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Abstract

Various authors have studied variations of the inverse Galois problem over Q, which,
in its classical form, asks for a finite group G if there exists a number field K such
that Gal(K/Q) ≃ G. In [5, Conjecture 1.2] Boston and Markin conjecture that every
group G should appear as the Galois group of a number field which ramifies at exactly d
primes (counting the infinite prime), where d denotes the minimal number of generators
of the abelianisation of G. They prove the validity of their conjecture for all groups up
to order 32 [5, Theorem 3.1]. In Table 5.1 we provide examples of this conjecture for
groups with cyclic abelianisation and we illustrate how to use these to construct examples
of order larger than 32. Harbater [13, Theorem 2.23], Hoelscher [16, Corollary 2.1.6] and
Pollak [27, Proposition 2.1.8] give a description of the Galois groups that can appear for
number fields where a single predetermined prime is ramified. They respectively focus
on the primes 2, 3 and 5. We give a similar description of the possible Galois groups
that can appear for the primes 7 ≤ p ≤ 19 in Proposition 3.3.3. Furthermore, Pollak
proved for primes 2 ≤ p < 37 that, if G is a Galois group of a number field where only p
ramifies and |G| < 660, then G must be solvable [27, Theorem 2.1.10]. We strengthen
this result in Theorem 4.1.3 by implementing one of the approaches of Pollak in GAP [11]
and obtaining an improved range of 2 ≤ p < 101 and |G| being one of the orders in Table
4.1.
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Conventions and notation

Throughout this thesis G will be a finite group and K a number field unless stated
otherwise. If K is Galois over Q and Gal(K/Q) ≃ G we say that K is a G-extension
and that K realises G. When we speak of ramification in a number field we will be
explicit about whether or not we are talking about a finite prime, i.e. a prime p ∈ Z,
or the infinite prime ∞ of Q. More about this distinction can be found in Section 2.2.
Following the notation of Harbater [13], Hoelscher [16] and Pollak [27], we will use πA(Up)
to denote the collection of finite groups G for which there exists a Galois extension K/Q
where the only ramified finite prime is p. It is possible that such K also ramifies at the
infinite prime.
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Chapter 1

Introduction

1.1 What is the inverse Galois problem?

For a finite groupG, the inverse Galois problem overQ asks if there is a Galois extensionK
of Q such that Gal(K/Q) ≃ G. This question remains unsolved in its full generality at this
point, but some families of groups have been dealt with. The first systematic approach to
solving the problem was due to Hilbert in 1892 [15]. For any n ≥ 1, he showed that An
and Sn can be realised as Galois groups over Q using his Irreducibility Theorem. We will
see in Theorem 1.2.2 that all finite abelian groups are realisable as Galois groups over Q.
This result has been extended by Scholz and Reichardt [30] to all finite nilpotent groups
of odd order. In 1954 Shafarevich [31] managed to extend this even further and showed
that all finite solvable groups can be realised as Galois groups over Q.

1.2 Additional restrictions on ramified primes

Any non-trivial extension K/Q must ramify at at least one rational prime. Hence, if
we manage to realise some group G as a Galois group over Q we can wonder how many
primes ramify in the G-extension we found. Furthermore, among all the G-extensions out
there, we wonder which of them has the least amount of ramified primes (counting the
infinite prime)?

Definition 1.2.1. LetG be a finite group. Let {Ki}i∈I be the collection ofG-extensionsKi

where I is some index set and let mi denote the number of ramified primes in the ex-
tension Ki (counting the infinite prime). We define m(G) to be the minimum of the
set {mi}i∈I .

Additionally, for what groups G can we obtain G-extensions which ramify at a single
prime? Various authors have already provided partial answers to these questions. Boston
and Markin resolve the matter for abelian groups in [5, Theorem 1.1] and we give (a more
detailed version of) their proof in Section 2.4.

Theorem 1.2.2. Let G be a non-trivial finite abelian group with a minimal generating
set of d generators. Then there exists a totally real G-extension of Q which ramifies at
exactly d finite primes. Furthermore, there is no G-extension which ramifies at fewer
than d primes including ramification at the infinite prime.

For a non-abelian group G, let d denote the minimal number of generators of the
abelianisation Gab. Theorem 1.2.2 tells us that we can find a Gab-extension of Q which
ramifies at exactly d primes. The Galois correspondence readily gives the following lower
bound for m(G).
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Corollary 1.2.3. Let G be any finite group and d the minimal number of generators
of Gab. Then m(G) ≥ d.

The proof of this follows quickly from Lemma 2.3.31 once we develop some standard
results. It is conjectured in [5] that the lower bound is actually attained, i.e. we can also
find a G-extension ramifying at exactly d primes.

Conjecture 1.2.4. [5, Conjecture 1.2] Let G be a non-trivial finite group and d ≥ 1 the
minimal number of generators of the abelianisation Gab. Then there exists a G-extension
of Q which ramifies at exactly d primes (counting the infinite prime) and there is no such
extension ramifying at less than d primes.

Note that Corollary 1.2.3 proves the last sentence of Conjecture 1.2.4. In [25] the
validity of this Conjecture has been checked by Nomura for 3-groups of order less than
or equal to 35. The most general result is by Kisilevsky and Sonn [18] which states that
Conjecture 1.2.4 holds for all p-groups in the class which is generated by cyclic p-groups
and is closed under direct products, wreath products and rank-preserving quotients. In [5]
Boston and Markin proved that Conjecture 1.2.4 holds for all groups of order less than
or equal to 32.

1.3 Related results

In this thesis we have studied and adapted the results of Harbater [13], Hoelscher [16]
and Pollak [27]. They studied finite extensions of Q where only a single predetermined
finite prime p was allowed to ramify. Each of them provided results on the possible Galois
groups that can occur in this setting for respectively the primes 2 [13, Theorem 2.23], 3
[16, Corollary 2.1.6] and 5 [27, Proposition 2.1.8]. In Chapter 3 we provide a similar
characterisation for the primes 7 ≤ p < 23 in Proposition 3.3.3. In some instances we also
give more detailed versions of the proofs of their results. Furthermore, we explain how
additional assumptions on the extension K provide stronger results.

For a prime 2 ≤ p < 37 and a group G ∈ πA(Up) with |G| < 660, Pollak proved that G
must be solvable [27, Theorem 2.1.10]. In Chapter 4 we implement ideas of Pollak in [11,
GAP] to prove that the same holds for primes 2 ≤ p < 101 and larger orders than 660.
We also explain how Pollak adapted results of Harbater and Hoelscher to obtain his result.

Since the symmetric and alternating groups have cyclic abelianisations, Conjecture 1.2.4
suggests that they should be realisable as Galois groups over Q by some number field K
with only a single ramified prime (counting the infinite prime). Jones and Roberts prove
the following.

Theorem 1.3.1. [17, Chapter 4]

• p = 101 is the smallest prime such that S5 ∈ πA(Up);

• p = 197 is the smallest prime such that S6 ∈ πA(Up);

• p = 163 is the smallest prime such that S7 ∈ πA(Up);

• p = 653 is the smallest prime such that A5 ∈ πA(Up);

• p = 1579 is the smallest prime such that A6 ∈ πA(Up).
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Extending our pool of examples for symmetric groups, Pollak gives a table which
contains polynomials for all n ≤ 30 of which the splitting fields are Sn-extensions of Q
which ramify at a single finite prime. This proves the following result.

Theorem 1.3.2. [27, Example 2.1.21] For all n ∈ N with n ≤ 30 we can find a prime p
such that the symmetric group Sn lies in πA(Up).

Pollak also provides examples of A7, A8, A9 and A10 extensions of Q ramified at a
single prime. In Chapter 5 we use the lmfdb [20] database as well as [11, GAP] to provide
a list of groups G with cyclic abelianisation together with, for every group, a totally
real number field K which ramifies at a single finite prime such that Gal(K/Q) ≃ G.
Because the extensions are totally real we know the infinite prime is not ramified and so
these groups are examples of the Boston-Markin Conjecture. We proceed to illustrate a
method which allows us to construct examples of the Boston-Markin Conjecture of order
larger than 32.

8



Chapter 2

Prerequisites

In this chapter we provide the necessary background in algebraic number theory. Our
results and methods heavily rely on Galois theory and the theory of number fields so a
comprehensive guide to the required results of these fields is given. Many of our arguments
are of a group theoretic nature so we start by providing a plethora of facts about groups.
In some instances a direct proof is given, but more often a reference to a proof is provided.

2.1 Group theory

We start our prerequisites on group theory with a collection of fundamental results.

Theorem 2.1.1. [7, Section 3.2, Theorem 8, Lagrange] Let G be a group and H any
subgroup. Then the order of H divides the order of G

Theorem 2.1.2. [7, Sec. 3.2, Theorem 11, Cauchy] Let G be any group and p some
prime dividing the order of G. Then there exists a subgroup H of G with order p.

Theorem 2.1.3. [7, Section 2.3, Theorem 7] Let G be a cyclic group of order n and d
a divisor of n. Then G has exactly one subgroup of order d and this subgroup is again
cyclic.

Theorem 2.1.4. [7, Section 3.3, Theorem 16, First Isomorphism Theorem] For any
group morphism ϕ : G→ H the kernel ker(ϕ) is normal in G and G/ker(ϕ) ≃ im(ϕ).

Theorem 2.1.5. [7, Section 3.3, Theorem 19, Third Isomorphism Theorem] Let G be a
group and H and K normal subgroups in G with K ⊂ H. Then H/K is normal in G/K

and G/K⧸H/K ≃ G/H.

Theorem 2.1.6. [7, Section 3.3, Theorem 20, correspondence theorem] Let G be a
group, N ⊴ G some normal subgroup and define Ḡ := G/N . Then there is a bijec-
tion between the set of subgroups A ⊂ G which contain N and the set of subgroups Ā ⊂ Ḡ
through the projection map π : G ↠ G/N . In particular every subgroup Ā of Ḡ is of the
form A/N for some A ⊂ G and furthermore we have that Ā is normal in Ḡ if and only
if A is normal in G.

Definition 2.1.7. LetG be a group. A commutator ofG is an element of the form ghg−1h−1

for some g, h ∈ G. The commutator subgroup of G is the subgroup generated by all the
commutators of G. We denote this subgroup by [G,G]. Furthermore, the abelianisation
of G is the quotient group G/[G,G] and we denote this by Gab.
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Proposition 2.1.8. [7, Section 5.4, Proposition 7] Let G be a group. The abelianisa-
tion Gab of G is an abelian group.

Proposition 2.1.9. Let G,H be finite groups. Then (G×H)ab ≃ Gab ×Hab.

Proof. For some element x ∈ [G×H,G×H] we know that

x =(g1, h1)(g2, h2)(g1, h1)
−1(g2, h2)

−1

=(g1, h1)(g2, h2)(g
−1
1 , h−1

1 )(g−1
2 , h−1

2 )

=(g1g2g
−1
1 g−1

2 , h1h2h
−1
1 h−1

2 ).

Here the latter is an element of [G,G]× [H,H], thus [G×H,G×H] = [G,G]× [H,H].

Note that (G×H)ab := G×H⧸[G×H,G×H] and G
ab ×Hab := G/[G,G]×H/[H,H]

and that we have the surjective morphism

ϕ : G×H ↠ Gab ×Hab,

where ϕ maps a tuple (g, h) to (g (mod [G,G]), h (mod [H,H])). Since the kernel of ϕ
is [G,G]× [H,H] = [G×H,G×H] we find with the First Isomorphism Theorem that

(G×H)ab ≃ Gab ×Hab.

Proposition 2.1.10. Let G and H be cyclic groups or respective orders n and m. Then
the product of G×H is cyclic if and only if gcd(n,m) = 1.

Proof. Firstly, |G×H| = |G||H| = nm, which means that G×H is cyclic if and only if it
admits an element of order nm. Let g and h denote generators of G and H with orders n
and m respectively. If gcd(n,m) = 1 we know that gm has order n and hm has order n,
which tells us that (g, h) has order nm in G×H proving the first implication.

Now suppose that gcd(n,m) > 1 and let (gi, hj) be an arbitrary element of G × H
for i < n and j < m. Since

(gi, hj)lcm(nm) = ((gi)lcm(nm), (hj)lcm(nm)) = (e, e)

and lcm(n,m) = nm
gcd(nm)

< nm we see that any element of G × H has an order strictly
smaller than nm, which proves the other implication.

Definition 2.1.11. Let N and H be groups and ϕ : H → Aut(N) be some group
homomorphism. The semi-direct product of N and H with respect to ϕ is the group
with N ×H as an underlying set and the following composition. For (n1, h1) and (n2, h2)
in N×H we define (n1, h1)·(n2, h2) := (n1ϕh1(n2), h1h2). We denote this group by N⋊ϕH.

Remark 2.1.12. The direct product of two groups N and H is a special case of the semi
direct product. If we consider ϕ : H → Aut(N) to be the trivial morphism which maps
all h ∈ H to the automorphism id : N → N we see that the composition of the semi
direct product is the same as the usual composition for the direct product.

Theorem 2.1.13. [7, Section 7.4, Theorem 39, Schur-Zassenhaus] Let G be a finite group
and N ⊴ G some normal subgroup. If the order of N is coprime to the order of G/N
then G ≃ N ⋊G/N .
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Theorem 2.1.14. [12, arts. 90-91] The multiplicative group (Z/2kZ)× is isomorphic to
the product of the cyclic groups Z/2Z× Z/(2k−2)Z of order 2k−1 for all k ≥ 2.

Lemma 2.1.15. [14, Theorem 129] The group (Z/nZ)× is cyclic if and only if n is 1, 2, 4, pk

or 2pk where p is an odd prime and k > 0. In general the order of (Z/nZ)× is ϕ(n) and
so for odd primes p the group (Z/pkZ)× has order

ϕ(pk) = pk−1(p− 1) = pk − pk−1.

We will later see that p-groups play a big role in this thesis, so it is only right to
introduce them properly.

Definition 2.1.16. A p-group is a group of order pn for some n ≥ 0.

Proposition 2.1.17. [2, Theorem 7.2.8] Non-trivial p-groups have non-trivial centers.

Lemma 2.1.18. Let G be a non-trivial p-group of order pn and let Z denote the center
of G. Then G admits a normal subgroup H ⊂ Z of order p.

Proof. Since the center is a subgroup of G we find with the Theorem of Lagrange (2.1.1)
that the order of the center divides the order of G. By Proposition 2.1.17 the center Z is
a non-trivial subgroup and so its order is not 1. Since the order of G is pn this means p
divides the order of Z. By the Theorem of Cauchy (2.1.2) we know that Z admits a
subgroup H of order p and since this H lies in the center of G it is normal in G.

Theorem 2.1.19. Let G be a p-group with order |G| = pn. Then G admits a normal
subgroup of order pk for all 0 ≤ k ≤ n.

Proof. We will prove this by induction on k. Note that if k = n there would be nothing
to prove and so we can assume k < n. Firstly, for k = 0 we have the trivial subgroup or
order p0 which is indeed normal in G. Now, assuming that we have a normal subgroup of
order pk for some 0 ≤ k < n, we will show there is one of order pk+1 as well. Let H ⊴ G
be such a normal subgroup of order pk and consider the quotient group G/H whose order
is pn

pk
= pn−k. Since k < n we see that G/H is again a non-trivial p-group and so by

Lemma 2.1.18 we see that G/H admits a normal subgroup, say K, of order p. With the
correspondence theorem (2.1.6) we know there is some normal subgroup K ⊴ G which is
projected to K of order p · pk = pk+1, since K was of order p and the projection map to
the quotient is pk − to− 1.

Notation. Let G be some finite group and g ∈ G some element. Then the order of g is
denoted by ord(g).

Definition 2.1.20. For a group G and a prime p let p(G) denote the subgroup generated
by all p-subgroups of G. We call p(G) the quasi-p part of G and say that G is a
quasi p-group if G = p(G).

Lemma 2.1.21. Let G be a group and p(G) its quasi-p part. Let G(p) denote the subgroup
of G generated by all elements of order a power of p. Then p(G) = G(p).

Proof. First we consider a generator x ∈ G(p) with a p-power order and we will show
that x ∈ p(G), since then all of G(p) ⊂ p(G). The subgroup ⟨x⟩ ⊂ G has the same order
as x and hence is a p-subgroup, which then contributes to generating p(G) by definition.
So x ∈ p(G). Conversely, any generating element of p(G) lies in some p-subgroup of G
and hence has an order which divides the order of this p-subgroup, i.e. it has an order
which is a power of p. So any generator of p(G) is a generator of G(p) which completes
the proof.
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Definition 2.1.22. For a group G and subgroup H we say that H is characteristic in G
if σ(H) = H for all σ ∈ Aut(G).

Lemma 2.1.23. For a group G the quasi p-part of G is characteristic in G.

Proof. We consider any p-subgroup and see that it must be mapped to any other p-
subgroup of the same group under any automorphism. This means the generating set
of p(G) is permuted and so p(G) is fixed under any σ ∈ Aut(G).

Lemma 2.1.24. Let G be a group and H some characteristic subgroup in G. Then H is
normal in G.

Proof. If a subgroup H ⊂ G is fixed by any automorphism σ ∈ G it is in particular fixed
by the automorphism which, for some fixed g ∈ G, takes any h ∈ G to ghg−1. In other
words, we have that gHg−1 = H which means that H is normal in G.

Combining Lemma’s 2.1.23 and 2.1.24 gives the following corollary.

Corollary 2.1.25. For a group G the quasi p-part of G is normal in G.

Definition 2.1.26. Let G be a group. A Sylow p-subgroupH is a maximal p-subgroup,
that is, there is no p-subgroup of G which strictly contains H.

Definition 2.1.27. Let G be a group and S ⊂ G a subset. Then the normaliser NG(S)
is defined as the following subgroup of G:

NG(S) = {g ∈ G | gSg−1 = S}.

Theorem 2.1.28. [7, Section 4.5, Theorem 18, Sylow Theorems] Let G be a group and p
a prime dividing |G| with multiplicity n such that |G| = pnm. Let np denote the number
of Sylow p-subgroups of G.

1. There exists a Sylow p-subgroup of G with order pn.

2. All Sylow p-subgroups are conjugate to each other.

3. (a) np|m
(b) np ≡ 1 (mod p)

(c) For any Sylow p-subgroup P we have np = |G : NG(P )|.

Corollary 2.1.29. It follows from Item 2 of Theorem 2.1.28 that every Sylow p-subgroup
has the same maximal size. Furthermore, saying that np = 1 is equivalent to saying that
the Sylow p-subgroup is a normal subgroup by part c of Item 3. Finally, any p-subgroup
will be contained in one of the Sylow p-subgroups due to their maximality.

Proposition 2.1.30. Let G be a finite group, p any prime dividing |G| and p(G) the
quasi p-part of G. Then p does not divide the order of G/p(G).

Proof. Say the order of G is |G| = pkm for some k ≥ 0 and m ≥ 1 coprime to p. Then by
Theorem 2.1.28 part 1 there exists a Sylow p-subgroup H ⊂ G of order pk. In particular
this subgroup will also be a subgroup of p(G) since it is part of the generating set as it
is a p-group. By the Theorem of Lagrange (2.1.1) we find that the order of H divides
the order of p(G) and so the order of p(G) contains a factor pk, i.e. |p(G)| = pkl for

some l ≥ 1. Then we find that |G/p(G)| = pkm
pkl

= m
l
. Note that m

l
∈ N, since |p(G)| must

divide |G|, again by Lagrange (2.1.1). Since m is taken to be coprime to p we have the
desired result.
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Lemma 2.1.31. Let G be a finite group. Then the order of p(G) is a power of p if and
only if G has exactly one Sylow p-subgroup.

Proof. AssumingG has one Sylow p-subgroup, sayH, then thisH contains all p-subgroups
of G and so H = p(G) which means the order of p(G) is a power of p and we are done.
If on the other hand there are more Sylow p-subgroups, say Hi for some 1 ≤ i ≤ k
with k ≥ 1, then p(G) will strictly contain all of them. Strictly, because we assume all Hi

to be distinct and so whatever they generate will be strictly larger than any of them. But
now the order of p(G) cannot be a prime power since this would imply the existence of
a p-subgroup of G which strictly contains a (or in fact all) Sylow p-subgroups. This would
contradict the maximality of the Hi’s.

Lemma 2.1.32. Let G be a finite group and N some normal subgroup. Then

p(G)/p(N) ≃ p(G/p(N)).

Proof. We first show that p(G)/p(N) ⊂ p(G/p(N)) by showing that a generating set
of p(G)/p(N) is contained in p(G/p(N)). By Lemma 2.1.21 we know that a generating
set of p(G) is the collection of all elements g ∈ G whose order is a power of p. It then
follows that p(G)/p(N) is generated by the classes ḡ := g (mod p(N)) of these generators
of p(G). If the order of g is pk then the order of ḡ is pl for some l ≤ k and so all these
classes ḡ are contained in p(G/p(N)) which concludes the first inclusion.

The inclusion p(G/p(N)) ⊂ p(G)/p(N), is proved analogously by showing that a gen-
erating set of p(G/p(N)) is contained in p(G)/p(N). Similar to above, p(G/p(N)) is
generated by all classes ḡ ∈ G/p(N) whose order is a power of p, say ord(ḡ) = pk. In
order to show ḡ ∈ p(G)/p(N), it is enough to find a representative of ḡ whose order is
also a power of p. Let g be some representative of ḡ. Because ḡp

k
= 1 in G/p(N) we know

that gp
k ∈ p(N). Furthermore, the order of ḡ divides the order of g, say ord(g) := m = pln

where gcd(pl, n) = 1 and l ≥ k. We now write rpl + sn = 1 for integers r and s.
Then gsn = g1−rp

l
= g · g−rpl where g−rp

l ∈ p(N) because it is a power of gp
k
which

already lies in p(N). Hence gsn and g differ by an element of p(N) and so gsn is also a
representative of ḡ. Since (gsn)p

l
= (gnp

l
)s = 1 we know that the order of gsn must be a

divisor of pl and hence again a power of p as desired. This concludes the second inclusion.

Lemma 2.1.33. Let G be a group, H ⊴ G a normal subgroup and K ⊂ H some charac-
teristic subgroup in H. Then K is normal in G.

Proof. Let g ∈ G. Because H is normal in G we already know that gHg−1 = H. But
this means that the mapping g · g−1 : H → H, which maps some h ∈ H to ghg−1,
is an automorphism of H, since the map g−1 · g : H → H is its inverse. Because K
is characteristic in H it is, by definition, fixed by any automorphism of H and so we
find gKg−1 = K as desired.

Definition 2.1.34. A group G is said to admit a subnormal series of length n if it
admits a series of subgroups

1 = G0 ⊴ G1 ⊴ ... ⊴ Gn = G

such that Gi is normal in Gi+1 for all i.

Definition 2.1.35. A group G is said to admit a composition series if it admits a
subnormal series of finite length such that every Gi is a maximal proper normal subgroup
of Gi+1. Equivalently we ask all quotients Gi+1/Gi to be simple.
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Theorem 2.1.36. [7, Section 3.4, Theorem 22, Jordan-Hölder] Any two composition
series of a group have the same length and quotients up to permutation and isomorphism.

Similar to p-groups, solvable groups will play a big role.

Definition 2.1.37. A group G is said to be solvable if it admits a subnormal series
where all the quotients are abelian.

Lemma 2.1.38. Let G ̸= 1 be an abelian simple group. Then G is cyclic of prime order.

Proof. Assume G to be infinite. Since G is simple we only have 1 and G as normal sub-
groups and since G is abelian we know that every subgroup will be normal. Because G ̸= 1
there is some 1 ̸= x ∈ G and by the above two comments we then know that ⟨x⟩ must
either be trivial or all of G. We assumed x ̸= 1 and so G = ⟨x⟩ is cyclic. In particular
this means that x has infinite order. Again ⟨x2⟩ will be normal in G and so it will have
to be 1 or all of G. Either scenario would imply that the order of x is finite even though
we reasoned that the order of x must be infinite and so. We conclude that G must be
finite and so that x must have a finite order. If ord(x) = n for some composite n, then for
any prime p which divides n we would get a proper non-trivial subgroup generated by xp

contradicting once again that there are no non-trivial subgroups. We conclude that G is
cyclic and indeed of prime order.

Lemma 2.1.39. For a finite group G we can equivalently say that G is solvable if it
admits a composition series all of whose quotients are cyclic and of prime order.

Proof. Given a finite solvable group we know it admits a subnormal series (of finite length)
where all the quotients are abelian. We can refine this subnormal series to a composition
series by inserting normal subgroups. Note that the new quotients we obtain by inserting
these groups stay abelian, because they are either subgroups of abelian groups or quo-
tients of abelian groups. Now these quotients are abelian and simple and hence by Lemma
2.1.38 cyclic of prime order.

Conversely, if G admits a composition series where all quotients are cyclic (and of prime
order) then they are in particular abelian and so G is solvable.

Definition 2.1.40. Let G be any group. Then a chief series is a series of normal
subgroups

1 = G0 ⊴ G1 ⊴ .. ⊴ Gn = G,

where Gi ⊴ G for all i and Gi is maximal in Gi+1 with respect to all normal subgroups
in G, i.e. there is no normal subgroup H ⊴ G such that Gi ⊂ H ⊂ Gi+1. We call the
quotients Gi+1/Gi chief factors

Lemma 2.1.41. [22, Lemma 9.1.8] Every finite group G admits a chief series.

Lemma 2.1.42. [22, Lemma 9.1.10] Let G be a group which admits a chief series
and N ⊴ G some normal subgroup. Then we can find a chief series with N in it.

Lemma 2.1.43. [29, Page 4] Let G be any group and

1 = G0 ⊴ G1 ⊴ .. ⊴ Gn = G

a chief series for G. If a chief factor Gi+1/Gi is solvable it is a vector space over Z/piZ
for some prime pi.
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Theorem 2.1.44. [19, Lemma, p.439] Let G be group which admits a chief series. Then
the chief factors are unique up to isomorphism, independent of the particular series that
they are constructed from.

Lemma 2.1.45. Let G be a finite solvable group and N ⊴ G some non-trivial normal
subgroup. Then there exists a subgroup H ⊂ N which is normal in G, such that the
quotient N/H is of the form (Z/pZ)n for some prime p and n ≥ 1.

Proof. Because G is finite we find it has a chief series with Lemma 2.1.41 and so, with
Lemma 2.1.42, we find a chief series where N is one of the terms, say

1 = G0 ⊴ G1 ⊴ .. ⊴ N = Gi ⊴ .. ⊴ Gn = G.

We claim that H := Gi−1 will work and so consider the quotient N/H. Since G is
solvable, we know that N is solvable and hence any quotient of N is also solvable. With
Lemma 2.1.43 we then know that N/H is a Z/pZ-vector space for some prime p. Since G
is finite, N and any quotient of N will also be finite, so N/H is a finite vector space
over Z/pZ, which means it has to be of the form (Z/pZ)n where n is the dimension
of N/H as a vector space. Note that N/H is non-trivial, i.e. n ≥ 1, since N is non-trivial
and we take H to be a proper subgroup of N .

Theorem 2.1.46. [10, Feit-Thompson] Every finite group of odd order is solvable.

Theorem 2.1.47. [7, Section 19.2, Theorem 1, Burnside] If G is a finite group of or-
der paqb for primes p and q and a, b ≥ 0 then G is solvable.

Theorem 2.1.48. [28, Chapter 5] Let G and K be two groups, H ⊂ G any subgroup
and N ⊴ G any normal subgroup.

• If G is solvable H is solvable;

• If G solvable and there is a homomorphism G↠ K onto K then K is also solvable;

• Equivalently with the previous (due to the First Isomorphism Theorem), if G solvable
then so is G/N ;

• G is solvable if and only if N is solvable and G/N is solvable;

• If G and K are solvable so is G×K;

2.2 Number fields

Given a field extension L/K we can consider L as a K-vector space. Therefore, we can
speak of the dimension of L as a K-vector space.

Definition 2.2.1. Let L/K be a field extension. We say that L is a finite extension
of K if L is finite-dimensional as a K-vector space. The dimension of L over K is called
the degree of L over K and we denote this by [L : K].

Lemma 2.2.2. [3, Corollary 6.4.3] Let L/K be a finite extension of fields. Then there
exists a finite number of α1, .., αn ∈ L such that L = K(α1, .., αn). Assume the αi’s to be
a minimal generating set and let di be the degree of αi over K for 1 ≤ i ≤ n. Then the
degree is bounded as [L : K] ≤ d1 · .. · dn. In particular, if gcd(di, dj) = 1 for all i ̸= j we
have [L : K] = d1 · .. · dn.
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Definition 2.2.3. A number field K is a finite extension of Q. We say that K is a
non-trivial number field if it is not Q itself or, equivalently, if [K : Q] > 1. A subring
of K is called a number ring.

By Lemma 2.2.2 a number field is a field extension of Q of the form Q(α1, .., αn) for
some αi ∈ C. However, a number field can be represented in a much simpler form as
Corollary 2.2.9 indicates.

Definition 2.2.4. Let K be a field. An extension L/K of fields is said to be simple
if L = K(x) for some x ∈ L.

Definition 2.2.5. Let K be a field and f ∈ K[X] a monic polynomial of degree n > 0.
A field extension L of K is called a splitting field of f over K if

• There exist x1, .., xn ∈ L such that f =
∏n

i=1(X − xi) and

• L = K(x1, .., xn).

Definition 2.2.6. Let L/K be a finite field extension. Then an element x ∈ L is called
separable over K if its minimal polynomial f ∈ K[X] has no multiple zeros in a splitting
field of f . The extension L is called separable over K if every element is separable. The
element x is called inseparable if f has x as a multiple zero.

Theorem 2.2.7. [3, Theorem 9.4.1] Let L/K be a finite and separable field extension,
say L = K(α1, .., αr). Then the following hold:

1. There are only finitely many intermediate fields.

2. L is a simple extension, i.e. L = K(α).

Proposition 2.2.8. [3, Proposition 8.3.5] Let L/K be a finite field extension and x ∈ L
with f its minimal polynomial over K. Then x is inseparable over K if and only if K has
positive characteristic and the derivative of f is identically zero.

We see from Proposition 2.2.8 that every extension of Q is separable, since Q has
characteristic zero. Combining Theorem 2.2.7 with the fact that number fields are finite
extensions of Q we get the following already mentioned result.

Corollary 2.2.9. All number fields are simple extensions of Q.

The integers Z form a subring of Q with many nice properties. The field of fractions
of Z is equal to Q and Z is integrally closed in Q. Furthermore, Z is a Noetherian
ring, which means it satisfies the ascending chain condition on ideals and it has Krull
dimension 1, which is to say that every non-zero prime ideal is a maximal ideal. Such
well-behaved rings have been given the name of a Dedekind domain and it turns out
every number field has a Dedekind domain as a subring, which is constructed out of Z.

Definition 2.2.10. A Dedekind domain A is a ring which is a domain that is not a
field for which one of the following equivalent conditions holds:

1. Every non-zero proper ideal I ⊂ A factors into prime ideals I = pe11 · .. · perr where
the pi ⊂ A are distinct for all i;

2. The ring A is Noetherian and the localisation at each maximal ideal is a discrete
valuation ring;
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3. Every non-zero fractional ideal is invertible;

4. The ring A is integrally closed in its field of fractions, Noetherian and of Krull
dimension 1 (every non-zero prime is maximal);

5. For any two ideals I, J we have that I ⊂ J if and only if J divides I as ideals, i.e.
there exists an ideal H such that I = JH.

Definition 2.2.11. Let K be a number field. We call the integral closure of Z inside K
the ring of integers of K and we will denote this by OK .

Proposition 2.2.12. [33, Theorem 3.20] The ring of integers OK of a number field K is
a Dedekind domain.

Indeed, a Dedekind domain has far more characterisations and more information can
be found in [1, Chapter 9]. We will primarily be interested in the ideal factorisation
mentioned in Condition 1 of Definition 2.2.10. It can be shown that this factorisation
is unique up to ordering of factors. In particular, we want to look at the setting where
we have some number field K and a prime ideal pZ ⊂ Z for some prime number p.
Since Z ⊂ OK we can consider pOK , which is the ideal generated by p in the ring of
integers OK . This new ideal need not be a prime ideal, but we know with Proposition
2.2.12 that it will uniquely decompose as a product of prime ideals, i.e. pOK = pe11 · .. ·perr
for distinct primes pi ⊂ OK . We say that a prime ideal p ⊂ OK lies over a prime
number p ∈ Z if p ∩ Z = pZ.

Lemma 2.2.13. Let K be a number field with ring of integers OK and p some rational
prime. The primes p ⊂ OK lying over p are exactly those which appear in the decompos-
ition of pOK.

Proof. Let pOK = pe11 · .. · perr for distinct primes pi ⊂ OK . Then pZ ⊂ pOK ⊂ pi for all i.
From this we find that pZ ⊂ pi∩Z where the latter is again an ideal from Z (even a prime
ideal although we do not need this). Now note that Z is a Dedekind domain and hence all
primes are maximal. Since pZ is prime in Z, hence maximal, and pZ ⊂ pi∩Z, we conclude
that pZ = pi∩Z. Now consider some prime p ⊂ OK such that p∩Z = pZ. Then pOK ⊂ p
and since we have a decomposition pOK = pe11 ·..·perr we find that pe11 ·..·perr ⊂ p. Because p
is a prime ideal we find that pi ⊂ p for some i and, again, by OK being a Dedekind domain
and primes being maximal we have equality.

We introduce some terminology for the different decomposition patterns of primes
which can occur in an extension of number fields. In particular, we define what it means
for a prime p ∈ Z to ramify in a number field K. We also explain what we mean by the
infinite primes of a number field and what it means for them to ramify.

Definition 2.2.14. Let L/K be an extension of number fields and let p ⊂ OK be a prime
in K such that pOL = pe11 · .. · perr . We say the pi have ramification degrees ei and
inertia degrees fi := [OL/pi : OK/p].

We have the following fundamental identity.

Proposition 2.2.15. [33, Theorem 3.4] Let L/K be a separable extension and p ⊂ OK

a prime in K which decomposes in OL as pOL = pe11 · .. · perr . Then

[L : K] =
r∑
i=1

eifi.
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Definition 2.2.16 discusses the possible ways in which a prime can decompose in an
extension of number fields. In the rest of this thesis we will be working primarily with
the case where the base field K is Q and p is some prime p ∈ Z.

Definition 2.2.16. Again, let L/K be an extension of number fields and let p ⊂ OK be
a prime in K such that pOL = pe11 · .. · perr . The ideal pi is called unramified over K

if ei = 1 and if the residue class field extension OL/pi⧸OK/p
is separable. Note that

by [24, Proposition 8.4] we never have to worry about the separability condition in the
definition of pi being unramified, hence we only need to consider whether ei = 1. If ei ̸= 1,
we say pi is ramified and totally ramified if furthermore fi = 1.

We say that a prime p in K is unramified if all pi lying over it are unramified and it
is called ramified otherwise. Furthermore, we say p is totally ramified if r = 1 and the
unique prime pi lying over p is totally ramified. We see with Proposition 2.2.15 that in
the case of total ramification we can equivalently say ei = [L : K]. It is possible that p
stays prime, i.e. that pOL is the unique prime above p and in this case we call p inert.
Furthermore, p is said to split completely or is totally split if r = n = [L : K] and
so ei = fi = 1 for all i. We call p nonsplit if r = 1, i.e. if there is a single prime ideal
lying over p.

The extension L/K is called unramified if all primes p of K are unramified in L and
it is called ramified if there is a ramified prime. Furthermore, the extension is totally
ramified is there is a totally ramified prime. Finally, we say that a ramified prime pi is
tamely ramified if ei is not divisible by the prime p over which p lies, i.e. the prime
number which satisfies p ∩ Z = pZ. We call pi wildy ramified otherwise.

For a number field K we can compute a numerical invariant called the discriminant
of K which tells us exactly which primes ramify. To define the discriminant properly we
need the following proposition.

Proposition 2.2.17. [33, Theorem 4.8] Let K be a number field and OK its ring of
integers. Then OK is a finitely generated Z-module and therefore admits a basis. For
some k ≥ 1 we find a basis x1, .., xk ∈ OK such that any x ∈ OK can be uniquely written
as

x =
k∑
i=1

nixi,

with ni ∈ Z.

For some x ∈ OK , we consider the multiplication map Mx : OK → OK which takes
any y ∈ OK to yx. Proposition 2.2.17 tells us that OK admits a Z-basis and given such
a basis we can express this map by an n× n-matrix which we will also denote as Mx.

Definition 2.2.18. Let K be a number field, OK its ring of integers and x1, .., xk ∈ OK

an integral basis for OK . Given some x ∈ OK we define the trace of x to be Tr(x) :=
Trace(Mx).

Definition 2.2.19. Let K be a number field, OK its ring of integers and x1, .., xk ∈ OK

an integral basis for OK . Then the discriminant ∆K of OK is defined to be

∆K := det(Tr(xixj))
n
i,j=1.

Theorem 2.2.20. [33, Theorem 4.14] A rational prime p ramifies in some number field K
if and only if it divides the discriminant ∆K.
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In particular this tells us that ramification is a rare occurrence:

Proposition 2.2.21. Let K be a number field. Then there are only finitely many primes
which ramify in K.

Even though at most finitely many primes ramify we do know that there is always at
least one prime which ramifies.

Theorem 2.2.22. [24, III, Theorem 2.17, Minkowski] For a non-trivial number field K
the discriminant is unequal to ±1.

An immediate corollary is that non-trivial number fields must have a ramifying prime,
since there must be some prime number dividing the discriminant.

Corollary 2.2.23. There are no non-trivial unramified extensions of Q.

A useful computational tool is that the ramification and inertia degrees are multiplic-
ative in towers of number fields.

Lemma 2.2.24. [35, Proposition 52] Let L/K be an extension of number fields with their
respective rings of integers OK ⊂ OL and let p be some rational prime. Let p ⊂ OK be a
prime ideal lying over pZ with ramification degree ep/p and residue degree fp/p. Let q ⊂ OL

a prime ideal lying over p with ramification degree eq/p and residue degree fq/p. Then the
ramification and residue degrees are multiplicative in the sense that

eq/p = eq/p · ep/p;
fq/p = fq/p · fp/p.

An immediate corollary is that ramification is preserved in extensions.

Corollary 2.2.25. Let L/K be an extension of number fields and p a rational prime
which ramifies in K. Then p also ramifies in L.

We conclude this section with two results on number fields where only a single rational
prime ramifies.

Lemma 2.2.26. Let K be a number field which ramifies at a single prime p and let K0

be some non-trivial subextension of Q. Then K0 also ramifies only at p.

Proof. Firstly, if some prime ramifies in K0 it will also ramify in K by Corollary 2.2.25.
Hence, no other prime than p can ramify. Because K0 is non-trivial we also know that
some rational prime has to ramify in K0 by Corollary 2.2.23. We conclude that p and
only p must ramify in K0.

Lemma 2.2.27. Let K be a number field which is only ramified over a single rational
prime p and assume additionally that it is totally ramified over p. Let K0 be some in-
termediate extension and q a prime lying over p in K0. Then K0 is also totally ramified
over p and K is totally ramified over q.

Proof. By Lemma 2.2.26 we know that K0 must also ramify at the prime p and no other
prime. Furthermore, p is totally ramified in K and by definition of total ramification it
only has a single prime lying over it. Since pOK = (pOK0)OK we can be sure that p
only has one prime lying over it in K0 as well. Say pOK = pep/p with residue degree fp/p
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and pOK0 = qeq/p with residue degree fq/p. By Proposition 2.2.15 we already know
that [K0 : Q] = eq/pfq/p and [K : K0] = ep/qfp/q so all we need to prove is that fq/p = 1
and fp/q=1 in order to conclude that K0 and K are totally ramified. But with the
multiplicativity of residue degrees as in Lemma 2.2.24 we have that 1 = fp/p = fp/qfq/p
and so fq/p and fp/q both have to be 1.

We now know what it means for a prime p ∈ Z to ramify in a number field K and also
when this happens. However, there is another type of “prime” to consider.

Definition 2.2.28. Let K be a number field.

• An archimedean place of K is either a real embedding ϕ : K → R (an embedding
of K in C whose image ϕ(K) lies in R) or a pair of complex embeddings (ψ, ψ̄)
with ψ ̸= ψ̄ and ψ : K → C).

• A non-archimedean place of K is a prime ideal p ⊂ OK .

The archimedean places are also referred to as the infinite primes of K and the non-
archimedean ones as the finite primes of K. We also say an archimedean place is real or
complex depending on whether the image of the corresponding embedding is respectively
real or complex.

Definition 2.2.29. Let L/K be an extension of number fields. Let ϕ : K → C be
some embedding (with real or complex image) and let σ : L → C be an embedding such
that σ |K= ϕ : K → C. We say that σ extends or lies over ϕ.

Given an extension of number fields L/K there is also a notion of ramification for real
archimedean places of K.

Definition 2.2.30. Let L/K be an extension of number fields and ϕ : K → R a real
archimedean place. We say that ϕ ramifies in L if there exists a complex archimedean
place σ : L → C which extends ϕ. We say that ϕ is unramified if every place that lies
over ϕ is real.

Proposition 2.2.31. [8, Page 42] Let K be a number field of degree n with r real embed-
dings and s pairs of conjugate complex embeddings into C. Then n = r + 2s.

Proposition 2.2.31 gives us a handle on working out how many real archimedean places
a number field K has. In particular, since that the degree of Q is 1, Proposition 2.2.31
tells us that Q has only one archimedean place and it is real.

Corollary 2.2.32. There is only one infinite prime for Q and we refer to it as ∞.

For a number field K we will want to determine which primes of Q ramify, including
the prime at infinity. From now on, we will refer to ramification in K of a prime p ∈ Z
as ramification of a rational or finite prime to avoid confusion with ramification of the
infinite prime.

2.3 Galois theory

Definition 2.3.1. Let L/K be a field extension and x ∈ L. We say x is algebraic
over kK if there is some monic polynomial f ∈ K[X], such that f(x) = 0. The extension
is said to be algebraic if all x ∈ L are algebraic over K.
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Definition 2.3.2. Let K be a field. We say K is algebraically closed if every non-
constant polynomial in K[X] has a root in K. An algebraic closure of K is an algebraic
extension which is algebraically closed. We denote this by K̄.

Definition 2.3.3. Let L/K be a field extension. The set of field automorphisms of L
form a group, which we denote by Aut(L). It has a subgroup, which consists of those
automorphisms σ ∈ Aut(L) such that σ(x) = x for all x ∈ K. We call this subgroup the
Galois group of the extension L/K and denote it by Aut(L/K).

Theorem 2.3.4. [3, Theorem 8.3.1] Let L/K be a finite field extension. Then the order
of the Galois group is bounded by the degree of the extension, i.e. |Gal(L/K)| ≤ [L : K].
Moreover, if |Gal(L/K)| = [L : K] then every irreducible polynomial f ∈ K[X] with a
zero in L contains precisely deg(f) distinct zeros in L.

Definition 2.3.5. Let L/K be a finite field extension. We say that L/K is a Galois
extension if |Gal(L/K)| = [L : K]. In this case we denote the Galois group by Gal(L/K).

As we will see in Proposition 2.3.7 there are a few more ways to characterise a Galois
extension.

Definition 2.3.6. Let L/K be a finite field extension. Then L is called normal over K
if every irreducible polynomial in K[X] with a zero in L has all of its zeros in L.

Proposition 2.3.7. [3, Theorem 8.3.6] Let L/K be a finite extension. Then the following
three conditions are equivalent.

1. |Gal(L/K)| = [L : K];

2. L/K is a normal and separable extension;

3. L is a splitting field over K of a polynomial f ∈ K[X] with distinct zeros.

Definition 2.3.8. Let K be a field and f ∈ K[X] a polynomial of degree n. Let x1, .., xn
denote the n roots of f in some algebraic closure K of K. We define the Galois group
of f to be the Galois group of the extension K(x1, .., xn)/K. The extension is Galois and
we denote it by Gal(f).

Given a Galois extension, we find a correspondence between intermediate fields of the
extension and subgroups of the Galois group as described in Theorem 2.3.10.

Definition 2.3.9. Let L/K be a field extension and H ⊂ Gal(L/K) a subgroup of the
corresponding Galois group. Then the fixed field of L under H is the intermediate field
of the extension given by the set

{x ∈ L | σ(x) = x for all σ ∈ H}.

We denote this by LH .

Theorem 2.3.10. [3, Theorem 9.2.1, Galois Correspondence] Let L/K be a Galois exten-
sion with Galois group G := Gal(L/K). Then there is a map from the set of intermediate
fields of the extension to the set of subgroups of G. This map, which sends an intermediate
field M to the Galois group Gal(L/M), is an inclusion reversing bijection with the inverse
mapping some subgroup H ⊂ G to the fixed field LH of L under H.
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Let L/K be a Galois extension and M an intermediate field K ⊂ M ⊂ L. Note
that L is the splitting field over K of some polynomial f ∈ K[X] with distinct zeros.
Since K ⊂ M , we can also view f as a polynomial in M [X] and just as well say that L
is a splitting field of f over M . This allows us to conclude that L/M is also a Galois
extension, but in general M need not be Galois over K as well.

Theorem 2.3.11. [3, Theorem 9.2.2] Let L/K be a finite Galois extension. Then an
intermediate extension M with K ⊂ M ⊂ L is normal over K if and only if Gal(L/M)
is a normal subgroup of Gal(L/K). Moreover, we can compute the corresponding Galois
group as

Gal(M/K) ≃ Gal(L/K)/Gal(L/M).

If L/K is a Galois extension it is in particular separable by condition 2 of Proposition
2.3.7. By definition this means every element in L is separable over K, but then also
every element in M is separable over K, so M/K is also separable. We conclude that the
criterion of Theorem 2.3.11 that Gal(L/M) is a normal subgroup of Gal(L/K) is enough
to say that M/K is a Galois extension.

Definition 2.3.12. Let L and M be fields. We define the compositum of L and M to
be the smallest field which contains both L and M and denote it by LM .

Proposition 2.3.13. [7, Section 14.4, Proposition 19] Let L/K be a Galois extension
and K ′/K any extension. Then the compositum LK ′ of L and K ′ is Galois over K ′ with
Galois group Gal(LK ′/K ′) ≃ Gal(L/L ∩K ′).

Corollary 2.3.14. [7, Section 14.4, Corollary 20] Let L/K be a Galois extension and K ′/K
any finite extension. Then

[LK ′ : K] =
[L : K][K ′ : K]

[L ∩K ′ : K]
.

Proposition 2.3.15. [7, Section 14.4, Proposition 21] Let L1 and L2 be Galois extensions
of a field K Then:

1. The intersection L1 ∩ L2 is Galois over K;

2. The compositum L1L2 is Galois over K. The Galois group Gal(L1L2/K) is iso-
morphic to the subgroup

H = {(σ, τ) | σL1∩L2 = τL1∩L2}

of the direct product Gal(L1/K)×Gal(L2/K).

Corollary 2.3.16. [7, Section 14.4, Corollary 22] Let L1 and L2 be Galois extensions of
a field K such that L1 ∩ L2 = K. Then

Gal(L1L2/K) ≃ Gal(L1/K)×Gal(L2/K).

Conversely, if L/K is a Galois extension whose Galois group G is the direct product of
two subgroups of G, say G = Gal(L/K) ≃ G1 × G2 , then L is the compositum of two
Galois extensions L1/K and L2/K with L1 ∩ L2 = K.

Definition 2.3.17. Let n ≥ 1. The complex roots of the polynomial xn − 1 are called
the nth roots of unity.
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The nth roots of unity are of the form e
2πik
n for all 1 ≤ k < n and they form a cyclic

group under multiplication.

Definition 2.3.18. Let n ≥ 1. A generator of the cyclic group of nth roots of unity is
called a primitive root of unity and we will denote such a generator by ζn.

All primitive nth roots of unity can be obtained by taking powers of a primitive nth

root of unity ζkn for all 1 ≤ k < n with gcd(k, n) = 1.

Definition 2.3.19. We define the nth cyclotomic polynomial to be

Φn =
n∏
k=1

gcd(k,n)=1

(x− ζkn).

It can be shown that Φn is irreducible over Q and hence the minimal polynomial of ζn
over Q. Its roots are exactly the primitive nth roots of unity and its degree is ϕ(n), i.e.
Euler’s totient function which counts the positive integers up to n which are coprime to n.
Therefore we also have that [Q(ζn) : Q] = deg(Φn) = ϕ(n).

Definition 2.3.20. We define Q(ζn) to be the nth cyclotomic field.

Note that ζn generates all the nth roots of unity and that all these roots are distinct.
Therefore, we see that Q(ζn) is the splitting field of f = xn−1, which means it is a Galois
extension over Q.

Proposition 2.3.21. [7, Section 14.5, Theorem 26] The Galois group Gal(Q(ζn)/Q) is
isomorphic to (Z/nZ)×.

The set (Z/nZ)× consists of those 1 ≤ k < n for which gcd(k, n) = 1. Any automorph-
ism in Gal(Q(ζn)/Q) is defined on the generator ζn by mapping it to some power ζkn for
some k ∈ (Z/nZ)×. The isomorphism of Proposition 2.3.21 takes any such automorphism
and maps it to k.

Proposition 2.3.22. [36, Proposition 2.7] For n > 2 the discriminant of Q(ζn)/Q is

(−1)ϕ(n)/2
nϕ(n)∏

p|n
pϕ(n)/(p−1)

,

which implies that all the finite primes not dividing n are unramified in this extension.
If n is a power of a prime p then p is totally ramified in this extension.

Proposition 2.3.23. Let n = pa11 · .. · pakk The group Gal(Q(ζn)/Q) is isomorphic to

Gal(K1/Q)× ..×Gal(Kk/Q),

where Ki denotes Q(ζpaii ).

Proof. Let

ni :=
∏
i ̸=j

1≤j≤k

p
aj
j .

Then for each 1 ≤ i ≤ k we have that ζni
n is a primitive paii -th root of unity and so

Ki := Q(ζpaii ) ⊂ Q(ζn).
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Furthermore, any field L which contains Ki for all i also contains ζpa11 · .. · ζpakk which is a

primitive nth root of unity and so L also contains Q(ζn). Hence, Q(ζn) is the smallest field
containing all Ki which means the compositum of all Ki is Q(ζn). It only remains to show
that ∩iKi = Q, for which we argue using degrees. For each i we have [Ki : Q] = ϕ(paii )
and since ϕ(n) = ϕ(pa11 ) · .. · ϕ(pakk ) we see that the degree of the composite field over Q is
exactly the product of the individual degrees of each Ki over Q. Using Corollary 2.3.14
and an inductive argument gives us that

[
∏
i

Ki : Q] =

∏
i[Ki : Q]

[∩iKi : Q]
=
ϕ(p1)

a1 · .. · ϕ(pk)ak
[∩iKi : Q]

.

We know that the left hand side is the same as [Q(ζn) : Q] = ϕ(n) = ϕ(p1)
a1 · .. · ϕ(pk)ak

and so we can conclude that [∩iKi : Q] = 1 which means that ∩iKi = Q. Using Corollary
2.3.16 we now have the desired isomorphism.

Lemma 2.3.24. Let n > 2. The subfield Q(ζn + ζ−1
n ) of Q(ζn) is Galois over Q and

real with [Q(ζn) : Q(ζn + ζ−1
n )] = 2. We call this subfield the maximal real subfield

of Q(ζn).

Proof. Since n > 2 we know that Q(ζn) is not real. Furthermore, Since ζn lies on the
complex unit circle, we know that ζ−1

n is the same as the conjugate of ζn. This means
that ζn+ ζ−1

n is real and so Q(ζn+ ζ−1
n ) is a real subfield. Because Q(ζn) itself is not real,

this tells us that [Q(ζn) : Q(ζn + ζ−1
n )] ≥ 2. To show it is exactly 2 we determine the

minimal polynomial of ζn over Q(ζn + ζ−1
n ). We consider the polynomial

f = x2 − (ζn + ζ−1
n )x+ 1,

which splits as (x − ζn)(x − ζ−1
n ) over Q(ζn + ζ−1

n )[x]. We see that ζn is a root of f
and since [Q(ζn) : Q(ζn + ζ−1

n )] ≥ 2, we know that f is the minimal polynomial of ζn
over Q(ζn+ ζ−1

n ). Hence we know [Q(ζn) : Q(ζn+ ζ−1
n )] = 2. To see Q(ζn+ ζ−1

n ) is Galois
over Q we note that

Gal(Q(ζn)/Q(ζn + ζ−1
n )) ⊂ Gal(Q(ζn)/Q) ≃ (Z/nZ)×.

The latter group is abelian which implies that every subgroup is normal and so Theorem
2.3.11 tells us that Q(ζn + ζ−1

n ) is Galois over Q.

Definition 2.3.25. A Galois extension of Q is said to be abelian if the corresponding
Galois group is abelian.

Example 2.3.26. Cyclotomic extensions Q(ζn) are abelian since Proposition 2.3.21 tells
us they have Galois group (Z/nZ)×.

Given multiple abelian extensions K1, .., Kk we can also say that their compositum is
again an abelian extension. This is because, by Proposition 2.3.15, the Galois group of
the composite will be a subgroup of the direct product of the respective Galois groups,
which are all abelian and so the direct product and any subgroup of it will also be.

We already saw in the proof of Lemma 2.3.24 that any intermediate field M of an abelian
extension K/Q is again Galois over Q. In fact, we can say that M is again an abelian
extension, since Theorem 2.3.11 tells us that Gal(M/Q) ≃ G/H which is the quotient of
an abelian group. In particular, any intermediate field of a cyclotomic extension is again
an abelian extension of Q. The Theorem of Kronecker-Weber tells us that any abelian
extension is of this form.
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Theorem 2.3.27 (Kronecker-Weber). Every abelian extension K of Q is a subfield of
some cyclotomic field K ⊂ Q(ζn) for some n ≥ 1.

Remark 2.3.28. It is shown in [24, Theorem 1.10] that the n in Theorem 2.3.27 is a
composite n =

∏
pep for ep ≥ 1 of exactly all the rational primes p which ramify in K.

In practice we will be working with number fields K that are also Galois over Q. This
additional assumption has some simplifying implications for the decomposition of rational
primes in K.

Proposition 2.3.29. [24, Proposition 9.1] Let L/K be a Galois extension of number
fields with Galois group G := Gal(L/K). Furthermore, let p ⊂ OK be a prime ideal
and pOL = pe11 · .. · perr its factorisation with ramification degrees ei and inertia degrees
given by fi = [OL/pi : OK/p]. Then G acts transitively on the primes pi, by which we
mean that for all 1 ≤ i, j ≤ r there is some σ ∈ G such that σ(pi) = pj.

Remark 2.3.30. From the transitivity of the Galois group and the uniqueness of the fac-
torisation we have that e = e1 = .. = er and f = f1 = .. = fr for all i. The decomposition

then becomes pOL = (
∏

pi)
e and the identity [L : K] =

r∑
i=1

eifi becomes [L : K] = efr.

This gives us an explicit expression for the number of primes r = [L:K]
ef

lying over p.
Note that if a prime p ramifies at some pi it does so at all r primes which appear in the
decomposition of p.

Recall that πA(Up) is the collection of finite groups for which there exists a Galois
number field K which is only ramified at the prime p such that Gal(K/Q) ≃ G.

Lemma 2.3.31. Let p be some prime number and G ∈ πA(Up). Then for any normal
subgroup N ⊴ G the quotient G/N also lies in πA(Up).

Proof. Let K/Q be a number field where only p ramifies with G as its Galois group.
We know with the Galois correspondence that G/N corresponds to a subextension K0

of K. Then Lemma 2.2.26 tells us that p is the only prime which ramifies in K0 and
hence G/N ∈ πA(Up).

Because any group G has the commutator subgroup [G,G] ⊴ G as a normal subgroup
with quotient group Gab we now also understand Corollary 1.2.3. Furthermore, we find a
criterion for groups to lie in πA(Up).

Corollary 2.3.32. Let G ∈ πA(Up) for some prime p. Then the abelianisation of G is
cyclic.

Proof. The proof follows from Corollary 1.2.3.

To check whether the infinite prime ∞ ramifies in a number field K we need to
consider all the extensions of ∞ to K. If K is a Galois extension the situation becomes
a lot simpler.

Definition 2.3.33. Let K be a number field. We say that K is respectively totally real
or totally complex if K has either only real or only complex embeddings into C.

Proposition 2.3.34. Let K be a number field that is Galois over Q. Then K is either
totally real or totally complex.
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Proof. Let [K : Q] = n. For any σ ∈ Gal(K/Q) and embedding ϕ : K → C we can
compose them to find some other embedding ϕ ◦ σ : K → C. Note that the image of ϕ
and ϕ ◦ σ are the same because σ is an automorphism. Since K is Galois we have n
distinct automorphisms σ to compose with and since ϕ is injective we find n distinct
embeddings in this way. However, by Proposition 2.2.31 we also know these are all the
possible embeddings of K into C. This means that if K admits a real embedding, all
embeddings are real and similarly if K admits a complex embedding.

Corollary 2.3.35. Let K be a number field that is Galois over Q. Then the prime at
infinity of Q ramifies in K if and only if K is totally complex.

2.4 Proof of Theorem 1.2.2

Proof of Theorem 1.2.2. Let g1, .., gd be a minimal generating set of G with respective
orders n1, .., nd. We start by writing

G ≃ Z/n1Z× ..× Z/ndZ

by considering for each gi the cyclic subgroup it generates. Since every element of G is
a finite product of generators to some powers and G is abelian we see that G is indeed
isomorphic to the above direct product of cyclic groups. Dirichlet’s Unit Theorem states
that, for any positive integers a and n such that gcd(a, n) = 1, there are infinitely many
primes congruent to a mod n. Hence we can choose, for every ni, infinitely many primes pi
such that pi ≡ 1 (mod 2ni). In particular we can choose a pi for every ni such that
the pi’s are all distinct. Since Z/(pi−1

2
)Z is cyclic and ni|pi−1

2
we know with Theorem 2.1.3

that Z/(pi−1
2

)Z contains a cyclic subgroup Hi of order
pi−1
2ni

and that their quotient is

Z/(
pi − 1

2
)Z/Hi ≃ Z/niZ.

For each pi we consider the cyclotomic extension Q(ζpi) and its corresponding maximal
real subfield Q(ζpi + ζ−1

pi
). By Lemma 2.3.24 we know that [Q(ζpi) : Q(ζpi + ζ−1

pi
)] = 2 and

since [Q(ζpi) : Q] = pi − 1 we find that [Q(ζpi + ζ−1
pi

) : Q] = pi−1
2

as indicated in Figure
2.1.

Q(ζpi)

Q(ζpi + ζ−1
pi

)

Q

2

pi−1

2

Figure 2.1: Degree of maximal real subfield of Q(ζpi).

Since Q(ζpi + ζ−1
pi

) is Galois over Q its Galois group must correspond to a quotient
of Gal(Q(ζpi)/Q) = Z/(pi − 1)/Z by a subgroup of order 2. Hence, we can say that

Gal(Q(ζpi + ζ−1
pi

)/Q) ≃ Z/(pi − 1)Z⧸Z/2Z ≃ Z/(
pi − 1

2
)Z.

Furthermore, let C denote the compositum of the maximal real subfields Q(ζpi + ζ−1
pi

)
for 1 ≤ i ≤ d. Recall from the proof of Proposition 2.3.23 that X := Q(ζpi) ∩Q(ζpj) = Q
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for i ̸= j. With this we can also conclude that Y := Q(ζpi + ζ−1
pi

) ∩ Q(ζpj + ζ−1
pj

) = Q.

This is because Q(ζpi + ζ−1
pi

) ⊂ Q(ζpi), and the same for j, and so anything that lies in Y
will also lie in X. From Corollary 2.3.16 it then follows that

Gal(C/Q) ≃ Z/(
p1 − 1

2
)Z× ..× Z/(

pd − 1

2
)Z.

Hence we see that G is a quotient of Gal(C/Q) by the subgroup H1× ..×Hd ⊂ Gal(C/Q).
Therefore it corresponds to the Galois group of a subfield K = CH1×..×Hd of C and we
will show that K ramifies at exactly d primes. Let n := p1 · .. ·pd. Then we start by noting
that C ⊂

∏
Q(ζpi) = Q(ζn) where the latter equality comes from the proof of Proposition

2.3.23. Furthermore, ζ
n
pi
n is a primitive pthi root of unity, thus we have Q(ζpi) ⊂ Q(ζn).

Finally we have Q(ζpi + ζ−1
pi

) ⊂ C for all i which allows us to consider the fixed field
of Q(ζpi + ζ−1

pi
) under H1 × ..×Hd. We summarise the setting in Figure 2.2.

Q(ζn)

Q(ζpi) C

Q(ζpi + ζ−1
pi

) K = CH1×..×Hd

Q(ζpi + ζ−1
pi

)H1×..×Hd

Q

Figure 2.2: K ramifies at d primes.

Note that, by definition, any x ∈ Q(ζpi + ζ−1
pi

)H1×..×Hd is an element of Q(ζpi + ζ−1
pi

),
and therefore also of C, which is fixed by all of H1 × ..×Hd and so

Q(ζpi + ζ−1
pi

)H1×..×Hd ⊂ CH1×..×Hd .

As discussed in Proposition 2.3.22 the extension Q(ζpi) is only ramified at pi which, by
Lemma 2.2.26, implies that any non-trivial intermediate field also only ramifies at pi.
Since G is a non-trivial quotient we see that H1 × .. × Hd is not the whole group and
so Q(ζpi + ζ−1

pi
)H1.×..×Hd is a non-trivial extension which therefore ramifies at pi. It then

follows with Corollary 2.2.25 that K also ramifies at pi for all i as desired. If K would
ramify at some prime q ̸= pi for all i, then Corollary 2.2.25 tells us that Q(ζn) would
also ramify at q, but as discussed in Proposition 2.3.22 this is not possible. Furthermore,
since K is totally real we can be sure that the infinite prime does not ramify. Hence we
conclude that K ramifies at exactly d finite primes as desired.

We will now show there is no G-extension which ramifies at fewer than d primes in-
cluding the infinite prime. Assume that K/Q is some extension with G as its Galois
group and that K is ramified at the finite primes p1, .., pk for some k ≥ 1. By Theorem
2.3.27 we find K as a subfield of some cyclotomic field L = Q(ζn) and with the Galois
correspondence (2.3.10) we see that G is a quotient of Gal(L/Q). Since we know exactly
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what primes ramify in K, and so with Corollary 2.2.25 that these primes also ramify in L,
we can argue with Proposition 2.3.22 that the primes p1, .., pk must appear in the prime
factorisation of n. Furthermore, if any other prime p would appear in this factorisation
of n, then p would ramify in L and we can argue in the same way as in the first part
of this proof that K would also ramify at p. Hence n = pa11 · .. · pakk for some positive
integers ai. By the Chinese Remainder Theorem G is a quotient of

Gal(L/Q) = (Z/nZ)× = (Z/(pa11 )Z)× × ..× (Z/(pakk )Z)×,

where every term (Z/(paii )Z)× is a cyclic group of order paii − pai−1
i if pi is odd. If pi = 2

we know that (Z/(paii )Z)× has at most two generators and so we conclude that G has
at most k + 1 generators, i.e. k ≥ d − 1. Since G is Galois we know that K is either
totally real or totally complex. If K is totally complex we know that the prime at infinity
ramifies, hence the total number of ramified primes is one more and so it is at least d in
this case. If however K is totally real we know that the prime at infinity does not ramify.
Though, K must be contained in the maximal real subfield L+ of L, which implies G is a
quotient of Gal(L+/Q). As previously argued in this proof, we can use Lemma 2.3.24 to
show that

Gal(L+/Q) ≃ Gal(L/Q)⧸Z/2Z.

If pi = 2 then (Z/(paii )Z)× is either isomorphic to Z/2Z or Z/2Z×Z/(2ai−2)Z dependent
on ai. In both cases we see that Z/2Z appears as a factor which means we kill a generator
of Gal(L+/Q) by quotienting out Z/2Z from Gal(L/Q). In particular this means that G
has at most k generators in the case that K is totally real and so k ≥ d. We conclude
that the number of ramified primes is at least the number of generators.
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Chapter 3

A description of groups in πA(Up) for
small primes

This chapter contains results which give a description of the Galois groups of number fields
which ramify at a single predetermined finite prime (and possibly ∞). We explain how
Harbater [13], Hoelscher [16] and Pollak [27] built on each other’s work to obtain results
on the structure of groups G ∈ πA(Up) for respectively the primes 2, 3 and 5. We start
by focusing on the techniques that were used to obtain a description of groups in πA(U2)
by Harbater. We then see how Hoelscher and Pollak generalised these techniques to
obtain Proposition 3.2.4 which gives a description of groups in πA(Up) for arbitrary odd
primes p. After this we show how these techniques were used to actually obtain results
for the primes 3 and 5. Using Proposition 3.2.4 we provide a result on the structure of
arbitrary groups G ∈ πA(Up) for 7 ≤ p ≤ 19 in Proposition 3.3.3. Furthermore, we explain
how we can strengthen our results by assuming the Generalised Riemann Hypothesis or
assuming the extension to be totally real.

3.1 Groups in πA(U2)

We look at the techniques that Harbater used for the prime 2 where we begin with the
following observation.

Proposition 3.1.1. [13, Page 19] Let G be a group with G ∈ πA(U2). Then G is a quasi
2-group.

Proof. By Proposition 2.1.30 we see that the order ofG/2(G) is odd and hence by Theorem
2.1.46 we find that G/2(G) is solvable. Therefore it admits a subnormal series

0 ⊴ H0/2(G) ⊴ H1/2(G) ⊴ .. ⊴ Hk/2(G) = G/2(G),

where all Hi are normal in G and all quotients are abelian. If we assume G/2(G) to
be non-trivial we can show that G admits a non-trivial abelian odd quotient. Firstly,

If Hk−1/2(G) is trivial we have that
G/2(G)⧸1 = G/2(G) is non-trivial abelian and of odd

order. If Hk−1/2(G) is non-trivial we see that the quotient
G/2(G)⧸Hk−1/2(G)

= G/Hk−1

is non-trivial, abelian and of odd order as well, since |G/2(G)| is odd and the order of every
subgroup Hi/2(G) must divide the order of G/2(G). Say that Q ⊂ K is a G-extension
which ramifies only at 2. Then G/Hk−1 corresponds to a subfield Q ⊂ K ′ ⊂ K where by
Lemma 2.2.26 we can say that K ′ must also ramify at 2. Such an abelian extension must
lie in some cyclotomic field by Theorem 2.3.27 and by Remark 2.3.28 we can even say
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that this field must be of the form Q(ζ2r) for some r ≥ 1. However, we then have that

[Q(ζ2r) : Q] = [Q(ζ2r) : K
′][K ′ : Q],

where [K ′ : Q] is odd. Since the extension is Galois we have [Q(ζ2r) : Q] = |Gal(Q(ζ2r)/Q)|
and by Proposition 2.3.21 we know that Gal(Q(ζ2r/Q) = (Z/2rZ)×. The order of the
latter group is 2r−1 by Theorem 2.1.14 which gives a contradiction with [K ′ : Q] being
odd. We can thus conclude that G/2(G) must be trivial and hence say that G is in fact
a quasi 2-group.

Harbater strengthened this result with the following proposition.

Proposition 3.1.2. [13, Proposition 2.17] Let K be a Galois extension of Q ramified
only at 2 and Q ⊂ K0 be an intermediate Galois extension whose degree is a power of 2
over Q. Then either

1. N := Gal(K/K0) is a quasi 2−group;

2. There exists a non-trivial abelian unramified intermediate extension K0 ⊂ L ⊂ K
of odd degree over K0 which is Galois over Q.

Indeed, if K0 = Q we note that there are no non-trivial unramified extensions of Q by
Corollary 2.2.23 and so Gal(K/K0) = G must be a quasi-2 group. In the case that K0 is
maximal and G is solvable this gives the following result.

Lemma 3.1.3. [13, Lemma 2.19] Under the hypothesis of Proposition 3.1.2, let G :=
Gal(K/Q) be solvable and assume K0 to be a maximal 2-power subextension of K. Then
we may replace item 1 of Proposition 3.1.2 by the condition that K = K0, which means G
is a 2-group.

Proof. The proof is analogous to that of Lemma 3.2.2 which we will provide below.

Harbater could combine Proposition 3.1.2 with Lemma 3.1.3 to give a description of
solvable groups in πA(U2) by first determining all 2-groups in πA(U2) of order less than or
equal to 8.

Proposition 3.1.4. [13, Proposition 2.15] The 2-groups of order ≤ 8 in πA(U2) are
precisely the groups

• 1;

• Z/2Z;

• Z/2Z× Z/2Z;

• Z/4Z;

• Z/8Z;

• Z/4Z× Z/2Z;

• D4.

Moreover, all of the corresponding field extensions of Q have class number 1.

We can now give a structure description of all solvable groups in πA(U2).
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Theorem 3.1.5. [13, Theorem 2.20] Let G be the Galois group of a non-trivial, solvable
extension ramified only at 2 and possibly ∞. Then one of the following holds:

1. The order of G is 2, 4 or 8;

2. G has a quotient of order 16.

Proof. If G is a 2-group with order 2k ≥ 16 we know it admits a normal 2-subgroup of
order 2l for all l ≤ k by Theorem 2.1.19. In particular we can find a normal subgroup H of
order 2k−4 since k ≥ 4 and so we see that G has a quotient of order |G|

|H| =
2k

2k−4 = 24 = 16.
So we can assume that G is not a 2-group. Let K be a G-Galois extension which is only
ramified at 2 and let K0 as in Lemma 3.1.3, i.e. an intermediate extension whose degree
is a power of 2 over Q and maximal with respect to this. If we let N := Gal(K/K0), we
can say that Gal(K0/Q) = G/N is a 2-group, since the order of G/N is the degree of K0

over Q. Hence, N ̸= 1, or equivalently K ̸= K0, since otherwise G would be a 2-group. By
Lemma 3.1.3 we can then conclude that Item 1 does not hold and so there must be some
non-trivial abelian unramified Galois sub-extension K0 ⊂ L ⊂ K of odd degree over K0.
Because this L is abelian and unramified it is contained in the Hilbert class field E of K0,
i.e. K0 ⊂ L ⊂ E. We find the following expression for the class number hK0 of K0

hK0 = [E : K0] = [E : L][L : K0].

Since L is non-trivial we must have [L : K0] > 1 and so hK0 > 1 as well. Furthermore,
since K only ramifies at 2 we find by Lemma 2.2.26 that K0 also ramifies only at 2 and
so G/N lies in πA(U2). Since G/N is a 2-group as well we find by Proposition 3.1.4
that |G/N | ≥ 16, say that |G/N | = 2r with r ≥ 4. Then, again with Theorem 2.1.19, we
can say that G/N admits a normal 2-subgroup of order 2l for all l ≤ r. Thus we create
some normal subgroup M/N ⊴ G/N with order 2r−4, where M is a normal subgroup
in G. This means that

|G/M | = |G/N⧸M/N | = |G/N |
|M/N |

=
2r

2r−4
= 24 = 16,

proving that G indeed has a quotient of order 16 which completes the proof.

Now that we know what solvable groups in πA(U2) look like we can wonder how big
of a restriction solvability is. Harbater proves that the “small” groups are solvable.

Lemma 3.1.6. [13, Lemma 2.22] If G ∈ πA(U2) and |G| ≤ 300 then G is solvable.

Proof. The proof is analogous to that of Proposition 4.2.3.

With Lemma 3.1.6 Harbater can drop the solvability condition on G and still give
a similar description of G ∈ πA(U2) as in Theorem 3.1.5. This description is given in
Theorem 3.1.9 and for the proof we also need the discriminant bounds of [26] and the
following Lemma and Proposition.

Lemma 3.1.7. [13, Page 12] Let K/Q be a finite Galois extension which is ramified only
over a single prime p. Let e be the ramification index, n = [K : Q] and ∆ the discriminant
of K. Then we have the following inequality:

|∆|
1
n ≤ p1+νp(e)−

1
e .

Proposition 3.1.8. [13, Proposition 2.8] Let p and q be (possibly equal) prime numbers,
let G be a p-group, and let Q ⊂ K be a G-Galois extension ramified only at q. Then
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1. The extension Q ⊂ K is totally ramified over q.

2. The class number of K is prime to p.

We now have all the tools to drop the solvability condition in Theorem 3.1.5 and prove
the following.

Theorem 3.1.9. [13, Theorem 2.23] Let G be the Galois group of a non-trivial, solvable
extension ramified only at 2 and possibly ∞. Let e denote the ramification index. Then

1. The order of G is 2, 4 or 8;

2. 16|e.

Proof. By Proposition 3.1.8 we can say that G is totally ramified if G is a 2-group. If G
is not a 2-group of order < 16 and G is solvable, we know with Theorem 3.1.5 that G
admits a quotient G/H of order 16. In this case the intermediate field of K which cor-
responds to H is totally ramified, again, by Proposition 3.1.8 and the fact that G/H
lies in πA(U2). Hence we have 16 = [K0 : Q] = eK0/Q, where eK0/Q is the ramification
index of 2 in K0. We know that eK0/Q divides e by Lemma 2.2.24 and so 16 divides e. It
remains to consider the case where G is not a 2-group of order < 16 and G is non-solvable.

By Lemma 3.1.6 we know that |G| > 300. Now for a Galois extension K/Q of de-

gree n ≥ 300 we know that |∆| 1n ≥ 19.26 from [26], where ∆ is the discriminant of K.
Combining this with Lemma 3.1.7 and the fact that e > 1, we have that

19.26 ≤ |∆|
1
n ≤ 21+ν2(e)−

1
e < 21+ν2(e),

and so ν2(e) > 3. Since ν2(e) is an integer, it is at least 4, which means that 16 divides e.

3.2 Groups in πA(U3) and πA(U5)

Now that we understand how Harbater obtained a description of groups in πA(U2) we will
focus on adapting these techniques to obtain similar results for odd primes. The following
two results are by Hoelscher and they are generalisations of Proposition 3.1.2 and Lemma
3.1.3 respectively.

Theorem 3.2.1. [16, Theorem 2.1.1] Let K be a finite Galois extension of Q where the
only ramified finite prime is p with p odd. Let G denote its Galois group and assume
it to be solvable. Let K0/Q be an intermediate abelian extension Q ⊂ K0 ⊂ K and
define N := Gal(K/K0). Then either

1. N/p(N) ⊂ Z/(p− 1)Z); or

2. There is a non-trivial abelian unramified subextension L/K0(ζp) of K(ζp)/K0(ζp) of
degree prime to p with L Galois over Q.

Lemma 3.2.2. [16, Lemma 2.1.4] Under the hypothesis of Theorem 3.2.1, if K0 is a
maximal p-power subextension of K/Q, then the Condition 1 of Theorem 3.2.1 can be
replaced by the condition that either G is a cyclic p-group or N/p(N) is a non-trivial
subgroup of Z/(p− 1)Z.
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Proof. Say that [K0 : Q] = |G/N | = pn. We want to prove that N/p(N) ⊂ Z/(p − 1)Z
implies that either N/p(N) is non-trivial in Z/(p − 1)Z or G is a cyclic p-group. Thus
it is enough to assume that N/p(N) = 1 and then show that G must be a cyclic p-
group. Assume to the contrary that G is not a cyclic p-group. Note that N is normal
since K0 is assumed to be abelian and hence Galois over Q. Since K0 is maximal we
know N is a minimal normal subgroup of G with index a power of p, since if there is
some normal subgroup M ⊂ N with |G/M | = pm we can say that M corresponds to
a Galois subextension K0 ⊂ K ′ ⊂ K where Gal(K/K ′) = M and Gal(K ′/Q) = G/M .
But then K ′ would also have a p-power degree over Q which contradicts the maximality
of K0. We can say that N is non-trivial since otherwise G/N ≃ G/1 ≃ G would be
a p-group contrary to what we assumed. So G is a non-trivial solvable group which means
that, by Lemma 2.1.45, G admits a normal subgroup N1 ⊂ N , such that N/N1 is of the
form (Z/qZ)l for some prime q and l ≥ 1. By minimality of N we know that |G : N1| is
not a power of p. We have the following expression

pn = |G/N | = |G/N1⧸N/N1
| = |G/N1|

|N/N1|
=

|G/N1|
ql

,

which, combined with the index of N1 in G not being a power of p, tells us that q ̸= p.
Now, let J be any p-subgroup in N with order ps. We want to show that J must be
strictly contained in N1. To this end let j ∈ J and assume that j ̸∈ N1. The order of j
must divide the order of J so |j| = pr for some 1 ≤ r ≤ s. Since j ̸∈ N1 we find that the
class j̄ of j in N/N1 is not 0 so it has an order which divides the order of j, i.e. |j̄| = pk

for some k ≤ l. But at the same time the size of N/N1 is ql and the order of j̄ should
also divide this. This gives a contradiction and proves that J must be strictly contained
in N1. This means that N is not a quasi p-group, as desired.

Pollak combined Theorem 3.2.1 and Lemma 3.2.2 to obtain Proposition 3.2.4 which
is effectively a case description of solvable groups in πA(Up) for odd primes. For this he
also used the following theorem by Harbater.

Theorem 3.2.3. [13, Theorem 2.11] If p is an odd prime then a finite p-group G lies in
πA(Up) if and only if G is cyclic.

We now have all the tools to prove Proposition 3.2.4.

Proposition 3.2.4. [27, Proposition 2.1.5] Suppose K/Q is a non-trivial, solvable Galois
extension ramified only at a single, odd finite prime p and possibly ∞. We denote the
Galois group as G := Gal(K/Q). Then one of the following holds:

1. G is a cyclic p-group;

2. G/p(G) is isomorphic to a non-trivial subgroup of Z/(p− 1)Z;

3. G has a cyclic quotient of order pt, where t is the smallest number such that Q(ζpt+1)
has a non-trivial class group.

Proof. Let K0 be the maximal Galois subextension of K whose degree over Q is a power
of p, say pn for some n ≥ 0. We set Gal(K/K0) := N so that G/N = Gal(K0/Q).
Since K0 is Galois we have that |G/N | = pn, so G/N is a p-group which additionally lies
in πA(Up) due to Lemma 2.2.26. Then by Theorem 3.2.3 we know that G/N is cyclic so
it is of the form Z/pnZ, which means that K0 is an abelian extension. As remarked in
2.3.28 Kronecker-Weber tells us it lies in some Q(ζpn0 ) for some n0. We can show that
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n0 ≥ n + 1 by noting that [Q(ζpn0 ) : Q] = ϕ(pn0) = pn0−1(p− 1) and since K0 ⊂ Q(ζpn0 )
we have that

[Q(ζpn0 ) : Q] = [Q(ζpn0 ) : K0][K0 : Q],

where [K0 : Q] = pn. So pn should divide pn0−1(p− 1). If n0 ≤ n then pn0−1(p− 1) ≤ pn

so pn cannot divide pn0−1(p− 1). Hence n0 ≥ n+ 1. In fact we claim that K0 ⊂ Q(ζpn+1)
and move the proof of this to Claim 3.2.5.

Now suppose that G is not a cyclic p-group and that G/p(G) is not isomorphic to a
non-trivial subgroup of Z/(p − 1)Z. We claim it is enough to show that Q(ζpn+1) has a
non-trivial class group, since this would then imply that n ≥ t so with Theorem 2.1.19
the group G/N , with order pn, would admit a normal subgroup, say H/N , of order pn−t,

because pn−t|pn. Then |G/H| = |G/N⧸H/N | = pn

pn−t = pt which gives the desired quotient

of G. Note that this quotient is cyclic, because it is in particular a quotient of G/N which
we noted to be a cyclic group.

In order to show that Q(ζpn+1) has a non-trivial class group we first prove that N/p(N)
is not isomorphic to a non-trivial subgroup of Z/(p − 1)Z. Assume to the contrary
that N/p(N) ≃ Z/mZ for some m > 1 which divides p − 1. Note that p(N) is charac-
teristic in N by Lemma 2.1.23, which itself is normal in G so p(N) is also normal in G
by Lemma 2.1.33. This means we can form the quotient G/p(N) and since N is normal
in G and contains p(N) we also have N/p(N) ⊴ G/p(N). With the third isomorphism
Theorem we also have

G/N ≃ G/p(N)⧸N/p(N).

Now recall that N/p(N) ≃ Z/mZ and G/N ≃ Z/pnZ. Since gcd(p − 1, p) = 1 and m
divides p− 1 we have that gcd(m, pn) = 1 so the Schur-Zassenhaus Theorem (2.1.13) tells
us that

G/p(N) ≃ N/p(N)⋊G/N ≃ Z/mZ ⋊ Z/pnZ.

Now, the automorphism group of Z/mZ has order ϕ(m) and since m divides p − 1 we
know that ϕ(m) is strictly smaller than p. Hence ϕ(m) is coprime to p and therefore also
to any power of p. Now consider some morphism ψ : Z/pnZ → Aut(Z/mZ). Then for any
non-trivial x ∈ Z/pnZ the order of ψ(x) would have to be a divisor of the order of x, which
itself needs to be a divisor of pn, i.e. pk for some 1 ≤ k ≤ n. Note that the order of ψ(x)
also has to divide the order of Aut(Z/mZ) and since we just noted ϕ(m) is coprime to
any power of p, we can say that the order of ψ(x) has to be 1. This implies ψ must be
the trivial morphism and we find, as remarked in 2.1.12, that the semidirect product is
in fact a direct product,

G/p(N) ≃ Z/mZ× Z/pnZ.

Since any p-subgroup in N is also a p-subgroup of G we find that p(N) ⊂ p(G). In fact,
since we showed that p(N) is normal in G we know it is normal in any subgroup of G
which contains p(N). Thus p(N) ⊴ p(G) and forming the quotient p(G)/p(N) makes
sense. With the Third Isomorphism Theorem 2.1.5 and Lemma 2.1.32 we now have that

G/p(G) ≃ G/p(N)⧸p(G)/p(N) ≃
G/p(N)⧸p(G/p(N)).

Now we can compute p(G/p(N)) ≃ Z/pnZ, since any p-subgroup of Z/mZ× Z/pnZ will
lie in Z/pnZ so we have

G/p(G) ≃ Z/mZ× Z/pnZ⧸Z/pnZ ≃ Z/mZ.
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This contradicts the assumption that G/p(G) was not a non-trivial subgroup of Z/(p−1)Z
so we can conclude that N/p(N) is not a non-trivial subgroup of Z/(p− 1)Z either.

Now we are in the setting of Theorem 3.2.1 and can also use Lemma 3.2.2 to replace Con-
dition 1 of said theorem with the condition that either G is a cyclic p-group or N/p(N)
is a non-trivial subgroup of Z/(p − 1)Z. We assumed that the former does not hold
and just showed the latter also does not hold. Hence item 2 of Theorem 3.2.1 must
hold and we know there is some non-trivial abelian unramified subextension L/K0(ζp)
of K(ζp)/K0(ζp) where the degree of L over K0(ζp) is coprime to p. So the class number
of K0(ζp) is non-trivial and we now claim that K0(ζp) ≃ Q(ζpn+1). We have the following
picture to describe the situation:

K0(ζp) Q(ζpn+1)

Q(ζp) K0

Q

pn

p−1

≃

p−1

pn(p−1)

p−1

pn

Recall, [Q(ζpn+1) : Q] = pn(p − 1) and [K0 : Q] = pn, which, combined with the tower
relations, gives that [Q(ζpn+1) : K0] = p − 1. We know that [Q(ζp) : Q] = p − 1 and
therefore Q(ζp) ̸⊂ K0; otherwise p − 1 would have to divide pn by the tower relations.
Note that K0 ≃ Q(α) for some α ∈ K0 by Corollary 2.2.9 and since p − 1 and pn are
coprime we find with Lemma 2.2.2 that [K0(ζp) : Q] = pn(p− 1), which explains the final
degrees in the left hand side of the picture. Also note that (ζpn+1)p

n
= ζp so ζp ∈ Q(ζpn+1)

which means K0(ζp) ⊂ Q(ζpn+1). But K0(ζp) and Q(ζpn+1) have the same degree over Q
and one lies in the other which means they are isomorphic as we wanted to show.

Claim 3.2.5. We claim K0 ⊂ Q(ζpn+1) in the setting of Proposition 3.2.4.

Proof of claim. This is clearly the case if n0 = n + 1 so assume that n0 > n + 1. Since
(ζpn0 )p

n0−n−1
is a primitive pn+1 root of unity we find that Q(ζpn+1) ⊂ Q(ζpn0 ). The

situation of these extensions with the corresponding degrees is depicted below.

K Q(ζpn0 )

K0 Q(ζpn+1)

Q

pn

pn0−n−1(p−1) pn0−n−1

pn(p−1)

Recall that Q(ζpn0 ) is Galois over Q with Galois group Ḡ := (Z/pn0Z)× and that Lemma
2.1.15 tells us that this group is cyclic. Since K0 and Q(ζpn+1) are both Galois over Q
we know that their Galois groups are respectively of the form Ḡ/N̄ and Ḡ/M̄ where
the subgroups have orders |N̄ | = pn0−n−1(p − 1) and |M̄ | = pn0−n−1. Since the order
of M̄ divides the order of N̄ and M̄ and N̄ are both subgroups of a cyclic group, and
hence are cyclic themselves, we can say that M̄ ⊂ N̄ by Theorem 2.1.3. With the Galois
correspondence we find that the corresponding subfields of Q(ζpn0 ) are also contained in
each other, i.e. K0 ⊂ Q(ζpn+1).
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It is clear from Item 3 of Proposition 3.2.4 that we need to know more about class
numbers of the cyclotomic fields Q(ζpt) in order to apply this Proposition to a specific
prime p. For this we have the following result.

Theorem 3.2.6. [23, Main Theorem] There are precisely 29 distinct cyclotomic fields
with class number 1. They are given by Q(ζn) with

n = 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36,
40, 44, 45, 48, 60, 84.

Remark 3.2.7. There are 15 additional values of m for which the class number of Q(ζm)
is 1. However, each of these additional values are of the form 2n for some n in the list of
Theorem 3.2.6 and since Q(ζn) ≃ Q(ζ2n) these values do not give new cyclotomic fields.

Corollary 3.2.8. For a prime number p the class number of Q(ζp) is 1 if and only if
p ≤ 19. Furthermore, 3 and 5 are the only primes p for which there exists a k > 1 such
that Q(ζpk) has class number 1.

Applying Proposition 3.2.4 to the primes 3 and 5 gives the following descriptions as
corollaries.

Corollary 3.2.9. [16, Corollary 2.1.5] Let G be the Galois group of a non-trivial, solvable
extension ramified only at 3 and possibly ∞. Then one of the following holds:

1. G is a cyclic 3-group;

2. G/3(G) ≃ Z/2Z;

3. G has a cyclic quotient of order 27;

Proof. We apply Proposition 3.2.4 and we see from Theorem 3.2.6 that the 49th cyclotomic
field is the first 3-power cyclotomic field with a non-trivial class group.

Corollary 3.2.10. [27, Corollary 2.1.7] Let G be the Galois group of a non-trivial, solv-
able extension ramified only at 5 and possibly ∞. Then one of the following holds:

1. G is a cyclic 5-group;

2. G/5(G) ≃ Z/2Z;

3. G/5(G) ≃ Z/4Z;

4. G has a cyclic quotient of order 25.

Proof. We apply Proposition 3.2.4 and we see from Theorem 3.2.6 that the 125th cyclo-
tomic field is the first 5-power cyclotomic field with a non-trivial class group.

Hoelscher and Pollak also gave a characterisation of arbitrary groups in πA(U3) and
πA(U5) respectively by using similar techniques as Harbater. The proofs are therefore
quite similar and we will only give the proof of the case p = 5 in Proposition 3.2.12 to
avoid repetition.

Corollary 3.2.11. [16, Corollary 2.1.6] Suppose K/Q is a Galois extension with non-
trivial group G, ramified only at the prime 3 and possibly ∞, with ramification index e.
Then one of the following holds:

1. G ≃ Z/3Z;
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2. G/3(G) ≃ Z/2Z;

3. 9|e.

Proposition 3.2.12. [27, Proposition 2.1.8] Suppose K/Q is a Galois extension with
non-trivial group G, ramified only at the prime 5 and possibly ∞, with ramification index
e. Then one of the following holds:

1. G ≃ Z/5Z;

2. G/5(G) ≃ Z/2Z;

3. G/5(G) ≃ Z/4Z;

4. 5|e and e ≥ 10.

Proof. Firstly, if G is solvable we can apply Corollary 3.2.10 and we are done if the
second or third condition of Corollary 3.2.10 hold. If the fourth condition of Corollary
3.2.10 holds we know that G some cyclic quotient G/N of order 25. We see from the proof
of Corollary 3.2.10 that G/N corresponds to a Galois extension K0 which ramifies only
at 5. Then Proposition 3.1.8 tells us that K0 is totally ramified over 5 which means that
|G/N | = [K0 : Q] = 25 = e so in particular 5|e and e ≥ 10. Finally, if the first condition
holds either G ≃ Z/5Z, and we are done, or G ≃ Z/5lZ with l ≥ 2. In the latter case we
have that K is totally ramified by Proposition 3.1.8 so e = 5l. Since l ≥ 2 we have 5|e
and e ≥ 10.

Suppose now that G is not solvable. Then |G| ≥ 300 by Proposition 4.1.1. Let n = |G|
and let ∆ be the discriminant of K. By [6, Appendix, p.1] we know that |∆| 1n ≥ 19.26
since the degree of the extension is at least 300. But since the only ramified prime is 5,
we have from Lemma 3.1.7 that |∆| 1n ≤ 51+ν5(e)−

1
e . Thus we find

19.26 ≤ 51+ν5(e)−
1
e . (⋆)

Because e > 1, and thus 51−
1
e < 5, we can not have ν5(e) = 0. So ν5(e) ≥ 1, which already

gives 5|e as desired. Furthermore, if ν5(e) = 1 the smallest value e can have is 5, but
then the right hand side of (⋆) would be 18.12. This tells us that e must have some other
divisor than 5 so e ≥ 10. For e = 10 the right hand side of (⋆) is 21.28, which means we
cannot say more than e ≥ 10 with this exact approach.

Event though the proofs of Corollary 3.2.11 and Proposition 3.2.12 are very similar
there is a small remark to make.

Remark 3.2.13. In proving Corollary 3.2.11, Hoelscher also uses discriminant bounds,
like Harbater and Pollak do for proving respectively Theorem 3.1.9 and Corollary 3.2.12.
However, where Harbater and Pollak leverage the fact that non-solvable groups in πA(Up)
need to have order at least 300, Hoelscher uses the weaker statement that, in general,
non-solvable groups have order at least 60. One might wonder if applying the stronger
bound of 300 to the same argument of Hoelscher would give us some stronger lower bound
on e, but it turns out to not make a difference. We will later see in Theorem 4.1.2 that
we can even say that |G| ≥ 660, but this will also not give better results for p = 3. In

particular, if |G| = n ≥ 660 we have with [6] that |∆| 1n ≥ 20.47. Using the approach

of Proposition 3.2.12, if ν3(e) < 2 then 31+ν3(e)−
1
e < 20.47 so ν3(e) ≥ 2. However, when

ν3(e) = 2 we know e is at least 9 and this gives 31+ν3(e)−
1
e = 33−

1
9 = 23.89 which means

that we cannot improve on 9|e or say that e ≥ 2 ·9 using the stronger bounds of |G| ≥ 660.
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We end this section by noting that additional assumptions result in improved discrim-
inant bounds and hence improved versions of Corollary 3.2.11. Here we also use the fact
that |G| ≥ 660 if G is non-solvable, as we will see in Theorem 4.1.2.

Lemma 3.2.14. Assuming the Generalised Riemann Hypothesis we can replace the third
condition in Corollary 3.2.11 by 27|e.

Proof. Note that the proof of Proposition 3.2.11 (or really the analogous proof given
for Proposition 3.2.12) already indicates that 27|e in the solvable case, because of the
cyclic quotient of order 27. If G is non-solvable we know, under the assumption of the
Generalised Riemann Hypothesis, that 27.33 ≤ |∆| 1n from [26, Table 1] for extensions of

degree at least 600. If ν3(e) ≤ 2 we would have that 31+ν3(e)−
1
e < 27 < 27.33 which would

give a contradiction. So we can say that 27|e in the non-solvable case as well.

Lemma 3.2.15. Under the assumptions of Corollary 3.2.11, if we additionally assume
that K is a totally real extension we can replace the third condition with 27|e.

Proof. If K is a totally real extension we know from [6, Appendix, Table 2, p.4] that

54.57 ≤ |∆| 1n , which gives 54.57 ≤ 31+ν3(e)−
1
e . If ν3(e) ≤ 2 then 31+ν3(e)−

1
e < 27 < 54.57.

Hence ν3(e) ≥ 3 and we can replace the third condition with 27|e.

In a similar fashion Pollak notes that we get improved versions of Proposition 3.2.12
by additional assumptions on the corresponding extensions.

Lemma 3.2.16. [27, Remark 2.1.9] Under the assumptions of Proposition 3.2.12, if
one is willing to assume the Generalised Riemann Hypothesis we can replace the fourth
condition in 3.2.12 by 25|e.

Proof. The proof is analogous to that of Lemma 3.2.14.

Lemma 3.2.17. [27, Remark 2.1.9] Under the assumptions of Proposition 3.2.12, if K
is additionally a totally real extension we can replace the fourth condition with 25|e.

Proof. The proof is analogous to that of Lemma 3.2.15.

Lemma 3.2.18. [27, Remark 2.1.9] Under the assumptions of Proposition 3.2.12, if
additionally K has a degree of 2400 or more over Q we can say that e ≥ 15.

Proof. From [26, Table 2] we see that, if K has degree 2400 or more, the discriminant

bound becomes 21.54 ≤ |∆| 1n . If ν5(e) = 1 then e is at least 5, but then Lemma 3.1.7 tells

us that 21.54 ≤ 51+1− 1
5 = 18.12 which is a contradiction. So for ν5(e) = 1 we need e to have

another divisor than 5. If e = 2 · 5 = 10 the inequality becomes 21.54 ≤ 51+1− 1
10 = 21.28,

so we need e ≥ 15. Note that the largest degree in [26, Table 2] is 107 which results in

a bound of 22.35 ≤ |∆| 1n . If ν5(e) = 1 and e = 15 we find that 51+ν5(e)−
1
e = 22.46 so the

current bounds do not suffice to conclude e > 15.

3.3 Applications to primes 7 ≤ p ≤ 19

We have seen the applications of Proposition 3.2.4 to the primes 3 and 5. In this section
we will explore what we can say for other primes. Pollak readily proves the following for
all odd primes p < 23.
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Corollary 3.3.1. [27, Corollary 2.1.6] Let p < 23 be an odd prime and let K/Q be
a non-trivial, solvable Galois extension ramified only at p and possibly ∞ with Galois
group G = Gal(K/Q). Then one of the following holds:

1. G/p(G) is isomorphic to a non-trivial subgroup of Z/(p− 1)Z;

2. G has a cyclic quotient of order p.

Proof. We apply Proposition 3.2.4. If G is a cyclic p-group of order pk for some k ≥ 1,
it will have a quotient of order pl for all l ≤ k by Theorem 2.1.19. In particular it will
have a quotient of order p and since it is a cyclic group all quotients will be cyclic. If
G/p(G) is isomorphic to a non-trivial subgroup of Z/(p − 1)Z we are done. If we find
ourselves in the final case of Proposition 3.2.4, we note that for all p < 23 the class group
of Q(ζp) is trivial by Corollary 3.2.8, so t ≥ 1. If t = 1 we get that G has a cyclic quotient
of order p. If t > 1 we still have that |G/H| = pt for some normal subgroup H ⊴ G.
Again, the quotient G/H is a p-group and so Theorem 2.1.19 tells us it admits a normal

subgroup N/H of order pt−1 where N ⊴ G. This gives G/H⧸N/H ≃ G/N which means

the order of G/N is pt

pt−1 = p as desired.

Remark 3.3.2. Indeed, Corollary 3.3.1 does not claim existence of a cyclic quotient with
size pk for k > 1. The reason we could do this for the primes 3 and 5, and not for any
other primes, is that they are the only primes for which there exists a k > 1 such that
Q(ζpk) has a nontrivial class number by Corollary 3.2.8.

We already discussed how we can drop this solvability assumption for the primes up
to 5. It turns out that we can do the same for the primes 7 ≤ p ≤ 19 and give similar
characterisations as Hoelscher and Pollak do in Corollary 3.2.11 and Proposition 3.2.12
respectively.

Proposition 3.3.3. Suppose K/Q is a Galois extension with non-trivial group G, ramified
only at a prime 7 ≤ p ≤ 19 and possibly ∞, with ramification index e. Then one of the
following holds:

1. G/p(G) is isomorphic to a non-trivial subgroup of Z/(p− 1)Z;

2. p|e.

Proof. Firstly, if G is solvable we can apply Corollary 3.3.1 and we are done if the first
condition holds. If the second condition holds we have some cyclic quotient G/N of or-
der p. We see from the proof of Proposition 3.2.4 that G/N corresponds to a Galois
extension K0 which ramifies only at p. Then Proposition 3.1.8 tells us that K0 is totally
ramified over p which means that |G/N | = [K0 : Q] = p = e so in particular p|e.

Suppose now that G is not solvable. We will prove that p|e. Then |G| ≥ 660 by Theorem
4.1.2. Let n = |G| and let ∆ be the discriminant of K. By [6, Appendix, p.1] we know

that |∆| 1n ≥ 20.47. But since the only ramified prime is p, we have from Lemma 3.1.7

that |∆| 1n ≤ p1+νp(e)−
1
e . Thus we find

20.47 ≤ p1+νp(e)−
1
e . (⋆⋆)

Because e > 1, and thus p1−
1
e < p, we cannot have νp(e) = 0. So νp(e) ≥ 1, which already

gives p|e as desired.
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Remark 3.3.4. The proof of Proposition 3.3.3 is analogous to the proof of Proposition
3.2.12. However, in 3.2.12 an extra assertion is made, namely that e ≥ 10. In a similar
fashion, we would like to say for 7 ≤ p < 23 that e ≥ 2 · p, but if νp(e) = 1 then we only

have e ≥ p. This gives p2−
1
p ≥ 37.11 for p ≥ 7, which does not contradict the inequality

(⋆⋆). So we cannot make a similar statement for any of the primes 7 ≤ p < 23 if we
wanted to use the same argument. We see from the proof of Lemma 3.2.16 that assuming
GRH would give 27.33 ≤ |∆ 1

n | which is again not enough to say e ≥ 2 · p or νp(e) > 1 for
7 ≤ p < 23.

We see from Remark 3.3.4 that we would need better discriminant bounds to say more
about the size of e for a given prime. These required bounds are made explicit in Lemma
3.3.5.

Lemma 3.3.5. Under the assumptions of Proposition 3.3.3, let ∆ again denote the dis-

criminant of K and let Bp = p2−
1
p as in Table 3.1. If there is an n such that Bp < |∆| 1n

and [K : Q] = n then e ≥ 2 · p.

Primes p required Bp

7 37.11
11 97.30
13 138.74
17 244.63
19 309.18

Table 3.1: Required discriminant bounds to find e ≥ 2 · p.

We conclude by considering what else we can say for a totally real extension where
only the prime 7 is ramified.

Lemma 3.3.6. Under the assumptions of Proposition 3.3.3, if p = 7 and K is a totally
real extension we can replace the third condition with 49|e.

Proof. If K is a totally real extension we know from [6] that 54.57 ≤ |∆| 1n , which, com-
bined with Lemma 3.1.7, gives

54.57 ≤ 71+ν7(e)−
1
e .

If ν7(e) ≤ 1, then 71+ν7(e)−
1
e < 72 = 49, which would give a contradiction with (⋆⋆). So we

can unconditionally replace the third condition of Proposition 3.3.3 for p = 7 with 49|e
in the totally real case.
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Chapter 4

Non-solvable extensions

4.1 The result in context

In [13, Lemma 2.22], Harbater showed for a group G ∈ πA(U2) with |G| ≤ 300 that G is
solvable. Hoelscher generalised this result to hold for more primes:

Theorem 4.1.1. [27, Proposition 2.2.4] Let 2 ≤ p < 29 be a prime number and G a
group in πA(Up) with |G| ≤ 300. Then G is solvable.

This was improved once more by Pollak:

Theorem 4.1.2. [27, Theorem 2.1.10] Let 2 ≤ p < 37 be a prime number and G a group
in πA(Up) with |G| ≤ 600 then G is solvable.

We improved on Theorem 4.1.1 by generalising it to hold for more primes and a lot
more orders, although not all for all orders less than 660.

Theorem 4.1.3. Let 2 ≤ p < 101 be a prime number and G a group in πA(Up). If the
order of G is in Table 4.1 then G is solvable.
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60, 120, 168, 180, 240, 300, 360, 420, 480, 540, 600, 780,
840, 900, 960, 1020, 1080, 1140, 1176, 1200, 1260, 1380,
1500, 1560, 1620, 1740, 1800, 1848, 1860, 1920, 2100,
2220, 2340, 2460, 2580, 2820, 2940, 3060, 3180, 3540,
3660, 3900, 4020, 4140, 4260, 4380, 4740, 4980, 5100,
5220, 5340, 5580, 5700, 5820, 6060, 6180, 6300, 6420,
6540, 6660, 6780, 6900, 7140, 7380, 7620, 7740, 7860,
7980, 8220, 8340, 8460, 8700, 8820, 8940, 9060, 9300,
9420, 9540, 9660, 9780, 10020, 10140, 10380, 10620,
10740, 10860, 10980, 11100, 11460, 11580, 11700, 11820,
11940, 12060, 12300, 12660, 12780, 12900, 13020, 13140,
13260, 13380, 13620, 13740, 13980, 14100, 14220, 14340,
14460, 14700, 14820, 14940, 15060, 15300, 15420, 15540,
15780, 15900, 16020, 16140, 16260, 16620, 16860, 16980,
17220, 17340, 17460, 17580, 17700, 17940, 18060, 18180,
18300, 18420, 18540, 18660, 18780, 19020, 19260, 19380,
19620, 19740, 19860, 20100, 20220, 20340, 20700, 20820,
20940, 21180, 21300, 21420, 21540, 21660, 21900, 22020,
22260, 22380, 22620, 22740, 22860, 22980, 23340, 23460,
23580, 23700, 23820, 24060, 24180, 24540, 24660, 24780,
24900, 25020, 25140, 25260, 25620, 25860, 25980, 26100,
26220, 26340, 26580, 26700, 26820, 26940, 27180, 27420,
27660, 27780, 27900, 28020, 28140, 28260, 28740, 28860,
28980, 29100, 29220, 29340, 29460, 29580, 29820, 29940,
30060, 30180, 30300, 30420, 30540, 30660, 30900, 31140,
31260, 31380, 31620, 31740, 31980, 32100, 32220, 32460,
32580, 32700, 32820, 33060, 33180, 33300, 33420, 33540,
33780, 33900, 34140, 34260, 34380, 34620, 34740, 34860,
35220, 35340, 35460, 35580, 35700, 35820, 35940, 36060,
36420, 36660, 36780, 36900, 37020, 37140, 37380, 37740,
37860, 37980, 38100, 38460, 38580, 38700, 38820, 39060,
39180, 39300, 39540, 39660, 39780, 39900, 40020, 40140,
40380, 40620, 40740, 40860, 40980, 41100, 41220, 41340,
41460, 41700, 41820, 41940, 42060, 42180, 42300, 42420,
42540, 42780, 43020, 43140, 43260, 43380, 43620, 43860,
43980, 44100, 44340, 44580, 44700, 44940, 45060, 45180,
45300, 45420, 45660, 45780, 46020, 46140, 46260, 46380,
46620, 46740, 47100, 47220, 47340, 47460, 47580, 47700,
47820, 47940, 48300, 48420, 48540, 48660, 48780, 48900,
49020, 49260, 49380, 49620, 49740, 49860, 49980.

Table 4.1: Orders for which G ∈ πA(Up) is solvable with 2 ≤ p < 101.

4.2 Extending Hoelscher’s result to more primes

To prove Theorem 4.1.3 we start by extending Theorem 4.1.1 to hold for any prime p in
the range 2 ≤ p < 101 in Proposition 4.2.3. Before we can do this we need to determine
the smallest primes such that A5, S5 and PSL(2, 7) lie in πA(Up). For this we have the
following theorem and the well-known fact that GL(3, 2) ≃ PSL(2, 7) as for example
proven in [7, Theorem 15].
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Theorem 4.2.1. [17, Theorem 4.1 and 4.3]

• The smallest prime p such that S5 ∈ πA(Up) is 101;

• The smallest prime p such that A5 ∈ πA(Up) is 653;

• The smallest prime p such that GL(3, 2) ∈ πA(Up) is 227.

We will also need the following Lemma by Harbater to prove Proposition 4.2.3.

Lemma 4.2.2. [13, Lemma 2.5] Let G be a non-solvable group of order ≤ 500, such
that every proper quotient of G is abelian. Let g ∈ G and n its order. Then one of the
following holds:

1. G ≃ A5, n ≤ 5;

2. G ≃ S5, n ≤ 6;

3. G ≃ PSL(2, 7), n ≤ 7;

4. 1 → PSL(2, 7)
ϕ−→ G

ψ−→ Z/2Z −→ 1 is exact, n ≤ 14;

5. G ≃ A6, n ≤ 5.

We are now ready to extend Theorem 4.1.1 by Hoelscher to hold for all primes less
than 101.

Proposition 4.2.3. Let 2 ≤ p < 101 be a prime number and G a group in πA(Up) with
|G| ≤ 300. Then G is solvable.

Proof. The proof is analogous to that of [27, Proposition 2.1.12]. By this proposition we
already know that the statement holds for all primes 2 ≤ p < 37 and we will now show this
argument also works for the primes 37 ≤ p < 101. Suppose for a prime 37 ≤ p < 101 that
there exists a non-solvable group G ∈ πA(Up) and let G be of minimal order. For any non-
trivial normal subgroup N we know that G/N ∈ πA(Up) by Lemma 2.3.31. Since G was
of minimal order and N is non-trivial we know that G/N must be solvable. By Theorem
2.1.48 we know that N must be non-solvable and thus |N | ≥ 60 by [32]. Together with

the bound on |G| this means |G/N | = |G|
|N | ≤ 5 and so G/N is abelian by [9]. We see that G

satisfies the hypothesis of Lemma 4.2.2. Note that |A6| = 720 and since |G| ≤ 300 we
know that Item 5 of Lemma 4.2.2 does not hold. Furthermore, Item 4 of Lemma 4.2.2
says that

1 → PSL(2, 7)
ϕ−→ G

ψ−→ Z/2Z −→ 1

is exact. Combining this with the First Isomorphism Theorem we find that

PSL(2, 7) ≃ PSL(2, 7)/1 ≃ PSL(2, 7)/ker(ϕ) ≃ im(ϕ) = ker(ψ),

and so that
G/PSL(2, 7) ≃ G/ker(ψ) ≃ im(ψ) ≃ Z/2Z.

Since the order of PSL(2, 7) is 168, the latter implies that the order of G is 2 · 168 > 300,
and so this sequence cannot be exact. We conclude that G must be isomorphic either
to A5, S5 or PSL(2, 7). However, Theorem 4.2.1 indicates this is not possible either. We
have a contradiction and can conclude that G is in fact solvable.
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4.3 Programming Pollak’s approach

We are now ready to explain which argument of Pollak we implemented in [11, GAP] and
how this rules out the existence of any remaining non-solvable groups in πA(Up) of orders
in Table 4.1 for 2 ≤ p < 101.

Proof of Theorem 4.1.3. Let 2 ≤ p < 101 be a prime number and G ∈ πA(Up) whose
order is some value in Table 4.1. We know that the statement holds if |G| ≤ 300 by
Proposition 4.2.3. We will proceed inductively to prove the statement for the orders
greater than 300 in Table 4.1 in the following way. Let n be the smallest order from Table
4.1 for which the statement has not yet been checked. Let Xn denote the collection of
all non-solvable groups of order n. Our goal is to show for all H ∈ Xn that H ̸∈ πA(Up).
By the same argument as in the proof of Proposition 4.2.3 it is enough to find a normal
subgroup 1 ̸= N ⊴ H such that H/N is non-solvable and the order |H/N | is in Table 4.1.
We have written a program which implements the above idea in GAP in order to obtain
the data in Table 4.1. A more legible pseudo version of the program can be found in
Listing 4.1 and the GAP code can be found in the Appendix (7). Theorem 4.3.1 explains
how this program works and with that concludes the proof of Theorem 4.1.3.

Listing 4.1: Gap implementation

Al lNonSolvableOrders := [ 60 , 120 , 168 , 180 , 2 4 0 , . . . ] ;
#Def in ing a l i s t o f a l l o rde r s up to 50064 f o r which non−s o l v ab l e groups
#ex i s t .

BadOrders := [ ] ;
#Def in ing a l i s t which w i l l s t o r e the o rde r s f o r which the re i s at l e a s t
#one group which does not admit a non−s o l v ab l e quot i ent .

BadGroups:= [ ] ;
#Def in ing a l i s t which w i l l s t o r e the groups which do not admit a
#non−s o l v ab l e quot i ent .

NotCubeFree := [ ] ;
#Def in ing a l i s t o f o rde r s f o r which GAP does not conta in
#the groups because t h e i r o rde r s are above 2000 and are d i v i s i b l e
#by a cube .
#See Remark 4 . 3 . 2 .

GoodOrders := [ 60 , 120 , 168 , 180 , 240 , 300 , 336 , 360 , 420 , 480 , 504 ,
540 , 6 0 0 ] ;
#Def in ing a l i s t o f o rde r s f o r which Theorem 4 . 1 . 3 was a l r eady proven by
#Hoel scher and Pol lak .

AddnToList := true ;
#Def in ing a boolean to i nd i c a t e whether or not the cur rent order n should
#be added to the l i s t o f good orde r s .

#I n i t i a t i n g a func t i on which determines i f a group G has a non−s o l v ab l e
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#quot i ent .
NonSolvQuotientFinder := func t i on (G)
Def in ing l o c a l v a r i a b l e s : NormalSubs , H, GroupHasNonSolvQuotient , F ;

NormalSubs (G) := [A func t i on which gene ra t e s a l i s t conta in ing the normal
subgroups o f G] ;

GroupHasNonSolvQuotient := f a l s e ;
#Def in ing a boolean t e l l i n g us i f G admits a non−s o l v ab l e quot i ent .

f o r H in NormalSubs do
F := G/H;
i f |H| = 1 then

stop ;
e l s e i f |H| = |G| then

stop ;
e l s e i f F i s not s o l v ab l e then

i f |F | i s in GoodOrders then
Pr int (G, H, |F | ) ;
GroupHasNonSolvQuotient := true ;
r e turn ;

i f GroupHasNonSolvQuotient = f a l s e then
AddnToList := f a l s e ;
Pr int (G does not admit a non−s o l v ab l e quot i ent ) ;
Add G to BadGroups ;

end func t i on ;

#I n i t i a t i n g a func t i on which checks f o r a l l non−s o l v ab l e groups G
#of order n whether or not they admit a non−s o l v ab l e quot i ent .
AllGroupsOfOrder := func t i on (n)
De f in ing l o c a l v a r i a b l e s G, NonSolvGroupsOfOrdern ;

NonSolvGroupsOfOrdern (n) := [A func t i on which gene ra t e s a l i s t o f a l l
non−s o l v ab l e groups o f order n ] ;

f o r G in NonSolvGroupsOfOrdern do
NonSolvQuotientFinder (G) ;

i f n>300 and AddnToList = true then
Add n to GoodOrders ;

e l s e AddnToList = f a l s e then
Add n to BadOrders ;
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end func t i on ;

#I n i t i a t i n g a func t i on which checks i f an order n i s cube f r e e .
CubeFree := func t i on (n)
De f in ing l o c a l v a r i a b l e s Prime , Div i so r s , Cube , nIsCubeFree ;

D iv i s o r s (n) := [A func t i on which gene ra t e s a l i s t o f the d i s t i n c t
prime d i v i s o r s o f n ] ;

nIsCubeFree := true ;

f o r Prime in D iv i s o r s do
Cube := Prime∗Prime∗Prime ;

i f Gcd(Cube , n) = Cube then
nIsCubeFree := f a l s e ;

r e turn nIsCubeFree ;
end func t i on ;

#I n i t i a t i n g a func t i on which execute s AllGroupsOfORder (n) f o r
#a l l non−s o l v ab l e o rde r s n l e s s than B.
#The func t i on takes in to account that n i s between 600 and 2016 or
#that n i s cube f r e e in order to be ab le to use the a v a i l a b l e groups in
#the GAP l i b r a r y . See Remark 4 . 3 . 2 .
CheckUpToOrder:= func t i on (B)
Def in ing l o c a l v a r i ab l e j ;

f o r j in Al lNonSolvableOrders do
i f j>600 then

AddnToList := true ;
i f j<B then
i f j = 360 then

stop ;
e l s e j<2016 then

AllGroupsOfOrder ( j ) ;
e l s e i f CubeFree ( j ) = true then

AllGroupsOfOrder ( j ) ;
e l s e i f CubeFree ( j ) = f a l s e then

Add j to NotCubeFree ;

Pr int (We cannot check these o rde r s : NotCubeFree ) ;
Pr int ( This does not work f o r the se o rde r s : BadOrders ) ;
Pr int ( These are the groups f o r which i t does not work : BadGroups ) ;
Pr int (The Theorem holds f o r the se o rde r s : GoodOrders ) ;
end func t i on ;
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Theorem 4.3.1. The program described in Listing 4.1 works.

Proof. As starting data the program already has a list “AllNonSolvableOrders” which
contains all orders for which non-solvable groups exist [32]. Furthermore, it has a list
“GoodOrders” which stores the orders of non-solvable groups for which the statement
of Theorem 4.1.3 has already been checked and which will make up Table 4.1 once the
program is done. Upon calling the program for the first time this list contains all orders
up to and including 300, since this is what we proved in Proposition 4.2.3. It will also
contain the order 360. As Pollak points out in [27, Example 2.1.14] there are 6 non-
solvable groups of this order. Five of them admit a non-solvable quotient, and so by
the argument in the proof of Theorem 4.1.3 these groups cannot lie in πA(Up) for the
primes 2 ≤ p < 101. The final group of order 360 is A6 and it was proven in [17, Theorem
4.2] that p = 1579 is the smallest prime such that A6 ∈ πA(Up). Hence all groups of
order 360 in πA(Up) for 2 ≤ p < 101 are solvable. When running the above code in GAP
we call the function “CheckUpToOrder(B)” for some positive integer bound B. For every
order 300 < n < B in “AllNonSolvableOrders”, apart from the exceptions, which are
discussed in Remark 4.3.2, the program will compute all groups G of order n and call the
function “NonSolvQuotientFinder(G)” for every such group G. This function computes
all non-trivial normal subgroups N of G and checks for every such subgroup if the quotient
is non-solvable. If this is the case the program tells us this, together with the group G,
the subgroup H and the size of the quotient, before moving on to the next group. If
there is no normal subgroup N such that G/N is non-solvable the program tells us this,
together with the group G. If all non-solvable groups G of order n admit a non-solvable
quotient we can add n to the list “GoodOrders” as is explained in the proof of Theorem
4.1.3. If there is at least one group of order n for which this is not the case we add n to
the list “BadOrders”. Furthermore, we keep track of each of these groups which do not
admit a non-solvable quotient in the list “BadGroups”. We elaborate on why we do this
in Example 4.4.1. After doing this for all n < B we find that the list of “GoodOrders” is
exactly the values in Table 4.1.

Remark 4.3.2. The library of GAP [11] contains a large, but limited amount of groups for
us to check:

1. Those of order at most 2000;

2. Those of cubefree order of at most 50000;

3. Those of order p7 for the primes p = 3, 5, 7, 11;

4. Those of order pn for n ≤ 6 and all primes p;

5. Those of order qn · p for qn dividing 28, 36, 55 or 74 and all primes p with p ̸= q;

6. All groups of squarefree order;

7. Those whose order factorises in at most three primes.

However, we do not need to check all these groups. It turns out we are only interested,
and will check, all non-solvable orders up to 2000 and after this the program checks the
non-solvable groups whose order is cubefree and less than 50000. We explain below why
we do not need to check the other families which GAP stores.

We are not interested in the groups in Item 3, since we are only checking non-solvable
groups which a priori can only have an even order by Theorem 2.1.46. Item 4 is ruled
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our for the same reason paired with the fact that there are no non-solvable groups of
order 2n for any n ≤ 6 [32]. By Theorem 2.1.47 and group of order qn · p will be solvable
and so Item 5 will not give us any new non-solvable groups to check. Since the order of
every non-solvable group is divisible by 4 [32] none of them will be square-free so Item
6 does not apply either. Finally we know that any order of a non-solvable group will be
divisible by 4 and either 3 or 5 [32], which already gives a minimum of three primes in its
factorisation. Hence a non-solvable group whose order factorises into at most three primes
would contain either 12 or 20 elements and we know there are no non-solvable groups of
these orders. We can conclude that Item 7 also does not give us any new non-solvable
groups to check. If the library of GAP expands we would be able to check more orders.

4.4 Obstructing groups

Note that Theorem 4.1.3 does not imply Pollak’s Theorem 4.1.2. This is because there
are non-solvable groups of order less than or equal to 600 which do not admit a non-
solvable quotient. For every order n that our program checks it keeps track of the groups
that obstruct it from going into Table 4.1 by collecting these groups in the appropriately
named list “BadGroups”. We give the first few of these orders in Table 4.2 together with
one of the obstructing groups for each order.

Order n Number of non-solvable groups of order n Number of obstructing groups Example of obstructing group
336 3 1 PGL(2, 7)
504 2 1 PSL(2, 8)
660 2 1 PSL(2, 11)
672 8 4 PSL(3, 2)⋊ Z/4Z
720 23 3 S6

Table 4.2: “BadGroups” - Non-solvable groups which do not have a non-solvable quotient.

Similar to Pollak [27, Example 2.1.13, 2.1.14, 2.1.18] we can try to use other arguments
to show that the groups in “BadGroups” cannot lie in πA(Up) for 2 ≤ p < 101 in the
hopes of adding more orders to Table 4.1. We will sketch the various methods Pollak
used for this. Assume that there is some field K which is ramified only at p and which
realises G. Then we start by reasoning that all the primes which divide |G| do not work.
One way of doing this is to use the subgroups of G and their corresponding subfields
of K and for small primes we can use the discriminant bounds of [6] and [26] together
with Lemma 3.1.7. If we manage this we know that the ramification must be tame. This
means the inertia group must be a cyclic subgroup of G which leaves only so many options.
Using various facts about the decomposition and intertia group, Pollak manages to show
that the remaining primes we want to rule out also do not allow for G ∈ πA(Up). The
exact nature of each step depends on the group we are dealing with. We tried using the
various approaches Pollak describes in [27, Example 2.1.13, 2.1.14, 2.1.18] for all of the
obstructing groups of all the orders in Table 4.2, but for each of them some part of the
above process did not work. We do however have the following.

Example 4.4.1. There are three non-solvable groups of order 720 which do not admit a
non-solvable quotient. One of them is S6 which does not lie in πA(Up) for 2 ≤ p < 101
as proven by Jones and Roberts in [17, Theorem 4.2]. Hence, we only need to show that
two more groups do not lie in πA(Up) in order to conclude 720 should be in Table 4.1.
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Chapter 5

Examples of the Boston-Markin
Conjecture

5.1 A totally real S3-extension

Recall from the introduction that the Boston-Markin Conjecture [5, Conjecture 1.2] says
that a group G for which the abelianisation has a minimal generating set of d elements,
should appear as the Galois group of a number field which ramifies at exactly d primes
(including the prime at infinity). For a group with cyclic abelianisation this would mean
finding a totally real number field which ramifies at one finite prime. We require it to be
totally real, because any totally complex number field will ramify at the prime at infinity
as well as a finite prime by Corollary 2.2.23, making for a total of two ramified primes
which is more than the Conjecture suggests. In particular, the symmetric and alternating
groups have an abelianisation which is isomorphic to Z/2Z.

Example 5.1.1. In lmfdb we can look for S3 extensions and filter out those which are
not totally real. We do this by specifying the signature of any extension we get to be
[6, 0] which simply means there are 6 real embeddings of the extension. This ensures
us to find a totally real Galois extension since the order of S3 (and hence the degree
of the extension and the number of embeddings) is 6. In the end we sort our results
on ramified prime count to find a totally real S3-Galois extension as the splitting field
of x6 − 2x5 − 14x4 + 14x2 − 2x − 1 ([20, 6.6.12008989.1]) which ramifies only at the
prime 229.

For every n with 2 ≤ n ≤ 30, Pollak [27, Example 2.1.21] provides a polynomial of
degree n whose splitting field is an Sn-extension ofQ which ramifies at a single finite prime.
He used Sage to compute the discriminant of these polynomials and then determined
whether these are divisible by a single prime. Magma was used in each case to verify
that the corresponding Galois group is indeed the symmetric group. Using Magma [4]
we compute that each of these polynomials admits at least one complex root. Since any
embedding of such a splitting field into C has to map non-real complex numbers to non-real
complex numbers we see that each of these splitting fields only admit complex embeddings.
As discussed, this means that the infinite prime does ramify in these instances giving a
total of two primes ramifying in these extensions. It would be interesting to see if we
could find totally real Sn extensions which ramify at a single finite prime like in Example
5.1.1 for more n.

Remark 5.1.2. In search of totally real Sn-extensions we might hope to find totally real
subfields of the given extensions by Pollak in [27, Example 2.1.21]. Indeed, any subfield
of such an Sn-extension would also ramify at a single finite prime by Lemma 2.2.26.
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However, we claim that there are no interesting subextensions of these Sn-extensions.
Firstly, we would only be interested in subfields which are also Galois over Q and so any
such subfield would correspond to a normal subgroup of Sn by Theorem 2.3.11. Since Sn
is simple for n ≥ 5 there is no hope for any (non-trivial) subfields in this case. If n = 2
there are no non-trivial subfields since a Galois S2-extension has degree 2 over Q. If n = 3
there is one normal subgroup A3 ⊴ S3. However, the Galois group of the corresponding
extension is S3/A3 ≃ Z/2Z, which is abelian and we already know the Conjecture holds
for all abelian groups by Theorem 1.2.2. If n = 4 we have A4 and the Klein group V4
as normal subgroups of S4. Similar to A3, we know that A4 does not tell us anything
interesting and for V4 we know the quotient is S4/V4 ≃ S3. However, the S4-extension
which Pollak gives in [27, Example 2.1.21] ramifies at the prime 229 and we already have
a totally real S3-extension which ramifies at the prime 229 in Example 5.1.1.

5.2 Constructing examples using direct products

Unfortunately lmfdb does not contain totally real Sn extensions for n > 3. However, we
can still investigate other groups with a cyclic abelianisation with the hopes of finding
more examples of the Boston-Markin conjecture.

Example 5.2.1. Similar to the symmetric and alternating groups the dihedral groupsD2n

of order 2n for n odd have an abelianisation isomorphic to Z/2Z. We used GAP[11] to
check for all non-abelian groups up to order 47 if they have a cyclic abelianisation. If so,
we checked with lmfdb [20] if such a group is realised by a number field where a single
prime ramifies. Table 5.1 contains the groups that GAP gave us for which lmfdb had such
a number field. We included the GAP group ID in the case of a semidirect product in
order to have no confusion about which semidirect product we mean.

Group G abelianisation Gab Discriminant ∆K Totally real extension K in lmfdb
D6 Z/2Z 2293 [20, 6.6.12008989.1]
D6 Z/2Z 2573 [20, 6.6.16974593.1]
D10 Z/2Z 10935 [20, 10.10.1559914552888693.1]
D10 Z/2Z 14295 [20, 10.10.5958832035878149.1]
D14 Z/2Z 5777 [20, 14.14.21292697885552828353.1]
D14 Z/2Z 10097 [20, 14.14.1064726745878753869969.1]
D18 Z/2Z 11299 [20, 18.18.2980200459393400813138329769.1]
D18 Z/2Z 31379 [20, 18.18.29419187099015603300777232870977.1]
D22 Z/2Z 119711 [20, 22.22.17471883970840462300304775614373553.1]

Z/3Z ⋊ Z/4Z ([12, 1]) Z/4Z 7619 [20, 12.12.85597663644117187118144441.1]
Z/3Z ⋊ Z/4Z ([12, 1]) Z/4Z 27139 [20, 12.12.7962476138101219604907410499673.1]

S3 × Z/3Z Z/6Z 459715 [20, 18.18.8652020828193534698298344237008784910638746650249112093.1]
S3 × Z/3Z Z/6Z 705715 [20, 18.18.5361690753091261103977627287108398376009342042620902254193.1]

Z/5Z ⋊ Z/4Z ([20, 1]) Z/4Z 40115 [20, 20.20.1114719476673733231325235265693136806001.1]
Z/5Z ⋊ Z/4Z ([20, 3]) Z/4Z 45715 [20, 20.20.7920324970752980721138622168329325203193.1]
Z/7Z ⋊ Z/3Z ([21, 1]) Z/3Z 31314 [20, 21.21.86620507852136986313803229728551889.1]
Z/7Z ⋊ Z/3Z ([21, 1]) Z/3Z 87714 [20, 21.21.159218785599036824660651669785398798634009.1]

Table 5.1: Totally real G-extensions which ramify at a single finite prime (and not at the
prime at infinity).

It is already proven by Boston and Markin that their Conjecture holds for all groups
of order less than or equal to 32 [5, Theorem 3.1]. Hence, Examples 5.1.1 and 5.2.1 are
not surprising. However, we will use them to illustrate a method of constructing some
new examples of the Boston-Markin Conjecture out of existing ones.

Proposition 5.2.2. Let p1, .., pn be distinct primes and G1, .., Gn be finite groups. LetK1, .., Kn

be totally real Galois extensions of Q where each Ki is ramified only at pi and has Galois
group Gi. Then the compositum C := K1 · .. · Kn is a totally real G1 × .. × Gn-Galois
extension which only ramifies at the primes p1, .., pn.
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Proof. Proposition 2.3.15 tells us that C is again Galois over Q and that Gal(C/Q) is
contained in G1×..×Gn. We claim that the intersection of all the fields in the compositum
is trivial, i.e. I := ∩iKi ≃ Q from which it follows by Corollary 2.3.16 that Gal(C/Q) ≃
G1 × .. × Gn. To see this intersection is trivial we firstly note that I cannot ramify at
any pi. Assume that I does ramify at some pi and note that I ⊂ Kj for all j ̸= i.
Then Corollary 2.2.25 would imply that Kj also ramifies at pi. Similarly C can also not
ramify at any other prime than some pi because all Ki are unramified outside respectively
pi. Hence C is an unramified extension of Q, which must be trivial by Corollary 2.2.23.
Furthermore, the compositum of any finite number of totally real extensions is again
totally real. We argue this for two totally real extensions, say K and L. To see this, first
note that any embedding σ of KL can be restricted to an embedding of K or L. Since
both only admit real embeddings we know that these restrictions σK and σL must have
a real image. Since K and L are number fields we can see KL as K(L) where we adjoin
the generators of L to K. Hence, the image of any embedding of KL is determined by
the image of K and the images of the generators of L, both of which we just saw have
to be real. It is clear that we can repeat this argument to conclude that C is also totally
real. By [21, Theorem 31, page 76] we know that C is unramified outside of the primes pi
for all i. With Corollary 2.2.25 we also know that C does ramify at pi for all i which
concludes the proof.

We will now illustrate how to put Proposition 5.2.2 into action with the groups in
Example 5.2.1.

Proposition 5.2.3. Let G1, .., Gn be a collection of groups chosen from Table 5.1 such
that their abelianisations are the same and the corresponding extensions pairwise ramify
at distinct primes. Then the product G1 × .. × Gn is an example of the Boston-Markin
conjecture for n primes.

Proof. Let Ki denote the corresponding Galois extension for Gi from Table 5.1 and pi the
corresponding prime which is ramified. By Proposition 5.2.2 we know that G1× ..×Gn is
realised by the compositum of all Ki which is a totally real Galois extension that ramifies
only at the primes pi. Because the compositum is totally real we know that there the prime
at infinity does not ramify. To show this is an example of the Boston-Markin conjecture
we need to prove that a minimal generating set of (G1 × ..×Gn)

ab has n elements. Using
Proposition 2.1.9 repeatedly we see that (G1 × .. × Gn)

ab ≃ Gab
1 × .. × Gab

n . We chose
all the groups in Table 5.1 to have cyclic abelianisation, hence a generating set could
consist of the n tuples where we have a generator of Gi on position i and identities on
every other position. We are left to show that there cannot be a generating set with less
elements, so assume there is a generating set with k elements where k < n. Any generator
must be of the form (g1, .., gn) where gi ∈ Gab

i . The order of such a generator is the least
common multiple of the orders of all gi. We assumed all the abelianisations Gab

i to be
the same, hence we know that the order of a generator (g1, .., gn) is at most the order
of Gab

i . Furthermore, |(G1 × .. × Gn)
ab| = |Gab

1 × .. × Gab
n | = |Gab

1 | · .. · |Gab
n | = n · |Gab

i |,
which means that this generating set has to generate n · |Gab

i | elements. However, every
generator has an order of at most |Gab

i | and so together they generate at most k · |Gab
i |

elements which is not enough by our assumption that k < n. We conclude there cannot
be less than n generators and that a minimal generating set consists of n elements.

Proposition 5.2.3 allows us to make many combinations of groups in Table 5.1 but
still restricts us to take groups which have the same abelianisation. The reason for this
restriction stems from the fact that we do not know the minimal generating set of arbitrary
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products of the abelianisations if the groups we take in the product are distinct. We can
say a bit more if we restrict the product to have two components.

Proposition 5.2.4. Let G and H be groups realised by numberfields K and L respectively.
Assume that K only ramifies at p and that L only ramifies at q where p and q are distinct
primes. Assume gcd(|Gab|, |Hab|) ̸= 1. Then G×H is an example of the Boston-Markin
conjecture for two primes.

Proof. Since G and H are realised by numberfields which ramify at a single prime we
know their abelianisations must be cyclic by Corollary 2.3.32. By Proposition 2.1.9 we
know that (G×H)ab ≃ Gab ×Hab and since |Gab| and |Hab| are not coprime we see with
Proposition 2.1.10 that the direct product is not cyclic. Hence the abelianisation of G×H
has a minimal generating set of two elements. The rest of the argument is identical to
the proof of Proposition 5.2.3.

The upshot of this discussion is that Propositions 5.2.3 and 5.2.4 allow us to create
groups of order larger than 32 which are examples of the Boston-Markin conjecture as
illustrated in Example ?? In Table 5.1 we purposely gave several extensions for a fixed
group, provided lmfdb had multiple options, to indicate that we do not need to take the
product of two distinct groups. We do however want to make sure the ramifying primes
in the corresponding extensions are distinct, which we did in Table 5.1.

Example 5.2.5. There exists a Z/7Z⋊Z/3Z×S3×Z/3Z-extension which only ramifies
at the primes 4597 and 313 by Proposition 5.2.4 and there exists a D6×D6×D10×D14×
D18×D22-extension which only ramifies at the primes 229, 257, 1093, 577, 1129 and 1197
by Proposition 5.2.3. Both of these groups are examples of the Boston-Markin Conjecture
and we can of course take a lot more combinations from Table 5.1.
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Chapter 6

Further Research

1. Our program in Chapter 4 keeps track of all the groups which do not admit a non-
solvable quotient in the list “BadGroups”. As noted at the end of Section 4, Pollak
has other arguments (see [27, Example 2.1.13, 2.1.14 and 2.1.18]) to show that a
specific group cannot lie in πA(Up) for primes p in some range. We would want
to show that the groups in “BadGroups” cannot lie in πA(Up) for primes p < 101.
We pointed out that we tried to apply these arguments to the first few groups in
“BadGroups” and that at first glance there seems to be some problem for each
group. It would be interesting to spend more time on this and try to adapt the
arguments of Pollak to work for the groups we are dealing with.

2. In [27, Example 2.1.21] Pollak computes various examples of Sn extensions which
ramify at a single finite prime. His approach is to compute discriminants of polyno-
mials of the form xn+ axk + b for various choices of n, k, a and b where n and k are
coprime. If these discriminants only have a single prime dividing it, he computes the
splitting field and checks what the Galois group is. Whatever the Galois group G
might be, this approach gives examples of G-extensions which only ramify at a single
finite prime and it would be interesting to try this for various other polynomials and
see what groups occur. In particular, this then tells us that we can solve the inverse
Galois problem for the groups G that we find in this process.

3. As noted in Chapter 5, the above-mentioned examples of Pollak are not totally real
extensions and hence also ramify at the infinite prime. In particular this means that
they do not serve as examples of the Boston-Markin conjecture. It would therefore
be interesting to try and find more totally real Sn extensions which ramify at a
single finite prime like in Example 5.1.1. We used lmfdb to create this example and
tried to find others but, at the moment, the database does not allow for Sn or An
examples for n > 3.

4. In Chapter 5 we explained how we can use two extensions which ramify at a single
prime to create an extension which ramifies at two primes. We also gave the corres-
ponding Galois group as the direct product of the respective groups. In [34, Page
243] Stoll gives several values for a ∈ Z such that for all n ≥ 1 we have

Gal(fn/Q) ≃ [Z/2Z]n,
where f = x2+a, Gal(fn/Q) denotes the Galois group of the splitting field of the nth

iterate of f over Q and [Z/2Z]n denotes the nth wreath product. In light of this
result, it is worth investigating if the wreath product can also be used to construct
more examples of the Boston-Markin Conjecture.
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Chapter 7

Appendix

This link redirects to a text document which contains the GAP code for the program
described in Theorem 4.3.1. To run the code you need version 4 of [11, GAP]. In GAP
you can paste the code and then press enter. After this you can type the command
“CheckUpToOrder(50065);” and press enter again.
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de degré n., Publications Mathématiques d’Orsay 80, vol. 6, Université de
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