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1 Introduction
Green bonds are fixed-income assets similar to conventional corporate and government bonds
in terms of pricing and rating (Reboredo, 2018). However, their distinctive feature is that
their proceeds are earmarked for environmentally beneficial projects. The green bond market
began in 2007 when the European Investment Bank (EIB) issued the Climate Awareness
Bond (CAB), a new fixed-income instrument aimed at financing projects with environmental
benefits (Cortellini and Panetta, 2021).

Initially, the green bond market was mainly driven by supranational issuers like the EIB
and the World Bank due to the lack of a common definition and framework for the in-
strument (Cortellini and Panetta, 2021). However, the introduction of the Green Bonds
Principles (GBP) in 2014 provided guidelines and non-prescriptive recommendations for best
practices in the market, leading to a surge in green bond issuances to 36.6 billion USD, more
than triple that of 2013 (Cortellini and Panetta, 2021). The GBP became an internationally
recognized standard for green bond issuance, allowing both government and private institu-
tions to enter the market and providing investors with a way to assess the reliability and
"greenness" of the issuer and bond, respectively. Moreover, the Paris Climate Agreement of
2015 provided a significant boost to the green bond market (Cortellini and Panetta, 2021).
It was the first legally binding global climate deal in which 195 countries expressed their
commitment to reduce global warming. The deal provided a strong incentive for financing
climate-friendly projects through green finance. Overall, the GBP and Paris Agreement have
played critical roles in the development of the green bond market, which has become an
increasingly important tool for financing sustainable projects and combating climate change.

Green bonds have emerged as a crucial source of capital to finance sustainable projects
aimed at reducing carbon dioxide emissions and achieving sustainability goals (Bhutta et al.,
2022). However, according to the European Commission, Europe is facing an annual invest-
ment shortfall of Ä179 billion to meet the Paris Agreement targets by 2030 (Cortellini and
Panetta, 2021). Therefore, there is an increasing need to rapidly develop the green bond
market, which has gained the attention of policy makers, scholars, and academics. As noted
by (Cortellini and Panetta, 2021)., the empirical literature highlights certain trends, such as
the "Greenium," which refers to green bonds being priced at a lower interest rate, as well
as connectedness with other financial instruments, supply-side analysis, stock reactions, and
market performance analysis (Febi et al., 2018); (Reboredo, 2018); (Lebelle et al., 2020);
(Barua and Chiesa, 2019).

Although environmentally conscious investors have historically displayed demand for
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green bonds, there is now increasing interest from more conventional investors around the
globe (Nguyen et al., 2021). This interest has been sparked by the belief that green bonds
could potentially deliver financial benefits by providing investors with an opportunity to di-
versify their portfolios (Naeem et al., 2021a). (Naeem et al., 2021b). Despite the growing
research on green bonds’ connection to other financial instruments, little is known about the
role of green bonds in an investment portfolio (Nguyen et al., 2021).

This thesis aims to investigate the connectedness of green bonds with other financial
instruments, particularly their e�ectiveness as diversifier, hedge, or safe haven against several
types of market risk. Previous research suggests that green bonds serve as a hedge and safe
haven for the stock, energy, commodity, and high-yield treasury bond market (Reboredo,
2018; Reboredo and Ugolini, 2020; Naeem et al., 2021b; Nguyen et al., 2021; Han and Li,
2022; Arif et al., 2022; Yadav et al., 2023). Furthermore, the green bond market is identified
as a hedge and safe haven for the carbon market (Jin et al., 2020; Yadav et al., 2023).
Moreover, the green bond market has sizeable diversification benefits on the low-carbon stock
market (Reboredo et al., 2022). Additionally, the green bond market is considered not only
a diversifier and hedge, but also a safe haven for the stock and (energy) commodity market
(Arif et al., 2022; Martiradonna et al., 2023). Prior research also highlights the importance of
macroeconomic circumstances on the return connectedness between green bonds and other
financial instruments (Broadstock and Cheng, 2019; Saeed et al., 2021; Lee et al., 2021).
Others emphasize the need for further research on the hedge and safe haven properties of
green bonds and their role in crises (Naeem et al., 2021b,0). Based on these findings we have
formulated the following research question:

RQ: “Do green bonds exhibit diversifier, hedge, or safe haven properties with respect to other

financial instruments?”

Our study aims to examine the co-movement between the green bond index and 7 other
market indices from February 5, 2016, to March 10, 2023. We use a time-varying transition
probability (TVTP) specification of a two-state Markov-switching vector autoregression (MS-
VAR) model to identify crisis periods endogenously in terms of volatility. We leverage the
COVID-19 pandemic, Ukraine-Russia war, and the 2022 bear market to assess the safe-haven
properties of green bonds.

This thesis makes several contributions to the existing literature. First, by exploring
the co-movement between green bond and other financial markets, this study o�ers essen-
tial information for investors as it demonstrates how the green bond market is impacted
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by oscillations in other financial markets (Reboredo, 2018). Moreover, demonstrating the
e�ectiveness of the green bond as a diversifier, hedge, or safe haven is likely to stimulate the
demand from both investors concerned with environmental, social, and governance (ESG)
matters and conventional investors, thereby increasing the demand for being green. This, in
turn, could significantly benefit society, as the growth in sustainable finance could improve
our chances of achieving the sustainability goals set by the Paris Agreement. Second, this
study analyses an extended sample with respect to prior studies, providing more comprehen-
sive insights into the potential benefits of green bonds Finally, as previous research on this
topic has primarily examined bullish periods, investigating the recent bearish period char-
acterized by pronounced market volatility and a prolonged decline in stock market returns
could provide valuable insights into the diversification benefits of green bonds.

Based on our TVTP MS-VAR Model estimations, our study challenges the notion that
the green bond serves as a hedge or safe haven for any of the financial markets considered.
The regime-specific correlations reveal a positive co-movement between the green bond and
all other indices, indicating significant diversification benefits in both non-crisis and crisis
periods, albeit to a lesser extent during crises.

The remainder of this thesis is organized as follows: Section 2 serves as an introduction,
covering key concepts and definitions pertinent to our study. It also includes an extensive
literature review exploring the linkages between green bonds and financial assets. Addition-
ally, this section provides contextual information on the recent crisis periods encompassed in
our sample. Section 3 presents the theoretical framework, building upon the insights gleaned
from Section 2. Section 4 provides a comprehensive description of our data, preliminary data
analysis, and the econometric methodology employed. In Section 5, we present the empirical
results obtained from our linear VAR and TVTP MS-VAR model estimations, along with a
detailed interpretation of their implications. Finally, Section 6 encompasses the discussion
and conclusion, summarizing the key findings and o�ering concluding remarks on our study.

2 Literature Review

2.1 Diversifier, Hedge, or Safe Haven?

The publication of the article "Portfolio Selection" by Harry Markowitz in 1952, gave birth to
what is now known as modern portfolio theory (MPT) (Fabozzi et al., 2002). With time, MPT
grew in popularity and greatly influenced the practice of portfolio management. Although it
was already considered common sense not to put all your eggs in one basket, MPT quantified
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the benefits of diversification by introducing the statistical notion of correlation (Fabozzi
et al., 2002). The basic idea behind this, is that is not a good investment strategy to put all
you money in investments whose returns are highly correlated, as it is very likely they will
go broke at the same time. Therefore, investors seek for ways to diversify their portfolio and
limit their exposure to financial risks.

The rapid expansion of financial markets in recent decades has resulted in an elevated
level of risk in the financial system (Baur and Lucey, 2010). Consequently, investors are
increasingly seeking ways to limit their exposure to financial risks. Based on the definitions
provided by Baur and Lucey (2010). we can distinguish between three types of financial
instruments that investors can use to achieve this goal. First, a diversifier is an asset that is
positively, but not perfectly correlated, with another asset on average. Second, a hedge is an
asset that is uncorrelated or negatively correlated with another asset on average. Finally, a
safe haven is an asset that is uncorrelated or negatively correlated with another asset in times
or market turmoil. The specific property of a safe haven asset does not force the correlation
to be non-positive on average, but only during extreme market conditions (Baur and Lucey,
2010).

The 2020 stock market crash triggered by the COVID-19 pandemic has renewed the
interest in safe haven assets as it demonstrated that diversification benefits across asset classes
decrease during times of high volatility in financial markets (Arif et al., 2022). Research
indicates that various financial assets, such as gold, long-term treasury bonds, currencies,
and crypto-currencies, have been utilized as e�ective hedge and safe haven assets (Baur and
Lucey, 2010; Baur and McDermott, 2016; Flavin et al., 2014; Urquhart and Zhang, 2019).

The green bond possesses a unique combination of financial resources and environmental
protection, making it a valuable component of a well-diversified portfolio (Le et al., 2021).
Given their stability and sustainability as long-term investments, green bonds are likely to
be included in diversified portfolios. Recent evidence shows that green bonds hold significant
diversification benefits for financial markets (Arif et al., 2022) Additionally, previous studies
have also highlighted that, unlike equity, the volatility of green bonds exhibits an asymmetric
response to positive return shocks (Le et al., 2021). This implies that green bonds may behave
di�erently from equities in certain market conditions. This asymmetry in response to positive
return shocks can potentially contribute to the diversification of an investment portfolio,
o�ering investors an additional risk management tool. As investors become more interested
in the portfolio diversification benefits, they are increasingly embracing green bonds as an
alternative to traditional bonds (Naeem et al., 2021a). This growing demand has become
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evident from the rising connectedness between green bonds and other financial assets.
Due to the diversification benefits of green bonds, they may also be e�ective for hedging

and safe haven purposes (Arif et al., 2022). Flavin and Sheenan (2023) identify three main
reasons to support this hypothesis. First, the pricing of climate and carbon risks in financial
markets makes green bonds a potential safe haven asset for equities. Second, green bond
prices are influenced by both economic and ESG factors, indicating that investors appreci-
ate the environmental benefits that green bonds aim to achieve. Finally, the preference of
investors for green assets may lead to a sustained increase in prices, potentially resulting in
longer-term holdings of green bonds and less price volatility during periods of crisis.

The following section aims to provide a clear and chronological overview of the studies
that have explored the diversification benefits of green bonds by examining their co-movement
with other financial assets.

2.2 Green Bonds’ Connectedness with Financial Assets

Although there has been a growing body of research on green bonds in recent years, only a
limited number of studies have explored the potential diversification benefits of green bonds
in relation to other asset classes (Nguyen et al., 2021; Bhutta et al., 2022) However, given
that investors’ portfolio strategies are influenced by the connectedness among financial assets,
it is crucial for market participants to comprehend the framework of connectedness between
green bonds and other financial assets over time (Le et al., 2021).

Reboredo (2018) analyses the co-movement between the green bond and financial mar-
kets from October 2014 to August 2017 finding that the green bond market weakly co-moves
with stock and commodity markets. The dependence between the green bond and financial
markets varies across markets and over time, with important implications for potential di-
versification benefits and price spillovers between the markets. To assess the diversification
benefits of green bonds, Reboredo (2018) uses the conditional diversification benefit (CDB)
measure, which he observes to remain relatively stable over the sample period, with the ex-
ception of the stock market. He finds that green bonds have a considerable CDB on stocks
and strong diversification e�ects on commodity markets, particularly at the lower tail of the
distribution. Regarding price spillovers, Reboredo (2018) he finds that stock markets could
be useful to green bond investors in terms of extreme risk management, as there is evidence of
both upward and downward price spillovers. However, for the commodity markets, he finds
limited evidence of price spillovers. Overall, his findings highlight the potential diversifica-
tion benefits of green bonds for investors, particularly in relation to stocks and commodity
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stocks, and the importance of considering the dynamics of co-movement and price spillovers
between the green bond market and other financial markets.

Broadstock and Cheng (2019) analyze the dynamic relationship between green and con-
ventional or “black” bond price benchmarks in the US market using daily data from November
2008 to July 2018. Their study identifies various factors that influence the correlation pat-
terns between these two markets. They find that the strength of the connection between
green and black bonds is a�ected by changes in financial market volatility, economic policy
uncertainty, daily economic activity, oil prices, and positive and negative news-based senti-
ment towards green bonds. Their findings suggest that the relationship between green and
black bonds is complex and subject to a range of external factors that impact both markets.
The authors also suggest that future research should explore the role of individual determi-
nants in driving the growth of the green bond market. This could help identify key drivers
of green bond demand and inform the development of more e�ective policies and regulations
to support the expansion of this market. Overall, the study highlights the importance of un-
derstanding the dynamic relationship between green and black bonds, as well as the broader
market and economic factors that influence their performance.

Reboredo and Ugolini (2020) examine the price connectedness between the green bond
and financial markets over the period of October 2014 to June 2019. In this research, a
structural vector-autoregressive (VAR) model and Monte Carlo simulations are used to assess
the direct and indirect impact of financial shocks across the markets. Their empirical results
support the findings of their prior research as they reveal that the green bond market is
closely linked to the fixed-income and currency markets, receiving sizeable price spillovers
from those markets, and transmitting negligible reverse e�ects. They also show that, in
contrast, the green bond market is weakly tied to the stock and commodity markets.

Jin et al. (2020) investigate the e�ectiveness of various hedging instruments for carbon
market risk by examining the relationship between the returns of carbon futures of the
European Union Emission Trading Scheme (EU ETS) and the returns of four major market
indices, namely the VIX index, the commodity index, the energy index, and the green bond
index. They analyze the period from December 2008 to August 2018, which they divide
into two sub-periods. The first sub-period covers the relatively volatile period of the 2008
Great Financial Crisis (GFC), the 2010 EU debt crisis, and the drastic decline in the price
of European Union Carbon Emission Allowances (EUA) from 2012 to 2013. The second sub-
period covers the relatively tranquil period from April 2013 to August 2018. Using various
extensions of the GARCH model, they find that the green bond index is the best hedge for
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carbon futures among the four indices, and it performs well even during the crisis period,
which contrasts with the other indices’ performance.

Hammoudeh et al. (2020) examine the time-varying causal relationship between green
bonds and other assets from July 2014 to February 2020. They use a novel time-varying
Granger-causality test based on an evolving algorithm to bridge a gap in the existing liter-
ature. They find significant causality running from the US 10-year treasury bond index to
green bonds starting from the end of 2016 until the end of the sample period. Additionally,
they observe a causal relationship between CO2 emission allowances price and green bonds
from the beginning of their sample period to the end of 2015. Furthermore, they find only
limited causality running from the clean energy index to the green bond index and no sig-
nificant causality running from green bonds to all other assets. Their findings suggest that
changes or fluctuations in the green bond market do not cause corresponding changes or
fluctuations in other financial markets.

Saeed et al. (2021) investigate the determinants of extreme return connectedness between
clean/green and dirty energy investments in the US. They use a quantile VAR model to study
a sample of US firms at the daily frequency over the period January 2012 to November 2019.
Their findings reveal that the return connectedness across clean energy stocks, green bonds,
crude oil, and energy exchange traded fund (ETF) is larger at both left and right tails, and
that return connectedness di�ers between periods of extreme negative returns, suggesting
asymmetric behavior. Moreover, they show that macroeconomic conditions play a crucial
role in driving the return connectedness between clean/green and dirty energy investments.

Lee et al. (2021) investigate the causal relationship between oil price, geopolitical risks,
and green bonds in the US market over the period from December 2013 to January 2019.
They employ the Granger-causality in quantile analysis and observe a unidirectional Granger-
causality from geopolitical risk to oil price at extreme quantiles. They find a bi- directional
causality between oil price and the green bond index for the lower quantiles, and causality
from geopolitical risk to the green bond index in the lower quantiles of the distribution. The
study highlights the importance of macroeconomic conditions in understanding green bond
market dynamics. Their findings imply the explanatory power of oil price or geopolitical risk
is heterogeneous in di�erent market conditions and states that only the lower negative oil
price changes or geopolitical risk changes lead to changes in the green bond index.

The study by Naeem et al. (2021b) focuses on exploring the asymmetric relationship
between green bonds and commodities using a cross-quantilogram approach. They examine a
global sample from December 2008 to December 2019 and find that incorporating green bonds
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into commodity portfolios provides hedging and diversification benefits. The results show
that green bonds o�er the strongest hedging benefits against the fluctuations of natural gas,
certain industrial metals, and agricultural commodities. Naeem et al. (2021b) recommend
the use of green bonds as a hedging instrument in the longer term rather than the short
term. Furthermore, they suggest further investigation of the hedge and safe haven properties
of green bonds in di�erent frameworks as a future research avenue. Overall, the study
contributes to the literature on the use of green bonds as an e�ective hedging tool against
commodity market risk.

Naeem et al. (2021a) also investigate the impact of COVID-19 on the time frequency
connectedness between green bonds and other financial assets. They claim that their study
completes the prior literature on connectedness of green bonds with other financial assets
(Reboredo, 2018; Reboredo and Ugolini, 2020; Jin et al., 2020; Saeed et al., 2021) Their
sample consists of daily observations over the period May 2013 to August 2020. Using
the methodology of Diebold and Yilmaz (2012) and Baruník and K�ehlík (2018), they find
that financial assets have a heterogeneous relationship with green bonds. Their frequency
analysis unveils that the connectedness is more pronounced in the short-run than in the long-
run. Finally, their empirical results point out that the role of green bonds in a crisis should
not be ignored, as it can be an e�ective hedge for some assets, while a contagion amplifier
for other assets. The authors suggest that for future research, investigating which specific
macroeconomic variables drive the return connectedness of green bonds with these selected
assets constitutes a relevant research idea, particularly within the context of the COVID
pandemic.

Nguyen et al. (2021) contributes to the literature by investigating the connnectedness
between green bonds and other asset markets using the rolling window wavelet correlation
approach. The analysis covers daily data from December 2008 to December 2019 and reveals
that the correlation between green bonds and other asset markets emerged and peaked after
the GFC. The study also demonstrates the diversification benefit of green bonds due to their
low or negative correlation with stocks and commodities, suggesting their potential role as a
safe haven asset. In contrast, co-movement between stocks, commodities, and clean energy is
found to be relatively high, emphasizing the need for investors to diversify their portfolios to
mitigate risk. The findings of this study are relevant for investors seeking to optimize their
portfolio allocation and risk management strategies.

Reboredo et al. (2022) explore the extent to which green bonds could de-risk investments
in low-carbon assets. To do so, they use a sample consisting of Chinese, European, and US
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markets for the period 2016 to 2020. They determine the hedging and de-risking abilities
of green bonds by the dependence structure between green bonds and low-carbon stocks.
This dependence structure is characterized by their joint returns distribution. Additionally,
they use a measure of Expected Shortfall (ES) to examine how green-bond returns behave
in response to abrupt changes in value in low-carbon stock returns and vice versa. Their
findings indicate that green bond and low-carbon stock returns move in opposite directions
or independently. Lastly, the authors conclude that green bonds have sizeable diversification
benefits when they are included low-carbon investment portfolios. This findings is partic-
ularly valuable for climate-aware investors as they can hedge portfolio risk solely by using
green financial instruments that are consistent with their environmental stance.

Han and Li (2022) provide valuable insights into the role of green bonds in asset allocation.
They use the dynamic R-vine copula-based mean-CVAR approach to analyze the connect-
edness between assets in the entire portfolio for the period December 2013 to March 2021.
The study’s results demonstrate that portfolios including green bonds outperform portfolios
including conventional bonds in terms of risk-adjusted returns in both European and U.S.
markets. This finding suggests that investors can benefit from including green bonds in their
portfolio allocation strategy. The authors’ analysis of the sources of this outperformance,
specifically the increase in the return and the decrease in the volatility of green bonds, pro-
vides additional insights into the factors driving the performance of green bonds as an asset
class. Overall, this study highlights the potential benefits of incorporating green bonds into
a diversified investment portfolio.

Arif et al. (2022) investigate the hedging and safe haven potential of green bonds for
conventional equity, fixed income, and forex investments from 2010 to 2021 using the cross-
quantilogram approach. Their results demonstrate that the green bond index can function
as a diversifying asset for medium- and long-term equity investors and a hedging and safe-
haven instrument for currency and commodity investments. However, during the COVID-19
pandemic period, the green bond index did not provide any safe-haven opportunities during
the market contagion, as indicated by an enhanced lead-lag association between the green
bond index and conventional investments on the short- and medium-term.

Yadav et al. (2023) investigate the diversification opportunities of green bonds during
the COVID-19 pandemic and their connectedness with energy, crypto, and carbon markets.
Similar to Naeem et al. (2021a), they apply Diebold and Yilmaz (2012), Baruník and K�ehlík
(2018), and wavelet coherence econometric techniques to a global sample spanning from
October 2015 to December 2021. They report that the overall diversification benefits of
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green bonds with energy stocks, bitcoin, and the carbon market are more pronounced in the
short-run than in the medium and long-run.

Similarly, Martiradonna et al. (2023) investigate the role of green bonds as a novel strate-
gic asset class. Specifically, they analyze green bond diversification benefits, their co- move-
ments with the several global markets, and the corresponding implications for portfolio im-
plications. Using a sample composed of daily observations from October 2014 to June 2021,
they find that both the Bloomberg Barclays MSCI Green Bond Index and the Solactive Green
Bond Index show significantly positive conditional correlation with the corporate bond mar-
ket throughout the entire period. Although both indices do not appear to be useful for
diversification in the corporate bond market, their lower volatility does make them an ap-
pealing asset class for conservative investors. More notably, they find that the Solactive
Green Bond Index negatively co-moves with all other sectors in the analysis: the global stock
market, the energy commodity index, the airline industry, the healthcare sector, and the IT
index. This finding applies for all periods considered in the analysis, also the pre-pandemic
and pandemic period. However, the Bloomberg Barclays MSCI Green Bond Index does not
seem to possess this property as it positively co-moves with the other sectors. Consequently,
the Solactive Green Bond Index appears to provide better diversification opportunities for
investors in these sectors.

While there is already a significant body of literature demonstrating the potential diver-
sification benefits of green bonds in relation to other financial assets, many of these studies
have primarily focused on analyzing green bonds’ diversification benefits in bullish market
conditions (Reboredo, 2018; Broadstock and Cheng, 2019; Reboredo and Ugolini, 2020; Ham-
moudeh et al., 2020; Saeed et al., 2021; Lee et al., 2021; Naeem et al., 2021b). Some studies
have also included the volatile period of the Great Financial Crisis (GFC) in their sample
(Naeem et al., 2021b; Nguyen et al., 2021; Jin et al., 2020). More recently, researchers have
explored the connectedness of green bonds with other financial assets during the COVID-19
period (Han and Li, 2022; Arif et al., 2022; Yadav et al., 2023; Martiradonna et al., 2023;
Naeem et al., 2021a). Although these studies highlight the potential diversification bene-
fits of green bonds, it remains unclear whether green bonds can serve as a hedge and/or
safe haven in relation to other financial assets (Arif et al., 2022; Martiradonna et al., 2023).
Therefore, it is essential to conduct further investigations to explore the role of green bonds
in an investment portfolio, particularly during times of crises.
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2.3 Crises and Financial Contagion

As we focus specifically on the role of green bonds as safe haven assets, our research aims
to examine the co-movement between green bonds and other financial assets during several
crisis periods defined by declining stock market returns and increased volatility. Therefore, it
is crucial to comprehend the factors that contributed to the decline in stock market returns
during this period.

Recent literature, including Naeem et al. (2021a), highlights several reasons for the decline
in stock market returns during the COVID-19 Pandemic, such as heightened uncertainty and
fear, negative investor sentiment, and systematic risks. Furthermore, the COVID-19 pan-
demic exacerbated stock market volatility, leading to significant decreases in returns (Naeem
et al., 2021a). The impact of COVID-19 extended beyond the stock market, profoundly
a�ecting the oil market as well. As emphasized by Ready (2018), a strong correlation ex-
ists between the stock market and the oil market. Consequently, the substantial decline in
global oil prices since the onset of the COVID-19 pandemic has had a significant negative
impact on the stock market (Naeem et al., 2021a). This is particularly relevant for the green
bond market since the price of oil is linked to the demand for environmentally friendly in-
vestments (Broadstock and Cheng, 2019). Lower oil prices lead to increased demand for
oil and, consequently, alter the demand for socially responsible investments through green
bonds. Similarly, investors are incentivized to switch from green bonds to more traditional as-
sets when financial markets experience heightened instability (Broadstock and Cheng, 2019).
Moreover, the exposure of clear weaknesses in the real economy and the ongoing rise in
economic policy uncertainty (EPU) caused by the COVID-19 pandemic continue to signifi-
cantly influence investment activity, providing an incentive for investors to re-evaluate their
investment strategies (Haq et al., 2021).

Our sample period also encompasses the Ukraine-Russia war, an event that carries global
economic implications, such as heightened inflation, reduced household consumption result-
ing from increased prices of commodities like oil, gas, wheat, and minerals. It also entails
supply chain disruptions, heightened uncertainty, obstacles to economic growth, decreased
investment, and increased global stock market volatility (Mbah and Wasum, 2022). The
impact on Europe is particularly significant, as both Ukraine and Russia are major exporters
to the region. Notably, on 24 February 2022, when Russia initiated its invasion of Ukraine,
the global stock market witnessed a substantial decline in returns. However, this downturn
proved to be short-lived as the impact gradually diminished over the course of three to four
weeks following the invasion. This indicates a rapid rebound in global stock markets follow-
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ing the unexpected Russian invasion, as noted in studies by Boungou and Yatié (2022) and
Deng et al. (2022). According to research conducted by Deng et al. (2022), stocks that were
more exposed to regulatory risks associated with the shift to a low-carbon economy exhibited
better performance during the lead-up to the invasion and in the subsequent weeks. This
e�ect was particularly pronounced in the United States. In Europe, stocks with opportuni-
ties in the low-carbon transition benefited as market participants anticipated stronger policy
responses aimed at supporting the shift to renewable energy. This was driven by Europe’s
significant reliance on Russian oil and gas, prompting expectations of greater emphasis on
renewable energy sources (Deng et al., 2022).

Together, the repercussions of the COVID-19 pandemic and the Ukraine-Russia war trig-
gered a bear market that o�cially commenced on June 13, 2022, when MSCI’s global index
plummeted by 21% from its peak in late 2021 (Maki, 2022). As inflation surged, leading to
a tightening of monetary policy worldwide, traders’ outlook on global economic growth de-
clined, subsequently raising concerns about an impending recession. In general, a bear market
refers to a period in the stock market characterized by a sustained decline in stock returns,
heightened volatility, and increased correlations across the global stock market (Maheu and
McCurdy, 2000; Campbell et al., 2002).

As we investigate the co-movement between green bonds and other financial assets during
two crisis periods and a bear market, it is crucial to grasp the concept of contagion in financial
markets. Following the definition proposed by Longsta� (2010), we adopt the notion that
financial contagion refers to a significant increase in cross-market linkages following a shock
in one market. It is widely recognized that returns become more strongly correlated when
markets undergo large negative movements compared to normal market conditions (Campbell
et al., 2002). The phenomenon of financial contagion carries significant implications for
portfolio and risk management, as asset correlation plays a vital role in diversifying risk within
a portfolio (Campbell et al., 2002; Liu et al., 2021). Thus, an upsurge in asset correlations
following a crisis event can impede the ability of market participants to e�ectively diversify
risk. As noted by Nguyen et al. (2021), the correlation between green bonds and other asset
markets emerged and peaked after the GFC. Therefore, we expect to observe similar upswings
in the correlations between green bonds and other asset markets around the periods of the
COVID-19 pandemic, Ukraine-Russia war, and the 2022 bear market.
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3 Theoretical Framework
Based on the findings from prior research regarding the connectedness between green bonds
and other financial assets, we observe that the green bond market has considerable diversifi-
cation and hedging benefits on the commodity, and stock market (Reboredo, 2018; Reboredo
and Ugolini, 2020; Naeem et al., 2021b; Nguyen et al., 2021; Han and Li, 2022; Arif et al.,
2022; Yadav et al., 2023). Additionally, more recent studies demonstrate that the green
bond potentially serves as safe haven for the commodity and stock market (Arif et al., 2022;
Martiradonna et al., 2023). Consequently, we propose our first two hypotheses:

H1: "The green bond serves as a hedge and/or safe haven for the commodity market."

flxy =

Y
_]

_[

flxy Æ 0, (Hedge)

flxy Æ 0 | Crisis (Safe haven)

where x denotes the green bond and y the commodity market. flxy denotes the correlation
between the green bond and the commodity market.

H2: "The green bond serves as a hedge and/or safe haven for the stock market."

flxy =

Y
_]

_[

flxy Æ 0, (Hedge)

flxy Æ 0 | Crisis (Safe haven)

where x denotes the green bond and y the stock market. flxy denotes the correlation between
the green bond and the stock market.

Furthermore, the green bond market has been identified as a hedge and safe haven for
the carbon market, as indicated by studies conducted by Jin et al. (2020) and Yadav et al.
(2023). Given that high volatility in the carbon market increases carbon market risk, it
becomes crucial for environmental policymakers, energy-intensive firms, portfolio managers,
and carbon investors to comprehend the extent to which this risk can be mitigated through
the use of green bonds (Jin et al., 2020). Therefore, we propose our third hypothesis to delve
deeper into this aspect.

H3: "The green bond serves as a hedge and/or safe haven for the carbon market."
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flxy =

Y
_]

_[

flxy Æ 0, (Hedge)

flxy Æ 0 | Crisis (Safe haven)

where x denotes the green bond and y represents the carbon market. flxy denotes the cor-
relation between the green bond and the carbon market. It is worth noting that the first
three hypotheses propose that the green bond may serve as a hedge and/or safe haven for
the carbon market. Therefore, it is plausible for the green bond to fulfill both roles when the
correlation is less than or equal to zero during both non-crisis and crisis periods.

Moreover, empirical evidence suggests that the green bond market o�ers significant di-
versification benefits for the low-carbon stock market (Reboredo et al., 2022). Building upon
this observation, we propose our fourth hypothesis:

H4: "The green bond serves as a diversifier for the low-carbon stock market."

0 < flxy < 1 (Diversifier)

where x denotes the green bond and y represents the low-carbon stock market. flxy denotes
the correlation between the green bond and the low-carbon stock market.

While the relationship between oil prices and macroeconomic aggregates or financial mar-
kets has garnered considerable attention in recent years, there remains a notable gap in un-
derstanding the interaction between oil prices and the dynamics of green bonds (Lee et al.,
2021). This represents valuable information for investors and holds significance for the pro-
motion of environmentally friendly investments. In addition, research conducted by Naeem
et al. (2021b) underscores the strong diversification benefits of green bonds in relation to
fluctuations in the crude oil and natural gas market. Thus, based on these findings, we
formulate the following hypothesis:

H5: "The green bond serves as a diversifier for the oil and gas market."

0 < flxy < 1 (Diversifier)
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where x denotes the green bond and y represents the oil and gas market. flxy denotes the
correlation between the green bond and the oil and gas market.

Importantly, the return connectedness between green bonds and other financial instru-
ments is influenced by various macroeconomic factors, including heightened volatility, geopo-
litical risk, oil prices, and interest rates (Broadstock and Cheng, 2019; Saeed et al., 2021; Lee
et al., 2021). This observation is further supported by the findings of Martiradonna et al.
(2023), who emphasize the impact of stock market conditions on the role of green bonds
within a portfolio. Based on these insights, we propose our sixth hypothesis as follows:

H6: "Changes in macroeconomic circumstances a�ect the return connectedness between the

green bond and other financial markets."

To test this hypothesis, our study will analyze whether the return connectedness between
the green bond and other financial markets varies across di�erent regimes, specifically during
non-crisis and crisis periods. This approach enables us to investigate the presence of finan-
cial contagion during the crisis regime. Additionally, we will follow the recommendation of
(Naeem et al., 2021a) to explore whether specific macroeconomic variables drive the return
connectedness of green bonds with other assets, particularly in the context of the COVID-19
pandemic.

Considering the widespread integration of global markets, we investigate our research
question and hypotheses using an 8-variable system (Jin et al., 2020). This system incorpo-
rates the impact of geopolitical risk (GPR), which encompasses fluctuations such as political
upheavals, terror attacks, and geopolitical tensions. GPR is considered a significant in-
fluencing factor on business cycles and exhibits a strong correlation with financial market
performance (Lee et al., 2021). Consequently, GPR is often cited as a determinant of port-
folio allocation. However, previous empirical studies have largely overlooked the influence of
geopolitical risks on financial markets within the broader context of global uncertainty (Lee
et al., 2021). Moreover, it is crucial to concurrently examine the dynamics of oil price shocks,
geopolitical risks, and the green bond market to shed light on their transmission mechanisms
(Lee et al., 2021). Similarly, our analysis includes the VIX index, which captures stock
market volatility and serves as an investor fear gauge. Empirical evidence has consistently
demonstrated a strong negative relationship between the VIX and stock market returns on a
global scale (Sarwar, 2012). In addition, empirical evidence has demonstrated that the VIX
is a reliable predictor of future stock market volatility and returns, particularly during the
COVID-19 pandemic (Wang et al., 2020). As a result, the inclusion of both the GPR index

16



and the VIX index holds substantial value in our analysis, particularly within our TVTP
MS-VAR analysis where these indices will be utilized to predict the probabilities of regime
switches, allowing us to gain deeper insights into the market dynamics.

4 Empirical Strategy

4.1 Data Collection and Description

In our analysis, we use daily price data on 8 market indices over the period, February 5,
2016, to March 10, 2023. We use the Solactive Green Bond Index to represent the green
bond market. To proxy for the global stock market, we use the Refinitiv Global Price Return
Index, which covers over 10,000 stocks over 51 markets. Additionally, we use the Refinitiv
Core Commodity CRB index as representative indicator of the global commodity market; the
STOXX Global 1800 Low-Carbon Index to capture the performance of ESG oriented firms
globally; The IHS Markit Global Carbon Index that tracks the most liquid segment of the
tradable carbon credit futures markets globally; and the Refinitiv Global Oil and Gas Price
Return Index to capture global oil and gas prices. The daily price data on these indices is
obtained from Refinitiv. Moreover, we use the CBEO Volatility Index (VIX) as a measure of
market uncertainty and the Caldara and Iacoviello (2022) Geopolitical Risk Index (GPR) as
a measure of adverse geopolitical events and risks. These Indices are obtained from Yahoo
Finance and the website of the authors Caldara and Iacoviello (2022), respectively. For the
analysis, we calculate the daily log returns for each of the aforementioned indices. As the
data on the STOXX Global 1800 Low-Carbon Index only goes back to February 5, 2016, this
is the longest possible sample for our analysis.

4.2 Preliminary Data Analyis

From Table 1, it is evident that the null hypothesis of normality is rejected for all indices
based on the JB statistics. This indicates that our data on the closing prices of the indices
in levels does not follow a normal distribution. Furthermore, it is observed that the null
hypothesis of non-stationarity cannot be rejected based on both the DF and PP statistics for
all indices, except for GPR and VIX. Additionally, the null hypothesis of no trend stationarity
is rejected for each variable in the analysis based on the KPSS statistic. These results strongly
suggest that all indices exhibit non-stationarity and, therefore, possess a unit root. While
the GPR and VIX indices pass the ADF and PP tests for stationarity, it is important to note
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that they display a deterministic trend, which is inconsistent with stationary behavior. The
presence of a deterministic trend in each of the variables can also be observed when visually
inspecting the time series graphs in Figure 1. While it may be less apparent in Figure 1f,
the remaining graphs clearly demonstrate that the series’ trend persists even after the shock
caused by the COVID-19 pandemic in early 2020.

Table 1: Descriptive Statistics of Prices in Levels

Green Bond Commodity Oil & Gas Global Stock Low Carbon Carbon Price GPR VIX

Sum 193115 343202 360330 378530 347453 536620 197264 32801
Mean 112.15 199.30 209.25 219.82 201.77 311.63 114.56 19.05
SD 6.95 43.07 47.81 39.08 40.21 213.39 55.54 8.18
Min 95 106 89 143 129 71 9 9
Max 125 330 353 303 287 796 540 83
Skewness -.0952 1.042 .315 .431 .428 .705 2.359 2.349
Kurtosis 2.371 3.632 3.341 2.277 2.132 2.202 13.765 13.444
N 1,722 1,722 1,722 1,722 1,722 1,722 1,722 1,722

JB 31*** 340.6*** 36.87*** 90.78*** 106.5*** 188.4*** 9912*** 9412***
ADF -1.821 -0.761 -1.016 -1.728 -1.541 0.030 -19.688*** -5.220***
PP -5.314 -1.701 -4.100 -4.454 -3.603 0.162 -769.802*** -43.455***
KPSS .876*** 3.250*** 2.470*** .882*** 0.928*** 2.490*** .867*** .441***

Correlation Matrix
Green Bond 1.0000
Commodity 0.4423*** 1.0000
Oil & Gas 0.1134*** 0.8139*** 1.0000
Global Stock 0.9373*** 0.5297*** 0.1658*** 1.0000
Low Carbon 0.9408*** 0.5464*** 0.1718*** 0.9958*** 1.0000
Carbon Price 0.8058*** 0.7606*** 0.4244*** 0.8502*** 0.8841*** 1.0000
GPR 0.0831*** 0.4440*** 0.3487*** 0.1456*** 0.1507*** 0.2702*** 1.0000
VIX 0.2774*** 0.0504* -0.2229*** 0.1757*** 0.2316*** 0.3770*** 0.0459 1.0000

Note: This table reports statistics for the green bond and financial market indices indicated in each column.
JB denotes the Jarque and Bera (1980) statistic for normality; ADF, PP and KPSS are the empirical
statistics for the Augmented Dickey and Fuller (1979) and Phillips and Perron (1988) unit root tests and
the Kwiatkowski et al. (1992) stationarity test, respectively; *, **, and *** indicate the rejection of the null
hypothesis at the 10%, 5%, and 1% level, respectively.

When examining the graphs in Figure 1, it is intriguing to observe the evident co-
movement between the green bond index and the other indices. Particularly, the global
stock index and the low carbon index exhibit strikingly similar trajectories. In line with
Sarwar (2012), the upward spikes in the VIX index correspond to negative movements in the
green bond and other indices.
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Figure 1: Time Series Graphs for Closing Prices in Levels

Note: This figure displays the time series graphs for the closing prices of the indices in levels. Each graph
features the Green Bond Index, represented by the black line, with its corresponding values displayed on the
left-hand side of the y-axis. The blue line represents the index specified below the graph, and its values are
presented on the right-hand side of the y-axis.
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Furthermore, we can discern that the upward spike in the GPR index at the start of 2020
precedes the downward spike in the other indices, suggesting that the GPR index may possess
some predictive power regarding the trajectory of the other indices (Lee et al., 2021). From
Table 2, we observe that transforming the data from prices in levels to log returns has
a�ected the statistical properties of the series. Firstly, the first observation was excluded
when calculating the returns, resulting in a sample period spanning from February 6, 2016,
to March 10, 2023. Secondly, the high levels of kurtosis observed across all series leads us to
reject the null hypothesis of normality, as indicated by the JB statistics for each index.

Table 2: Descriptive Statistics of Log Returns

Green Bond Commodity Oil & Gas Global Stock Low Carbon Carbon Price GPR VIX

Sum 0.049 0.472 0.471 0.393 0.483 2.108 187.423 0.322
Mean 0.000 0.000 0.000 0.000 0.000 0.001 0.109 0.000
SD 0.005 0.011 0.018 0.010 0.010 0.022 0.526 0.081
Min -0.051 -0.111 -0.219 -0.098 -0.104 -0.156 -2.996 -0.300
Max 0.023 0.059 0.136 0.079 0.085 0.104 2.551 0.768
Skewness -0.913 -1.030 -1.296 -1.288 -1.149 -0.528 0.412 1.439
Kurtosis 12.163 12.875 22.489 20.285 20.345 7.769 5.230 11.222
N 1721 1721 1721 1721 1721 1721 1721 1721

JB 6259*** 7297*** 28000*** 22000*** 22000*** 1711*** 405.4*** 5441***
ADF -45.481*** -40.402*** -40.228*** -40.610*** -42.094*** -42.463*** -55.767*** -45.187***
PP -1836.745*** -1678.990*** -1818.459*** -1786.419*** -1832.669*** -1744.727*** -1979.113*** -1717.982***
KPSS 0.062 0.101 0.065 0.036 0.033 0.061 0.141 0.015

Correlation Matrix
Green Bond 1.000
Commodity 0.161*** 1.000
Oil & Gas 0.453*** 0.612*** 1.000
Global Stock 0.326*** 0.421*** 0.685*** 1.000
Low Carbon 0.361*** 0.398*** 0.664*** 0.987*** 1.000
Carbon Price 0.129*** 0.212*** 0.262*** 0.278*** 0.282*** 1.000
GPR -0.016 0.029 0.046 0.017 0.014 -0.004 1.000
VIX -0.265*** -0.275*** -0.471*** -0.653*** -0.658*** -0.122*** -0.055* 1.000

Note: This table reports statistics for the green bond and financial market indices indicated in each column.
JB denotes the Jarque and Bera (1980) statistic for normality; ADF, PP and KPSS are the empirical
statistics for the Augmented Dickey and Fuller (1979) and Phillips and Perron (1988) unit root tests and
the Kwiatkowski et al. (1992) stationarity test, respectively; *, **, and *** indicate the rejection of the null
hypothesis at the 10%, 5%, and 1% level, respectively.

Furthermore, we find evidence to reject the null hypothesis of non-stationarity based on both
the ADF and PP statistics. Additionally, the acceptance of the null hypothesis of trend
stationarity based on the KPSS statistics provides further support for the trend stationarity
of the series. These findings collectively indicate that all the indices included in our analysis
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exhibit stationarity.
Another notable aspect lies in the nature and disparity of the correlations observed among

the variables in Table 1 and Table 2. According to Table 1, we observe that the closing prices
of the indices exhibit significant correlations with each other at the 1% level, except for the
commodity and VIX pair, as well as the GPR and VIX pair. The former is significant at the
10% level, while the latter shows no significant correlation. Furthermore, it is worth noting
that all the correlations presented in Table 1 exhibit positive values, with the exception of
the correlation between the VIX and the oil & gas index. The negative correlation between
these two variables can be attributed to the impact of the COVID-19 pandemic, during which
volatility reached its peak and simultaneously led to a significant decline in oil prices (Naeem
et al., 2021b). However, upon examining the correlations in Table 2, we notice that the all
the pairwise correlations including the VIX index have a negative sign. This aligns with our
expectations since an increase in the VIX corresponds to heightened market volatility, which
is often associated with downturns in financial markets (Sarwar, 2012). Furthermore, our
analysis reveals a significant correlation between the GPR and VIX indices at the 10% level.
However, we observe that the remaining pairwise correlations involving the GPR are found
to be statistically insignificant. This suggests that there may be no meaningful association
between the GPR and the other indices. Notably, it is important to highlight that all pairwise
correlations involving the green bond, with the exception of the GPR and VIX, demonstrate
a positive sign.

Table 3: Granger Causality Matrix

Predictor Variables (x)

Response Variables (y) Green Bond Commodity Oil & Gas Global Stock Low Carbon Carbon Price GPR VIX

Green Bond 1.000 0.108 0.007*** 0.000*** 0.000*** 0.073 0.038** 0.224
Commodity 0.165 1.000 0.001*** 0.000*** 0.000*** 0.000*** 0.322 0.000***
Oil & Gas 0.011** 0.002*** 1.000 0.000*** 0.000*** 0.000*** 0.003*** 0.000***
Global Stock 0.005*** 0.000*** 0.005 1.000 0.000*** 0.000*** 0.258 0.000***
Low Carbon 0.007*** 0.000*** 0.006 0.000*** 1.000 0.000*** 0.337 0.000***
Carbon Price 0.726 0.056* 0.109 0.145 0.135 1.000 0.141 0.046**
GPR 0.026** 0.016** 0.034** 0.012** 0.014** 0.029** 1.000 0.878
VIX 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.005*** 0.487 1.000

Note: This table presents the p values obtained from the Granger (1969) causality tests conducted for each
pair of time series variables. The rejection of the Null hypothesis, which assumes that the predictor variable
(x) does not Granger-cause the response variable (y), signifies that the past values of (x) exert a statistically
significant impact on the current value of (y). The significance levels *, **, and *** correspond to the
rejection of the null hypothesis at the 10%, 5%, and 1% levels, respectively.
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We further analyze the relationship between the variables by performing Granger-causality
tests on each pair. The results, presented in a matrix format in Table 3, provide valuable
insights. Of particular interest is the examination of causality involving the green bond in-
dex. We observe that the past values of the oil & gas, global stock, low-carbon, and GPR
indices all have a highly significant impact on the current value of the green bond index.
This Granger-causality is bi-directional, as the past values of the green bond index also ex-
ert a statistically significant impact on the aforementioned variables. Furthermore, there is
evidence of Granger-causality from the green bond index to the VIX, indicating an influence
in one direction, but not vice versa. Regarding the GPR, it is evident that its past values
have a significant impact on the current values of both the green bond and oil & gas indices.
This observation aligns with previous research findings (Naeem et al., 2021b; Broadstock
and Cheng, 2019; Lee et al., 2021). Surprisingly, our analysis does not provide evidence of
Granger-causality running from the carbon price index to the green bond index, or vice versa.
This finding contrasts sharply with the results reported by Jin et al. (2020). However, in line
with Hammoudeh et al. (2020), we do observe significant Granger-causality running from the
carbon price index to the green bond index.

Table 4: Johansen Cointegration Test Results

Trace Statistic 5% Critical Value

Green Bond 2303.93* 143.6691
Commodity 1917.33* 111.7797
Oil & Gas 1555.01* 83.9383
Global Stock 1212.84* 60.0627
Low Carbon 894.48* 40.1749
Carbon Price 601.29* 24.2761
GPR 362.08* 12.3212
VIX 156.67* 4.1296

Note: This table presents the results of the Johansen (1991) cointegration tests, including the trace statistics
and corresponding critical values. The significance level * denotes the rejection of the null hypothesis at the
5% level, indicating the presence of at least one cointegrating relationship among the variables.

To investigate the existence of long-term relationships among the variables, Johansen
cointegration tests were conducted for each variable. The outcomes of these tests are pre-
sented in Table 4. Based on the trace statistics and the critical values at the 5% level for each
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of the variables, we can reject the null hypothesis that no cointegrating relationships exist
among the variables. This indicates the presence of stable long-run relationships within the
system. Additionally, individual cointegration tests were performed for each pair of variables,
revealing cointegration between every pair. For the sake of brevity, these specific results are
reported in the Appendix.

To comprehensively analyze the dynamic relationships among the variables in our sys-
tem, it is necessary to estimate a VAR model. However, the selection of the appropriate
lag length plays a crucial role in specifying our VAR model (Hacker and Hatemi-J, 2008).
While economic theory recognizes the dynamic nature of economic processes, it generally
lacks specific guidance on determining the length of these dynamic processes. As a result,
the determination of the optimal lag length in a VAR model often relies on empirical analysis
rather than theoretical foundations (Hacker and Hatemi-J, 2008). In Table 5, multiple in-
formation criteria are presented to assist in determining the suitable lag length for our VAR
model. Considering that our system already comprises 8 variables and additional lags would
introduce computational complexity, the maximum lag was set to 5. Notably, both the FPE
and AIC criteria suggest an optimal lag order of 5. However, we select a lag order of 1 based
on the HQIC and SBIC criteria. This choice is motivated by the fact that the SBIC is a
preferred criterion for selecting lag length in many scenarios, particularly for financial data
characterized by intermittent periods of high volatility (Hacker & Hatemi, 2008).

Table 5: Lag-Order Selection Statistics

Lag LL LR d.f. p FPE AIC HQIC SBIC

0 36700.5 3.7e-29 -65.4775 -65.4775 -65.4775
1 36967.1 533.21 64 0.000 2.9e-29 -65.7136 -65.6385* -65.5105*
2 37076.2 218.12 64 0.000 2.8e-29 -65.7662 -65.6158 -65.3598
3 37146.2 140.06 64 0.000 2.7e-29 -65.7732 -65.5476 -65.1636
4 37220.4 148.36 64 0.000 2.7e-29 -65.7851 -65.4843 -64.9723
5 37294.8 148.76* 64 0.000 2.7e-29* -65.7972* -65.4212 -64.7813

Note: This table reports the Akaike (1969) final prediction error (FPE), Akaike (1974) information criterion
(AIC), Hannan and Quinn (1979) information criterion (HQIC), and the Schwarz (1978) Bayesian information
criterion (SBIC), lag-order selection statistics for the series of vector autoregressions of order 1 through a
maximum lag of 5. The optimal lag order selected by a criterion is indicated by *.
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4.3 The Econometric Methodology

Sims (1980) endorsement of Vector Autoregressive (VAR) models marked a turning point
in economic analysis, leading to their widespread popularity as an e�ective tool for analyz-
ing multiple time series (Lütkepohl, 2009). The growing popularity of VAR models since
the 1980s can be attributed to the increased availability of longer and more frequent data.
This shift in data availability highlighted the necessity for models that capture the dynamic
structure of variables (Lütkepohl, 2009). In this regard, VAR models emerged as valuable
tools, o�ering both e�ectiveness and ease of use due to their linear nature. In addition to
this advantage, VAR models possess the flexibility to treat all observed variables as endoge-
nous from the outset (Lütkepohl, 2009). Consequently, instead of relying solely on theory,
VAR models allow for the application of statistical procedures to impose restrictions on the
models. Moreover, VAR models are valuable as they enable the examination of both long-
term relationships and short-term dynamic adjustments among the variables (Hacker and
Hatemi-J, 2008). In this way, multivariate dependence and the network links across markets
are accurately characterized (Reboredo and Ugolini, 2020).

Leveraging the flexibility and user-friendly nature of the VAR model, we examine the
dynamic relationships among our time series variables by employing ordinary least squares
(OLS) estimation. Consistent with existing literature examining the impact of crises, we
initially estimate connectedness using a full sample, thereby capturing the complete picture
of connectedness throughout the entire period under investigation (Naeem et al., 2021a).
Following Lütkepohl (2005), our VAR model takes the following form:

y1,t = c1 + A1,1y1,t≠1 + A1,2y2,t≠1 + . . . + A1,kyk,t≠1 + e1,t

y2,t = c2 + A2,1y1,t≠1 + A2,2y2,t≠1 + . . . + A2,kyk,t≠1 + e2,t

...

yk,t = ck + Ak,1y1,t≠1 + Ak,2y2,t≠1 + . . . + Ak,kyk,t≠1 + ek,t

(1)

where yi,t represents the i-th dependent variable at time t, ci denotes the constant term
specific to each variable, Ai,j represents the coe�cient of the j-th variable lagged by one
period for the i-th dependent variable, and ei,t represents the error term associated with
each variable at time Our VAR model captures the dynamic relationships between the 8
dependent variables, where the lagged values of all variables are considered as predictors for
each dependent variable. The coe�cients Ai,j quantify the impact of the lagged variables on
the contemporaneous values of the dependent variables. The error terms ei,t represent the
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unexplained variation in each dependent variable at time t.
First, we test the model for serial correlation by computing the Durbin and Watson (1971)

test statistic for each equation as follows:

d =
qT ≠1

i=1 (‘̂i+1 ≠ ‘̂i)2
qT

i=1 ‘̂2
i

(2)

where d is the Durbin-Watson test statistic, T is the number of observations in the VAR
model, ‘̂i represents the estimated residuals or errors at time i.

Next, we examine the stability of our VAR model by forming the companion matrix A,
which takes the following form:

A =

S

WWWWWWU

A1 A2 . . . Ap≠1 Ap

I0 0 . . . 0 0
... ... . . . ... ...
0 0 . . . I 0

T

XXXXXXV
(3)

where I denotes the identity matrix, and 0 represents a matrix of zeros. We then obtain
the eigenvalues of matrix A and determine the stability of our VAR model by examining the
modulus of the complex eigenvalues. We adopt the stability criterion outlined by Lütkepohl
(2005), which states that a VAR model is considered stable if the absolute value of each
eigenvalue of the matrix A is strictly less than 1.

Given that Granger-causality alone may not provide a comprehensive understanding of
the interactions among variables within a system, it is of interest to examine the response of
one variable to a shock in another variable within a multidimensional system involving other
variables. Therefore, it is valuable to investigate the impulse response relationship between
two variables within a higher-dimensional system. In order to explore the relationships among
the variables in our VAR model more deeply, we estimate the impulse response functions
(IRFs) as outlined in Lütkepohl (2005)).

IRFi,j(h) =
h≠1ÿ

k=0
Ai,j(k) · ej(h ≠ k) (4)

where IRFi,j(h) represents the impulse response function between variables i and j at horizon
h. Ai,j(k) denotes the coe�cient of the lagged value of variable j on variable i at lag k, and
ej(h ≠ k) represents the forecast error of variable j at horizon h ≠ k. The impulse response
function is computed as the sum of the products of the coe�cients and forecast errors over
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the lagged periods.
Despite the widespread use of VAR models in this field of research, the current academic

literature still lacks robust models that accurately capture the relationships between the green
bond and other variables, particularly in extreme cases (Saeed et al., 2021). To bridge this gap
and provide a more in depth analyses on the dynamic relationship between our time series
variables in both non-crisis and crisis periods, we use a two-state Markov-switching VAR
model. Utilizing this particular model enables the endogenous selection of crisis periods,
incorporates the absence of significant news events during the crisis period, and takes into
account the heteroskedasticity of financial assets within the framework of regime-switching
(Flavin and Sheenan, 2015). Although the non-crisis and crisis regimes will be determined
endogenously, we need to assign labels to these regimes based on the variances of the variables.
The regime with higher variances in all variables will be identified as the crisis regime, as
higher variance indicates higher standard deviation and thus greater volatility. This labeling
criterion allows us to di�erentiate between periods of relative stability (non-crisis regime) and
periods characterized by higher levels of volatility (crisis regime) in our analysis. Ultimately,
this procedure enables us to analyze the non-linear dynamics among our time series variables
and evaluate the correlations specific to each regime. By doing so, we align with previous
empirical findings that demonstrate the time-varying, non-linear, and asymmetric nature of
the relationships between green bonds and other assets (Han and Li, 2022; Lee et al., 2021;
Jin et al., 2020). Our model takes the following form:

yi,t = –(st) +
Kÿ

k=1
—kstyi,t≠k + ‘st

i,t

st œ {1, 2}

st ≥ i.i.d.N(0, ‡2
s)

(5)

in which yi,t is an n-dimensional time series vector of dependent variables, – is a matrix
of state-dependent intercepts, —1 . . . —k are matrices of the state-dependent autoregressive
coe�cients, Át is a state-dependent noise vector, and st is an unobserved random variable that
causes the system to change from one regime to another. As proposed by Filardo (1994), we
use the time-varying transition probability (TVTP) specification of the MS-VAR model. This
method provides us with more flexibility by allowing the transition probabilities to vary over
time and be modelled as functions of the information variables (Flavin and Sheenan, 2015).
Additionally, it enables us to test if the conditional variables have explanatory power over the
regime switches. According to Filardo (1998), the information variable must be uncorrelated
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with the contemporaneous regime. Therefore, it is common to select lagged, predetermined
variables on which the regime path is conditioned. Consequently, the regime paths evolve
according to a first order Markov-chain and are directly a�ected by the information variable
zt≠1:

p[st = 1 | st≠1 = 1] = p11(zt≠1)

p[st = 2 | st≠1 = 2] = p22(zt≠1)

p[st = 2 | st≠1 = 1] = p21(zt≠1)

p[st = 1 | st≠1 = 1] = p12(zt≠1)

(6)

in which zt≠1 represents our information variable, which is the lagged daily log return on
either the VIX or GPR, depending on the model specification. We posit that both the
VIX and GPR possess explanatory power concerning regime switches, given that the sample
period encompasses crisis periods characterized by increased volatility in stock markets and
heightened geopolitical risk globally, as a result of events such as the COVID-19 pandemic and
Ukraine-Russia war. However, since the contemporaneous VIX and GPR cannot be regarded
as completely uncorrelated with the system’s state, we address this issue by employing the
first lag of the variables. In other words, we set l = 1 in Eq. (7). According to Filardo
(1998), this approach is reasonable for many problems as long as zt≠1 is considered to be
predetermined with respect to st.

Based on the work of Flavin and Sheenan (2015), we model the transition probabilities
as a logistical functional form:

p11(zt≠l) = exp(◊0 + qL
l=1 ◊lzt≠l)

1 + exp(◊0 + qL
l=1 ◊lzt≠l)

p22(zt≠l) = exp(“0 + qL
l=1 “lzt≠l)

1 + exp(“0 + qL
l=1 “lzt≠l)

(7)

We use the simplex algorithm as preliminary estimation method to refine our initial pa-
rameter values before switching to the Broyden-Fletcher-Goldfarh-Shanno (BFGS) algorithm
for the optimization of our parameter values. To enhance computational e�ciency, we have
partitioned the system into two models, each comprising one information variable and four
dependent variables. The first model encompasses the green bond, commodity, oil % gas,
and global stock indices. The second model consists of the green bond, low-carbon stock,
carbon price, and GPR or VIX indices, depending on which information variable is used. We
intentionally include the green bond index in both models to investigate regime-dependent
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correlations between this index and other financial indices. Consequently, we conduct sep-
arate analyses for each model, employing the VIX and GPR as information variables. This
approach yields a total of four distinct model specifications.

5 Results and Interpretation

5.1 VAR Analysis

5.1.1 Model Estimates

The estimation results of our VAR model are presented in Table 6. In Table 6a, we can observe
that all the equations included in the model are statistically significant. This significance
implies that the included equations enhance the overall explanatory power of the model and
provide valuable insights into the dynamics and interdependencies among the variables.

Table 6: VAR Model Estimation Results

(a) R2 and Significance of Equations

Equation R2 ‰2
p value

Green Bond 0.031 55.273 0.000
Commodity 0.010 16.692 0.034
Oil & Gas 0.010 17.994 0.021
Global Stock 0.015 26.482 0.001
Low Carbon 0.018 31.851 0.000
Carbon Price 0.010 17.041 0.030
GPR 0.087 164.589 0.000
VIX 0.015 26.551 0.001

(b) Results for Green Bond Equation

Variable Coe�cient

Green Bond (1) -0.069**
Commodity (1) -0.043***
Oil & Gas (1) 0.020
Global Stock (1) 0.654***
Low Carbon (1) -0.600***
Carbon Price (1) 0.009
GPR (1) -0.000
VIX (1) 0.004***

Note: (a) presents the explained variance (R2) and significance of the equations in our VAR Model. (b)
specifically focuses on the coe�cients for the green bond index equation. The notation (1) signifies the
variable at lag 1. For the sake of brevity, the constant term, standard errors, t-statistics, and p-values have
been omitted. However, these details can be found in the complete VAR model output in Appendix A The
significance of the coe�cients is denoted by *, **, and ***, representing the 10%, 5%, and 1% significance
levels, respectively.

Nevertheless, the R2 of each of equations is relatively low, with GPR having the highest
R2 of 0.087, which means that the variation in the GPR index explained by the indepen-
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dent variables included in the equation is approximately 8.7%. This actually indicates that
all the other lagged variables perform exceptionally well in explaining the variation in the
contemporaneous value of the GPR index.

As stated in Table 6b, The lagged commodity index is statistically significant at the 1%
level. This suggests that an increase in the value of the lagged commodity index leads to
a decrease in the contemporaneous value of the green bond index, assuming other variables
remain unchanged. The lagged values of the oil & gas, carbon price, and GPR indices do not
have statistically significant coe�cients. This implies that these variables may not have a
significant impact on the contemporaneous value of the green bond index. The lagged values
of the global stock, low-carbon, and VIX indices have coe�cients with positive, negative,
and positive signs, respectively, all of which are statistically significant at the 1% level.
This indicates that the lagged values of these variables have a significant influence on the
contemporaneous value of the green bond index. An increase in the value of the lagged
global stock index leads to an increase in the contemporaneous value of the green bond
index, while an increase in the lagged low-carbon index results in a similar decrease, in terms
of magnitude, in the contemporaneous value of the green bond index. Similarly, an increase
in the lagged VIX corresponds to an increase in the contemporaneous value of the green bond
index, although much smaller in magnitude. It is worth noting the significant findings from
Table 3, which indicate that both the global stock index and the low-carbon index exhibit
Granger-causality with respect to the green bond index. These results provide additional
evidence for the relationship between these variables.

5.1.2 Model Checking

Table 7a shows the Durbin-Watson statistic for each variable in the model. The Durbin-
Watson statistic ranges from 0 to 4, where a value around 2 suggests no significant autocor-
relation. In this case, all variables in the VAR model have Durbin-Watson statistics close to
2, indicating that there is no substantial autocorrelation in the residuals. This suggests that
the model adequately captures the serial correlation patterns in the data.

Based on the results presented in Table 7b, we observe the presence of several eigenvalues
with non-zero moduli. These significant eigenvalues indicate the existence of important
dynamic relationships among the variables in the VAR model. However, it is crucial to
assess the stability condition of the VAR model by examining whether the modulus of each
eigenvalue is strictly less than one (Lütkepohl, 2005). Fortunately, our model meets this
criterion as all eigenvalues have moduli that are strictly less than one. This implies that all
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Table 7: Statistical Tests for VAR Model

(a) Durbin-Watson Test Results

Variable d

Green Bond 2.02
Commodity 2.00
Oil & Gas 2.02
Global Stock 2.07
Low Carbon 2.07
Carbon Price 2.01
GPR 2.01
VIX 2.06

(b) Eigenvalue Test Results

Eigenvalue Modulus
-0.297 0.297
-0.263 0.263
0.146 0.146

-0.063 + 0.082i 0.103
-0.063 - 0.082i 0.103

-0.067 0.067
0.017 + 0.042i 0.045
0.017 - 0.042i 0.045

Note: This table reports the results of two statistical tests that assess the adequacy of our VAR model (Lütke-
pohl, 2009) (a) reports the Durbin and Watson (1971) statistics to detect the presence of autocorrelation in
the residuals. (b) reports the eigenvalues and moduli, which are used to evaluate the stability of our VAR
model.

eigenvalues lie inside the unit circle, indicating the VAR model satisfies the stability condition.
Meeting the stability condition is important as it ensures that the dynamic relationships
among the variables remain well-behaved over time and that the model’s predictions are
reliable. The stability of our VAR model also indicates that there is no clear indication
of a structural break in the data. Nevertheless, it is still feasible to estimate a regime
switching model to capture the non-linear dynamics of the system and test for regime switches
endogenously.

5.1.3 Impulse Response Functions

Figure 2 depicts the non-orthogonalized impulse response functions (IRFs) for the green
bond index as response variable. The non-orthogonalized IRFs provide insights into the
short-term dynamic response of the green bond index to a shock in one of the other indices,
without imposing any restrictions on the contemporaneous correlations among the variables
(Lütkepohl, 2005). More specifically, the IRFs show the instantaneous e�ects of one-standard
deviation shocks to the green bond index. This allows for a comprehensive analysis of the
short-term responses of variables, taking into account the potential feedback e�ects and
contemporaneous interactions (Lütkepohl, 2005).
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Figure 2: Impulse Response Functions

Note: This figure presents the non-orthogonalized IRFs for the green bond index as the response variable over
a 6-step period. Each graph represents a di�erent impulse variable specified below. The blue line depicts
the trajectory of the response variable, while the dotted lines represent the confidence bounds at the 5%
significance level. The complete set of IRFs can be found in Appendix B

(a) Commodity (b) Oil & Gas

(c) Global Stock (d) Low Carbon

(e) Carbon Price (f) GPR

(g) VIX
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When examining the IRFs, it is crucial to consider the confidence bounds as they provide
insights into the significance and interpretability of the IRFs. In Figure 2b, Figure 2e, and
Figure 2f, we observe that the lower confidence bounds are well below zero. This implies
that we cannot reject the null hypothesis that the green bond index’s response to shocks
from the oil & gas, carbon price, and GPR indices is not statistically significant. However,
in Figure 2a, we can see that a one standard deviation increase in the commodity index
leads to a 0.04 standard deviation decrease in the green bond index in the first period. By
the second period, the e�ect of the shock becomes statistically insignificant, and around
the fourth period, the shock dissipates as the green bond index returns to its long-term
equilibrium. In contrast, we find that a one standard deviation increase in the global stock
index results in a 0.6 standard deviation increase in the green bond index in the first period.
Similar to the commodity index, the e�ect of the shock becomes insignificant in the second
period. Interestingly, the response of the green bond index to a one standard deviation
shock in the low-carbon index exhibits the opposite pattern compared to the global stock
index. Lastly, a one standard deviation increase in the VIX index leads to a 0.003 standard
deviation increase in the green bond index in the first period. However, shortly after, the
shock becomes statistically insignificant, and its e�ect dissipates over time.

5.1.4 Summary of Results and Findings

Based on the results of our VAR model and the corresponding IRFs, we can draw several
important conclusions. Firstly, our VAR model appears to be properly specified as the
equations in the model are all significant, the model adequately captures the serial correlation
patterns in the data, and the stability condition is met.

Secondly, we find a statistically significant negative relationship between the lagged com-
modity index and the contemporaneous green bond index. This indicates a persistent inverse
relationship between these variables over time. Moreover, the statistically significant short-
term response of the green bond index to an impulse in the commodity index suggests that
the short-term relationship between the two variables aligns with the long-term pattern.
Consistent with our first hypothesis, this finding o�ers preliminary evidence supporting the
hypothesis that the green bond serves as a hedge with respect to the commodity market.

Thirdly, both the global stock index and the low-carbon index exhibit statistically sig-
nificant relationships with the green bond index, with similar magnitudes in both the long
and short term. However, there is a notable di�erence in the nature of these relationships.
The green bond index exhibits a positive relationship with the global stock index, while

32



conversely, the low-carbon index demonstrates a negative relationship. Both findings are
contrary to our expectations, as we would anticipate observing a negative relationship be-
tween the green bond and the global stock index, as well as a positive relationship between
the green bond and the low-carbon index. However, previous research has shown that the
relationships between green bonds and other assets are characterized by non-linearity. There-
fore, our linear VAR model may not fully capture the dynamics of the system accurately (Han
and Li, 2022; Lee et al., 2021; Jin et al., 2020).

Furthermore, it is intriguing to note the presence of a positive relationship between the
green bond and the VIX index based on the coe�cients and the IRFs. This finding is
somewhat unexpected, as one would typically anticipate an inverse relationship, where an
increase in the VIX index corresponds to a decrease in most other financial indices Sarwar
(2012). A plausible explanation for this observation is the surge in oil and gas prices resulting
from the ongoing Ukraine-Russia war. As higher oil prices decrease the demand for oil and,
consequently, increase the demand for responsible investments, it is possible that this drives
the positive relationship observed between the VIX and the green bond index (Broadstock
and Cheng, 2019). Deng et al. (2022) also provide evidence supporting this notion. However,
given the opposite trend observed in oil prices during the COVID-19 pandemic, drawing
conclusions at this stage is challenging.

In conclusion, the obtained results underscore the necessity for additional investigation
and exploration of the underlying dynamics between the variables, employing time-varying
non-linear modeling techniques.

5.2 TVTP MS-VAR Analysis

5.2.1 Regimes

To investigate the non-linear dynamics within our system of time series variables, we employ
a TVTP MS-VAR model. Unfortunately, during the estimation of the model, the econo-
metric software encountered convergence issues due to the high number of parameters and
the resulting computational complexity of our 8-variable TVTP MS-VAR with a lag of 1.
Consequently, we had to divide the model into two separate specifications, each containing
4 variables. Since our focus was on the utilization of the VIX and GPR as information
variables, we ended up with a total of 4 di�erent model specifications. Table 8 and Table 9
display the TVTP MS-VAR model estimates for these four model specifications using the
VIX and GPR as information variables, respectively.
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To initiate our TVTP MS-VAR analysis, it is crucial to distinguish between the non-crisis
and crisis regimes and assign appropriate labels to each. We can accomplish this by closely
examining the variances of the market indices incorporated in the model. Specifically, we
observe that the variances in the crisis regime, denoted as regime 1 in our model, consistently
exceed those in the non-crisis regime, with exception of the GPR. The overall increase in
the variances of the indices makes intuitive sense, as crises are typically characterized by
increased volatility in the stock market (Naeem et al., 2021a; Mbah and Wasum, 2022; Maheu
and McCurdy, 2000; Campbell et al., 2002; Longsta�, 2010; Flavin and Sheenan, 2015).
The volatility of each of these indices can be measured by its standard deviation, which is
calculated as the square root of the variance.

Table 8: Transition Probabilities, Expected Returns, and Variances

Model 1 (VIX) Model 2 (VIX)

Panel A: Transition probabilities Panel A: Transition probabilities

p11 1.902*** p11 2.060***
p12 -3.196*** p12 -1.837
p21 -3.091*** p21 -2.845***
p22 6.851** p22 3.623

Panel B: Expected returns and standard deviations Panel B: Expected returns and standard deviations

Non-crisis regime Crisis regime Non-crisis regime Crisis regime

– ‡ – ‡ – ‡ – ‡

Green Bond 0.00018 0.00001 -0.00041 0.00007 Green Bond 0.00021 0.00001 -0.00037 0.00006
(1.945**) (33.798***) (-1.139) (-28.718***) (1.861*) (20.284***) (-1.103) (14.769***)

Commodity 0.00064 0.00006 -0.00087 0.00034 Low Carbon 0.00083 0.00003 -0.00106 0.00027
(3.663***) (39.063***) (-1.245) (-50.680***) (4.825***) (16.314***) (-1.497) (14.405***)

Oil & Gas 0.00060 0.00014 -0.00078 0.00091 Carbon Price 0.00213 0.00031 -0.00066 0.00088
(2.897***) (71.491***) (-0.933) (-73.978***) (4.903***) (25.218***) (-0.465) (14.535***)

Global Stock 0.00742 0.00003 -0.00142 0.00028 GPR 0.14965 0.28832 0.11349 0.17561
(5.890***) (43.722***) (-2.404**) (38.441***) (11.308***) (34.249***) (5.437***) (12.889***)

Note: Panel A reports the coe�cients on the transition probabilities from Eq. (7). Panel B reports the
regime-specific constant terms and variances from Eq. (5). T-statistics are reported in parenthesis. *, **,
and *** indicate the rejection of the null hypothesis at the 10%, 5%, and 1% level, respectively.

Table 8 reveals a decrease in the variance of the GPR index during the transition from the
non-crisis to the crisis regime. One plausible explanation for this discrepancy is that the GPR
index reaches its peak earlier than the other indices, as indicated by Figure 1. Notably, the
GPR index attains its peak at the beginning of 2022 during the COVID-19 pandemic, whereas
the remaining indices reach their lows in February or March. Consequently, the periods of
highest variance for the GPR index may not align with those of the other indices. This finding
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further strengthens the notion that the GPR index can be used as an early determinant of
stock market returns and therefore plays a significant role in portfolio allocation decisions
(Lee et al., 2021).

5.2.2 Expected Returns and Transition Probabilities

As we delve deeper into our analysis, we shift our focus to the expected returns on the indices.
The observed disparities between the non-crisis and crisis regimes align with our expectations.
In the non-crisis regime, we find positive expected returns for each of the indices, whereas
in the crisis regime, the expected returns turn negative. However, we observe an interesting
exception when examining the expected returns on the VIX index. In the non-crisis regime,
the expected return on the VIX index is negative, but in the crisis regime, the expected return
is positive. This finding aligns with our intuition, as the VIX index tends to increase during
times of crisis and decrease during periods of relative stability. This inverse relationship
between the VIX index and stock market returns is well-documented (Sarwar, 2012). Another
noteworthy observation from Table 8 and Table 9 is that the expected returns in the non-crisis
regimes are mostly highly significant, while in the crisis regime, very few expected returns
exhibit significance. This discrepancy can be attributed to the notion that during the non-
crisis regime, the market demonstrates more stable and predictable behavior, enabling the
intercepts to e�ectively capture the expected returns. However, in the crisis regime, the
market dynamics undergo significant changes, characterized by heightened uncertainty and
volatility, which diminishes the informativeness and significance of the intercepts in explaining
the expected returns.

Another important aspect to consider are the coe�cients of the transition probabilities
presented in Panel A of Table 8 and Table 9. Focusing on the VIX index as information
variable, we find that the coe�cients associated with the VIX index are highly significant,
except for the coe�cient of p22, which demonstrates moderate significance. This indicates
that the lagged return on the VIX index contains valuable information for predicting regime
switches during the observed sample period. The signs of the coe�cients on the information
variables reveal that an increase in the lagged VIX index is associated with an increase in
the probabilities of remaining in either the crisis or non-crisis regime, as indicated by p11

and p22, respectively. Conversely, an increase in the lagged VIX index is associated with a
decrease in the probabilities of switching from regime 1 to 2, or vice versa, as indicated by
p12 and p21, respectively. Regarding the GPR index, only the coe�cients of p11 and p21 are
found to be significant, suggesting that for Model 1, the lagged return on the GPR index

35



provides valuable information for predicting the regime switch from regime 2 to 1.

Table 9: Transition Probabilities, Expected Returns, and Variances

Model 1 (GPR) Model 2 (GPR)

Panel A: Transition probabilities Panel A: Transition probabilities

p11 1.900*** p11 1.060***
p12 -0.349 p12 -0.408
p21 -3.010*** p21 -2.413***
p22 0.051 p22 -0.364

Panel B: Expected returns and standard deviations Panel B: Expected returns and standard deviations

Non-crisis regime Crisis regime Non-crisis regime Crisis regime

– ‡ – ‡ – ‡ – ‡

Green Bond 0.00018 0.00001 -0.00039 0.00007 Green Bond 0.00020 0.00001 -0.00060 0.00008
(1.752*) (22.363***) (-1.123) (12.627***) (1.711*) (20.459***) (-1.331) (12.361***)

Commodity 0.00066 0.00000 -0.00090 0.00033 Low Carbon 0.00080 0.00003 -0.00162 0.00034
(2.995***) (20.119***) (-0.954) (13.976***) (4.622***) (16.985***) (-1.752*) (13.225***)

Oil & Gas 0.00060 0.00014 -0.00079 0.00090 Carbon Price 0.00213 0.00033 -0.77504 0.00102
(1.840*) (20.189***) (-0.585) (12.345***) (4.903***) (23.146***) (-0.465) (13.438***)

Global Stock 0.00075 0.00003 -0.00142 0.00028 VIX -0.00547 0.00359 0.11349 0.01597
(4.484***) (17.014***) (-2.044**) (11.806***) (-3.098***) (18.278***) (5.437***) (13.183***)

Note: Panel A reports the coe�cients on the transition probabilities from Eq. (7). Panel B reports the
regime-specific constant terms and variances from Eq. (5). T-statistics are reported in parenthesis. *, **,
and *** indicate the rejection of the null hypothesis at the 10%, 5%, and 1% level, respectively.

When examining the estimates for Model 2 and its transition probabilities, we observe
that the coe�cients for the GPR index as an information variable are remarkably similar
to those of Model 1. However, it appears that the lagged return on the VIX index does
not provide as much valuable information for predicting regime switches in Model 2, as
the coe�cients of p12 and p22 are not significant. Nevertheless, the lagged VIX index still
o�ers some valuable insights into regime switches, as the coe�cients for p11 and p21 remain
significant.

5.2.3 Regime Probabilities

Figure 3 displays the smoothed probabilities that indicate the occurrence of a crisis regime
in the system. While Figure 3a to Figure 3d display slight variations, they all exhibit similar
starting and ending points for the crisis period linked to the COVID-19 pandemic. Similarly,
di�erent model specifications show comparable starting points for the crisis period associated
with Ukraine-Russia war and the 2022 bear market.
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Figure 3: Smoothed Probabilities of Crisis

(a) Model 1 (VIX) (b) Model 2 (VIX)

(c) Model 1 (GPR) (d) Model 2 (GPR)

The black color in the graphs represents the consistency and intensity of the system being
in a crisis regime, allowing us to distinguish between the crisis period associated with the
COVID-19 pandemic and the crisis period associated with the Ukraine-Russia war and the
2022 bear market. While the latter is more prolonged, the former shows a higher intensity
and consistency of the smoothed probabilities being equal to 1. The consistency in the
smoothed probabilities provided by each model specification underscore the robustness of
our results. Additionally, we observe that the disparity in probabilities primarily stems from
the variations in model specifications as we include di�erent endogenous variables in the
system. This suggests that both the VIX and GPR index exert similar influences on the
regime paths in the model.

Figure 4 presents the probabilities of remaining in a non-crisis regime, specifically denoted
as p22(zt≠l) in Eq. (7), derived from the estimation of each specified model. Upon visual
examination of the graphs, it becomes apparent that they lack the similarity observed in the
graphs of Figure 3.
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Figure 4: Probabilities of Remaining in Non-Crisis Regime

(a) Model 1 (VIX) (b) Model 2 (VIX)

(c) Model 1 (GPR) (d) Model 2 (GPR)

One notable observation is that in graphs Figure 4a to Figure 4c, the probability of stay-
ing in regime 2 remains relatively constant at around 0.9, with occasional negative spikes
occurring at similar positions but varying magnitudes. However, in Figure 4d, the proba-
bility of remaining in regime 2 consistently appears significantly lower, centered around an
approximate value of 0.75. It is noteworthy that the lowest probabilities are observed at the
start of 2018 in the models where the lagged VIX index serves as the information variable.
This is likely due to the spike in the VIX index and the subsequent decline in other financial
indices during that period. However, as depicted in Figure 1, this movement was relatively
mild compared to the impact caused by the COVID-19 pandemic. Table 8 reveals that only
the lagged VIX coe�cient in Model 1 is moderately significant and provides meaningful in-
formation regarding the probability of remaining in regime 2. Upon closer examination of
Figure 4a, we observe that these probabilities make the most intuitive sense and align with
the smoothed probabilities depicted in Figure 3. At the beginning of 2022, we observe a clus-
ter of lower probabilities associated with staying in the non-crisis regime. The positioning of
this cluster resembles the peak in smoothed probabilities during the crisis period related to
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the COVID-19 pandemic. Additionally, we observe a negative spike at the onset of the crisis
period associated with the Ukraine-Russia war and the 2022 bear market.

5.2.4 Regime-Specific Correlations

Finally, let us focus on the core matter at hand: what valuable insights can be obtained
from the regime-specific correlations among the variables in the system concerning the co-
movement between the green bond index and other financial indices? Upon visually ex-
amining the regime-specific correlations generated by each model specification in Table 10,
we observe that the results obtained from Model 1 remain robust even when varying the
included information variable within the model specification. Similarly, Model 2 also main-
tains its overall consistency, although the results in the final column di�er based on whether
the information variable used is the GPR or VIX index. Regarding the outcomes for Model
2, it is noteworthy that the GPR index exhibits insignificant pairwise correlations with the
other variables, except for the green bond index. However, this correlation is relatively small,
measuring only 0.082, and is statistically significant solely in the non-crisis regime.

Furthermore, it is noteworthy that in Model 1, the correlations between the green bond in-
dex and the other indices consistently exhibit positive values, which intensify during the crisis
regime. These findings are consistent with prior research conducted by Han and Li (2022),
Naeem et al. (2021b), and Nguyen et al. (2021), who have observed that the correlations
between green bonds and other asset classes tend to be stronger during periods of extreme
market movements compared to normal market conditions (Han and Li, 2022). Moreover,
the escalation of pairwise correlations between the indices during the crisis regime suggests
the presence of financial contagion among these assets (Longsta�, 2010; Flavin and Sheenan,
2015). While statistical tests to assess the significance of the increase in cross-market linkage
are beyond the scope of this research, we find suggestive evidence supporting the notion that
returns become more strongly correlated during high volatility and negative returns in the
markets Campbell et al. (2002). It is important to mention that the correlations between
the green bond index and other indices in the crisis regime remain well below 1, indicating
that the green bond index continues to serve as a diversifying asset in both non-crisis and
crisis periods, particularly concerning the commodity, oil & gas, and global stock indices. In
Model 2, aside from the correlations with the GPR index, all other pairwise correlations are
statistically significant. Similar to Model 1, these correlations exhibit an increase across all
assets during the transition to the crisis regime.

39



Table 10: Regime-Specific Correlations

(a) Model 1 (VIX)

Green Bond Commodity Oil & Gas Global Stock

Green Bond 1 0.171*** 0.469*** 0.354***
Commodity 0.129*** 1 0.620*** 0.415***
Oil & Gas 0.452*** 0.597*** 1 0.711***
Global Stock 0.263*** 0.436*** 0.634*** 1

(b) Model 2 (VIX)

Green Bond Low Carbon Carbon Price GPR

Green Bond 1 0.366*** 0.138*** -0.050
Low Carbon 0.350*** 1 0.341*** 0.023
Carbon Price 1.176*** 0.167*** 1 0.029
GPR 0.082*** 0.003 0.032 1

(c) Model 1 (GPR)

Green Bond Commodity Oil & Gas Global Stock

Green Bond 1 0.172*** 0.467*** 0.354***
Commodity 0.127*** 1 0.620*** 0.415***
Oil & Gas 0.455*** 0.597*** 1 0.711***
Global Stock 0.263*** 0.436*** 0.632*** 1

(d) Model 2 (GPR)

Green Bond Low Carbon Carbon Price VIX

Green Bond 1 0.391*** 0.161*** -0.295***
Low Carbon 0.301*** 1 0.371*** -0.652***
Carbon Price 0.091*** 0.151*** 1 -0.158***
VIX -0.219*** -0.733*** -0.074*** 1

Note: This table presents the regime-specific asset correlations derived from our TVTP MS-VAR models. The
lower triangles of the table display the correlations for the non-crisis period, while the upper triangles show
the correlations for the crisis period. These correlations are computed using the covariances and standard
deviations obtained from the TVTP MS-VAR model estimations, as detailed in Appendix C
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Once again, the green bond index demonstrates its role as a diversifier for the low-carbon
and carbon price indices in both non-crisis and crisis periods. As expected, the pairwise
correlations with the VIX index consistently display negative and significant values. This
finding aligns with intuition, as the VIX index reflects the level of volatility in stock markets.
Consequently, when volatility rises, the returns on the green bond index and other financial
indices tend to decrease (Sarwar, 2012).

5.2.5 Regime-Specific Coe�cients

Similar to the estimates obtained from our linear VAR model, the coe�cients generated by our
TVTP MS-VAR models capture the relationship between the lagged values of the variables
and the contemporaneous value of the green bond index. To facilitate comparison and assess
the robustness of the results, we have presented the estimates for Model 1 in Table 11 and for
Model 2 in Table 12, incorporating both the VIX and GPR index as information variables.
This allows us to examine the consistency of the findings across di�erent information variables
utilized in the analysis.

Table 11: Model 1 Estimates for Green Bond Equation

Model 1 (VIX) Model 1 (GPR)
Non-crisis regime Crisis regime Non-crisis regime Crisis regime

„ „ „ „

Green Bond (1) -0.167 -0.056 -0.168 -0.057
(-7.793***) (-1.473) (-6.825***) (-1.434)

Commodity (1) -0.019 0.023 -0.021 -0.052
(-1.591) (1.061) (-1.433) (-0.423)

Oil & Gas (1) 0.017 -0.042 0.018 -0.042
(2.224**) (-3.902***) (1.761*) (-2.397**)

Global Stock (1) 0.055 0.065 0.058 0.064
(3.664***) (3.111**) (3.290***) (2.428**)

Note: This table presents the regime-specific coe�cients for the Green Bond equation in our TVTP MS-VAR
model estimations. The results correspond to Model 1 specification, where either the VIX or GPR is used
as the information variable. T-statistics are reported in parentheses. The significance levels *, **, and ***
denote the rejection of the null hypothesis at the 10%, 5%, and 1% level, respectively.

Upon analyzing the results in Table 11, several noteworthy observations can be made.
Firstly, the same coe�cients exhibit statistical significance in both model specifications, and
their signs remain consistent across the specifications. It is evident that the lagged value of
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the green bond index shows a negative relationship with its contemporaneous value in the
non-crisis regime. This implies that during periods of relative stability in the stock market,
the return on the green bond index tends to decrease. This trend can be attributed to the
decreasing risk associated with green investments globally, leading investors to demand lower
returns (Kanamura, 2020). Additionally, we observe that the coe�cient on the lagged oil
& gas index switches from positive to negative as the regime shifts from non-crisis to crisis.
This finding suggests that during periods of relative stability, an increase in the lagged return
on the oil & gas index corresponds to an increase in the contemporaneous value of the green
bond index, indicating a positive relationship between these variables. However, in times of
crisis, this positive relationship turns inverse. This finding supports the notion that when
the price of oil rises, the price of green bonds declines Broadstock and Cheng (2019). It also
provides preliminary evidence for the safe haven properties of green bonds concerning the oil
and gas market. Furthermore, we find a positive relationship between the global stock index
and the green bond index in both the non-crisis and crisis regimes. These findings remain
robust across changes in the model specifications.

Table 12: Model 2 Estimates for Green Bond Equation

Model 2 (VIX) Model 2 (GPR)
Non-crisis regime Crisis regime Non-crisis regime Crisis regime

„ „ „ „

Green Bond (1) -0.106 -0.122 -0.118 -0.114
(-4.664***) (-3.412***) (-4.792***) (-2.006**)

Low Carbon (1) 0.043 -0.065 0.026 0.004
(3.193***) (-0.840) (1.128) (0.034)

Carbon Price (1) 0.000 -0.002 0.000 -0.003
(-0.045) (-0.194) (0.068) (-0.181)

GPR / VIX (1) 0.000 0.000 -0.003 0.001
(-0.102) (-0.650) (-1.414) (0.219)

Note: This table presents the regime-specific coe�cients for the Green Bond equation in our TVTP MS-VAR
model estimations. The results correspond to Model 2 specification, where either the VIX or GPR is used
as the information variable. T-statistics are reported in parentheses. The significance levels *, **, and ***
denote the rejection of the null hypothesis at the 10%, 5%, and 1% level, respectively.

Moving on to Table 12, the empirical evidence presented is less pronounced. In this
model specification, a notable di�erence is the heightened significance of the lagged value
of the green bond index, extending to the crisis regime. Moreover, we observe a highly
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significant positive relationship between the lagged return on the low-carbon index and the
contemporaneous value of the green bond index. However, it should be noted that this result
does not appear to be robust to changes in the information variable employed.

5.2.6 Summary of Results and Findings

Overall, our findings suggest that the green bond index does not serve as a hedge or safe
haven for any of the other financial assets included in the analysis. Therefore we do not find
evidence in support of our first three hypotheses. However, we do find that the green bond
index o�ers significant diversification benefits in relation to the other assets, including the
low-carbon stock index and the oil & gas index, thus supporting our fourth and fifth hypoth-
esis. Additionally, our sixth hypothesis receives strong empirical support as all four TVTP
MS-VAR model specifications demonstrate an increase in pairwise correlations between the
green bond index and the other indices. This implies that the observed diversification ben-
efits from holding the green bond index diminish for investors during crisis periods. This is
in line with the notion of financial contagion in stock markets and supports the findings by
Han and Li (2022), Naeem et al. (2021b), and Nguyen et al. (2021). As a result, it may be
strategically advisable for investors to reconsider holding the green bond index during such
periods, challenging the conventional perception of it as a safe haven asset that investors
could rely on during times of crisis. Contrary to our initial expectations, the regime-specific
coe�cients obtained from our TVTP MS-VAR model provide evidence suggesting that the
green bond index exhibits safe haven properties in relation to the oil & gas index. Addi-
tionally, our finding of the oil & gas index Granger-causing the green bond index further
reinforces the evidence supporting an inverse causal relationship between the two.

One possible explanation for the contradictory findings in our study compared to prior
research may lie in the di�erences in sample periods. Previous studies often focused on
relatively bullish market periods characterized by lower volatility, higher returns, and lower
correlations (Reboredo, 2018; Broadstock and Cheng, 2019; Reboredo and Ugolini, 2020;
Hammoudeh et al., 2020; Saeed et al., 2021; Lee et al., 2021; Naeem et al., 2021b). By simply
observing Figure 1, the substantial disparity in volatility before the onset of the COVID-19
pandemic becomes apparent. However our findings still diverge from those of Martiradonna
et al. (2023), who utilized the same green bond index and included the COVID-19 period in
their study. This discrepancy could be attributed to variations in methodologies employed
and the inclusion of the Ukraine-Russia war and the 2022 bear market in our sample, which
introduced a prolonged period of high volatility and declining stock prices.

43



In conclusion, the findings presented in our TVTP MS-VAR analysis exhibit a reasonable
level of robustness across various model specifications and information variables. Further-
more, the results presented in Table 8, Table 9, and Table 10 are consistent with previous
studies that employed similar methodologies and examined similar sample periods in terms
of stock market volatility, such as the research conducted by Flavin and Sheenan (2015).
This consistency enhances the credibility and validity of our findings.

6 Discussion and Conclusion
We analyse the co-movement between the green bond index and other financial indices over
a sample period ranging from February 5, 2016, to March 10, 2023. The findings from our
linear VAR analysis reveal significant inverse relationships between the green bond index
and the commodity index, as well as the low-carbon index, in both the short and long term.
Conversely, we observe a significant positive relationship between the green bond index and
the global stock index. These results are supported by Granger-causality tests, indicating
the influence of the low-carbon and global stock markets on the green bond market

To further explore the nonlinear dynamics among the financial indices, we employ a
TVTP MS-VAR model. This approach allows us to assess the pairwise relationships between
the variables in both non-crisis and crisis regimes characterized by low and high volatility
states. Our analysis reveals a notable shift in the relationship during the crisis regime, where
the positive relationship between the green bond index and the oil & gas transforms into an
inverse relationship. This suggests that the green bond index may serve as a safe haven for
the oil & gas index and sheds light on the interaction between oil prices and the dynamics of
green bonds (Lee et al., 2021) Additionally, we find that the lagged VIX index outperforms
the lagged GPR index in predicting regime switches, particularly in Model 1, indicating its
e�ectiveness in anticipating transitions between di�erent volatility states. Moreover, it is
evident that the linear and non-linear approaches yield significantly di�erent results. This
confirms the time-varying, non-linear, and assymetric nature of the relationship between
green bonds and other assets (Han and Li, 2022; Lee et al., 2021; Jin et al., 2020).

Contrary to our expectations, the regime-specific correlations produced by our TVTP
MS-VAR models suggest that the green bond index does not serve as a hedge or safe haven
for any of the other financial indices included in the analysis. However, we do find that
the green bond index o�ers significant diversification benefits in relation to the other assets,
including the low-carbon stock market, thus supporting our fourth hypothesis. Additionally,
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our fifth hypothesis receives strong empirical support as all four TVTP MS-VAR model
specifications demonstrate an increase in pairwise correlations between the green bond index
and the other indices. This implies that the observed diversification benefits from holding
the green bond index diminish for investors during crisis periods. Consequently, it may be
strategically advisable for investors not to hold the green bond index during these times,
contrasting the conventional notion of it as a safe haven asset that investors turn to in times
of crisis.

Our study underscores the significance of considering sample periods and methodologies
when interpreting research findings. While di�erences in sample periods may account for
some of the discrepancies with previous studies that focused on relatively bullish market
periods, our results also diverge from those of Martiradonna et al. (2023), who employed
the same green bond index and analyzed the period encompassing the COVID-19 pandemic.
Nonetheless, the disparity in outcomes could be attributed to the inclusion of the period
covering the Ukraine-Russia war and the 2022 bear market, characterized by heightened
volatility and a sustained decline in stock market returns.

We emphasize the robustness of our results, supported by statistical tests on the VAR
model and the consistency observed across various aspects of the TVTP MS-VAR models.
However, further research is warranted to estimate the entire model instead of partitioning
it, enabling a more comprehensive understanding of the dynamic relationships between the
variables. Additionally, examining the impulse response functions for both non-crisis and
crisis periods would yield valuable insights into the behavior of the variables under diverse
market conditions. Such investigations would contribute to refining our understanding of the
intricate dynamics surrounding green bonds and their role within investment portfolios.

The overall findings of this study hold significant implications for investors in the green
bond, commodity, oil & gas, global stock, low-carbon, and carbon markets. Contrary to the
claim that the green bond serves as a hedge or safe haven for any of these markets, our results
demonstrate that it does not exhibit such properties. However, it is important to note that
the green bond market still o�ers notable diversification benefits, albeit to a lesser extent
during crisis periods compared to non-crisis times. This finding holds particular relevance for
investors in the low-carbon market, as it allows them to diversify their portfolio while aligning
with their environmental stance. Additionally, our findings regarding the diversification
benefits of green bonds in the carbon market are particularly relevant to various stakeholders,
including environmental policymakers, energy-intensive firms, portfolio managers, and carbon
investors. These findings o�er them an e�ective instrument to mitigate the increasing carbon
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risk. Furthermore, the evident diversification benefits of green bonds are likely to attract
more conventional investors in the future. This trend will spur sustainable investments and
facilitate the transition to a low-carbon economy. Hence, policymakers should recognize
and leverage this information to further stimulate the demand for environmentally-friendly
investments.
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A Linear VAR Model

Method OLS

Results for equation Green Bond Results for equation Commodity
coe�cient std. error t-stat prob coe�cient std. error t-stat prob

const 0.000 0.000 0.557 0.578 const 0.000 0.000 1.127 0.260
L1.Green Bond -0.069 0.028 -2.463 0.014 L1.Green Bond 0.041 0.060 0.677 0.498
L1.Commodity -0.043 0.014 -3.033 0.002 L1.Commodity 0.003 0.031 0.096 0.923
L1.Oil & Gas 0.020 0.012 1.634 0.102 L1.Oil & Gas 0.027 0.026 1.048 0.294
L1.Global Stock 0.654 0.086 7.638 0.000 L1.Global Stock 0.598 0.184 3.251 0.001
L1.Low Carbon -0.600 0.080 -7.449 0.000 L1.Low Carbon -0.476 0.173 -2.753 0.006
L1.Carbon Price 0.009 0.006 1.538 0.124 L1.Carbon Price -0.036 0.013 -2.747 0.006
L1.GPR 0.000 0.000 -1.223 0.222 L1.GPR 0.000 0.001 -0.241 0.809
L1.VIX 0.004 0.002 2.116 0.034 L1.VIX 0.019 0.004 4.279 0.000
Results for equation Oil & Gas Results for equation Global Stock

coe�cient std. error t-stat prob coe�cient std. error t-stat prob
const 0.001 0.000 1.188 0.235 const 0.000 0.000 1.288 0.198
L1.Green Bond 0.024 0.096 0.254 0.799 L1.Green Bond 0.258 0.051 5.063 0.000
L1.Commodity 0.008 0.049 0.171 0.864 L1.Commodity 0.042 0.026 1.621 0.105
L1.Oil & Gas 0.053 0.041 1.296 0.195 L1.Oil & Gas -0.091 0.022 -4.205 0.000
L1.Global Stock 1.701 0.292 5.835 0.000 L1.Global Stock 1.293 0.155 8.333 0.000
L1.Low Carbon -1.545 0.274 -5.634 0.000 L1.Low Carbon -1.059 0.146 -7.258 0.000
L1.Carbon Price -0.036 0.021 -1.775 0.076 L1.Carbon Price 0.004 0.011 0.333 0.739
L1.GPR -0.002 0.001 -1.925 0.054 L1.GPR -0.001 0.000 -1.407 0.159
L1.VIX 0.031 0.007 4.377 0.000 L1.VIX 0.024 0.004 6.400 0.000
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Method OLS

Results for equation Low Carbon Results for equation Carbon Price
coe�cient std. error t-stat prob coe�cient std. error t-stat prob

const 0.000 0.000 1.430 0.153 const 0.001 0.001 2.585 0.010
L1.Green Bond 0.236 0.053 4.442 0.000 L1.Green Bond 0.084 0.119 0.705 0.481
L1.Commodity 0.033 0.027 1.210 0.226 L1.Commodity -0.037 0.060 -0.615 0.539
L1.Oil & Gas -0.090 0.023 -3.991 0.000 L1.Oil & Gas -0.033 0.051 -0.648 0.517
L1.Global Stock 1.548 0.162 9.560 0.000 L1.Global Stock 0.566 0.361 1.567 0.117
L1.Low Carbon -1.300 0.152 -8.534 0.000 L1.Low Carbon -0.372 0.340 -1.094 0.274
L1.Carbon Price 0.005 0.011 0.468 0.640 L1.Carbon Price -0.025 0.025 -0.999 0.318
L1.GPR -0.001 0.000 -1.102 0.270 L1.GPR -0.002 0.001 -1.642 0.101
L1.VIX 0.025 0.004 6.317 0.000 L1.VIX 0.023 0.009 2.595 0.009
Results for equation GPR Results for equation VIX

coe�cient std. error t-stat prob coe�cient std. error t-stat prob
const 0.140 0.012 11.242 0.000 const 0.116 0.017 6.912 0.000
L1.Green Bond -1.468 2.685 -0.547 0.584 L1.Green Bond 0.388 0.361 1.074 0.283
L1.Commodity 1.988 1.369 1.452 0.146 L1.Commodity 0.264 0.185 1.430 0.153
L1.Oil & Gas 0.240 1.145 0.210 0.834 L1.Oil & Gas 0.146 0.154 0.945 0.345
L1.Global Stock -3.925 8.181 -0.480 0.631 L1.Global Stock 2.079 1.103 1.884 0.060
L1.Low Carbon 3.418 7.692 0.444 0.657 L1.Low Carbon -1.610 1.037 -1.554 0.120
L1.Carbon Price 0.105 0.576 0.182 0.856 L1.Carbon Price 0.002 0.078 0.032 0.974
L1.GPR -0.288 0.023 -12.400 0.000 L1.GPR -0.013 0.003 -4.048 0.000
L1.VIX -0.017 0.200 -0.083 0.934 L1.VIX 0.760 0.027 28.242 0.000
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B Impulse Response Functions

Figure 5: Impulse Response Functions
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Figure 6: Impulse Response Functions (Continued)
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C TVTP MS-VAR Models

TVTP MS-VAR model 1 (VIX) TVTP MS-VAR model 2 (VIX)

Variable Coe� Std. Error T-Stat Signif Variable Coe� Std Error T-Stat Signif
V1(1) 1.902 0.139 13.650 0.000 V1(1) 2.060 0.216 9.557 0.000
V1(2) -3.196 1.199 -2.666 0.008 V1(2) -1.837 1.769 -1.039 0.299
V2(1) -3.091 0.150 -20.597 0.000 V2(1) -2.845 0.166 -17.102 0.000
V2(2) 6.851 2.193 3.124 0.018 V2(2) 3.623 2.601 1.393 0.164
MU(1)(1) 0.000 0.000 -1.139 0.255 MU(1)(1) 0.000 0.000 -1.103 0.270
MU(1)(2) -0.001 0.001 -1.244 0.213 MU(1)(2) -0.001 0.001 -1.497 0.134
MU(1)(3) -0.001 0.001 -0.933 0.351 MU(1)(3) -0.001 0.001 -0.465 0.642
MU(1)(4) -0.001 0.001 -2.404 0.016 MU(1)(4) 0.113 0.021 5.438 0.000
MU(2)(1) 0.000 0.000 1.945 0.052 MU(2)(1) 0.000 0.000 1.861 0.063
MU(2)(2) 0.001 0.000 3.663 0.000 MU(2)(2) 0.001 0.000 4.825 0.000
MU(2)(3) 0.001 0.000 2.897 0.004 MU(2)(3) 0.002 0.000 4.904 0.000
MU(2)(4) 0.007 0.000 5.890 0.000 MU(2)(4) 0.150 0.013 11.308 0.000
PHIV(1, 1)(1 , 1) -0.056 0.038 -1.474 0.141 PHIV(1, 1)(1 , 1) -0.122 0.036 -3.412 0.001
PHIV(1, 1)(2,1) -0.056 0.089 -0.629 0.529 PHIV(1, 1)(2,1) -0.065 0.077 -0.840 0.401
PHIV(1, 1)(3,1) 0.062 0.123 0.505 0.613 PHIV(1, 1)(3,1) 0.202 0.178 1.133 0.257
PHIV(1, 1)(4,1) 0.031 0.067 0.461 0.645 PHIV(1, 1)(4,1) -0.516 2.756 -0.187 0.852
PHIV(1, 1)(1 ,2) 0.023 0.022 1.061 0.289 PHIV(1, 1)(1 ,2) 0.026 0.020 1.264 0.206
PHIV(1 ,1)(2,2) 0.010 0.025 0.408 0.683 PHIV(1 ,1)(2,2) -0.049 0.050 -0.979 0.328
PHIV(1 ,1)(3,2) 0.094 0.037 2.525 0.012 PHIV(1 ,1)(3,2) -0.035 0.085 -0.413 0.680
PHIV(1 ,1)(4,2) 0.069 0.030 2.338 0.019 PHIV(1 ,1)(4,2) -1.847 1.355 -1.363 0.173
PHIV(1, 1)(1 ,3) -0.042 0.011 -3.902 0.000 PHIV(1, 1)(1 ,3) -0.002 0.012 -0.194 0.846
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TVTP MS-VAR model 1 (VIX) TVTP MS-VAR model 2 (VIX)

Variable Coe� Std. Error T-Stat Signif Variable Coe� Std Error T-Stat Signif
PHIV(1 ,1)(2,3) 0.031 0.017 1.874 0.061 PHIV(1 ,1)(2,3) 0.006 0.023 0.259 0.796
PHIV(1 ,1)(3,3) 0.055 0.025 2.191 0.028 PHIV(1 ,1)(3,3) -0.012 0.044 -0.262 0.793
PHIV(1 ,1)(4,3) -0.057 0.016 -3.448 0.001 PHIV(1 ,1)(4,3) -0.699 0.768 -0.911 0.362
PHIV(1, 1)(1,4) 0.065 0.021 3.111 0.019 PHIV(1, 1)(1,4) 0.000 0.001 -0.650 0.516
PHIV(1 ,1)(2,4) -0.042 0.032 -1.322 0.186 PHIV(1 ,1)(2,4) -0.001 0.001 -0.402 0.688
PHIV(1, 1)(3,4) -0.206 0.046 -4.462 0.000 PHIV(1, 1)(3,4) 0.001 0.003 0.456 0.648
PHIV(1 ,1)(4,4) 0.010 0.027 0.385 0.700 PHIV(1 ,1)(4,4) -0.267 0.048 -5.619 0.000
PHIV(2 ,1)(1,1) -0.167 0.021 -7.793 0.000 PHIV(2 ,1)(1,1) -0.106 0.023 -4.664 0.000
PHIV(2 ,1)(2,1) -0.181 0.043 -4.212 0.000 PHIV(2 ,1)(2,1) 0.010 0.038 0.269 0.788
PHIV(2 ,1)(3,1) -0.046 0.052 -0.883 0.377 PHIV(2 ,1)(3,1) -0.059 0.117 -0.501 0.616
PHIV(2 ,1)(4,1) 0.035 0.033 1.051 0.293 PHIV(2 ,1)(4,1) -2.530 3.319 -0.762 0.446
PHIV(2 ,1)(1,2) -0.019 0.012 -1.591 0.112 PHIV(2 ,1)(1,2) 0.043 0.014 3.193 0.001
PHIV(2 ,1)(2,2) -0.026 0.019 -1.377 0.169 PHIV(2 ,1)(2,2) 0.082 0.024 3.479 0.001
PHIV(2 ,1)(3,2) -0.029 0.023 -1.249 0.212 PHIV(2 ,1)(3,2) 0.112 0.076 1.472 0.141
PHIV(2 ,1)(4,2) -0.059 0.014 -2.491 0.013 PHIV(2 ,1)(4,2) 3.893 2.309 1.686 0.092
PHIV(2 ,1)(1,3) 0.017 0.008 2.224 0.026 PHIV(2 ,1)(1,3) 0.000 0.006 -0.045 0.964
PHIV(2 ,1)(2,3) 0.053 0.013 3.961 0.000 PHIV(2 ,1)(2,3) -0.008 0.009 -0.988 0.323
PHIV(2 ,1)(3,3) 0.075 0.015 4.946 0.000 PHIV(2 ,1)(3,3) -0.052 0.025 -2.079 0.038
PHIV(2 ,1)(4,3) 0.001 0.010 0.062 0.951 PHIV(2 ,1)(4,3) -0.449 0.650 -0.691 0.489
PHIV(2 ,1)(1,4) 0.055 0.015 3.664 0.000 PHIV(2 ,1)(1,4) 0.000 0.000 -0.102 0.919
PHIV(2 ,1)(2,4) 0.043 0.027 1.624 0.104 PHIV(2 ,1)(2,4) 0.000 0.000 0.895 0.371
PHIV(2 ,1)(3,4) -0.019 0.031 -0.620 0.535 PHIV(2 ,1)(3,4) 0.000 0.001 -0.323 0.747
PHIV(2 ,1)(4,4) 0.112 0.019 5.933 0.000 PHIV(2 ,1)(4,4) -0.294 0.021 -13.707 0.000
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TVTP MS-VAR model 1 (VIX) TVTP MS-VAR model 2 (VIX)

Variable Coe� Std. Error T-Stat Signif Variable Coe� Std Error T-Stat Signif
SIGMAV(1)(I ,1) 0.000 0.000 28.718 0.000 SIGMAV(1)(I ,1) 0.000 0.000 14.769 0.000
SIGMAV(1)(2 ,1) 0.000 0.000 5.619 0.000 SIGMAV(1)(2 ,1) 0.000 0.000 7.818 0.000
SIGMAV(1)(2 ,2) 0.000 0.000 50.680 0.000 SIGMAV(1)(2 ,2) 0.000 0.000 14.405 0.000
SIGMAV(1)(3 ,1) 0.000 0.000 21.587 0.000 SIGMAV(1)(3 ,1) 0.000 0.000 3.457 0.001
SIGMAV(1)(3 ,2) 0.000 0.000 55.465 0.000 SIGMAV(1)(3 ,2) 0.000 0.000 7.595 0.000
SIGMAV(1)(3 ,3) 0.001 0.000 73.978 0.000 SIGMAV(1)(3 ,3) 0.001 0.000 14.535 0.000
SIGMAV(1)(4 ,1) 0.000 0.000 12.327 0.000 SIGMAV(1)(4 ,1) 0.000 0.000 -1.131 0.258
SIGMAV(1)(4 ,2) 0.000 0.000 19.826 0.000 SIGMAV(1)(4 ,2) 0.000 0.000 0.595 0.552
SIGMAV(1)(4,3) 0.000 0.000 53.291 0.000 SIGMAV(1)(4,3) 0.000 0.001 0.629 0.529
SIGMAV(1)(4 ,4) 0.000 0.000 38.441 0.000 SIGMAV(1)(4 ,4) 0.176 0.014 12.889 0.000
SIGMAV(2)(1 ,1) 0.000 0.000 33.798 0.000 SIGMAV(2)(1 ,1) 0.000 0.000 20.284 0.000
SIGMAV(2)(2 ,1) 0.000 0.000 6.956 0.000 SIGMAV(2)(2 ,1) 0.000 0.000 9.646 0.000
SIGMAV(2)(2 ,2) 0.000 0.000 39.063 0.000 SIGMAV(2)(2 ,2) 0.000 0.000 16.314 0.000
SIGMAV(2)(3 ,1) 0.000 0.000 35.475 0.000 SIGMAV(2)(3 ,1) 0.000 0.000 3.570 0.000
SIGMAV(2)(3 ,2) 0.000 0.000 49.931 0.000 SIGMAV(2)(3 ,2) 0.000 0.000 5.497 0.000
SIGMAV(2)(3 ,3) 0.000 0.000 71.491 0.000 SIGMAV(2)(3 ,3) 0.000 0.000 25.218 0.000
SIGMAV(2)(4 ,1) 0.000 0.000 16.147 0.000 SIGMAV(2)(4 ,1) 0.000 0.000 2.685 0.007
SIGMAV(2)(4 ,2) 0.000 0.000 27.047 0.000 SIGMAV(2)(4 ,2) 0.000 0.000 0.084 0.933
SIGMAV(2)(4 ,3) 0.000 0.000 57.400 0.000 SIGMAV(2)(4 ,3) 0.000 0.000 1.440 0.150
SIGMAV(2)(4 ,4) 0.000 0.000 43.722 0.000 SIGMAV(2)(4 ,4) 0.288 0.008 34.249 0.000
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TVTP MS-VAR model 1 (GPR) TVTP MS-VAR model 2 (GPR)

Variable Coe� Std Error T-Stat Signif Variable Coe� Std Error T-Stat Signif
V1(1) 1.900 0.177 10.737 0.000 V1(1) 1.060 0.219 4.841 0.000
V1(2) -0.349 0.417 -0.836 0.403 V1(2) -0.408 0.362 -1.127 0.260
V2(1) -3.010 0.163 -18.516 0.000 V2(1) -2.413 0.139 -17.323 0.000
V2(2) 0.051 0.397 0.128 0.899 V2(2) -0.364 0.258 -1.414 0.157
MU(1)(1) 0.000 0.000 -1.123 0.261 MU(1)(1) -0.001 0.000 -1.331 0.183
MU(1)(2) -0.001 0.001 -0.954 0.340 MU(1)(2) -0.002 0.001 -1.752 0.080
MU(1)(3) -0.001 0.001 -0.585 0.559 MU(1)(3) -0.001 0.002 -0.775 0.438
MU(1)(4) -0.001 0.001 -2.044 0.041 MU(1)(4) 0.018 0.007 2.723 0.006
MU(2)(1) 0.000 0.000 1.752 0.080 MU(2)(1) 0.000 0.000 1.711 0.087
MU(2)(2) 0.001 0.000 2.995 0.003 MU(2)(2) 0.001 0.000 4.622 0.000
MU(2)(3) 0.001 0.000 1.840 0.066 MU(2)(3) 0.002 0.001 3.976 0.000
MU(2)(4) 0.001 0.000 4.484 0.000 MU(2)(4) -0.005 0.002 -3.098 0.002
PHIV(1, 1)(1 , 1) -0.057 0.040 -1.434 0.151 PHIV(1, 1)(1 , 1) -0.114 0.057 -2.006 0.045
PHIV(1, 1)(2,1) -0.052 0.122 -0.423 0.672 PHIV(1, 1)(2,1) 0.004 0.120 0.034 0.973
PHIV(1, 1)(3,1) 0.092 0.170 0.542 0.588 PHIV(1, 1)(3,1) 0.211 0.247 0.855 0.393
PHIV(1, 1)(4,1) 0.044 0.082 0.538 0.590 PHIV(1, 1)(4,1) 0.062 0.846 0.074 0.941
PHIV(1, 1)(1 ,2) 0.024 0.022 1.110 0.267 PHIV(1, 1)(1 ,2) 0.024 0.034 0.708 0.479
PHIV(1 ,1)(2,2) 0.010 0.047 0.211 0.833 PHIV(1 ,1)(2,2) -0.186 0.070 -2.645 0.008
PHIV(1 ,1)(3,2) 0.097 0.083 1.170 0.242 PHIV(1 ,1)(3,2) -0.091 0.134 -0.680 0.496
PHIV(1 ,1)(4,2) 0.070 0.047 1.498 0.134 PHIV(1 ,1)(4,2) 0.592 0.506 1.171 0.241
PHIV(1, 1)(1 ,3) -0.042 0.018 -2.397 0.017 PHIV(1, 1)(1 ,3) -0.003 0.017 -0.181 0.856
PHIV(1 ,1)(2,3) 0.030 0.034 0.866 0.387 PHIV(1 ,1)(2,3) 0.030 0.033 0.896 0.370
PHIV(1 ,1)(3,3) 0.046 0.068 0.682 0.495 PHIV(1 ,1)(3,3) 0.008 0.070 0.113 0.910
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TVTP MS-VAR model 1 (GPR) TVTP MS-VAR model 2 (GPR)

Variable Coe� Std Error T-Stat Signif Variable Coe� Std Error T-Stat Signif
PHIV(1 ,1)(4,3) -0.062 0.040 -1.556 0.120 PHIV(1 ,1)(4,3) 0.099 0.240 0.411 0.681
PHIV(1, 1)(1,4) 0.064 0.026 2.428 0.015 PHIV(1, 1)(1,4) 0.001 0.005 0.219 0.826
PHIV(1 ,1)(2,4) -0.040 0.059 -0.676 0.499 PHIV(1 ,1)(2,4) -0.015 0.010 -1.538 0.124
PHIV(1, 1)(3,4) -0.210 0.101 -2.090 0.037 PHIV(1, 1)(3,4) -0.011 0.019 -0.566 0.571
PHIV(1 ,1)(4,4) 0.009 0.061 0.155 0.877 PHIV(1 ,1)(4,4) -0.091 0.071 -1.281 0.200
PHIV(2 ,1)(1,1) -0.168 0.025 -6.825 0.000 PHIV(2 ,1)(1,1) -0.118 0.025 -4.792 0.000
PHIV(2 ,1)(2,1) -0.189 0.047 -3.983 0.000 PHIV(2 ,1)(2,1) -0.081 0.037 -2.201 0.028
PHIV(2 ,1)(3,1) -0.086 0.075 -1.155 0.248 PHIV(2 ,1)(3,1) -0.001 0.116 -0.012 0.991
PHIV(2 ,1)(4,1) 0.015 0.039 0.393 0.694 PHIV(2 ,1)(4,1) 0.133 0.368 0.361 0.718
PHIV(2 ,1)(1,2) -0.021 0.015 -1.433 0.152 PHIV(2 ,1)(1,2) 0.026 0.023 1.128 0.259
PHIV(2 ,1)(2,2) -0.027 0.031 -0.861 0.389 PHIV(2 ,1)(2,2) 0.045 0.036 1.252 0.210
PHIV(2 ,1)(3,2) -0.039 0.049 -0.803 0.422 PHIV(2 ,1)(3,2) -0.019 0.078 -0.242 0.809
PHIV(2 ,1)(4,2) -0.040 0.022 -1.777 0.076 PHIV(2 ,1)(4,2) 1.097 0.350 3.139 0.002
PHIV(2 ,1)(1,3) 0.018 0.010 1.761 0.078 PHIV(2 ,1)(1,3) 0.000 0.006 0.068 0.946
PHIV(2 ,1)(2,3) 0.057 0.020 2.910 0.004 PHIV(2 ,1)(2,3) -0.012 0.008 -1.480 0.139
PHIV(2 ,1)(3,3) 0.092 0.037 2.498 0.012 PHIV(2 ,1)(3,3) -0.050 0.029 -1.700 0.089
PHIV(2 ,1)(4,3) 0.010 0.015 0.707 0.480 PHIV(2 ,1)(4,3) 0.051 0.078 0.649 0.516
PHIV(2 ,1)(1,4) 0.058 0.017 3.290 0.001 PHIV(2 ,1)(1,4) -0.003 0.002 -1.414 0.157
PHIV(2 ,1)(2,4) 0.040 0.042 0.942 0.346 PHIV(2 ,1)(2,4) -0.014 0.003 -4.454 0.000
PHIV(2 ,1)(3,4) -0.003 0.068 -0.040 0.968 PHIV(2 ,1)(3,4) -0.013 0.008 -1.555 0.120
PHIV(2 ,1)(4,4) 0.118 0.029 4.055 0.000 PHIV(2 ,1)(4,4) 0.041 0.032 1.269 0.205
SIGMAV(1)(I ,1) 0.000 0.000 12.627 0.000 SIGMAV(1)(I ,1) 0.000 0.000 12.361 0.000
SIGMAV(1)(2 ,1) 0.000 0.000 3.900 0.000 SIGMAV(1)(2 ,1) 0.000 0.000 7.460 0.000
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TVTP MS-VAR model 1 (GPR) TVTP MS-VAR model 2 (GPR)

Variable Coe� Std Error T-Stat Signif Variable Coe� Std Error T-Stat Signif
SIGMAV(1)(2 ,2) 0.000 0.000 13.976 0.000 SIGMAV(1)(2 ,2) 0.000 0.000 13.225 0.000
SIGMAV(1)(3 ,1) 0.000 0.000 7.988 0.000 SIGMAV(1)(3 ,1) 0.000 0.000 3.886 0.000
SIGMAV(1)(3 ,2) 0.000 0.000 10.641 0.000 SIGMAV(1)(3 ,2) 0.000 0.000 9.948 0.000
SIGMAV(1)(3 ,3) 0.001 0.000 12.345 0.000 SIGMAV(1)(3 ,3) 0.001 0.000 13.438 0.000
SIGMAV(1)(4 ,1) 0.000 0.000 6.443 0.000 SIGMAV(1)(4 ,1) 0.000 0.000 -6.053 0.000
SIGMAV(1)(4 ,2) 0.000 0.000 8.174 0.000 SIGMAV(1)(4 ,2) -0.002 0.000 -11.088 0.000
SIGMAV(1)(4,3) 0.000 0.000 10.003 0.000 SIGMAV(1)(4,3) -0.001 0.000 -4.579 0.000
SIGMAV(1)(4 ,4) 0.000 0.000 11.806 0.000 SIGMAV(1)(4 ,4) 0.016 0.012 13.183 0.000
SIGMAV(2)(1 ,1) 0.000 0.000 22.363 0.000 SIGMAV(2)(1 ,1) 0.000 0.000 20.459 0.000
SIGMAV(2)(2 ,1) 0.000 0.000 4.222 0.000 SIGMAV(2)(2 ,1) 0.000 0.000 9.127 0.000
SIGMAV(2)(2 ,2) 0.000 0.000 20.119 0.000 SIGMAV(2)(2 ,2) 0.000 0.000 16.985 0.000
SIGMAV(2)(3 ,1) 0.000 0.000 13.275 0.000 SIGMAV(2)(3 ,1) 0.000 0.000 2.844 0.004
SIGMAV(2)(3 ,2) 0.000 0.000 14.528 0.000 SIGMAV(2)(3 ,2) 0.000 0.000 5.323 0.000
SIGMAV(2)(3 ,3) 0.000 0.000 20.189 0.000 SIGMAV(2)(3 ,3) 0.000 0.000 23.146 0.000
SIGMAV(2)(4 ,1) 0.000 0.000 8.150 0.000 SIGMAV(2)(4 ,1) 0.000 0.000 -6.931 0.000
SIGMAV(2)(4 ,2) 0.000 0.000 11.553 0.000 SIGMAV(2)(4 ,2) 0.000 0.000 -15.475 0.000
SIGMAV(2)(4 ,3) 0.000 0.000 14.248 0.000 SIGMAV(2)(4 ,3) 0.000 0.000 -2.924 0.003
SIGMAV(2)(4 ,4) 0.000 0.000 17.014 0.000 SIGMAV(2)(4 ,4) 0.004 0.002 18.278 0.000
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