ̃ is the long-term volatility trend, κσ is

the speed of mean reversion, and Wµ is a Wiener process. In Equation 5.42, σ̃ is

taken to be constant as presented in Figure 5.97.

Figure 5.9: Monthly volatility of DAT
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Consequently, estimating Equation 5.42, consists in estimating ξσ and κσ, where

the former can be estimated as the quadratic variation of σµ. That is,

ξ̂σ
2
=

1

N
+

N−1∑

i=0

(σi+1 − σi)
2 (5.43)

where N is the number of observations, and σi are the monthly volatilities ∀i ∈
7The difference between this figure and figure 4.6 is due to the grouping of the data. In the latter

data is grouped by both the year and the month, while in the former was grouped on a monthly
basis only.
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[1, · · · , N ]. The calculation gives

ξ̂σ =





0.828 in Amsterdam

0.842 in Rotterdam

0.858 in Utrecht

0.868 in Eindhoven

0.870 in Groningen

0.871 in Maastricht

0.890 in Tilburg

0.882 in Enschede

0.878 in Nijmegen

In the original paper, Bhowan (2003) uses a martingale estimation function to es-

timate κσ, based on the work of Bibby and Sørensen (1995), whereby SDEs of the

form

dXt = b(Xt, θ)dt+ σ(Xt, θ)dWt; X0 = x0

allow for an unbiased estimator of θ given by

Gn(θ) =

n∑

i=1

ḃ(X(i−1)∆, θ)

σ2(X(i−1)∆, θ)
(Xi∆ − E[Xi | Xi−1])

where ḃ ≡ ∂b
∂θ .

Nevertheless, since it was show in Figure 5.9 that E[σµ] = σ̃ and that σ̃ is

constant across time, then the process given by Equation 5.42 can be modeled as

another modified OU process of the form

dσµ =

(
dσ̃

dµ
+ κσ(σ̃ − σµ)

)
dµ+ ξσdWµ (5.44)

following the same approach in Subsection 5.3.2, the rate of speed reversion parame-

ter κσ can be estimated by autoregressing on the residual of the volatility parameter,

that is

Λti = γσΛti−1 + eti (5.45)

where κσ = 1− γσ
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Table 5.4: Autoregressive model results

City: Amsterdam No. Observations: 19034

Dep. Variable: Standard deviation Log Likelihood -914.466

Model: AR(1) AIC 1832.931

Method: Conditional MLE BIC 1841.807

Coef Std err z p > |z| [0.025 0.975]

std.L1 0.9311 0.014 64.319 0.000 0.903 0.959

City: Rotterdam No. Observations: 19034

Dep. Variable: Standard deviation Log Likelihood -918.242

Model: AR(1) AIC 1840.484

Method: Conditional MLE BIC 1849.360

Coef Std err z p > |z| [0.025 0.975]

std.L1 0.9349 0.014 66.213 0.000 0.907 0.963

City: Utrecht No. Observations: 19034

Dep. Variable: Standard deviation Log Likelihood -940.370

Model: AR(1) AIC 1884.740

Method: Conditional MLE BIC 1893.616

Coef Std err z p > |z| [0.025 0.975]

std.L1 0.9342 0.014 65.976 0.000 0.906 0.962

City: Eindhoven No. Observations: 19034

Dep. Variable: Standard deviation Log Likelihood -955.426

Model: AR(1) AIC 1914.852

Method: Conditional MLE BIC 1923.727

Coef Std err z p > |z| [0.025 0.975]

std.L1 0.9381 0.014 68.223 0.000 0.911 0.965

City: Groningen No. Observations: 19034

Dep. Variable: Standard deviation Log Likelihood -960.194

Model: AR(1) AIC 1924.389

Method: Conditional MLE BIC 1933.264

Coef Std err z p > |z| [0.025 0.975]

std.L1 0.9304 0.014 64.373 0.000 0.902 0.959

City: Maastricht No. Observations: 19034

Dep. Variable: Standard deviation Log Likelihood -959.196

Model: AR(1) AIC 1922.392

Method: Conditional MLE BIC 1931.267

Coef Std err z p > |z| [0.025 0.975]

std.L1 0.9385 0.014 68.622 0.000 0.912 0.965

City: Tilburg No. Observations: 19034

Dep. Variable: Standard deviation Log Likelihood -956.825

Model: AR(1) AIC 1917.650

Method: Conditional MLE BIC 1926.526

Coef Std err z p > |z| [0.025 0.975]

std.L1 0.9359 0.014 66.927 0.000 0.909 0.963
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City: Enschede No. Observations: 19034

Dep. Variable: Standard deviation Log Likelihood -962.227

Model: AR(1) AIC 1928.454

Method: Conditional MLE BIC 1937.330

Coef Std err z p > |z| [0.025 0.975]

std.L1 0.9392 0.014 69.154 0.000 0.913 0.966

City: Nijmegen No. Observations: 19034

Dep. Variable: Standard deviation Log Likelihood -953.283

Model: AR(1) AIC 1910.567

Method: Conditional MLE BIC 1919.442

Coef Std err z p > |z| [0.025 0.975]

std.L1 0.9370 0.014 67.709 0.000 0.910 0.964

Consequently, the volatility dynamics in this framework are given by

dσµ =





0.93 + (2.80− σµ)dµ + 0.83dWµ in Amsterdam

0.93 + (2.90− σµ)dµ + 0.84dWµ in Rotterdam

0.93 + (3.00− σµ)dµ + 0.86dWµ in Utrecht

0.94 + (3.10− σµ)dµ + 0.83dWµ in Eindhoven

0.93 + (3.00− σµ)dµ + 0.87dWµ in Groningen

0.94 + (3.20− σµ)dµ + 0.87dWµ in Maastricht

0.94 + (3.10− σµ)dµ + 0.89dWµ in Tilburg

0.94 + (3.20− σµ)dµ + 0.88dWµ in Enschede

0.94 + (3.10− σµ)dµ + 0.88dWµ in Nijmegen

5.3.3.5 Fourier Series Model of Volatility

Amore advanced approach consists in estimating volatility as a truncated Fourier

series. Following the work of Benth and Benth (2007), and Benth et al. (2007) who

argue that this method allows for more flexibility in calculations and captures the

observed stylized facts of temperatures, volatility can be represented by

σ2
t = β0 +

I∑

i=1

βi sin(iωt) +
J∑

j=1

αj cos(jωt) (5.46)

where ω ≈ 2π/365.25. In Esunge and Njong (2020), the constant β was replaced

by a linear term such that β0 = V + Ut, to capture the higher volatility in the

winter periods compared to the summer periods. Nevertheless, upon investigating

the rolling volatility of the DATs it was found, as Figure 5.10 points out, that there

is no linear trend to account for. Hence, Equation 5.46 is left unchanged.
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Figure 5.10: Long term volatility of the DAT
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While working on Swedish data, Benth and Benth (2007) and Benth et al. (2007)

arbitrarily use a 4th order Fourier series, i.e. setting I = J = 4 in Equation 5.46.

Nevertheless, to chose the optimal model, this thesis fits fits Fourier series with

orders from 1 to 15 and inspects the RSS of each fit as depicted in Figure 5.11. It

can be seen that the RSS drops until order 5 with a minimal increase in performance

increase at order 10. Hence, It is concluded that Dutch data should be fitted using

a Fourier series of order 10, the result of this fit is presented in Figure 5.12.

Figure 5.11: Residual sum of squares of Fourier orders
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Figure 5.12: Fourier series volatility fit
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Daily Average Temperature Simulation

Under the P-Measure

With the DATs dynamics on hand, the last step prior to pricing temperature deriva-

tives for the Netherlands is to simulate DATs paths under the real world P-measure

using those dynamics. This approach does not assume the existence of a risk free

rate or an arbitrage free setting in the market. Hence it is backwards looking.

6.1 Underlying Dynamics

In the last chapter a thorough modeling of the DATs was carried out. In summary,

the modified OU process dynamics are as follows:

dTt =





(dθt/dt+ 0.206(θt − Tt)) dt+ σtdWt in Amsterdam

(dθt/dt+ 0.211(θt − Tt)) dt+ σtdWt in Rotterdam

(dθt/dt+ 0.209(θt − Tt)) dt+ σtdWt in Utrecht

(dθt/dt+ 0.213(θt − Tt)) dt+ σtdWt in Eindhoven

(dθt/dt+ 0.214(θt − Tt)) dt+ σtdWt in Groningen

(dθt/dt+ 0.194(θt − Tt)) dt+ σtdWt in Maastricht

(dθt/dt+ 0.213(θt − Tt)) dt+ σtdWt in Tilburg

(dθt/dt+ 0.213(θt − Tt)) dt+ σtdWt in Enschede

(dθt/dt+ 0.213(θt − Tt)) dt+ σtdWt in Nijmegen
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where

θt =





9.22 + 1.07e-4t+ 7.31 sin (ωt− 1.95) in Amsterdam

9.27 + 1.05e-4t+ 7.21 sin (ωt− 1.96) in Rotterdam

9.17 + 9.89e-5t+ 7.42 sin (ωt− 1.93) in Utrecht

9.36 + 9.73e-5t+ 7.67 sin (ωt− 1.91) in Eindhoven

8.40 + 9.98e-5t+ 7.54 sin (ωt− 1.94) in Groningen

9.25 + 1.13e-4t+ 7.90 sin (ωt− 1.90) in Maastricht

9.24 + 1.01e-4t+ 7.57 sin (ωt− 1.92) in Tilburg

8.59 + 1.04e-4t+ 7.66 sin (ωt− 1.91) in Enschede

9.17 + 9.54e-5t+ 7.72 sin (ωt− 1.91) in Nijmegen

6.2 Monte Carlo Simulation

In order to run a Monte Carlo simulation of the future temperatures in the

Netherlands, we use the Ornstein-Uhlenbeck process defined in Equation5.28 which

is approximated as

Ti+1 ≈ Ti +
dθt
dt

+ κ(θti−1 − Tti−1) + σtiZt (6.1)

where

dθt
dt

=





1.07e-4 + 7.31(ω) cos(ωt− 1.95) in Amsterdam

1.05e-4 + 7.21(ω) cos(ωt− 1.96) in Rotterdam

9.89e-5 + 7.42(ω) cos(ωt− 1.93) in Utrecht

9.73e-5 + 7.67(ω) cos(ωt− 1.91) in Eindhoven

9.98e-5 + 7.54(ω) cos(ωt− 1.94) in Groningen

1.13e-4 + 7.90(ω) cos(ωt− 1.90) in Maastricht

1.01e-4 + 7.57(ω) cos(ωt− 1.92) in Tilburg

1.04e-4 + 7.66(ω) cos(ωt− 1.91) in Enschede

9.54e-5 + 7.72(ω) cos(ωt− 1.91) in Nijmegen

Although it is not clear which estimator from subsection 5.3.3 is best to approxi-

mate volatility, we believe that a spline with 20 knots performs better than advanced

approaches such as Fourier series approximation. That is, looking at Figure 6.1 it is

clear that the method suggested by Benth and Benth (2007) and Benth et al. (2007)

underfits Dutch temperature data.
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Figure 6.1: Comparison of Fourier series and B-spline volatility fit
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Based on these dynamics, 10.000 scenarios of DATs between the 1st of January

2024 and the 31st of December 2028 are simulated. The results of these simulations

are shown in Figure 6.2, where the x-axis is the date i ∀i ∈ [2024/01/01, · · · , 2028/12/31],
the y-axis represents the different iterations from 0 to 10.000, and the z-axis corre-

sponds to a given DAT value, hence a position along the z-axis indicates the DAT

for a given simulation.

Figure 6.2: Temperature simulations from 2024 to 2029

(a) Amsterdam (b) Rotterdam (c) Utrecht
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(d) Eindhoven (e) Groningen (f) Maastricht

(g) Tilburg (h) Enschede (i) Nijmegen
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Putting a Price on Dutch Temperature

Under the Q-Measure

As mentioned in the beginning of this thesis, standardized European temperature

derivatives are written on the cumulative average temperature (CAT) index, or the

heating degree day (HDD) index. The aim of this chapter is price HDD and CAT

options for the nine Dutch cities under the risk neutral Q-measure.

7.1 Solving the Ornstein Uhlenbeck SDE

Consider the DAT modified OU process given by the following SDE

dTt =

(
dθt
dt

+ κ(θt − Tt)

)
dt+ σtdBt (7.1)

If we set T̃ = Tt − θt, then, following the proof to proposition 1, an explicit solution

is given by

Tt = θt + e−κ(t−s)(Ts − θs) +

∫ t

s
σue

−κ(t−u)dBu (7.2)

Therefore, the following is also true

EP[Tt|Fs] = θt + e−κ(t−s)(Ts − θs)

VarP[Tt|Fs] =

∫ t

s
σ2
ue

−2κ(t−u)dBu

This approach assumes that the driving noise process follows a Brownian motion,

some authors such as Benth and Šaltytė-Benth (2005) price temperature derivatives

where a Lévy motion is the driving noise process.

The weather derivatives market is an incomplete market with infinite equivalent

martingale measures (Alexandridis & Zapranis, 2012). Moreover, since temperature

is non-tradable, the market price of risk should be accounted for in the model in

order to obtain unique prices for the contracts. In this thesis the pricing is carried

out under the parametric risk neutral probability Qλ, where λ is a constant market

price of risk.

Let W = (Wt, t ≥ 0) be a Q-standard Wiener process, then the price process
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can be written as

dTt =

(
dθt
dt

+ κ(θt − Tt)− λσt

)
dt+ σtdW

Q
t (7.3)

Then, similarly to Equation 7.1, it holds that

Tt = θt + e−κ(t−s)(Ts − θs)− λ

∫ t

s
σue

−κ(t−u)du+

∫ t

s
σue

−κ(t−u)dBu (7.4)

Therefore

EQ[Tt|Fs] = EP[Tt|Fs]− λ

∫ t

s
σue

−κ(t−u)du (7.5)

VarQ[Tt|Fs] =

∫ t

s
σ2
ue

−2κ(t−u)dBu (7.6)

Additionally, as long as volatility σi∀i ∈ [s, t] is constant throughout the interval

[s, t], the expectation, variance, and covariance are given by

EQ[Tt|Fs] = EP[Tt|Fs]−
λσi
κ

(1− e−κ(t−s)) (7.7)

VarQ[Tt|Fs] =
σ2
i

2κ
(1− e−2κ(t−s)) (7.8)

CovQ[Tt, Tu|Fs] = e−κ(u−t)VarQ[Tt|Fs] (7.9)

where 0 ≤ s ≤ t ≤ u

7.2 Pricing Dutch Heating Degree Day Options

7.2.1 Alaton Approximation

The payoff of a HDD index is given by

ϕ = α(HDDn −K)+ (7.10)

where α is the tick size, K is the strike, and

HDDn =

N∑

n=1

max(0, Tref −DATn) (7.11)

Since the reference temperature of the weather derivatives contracts traded in the

CME is 18°C, Equation 7.11 becomes

HDDn =
N∑

n=1

max(0, 18−DATn) (7.12)
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The underlying temperature process is normally distributed. Nevertheless, under

this assumption, finding a pricing formula is challenging because of the maximum

function. On the other hand, Alaton et al. (2002) provide an approximation whereby

under the risk neutral Q-measure conditional on in formation at time s

Tt ∼ N (µt, σ
2
t )

where µt = EQ[Tt|Fs] and σ2
t = VarQ[Tt|Fs]. Moreover, to the observation made

by Alaton et al. (2002) when working on Swedish data, it was found that winter

periods in the Netherlands satisfy the following

P[max(0, 18−DATn) = 0] ≈ 0

Hence, for Dutch HDD contracts, we have that

HDDn = 18n−
n∑

i=1

Tti ; (7.13)

It is clear that the distribution of Equation 7.13 is easier to determine without the

maximum function. In fact, since Tti come from a normally distributed OU process,

it holds that [Tt1 , Tt2 , · · · , Ttn ] is also normally distributed. Therefore, HDDn is

also Gaussian with mean

EQ[HDDn|Ft] = EQ

[
18n−

n∑

i=1

Tti |Ft

]
= 18n−

n∑

i=1

TtiE
Q[Tti |Ft] (7.14)

and variance

VarQ[HDDn|Ft] =

n∑

i=1

TtiVar
Q[Tti |Ft] + 2

∑∑

i<j

Cov[Tti , Ttj |Ft] (7.15)

According to the fundamental theorem of asset pricing, the absence of arbitrage,

i.e. under an equivalent martingale measure, implies the existence of a state price

density which in turn implies the existence of risk neutral probabilities, therefore

the price of a HDD call option at time t ≤ t1 is

CHDD(t) = e−r(tn−t)EQ[αmax{HDDn −K, 0}|Ft]

= e−r(tn−t)

∫ ∞

K
(x− k)fHDDn(x)dx

= e−r(tn−t)

(
(µn −K)Φ(−ξn) +

σn√
2π

e−
ξ2n
2

) (7.16)

where e−r(tn−t) is a stochastic discount factor, K is the strike, ξn = (K − µn)/σn,

and Φ is the cumulative distribution function of the standard normal distribution.
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Similarly, the price of a HDD put option at time t ≤ t1 is

PHDD(t) = e−r(tn−t)EQ[αmax{K −HDDn, 0}|Ft]

= e−r(tn−t)

∫ K

0
(K − x)fHDDn(x)dx

= e−r(tn−t)

[
(K − µn)

(
Φ(ξn)− Φ

(
−µn

σn

))
+

σn√
2π

(
e−

ξ2n
2 − e

1
2
(µn
σn

)2
)]

(7.17)

7.2.1.1 Model Calibration to the Market

Before calculating prices for HDD calls and puts under the Q-measure, the model

needs to be calibrated to the dutch market conditions.

7.2.1.1.1 Risk Free Rate

Since this work focuses on the Dutch weather market, it was decided to use the

Netherlands 10-year constant maturity treasury bond yield as proxy for the risk free

rate1. The Netherlands is one of the few European countries that have a stable

credit rating of AAA according to S&P Global Ratings. Moreover, as it can be seen

in Figure 7.1, the Netherlands has a one of the lowest long-term CDS spreads which

is indicates a strong credit-worthiness of the Netherlands.

Figure 7.1: Credit default swaps spread
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7.2.1.1.2 Market Price of Risk

The market price of risk λ represents the risk preferences of market participants

and their willingness to expose themselves to risk. Previous studies commonly as-

sumed a market price of risk of zero, whereas recent research indicates the opposite.

The approach commonly used in the literature is based on the work of Alaton et al.

1According to FactSet the yield is equal to 2.75
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(2002), who suggest inferring the market price of risk from market data. That is,

finding the value of λ that matches theoretical model prices with observed market

prices. Although they assume, that λ is constant, subsequent research indicates the

opposite. For instance, Bellini (2005), compares the theoretical future prices to the

prices observed in the market under the assumption of a Lévy process, and examines

the time dependence of the market price of risk and finds a relationship between λt

and its lag. Additionally, Härdle and Cabrera (2012) estimate the implied market

price of risk for German CAT derivatives in Berlin. They find a non-zero value of

λ with an increasing seasonal structure as the expiration date of the temperature

future increases.

In this thesis, we break away from the framework in Alaton et al. (2002) and

assume a time varying λ, i.e λ = λt. Since the market price of risk can be inferred

from market data then λt can be estimated using a root finding algorithm. That is,

focusing on puts the market price of risk for a given option is the λ-value for which

Vp(t0, HDD,K, T, r, λ) = V mkt
p (K,T ) (7.18)

where Vp(t0, HDD,K, T, r, λ) is the predicted put price, V mkt
p (K,T ) is the observed

market price of the put, and t0 = 0.

To find λt the Newton Raphson root-finding iteration can be used such that

f(λ) := V mkt
p (K,T )− Vp(t0, HDD,K, T, r, λ) = 0 (7.19)

Hence, since λt is not constant, given an initial guess λ0
t and df(λ)

dλ the next approx-

imations of λi
t are found as

λi+1
t = λi

t −
f(λi

t)

f ′(λi
t)
; ∀i ≥ 0 (7.20)

Using the CME’s market prices for Amsterdam’s November-March seasonal strip

weather HDDs which are listed in Table 7.1, it was found, after 2000 iterations that

λ = −319.76 for option 1 and λ = −266.29 for option 2.

Table 7.1: Specifications of two Amsterdam weather product

Weather station Index Type Period Price Strike

Option 1 Schipol Airport HDD Put NOV-MAR 2024 e 35 1700 HDDs

Option2 Schipol Airport HDD Put NOV-MAR 2024 e 65 1800 HDDs

The negative market prices of risk indicate that investors are willing accept a

lower compensation for bearing risk compared to what is predicted by the model.

That is, they are willing to take on more risk for less compensation than expected.
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This risk seeking behavior might be driven by factors such as optimistic market senti-

ment, overconfidence, or the belief that the potential rewards outweigh the risks. Ad-

ditionally, since the temperature derivatives market is incomplete, this phenomenon

could be a symptom of the inefficiency of the Dutch temperature derivatives market.

In other words, a negative market price of risk implies that the market prices of the

securities might not accurately reflect the level of risk. In that case, early market

participants can take advantage of the arbitrage opportunities that the inefficiency

provides and exploit mispricings. The real underlying reasons go beyond the scope

of this thesis. Nevertheless, it is important for further research to investigate this

phenomenon.

The difference between the two values of λ stems from an interesting observation

about the relationship between the market price of risk and either market prices or

strike levels K. As it can be seen in Figure 7.2, λ increases as the market price of

the put goes up. Nevertheless, there is a linear negative relationship between λ and

the strike level. This can be due to the fact that investors are willing to take more

risky positions for a higher payoff.

Figure 7.2: The behavior of option 1’s λ
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7.2.2 Results

Since it was found that the market price of risk is not constant, and that it varies

with respect to the strike level, to price the HDD calls and puts we will use the two λ

values we found in the last subsection and their respective strikes K. The results are

provided in Table 7.2. Although the distance between weather stations is relatively

small, the different dynamics of the DAT of every city are such that the prices of

the HDD options for Amsterdam differ those of other cities. It can be seen that the

difference in the predicted price can go up to e 800 in the case Enschede’s HDD call

against Amsterdam’s. Therefore, it can be said that although temperature is not

as highly localized as wind from a meteorological perspective, it can be labeled so

financially.
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Table 7.2, alongside the results of Chapter 8, indicate that hedging temperature

risk across the Netherlands using only Amsterdam’s temperature is extremely risky

as investors can be worse off if they overlook the inaccuracy of their hedging strategy.

Table 7.2: Predicted HDD options prices for the NOV-MAR 2024 strip

Index Type Strike λ Predicted price

Amsterdam HDD

call

-

put

1700 HDDs

1800 HDDs

1700 HDDs

1800 HDDs

-319.76

-266.29

-319.76

-266.29

e 630.13

e 484.49

e 35.00

e 65.00

Rotterdam HDD

call

-

put

1700 HDDs

1800 HDDs

1700 HDDs

1800 HDDs

-319.76

-266.29

-319.76

-266.29

e 635.07

e 488.81

e 38.76

e 70.60

Utrecht HDD

call

-

put

1700 HDDs

1800 HDDs

1700 HDDs

1800 HDDs

-319.76

-266.29

-319.76

-266.29

e 699.39

e 547.05

e 32.75

e 60.51

Eindhoven HDD

call

-

put

1700 HDDs

1800 HDDs

1700 HDDs

1800 HDDs

-319.76

-266.29

-319.76

-266.29

e 721.22

e 566.43

e 33.4

e 61.40

Groningen HDD

call

-

put

1700 HDDs

1800 HDDs

1700 HDDs

1800 HDDs

-319.76

-266.29

-319.76

-266.29

e 819.20

e 657.68

e 21.26

e 41.06

Maastricht HDD

call

-

put

1700 HDDs

1800 HDDs

1700 HDDs

1800 HDDs

-319.76

-266.29

-319.76

-266.29

e 730.10

e 573.95

e 34.37

e 62.74

Tilburg HDD

call

-

put

1700 HDDs

1800 HDDs

1700 HDDs

1800 HDDs

-319.76

-266.29

-319.76

-266.29

e 720.53

e 565.83

e 34.57

e 63.04

Enschede HDD

call

-

put

1700 HDDs

1800 HDDs

1700 HDDs

1800 HDDs

-319.76

-266.29

-319.76

-266.29

e 826.65

e 663.04

e 25.47

e 47.82

Nijmegen HDD

call

-

put

1700 HDDs

1800 HDDs

1700 HDDs

1800 HDDs

-319.76

-266.29

-319.76

-266.29

e 760.29

e 602.50

e 30.00

e 55.48
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7.3 Pricing Dutch Cumulative Average Temperature Op-

tions

7.3.1 Monte Carlo Simulation

Some researchers such as Esunge and Njong (2020) and Wang et al. (2015)

suggest using a Monte Carlo simulation to price temperature options. According to

them, in some instances where the condition that P[max(0, 18 − DATn) = 0] ≈ 0

almost does not hold, using the Alaton approximation could result in inaccurate

prices. As an alternative, one could use the Monte Carlo method. Following the

work of Wang et al. (2015), the Monte Carlo simulation generates a set of paths

and calculates the payoff for each path, the price of the option is then calculated

as the average of the payoffs from each path. In the case of the Netherlands, after

generating 50.000 DAT scenarios between the 1st of November 2030 and the 31st

of March 2031, it was found that P[max(0, 18 − DATn) = 0] = 0, therefore, using

Equations 7.16 and 7.17 should, in principle, provide accurate prices for the winter

periods.

Although Alexandridis and Zapranis (2012) provide close form pricing formulas

for call and put options written on CAT indices, we follow a the mWang et al. (2015)

in pricing HDD options, to price CAR indices using a Monte Carlo simulation. The

payout of a CAT index is given by

CATn =
N∑

n=1

DATn (7.21)

and the price of a CAT call option at time t is given by

CCAT (t) = e−r(tn−t) 1

M

M∑

i=1

αEQ[max{
N∑

n=1

CATn −K, 0}] (7.22)

where r is the discount interest rate, α is the principal nominal, m is the length of

the time space, and M is the number of paths generated. The price of a CAT put

is therefore

PCAT (t) = e−r(tn−t) 1

M

M∑

i=1

αEQ[max{K − CATm, 0}] (7.23)

Figure 7.3 shows the result of this approach where Option premium (e) is plotted for

strikes (CAT) from 100 to 200. Nevertheless, in the absence of information about

the market price of risk , it was assumed that λ = 0
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Figure 7.3: Rotterdam CAT options
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Spatial Basis Risk

J. C. Hull (2003) defines basis risk as the difference between the spot and future

price. In the case of weather derivatives basis risk is defined differently. Spatial

or geographical basis risk arises when there is a significant distance between the

measurement site and the subject of the hedge. According to Rohrer (2004), this

risk comprises also time basis risk, which results from the difference between the

exposure period and the reference period of the derivative. However, since the latter

can be overcome by trading weather derivatives with different maturities, this thesis

will focus solely on spatial basis risk.

8.1 Weather Risk Management

Basis risk is often overlooked in weather derivative markets and receives limited

attention in academic literature, typically with only brief mentions. However, some

researchers such as Hess et al. (2002) have delved deeper into this aspect by exam-

ining the value of weather derivatives in developing countries, and emphasizing the

significance of basis rusk in hedging crop-related risks.

In general, counterparties of hedged companies justify their offerings by relying

on high correlation coefficients between the provided index station and the location

being hedged.

Although Figure 8.1 demonstrates a strong correlation amond DATs, Rohrer

(2004) explains that a high correlation coefficient does not eliminate the presence of

basis risk. This means that even with cities located hundreds of kilometers apart,

it is possible to have a high correlation (Rohrer, 2004). For instance, the coefficient

correlation between Berlin and Munich on February was equal to 0.84, indicating

that it is common for for Dutch cities to exhibit highly correlated temperatures.

Furthermore, temperature disparities can sometimes be observed even over short

distances due to the formation of micro-climates (Brockett et al., 2005; Manfredo &

Richards, 2009).
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Table 8.1: Correlation of Amsterdam’s DAT with other cities

Correlation coefficient

Rotterdam 0.999

Utrecht 0.999

Eindhoven 0.998

Groningen 0.999

Maastricht 0.998

Tilburg 0.999

Enschede 0.999

Nijmegen 0.998

8.2 Spatial Basis Risk Assessment

It was established in the last section that correlation might not be the best in-

dicator of spatial basis risk. Nevertheless, the literature does not offer an accurate

tool to deal with it and basis risk is accepted with no natural hedge, i.e. taking

advantage from geographical diversification. Rohrer (2004) uses the distribution of

the residuals of the correlation of the mean monthly temperatures of Berlin and

Munich, they determine that there us a 10% probability of observing temperature

in Berlin that deviates approximately 0.8 and 1.0 standard deviations below and

above the expected value, respectively. Temperature derivatives are typically based

on a strip or a month, hence analyzing monthly or seasonal basis risk can provide

more insight. That is, observing Figure 8.1, it is seen that the mean DATs of the

November-March strip of the 8 Dutch cities differ from Amsterdam’s long run aver-

age during the same period. While a difference of 2°C can produce slight inaccuracies

in the hedging of basis risk, Figure 8.2 indicates that difference can reach up to 7°C

in the May-September strip which can lead to substantial financial losses. For in-

stance, the mean Rotterdam DAT in the May-September strip 2022 was around 6.25

while Amsterdam’s long run average during the same period is approximately 10.22,

the difference of the index is about 60% which means that a hedging strategy should

result in 60% less revenues.
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Figure 8.1: Amsterdam’s mean DAT vs other cities (Nov-Mar)
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Figure 8.2: Amsterdam’s mean DAT vs other cities (May-Sep strip)
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8.3 Spatial Basis Risk Hedging

In the preceding section, we demonstrated that basis risk, which is reflected in

the distance between the DAT in a reference station (Amsterdam - Schipol) and

any other location in the Netherlands, can reach critical levels and induce serious

financial losses. While Manfredo and Richards (2009) emphasize that the success

of a hedge in the weather derivatives market relies of the behavior of the basis.

When the basis is uncertain or unpredictable, it introduces challenges for hedging

strategies. Moreover, basis risk also impacts the liquidity of the market due to

limited market participants willing to take the risk. Unfortunately, spatial basis risk

in weather derivatives remains a neglected topic. One potential solution to address

this issue is the use of basis derivatives, which are based on the difference between

the DATs of two stations (Alexandridis & Zapranis, 2012). For instance, suppose

an energy importer wishes to hedge their profit in Rotterdam in either a winter

or summer period, the investor can use the Amsterdam exchange traded derivative

and the closest station to the location of the firm. That is, given ξAn , Amsterdam’s

exchange traded temperature index (HDD or CAT), ξRn , Rotterdam’s temperature

index, instead of trading a single temperature index, the importer can trade a bundle

of indices given by

ξn = αξAn + (1− α)ξBn (8.1)

where ξBn is a basis derivative written on the difference between ξAn and ξRn . However,

the investor should be ready to bare the credit risk that derives from trading ξBn

OTC. Moreover, if the business is located far from a specific, the energy producer

can hedge by using a combination of the nearby stations such that

ξn = α0ξ
A
n + α1ξ

1
n + α2ξ

2
n + · · ·+ αNξNn

= α0ξ
A
n +

N∑

i=1

αiξ
i
n

(8.2)

where

0 ≤ αi ≤ 1,

N∑

i=0

αi = 1
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8.4 Basis Risk and Profits

Multiple authors have tried to account for temperature indices and basis risk in

modeling profits from temperature-dependent businesses. Specifically, in the case

of crop yields, when using weather derivatives as a hedging instrument, not only

spatial basis should be considered, but also the relationship between crop yields and

weather conditions. The effectiveness of the hedge depends on how closely the crop

yields are linked to specific weather patterns. To account for this feature Turvey

(2001) propose the following model

Y = ARαHβ

where Y is the crop yield, R is cumulative daily rainfall in the growing period, H is

the growing degree days (GDDs)1, and α and β are the output elasticities of rainfall

and growing degree days. Other researchers such as Pardo et al. (2002) use HDDs

and CDDs to model daily electricity loads in the Spanish electricity market. They

demonstrate that weather and seasonality have a significant impact on electricity

demand. That is, the model is given by

Et =c1 + a1t+ β1HDDt + γ1CDDt

+

7∑

i=2

δ1iWit + ω1Ht + κ1Ht−1

12∑

j=2

λ1jMjt + ε1t

where t is the time variable and the indices i and j represent the days of the week

and the months of the year, excluding Monday and January, respectively. Therefore,

the parameters Wit and Mjt are equal to 1 if the time variable belongs to i and j,

respectively, and 0 otherwise. In addition, the parameters Ht and Ht−1 are holiday

dummies, where the latter is 1 if t is a holiday and the former is 1 if t comes after

a holiday.

Consider the basic natural gas economy framework that Zweifel et al. (2017)

develops, and suppose energy consumers have a demand function that reflects their

knowledge about the future state of temperature represented by ξn such that the

energy demand for a given season depends on an aggregate temperature index as

given in equation 8.2

Q = a− pr + ξn (8.3)

where pr is the retail price of gas sales and a is the marginal willingness to pay for

the first unit of natural gas. Excluding distribution costs, the energy importer then

1A GDD is a weather-driven metric used in agriculture to evaluate the progress of crop growth.
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has a profit of

πi = (pr − pi)Q

= (pr − pi)(a− pr + ξn)
(8.4)

where pi is the import price. Deriving equation 8.4 with respect to pr, the optimal

sales price is therefore

p∗r =
a+ pi + ξn

2
(8.5)

Using the fact that the quantity sold Q should be equal to the quantity imported

Qi, we get the optimal quantity imported as

Q∗
i =

a+ ξn − pi
2

(8.6)

Hence the importer’s maximum profit

π∗
i =

(
a+ pi + ξn

2
− pi

)
a+ ξn − pi

2

=

(
a+ ξn − pi

2

)2 (8.7)

Now assume a profit maximizing natural gas producer that knows the importer’s

optimal demand Q∗
i , the gas producer then has a profit of

πe = (pi − c(k))Q∗
i

= (pi − c(k))
a+ ξn − pi

2

(8.8)

where c(k) is the unit cost of extracting and transporting gas which depend on

capital stock k. Deriving equation 8.8 with respect to pi, the optimal import price

is therefore

p∗i =
a+ ξn + c(k)

2
(8.9)

Using the fact that the quantity exported Qe should be equal to the quantity im-

ported Qi, we get the optimal quantity exported as

Q∗
e =

a+ ξn − pi∗
2

(8.10)

=
a+ ξn − c(k)

4
(8.11)

Excluding the costs of capital, transport and distribution, the maximum profit of

the producer and the importer are given by

π∗
e =

1

2

(
a+ ξn − c(k)

2

)2

(8.12)
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π∗
i =

1

4

(
a+ ξn − pi

2

)2

(8.13)

from equations 8.12 and 8.13 we can say that the profits of both the energy gas

importer will depend on the temperature index of the given season.
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Conclusion

Over the past decade, a new class of financial derivatives known as weather

derivatives has emerged to allow energy and utility companies to effectively mitigate

volumetric risk associated with energy sales, rather than focusing on price risk.

Although the weather derivatives market, namely the temperature based options

and futures market, is one of the fastest developing markets. Nonetheless, aside from

a prevailing lack of awareness among investors about the advantages the market can

provide, prospective investors exhibit a significant aversion to actively trade in this

market. The main reason behind this is the incomplete nature of the market, which

constitutes a challenge to accurately price the traded financial products and model

the underlying temperature variables. In an attempt to contribute to the existing

literature and the development of this market, at least regionally, this thesis provides

a detailed and rigorous study of the modeling of the Dutch temperature market.

That is, the thesis carefully applies various data and signal preprocessig tech-

niques to the DATs of nine Dutch cities and implements several approaches for

identifying and and modeling trends in the data where it was found that DATs

exhibit a significant seasonality. After de-noising the DATs time series, it was re-

vealed that the data exhibits uniform peaks which allowed extracting a seasonal

mean variation using a first order truncated Fourier series. This thesis allocates

a substantial part to the daily modeling of temperature to capture the statistical

properties and the underlying dynamics of the DATs. To do so, we use Ito calculus

and specifically the Ito-Doeblin formula to justify the choice of the mean revert-

ing Ornstein-Uhlenbeck process which we fit to the detrended and deseasonalized

DATs time series and for which we estimate the parameters, such as the speed of

mean reversion and the volatility, accordingly. However, since there is an absence

of consensus on how to model the time temperature varying volatility in the OU

process, the thesis implements different approaches to model the volatility of DATs.

It was concluded that using Fourier series yields the best results from a parsimo-

nious perspective. Although the temperature derivatives market is an incomplete

and illiquid market, some authors explain that risk neutral pricing can still be per-

formed. Hence, in chapter 8 we price temperature options under the risk-neutral

measure Q by discounting the expected payoff of the derivative using two pricing

approaches. First, assuming a normal distribution, HDD options are priced using
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a closed form solution of the SDE that describes the DAT dynamics. Using this

approach raised underlined the importance of the market price of risk. So far, the

literature assumed that the market price of risk is equal to zero. Although some

researchers attempted to successfully estimate this parameter, they have done so

under unfounded premises such as the assumption that the market price of risk is

constant. In this thesis, the market price of risk is approximated using a root find-

ing algorithm which has revealed that investors might have a risk seeking attitude.

Nevertheless, since it was also shown that the market price of risk is not constant in

time and that it also varies with respect to the strike and market price of the under-

lying derivative, such behavioral inferences might not hold across the whole market.

Particularly, investors avoid trading these instruments because of the presence of

spatial basis risk, which was shown to reach critical levels even in small countries

such as the Netherlands. Unfortunately, basis risk is not sufficiently studied in the

literature and it is often approached through a brief correlation analysis which has

proved to lead to erroneous conclusions.

Additionally, as many authors have mentioned, the reference temperature of

18°C was mainly developed for the US markets, but is used in European markets

as well. Often, temperatures across Europe are very close to 18°C which hinders

accurate pricing using closed form pricing formulas. Therefore, it can be interesting

to calibrate the reference temperature to local weather conditions, which should

allow more flexibility with pricing.
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Tables

Table A.1: Properties of gas energy sources

Density

(kg/m3)

Upper heating value

(Mj/m3)

Lower heating value

(Mj/m3)

Methane CH4 0.7175 39.819 35.883

Ethane C2H6 1.3550 70.293 64.345

Propane C3H8 2.0110 101.242 93.215

Butane C410 2.7080 134.061 123.810

Hydrogen H2 0.08988 12.745 10.783

Carbon

monoxide
CO 1.25050 12.633 12.633

Nitrogen N2 1.2504

Oxygen O2 1.4290

Carbon

dioxide
CO2 1.9770

Air 1.2930

Natural gas

H
0.79 ∼41 ∼37

Natural gas

L
0.83 ∼35 ∼32

Biogas 1.12 ∼27 ∼24

Source: Zweifel et al. (2017).
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Table A.2: Descriptive Statistics

Amsterdam Rotterdam Utrecht

Tmax Tmin DAT Tmax Tmin DAT Tmax Tmin DAT

Count 19034

Mean 13.93 6.51 10.22 14.07 6.43 10.25 14.19 6.01 10.10

Std 6.96 5.60 6.10 6.92 5.70 6.09 7.26 5.73 6.26

Min −9.50 −18.80 −12.00 −9.70 −17.10 −12.60 −10.60 −18.90 −13.20

Max 36.40 21.40 28.60 37.20 20.90 28.20 37.50 22.40 29.80

Skewness 0.01 −0.29 −0.15 0.03 −0.31 −0.16 0.02 −0.31 −0.16

Kurtosis −0.44 −0.20 −0.39 −0.41 −0.25 −0.40 −0.46 −0.19 −0.38

JB-Stat 153.74 303.58 193.18 137.62 363.16 207.14 171.41 325.69 193.99

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Eindhoven Groningen Maastricht

Tmax Tmin DAT Tmax Tmin DAT Tmax Tmin DAT

Mean 14.62 5.91 10.27 13.49 5.17 9.33 14.29 6.33 10.31

Std 7.61 5.84 6.49 7.45 5.76 6.36 7.73 5.97 6.67

Min −9.80 −19.70 −13.50 −11.60 −22.00 −16.40 −12.30 −19.30 −14.90

Max 40.40 23.60 30.20 36.90 21.50 28.20 39.60 23.20 30.20

Skewness 0.03 −0.29 −0.13 0.03 −0.34 −0.16 0.03 −0.29 −0.13

Kurtosis −0.52 −0.21 −0.42 −0.47 0.00 −0.32 −0.53 −0.24 −0.44

JB-Stat 213.63 298.44 191.72 177.01 360.10 163.16 221.7 314.85 206.36

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Nijmegen Tilburg Enschede

Tmax Tmin DAT Tmax Tmin DAT Tmax Tmin DAT

Mean 14.48 5.64 10.06 14.53 5.83 10.18 13.87 5.25 9.56

Std 7.67 5.83 6.51 7.46 5.86 6.41 7.72 5.92 6.55

Min −10.30 −20.10 −14.00 −10.60 −18.30 −13.20 −13.00 −21.80 −15.60

Max 40.10 22.60 31.40 40.70 22.10 29.80 40.20 23.10 29.60

Skewness 0.03 −0.32 −0.15 0.04 −0.35 −0.16 0.02 −0.34 −0.16

Kurtosis −0.49 −0.20 −0.40 −0.45 −0.15 −0.37 −0.51 −0.05 −0.34

JB-Stat 194.67 362.6 199.70 168.41 409.42 190.80 209.81 365.10 170.59

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

JB-Stat: Jarque-Bera statistic
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Table A.3: Autoregressive model results

City: Amsterdam No. Observations: 19034

Dep. Variable: DAT Log Likelihood -39648.734

Model: AR(17) AIC 79335.468

Method: Conditional MLE BIC 79484.677

Coef Std err z p > |z| [0.025 0.975]

Intercept 0.2619 0.030 8.812 0.000 0.204 0.320

L1 0.9426 0.007 130.035 0.000 0.928 0.957

L2 −0.1962 0.010 −19.695 0.000 −0.216 −0.177

L3 0.0928 0.010 9.217 0.000 0.073 0.112

L4 0.0079 0.010 0.782 0.434 −0.012 0.028

L5 0.0136 0.010 1.347 0.178 −0.006 0.033

L6 0.0144 0.010 1.431 0.152 −0.005 0.034

L7 0.0192 0.010 1.906 0.057 −0.001 0.039

L8 −0.0008 0.010 −0.081 0.935 −0.021 0.019

L9 0.0089 0.010 0.882 0.378 −0.011 0.029

L10 0.0139 0.010 1.376 0.169 −0.006 0.034

L11 0.0087 0.010 0.858 0.391 −0.011 0.028

L12 −0.0012 0.010 −0.121 0.904 −0.021 0.019

L13 0.0046 0.010 0.458 0.647 −0.015 0.024

L14 0.0214 0.010 2.122 0.034 0.002 0.041

L15 0.0053 0.010 0.527 0.598 −0.014 0.025

L16 −0.0089 0.010 −0.891 0.373 −0.028 0.011

L17 0.0283 0.007 3.914 0.000 0.014 0.043

City: Rotterdam No. Observations: 19034

Dep. Variable: DAT Log Likelihood -40355.715

Model: AR(17) AIC 80749.429

Method: Conditional MLE BIC 80898.638

Coef Std err z p > |z| [0.025 0.975]

Intercept 0.2824 0.031 9.060 0.000 0.221 0.343

L1 0.9412 0.007 129.870 0.000 0.927 0.955

L2 −0.2039 0.010 −20.482 0.000 −0.223 −0.184

L3 0.0999 0.010 9.927 0.000 0.080 0.120

L4 −8.572× 10−5 0.010 −0.008 0.993 −0.020 0.020

L5 0.0283 0.010 2.804 0.005 0.009 0.048

L6 0.0022 0.010 0.216 0.829 −0.018 0.022

L7 0.0189 0.010 1.872 0.061 −0.001 0.039

L8 0.0069 0.010 0.687 0.492 −0.013 0.027

L9 0.0045 0.010 0.445 0.656 −0.015 0.024

L10 0.0124 0.010 1.229 0.219 −0.007 0.032

L11 0.0076 0.010 0.755 0.450 −0.012 0.027

L12 0.0029 0.010 0.292 0.771 −0.017 0.023

L13 0.0006 0.010 0.062 0.951 −0.019 0.020

L14 0.0289 0.010 2.863 0.004 0.009 0.049

L15 0.0046 0.010 0.454 0.650 −0.015 0.024

L16 −0.0171 0.010 −1.719 0.086 −0.037 0.002

L17 0.0347 0.007 4.786 0.000 0.020 0.049
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City: Utrecht No. Observations: 19034

Dep. Variable: DAT Log Likelihood -40821.287

Model: AR(17) AIC 81680.574

Method: Conditional MLE BIC 81829.783

Coef Std err z p > |z| [0.025 0.975]

Intercept 0.2815 0.031 9.107 0.000 0.221 0.342

L1 0.9522 0.007 131.369 0.000 0.938 0.966

L2 −0.2111 0.010 −21.084 0.000 −0.231 −0.191

L3 0.0936 0.010 9.242 0.000 0.074 0.113

L4 0.0103 0.010 1.015 0.310 −0.010 0.030

L5 0.0164 0.010 1.618 0.106 −0.003 0.036

L6 0.0067 0.010 0.662 0.508 −0.013 0.027

L7 0.0197 0.010 1.943 0.052 0.000 0.040

L8 0.0053 0.010 0.525 0.600 −0.015 0.025

L9 0.0047 0.010 0.464 0.643 −0.015 0.025

L10 0.0147 0.010 1.450 0.147 −0.005 0.035

L11 0.0071 0.010 0.704 0.481 −0.013 0.027

L12 0.0106 0.010 1.041 0.298 −0.009 0.030

L13 −0.0083 0.010 −0.819 0.413 −0.028 0.012

L14 0.0287 0.010 2.824 0.005 0.009 0.049

L15 0.0039 0.010 0.389 0.697 −0.016 0.024

L16 −0.0116 0.010 −1.163 0.245 −0.031 0.008

L17 0.0292 0.007 4.027 0.000 0.015 0.043

City: Eindhoven No. Observations: 19034

Dep. Variable: DAT Log Likelihood -41881.556

Model: AR(17) AIC 83801.112

Method: Conditional MLE BIC 83950.321

Coef Std err z p > |z| [0.025 0.975]

Intercept 0.2962 0.032 9.161 0.000 0.233 0.360

L1 0.9546 0.007 131.725 0.000 0.940 0.969

L2 −0.2189 0.010 −21.846 0.000 −0.239 −0.199

L3 0.1025 0.010 10.100 0.000 0.083 0.122

L4 3.549× 10−5 0.010 0.003 0.997 −0.020 0.020

L5 0.0189 0.010 1.861 0.063 −0.001 0.039

L6 0.0150 0.010 1.478 0.139 −0.005 0.035

L7 0.0085 0.010 0.832 0.406 −0.011 0.028

L8 0.0082 0.010 0.809 0.418 −0.012 0.028

L9 0.0129 0.010 1.265 0.206 −0.007 0.033

L10 0.0089 0.010 0.878 0.380 −0.011 0.029

L11 0.0108 0.010 1.063 0.288 −0.009 0.031

L12 0.0039 0.010 0.388 0.698 −0.016 0.024

L13 −0.0095 0.010 −0.937 0.349 −0.029 0.010

L14 0.0304 0.010 2.989 0.003 0.010 0.050

L15 0.0054 0.010 0.528 0.598 −0.015 0.025

L16 −0.0168 0.010 −1.680 0.093 −0.036 0.003

L17 0.0364 0.007 5.026 0.000 0.022 0.051
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City: Groningen No. Observations: 19034

Dep. Variable: DAT Log Likelihood -41427.248

Model: AR(17) AIC 82892.496

Method: Conditional MLE BIC 83041.705

Coef Std err z p > |z| [0.025 0.975]

Intercept 0.2612 0.030 8.790 0.000 0.203 0.319

L1 0.9253 0.007 127.660 0.000 0.911 0.940

L2 −0.1870 0.010 −18.932 0.000 −0.206 −0.168

L3 0.0886 0.010 8.892 0.000 0.069 0.108

L4 0.0047 0.010 0.467 0.641 −0.015 0.024

L5 0.0335 0.010 3.355 0.001 0.014 0.053

L6 0.0019 0.010 0.188 0.851 −0.018 0.021

L7 0.0158 0.010 1.583 0.113 −0.004 0.035

L8 0.0037 0.010 0.373 0.709 −0.016 0.023

L9 0.0126 0.010 1.259 0.208 −0.007 0.032

L10 0.0150 0.010 1.504 0.133 −0.005 0.035

L11 0.0046 0.010 0.457 0.648 −0.015 0.024

L12 0.0047 0.010 0.470 0.638 −0.015 0.024

L13 0.0068 0.010 0.680 0.496 −0.013 0.026

L14 0.0124 0.010 1.243 0.214 −0.007 0.032

L15 0.0101 0.010 1.018 0.309 −0.009 0.030

L16 −0.0113 0.010 −1.143 0.253 −0.031 0.008

L17 0.0306 0.007 4.226 0.000 0.016 0.045

City: Maastricht No. Observations: 19034

Dep. Variable: DAT Log Likelihood -41286.890

Model: AR(17) AIC 82611.779

Method: Conditional MLE BIC 82760.988

Coef Std err z p > |z| [0.025 0.975]

Intercept 0.2778 0.031 9.047 0.000 0.218 0.338

L1 1.0011 0.007 138.124 0.000 0.987 1.015

L2 −0.2502 0.010 −24.391 0.000 −0.270 −0.230

L3 0.0968 0.010 9.289 0.000 0.076 0.117

L4 0.0052 0.010 0.500 0.617 −0.015 0.026

L5 0.0107 0.010 1.023 0.307 −0.010 0.031

L6 0.0147 0.010 1.410 0.159 −0.006 0.035

L7 0.0177 0.010 1.699 0.089 −0.003 0.038

L8 −0.0028 0.010 −0.266 0.791 −0.023 0.018

L9 0.0138 0.010 1.321 0.186 −0.007 0.034

L10 0.0147 0.010 1.408 0.159 −0.006 0.035

L11 −0.0033 0.010 −0.317 0.751 −0.024 0.017

L12 0.0162 0.010 1.548 0.122 −0.004 0.037

L13 −0.0164 0.010 −1.575 0.115 −0.037 0.004

L14 0.0356 0.010 3.408 0.001 0.015 0.056

L15 −0.0073 0.010 −0.696 0.486 −0.028 0.013

L16 −0.0067 0.010 −0.649 0.517 −0.027 0.013

L17 0.0333 0.007 4.596 0.000 0.019 0.047
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City: Tilburg No. Observations: 19034

Dep. Variable: DAT Log Likelihood -41665.514

Model: AR(17) AIC 83369.029

Method: Conditional MLE BIC 83518.237

Coef Std err z p > |z| [0.025 0.975]

Intercept 0.2932 0.032 9.155 0.000 0.230 0.356

L1 0.9506 0.007 131.184 0.000 0.936 0.965

L2 −0.2127 0.010 −21.266 0.000 −0.232 −0.193

L3 0.0936 0.010 9.248 0.000 0.074 0.113

L4 0.0090 0.010 0.885 0.376 −0.011 0.029

L5 0.0188 0.010 1.853 0.064 −0.001 0.039

L6 0.0102 0.010 1.009 0.313 −0.010 0.030

L7 0.0109 0.010 1.074 0.283 −0.009 0.031

L8 0.0092 0.010 0.904 0.366 −0.011 0.029

L9 0.0115 0.010 1.136 0.256 −0.008 0.031

L10 0.0083 0.010 0.821 0.412 −0.012 0.028

L11 0.0127 0.010 1.257 0.209 −0.007 0.033

L12 0.0019 0.010 0.191 0.849 −0.018 0.022

L13 −0.0040 0.010 −0.391 0.696 −0.024 0.016

L14 0.0279 0.010 2.750 0.006 0.008 0.048

L15 0.0039 0.010 0.382 0.702 −0.016 0.024

L16 −0.0190 0.010 −1.900 0.057 −0.039 0.001

L17 0.0384 0.007 5.300 0.000 0.024 0.053

City: Enschede No. Observations: 19034

Dep. Variable: DAT Log Likelihood -42445.384

Model: AR(17) AIC 84928.768

Method: Conditional MLE BIC 85077.977

Coef Std err z p > |z| [0.025 0.975]

Intercept 0.2852 0.031 9.070 0.000 0.224 0.347

L1 0.9462 0.007 130.568 0.000 0.932 0.960

L2 −0.2108 0.010 −21.124 0.000 −0.230 −0.191

L3 0.0907 0.010 8.989 0.000 0.071 0.111

L4 0.0164 0.010 1.618 0.106 −0.003 0.036

L5 0.0133 0.010 1.313 0.189 −0.007 0.033

L6 0.0048 0.010 0.471 0.637 −0.015 0.025

L7 0.0273 0.010 2.695 0.007 0.007 0.047

L8 −0.0072 0.010 −0.716 0.474 −0.027 0.013

L9 0.0158 0.010 1.564 0.118 −0.004 0.036

L10 0.0168 0.010 1.657 0.098 −0.003 0.037

L11 −0.0002 0.010 −0.019 0.985 −0.020 0.020

L12 0.0093 0.010 0.919 0.358 −0.011 0.029

L13 0.0003 0.010 0.025 0.980 −0.020 0.020

L14 0.0109 0.010 1.075 0.282 −0.009 0.031

L15 0.0227 0.010 2.249 0.025 0.003 0.042

L16 −0.0220 0.010 −2.206 0.027 −0.042 −0.002

L17 0.0361 0.007 4.986 0.000 0.022 0.050
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City: Nijmegen No. Observations: 19034

Dep. Variable: DAT Log Likelihood -41783.149

Model: AR(17) AIC 83604.299

Method: Conditional MLE BIC 83753.507

Coef Std err z p > |z| [0.025 0.975]

Intercept 0.2842 0.032 9.016 0.000 0.222 0.346

L1 0.9443 0.007 130.299 0.000 0.930 0.958

L2 −0.2014 0.010 −20.208 0.000 −0.221 −0.182

L3 0.0869 0.010 8.622 0.000 0.067 0.107

L4 0.0077 0.010 0.763 0.445 −0.012 0.027

L5 0.0245 0.010 2.426 0.015 0.005 0.044

L6 0.0040 0.010 0.398 0.691 −0.016 0.024

L7 0.0197 0.010 1.950 0.051 0.000 0.039

L8 0.0022 0.010 0.217 0.828 −0.018 0.022

L9 0.0160 0.010 1.586 0.113 −0.004 0.036

L10 0.0093 0.010 0.920 0.358 −0.011 0.029

L11 0.0101 0.010 0.997 0.319 −0.010 0.030

L12 0.0059 0.010 0.581 0.561 −0.014 0.026

L13 −0.0087 0.010 −0.866 0.387 −0.029 0.011

L14 0.0252 0.010 2.498 0.012 0.005 0.045

L15 0.0101 0.010 1.004 0.316 −0.010 0.030

L16 −0.0198 0.010 −1.991 0.046 −0.039 0.000

L17 0.0361 0.007 4.982 0.000 0.022 0.050

BIC: Bayesian information criterion
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Figures

Figure B.1: Gas reserves and production
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Note: the maps were generated using data in Table 1.1
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Figure B.2: Common payoff functions
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Figure B.3: Process analysis for modeling energy demand
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Figure B.4: Multiple Seasonal Trend decomposition using Loess of average temper-
atures
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(e) Groningen

(f) Maastricht

(g) Tilburg
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(h) Enschede

(i) Nijmegen
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