
Graduate School of Natural Sciences

Slice rank and fast matrix multiplication
Nils Van de Berg

Master Thesis

Mathematical Sciences

Supervisor:

Prof. Dr. Dion Gijswijt
Delft University of Technology

Examiners:

Dr. Carla Groenland
Utrecht University

Prof. Dr. Rob Bisseling
Utrecht University

16/06/23

1 ACKNOWLEDGEMENTS i

1 Acknowledgements

This thesis was made possible by the support of many. Most of all my daily supervisor Prof. Dion Gijswijt,
who engaged with me in frequent discussion throughout the year. These discussions have been the root of
all new ideas in this thesis. He also guided me through all phases of the writing and I am extremely thankful
for that. I want to thank him, Dr. Carla Groenland, Prof. Rob Bisseling but also Ward, Jasper, Sven and
Cat for going through earlier versions of this text and helping me eliminate a big portion of the mistakes.
In the final months I was also massively supported by everyone else in the ’Wisbieb’ in Utrecht who kept
my motivation and spirits high whenever I could not do that alone. I want to mention Ludo, Caspar and
Gabriëlle explicitly as they were going through the same process and being able to relate my experiences was
really helpful.

Abstract

The slice rank is a rank notion for tensors that was introduced in 2016. It can be analysed through the
vertex cover number of the support of the tensor. This can give both upper and lower bounds for the slice
rank and its asymptotic version. We analyse these bounds for tensors with symmetry. We use this to
prove that the asymptotic slice rank is multiplicative for symmetric and oblique tensors. Our motivation
for studying the slice rank is the connection with fast matrix multiplication. The problem of fast matrix
multiplication asks how many arithmetic operations are needed to multiply two n × n-matrices. The
exponent of matrix multiplication ω indicates the asymptotically minimum number of such operations.
There are certain methods to find upper bounds for ω and Alman [Alm18] used the slice rank to show
that a general class of such methods cannot prove ω < 2.16. To find these explicit limitations one can use
upper bounds for the asymptotic slice rank, which are more easily computed for tensors with a specified
partition. We add some new results about such upper bounds for partitioned tensors.

The current best upper bound for ω is 2.37187. This bound was obtained using the laser method with
base tensor CW⊗8

5 . We describe the laser method and perform some computations for other families of
base tensors to conclude that they could potentially be used to obtain better bounds.

ii

CONTENTS iii

Contents

1 Acknowledgements i

2 Introduction 1
2.1 Overview of this thesis . 3

3 Preliminaries 3
3.1 Tensors . 3
3.2 Restrictions . 5
3.3 Tensor product . 6
3.4 Slice rank . 7
3.5 Asymptotic ranks . 9
3.6 Border rank . 9
3.7 Entropy and types . 10
3.8 Laser method . 11
3.9 Symmetry . 12
3.10 Slice rank for lower bounds . 13

4 Combinatorial estimation of the slice rank 13
4.1 Vertex cover numbers . 14
4.2 Oblique support . 15
4.3 Asymptotic vertex cover numbers . 18
4.4 Partitions and asymptotic vertex cover numbers . 20

5 Multiplicativity of the asymptotic slice rank 23
5.1 The G-stable rank . 24
5.2 Supermultiplicativity for oblique tensors and complex tensors 24
5.3 The multiplicativity of asymptotic slice rank for symmetric and oblique tensors 26

6 The laser method 27
6.1 Lower bounding the value . 28
6.2 Motivation of choices in the laser method . 31
6.3 Proof of Theorem 6.1.2 . 31
6.4 Advanced laser methods . 35

7 Alternative base tensors 36

8 Outlook 39

References II

A Code III

2 INTRODUCTION 1

2 Introduction

Matrix multiplication is one of the fundamental operations in linear algebra. The complexity of this opera-
tion has thus become a fundamental problem in algebraic complexity theory. The complexity of many other
important computations, such as inverting matrices and finding LUP decompositions, is determined by the
complexity of matrix multiplication [BCS96]. In this thesis we look at the asymptotic behaviour of matrix
multiplication. This problem can be restated in terms of tensors and we study the tensor rank and slice rank
as a way to find bounds on the complexity of matrix multiplication. We also focus on the slice rank as an
independent notion of interest.

The product of two n× n-matrices A and B is another n× n-matrix AB. The standard or naive algorithm
for computing this product determines each entry of AB one at a time. For 2× 2-matrices we get(

a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
,

so each entry in AB requires two multiplications. This means we need 8 multiplications in total. For n× n-
matrices the naive algorithm requires n3 multiplications in total. In 1969 Strassen found a groundbreaking
method to multiply two 2 × 2-matrices with only 7 multiplications [Str69]. First, use one multiplication to
compute each of M1, . . . ,M7 where

M1 = (A11 +A22)(B11 +B22), M2 = (A21 +A22)B11, M3 = A11(B12 −B22), M4 = A22(B21 −B11)

M5 = (A21 −A11)(B11 +B12), M6 = (A11 +A12)B22, M7 = (A12 −A22)(B21+B22)

and then write the product of A and B purely in terms of sums and differences of the Mi

AB =

(
M1 +M4 −M6 +M7 M3 +M6

M2 +M4 M1 −M2 +M3 +M5

)
. (2.1)

By using this method recursively one gets an algorithm that computes the product of two 2k × 2k-matrices
with only O(7k) multiplications.

Algorithm 1 Strassen(k)

Input: Two 2k × 2k-matrices A,B.
Output: The matrix product AB.
0. If k = 0 multiply the numbers A and B and output the product.
Else:
1. Split the columns and rows of matrices A,B in two. This gives 2k−1×2k−1-submatrices A11, A12, A21, A22

and B1, B2, B3, B4.
2. Add the submatrices together in preparation for calculating the seven products Mi in Strassen’s identity.
3. Use Strassen(k − 1) seven times to find each of the products Mi.
4. Add these together according to Equation 2.1 to find each of the four 2k−1 × 2k−1-submatrices of AB.

If mk is the number of multiplications needed to run Strassen(k), then mk = 7mk−1, so mk = 7k. This
algorithm uses more additions than the naive one, but this number grows slower than 7k. Therefore this
algorithm implies that n×n-matrices can be multiplied with only O(nlog2 7) arithmetic operations (additions
and multiplications).
The fact that log2 7 ≈ 2.81 is smaller than 3 means that for large matrices this algorithm needs fewer
operations and is thus faster. These algorithms that break the n3 complexity are known as fast matrix
multiplication algorithms. Strassen’s algorithm gets used in practice and can be faster, even for 1000× 1000-
matrices [DN05]. However Strassen’s is not necessarily the fastest algorithm. The question is for which values
τ is there an algorithm that uses O(nτ) arithmetic operations to multiply n × n-matrices. The infimum of
all such values τ is called the exponent of matrix multiplication, denoted by ω. Mathematicians have found
increasingly complex ways to upper bound ω. At the moment we know that 2 ≤ ω < 2.37187, but this leads
to the main question of the field.

2 INTRODUCTION 2

Open problem 2.0.1. What is the exact value of ω?

As mentioned before the matrix multiplication problem is related to many other problems in algebraic com-
plexity theory. It has been shown that finding the determinant, inverting matrices, finding LUP decomposi-
tions, and determining the transitive closure of a graph also have complexity O(nω) asymptotically [BCS96].

Finding upper bounds for ω quickly moved away from establishing explicit algorithms. Instead, it was
observed that a certain algebraic object, the matrix multiplication tensor, contained all the information
about matrix multiplication that is needed to analyse its computational complexity. The ⟨2, 2, 2⟩ matrix
multiplication tensor is

⟨2, 2, 2⟩ :=
2∑

i=1

2∑
j=1

2∑
k=1

xijyjkzki

and represents the multiplication of two 2 × 2-matrices. If one multiplies a matrix with entries xij with a
matrix with entries yjk then the ik entry of the product corresponds to the sum

∑
j xijyjk. These are exactly

all terms in the tensor that have zki in it. Strassen’s identity can also be rewritten in terms of this tensor via

⟨2, 2, 2⟩ = (x12 − x22)(y12 + y22)z11 + (x21 + x22)y11(z12 − z22) + x11(y12 − y11)(z21 + z22)

+ x22(y21 − y11)(z11 + z12) + (x11 + x12)y22(z21 − z11) + (x21 − x11)(y11 + y12)z22 (2.2)

+ (x11 + x22)(y11 + y22)(z11 + z22).

This is a sum of only 7 terms, with each term consisting of a product of linear combinations of x-variables,
y-variables and z-variables. In general, tensors can intuitively be thought of as higher-dimensional matrices.
These can be studied in their own right and have their own version of matrix rank called tensor rank R.
In Chapter 2 it will become clear that the expression above shows that R(⟨2, 2, 2⟩) ≤ 7. It was shown that
the tensor rank of matrix multiplication tensors is equal to the minimum number of multiplications in any
matrix multiplication algorithm. Asymptotically the multiplications are the dominating term in the number
of arithmetic operations, which means that tensor rank determines ω [BCS96]. Establishing the tensor rank
of relevant tensors became the new challenge of the field. This is generally an NP-hard problem [HL13], but
it can be determined for some families of tensors. The idea was to use these tensors with known rank to
upper bound the tensor rank of matrix multiplication tensors, which leads to upper bounds on ω.
This idea was applied by Strassen in the form of the laser method. We will go into the details of this method
in Chapter 5. With this method Strassen showed that ω < 2.48 [Str87]. In this method you start with a
certain base tensor. This is usually the tensor CWq, which is the sum of 6 matrix multiplication tensors.
Then we take a suitable power of this tensor, CW⊗n

q , and analyse the matrix multiplication tensors this
power contains. By comparing this to the rank of CW⊗n

q we find a bound on ω. Coppersmith and Winograd
improved upon his method and could then apply it with base tensor CW⊗2

q [CW90]. This gave ω < 2.3755.
Later improvements [Wil12][Gal14][AW20] analysed even higher powers of CWq and made some small im-
provements to reach ω < 2.373. In 2022 Duan, Wu and Zhou found the current best implementation of the
laser method, which established ω < 2.37187 [DWZ22]. The main conjecture in the field is that ω = 2. These
methods do not seem to get us close to this value of ω. This phenomenon has also been researched and
multiple limitations were found to both the laser method [AFG15] and more general methods, such as the
universal method [Alm18].

There are other notions of ranks for tensors. One such rank was defined in 2016. Ellenberg and Gijswijt
independently found an exponential improvement on the bound for the capset problem [EG16]. Their proof
was analysed and put into tensorial context by Tao [Tao16]. This resulted in the introduction of the slice rank
SR. This notion has found use in multiple combinatorial problems, such as for sunflower-free sets [NS17],
and can also be applied to the analysis of fast matrix multiplication. In particular, Alman [Alm18] used it
to give lower bounds on the exponent ωu that the universal method can obtain. For these lower bounds we
need an asymptotic version of the slice rank S̃R. The slice rank is hard to determine for a general tensor
[Blä+19], but it can be determined in some cases through analysis of the support. If we think of a tensor as
a k-dimensional matrix, then the support is the set of non-zero entries. In a follow-up blogpost [TS16] Tao
and Sawin showed multiple connections between the slice rank and the support. In this thesis we improve
upon one of their propositions with the following proposition.

3 PRELIMINARIES 3

Proposition 2.0.2. Let k ≥ 6 be an integer and let T be a k-tensor defined on the k-fold product G ×
· · · × G where G is some finite abelian group. If all elements in the support supp(T) of T are of the form
(a, a + b, . . . , a + (k − 1)b) for some a, b ∈ G and all elements of the form (g, g, . . . , g) are in supp(T), then
SR(T) = |G|.

From their propositions it also follows that the support exactly determines the slice rank if it is of a specific
form we call oblique. We will define this term in Chapter 3, but intuitively one can say that obliqueness is
a condition for which supports are sparse enough that we cannot find linear combinations of the variables
that decrease the slice rank. If the support is oblique, then the slice rank can be thought of as a purely
combinatorial object called the vertex cover number. We study this vertex cover number in particular in
the case that the support is symmetric. From this we deduce new equalities for the asymptotic slice rank of
symmetric tensors.

Theorem 2.0.3. If S and T are two symmetric and oblique tensors, then S̃R(S ⊗ T) = S̃R(S)S̃R(T) and

S̃R(S ⊕ T) = S̃R(S) + S̃R(T).

The study of the slice rank and tensor rank can be simplified through partitions. In the laser method each
of the sets of variables is given a partition and we treat all variables in one partition class as being the same.
The partitions can also be used to obtain upper bounds on the asymptotic slice rank [Alm18]. We show that
Alman’s upper bound, which is some expression hΛ(Φ), follows directly from other known bounds by showing
that hΛ(Φ) decreases when changing to finer partitions.

Proposition 2.0.4. Let Λ = (X ,Y,Z) be a triple of partitions of X,Y, Z and let Λ′ = (X ′,Y ′,Z ′) be a
refinement of Λ in the sense that X ′ is a refinement of X , Y ′ is a refinement of Y and Z ′ is a refinement of
Z. Consider a subset Φ ⊆ X × Y × Z then hΛ(Φ) ≥ hΛ′(Φ).

2.1 Overview of this thesis

Chapter 2 formally introduces all the necessary concepts, such as tensors, rank and slice rank to understand
the later chapters. This chapter also includes most proofs as it was believed this would help the reader’s
understanding.
The main body of this thesis starts in Chapter 3, where we explore the combinatorial aspects of the slice
rank by analysing the support of tensors and their vertex cover number. This chapter largely includes
reinterpretations of known results, but also gives the proofs of Proposition 2.0.2 and Proposition 2.0.4. The
equality case in this last proposition leads us to introduce the notion of a regular support, about which we
also prove some small statements. In Chapter 4 we relate the results from Chapter 3 to the asymptotic slice
rank, which leads to Theorem 2.0.3.
In Chapter 5 we turn our attention to the laser method. The method is described in detail and we prove
the general bound it obtains. In addition, we sketch the ideas of more advanced implementations. As a
suggestion for a way forward we look at some potential other starting tensors for the laser method in Chapter
6. We have computed lower bounds for the ω that these starting tensors could obtain.
We close this thesis in Chapter 7 by discussing some questions that arose but were left unanswered in this
thesis.

3 Preliminaries

3.1 Tensors

There are many representations of tensors. First, we introduce tensors in a basis-independent way, but we
shall also adopt basis-dependent notation in order to speak more easily about them in combinatorial terms.

Definition 3.1.1. A k-tensor is any element of a tensor product of k finite-dimensional vector spaces with
common base field.

A 1-tensor is just a normal vector and a 2-tensor is an element of V ⊗W for two vector finite-dimensional
spaces V,W . There are isomorphisms V ⊗W ∼= V ⊗W ∗ ∼= hom(W,V) with W ∗ the dual space of W . Given

3 PRELIMINARIES 4

bases, a 2-tensor can thus be regarded as a matrix.

For vector spaces (Vi)1≤i≤k over F each with basis (xi
j)1≤j≤ni

the tensor product V1 ⊗ . . . ⊗ Vk has basis

{x1
j1

⊗ . . .⊗ xk
jk
|(j1, . . . , jk) ∈ [n1]× . . .× [nk]}. We can write each tensor T uniquely in terms of this basis

with coefficients t(j1, . . . , jk) ∈ F

T =
∑

(j1,...,jk)∈[n1]×...×[nk]

t(j1, . . . , jk)x
1
j1 ⊗ . . .⊗ xk

jk

This way each tensor T defines a coefficient function t : [n1]×· · ·×[nk] → F for any set of bases of the Vi. Such
a function also uniquely defines a tensor given a basis, thus we can give a (basis-dependent) representation
of tensors as functions X1 × . . .×Xk → F where each Xi is a finite set.

Definition 3.1.2. The support of a tensor T with respect to a certain basis is the support of the coefficient
function t.

To write down tensors concisely we use the notation
∑

i1,...,ik
t(i1, i2, . . . , ik)x

1
i1
· · ·xk

ik
(without the ⊗ between

the basis elements). In this sum we leave out any terms which are not in the support. We will mostly deal
with 3-tensors, because our main tensor of interest, the matrix multiplication tensor, is a 3-tensor. For these
we use sets X,Y, Z and write a tensor as

∑
ijk tijkxiyjzk. Any time we work with this notation we will have

fixed bases in advance, but we do not mention this explicitly. Many results also do not depend on the field
over which we work or which vector spaces are chosen. We only mention these explicitly whenever it matters.
We can now introduce two types of tensors that are especially important to us.

For any positive integers k and n the independent k-tensor ⟨n⟩k is the tensor

n∑
i=1

x1
ix

2
i · · ·xk

i .

For any positive integers a, b, c the matrix multiplication tensor ⟨a, b, c⟩ is the tensor

a∑
i=1

b∑
j=1

c∑
k=1

xijyjkzki.

If we multiply an a × b-matrix with entries xij with a b × c-matrix with entries yjk, then the i, k entry

of the product is
∑b

j=1 xijyjk. This sum also appears in the tensor as those terms that include zki. The
order of the indices is flipped to uphold symmetry between X,Y, Z variables in the tensor. More precisely,
the tensor lives in Fa×b ⊗ Fb×c ⊗ Fa×c and by using the dual and hom isomorphisms this is isomorphic to
hom(Fa×b⊗Fb×c,Fa×c). The matrix multiplication tensor exactly corresponds to matrix multiplication under
this isomorphism. This tensor thus encapsulates all the information from matrix multiplication. Following
this correspondence, we regard each term xyz in the support as a multiplication. In the way the tensor is
written here, there are abc multiplications, just as in the naive algorithm for matrix multiplication. However,
Strassen and his fast matrix multiplication algorithm showed that it can be done with fewer multiplications.
Equivalently, we should be able to write this tensor with fewer terms. This can indeed be done by choosing
different bases. The exact correspondence between multiplications and terms is captured in the tensor rank.

Definition 3.1.3. A simple tensor in V1 ⊗ · · · ⊗ Vk is a tensor of the form v1 ⊗ · · · ⊗ vk where vi ∈ Vi for
each i. For any T ∈ V1 ⊗ · · · ⊗ Vk the tensor rank R(T) of T is the smallest number of simple tensors needed
to sum up to T .

For matrix multiplications we regard each simple tensor as one multiplication and thus the rank R(⟨a, b, c⟩)
is the minimum number of multiplications needed to multiply an a× b-matrix with a b× c-matrix.

Example 3.1.4.

� The zero tensor has rank 0 as the empty sum already adds up to 0.

3 PRELIMINARIES 5

� Any simple tensor is the sum of 1 simple tensor, so has rank 1.

� For a fixed basis the tensor ⟨n⟩k has n terms in the support, so R(⟨n⟩k) ≤ n.

� Strassen’s identity for 2× 2 matrices and equivalently Equation 2.2 show that R(⟨2, 2, 2⟩) ≤ 7.

From a decomposition of ⟨a, b, c⟩ into r simple tensors, as is done in Equation 2.2, one can deduce an algorithm
to multiply an a× b-matrix by an b× c-matrix with r multiplications. Therefore the ambitious end goal is to
determine R(⟨a, b, c⟩) and tensor rank decompositions for all a, b, c. The problem is that it is already hard to
find good upper bounds on R(⟨a, b, c⟩). Most of the research is focused on finding increasingly better upper
bounds on the tensor rank, but it is also relevant to know lower bounds on R. We record one such lower
bound that is relevant for most tensors of interest.

Definition 3.1.5. Let T ∈ V1 ⊗ · · · ⊗ Vk be a k-tensor with k ≥ 2. For each i there is an associated map
ϕi : V

⋆
i →

⊗
j ̸=i Vj . Then T is i-concise if ϕi is injective. We say a tensor is concise if it is i-concise for all i.

Given a basis, this is equivalent to requiring the set {txi
:= t(−, xi,−) : xi ∈ Xi} of (k − 1)-tensors to be

linearly independent. Often we can see a tensor is concise by looking at the support and seeing that it is
linearly independent.

Lemma 3.1.6. If T is i-concise, then R(T) ≥ dimVi.

Proof. We only give a short sketch of the proof. Each rank 1 tensor can only define a rank 1 map ϕi : V
⋆
i →⊗

j ̸=i Vj . As our final map has to be rank dimVi we need at least dimVi rank 1 tensors to sum to T .

Example 3.1.7.

� The independent tensor ⟨n⟩k considered as an element of
⊗k

i=1 Fn is 1-concise if k ≥ 2. Thus R(⟨n⟩k) ≥
n for all k ≥ 2.

� Any matrix multiplication tensor ⟨a, b, c⟩ considered as an element Fab⊗Fbc⊗Fac is 1-, 2- and 3-concise.
Thus R(⟨a, b, c⟩) ≥ max(ab, bc, ab).

If a concise tensor has rank equal to the dimension lower bound, we say that it has minimal rank.

3.2 Restrictions

The advantage of the framework of tensors is that it is more general than analysing matrix multiplication
algorithms. Other tensors can give us information about the matrix multiplication tensor. In order to use
this there should be a way to compare tensors.

Definition 3.2.1. If αi : Vi → Wi is a collection of linear maps, then α = α1 ⊗ . . . ⊗ αk is a linear map
V1 ⊗ . . . ⊗ Vk → W1 ⊗ . . . ⊗Wk. For any tensor T ∈ V1 ⊗ . . . ⊗ Vk and any such map α we say that α(T),
or alternatively α · T , is a restriction from T and write T ≥ α(T). We also say α is a restriction from T to
α(T). If there are restrictions T ≥ S and S ≥ T , then we say that S and T are equivalent.

Remark 3.2.2. As the name suggests, tensors being equivalent defines an equivalence relation. If T and S
are equivalent, also denoted T ≃ S, then the restriction from T to S is invertibleafter extending the vector
spaces so that dimensions match. If two tensors are equivalent then there are different bases for S and T such
that T and S look the same if written in their respective bases. Any basis-independent property must thus
be the same on all equivalent tensors. Conciseness falls in this class of properties and the proposition below
shows that tensor rank does too. Other notions ,such as the slice rank and the value, that are encountered
later will also belong to this category.

Restriction allows us to compare tensors. The important property is that tensor rank is non-increasing with
respect to restriction.

Proposition 3.2.3. If T, S are k-tensors with T ≥ S, then R(T) ≥ R(S).

3 PRELIMINARIES 6

Proof. Let α = α1 ⊗ · · · ⊗ αk be the restriction from T to S. Note that for any simple tensor v1 ⊗ · · · ⊗ vk
we get α(v1 ⊗ · · · ⊗ vk) = α1(v1)⊗ · · · ⊗ αk(vk). Thus for any simple tensor decomposition T1 + · · ·+ Tr of
T we get a simple tensor decomposition α(T1) + · · ·+ α(Tr) of S. Therefore R(S) ≤ R(T).

There are two types of restrictions that are of particular interest because they are so simple.

Definition 3.2.4. Consider two k-tensors S, T each written in some bases. A restriction α = α1 ⊗ · · · ⊗ αk

from S to T is called a zeroing out if each αi, written as a matrix with respect to the bases, is diagonal with
only ones and zeros on the diagonal. It is called an isomorphism if each matrix is a permutation matrix. If
there is an isomorphism relative to some fixed bases between S and T , we write S ∼= T .

In the notation S =
∑

j1,...,jk
s(j1, j2, . . . , jk)x

1
j1
· · ·xk

jk
a zeroing out corresponds to choosing subsets Yi ⊆ Xi

and removing all terms x1
i1
· · ·xk

ik
for which one of xi

ji
is not in Yi. An isomorphism is just a relabeling of

the xi
j variables.

3.3 Tensor product

Definition 3.3.1. Let S ∈ V1 ⊗ · · · ⊗ Vk and T ∈ W1 ⊗ · · · ⊗Wk be two k-tensors over the same field. The
(Kronecker) tensor product of S and T is the k-tensor S ⊗ T considered as an element in (V1 ⊗W1)⊗ (V2 ⊗
W2)⊗ · · · ⊗ (Vk ⊗Wk). It satisfies (s⊗ t)((i1, j1), . . . , (ik, jk)) = s(i1, . . . , ik)t(j1, . . . , jk) for any bases of all
the Vi and Wi. We write T⊗n for the n-times multiplication of T by itself.

The reason this product is so interesting for matrix multiplication is the identity below.

Lemma 3.3.2. For all positive integers a, b, c and a′, b′, c′,

⟨a, b, c⟩ ⊗ ⟨a′, b′, c′⟩ ∼= ⟨aa′, bb′, cc′⟩.

Proof. This can be seen by simply applying the definitions. Take the matrix multiplication tensors M1 :=

⟨a, b, c⟩ =
∑a

i=1

∑b
j=1

∑c
k=1 xijyjkzki and say M2 := ⟨a′, b′, c′⟩ =

∑a′

i=1

∑b′

j=1

∑c′

k=1 x
′
ijy

′
jkz

′
ki. We write out

the product

M1 ⊗M2 =

a∑
i=1

b∑
j=1

c∑
k=1

a′∑
i′=1

b′∑
j′=1

c′∑
k′=1

(xij ⊗ x′
i′j′)(yjk ⊗ y′j′k′)(zki ⊗ z′k′i′).

The vectors xij ⊗ x′
i′j′ form a basis of Fa×b ⊗Fa′×b′ . This vector space is isomorphic to Faa′×bb′ . Denote the

image of xij ⊗ x′
i′j′ under this isomorphism by x∗

ii′jj′ . This can be reindexed and then we have i∗ based on
ii′ and j∗ based on jj′ and basis elements x∗

i∗j∗ with 1 ≤ i∗ ≤ aa′ and 1 ≤ j∗ ≤ bb′. We can similarly get
isomorphisms for the Y - and Z-variables. Under these isomorphisms the j∗ index must still match for the
X- and Y -variables. Similarly the i∗ and k∗ indices must also match and we get

M1 ⊗M2
∼=

aa′∑
i∗=1

bb′∑
j∗=1

cc′∑
k∗=1

x∗
i∗j∗y

∗
j∗k∗z∗k∗i∗ .

This is exactly ⟨aa′, bb′, cc′⟩ up to relabeling the basis elements.

The Kronecker tensor product has a few properties which it inherits from the standard tensor product. These
are properties that are not impacted by the bracketing in the definition of the Kronecker tensor product.

Lemma 3.3.3. For any k-tensors S, T, T1, T2,

� S ⊗ (T1 + T2) = S ⊗ T1 + S ⊗ T2,

� S ⊗ T is isomorphic to T ⊗ S.

The tensor product also interacts nicely with restrictions.

Lemma 3.3.4. If there are restrictions T ≥ T ′ and S ≥ S′, then there is a restriction T ⊗ S ≥ T ′ ⊗ S′

3 PRELIMINARIES 7

Proof. If α and β are the restrictions, then α ⊗ β, seen as a map between the Kronecker products, is a
restriction from T ⊗ S to T ′ ⊗ S′.

We will encounter multiple rank notions and these behave differently with respect to the Kronecker tensor
product. A function f from the set of k-tensors to an ordered field, such as tensor rank, is called sub-
multiplicative if f(S ⊗ T) ≤ f(S)f(T), multiplicative if f(S ⊗ T) = f(S)f(T), and supermultiplicative if
f(S ⊗ T) ≥ f(S)f(T) for all k-tensors S and T . Tensors are vectors in the tensor product of vector spaces,
so we can add them together and analogously speak of f as being subadditive, additive or superadditive.

Lemma 3.3.5. Tensor rank is submultiplicative and subadditive.

Proof. Take any two k-tensors S, T . By definition of R(T) we can write T =
∑R(T)

i=1 Ti and S =
∑R(S)

j=1 Sj

with each Ti, Sj being simple. Thus

S + T =

R(S)∑
j=1

Sj +

R(T)∑
i=1

Ti

which is a sum of R(S) +R(T) simple tensors, so R(S + T) ≤ R(S) +R(T).
Note further that the tensor product of v1 ⊗ · · · ⊗ vk and w1 ⊗ · · ·wk is (v1 ⊗w1)⊗ · · · ⊗ (vk ⊗wk) which is
also a simple tensor. Then by Lemma 3.3.3

S ⊗ T =

R(T)∑
i=1

Ti

⊗

R(S)∑
j=1

Sj

 =

R(T)∑
i=1

R(S)∑
j=1

Ti ⊗ Sj

is a sum of R(T)R(S) simple tensors, so R(S ⊗ T) ≤ R(S)R(T).

Remark 3.3.6. We can immediately see that R(⟨2n, 2n, 2n⟩) = R(⟨2, 2, 2⟩⊗n) ≤ R(⟨2, 2, 2⟩)n = 7n. In
Strassen’s algorithm this product corresponds to the recursive application of the identity for 2× 2-matrices.
The inequality can be strict and later results will imply that R(⟨2n, 2n, 2n⟩) < 7n for large enough n.

3.4 Slice rank

In [EG16] Ellenberg and Gijswijt showed that capsets have exponentially small density. Sawin and Tao [TS16]
formalised their approach and in doing so introduced a different notion of rank.

Definition 3.4.1. An i-slice is a tensor T ∈ V1 ⊗ · · · ⊗ Vi−1 ⊗ Fvi ⊗ Vi+1 ⊗ · · · ⊗ Vk where vi ∈ Vi. A tensor
is a slice if it is an i-slice for some i. The slice rank of a tensor T is the minimum number of slices needed
to write T as the sum of slices.

Any simple tensor is also a slice, therefore a decomposition of T into simple tensors is also a decomposition
into slices. This immediately implies that SR(T) ≤ R(T). Slice rank has some of the properties that tensor
rank has.

Proposition 3.4.2. Slice rank satisfies

� SR(T1 + T2) ≤ SR(T1) + SR(T2) for any tensors T1 and T2,

� if there is a restriction T1 ≥ T2, then SR(T1) ≥ SR(T2) and

� SR(⟨n⟩k) = n for any n ≥ 1 and k ≥ 2.

Proof. The first two properties have a similar proof as the analogous statement for tensor rank and the third
property was shown by Tao in the original blogpost [Tao16].

If we can ensure that two tensors S and T have no common basis elements, then slice rank is actually additive.

Definition 3.4.3. For any two k-tensors S ∈ V1 ⊗ · · · ⊗ Vk and T ∈ W1 ⊗ · · · ⊗Wk over the same field the
direct sum S ⊕ T is the sum of the vectors S and T in the vector space (V1 ⊕W1)⊗ · · · ⊗ (Vk ⊕Wk).

Lemma 3.4.4 ([Gow21]). For any two k-tensors S and T , there is the equality SR(S⊕T) = SR(S)+SR(T).

3 PRELIMINARIES 8

Remark 3.4.5. It was conjectured by Strassen that tensor rank was also additive under direct sums, but
this was disproven by Shitov in 2017 [Shi17].

Slice rank is less well-behaved with respect to the tensor product. We will show in Example 4.2.7 that
SR(⟨a, b, c⟩) = min{ab, bc, ac}. We can use this to show slice rank is not submultiplicative in general.

Example 3.4.6. Consider ⟨1, 1, k⟩ and ⟨1, k, 1⟩ for some integer k > 1. We know that ⟨1, 1, k⟩ ⊗ ⟨1, k, 1⟩ ∼=
⟨1, k, k⟩. We also know that slice rank is non-increasing under restriction and thus SR(T) = SR(S) if T
and S are equivalent. In particular this also holds if they are isomorphic. Thus SR(⟨1, 1, k⟩ ⊗ ⟨1, k, 1⟩) =
SR(⟨1, k, k⟩) = k > 1 = SR(⟨1, 1, k⟩) · SR(⟨1, k, 1⟩).

In order to show the slice rank is also not supermultiplicative in general, we can look at the capset tensor.
This tensor and its slice rank were the initial motivation for introducing the concept of slice rank.

Example 3.4.7. The capset problem asks what the size of the largest set A ⊆ Fn
3 is without an arithmetic

progression, so without distinct a, b, c ∈ A with a + b + c = 0. It was shown by Ellenberg and Gijswijt
[EG16] that the size of these sets grows as O(2.756n). We can approach this problem through the capset
tensor. This is a tensor over X = {1, x, x2}, Y = {1, y, y2}, Z = {1, z, z2} which comes from the function
F3 × F3 × F3 → F3 given by 1− (x+ y + z)2. We take

T = 1− 2xy− 2xz− 2yz−x2− y2− z2 = x0y0z0− 2x1y1z0− 2x1y0z1− 2x0y1z1−x2y0z0−x0y2z0−x0y0z2.

With the results in chapter 3 one can show that the slice rank of this tensor is 3, but the proof of the capset
problem shows that the slice rank of the nth power of T is O(2.756n).

As an aside, we quickly sketch how this tensor can be used in the capset problem. The tensor T⊗n can be
considered as

∏n
i=1 1 − (xi + yi + zi)

2 which is a function Fn
3 × Fn

3 × Fn
3 → F3. This function is zero at all

triples (a, b, c) ∈ (Fn
3)

3 that do not satisfy a+ b+ c = 0. We can study the size of a capset A by zeroing out
all variables in Fn

3 \A. The resulting tensor is zero except at triples (a, a, a). Thus, it has a basis in which the
tensor is isomorphic to ⟨|A|⟩3, so the slice rank is |A|. On the other hand we can give a slice decomposition
of T⊗n which grows at rate 2.756n, so |A| ≤ 2.756n.

There are some observations that we can make regarding the slice rank under the tensor product.

Lemma 3.4.8. For any k-tensors S and T , we have SR(S ⊗ T) ≤ SR(S)R(T).

Proof. Take a rank decomposition T1, . . . , Tr of T and a slice rank decomposition S1, . . . , St of S. The product
of a slice and a simple tensor is a slice, so (Si ⊗ Tj)i≤t,j≤r is a slice rank decomposition of S ⊗ T .

Lemma 3.4.9. If T is not the zero tensor, then SR(S ⊗ T) ≥ SR(S).

Proof. If T is a k-tensor and T ̸= 0, then there is a restriction to ⟨1⟩k. This restriction zeroes out all variables
except for those in a specific triple in the support of T and then scales the remaining variables to get the
coefficient equal to 1. Lemma 3.3.4 says there is a restriction S ⊗ T to S ⊗ ⟨1⟩k ∼= S and slice rank is
non-increasing under restriction, so SR(S ⊗ T) ≥ SR(S).

There is one more useful bound for the slice rank.

Lemma 3.4.10. If T is a k-tensor on finite sets X1, . . . , Xk, then SR(T) ≤ mini |Xi|.

Proof. We can always write T as a sum of i-slices where each i-slice has i-term equal to one of the elements
in Xi. This gives |Xi| slices. This holds true for all i so SR(T) is also at most the minimum of the |Xi|.

In case SR(T) = mini |Xi| we say that T has maximal slice rank.

3 PRELIMINARIES 9

3.5 Asymptotic ranks

What is the asymptotically fastest way one can multiply two n × n-matrices? This was the question that
bore fruit to the definition of the exponent ω. So far we have been able to rephrase the ‘fastest way one can
multiply two n× n-matrices’ into a question about the tensor rank of ⟨n, n, n⟩. We now move our attention
to the ‘asymptotic’ part.

Lemma 3.5.1 (Fekete’s lemma). For every subadditive sequence (an)n∈N the limit limn→∞
an

n exists and is
equal to inf an

n .

This lemma can also be used to say that the limit an

n exists for superadditive sequences and that a
1/n
n

exists for sub- and supermultiplicative sequences. These all reduce to the original formulation by considering
sequences (−an)n, (log an)n and (− log an)n respectively.

Definition 3.5.2. The asymptotic tensor rank of a tensor T is

R̃(T) := lim
n→∞

R(T⊗n)1/n.

The sequence (R(T⊗n))n is submultiplicative for any tensor T , so the limit exists by Fekete’s lemma. Now
that we have this definition, we can give a formal definition of ω in terms of the tensor rank. In this thesis
log will always denote the logarithm with base 2.

Definition 3.5.3. The exponent of fast matrix multiplication ω is ω := log R̃(⟨2, 2, 2⟩).

This definition seems restrictive at first as it only concerns multiplying 2n×2n-matrices, but it can be shown

that for all integers a, b, c > 1 we have ω = 3 log R̃(⟨a,b,c⟩)
log abc . Furthermore, this definition of ω also satisfies that

O(nω) is asymptotically the complexity of multiplying two n× n-matrices [BCS96]. It is not known whether
the exponent depends on the underlying field F. For this reason the notation ω(F) would potentially be more
appropiate, but we will just write ω in this thesis.

Lemma 3.5.4. 2 ≤ ω ≤ log 7.

Proof. Matrix multiplication tensors are concise, so R(⟨2n, 2n, 2n⟩) ≥ 22n. Thus R̃(⟨2, 2, 2⟩) ≥ 22. On the
other hand R is submultiplicative, so Fekete’s lemma says that R̃(⟨2, 2, 2⟩) ≤ R(⟨2, 2, 2⟩) = 7. Applying the
logarithm gives the claimed bounds.

We are also interested in the asymptotic behaviour of the slice rank. The slice rank is not sub- or supermul-
tiplicative in general, so we cannot use Fekete’s lemma to say a similar limit exists.

Definition 3.5.5. The asymptotic slice rank S̃R(T) of a tensor T is

S̃R(T) := lim sup
n

SR(T⊗n)1/n.

These asymptotic rank notions inherit some properties from the normal rank notion. They are also non-
increasing under restrictions. For the asymptotic slice rank we also have the dimension upper bound S̃R(T) ≤
mini dimVi for any tensor in V1 ⊗ · · · ⊗ Vk and for i-concise tensors we have R̃(T) ≥ dimVi. Another useful

observation is that R̃(T⊗k) = R̃(T)k and also S̃R(T⊗k) = S̃R(T)k, which needs Lemma 3.4.9 because of the
limsup.

3.6 Border rank

Tensor rank is an upper bound for the asymptotic tensor rank, but often the asymptotic tensor rank is much
smaller. Finding the tensor rank for ever larger powers of T is also difficult as finding the tensor rank is an
NP-hard problem. In 1980 the border rank was introduced [BLR80], which gives a better upper bound for
the asymptotic rank and is only based on the tensor T . We shall now introduce this concept.

3 PRELIMINARIES 10

Example 3.6.1. The tensor W = x1y1z2+x1y2z1+x2y1z1 has tensor rank 3. However, there is some tensor
W ′ such that we can write

W =
1

ε

(
(x1 + εx2)(y1 + εy2)(z1 + εz2)− x1y1z1 + ε2W ′). (3.1)

This parameter ε enables us to write W as the sum of some rank 2 tensor and some terms which are linear
in ε. If W was defined over the real or complex numbers you could say that the rank 2 tensor approaches W
as ε → 0. This idea of approximating tensors, such as W , by lower rank tensors is captured in the border
rank.

Definition 3.6.2. Let T ∈ V1 ⊗ · · · ⊗ Vk be a k-tensor over F. We say a tensor S is a border simple tensor
for T if it is a simple tensor in the tensor product V1(ε)⊗ · · · ⊗ Vk(ε) over F(ε) where ε is a formal variable.
The border rank R(T) of T is r if this is the minimum integer such that there are r border simple tensors
S1, . . . , Sr and some tensors T1, . . . , Tu ∈ V1 ⊗ · · · ⊗ Vk such that S1 + · · ·+ Sr = εt(T +

∑u
i=1 ε

iTi) for some
t ∈ Z.

More generally, the approximating behaviour can be captured in an approximate version of restriction.

Definition 3.6.3. A degeneration from S ∈ V1⊗· · ·⊗Vk to T ∈ W1⊗· · ·⊗Wk is a linear map α = α1⊗· · ·⊗αk

where each αi is a F(ε)-linear map Vi(ε) → Wi(ε) for which there exists t ∈ Z and finitely many tensors
T1, . . . , Tu ∈ V1 ⊗ · · · ⊗ Vk such that α(S) = T +

∑u
i=1 ε

iTi. We write S ⊵ T .

Any restriction is also a degeneration where u = 0. The following lemma says that the border rank can be
used to upper bound the asymptotic rank.

Lemma 3.6.4 ([Bin80]). All tensors T have R̃(T) ≤ R(T) ≤ R(T).

3.7 Entropy and types

In later chapters we will use entropy to give expressions for the asymptotic slice rank.

Definition 3.7.1. For a discrete random variable X taking values in A with probability distribution p the
entropy of X is

H(X) := −
∑
a∈A

p(a) log p(a).

We may also write H(p) to mean the same thing. In this expression we let 0 log 0 be equal to 0.

This captures the information contained in finding the value of an instance of X. The relevance of entropy for
the slice rank and related notions arises through the idea of types. We write P(A) for the set of probability
distributions on A.

Definition 3.7.2. Let A be a finite set and let p ∈ P(A) be some probability distribution. We say that
some sequence I ∈ An is of type p if |{i ∈ [n] : Ii = a}| = p(a)n for all a ∈ A.

Lemma 3.7.3. Fix a set A and pick a natural number n. The number of types p ∈ P(A) such that there are
sequences I ∈ An of type p is polynomial in n.

Proof. If I is of type p, then p(a)n must be an integer for all a ∈ A. We know that
∑

a∈A p(a)n = n, so p(a)n
must be in {0, 1, . . . , n} for each a. There are only n + 1 choices for p(a)n. Because of this, the number of
types is at most (n+ 1)|A|, which is polynomial in n.

Entropy is connected to types through the following lemma.

Lemma 3.7.4. Let p ∈ P(A) be a distribution whose values are all integer multiples of 1
n . Then

|{I ∈ An : I is of type p}| =
(

n

[np(a)]a∈A

)
(3.2)

and this expression is 2(H(p)+o(1))n as n → ∞.

3 PRELIMINARIES 11

The following properties of entropy will be important to us.

Lemma 3.7.5 ([Zui18]). Let p1 and p2 be some probability distributions on finite sets A1 and A2 then
H(p1) +H(p2) ≥ H(p) for any probability distribution p ∈ P(A1 ×A2) with marginal distributions p1 and p2
and equality holds if p(a1, a2) = p(a1)p(a2) for all a1 ∈ A1 and a2 ∈ A2.

Theorem 3.7.6. The entropy is concave in the probability mass function p, so

H(λp1 + (1− λ)p2) ≥ λH(p1) + (1− λ)H(p2)

for 0 ≤ λ ≤ 1 and any probability mass functions p1, p2 on the same set.

Corollary 3.7.7. Fix a finite set A. The uniform distribution is the unique probability mass function
p ∈ P(A) that maximises the entropy.

3.8 Laser method

The most successful method to obtain new upper bounds for ω is called the Laser method. In this method
one starts with a certain tensor T , which we call the base tensor or start tensor. The asymptotic tensor rank
of T should be known and as small as possible, but we also need that large powers of T contain many large
matrix multiplication tensors. More precisely we need to find zeroing outs from T⊗n to

⊕m
i=1⟨ai, bi, ci⟩ with

ai, bi, ci large and m as large as possible. Intuitively this implies that you do not need a lot of multiplications
to find T⊗n, but we can simulate many large matrix multiplications within T , thus we do not need a lot
of multiplications for these matrix multiplications. The bound on ω is made precise by Schönhage’s tau
theorem, also called the asymptotic sum inequality.

Theorem 3.8.1 (Schönhage). If there is a degeneration T⊗n ⊵
⊕

i⟨ai, bi, ci⟩, then
∑

i(aibici)
ω/3 ≤ R̃(T)n.

Based on this theorem there is a specific value associated to a tensor which is extremely relevant for the laser
method.

Definition 3.8.2. The value of a 3-tensor T is defined as

Vρ(T) := sup
n, degenerations ⊵

(∑

i

(aibici)
ρ

)1/n

| T⊗n ⊵
⊕
i

⟨ai, bi, ci⟩

 .

For each ρ this value is a kind of asymptotic rank notion and also has similar properties.

Lemma 3.8.3. Let S, T be two 3-tensors then

(i) Vρ(S ⊕ T) ≥ Vρ(S) + Vρ(T),

(ii) Vρ(S ⊗ T) ≥ Vρ(S)Vρ(T) ,

(iii) Vρ(S) ≥ Vρ(T) if S ⊵ T and

(iv) Vρ(S)
ρ/ρ′ ≥ Vρ(S) ≥ Vρ′(S) if ρ ≥ ρ′.

All these properties follow by direct analysis of the definition and the fact that Lemma 3.3.4 also holds for
degenerations. The multiplicativity also implies that Vρ(T) could actually be defined as a limit as n → ∞.
One last important property is that there is no better degeneration than the identity in case T is a matrix
multiplication tensor. Thus Vρ(⟨a, b, c⟩) = (abc)ρ. The value allows us to write down a different version of
the asymptotic sum inequality.

Theorem 3.8.4 ([DS13]). Let T be a 3-tensor. Then Vω/3(T) ≤ R̃(T).

Coppersmith and Winograd identified a class of useful tensors for the laser method and Alman called these
laser-ready. Before these can be introduced we first need to introduce some other concepts. These concepts
can be defined for general k-tensors, but will only be used for 3-tensors and so we restrict ourselves to these.

3 PRELIMINARIES 12

Definition 3.8.5. Consider a triple of partitions Λ = (X ,Y,Z) where X =
⋃

Xi∈X Xi, Y =
⋃

Yi∈Y Yi,
Z =

⋃
Zi∈Z Zi. We call each Xi an X-block and similarly define Y - and Z-blocks. We call a set Xi ×

Yj × Zk, or equivalently (i, j, k), a block triple. Given a tensor T on X,Y, Z and a triple of partitions of
X,Y, Z we define partition subtensors Tijk for each block triple (i, j, k). This subtensor Tijk is the tensor∑

x∈Xi,y∈Yj ,z∈Zk
t(x, y, z)xyz, which is T restricted to Xi × Yj × Zk. Some of these partition subtensors are

potentially zero. We say that the block support of T are those block triples (i, j, k) for which Tijk ̸= 0.

Remark 3.8.6. Let T be a tensor with a triple of partitions Λ = (X ,Y,Z) then any power T⊗n inherits
a triple of partitions. We take the partition Xn =

⋃
Xij

∈X ∀j∈[n] Xi1 × · · · × Xin and Y n, Zn have similar

partitions. We call these the power partitions.

In the laser method we specify a partition of T and take the power partitions of T⊗n. Next we specify some
blocks and zero out all variables in those blocks. In the end we aim to be left with a direct sum of partition
subtensors. This direct sum condition can also be translated to a property of the block support

Definition 3.8.7. A set Ψ ⊆ X × Y ×Z is independent if each w ∈ X ∪ Y ∪Z is in at most one element in
Ψ.

Thus we zero out blocks until the block support becomes independent. If the block support contains almost
all of X × Y ×Z, then we would need to zero out almost all blocks. We impose some structure on the initial
tensor to ensure that this does not happen.

Definition 3.8.8. A set Ψ ⊆ X × Y × Z is tight if there are injective functions αX : X → Z, αY : Y → Z
and αZ : Z → Z such that αX(x) + αY (y) + αZ(z) = 0 for all (x, y, z) ∈ Ψ.

Definition 3.8.9. A triple of partitions for a tensor is laser-ready if

1. Each partition subtensor in the block support is isomorphic to a matrix multiplication tensor whose
dimensions match up with the sizes of the blocks.

2. The block support is a tight set.

We combine a lot of the new terminology in the following lemma.

Lemma 3.8.10. A tensor with laser-ready partition is concise if each block is in at least one block triple in
the block support.

Proof. Suppose a tensor T over X,Y, Z is a counterexample. The tensor is laser-ready with each block used
in a triple in the block support, but it is not concise. Without loss of generality we can say it is not 1-concise.
There must be a block, say X0, with x̄ ∈ X0 such that (y, z) 7→ t(x̄, y, z) is not linearly independent from the
other tx : (y, z) 7→ t(x, y, z). For all y, z we have the equality t(x̄, y, z) =

∑
x̸=x̄ λxt(x, y, z) for some λx ∈ F.

The block support is tight, so there are injective functions αX , αY and αZ such that αX(i)+αY (j)+αZ(k) = 0
for all (i, j, k) in the block support. Any distinct i, i′ cannot have αX(i) = αX(i′), so at most one of them can
be in a block triple in the support with some fixed (j, k). We assumed that each block gets used in a block triple
in the block support. Let j0, k0 be such that (0, j0, k0) is in the block support. We have seen that for i ̸= 0 the
triple (i, j0, k0) is not in the block support. Therefore any xyz with y ∈ Yj0 , z ∈ Zk0

and x ∈ Xi for some i ̸= 0
is not in the support of t. For any y ∈ Yj0 and z ∈ Zk0

this means that t(x̄, y, z) =
∑

x∈X0,x̸=x̄ λxt(x, y, z).
This would imply that T0jk is not 1-concise, but it is isomorphic to a matrix multiplication tensor whose
dimensions match the blocks sizes, so it must be concise. Contradiction.

3.9 Symmetry

The laser method has been applied to tensors which carry some symmetry. A lot of the analysis for the laser
method or slice rank also gets easier if we restrict ourselves to tensors which have this sort of symmetry.

Definition 3.9.1. A set Φ ⊆ A× · · · × A is in symmetric form if (a1, . . . , ak) ∈ Φ implies that the rotated
element (a2, . . . , ak, a1) ∈ Φ. A set Φ ⊆ X1 × · · · ×Xk is called symmetric if there is a set A and bijections
fi : Xi → A such that (f1 × · · · × fk)(Φ) ⊆ A× · · · ×A is in symmetric form.

4 COMBINATORIAL ESTIMATION OF THE SLICE RANK 13

We can extend this definition about sets to a definition about tensors with respect to a certain basis.

Definition 3.9.2. For a tensor T on X1, . . . , Xk we define rot(T) to be the tensor on X2, . . . , Xk, X1 which
just rotates the entries and as a result has coefficients rot(t)(xj2

2 , . . . , xjk
k , xj1

1) = t(xj1
1 , . . . , xjk

k). We say that
a tensor is symmetric if T ∼= rot(T).

If T is symmetric, then it has symmetric support and hence it is isomorphic to a tensor in symmetric form.
Additionally, note that rotation commutes with the tensor product, so rot(S ⊗ T) ∼= rot(S)⊗ rot(T). Write
roti for the i times application of rot. Any k-tensor T satisfies rotk(T) = T . We can define the symmetrised

tensor Tsym :=
⊗k−1

i=0 roti(T) and this tensor is indeed symmetric as

rot(Tsym) ∼=
k−1⊗
i=0

rot(roti(T)) =

k−1⊗
i=0

roti+1(T) =

(
k−1⊗
i=1

roti(T)

)
⊗ T ∼= Tsym.

Observation 3.9.3. For any tensor T we have R(rot(T)) = R(T) and Vρ(rot(T)) = Vρ(T)

This is true because any tensor rank decomposition of T can be rotated to give a rank decomposition of
rot(T) and any degeneration can also be rotated. This observation implies by sub- and supermultiplicativity
respectively that for 3-tensors R̃(Tsym) ≤ R̃(T)3 and Vρ(Tsym) ≥ Vρ(T)

3. This gives a reason for preferring
symmetric tensors for the laser method.

The probability distributions and partitions we defined can also be symmetric.

Definition 3.9.4. If Φ ⊆ X1 × · · · × Xk is some symmetric set, then Psym(Φ) := {p ∈ P(Φ) : p(x) =
p(x′) if x′ is the rotated element of x in Φ} is the set of symmetric distributions.

Definition 3.9.5. A triple of partitions (X ,Y,Z) for a symmetric tensor T is symmetric if the block support
is in symmetric form and for (i, j, k) in the block support Tijk

∼= Tjki.

3.10 Slice rank for lower bounds

With all the terminology we have established we can now state the connection between slice rank and fast
matrix multiplication. Observe the following:

V2/3(
⊕
i

⟨ni, ni, ni⟩) ≥
∑
i

n2
i = SR(

⊕
i

⟨ni, ni, ni⟩).

In fact equality holds. Using Schönhage’s tau theorem to try and prove ω = 2 will thus induce connections
to the slice rank. In [Alm18] Alman found a way to use this connection. All current methods for bounding
ω take a tensor T and construct a degeneration from T⊗n to a direct sum of matrix multiplication tensors.
Let ωu(T) be the best bound on ω one could find by using a degeneration from a power of T . The fact that
asymptotic slice rank is non-increasing under degeneration implies that V2(T) is close to R̃(T) if and only if

S̃R(T) is close to R(T). The exact connection is captured in the following lower bound.

Theorem 3.10.1 ([Alm18]). For symmetric tensors T we have ωu(T) ≥ 2 log R̃(T)

log S̃R(T)
.

4 Combinatorial estimation of the slice rank

All expressions and bounds for the slice rank arise through an analysis of the support. In this chapter we
shall mostly focus on results for the support and in the next chapter we translate these to results about the
slice rank. One can regard the support as a hypergraph, which means that analysis of the support can be
done in combinatorial context.

Definition 4.0.1. A hypergraph is a pair of sets (V,E) where E ⊆ P(V). The elements of V are called
vertices and E is the set of edges. If each edge is a set of size k, then (V,E) is a k-uniform hypergraph. A
hypergraph is called k-partite if its vertices can be partitioned into k classes such that each edge contains at
most one vertex per partition class.

4 COMBINATORIAL ESTIMATION OF THE SLICE RANK 14

Any k-tensor T on X1, . . . , Xk defines a k-uniform k-partite hypergraph supp(T) = (VT , ET) through its
support. Take VT = X1∪ · · · ∪Xk and for xi ∈ Xi, let {x1, . . . , xk} ∈ ET if x1x2 · · ·xk is in the support of T .
This edge can be uniquely identified with (x1, . . . , xk) ∈ X1 × · · · ×Xk. We will often use this identification
of the set of edges with a subset E ⊆ X1 × · · · ×Xk. Such a subset uniquely defines a k-uniform k-partite
hypergraph and we use this bijection to speak of a hypergraph and its edge set interchangeably.

Remark 4.0.2. If a tensor is defined over F2, then it is uniquely determined by its support. Therefore there
is a bijection between k-tensors over F2 and k-uniform k-partite hypergraphs.

In order to study the multiplicative behaviour of tensors through the support, we need to introduce a
product on hypergraphs that mimics the Kronecker tensor product. We choose this product such that
supp(S ⊗ T) = supp(S)× supp(T).

Definition 4.0.3. Let G = (VG, EG), H = (VH , EH) be two k-uniform, k-partite hypergraphs with a fixed
order on the partitions VG,1, . . . , VG,k and VH,1, . . . , VH,k. Then the (Kronecker) product G×H of these hyper-

graphs is the hypergraph with vertex set
⋃k

i=1 VG,i×VH,i and edge set consists of subsets {(v1, v′1), . . . , (vk, v′k)}
of size k where both {v1, . . . , vk} ∈ EG and {v′1, . . . , v′k} ∈ EH .

Regarding the edge sets as subsets of a product, EG×H is simply EG × EH regarded as a subset of (VG,1 ×
VH,1)× · · · × (VG,k × VH,k).

From this we can also define the nth power of a hypergraph. For an edge set E ⊆ X1 × · · · × Xk the nth
power En can be seen as a subset of Xn

1 × · · · ×Xn
k
∼= (X1 × · · · ×Xk)

n. Recall that in such products we can
talk about the type of elements.

4.1 Vertex cover numbers

The notion equivalent to slice rank in the hypergraph setting is the vertex cover number. This parameter is
actively being studied in its own right [DeB+21; Dia18; LW22] and has some open conjectures itself. We will
not study these, but only consider the aspects relevant for the slice rank.

Definition 4.1.1. A vertex cover of a hypergraph H = (V,E) is a function f : V → {0, 1} such that for any
edge e ∈ E we have

∑
v∈e f(v) ≥ 1. The vertex cover number τ(H) is the smallest integer r such that there

exists a vertex cover f of H with
∑

v∈V f(v) = r. If f is a function V → [0, 1] satisfying the same conditions,
then we call f a fractional vertex cover and the fractional vertex cover number τ∗(H) of a hypergraph is the
infimum of all reals r for which there is a fractional vertex cover with

∑
v∈V f(v) = r.

Remark 4.1.2. The infimum that defines τ∗ is attained. It is the infimum of a linear function over a compact
set.

Lemma 4.1.3. Let k ≥ 2. Any k-uniform hypergraph H has 2
k τ(H) ≤ τ∗(H) ≤ τ(H).

Proof. Any vertex cover is a fractional vertex cover, so that immediately gives τ∗(H) ≤ τ(H) for any H.
The other bound requires a more complicated argument. See for example Proposition 4.9 from [Der22]. We
can more easily show the bound 1

k τ(H) ≤ τ∗(H) which is enough for the later statements in this thesis.
Let f be a fractional vertex cover of H = (V,E). Define g : V → {0, 1} by setting g(x) = 1 if and only if
f(x) ≥ 1

k . Then indeed we have
∑

v∈V g(v) ≤
∑

v∈V kf(v) = kτ∗(H), so we just need to show g is a vertex
cover. For any edge e, we have

∑
v∈e f(v) ≥ 1 and |e| = k, so there must be one v0 for which f(v0) ≥ 1

k .
Thus g(v0) = 1 and

∑
v∈e g(v) ≥ 1, so g is a vertex cover.

Example 4.1.4. Consider the capset tensor T = 1− 2xy − 2yz − 2zx− x2 − y2 − z2 with bases {1, x, x2},
{1, y, y2} and {1, z, z2}. There is a fractional vertex cover f of the support assigning 1

2 to each of the ones, 1
4

to each of the linear terms and 0 to each of the quadratic basis elements. This means τ∗(supp(T)) ≤ 9
4 . For

the vertex cover number we observe that the degrees of the vertices in supp(T) are 1, 2 or 4. The number of
edges is 7, so either we use two vertices of degree 4 or a vertex cover needs at least 3 vertices. However, the
vertices of degree 4 are the ones and two of those do not cover all of the xy, yz, zx edges. We conclude that
τ(supp(T)) ≥ 3. This discrepancy between the vertex cover numbers explains some of the behaviour of the
slice rank of the capset tensor that was mentioned in Chapter 2.

4 COMBINATORIAL ESTIMATION OF THE SLICE RANK 15

Corollary 4.1.5. Let H×n denote the nth Kronecker power of H, then |τ(H×n)1/n − τ∗(H×n)1/n| → 0 as
n → ∞.

Proof. For any n Lemma 4.1.3 implies that
(
2
k τ(H

×n)
)1/n ≤ τ∗(H×n)1/n ≤ τ(H×n)1/n. Therefore (1 −(

2
k

)1/n
)τ(H×n)1/n ≥ τ(H×n)1/n − τ∗(H×n)1/n ≥ 0 and the upper bound goes to zero.

The fractional vertex cover number behaves nicely with respect to the hypergraph product.

Lemma 4.1.6. Let G,H be two k-uniform, k-partite hypergraphs then τ∗(G×H) ≥ τ∗(G)τ∗(H).

Proof. The definition just says that τ∗ is the solution of a linear program. We define its dual, the fractional
matching number, and analyse that instead. For a hypergraph H = (V,E) the fractional matching number
ν∗ is defined by the following linear program.

ν∗(H) = max
∑
e∈E

f(e)

s.t. f : E → [0, 1],∑
e:v∈e

f(e) ≤ 1 ∀v ∈ V

By the strong duality theorem we get ν∗(H) = τ∗(H). Now we show that ν∗ is supermultiplicative. Take
two hypergraphs G,H with optimal functions g, h respectively. The edges in the hypergraph G × H can
be considered as pairs (e, e′) where e is an edge in G and e′ is an edge in H. Then we define the function
f : EG×H → [0, 1] for which f((e, e′)) = g(e)h(e′). For any (v, v′) in the vertex set of G × H, we have
{edges η : (v, v′) ∈ η} = {(e, e′) : v ∈ e and v′ ∈ e′}. This implies that∑

η: (v,v′)∈η

f(η) =
∑

(e,e′): v∈e,v′∈e′

f((e, e′)) =
∑
e: v∈e

g(e)
∑

e′: v′∈e′

h(e′)

Each of the factors on the right side is at most one, because both g and h are fractional matchings. This
means that f is a fractional matching, which implies that

ν∗(G×H) ≥
∑

e′′∈EG×H

f(e′′) =
∑

(e,e′)∈EG×EH

g(e)h(e′) = ν∗(G)ν∗(H).

Therefore ν∗, and also τ∗, is supermultiplicative.

4.2 Oblique support

A vertex cover gives a slice rank decomposition and can thus be used for an upper bound.

Lemma 4.2.1 ([TS16]). For any tensor T , we have SR(T) ≤ τ(supp(T)).

Proof. If T is a k-tensor and f is a minimal vertex cover of supp(T), then we can build subtensors T1, . . . , Tk

which give a slice decomposition. Start with each Tj = 0. For each non-zero term t(i1, . . . , ik)x
1
i1
· · ·xk

i1
in T

there is at least one j such that f(xj
ij
) = 1. Add t(i1, . . . , ik)x

1
i1
· · ·xk

i1
to Tj for one such j. After repeating

this procedure for all terms in the support, we have T = T1 + . . . + Tk. Let aj be the size of the subset of

Xj-variables that appear in the support of Tj . Each of the aj of these variables xj
i must satisfy f(xj

i) = 1

by our construction, so
∑k

j=1 aj ≤ τ(supp(T)). We form slices of Tj by grouping all terms with the same

Xj-variable together. Thus SR(Tj) ≤ aj . We conclude that SR(T) ≤
∑j

i=1 SR(Tj) ≤ τ(supp(T)).

In their blogpost [TS16], Tao and Sawin also included a lower bound for the slice rank. Consider any
Φ ⊆ X1 × . . . ×Xk and define linear orders on each of X1, . . . , Xk. The product order of these is a partial
order on X1 × . . .×Xk and therefore it also defines a partial order on Φ. For such a partial order we write
max(Φ) ⊆ Φ for the subset of maximal elements. This subset can itself also be considered as a hypergraph.

Lemma 4.2.2 ([TS16]). For any k-tensor T and any product order on supp(T) of the form above, we have
SR(T) ≥ τ(max(supp(T))).

4 COMBINATORIAL ESTIMATION OF THE SLICE RANK 16

Proof. We follow the proof in [Zui18]. Consider tensor T ∈ V1 ⊗ · · · ⊗ Vk with bases X1, . . . , Xk. Let <i

denote the ith linear order and let < be the product order. Pick a slice rank decomposition of T and for
any i, let {vi1, . . . , viri} ⊆ Vi be the set of vectors used in the i-slices. Let Wi = span{vi1, . . . , viri} ⊆ Vi.
Let W ′

i ⊆ V ∗
i be the elements in the dual space that vanish on Wi. Then pick a basis Bi for W ′

i with the
following property: with respect to the standard dual basis X∗

i (with elements ordered according to <i),
the matrix with elements Bi as columns is in reduced row echelon form. This means that each column is
of the form (∗ · · · ∗ 10 · · · 0)T and the pivot elements (the 1’s) are all in different rows. Let Ii ⊆ |Xi| be the
indices of the pivot elements. Then consider the set Yi = {xj ∈ Xi : j /∈ Ii}. Note that |Yi| = dimWi,
because there are |Bi| = dimW ′

i = dimVi − dimWi elements in Ii. We show that Y1 ∪ · · · ∪ Yk is a ver-

tex cover of max(supp(T)). This vertex cover has size
∑k

i=1 dimWi = SR(T), so τ(max(supp(T))) ≤ SR(T).

Let e = (xe1 , . . . , xek) be an edge in max(supp(T)). Suppose it is not covered by Y1 ∪ · · · ∪ Yk. For all i, it
must be the case that ei ∈ Ii. Let wi

ei ∈ Bi be the element whose pivot is at position ei. The form of wi
ei

implies that ker(wi
ei) contains all {xj : j >i ei}. This means that w =

⊗k
i=1 w

i
ei ∈ W ′

1 ⊗ · · · ⊗W ′
k sends T to

w(T) =
∑
η≤e

tηw(xη1 · · ·xηk
)

= texe1 · · ·xek +
∑
η<e

tηw(xη1
· · ·xηk

).

This last sum is contained in span{xη : η < e}. Therefore the texe1 · · ·xek term does not get cancelled out
and w(T) ̸= 0. On the other hand, w ∈ W ′

1 ⊗ · · · ⊗W ′
k which is zero on each of the slices that form T . This

is a contradiction, so Y1 ∪ · · · ∪ Yk is a vertex cover.

In some cases the upper bound and lower bound agree, which means the support determines the slice rank.
One such case is when max(supp(T)) = supp(T).

Definition 4.2.3. A set Φ ⊆ X1 × · · · ×Xk is oblique if there exist linear orders on X1, . . . , Xk for which all
elements in Φ are maximal in Φ under the product order.

Remark 4.2.4. If a tensor T has oblique support, then SR(T) = τ(supp(T)). Note that the right hand side
is independent of the field the tensor was defined over.

We record a few small facts about oblique sets.

Lemma 4.2.5. If Φ ⊆ X1 × · · · ×Xk and Φ′ ⊆ X ′
1 × · · · ×Xk are oblique, then so is any Ψ ⊆ Φ and Φ×Φ′.

Proof. The linear orders that were used for Φ and Φ′ can be used for Ψ and the lexicographic order these
define can be used for Φ× Φ′.

Lemma 4.2.6. All tight sets are oblique.

Proof. Given an injective function α : A → Z we can define an order on A by saying a ≤ b if and only if
α(a) ≤ α(b). If Φ ⊆ X×Y ×Z is tight, then there are functions αX , αY , αZ that define orders onX,Y, Z in this
way. For any (x, y, z) and (x′, y′, z′) in Φ we have αX(x)+αY (y)+αZ(z) = 0 and αX(x′)+αY (y

′)+αZ(z
′) = 0.

Therefore one of αX(x′) > αX(x), αY (y
′) > αY (y) and αZ(z

′) > αZ(z) cannot be true, so (x′, y′, z′) ̸>
(x, y, z). We conclude that all elements in Φ are maximal under this order.

Example 4.2.7. We show that the matrix multiplication tensor in its standard form has oblique support.
In fact we can show that it is tight. Let ⟨a, b, c⟩ be a matrix multiplication tensor. We may regard the sets
it is defined over as X = [a]× [b] ,Y = [b]× [c] , Z = [c]× [a]. Take N = 2abc and consider the maps

iX : X → Z, (i, j) 7→ Ni− j

iY : Y → Z, (i, j) 7→ i−N2j

iZ : Z → Z, (i, j) → N2i−Nj.

4 COMBINATORIAL ESTIMATION OF THE SLICE RANK 17

These are injective and for ((i, j), (j′, k), (k′, i′)) in the support we have i = i′, j = j′ and k = k′, so

iX((i, j)) + iY (j
′, k) + iZ((k

′, i′)) = Ni− j + j′ −N2k +N2k′ −Ni′ = 0.

This proves that the support is tight. The degree of a vertex in the support hypergraph is at most max(a, b, c)
and there are abc edges. Thus any vertex cover needs at least min(bc, ac, ab) vertices. This is also the upper
bound by Lemma 3.4.10. Therefore SR(⟨a, b, c⟩) = min(bc, ac, ab).

In their blogpost, Sawin and Tao [TS16] also found another family of tensors for which the upper and lower
bound match. These tensors are studied for their connection to the capset problem where we deal with
arithmetic progressions of length k, which are sequences of the form a, a+ b, a+2b, . . . , a+(k− 1)b for some
a, b in a finite abelian group.

Proposition 4.2.8 ([TS16]). Let T be a k-tensor for k ≥ 8 where the sets of formal variables are some
finite abelian group G. If supp(T) is contained in the set of all arithmetic progressions in T of length k and
contains all constant sequences then SR(T) = |G|.

In a bachelor thesis [Bor18], this statement was improved to k ≥ 7. We improve this further to k ≥ 6 with
the use of the following lemma. Recall that a list of linear orders defines a partial order on the product of
the sets, which we call the product order.

Lemma 4.2.9. For all n ∈ N there is a list of 6 linear orders such that the constant sequences are maximal
for the product order among all arithmetic sequences in Z/nZ.

Proof. Take representatives 1, 2, . . . , n of the elements of Z/nZ. Let c be the constant sequence (c, . . . , c).
Consider the following linear orders: s := 1 < 2 < · · · < n and f := ⌊n

2 ⌋ < ⌊n
2 ⌋ − 1 < · · · < 1 < n < n− 1 <

· · · < ⌊n
2 ⌋+ 1. We let <s be the symbol for the order of s, which agrees with the standard order on Z on its

domain and <f for the order of f . Now, we may consider the following list [s, f, s]. We show that for any
c ≥ ⌊n

2 ⌋+1, the sequence c is maximal under the partial order defined by this list. Fix such a c and suppose
c is not maximal. Then there is an arithmetic sequence a, a + b, a + 2b, . . . which is larger than c. We can
assume a ∈ {1, . . . , n} and b ∈ {1, . . . , n}. Then we must have

c ≤s a

c ≤f a+ b

c ≤s a+ 2b

and one of these inequalities must be strict. Note that ⌊n
2 ⌋ + 1 ≤ c ≤ n combined with c ≤f a + b implies

that ⌊n
2 ⌋+ 1 ≤s a+ b ≤s c. In the integers the inequality c ≤s a implies c ≤ a < a+ b ≤ 2n. Combine these

two inequalities to get n+ ⌊n
2 ⌋+ 1 ≤ a+ b ≤ n+ c in the integers.

We move on to analyse a+ 2b. As integers we know that

3n ≥ a+ 2b = 2(a+ b)− a ≥ 2(n+ ⌊n
2
⌋+ 1)− n = n+ 2 + 2⌊n

2
⌋ ≥ 2n+ 1.

The c ≤s a+ 2b condition says that 2n+ c ≤ a+ 2b ≤ 3n in Z. Combining this with a+ 2b = 2(a+ b)− a ≤
2(n+ c)− c = 2n+ c implies a+ 2b = 2n+ c in Z. This immediately implies that

b = (a+ 2b)− (a+ b) ≥ 2n+ c− (n+ c) = n.

As a result, b must be exactly n and a = c, so a, a+ b, a+2b is the constant c sequence, which is not strictly
larger than c. Hence, c is maximal.

The map ϕ : x 7→ 1− x defines a bijection from Z/nZ to itself. It is linear, so it also defines a bijection from
arithmetic progressions to arithmetic progressions. This map defines two new orders on Z/nZ. These are
a <ϕ(s) b if and only if ϕ(a) <s ϕ(b) and a similarly defined <ϕ(f). For a c ≤s ⌊n

2 ⌋ we have ϕ(c) ≥ϕ(s) ⌊n
2 ⌋+1,

so the same analysis as above shows that any constant sequence c with 1 ≤s c ≤s ⌊n
2 ⌋ is maximal under the

list [ϕ(s), ϕ(f), ϕ(s)]. Therefore any constant sequence is maximal under [s, f, s, ϕ(s), ϕ(f), ϕ(s)].

4 COMBINATORIAL ESTIMATION OF THE SLICE RANK 18

We will quickly record how this implies the statement below. However, this implication is essentially the
same as in [TS16].

Proposition 4.2.10. Let T be a k-tensor with k ≥ 6 on G× · · · ×G where G is some finite abelian group.
If supp(T) is contained in the set of all arithmetic progressions in T of length k and contains all constant
sequences then SR(T) = |G|.

Proof. For any such tensor T the bound SR(T) ≤ |G| is immediate by Lemma 3.4.10. The structure theorem
for finite abelian groups says that G ∼=

∏m
i=1 Z/niZ for some ni,m ∈ N. For each ni we have the orders

[sni
, fni

, sni
, ϕ(s)ni

, ϕ(f)ni
, ϕ(s)ni

]. Taking the lexicographic order defined by (sn1
, . . . , snm

) gives an order
s on G through the isomorphism. Similarly we also get orders f, ϕ(s), ϕ(f) on G. For k ≥ 6 we may use any
orders on the last k− 6 factors G and use [s, f, s, ϕ(s), ϕ(f), ϕ(s)] on the first six. Any arithmetic progression
in G is also an arithmetic progression in each of the ni. In the previous lemma we showed that all constant
sequences in Z/niZ are maximal. Thus each constant sequence in G is maximal per ni and therefore maximal
for [s, f, s, ϕ(s), ϕ(f), ϕ(s)]. The extra orders do not matter, so all constant sequences are in max(supp(T)).
Let Gc ⊆ Gk be the set of constant sequences. Any vertex cover of max(supp(T)) is a vertex cover of Gc, so
τ(max(supp(T))) ≥ τ(Gc). In Gc each vertex is only in one edge, so τ(Gc) ≥ |Gc| = |G|. Lemma 4.2.2 shows
that SR(T) ≥ τ(max(supp(T))) ≥ |G|. The upper and lower bound agree, so we get SR(T) = |G|.

Remark 4.2.11. The question whether Proposition 4.2.10 is true remains open for k = 4 and k = 5, but for
k ≤ 3 it is not true for all appropiate tensors. The capset tensor gives a counterexample. For large powers T⊗n

of this tensor the slice rank is less than 3n. The capset tensor was based on a function F3×F3×F3 → F3 and
thus we can also write it with bases {0, 1, 2}. Then the support of T⊗n is the set of all arithmetic progressions
of length 3 in Fn

3 . We can also show that Lemma 4.2.9 is not true when replacing the 6 by a four. This
can be shown by considering Z/3Z. In this case all arithmetic progressions are of the form x, y, z, x for some
x, y, z ∈ Z/3Z and all such sequences with x, y, z distinct are arithmetic progressions. Therefore if x, x, x, x
is maximal, then x >2 y or x >3 z. Suppose without loss of generality that 0 <2 1 <2 2, then we must have
that 0 >3 1 and 0 >3 2. Now 1, 2, 0, 1 is greater than 1, 1, 1, 1. We conclude that not all constant sequences
can be maximal.

4.3 Asymptotic vertex cover numbers

These slice rank bounds also translate to the asymptotic world. A lot of results in this section also appear in a
different form in [CVZ21]. However, we avoid the explicit mention of the asymptotic spectrum. Furthermore,
Proposition 4.3.5 is new. Firstly, we define the asymptotic vertex cover numbers.

Definition 4.3.1. For any k-partite k-uniform hypergraph H we define the asymptotic vertex cover number
by

τ̃(H) := lim
n→∞

τ(H×n)1/n

τ̃∗(H) := lim
n→∞

τ∗(H×n)1/n

The latter limit exists by Fekete’s lemma and the supermultiplicativity from Lemma 4.1.6 and the first limit
is equal to it by Corollary 4.1.5.

Lemmas 4.2.1 and 4.2.2 imply similar bounds in the asymptotic case.

Corollary 4.3.2. Let T be a k-tensor and let some product order be defined on the support then τ̃(supp(T)) ≥
S̃R(T) ≥ τ̃(max(supp(T))).

Proof. Note that for any natural n we have supp(T⊗n) = supp(T)×n. This means that for any n ∈ N we can
use Lemma 4.2.1 to say SR(T⊗n)1/n ≤ τ(supp(T⊗n))1/n = τ(supp(T)×n)1/n and thus taking the lim sup on

both sides gives S̃R(T) ≤ τ̃(supp(T)). The same argument using Lemma 4.2.2 shows τ̃(max(supp(T))) ≤
S̃R(T).

4 COMBINATORIAL ESTIMATION OF THE SLICE RANK 19

This corollary shows that S̃R(T) = τ̃(supp(T)) for tensors with oblique support. It would be extremely
interesting if we could compute τ̃(H) for k-uniform, k-partite hypergraphs. This problem can be turned into
a continuous optimisation problem. Let Φ ⊆ X1 × · · · ×Xk be a set and recall that we write P(Φ) for the
set of all probability distribution on Φ. If p ∈ P(Φ) we write pXi

for the marginal distributions of p on Xi.

Proposition 4.3.3 ([TS16]). Let Φ ⊆ X1 × · · · ×Xk be some set. If p ∈ P(Φ) then we have

log τ̃(Φ) = sup
p∈P(Φ)

min
i

H(pXi
).

Proof. For ease of notation we write the proof for k = 3. For any n ∈ N we can pick a distribution q(n)
on Φ such that q(n) is close to p and q(n) takes values which are multiples of n. Here ’close to’ means
that |q(n) − p| < 1/n. Now consider the set Ψq(n) ⊆ Φn of all elements which are of type q(n). This has
τ(Ψq(n)) ≤ τ(Φn), as it is a subset. Take a minimal vertex cover f of Ψq(n). The vertices in one of Xn, Y n, Zn

must cover at least 1
3 of the edges, first we treat the case this is X. The degree of each element x ∈ Xn is the

number of elements (y, z) ∈ Y n×Zn such that (x, y, z) is of type q(n). Let the permutation group Sn act on
Xn by permuting x1, . . . , xn in x = (x1, . . . , xn). Each x ∈ Xn ∩Ψq(n) must have type q(n)X , so for any two
x = (x1, . . . , xn), x

′ = (x′
1, . . . , x

′
n) ∈ Xn ⊆ Ψq(n) there is a σ ∈ Sn which sends x to x′. Then let σ act on y

and z for some (x, y, z) ∈ Ψq(n). This gives y
′, z′ and then (x′, y′, z′) also has type q(n). Using the existence

of inverses we have now established a bijection between the edges x and x′ are in. Thus each x ∈ Xn ∩Ψq(n)

has the same degree. The total degree of elements in Xn ∩ Ψq(n) is |Ψq(n)|, hence each element has degree

d = |Ψq(n)|/|Xn ∩ Ψq(n)|. In order to cover at least 1
3 of the edges with vertices in Xn we need to use at

least 1
3 |Ψq(n)|/d = 1

3 |X
n ∩Ψq(n)| of the X-vertices. Lemma 3.7.4 says that this is 1

3 · 2
(H(q(n)X)+o(1))n. In the

cases that the Y or Z vertices cover at least 1
3 of the edges, we get the same expression but with q(n)Y and

q(n)Z respectively. The minimum of these expressions bounds τ(Ψq(n)) from below and in the limit we get

log τ̃(Φ) ≥ lim
n→∞

1

n
log τ(Ψq(n)) ≥ lim

n→∞
min{H(q(n)X), H(q(n)Y), H(q(n)Z)}+ o(1)

= min{H(pX), H(pY), H(pZ)}.

For the upper bound we note that all elements in Φn are of some type. If q(n) is any type then the subset Ψq(n)

of all edges of type q(n) can be covered by 2(min{H(q(n)X),H(q(n)Y),H(q(n)Z)}+o(1))n many vertices, because one
of Xn ∩Ψq(n), Y

n ∩Ψq(n), Z
n ∩Ψq(n) is of such size. In the limit this becomes

log τ̃(Φ) ≤ lim
n→∞

1

n
log

 ∑
types q(n)

τ̃(Ψq(n))

≤ lim

n→∞

1

n
log

(
poly(n) max

types q(n)
τ̃(Ψq(n))

)
= sup

p∈P(Φ)

min{H(pX), H(pY), H(pZ)}.

Combining the upper and lower bound shows the equality.

The expression simplifies if we introduce symmetry.

Corollary 4.3.4. Let Φ ⊆ X1 × · · · ×Xk be symmetric, then

log τ̃(Φ) = sup
p∈Psym(Φ)

H(pX1).

Proof. The expressions all stay the same under bijections of the Xi, so we may assume Φ is in symmetric
form. For symmetric distributions all marginal distributions are the same, so H(pXi

) = H(pXj
) for all i, j.

The minimum in Proposition 4.3.3 is obtained for each i, so

log τ̃(Φ) = sup
p∈P(Φ)

H(pX1
) ≥ sup

p∈Psym(Φ)

H(pX1
).

4 COMBINATORIAL ESTIMATION OF THE SLICE RANK 20

Now we prove the reverse inequality. The entropy function is concave as stated in Theorem 3.7.6, which
means that for any p ∈ P(Φ), the symmetrised distribution q with

q(ai1 , . . . , aik) :=
1

k
(p(ai1 , . . . , aik) + p(ai2 , . . . , aik , ai1) + . . .+ p(aik , . . . , aik−2

, aik−1
))

has

min
i

H(qXi
) = H(qX1

) ≥ 1

k

∑
i

H(pXi
) ≥ min

i
H(pXi

).

This shows that supp∈P(Φ) mini H(pXi
) ≤ supp∈Psym(Φ) H(pX1

), which finishes the proof.

Using this expression it can be shown that τ̃ behaves well with respect to the Kronecker product for symmetric
sets.

Proposition 4.3.5. If Φ ⊆ X1 × · · · ×Xk and Ψ ⊆ X ′
1 × · · · ×X ′

k are symmetric then

τ̃(Φ)τ̃(Ψ) = τ̃(Φ×Ψ).

Proof. Again, we take k = 3 for ease of notation. Observe that Φ×Ψ is also symmetric and the bijections that
put Φ and Ψ into symmetric form also put Φ×Ψ into symmetric form. The asymptotic vertex cover number
does not change under bijections, so we can assume all sets are in symmetric form. For any r ∈ Psym(Φ×Ψ)
we can define p ∈ Psym(Φ) and q ∈ Psym(Ψ) such that H(rX) ≤ H(pX) +H(qX). Take

p(x, y, z) :=
∑

x′,y′,z′

r((x, x′), (y, y′), (z, z′))

q(x′, y′, z′) :=
∑
x,y,z

r((x, x′), (y, y′), (z, z′)).

It is easily checked that these are symmetric probability distributions. In this case rX is a probability
distribution on X × X ′ and has marginals pX , qX′ . Lemma 3.7.5 implies that H(rX) ≤ H(pX) + H(qX).
Thus applying sup over all symmetric probability distributions first on the right hand side and then on the
left hand side yields

sup
r∈Psym(Φ×Ψ)

H(rX) ≤ sup
p∈Psym(Φ)

H(pX) + sup
q∈Psym(Ψ)

H(qX).

Thus τ̃ is submultiplicative for symmetric sets. On the other hand, τ⋆ is supermultiplicative, which means
that

τ∗(Φ×n ×Ψ×n) ≥ τ∗(Φ×n)τ∗(Ψ×n).

Taking the limit implies that τ̃∗ is supermultiplicative as well. Hence τ̃ = τ̃∗ is multiplicative.

4.4 Partitions and asymptotic vertex cover numbers

The asymptotic cover number of a hypergraph can now be found using optimisation software. The supremum
of the entropies over all distributions is a concave optimisation problem. This is solvable in polynomial time,
but for large sets, which means a high-dimensional P(Φ), this still takes very long. For symmetric tensors we
can reduce the dimension by restricting to symmetric distributions. In order to reduce the problem further,
we try to group certain variables together and give the same probability mass to all variables in one group. If
the groups are chosen appropiately, then the supremum does not change too much under this extra condition.
We write this down formally for 3-tensors.

We can use the same terminology about partitions of tensors for partitions of edge sets. A triple of partitions
Λ = (X ,Y,Z) of X, Y and Z gives a partition {Xi × Yj × Zk : Xi ∈ X , Yj ∈ Y, Zk ∈ Z} of X × Y × Z. For
Φ ⊆ X × Y × Z and some triple of partitions Λ the block support of Φ with respect to Λ is the set of block
triples (i, j, k) such that Φijk := (Xi × Yj × Zk) ∩ Φ ̸= ∅. Such a block support L is a subset of X × Y × Z
and thus it can be regarded as the edge set of a 3-uniform 3-partite hypergraph.
Consider p ∈ P(L). This carries less information than an element of P(Φ), but we would like to use it to
say something about τ̃(Φ). It turns out that the size of the blocks is enough information, thus we introduce
weighted entropy.

4 COMBINATORIAL ESTIMATION OF THE SLICE RANK 21

Definition 4.4.1. For a set of sets A and a probability distribution p on A we define the weighted entropy
as

HA(p) := −
∑
A∈A

p(A) log
p(A)

|A|
.

For any triple of partitions Λ = (X ,Y,Z) of X,Y, Z and Φ ⊆ X × Y × Z we are particularly interested in
the expression

hΛ(Φ) := sup
p∈P(L)

min{HX (pX), HY(pY), HZ(pZ)}.

Proposition 4.4.2. Let Λ = (X ,Y,Z) be a triple of partitions of X,Y, Z and let Λ′ = (X ′,Y ′,Z ′) be a
refinement of Λ in the sense that X ′ is a refinement of X , Y ′ is a refinement of Y and Z ′ is a refinement of
Z. Consider a set Φ ⊆ X × Y × Z. Then, hΛ(Φ) ≥ hΛ′(Φ).

Proof. We show the statement if Λ′ is the same as Λ = (X ,Y,Z) except for X ′ in which one set in X has been
split into two. This implies the statement for any refinement. By symmetry, the statement also holds for
splitting the Y - or Z-variables. By repeating this splitting step, we can get any refinement and the inequality
still holds. Let X1, . . . , Xr form the partition of X in Λ. Suppose without loss of generality that X1 gets
split into X ′

0 and X ′
1 and all other sets remain the same for Λ′. Write L and L′ for the block support of Φ

with respect to Λ and Λ′ respectively. Given p′ ∈ P(L′), we define p ∈ P(L) on any block Xi × Yj × Zk via

p(Xi × Yj × Zk) =

{
p′(X ′

0 × Yj × Zk) + p′(X ′
1 × Yj × Zk) if i = 1,

p′(Xi × Yj × Zk) otherwise.

We assumed Y had the same partition in Λ and Λ′ and for any Yj ∈ Y, we defined p such that

p(Yj) =

r∑
i=1

∑
Zk∈Z

p(Xi × Yj × Zk)

=
∑

Zk∈Z

(
p′(X ′

0 × Yj × Zk) + p′(X ′
1 × Yj × Zk) +

r∑
i=2

p′(Xi × Yj × Zk)

)
= p′(Yj).

This shows that HY(pY) = HY(p
′
Y). Analogously it is true that HZ(pZ) = HZ(p

′
Z). For any i > 1 we also

get that p(Xi) = p′(Xi), so the term C := −
∑r

i=2 p(Xi) log
p(Xi)
|Xi| is the same in both HX (pX) and HX ′(p′X).

Now apply the inequality of the weighted arithmetic and geometric means. In general this gives for weights
wi ≥ 0, not all zero, and reals ai ≥ 0 that(

w1a1 + · · ·+ wnan
w1 + · · ·+ wn

)w1+···+wn

≥ aw1
1 · · · awn

n

with equality if and only if ai = aj for all i, j with wi > 0 and wj > 0.

Applying this to
|X′

0|
p′(X′

0)
and

|X′
1|

p′(X′
1)

with weights p′(X ′
0) and p′(X ′

1) gives(
|X1|
p(X1)

)p(X1)

=

(
|X ′

0|+ |X ′
1|

p′(X ′
0) + p′(X ′

1)

)p′(X′
0)+p′(X′

1)

≥
(

|X ′
0|

p′(X ′
0)

)p′(X′
0)
(

|X ′
1|

p′(X ′
1)

)p′(X′
1)

Taking the logarithm on both sides preserves the inequality and thus

HX (pX) = C − p(X1) log
p(X1)

|X1|
≥ C − p′(X ′

0) log
p′(X ′

0)

|X ′
0|

− p′(X ′
1) log

p′(X ′
1)

|X ′
1|

= HX ′(p′X)

This shows that for any p′ ∈ P(L′), there is a p ∈ P(L) such that

min{HX ′(p′X), HY′(p′Y), HZ′(p′Z)} ≤ min{HX (pX), HY(pY), HZ(pZ)}.

This inequality must also be true for the supremum and therefore hΛ′(Φ) ≤ hΛ(Φ).

4 COMBINATORIAL ESTIMATION OF THE SLICE RANK 22

In the particular case that each partition in Λ′ consists of singletons we have hΛ′(Φ) = log τ̃(Φ). This
singleton partition is a refinement for any triple of partitions Λ, so log τ̃(Φ) ≤ hΛ(Φ). Combining this with
Lemma 4.3.2 shows Theorem 4.4 from [Alm18]. In this paper Alman also showed that equality is obtained
for laser-ready tensors. Based on our proof we identify another type of partition for which log τ̃(Φ) = hΛ(Φ).

Definition 4.4.3. A set Φ ⊆ X × Y × Z is regular if there is a weight function w : Φ → [0, 1] such that∑
y∈Y,z∈Z

w(x, y, z) =
1

|X|
∀x ∈ X

∑
x∈X,z∈Z

w(x, y, z) =
1

|Y |
∀y ∈ Y

∑
y∈Y,x∈X

w(x, y, z) =
1

|Z|
∀z ∈ Z.

An example of a regular set is the support of a matrix multiplication tensor. In the support of ⟨a, b, c⟩ each
X-variable xij appears exactly in the c terms xijyjkzki where k varies. Similarly each Y -variable appears in
a terms and each Z-variable appears in b terms. Thus w(x, y, z) = 1

abc gives an appropiate weight function.

Proposition 4.4.4. Let Λ = (X ,Y,Z) be some triple of partitions for Φ ⊆ X × Y × Z. If Φijk is a regular
set for each block triple (i, j, k) in the block support then hΛ(Φ) = log τ̃(Φ).

Proof. We have already seen that hΛ(Φ) ≥ log τ̃(Φ). Suppose all Φijk are regular, so to each block triple B
in the block support L we can associate a weight function wB . Take any p ∈ P(Φ). For any xyz in Φ there
is a unique block triple B = Xi × Yj × Zk in which it lies. Then define q(xyz) := p(B)wB(x, y, z). This
defines a probability distribution q on Φ, as

∑
xyz∈B wB(x, y, z) = 1 for all block triples B. Each block triple

is regular, so for all x ∈ Xi we have

q(x) =
∑
j,k

∑
y,z:

xyz∈Xi×Yj×Zk

q(xyz)

=
∑
j,k

p(Xi × Yj × Zk)
∑
y,z:

xyz∈Xi×Yj×Zk

wXi×Yj×Zk
(x, y, z)

=
∑
j,k

p(Xi × Yj × Zk)

|Xi|
=

p(Xi)

|Xi|
.

We can now compute the entropy

H(qX) = −
∑
x∈X

q(x) log q(x)

= −
∑
i

∑
x∈Xi

p(Xi)

|Xi|
log

p(Xi)

|Xi|

= −
∑
i

p(Xi) log
p(Xi)

|Xi|
= HX (pX).

Similarly we also get H(qY) = HY(pY) and H(qZ) = HZ(pZ). The distribution q on Φ is such that

min{HX (pX),HY(pY), HZ(pZ)} = min{H(qX), H(qY), H(qZ)} ≤ log τ̃(Φ).

This can be done for any p ∈ P(Φ), so the inequality holds for the supremum and hence hΛ(Φ) ≤ log τ̃(Φ).
It follows that hΛ(Φ) = log τ̃(Φ).

We can combine this result with Corollary 4.3.2.

5 MULTIPLICATIVITY OF THE ASYMPTOTIC SLICE RANK 23

Corollary 4.4.5. For any tensor T with oblique support and any triple of partitions Λ for which all partition
subtensors are regular, we have log S̃R(T) = hΛ(supp(T)).

In order to find hΛ(supp(T)), one just needs to consider all probability distributions on the block support.
This is an optimisation problem that has much fewer degrees of freedom and can therefore be solved for
a larger class of tensors. In [Alm18] this same equality was shown for tensors with laser-ready partitions.
These have tight and thus oblique block support. Each block is isomorphic to a matrix multiplication tensor
and is therefore both regular and oblique. This does not imply that each tensor with laser-ready partitions
is oblique. We say that the isomorphisms are consistent if the variables in each block can be named in such
a way that each block triple is exactly

∑
i=1

∑
j=1

∑
k=1 xijyjkzki. If the isomorphisms are consistent, then

the laser-ready tensor is oblique and we can deduce that log S̃R(T) = hΛ(supp(T)) from Corollary 4.4.5.

Remark 4.4.6. We can ask ourselves for which tensors T with oblique support and triple of partitions Λ we
get log S̃R(T) = hΛ(supp(T)). If we can guarantee that each step in the proof of Proposition 4.4.2 must be
an equality, then we need each partition subtensor to be regular. This is the case in the proposition below.
In general this does not need to be true. Some block triples can get p(B) = 0 in the maximising distribution,
which either means that there is no restriction on supp(T)B , or that we need not have that a block is regular
in all variables. For example, if the minimum of min(HX (pX), HY(pY), HZ(pZ)) is not obtained at the Y
term, then we do not require regularity in the Y -variables.

Proposition 4.4.7. Any symmetric tensor T with oblique support has maximal asymptotic slice rank if and
only if supp(T) is regular.

Proof. For symmetric tensors with oblique support we know that log S̃R(T) = log τ̃(supp(T)) and that
log τ̃(supp(T)) = supp∈Psym(supp(T)) H(pX). Now consider the triple of partitions Λ = ({X}, {Y }, {Z}). In
this case there is only one distribution and hΛ(supp(T)) = log |X| by symmetry. If supp(T) is regular, then
supp∈Psym(Φ) H(pX) = hΛ(supp(T)), so the asymptotic slice rank is equal to the dimension bound, so it is
maximal. If the asymptotic slice rank is maximal, then supp∈Psym(supp(T)) H(pX) = log |X| must hold. We
know that for a probability distribution on X the entropy only gets maximised for a uniform distribution. If
q is the uniform distribution, then H(q) = log |X|. Thus pX must be the uniform distribution. By symmetry
the same must hold for Y and Z and therefore p is a weight function, which shows that supp(T) is regular.

5 Multiplicativity of the asymptotic slice rank

In the previous chapter we compared the slice rank and the vertex cover number of the support. We know
the slice rank is the same for equivalent tensors. Thus we can compare the slice rank of T to the vertex cover
number of the support of all equivalent tensors. For a tensor T we let GT be the group of all equivalences
on T . If T is a tensor on X1, . . . , Xk over F this is the group GL(X1,F)× · · · ×GL(Xk,F).

Theorem 5.0.1. Let T be a tensor. Then SR(T) = ming∈GT
τ(supp(g · T)).

Proof. We give a sketch of the proof of this fact. Let Xi be a basis of Vi for each i and T ∈ V1 ⊗ · · · ⊗ Vk.
For any g ∈ G we have SR(T) = SR(g · T) ≤ τ(supp(g · T)), so SR(T) ≥ ming∈GT

τ(supp(g · T)). For the
reverse inequality we note the following. Fix a slice rank decomposition for T . Each i-slice is an element of
V1⊗· · ·⊗{vi}⊗· · ·⊗Vk. The different i-slice vectors vi for a fixed i are linearly independent by minimality of the
slice rank decomposition. Therefore there is a basis of each Vi which contains all the i-slice vectors. Writing
T in this basis corresponds to picking a certain g ∈ GT . The support in this basis can be covered by all the
slice vectors vi. There are SR(T) many of these, so there is a g ∈ GT such that τ(supp(g · T)) ≤ SR(T).

In general it is hard to compute the slice rank from this expression as there are potentially infinitely many
elements in GT . If T has oblique support, then the minimum is obtained at g = 1GT

. This extra information
can still be used and therefore it is easier to consider tensors with oblique support.

Definition 5.0.2. A tensor T is oblique if it is equivalent to a tensor with oblique support.

5 MULTIPLICATIVITY OF THE ASYMPTOTIC SLICE RANK 24

5.1 The G-stable rank

This characterisation of the slice rank as the minimum over vertex cover numbers leads to the question if we
can do the same with the fractional vertex cover number.

Definition 5.1.1. The G-stable rank rkG(T) of a tensor T is ming∈GT
τ∗(supp(g · T)).

This is a valid notion of rank in the sense that it is subadditive for sums, decreasing under restriction and
satisfies rkG(⟨n⟩k) = n for k ≥ 2. It has been studied by Derksen [Der22]. In his paper he adopted a different
definition, but also showed that our definition and his are equivalent. We may hope that this rank notion
inherits the supermultiplicativity of τ∗. It is not known whether this is generally true. However, surprisingly
it has been shown to hold for tensors over C.

Lemma 5.1.2 ([Der22]). Let S and T be two k-tensors over C then rkG(S ⊗ T) ≥ rkG(S)rkG(T).

Lemma 4.1.3 implies that the notion of slice rank and G-stable rank should be close together.

Corollary 5.1.3. For any k-tensor T we have 2
kSR(T) ≤ rkG(T) ≤ SR(T).

From these two statements we deduce the following.

Corollary 5.1.4. Let k ≥ 2. The inequality

4

k2
SR(S)SR(T) ≤ rkG(S)rkG(T) ≤ rkG(S ⊗ T) ≤ SR(S ⊗ T)

holds for any k-tensors S and T over C.

5.2 Supermultiplicativity for oblique tensors and complex tensors

In Chapter 2 it was established that the slice rank is neither sub- nor supermultiplicative. This implied
that the asymptotic slice rank had to be defined as a limsup. Christandl, Vrana and Zuiddam found two
cases in which the limit exists [CVZ21]; through a connection between asymptotic slice rank and the general
framework of the asymptotic spectrum they showed that this limit exists for oblique tensors and for tensors
over C. This connection also immediately implied that asymptotic slice rank is supermultiplicative and
superadditive in those cases. In this section we record an alternative proof of these facts. Specifically the
following lemma is new.

Lemma 5.2.1. Let S and T be oblique k-tensors with k ≥ 2. Then

8

k3
SR(S)SR(T) ≤ SR(S ⊗ T).

Proof. There are invertible restrictions gs, gt such that gs ·S and gt ·T have oblique support. The restriction
(gs ⊗ gt) · (S ⊗ T) = (gs · S)⊗ (gT · T) is equivalent to S ⊗ T and has oblique support by Lemma 4.2.5. Slice
rank and G-stable rank are constant on equivalent tensors, so we may assume that S and T have oblique
support. In this case SR(S ⊗ T) = τ(supp(S ⊗ T)), so Corollary 5.1.3 implies that

2

k
τ(supp(S ⊗ T)) ≤ rkG(S ⊗ T) ≤ SR(S ⊗ T). (5.1)

Additionally, we know that supp(S ⊗ T) = supp(S)× supp(T), so

τ∗(supp(S))τ∗(supp(T)) ≤ τ∗(supp(S)× supp(T)) ≤ τ(supp(S)× supp(T))

by Lemmas 4.1.6 and 4.1.3. The G-stable rank is defined as a minimum, so we get rkG(T) ≤ τ∗(supp(T))
for all tensors T . Lemma 5.1.3 can now be used to get the string of inequalities

4

k2
SR(S)SR(T) ≤ rkG(S)rkG(T) ≤ τ∗(supp(S))τ∗(supp(T)) ≤ τ(supp(S)× supp(T)). (5.2)

From Inequalities 5.1 and 5.2 we deduce the final inequality

8

k3
SR(S)SR(T) ≤ 2

k
τ(supp(S)× supp(T)) ≤ rkG(S ⊗ T) ≤ SR(S ⊗ T).

5 MULTIPLICATIVITY OF THE ASYMPTOTIC SLICE RANK 25

This lemma and Corollary 5.1.4 show that the slice rank is supermultiplicative up to a constant for the
family of oblique tensors and for the family of tensors over C. We will now show this is enough to give
supermultiplicativity and superadditivity for the asymptotic slice rank.

Proposition 5.2.2. Let T be a family of k-tensors which is closed under the Kronecker product and addition
and for there is a constant c > 0 such that any S, T ∈ T satisfy SR(S ⊗ T) ≥ c · SR(S)SR(T). Then the
asymptotic slice rank is supermultiplicative for tensors in T .

Proof. First of all note that in this case f(T) = c · SR(T) is supermultiplicative on T . If T ∈ T , then
T⊗n ∈ T for all n ≥ 1, so the limit of f(T⊗n)1/n exists by Fekete’s lemma. The asymptotic slice rank is
equal to this limit and it follows that SR(T⊗n)1/n also converges. Let S, T be two tensors in T . We know
that (T ⊗ S)⊗n ∼= T⊗n ⊗ S⊗n and SR(T⊗n ⊗ S⊗n) ≥ c · SR(T⊗n)SR(S⊗n), hence

S̃R(T ⊗ S) = lim
n→∞

SR((T ⊗ S)⊗n)
1
n

≥ lim
n→∞

(
c · SR(T⊗n)SR(S⊗n)

) 1
n = lim

n→∞
(SR(T⊗n)SR(S⊗n))

1
n = S̃R(T)S̃R(S).

Remark 5.2.3. By induction we also get that (
√
c · SR(T))

n ≤ SR(T⊗n) for every positive integer n. This

shows that S̃R(T) ≥
√
c · SR(T) for any tensor in T .

Asymptotic rank notions that are supermultiplicative are often also superadditive, as can for example be
seen in [Sch22]. Asymptotic slice rank follows this rule of thumb.

Proposition 5.2.4. If T is a family as in the previous proposition, then asymptotic slice rank is superadditive
under direct sums for tensors in T .

Proof. We show that the asymptotic slice rank is superadditive along the same lines as it was shown for the
Shannon capacity in [Sch22]. Let S and T be any two k-tensors in T . For any n ∈ N, we can write out
(S⊕T)⊗n as a direct sum. A lot of the tensors in this sum will be isomorphic according to Lemma 3.3.3 and
if we group them accoding to isomorphism class, we get

(S ⊕ T)⊗n ∼=
n⊕

i=1

(ni)⊕
j=1

(S⊗i ⊗ T⊗n−i).

Then the additivity from Lemma 3.4.4 and the fact that SR has the same value on equivalent tensors gives
the following equality

SR((S ⊕ T)⊗n) =

n∑
i=0

(
n

i

)
SR(S⊗i ⊗ T⊗n−i).

For any t,m, i ≥ 1 and any tensor T we note that SR(T⊗tm+i) ≥ SR(T⊗mt) by Corollary 3.4.9, and thus
SR(T⊗tm+i) ≥ (

√
cSR(T⊗t))

m
. We use this inequality, with m = ⌊ j

t ⌋ for some j, in the following calculation.
Fix t ≥ 1. In case S, T are tensors in T , we have

SR((S ⊕ T)⊗n) ≥
n∑

i=0

(
n

i

)
c · SR(S⊗i)SR(T⊗n−i)

≥
n∑

i=0

(
n

i

)
c
(√

c
)⌊ i

t ⌋+⌊n−i
t ⌋

SR(S⊗t)⌊
i
t ⌋SR(T⊗t)⌊

n−i
t ⌋

≥ c
(√

c
)n/t n∑

i=0

(
n

i

)
SR(S⊗t)

i
t−1SR(T⊗t)

n−i
t −1

= c(n+2t)/(2t)
(
SR(S⊗t)1/t + SR(T⊗t)1/t

)n
SR(S⊗t)−1SR(T⊗t)−1.

5 MULTIPLICATIVITY OF THE ASYMPTOTIC SLICE RANK 26

This means that for any t ≥ 1

S̃R(S ⊕ T) = lim sup
n→∞

SR((S ⊕ T)⊗n)1/n

≥ lim
n→∞

(
SR(S⊗t)1/t + SR(T⊗t)1/t

)
SR(S⊗t)−1/nSR(T⊗t)−1/n · c(n+2t)/2nt

=
(
SR(S⊗t)1/t + SR(T⊗t)1/t

)
c1/2t.

Letting t → ∞ in this expression shows that S̃R(S ⊕ T) ≥ S̃R(S) + S̃R(T).

Corollary 5.2.5. Asymptotic slice rank is supermultiplicative and superadditive for oblique tensors and for
tensors over C.

Proof. Corollary 5.1.4 and Lemma 5.2.1 show that the family of oblique tensors and the family of tensors over
C satisfy the conditions of Propositions 5.2.2 and 5.2.4. The propositions then imply that the asymptotic
slice rank is supermultiplicative and superadditive for these families of tensors.

It is not known whether supermultiplicativity holds for all pairs of tensors over fields other than C. We can
however show that submultiplicativity cannot hold for all tensors.

Example 5.2.6. Let n be some positive integer. We know that

SR(⟨a, b, c⟩⊗n) = SR(⟨an, bn, cn⟩) = min{anbn, bncn, cnan} = SR(⟨a, b, c⟩)n.

This means that S̃R(⟨a, b, c⟩) = SR(⟨a, b, c⟩). Therefore, the asymptotic slice rank is strictly supermultiplicat-
ive for the same tensors ⟨1, 1, k⟩ and ⟨1, k, 1⟩ as used in Example 3.4.6. This strict supermultiplicativity must
imply strict superadditivity, see [Sch22]. We can also show this explicitly. The tensor product is commutative
up to isomorphism, so we get that

(⟨1, 1, k⟩ ⊕ ⟨1, k, 1⟩)⊗n ∼=
n⊕

i=0

(ni)⊕
j=1

⟨1, ki, kn−i⟩.

If we apply the slice rank on both sides, we see that

SR((⟨1, 1, k⟩ ⊕ ⟨1, k, 1⟩)⊗n) =

n∑
i=0

(
n

i

)
SR(⟨1, ki, kn−i⟩) =

n∑
i=0

(
n

i

)
kmin{i,n−i} ≥ 2

⌊n−1
2 ⌋∑

i=0

(
n

i

)
ki.

This last sum can be bounded from below by 2(1 + k)⌊
n−1
2 ⌋. This shows for k > 3 that

S̃R(⟨1, 1, k⟩ ⊕ ⟨1, k, 1⟩) ≥
√
1 + k > 2 = S̃R(⟨1, 1, k⟩) + S̃R(⟨1, k, 1⟩).

It may be noted that the tensors used in this example are highly asymmetric. We have not found a symmetric
example that shows strict supermultiplicativity.

Conjecture The asymptotic slice rank is submultiplicative for symmetric tensors.

5.3 The multiplicativity of asymptotic slice rank for symmetric and oblique
tensors

In this section we prove the above conjecture in the case of oblique tensors.

Theorem 5.3.1. Let S and T be two symmetric and oblique k-tensors. Then S̃R(S ⊗ T) = S̃R(S)S̃R(T)

and S̃R(S ⊕ T) = S̃R(S) + S̃R(T).

First, we need to be able to get a tensor which has symmetric and oblique support at the same time.

6 THE LASER METHOD 27

Lemma 5.3.2. If a k-tensor T is symmetric and oblique, then T⊗k is equivalent to a symmetric tensor with
oblique support.

Proof. The tensor T is symmetric, so it is equivalent to a tensor with support in symmetric form, say
S. Because S is equivalent to T , it is also oblique, so there are invertible matrices (A1, . . . , Ak) for which
U = (A1⊗· · ·⊗Ak)·S is a tensor with oblique support. For any cycle σ ∈ Sk the restriction (A2, . . . , Ak, A1)·S
is well-defined, because S is in symmetric form. The restriction is equal to rot(U). The restriction can be
rotated even further. The product of these rotated restrictions

(A1 ⊗ · · · ⊗Ak)⊗ (A2 ⊗ · · · ⊗Ak ⊗A1)⊗ · · · ⊗ (Ak ⊗A1 ⊗ · · · ⊗Ak−1)

defines a restriction from S⊗k to the tensor product S′ = U ⊗ rot(U)⊗ · · · ⊗ rotk−1(U), which is symmetric.
Rotating the order of the linear orders for supp(U) shows that supp(roti(U)) is oblique. Hence S′ is a product
of tensors with oblique support and so it has oblique support by Lemma 4.2.5. Additionally, all Ai were
invertible, so A1 ⊗ · · · ⊗ Ak is invertible. This means that S⊗k is equivalent to S′. Therefore T⊗k is also
equivalent to S′, a symmetric tensor with oblique support.

From this lemma and Lemma 4.3.5 the theorem follows rather quickly.

Proof of Theorem 5.3.1. The previous lemma implies that there are S′ and T ′ which are symmetric, have
oblique support and are equivalent to S⊗k and T⊗k respectively. As S′, T ′ and S′⊗T ′ have oblique support,
we can establish S̃R by looking at τ̃ of the support. The support is symmetric, so Proposition 4.3.5 implies

S̃R(S′)S̃R(T ′) = τ̃(supp(S′))τ̃(supp(T ′)) = τ̃(supp(S′ ⊗ T ′)) = S̃R(S′ ⊗ T ′).

The fact that S′ ⊗ T ′ is equivalent to S⊗k ⊗ T⊗k, which is isomorphic to (S ⊗ T)⊗k, means that

S̃R(S)kS̃R(T)k = S̃R(S⊗k)S̃R(T⊗k) = S̃R((S ⊗ T)⊗k) = S̃R(S ⊗ T)k.

We conclude that asymptotic slice rank is indeed multiplicative in this case.

From multiplicativity we can deduce additivity. Take oblique and symmetric k-tensors S and T and any
positive integer n. We know from Proposition 5.2.4 that S̃R(S⊕T) ≥ S̃R(S)+ S̃R(T), because SR(S⊗T) ≥
8
k3SR(S)SR(T). For subadditivity we use Remark 5.2.3 to get

SR((S + T)⊗n) =

n∑
i=1

(
n

i

)
SR(S⊗i ⊗ T⊗n−i)

≤
n∑

i=1

(
n

i

)√
k3

8
S̃R(S⊗i ⊗ T⊗n−i)

=

n∑
i=1

(
n

i

)
k3/2
4 S̃R(S)iS̃R(T)n−i = k3/2

4 (S̃R(S) + S̃R(T))n.

If we raise this to the power 1
n and let n → ∞, we get S̃R(S ⊕ T) = S̃R(S) + S̃R(T).

6 The laser method

We now properly describe the laser method as developed by Coppersmith and Winograd. Recall the definition
of the value and the generalised Schönhage’s tau theorem.

Definition 3.8.2. The value of a 3-tensor T is defined as

Vρ(T) := sup
n, degenerations ⊵

(∑

i

(aibici)
ρ

)1/n

| T⊗n ⊵
⊕
i

⟨ai, bi, ci⟩

 .

6 THE LASER METHOD 28

Theorem 3.8.4 ([DS13]). Let T be a 3-tensor. Then Vω/3(T) ≤ R̃(T).

A tensor T can be used to bound ω if we can lower bound the value and upper bound the asymptotic slice
rank. In the next section it is shown that choosing a tensor with laser-ready partition allows us to a lower
bound for the value. These laser-ready tensors are concise by Lemma 3.8.10 and therefore the asymptotic
rank is bounded below by the dimension. Among the laser-ready tensors, two families were identified for
which the border rank is close to this dimension minimum. The asymptotic rank must then also be close to
minimal by Lemma 3.6.4. These families are the following two.

For an integer q ≥ 1, the small Coppersmith-Winograd tensor cwq is the tensor

q∑
i=1

x0yizi + xiy0zi + xiyiz0.

If we partition the variable sets as X0 = {x0}, X1 = {x1, . . . , xq}, Y0 = {y0}, Y1 = {y1, . . . , yq} and
Z0 = {z0}, Z1 = {z1, . . . , zq}, then the block support becomes {(0, 1, 1), (1, 0, 1), (1, 1, 0)}, which is a tight
set. Each of the partition subtensors is a rotation of the matrix multiplication tensor ⟨1, 1, q⟩.

The large Coppersmith-Winograd tensor CWq is also defined for every q ≥ 1 and is the same except for some
extra corner terms:

CWq := x0y0zq+1 + x0yq+1z0 + zq+1y0z0 +

q∑
i=1

x0yizi + xiy0zi + xiyiz0.

Using the same partitions as for cwq and putting xq+1, yq+1, zq+1 each in its own class gives the block support

{(0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 0, 2), (0, 2, 0), (2, 0, 0)}

which is once again a tight set. Each of the additional block triples contains a single term, so it will be
isomorphic to ⟨1, 1, 1⟩.

These tensors have the following border rank decompositions

ε3cwq +O(ε4) = ε

q∑
i=1

(x0 + εxi)(y0 + εyi)(z0 + εzi)

−

(
x0 + ε2

q∑
i=1

xi

)(
y0 + ε2

q∑
i=1

yi

)(
z0 + ε2

q∑
i=1

zi

)
+ (1− qε)x0y0z0 = ε3cwq +O(ε4)

and

ε3CWq +O(ε4) = ε

q∑
i=1

(x0 + εxi)(y0 + εyi)(z0 + εzi)

−

(
x0 + ε2

q∑
i=1

xi

)(
y0 + ε2

q∑
i=1

yi

)(
z0 + ε2

q∑
i=1

zi

)
+ (1− qε)(x0 + ε3xq+1)(y0 + ε3yq+1)(z0 + ε3zq+1).

These decompositions show that R(cwq) ≤ q + 2 and R(CWq) ≤ q + 2, whereas conciseness gives the lower

bound R̃(cwq) ≥ q + 1 and R̃(CWq) ≥ q + 2.

6.1 Lower bounding the value

Definition 6.1.1. For any probability distribution p ∈ P(Φ) where Φ ⊆ X×Y ×Z we let Marg(p) be the set of
probability distributions on Φ which have the same marginals as p. We let Γ(p) := maxq∈Marg(p) H(q)−H(p).

6 THE LASER METHOD 29

The lower bound for the value that arises from the laser method is provided by the following theorem.

Theorem 6.1.2 ([AW20]). Let T be a tensor with block support L. For any p ∈ P(L) we have

log Vρ(T) ≥ min{H(pX) +H(pY) +H(pZ)}+
∑
B∈L

p(B) log Vρ(TB)−
1

2
Γ(p)

The proof of this theorem goes through the steps in the laser method and analyses them. We shall first
describe these steps in more detail. We restrict ourselves to the case in which T is a symmetric tensor with
symmetric laser-ready partitions.

Write X1, . . . , Xr for the partition classes of X, also called blocks, and use similar notation for the partitions
of Y and Z. The tensor T has a tight block support so we may as well choose the labels of the blocks such
that XiYjZk is in the block support only if i+ j + k = c for some fixed c. Take a very large power T⊗n and
use the power partition. Each block in this partition is identified with an element of [r]n. The block support
of T⊗n thus consists of block triples XIYJZK where I, J,K ∈ [r]n are considered sequences of length n. As
the base tensor T had tight support, each non-zero triple must satisfy It + Jt + Zt = c for all t ∈ [n].

The method considers T⊗n and then uses multiple steps of zeroing out to reach an independent set of partition
subtensors TIJK . Each subtensor TIJK is the tensor product of partition subtensors Tijk from T . If the value
Vρ(Tijk) of each partition subtensor Tijk is known, then Lemma 3.8.3(ii) implies a lower bound for the value
of TIJK . Lemma 3.8.3(i) and (iii) show that this gives a lower bound for the value of T . The zeroing out
steps will be chosen such that all subtensors that remain at the end will have the same optimised value. This
eases the analysis, but also ensures that we do not zero out all high-value subtensors in favor of low-value
ones
The algorithm will only perform zeroing outs, so all the changes can be described through the support. We can
thus analyse this support directly in which case I, J,K ∈ [r]n are our blocks and we let S ⊆ [r]n × [r]n × [r]n

be the block support of T⊗n.

Define a symmetric distribution p on the block support of T . The algorithm aims to only keep block triples
of T⊗n which are approximately of type p. Fix n. We will now describe the zeroing out from T⊗n in the
laser method.

Remark 6.1.3. Note that for the fixed distribution p the expression p(a, b, c) · n, which appears in the
definition of types, see Definition 3.7.2, might not always be an integer. Instead, we pick a distribution α
whose probabilities are all multiples of 1

n . We choose α such that these distribution approach p as n grows
large. The quantities and values in Theorem 6.1.2 are continuous in the chosen probability distribution, so
the p dependence in the lower bound is achieved in the limit. The rigorous treatment of this issue can be
found in [AW20].

Step 1

Pick a distribution α as described in the remark. We wish to only keep block triples of type α. However, we
cannot pick triples to zero out and instead are restricted to zeroing out variables. If (I, J,K) is a block triple
of type α then that does give information about the types of I, J,K. Thus we only want to keep X-blocks I
that are of the type αX , the X-marginal. Therefore we zero out any I that is of a different type and do the
same for Y - and Z- blocks which are not of type αY and αZ respectively. By symmetry these marginals are
all the same.

Remark 6.1.4. At this point all blocks have the right marginal type. However, this does not mean that
all block triples are of type α. In the initial analysis by Strassen [Str87] and Coppersmith and Winograd
[CW90] this was not an issue, because there is only one distribution on the block support of CWq and CW⊗2

q

given the marginals. For example, let β be a probability distribution on the block support of CWq with fixed
marginals. Then β(0, 0, 2) is determined by βZ(2). After establishing β(0, 0, 2) and its rotations, we can use
β(0, 1, 1) = βX(0)−β(0, 0, 2)−β(0, 2, 0) to find β on the rest of the block support. However for higher powers
of CWq there are multiple options and this does become an important point.

6 THE LASER METHOD 30

Step 2

The next zeroing out step uses the probabilistic method. Choose an appropiately large prime Q and define
random hash functions hX , hY , hZ from [r]n → Z/QZ. We use the following random hashing. Let weights
w0, . . . , wn and h0 be chosen independently and uniformly at random in Z/QZ. Define

hX(I) = h0 +

n∑
t=1

wt · It

hY (J) = h0 + 2w0 +

n∑
t=1

wt · Jt

hZ(K) = h0 + w0 + 2−1
n∑

t=1

wt(c−Kt).

(6.1)

Remember that It + Jt + Kt = c for all t ∈ [r]n and all triples (I, J,K) in the block support, so for any
(I, J,K) in the block support

1. hX(I) + hY (J) = 2hZ(K) always holds independent of the instances of w0, . . . , wn and h0.

2. hX is uniformly distributed because h0 is. The same holds for hY and hZ . Additionally, hY is inde-
pendent of hX as we can condition on h0 and w1, . . . , wn and then hY is still uniformly distributed
because w0 is. A similar argument shows independence for the other pairs.

3. For any two unequal I, I ′, the hash values hX(I) and hX(I ′) are independent as I, I ′ must differ in a
coordinate t and then wt is independent and uniformly distributed.

Pick a large Salem-Spencer set U ⊆ Z/QZ. A Salem-Spencer set is a set U which contains no non-trivial
arithmetic progressions of size 3. Thus if a, b, c ∈ U and a+ b = 2c then a = b = c. It was shown by Behrend
[Beh46] that such sets can be of size Q1−o(1). Now we zero out any block that does not hash to a value in
U . We show that there is a choice of w0, . . . , wn and h0 for which we keep close to 1

Q of block triples in this
step. The choice of weights wi and h0 will also be important for later steps. We want to pick these weights,
so that the final value bound is maximised. At this point the block support consists of triples (I, J,K) such
that they have the right marginal types and hX(I), hY (J), hZ(K) ∈ U . Item 1. in the list above implies that
these hashed values form an arithmetic progression, which means that hX(I) = hY (J) = hZ(K) ∈ U as U is
a Salem-Spencer set.

Step 3

In the next step we greedily zero out blocks until the set of remaining triples of type α is independent. We
repeatedly takes a triple of type α and zero out one of its blocks if it is shared with other triples of type α.
We show that there is also a choice of h0, w0, . . . , wn such that we are still left with a large number of triples
of type α after this step.

Step 4

The final step gets rid off all triples which are not of type α, after which we must be left with an independent
set. This step was originally also done greedily, but in [AW20] the authors found an improvement through
another probabilistic argument. First we zero out any block that is not in a triple of type α. Then pick
random subsets of the remaining X-, Y - and Z-blocks and zero out any blocks not in the random subset.
The random subset is chosen in such a way that all remaining triples must be of types α. Then use the
independence of triples of type α to find a lower bound for the expectation of the number of remaining
triples. Now there must be a choice of random hashing and random subset for which the remaining number
of independent triples is at least this lower bound.

6 THE LASER METHOD 31

6.2 Motivation of choices in the laser method

In this algorithm we assumed that our tensor and partitions are symmetric. As mentioned before this is
a reasonable assumption. Given any tensor T with a triple of partitions (X ,Y,Z) we know that Tsym =
T ⊗rot(T)⊗rot(rot(T)) is symmetric. It can be given partitions (X ×Y×Z,X ×Y×Z,X ×Y×Z). This is a
symmetric triple of partitions. Thus Tsym fits into our analysis. Lemma 3.8.3 implies that Vρ(Tsym) ≥ Vρ(T)

3.
More specifically the lower bound for the value found by the laser method also follows this supermultiplic-
ativity. This means that it is always best to analyse symmetric tensors with symmetric partitions. Thus we
can restrict our analysis to these tensors. On the other hand the statement is true in general [AW20].
It also seems reasonable to restrict to symmetric distributions. The entropy function is concave, thus
min{H(pX), H(pY), H(pZ)} is maximal for a symmetric distribution just as in Corollary 4.3.4. This heuristic
does not exclude the possibility that there are tensors where the Γ-term could affect the value in such a way
that an asymmetric distribution is actually the maximiser for the lower bound.

Some of the steps might seem arbitrary and we now aim to give some explanation why these steps are reas-
onable to get a good lower bound for the value. The first idea, which is captured in step 1, is that in the
zeroing out of T⊗n, we wish to only leave blocks of some type α. This does mean we might throw away some
block triples preemptively that could have been a part of the final independent set. However, there are only
polynomially many types, because of which throwing away all these other types only loses us a polynomial
factor of other block triples. This factor is o(1) in the final lower bound. On the other hand, we can now
distinguish between ‘good block triples’, those block triples of type α, and other block triples. The other
steps will try to keep as many good block triples as possible. If we choose p and thus α such that the good
block triples have high values, then this looks like an effective strategy to keep a large set of high value
subtensors. This step also helps with making our block support independent as there can only be relatively
few block triples that all have a block in common.

In step 2 we effectively lose a factor of 1
Q of all good block triples. In the final lower bound this comes down

to having a H(pX) term instead of a H(p) term. Although this step loses some triples, it is currently the
most efficient way to get a nearly independent set of good block triples. It is nearly independent in the sense
that the number of pairs that have a block in common is smaller than the number of good block triples as
can be seen in Lemma 6.3.4. Step 3 is efficient enough that it does not impact the final lower bound. Finally,
step 4 is necessary as there can still be terms which are not of type α. This step is the reason for the 1

2Γ(p)
term in the lower bound. It is argued in [AW20] that this term cannot be improved for all possible starting
tensors.

6.3 Proof of Theorem 6.1.2

In this section we work towards the proof of Theorem 6.1.2. We largely follow the proof in [AW20]. The
proof of this theorem consists of going through the laser method algorithm and analysing the tensor as it
goes through the steps. At the end of the algorithm all partition subtensors are of type α. The value of such
a subtensor can be lower bounded.

Lemma 6.3.1. Let T be a symmetric partitioned tensor with r parts in the partition. Let TIJK ⊆ T⊗n for
I, J,K ∈ [r]n be a subtensor of type α. Then

log Vρ(TIJK) ≥ n
∑

i,j,k∈[r]

α(i, j, k) log Vρ(Tijk)

Proof. The value is supermultiplicative, see Lemma 3.8.3ii. By definition, TIJK =
⊗n

t=1 TItJtKt
. Each of

these TItJtKt
is one of Tijk with i, j, k ∈ [r] and each Tijk appears α(i, j, k)n times in the tensor product.

Thus indeed
Vρ(TIJK) = Vρ(

∏
ijk

T
⊗α(i,j,k)n
ijk) ≥

∏
i,j,k∈[r]

Vρ(Tijk)
α(i,j,k)n.

Taking the logarithm on both sides proves the lemma.

6 THE LASER METHOD 32

Now we analyse the number of partition subtensors left at the end of the algorithm. We start with a symmetric
set S ⊆ [r]n × [r]n × [r]+n. Note that in step 2 we introduce randomness. We only fix our choice of random
hashings at the end. Define S1 as the support after step 1 and let S2, S3, S4 be the random variables which
represent the supports that remain after step 2, 3 and 4 respectively. Let Ai ⊆ Si be the (random) set of
triples of type α. Note that A4 = S4 and that we want to choose a random hashing that makes |A4| as large
as possible. We bound each of the |Si| and |Ai| in consecutive lemmas.

Lemma 6.3.2. For any symmetric distribution α we have log |S1| ≤ (Γ(α) +H(α))n+ o(n) and log |A1| =
H(α)n+ o(n).

Proof. In step 1 we zero out all blocks that do not match the marginal distribution of α. Any (I, J,K) ∈ S
of type α is also in S1 as it has the right marginals. α was defined on the support of T , so any triple in
[r]n × [r]n × [r]n of type α is also in S. Lemma 3.7.4 says that the number of such triples is 2H(α)n+o(n) and
thus log |A1| = H(α)n+ o(n). Any triple (I, J,K) that remains is of some type β such that the marginals of
β are αX , αY , αZ , thus β ∈ Marg(α). Group all remaining triples based on which type they have and then
we know

|S1| ≤
∑

β∈Marg(α)

2H(β)n+o(n) (6.2)

By definition of Γ(α) we know that H(β) ≤ Γ(α)+H(α) for all β ∈ Mα. Furthermore any triple must be of a
type whose entries are all multiples of 1

n . There are only polynomially many of such distributions 3.7.3. This
means that there is a polynomial f such that the sum in 6.2 consists of ≤ f(n) many terms. We conclude
that log |S1| ≤ log(f(n)) + (Γ(α) +H(α))n+ o(n) and log(f(n)) is also o(n).

In order to do the analysis for step 2 we also need the following information.

Lemma 6.3.3. After step 1 there are N := 2H(αX)n+o(n) X-blocks that are not zeroed out and each remaining

block is in exactly R := |A1|
N triples of type α.

Proof. The number of elements of [r]n that are of type αX is 2H(αX)n+o(n), so there are indeed N X-blocks
left. We can use the same argument using permutations as in the proof of Proposition 4.3.3 to argue that all
X-blocks are in the same number of elements of A1. Thus each block is indeed in R triples. By symmetry
the same holds for Y -blocks and Z-blocks.

In step 2 we pick a prime Q. We require that this prime is in [10R, 20R]. Such a prime exists by Bertrand’s
postulate as R ≥ 1. Then we pick a Salem-Spencer set U ⊆ Z/QZ and use a probabilistic analysis to establish
that there is a hashing that has the properties we want. For this analysis we shall first establish the expected
value of some relevant random variables.

Lemma 6.3.4. For a random hashing as defined in Equation 6.1 let C be the number of pairs of triples
(I, J,K), (I ′, J ′,K ′) ∈ A2 such that I = I ′, J = J ′ or K = K ′. Then we have

� E(|A2|) = |A1||U |
Q2 .

� E(|S2|) = |S1||U |
Q2 .

� E(C) ≤ 3|A1||U |
20Q2

Proof. The first two expected values are straightforward to establish. Recall that the property of the Salem-
Spencer set implies that any triple (I, J,K) ∈ S satisfies hX(I) = hY (J) = hZ(K) ∈ U . The hashing
functions hX , hY are independent and determine hZ . Thus P(hX(I) = hY (J) = hZ(K) ∈ U) = P(hX(I) ∈
U)P(hY (J) = b|hX(I) = b) = |U |

Q2 . Summing over all relevant triples gives us the first two expectations.

For E(C) we note that two distinct (I, J,K), (I, J ′,K ′) ∈ A1 can have at most one block in common. For
example, if I = I ′ and J = J ′ then by tightness we also get K = K ′. An X-block I is in R triples, so there are(
R
2

)
triples that share I. This is the same for all X-blocks, so there are N

(
R
2

)
triples that share an X-block.

Take any such pair (I, J,K) and (I, J ′,K ′) both in A1. In order for both of these to be in A2 we require
hX(I) = u for some u ∈ U and then also hY (J) = hY (J

′) = u. All these events are independent, so we get

6 THE LASER METHOD 33

P((I, J,K), (I, J ′,K ′) ∈ A2) =
|U |
Q3 . The same holds for Y -blocks and Z-blocks, so summing over all blocks

this gives E(C) = 3N
(
R
2

) |U |
Q3 ≤ 3NR2|U |

2Q3 . By definition of R and because Q ≥ 10R we get E(C) ≤ 3|A1||U |
20Q2 .

Lemma 6.3.5. E(|S3|) ≤ |S1||U |
Q2 and E(|A3|) ≥ 7|A1||U |

10Q2 .

Proof. At the very least S3 ⊆ S2 as more triples are zeroed out in step 3. Thus E(|S3|) ≤ E(|S2|) ≤ |S1||U |
Q2 .

For |A3| we analyse step 3 a bit more. In step 3 we pick out one block I at a time. If this block is shared by
r ≥ 2 triples in A2 then it is zeroed out. For each zeroing out we lose

(
r
2

)
≥ r/2 pairs of triples that share

a block and r triples in A2. If we lose more than 2C triples in A2 then we would have also lost more than
C pairs which is impossible. Thus at the end of step 3 there are at least |A2| − 2C triples of type α left.
Therefore

E(|A3|) ≥ E(|A2| − 2C) ≥ |A1||U |
Q2

− 2
3|A1||U |
20Q2

=
7|A1||U |
10Q2

In step 4 we start with the random sets A3 and S3 and zero out the remaining triples which are not of type
α. In order to analyse |A4| we need the following lemma.

Lemma 6.3.6 ([AW20]). Given a set a and S ⊆ a3 such that

� (i, i, i) ∈ S for all i ∈ a

� for all other (i, j, k) ∈ S the three values i, j, k are distinct.

Then there is a subset b ⊆ a of size ≥ 2|a|3/2
3(3|S|)1/2 such that S|b×b×b = {(i, i, i) : i ∈ b}.

Proof. We follow the proof in [AW20]. We define a random subset A ⊆ a. Each element is included in A

independently with probability p = |a|1/2√
3(|S|−|a|)

. Consider the set S′ ⊆ S|A×A×A of all off-diagonal elements.

For a specific (i, j, k) ∈ S with i ̸= j ̸= k ̸= i each of i,j and k is included in A with probability p. By
independence we have (i, j, k) ∈ S′ with probability p3. It follows that E(|S′|) = (|S| − |a|)p3.

We remove the set A′ = {i | (i, j, k) ∈ S′} from A. This gives a set B with

E(|B|) = E(|A|)− E(|A′|) ≥ E(|A|)− E(|S′|) = p|a| − (|S| − |a|)p3 =
2|a|3/2

33/2(|S| − |a|)1/2
≥ 2|a|3/2

3(3|S|)1/2

There is a choice of randomness such that the set B is larger than this expectation. We choose this set as b.
If there is (i, j, k) ∈ S|b×b×b with i ̸= j or i ̸= k, then none of i, j, k are the same. This implies that (i, j, k)
would have been in S′, but then i ∈ A′ and thus i /∈ b. We conclude that S|b×b×b = {(i, i, i) : i ∈ b}.

Corollary 6.3.7. Given A3 and S3, there is a choice of subsets in step 4 such that |A4| ≥ 2
3
√
3
|A3|3/2|S3|−1/2.

Proof. In this step we first zero out all blocks that are not in a triple of type α. Suppose X ′, Y ′, Z ′ ⊆ [r]n

are the sets of remaining X-, Y - and Z-blocks after this zeroing out and S′
3 ⊆ X ′ × Y ′ × Z ′ is the set of

remaining triples. Note that A3 ⊆ S′
3. The triples of type α form an independent set at this point, so each

block is in a unique triple of type α. We define a bijection fX : X ′ → A3 by sending I ∈ X ′ to the unique
triple (I, J,K) ∈ A3 which it is a part of. We similarly define bijections fY : Y ′ → A3 and fZ : Z ′ → A3.
The function f := fX × fY × fZ : X ′ × Y ′ ×Z ′ → A3 ×A3 ×A3 is a bijection and therefore is injectively on
S′
3. The set f(S′

3) ⊆ A3 ×A3 ×A3 of size |S′
3| satisfies the conditions in Lemma 6.3.6.

� For any B = (I, J,K) ∈ A3 we have f(I, J,K) = (B,B,B).

� Suppose without loss of generality that for some block triples B1, B2 we have (B1, B1, B2) ∈ f(S′
3).

Then there is a B = (I, J,K) ∈ S′
3\A3 with fX(I) = fY (J) = B1, but then B1 = (I, J,K ′) for K ′ ̸= K.

This is impossible because S′
3 is tight.

6 THE LASER METHOD 34

Thus Lemma 6.3.6 provides us with a set b ⊆ A3. Let X ′′ = f−1
X (b) and define Y ′′, Z ′′ analogously. We

know f(S′
3)|b×b×b = {(i, i, i) : i ∈ b} which must all come from triples in A3. In step 4 we zero out

all blocks in X ′ \ X ′′, Y ′ \ Y ′′ and Z ′ \ Z ′′. Then all remaining triples are of type α and these are all
independent. Each block is in a triple, so |A4| = |X ′′| = |b| and thus we have found subsets for which
|A4| ≥ 2

3
√
3
|A3|3/2|S′

3|−1/2 ≥ 2
3
√
3
|A3|3/2|S3|−1/2.

It is now clear that we want to pick the random hashings such that |A3|3/2|S3|−1/2 is as large as possible.
We can get at least as good as the expectation.

Lemma 6.3.8. If X,Y are random variables with values in [0,∞) on the same probability space (Ω,F ,P),
then there must be an instance σ ∈ Ω such that X(σ)3/2Y (σ)−1/2 ≥ E(X)3/2E(Y)−1/2.

Proof. We prove this by contradiction. Suppose this is not the case, so X(σ)3/2Y (σ)−1/2 < E(X)3/2E(Y)−1/2

for all σ. All terms are non-negative, so this can be squared to give X(σ)3 < E(X)3E(Y)−1Y (σ) for all σ. It
is a standard measure theoretic fact that the strict inequality is preserved if we take the expectation, which
means that

E(X3) < E(X)3E(Y)−1E(Y) = E(X)3.

However, the function x 7→ x3 is convex on the non-negative reals, so Jensen’s inequality says that E(X3) ≤
E(X)3. Contradiction.

We are now ready to combine all these lemmas into a proof of Theorem 6.1.2.

Proof of Theorem 6.1.2. The algorithm gives us an independent set of size |A4| ≥ 2
3
√
3
|A3|3/2|S3|−1/2. By

the previous lemma there is a choice of random hashing such that |A3|3/2|S3|−1/2 ≥ E(|A3|)3/2E(|S3|)−1/2.
Pick such a choice. Then we get

|A4| ≥
2

3
√
3
E(|A3|)3/2E(|S3|)−1/2

≥ 2

3
√
3

(
7|A1||U |
10Q2

)3/2(|S1||U |
Q2

)−1/2

=
14
√
7

30
√
30

|A1|3/2|U |
Q2|S1|1/2

.

Now we use |U | = Q1−o(1), Q ≤ 20R and the bounds for |A1| and |S1| to say

log |A4| ≥ −(1 + o(1)) logQ+
3

2
log |A1| −

1

2
log |S1|+ log 0.01

= − logR+
3

2
H(α)n− 1

2
(Γ(α) +H(α))n+ o(n)

= logN − 1

2
Γ(α)n+ o(n)

Thus after step 4 we have found a zeroing out from T⊗n to a direct sum of |A4| subtensors TB which are all
of type α. The value is superadditive for direct sums, so for the tensor T we get

Vρ(T) = Vρ(T
⊗n)1/n ≥ Vρ

(⊕
B∈A4

TB

)1/n

≥

(∑
B∈A4

Vρ(TB)

)1/n

= (|A4|Vρ(TB))
1/n

6 THE LASER METHOD 35

and by Lemma 6.3.1

log Vρ(T) ≥
1

n
(log |A4|+ log Vρ(TB))

≥ 1

n

logN − 1

2
Γ(α)n+ o(n) + n

∑
i,j,k∈[r]

α(i, j, k)Vρ(Tijk)

= H(αX)− 1

2
Γ(α) +

∑
i,j,k∈[r]

α(i, j, k)Vρ(Tijk) + o(1).

As n → ∞ the o(1) term goes to zero, so we recover the intended expression.

Most bounds on ω are based on Theorem 6.1.2. For example, choosing T = CW6 and p symmetric such that
p(2, 0, 0) ≈ 0.016 and p(1, 1, 0) ≈ 0.317, gives the bound ω < 2.39.

6.4 Advanced laser methods

After the initial paper about the laser method by Strassen [Str87], there has been further improvement on
the exponent of matrix multiplication. All of these have been based on the lower bound on the value from
Theorem 6.1.2. Each improvement has used a power of CWq as the base tensor, so the asymptotic rank did
not improve. However the lower bounds on the values of the partition subtensor were relatively better. The
improved lower bounds came through application of merging. The initial start tensor was T = CWq with
the standard partition. Each of the partition subtensors is a matrix multiplication tensor. When moving our
attention to CW⊗2

q we could just use the power partition and get the same value, but we can also combine
some block triples to improve the value. In particular

T0,1,1 ⊗ T0,1,1 + T0,2,0 ⊗ T0,0,2 + T0,0,2 ⊗ T0,2,0
∼=

q∑
i,i′=1

x(0,0)y(i,i′)z(i,i′) + x(0,0)y(q+1,0)z(0,q+1) + x(0,0)y(0,q+1)z(q+1,0)

which is isomorphic to ⟨1, 1, q2+2⟩. This has a better value than the sum of the values of the three individual
tensors. This idea of merging blocks together can thus improve the lower bound for the value of some

subtensors. In CW⊗2k

q we merge blocks XI with I ⊆ {0, 1, 2}2k together if they have the same value of∑2k

t=1 It. This merging also creates partition subtensors which are not matrix multiplication tensors, vastly
increasing the complexity of the analysis. By recursively lower bounding the values of the subtensors and
taking advantage of the merging behaviour one can improve the bound on ω.

Table 1 Improvements using the laser method through the years.

Authors year Bound on ω Method
Coppersmith and Winograd 1987 2.376 Laser method applied to CW⊗2

q

Stothers 2010 2.374 Starting tensor CW⊗4
q

Vassilevska Williams 2011 2.37288 Starting tensor CW⊗8
q

Le Gall 2014 2.37287 Starting tensor CW⊗32
q

Alman and Vassilevska Williams 2020 2.37286 Probabilistic argument for step 4

In 2014 Ambainis, Filmus and Le Gall [AFG15] showed that 2.3725 is a lower bound on the value of ω
that you can find through applying the laser method to higher and higher powers of CWq when using the
canonical method of merging described above. Each of the above algorithms uses this canonical method and
thus much further improvement in this same line is not possible. In their recent paper Duan, Wu and Zhou
[DWZ22] broke through this barrier and showed that ω ≤ 2.37187 by performing a less wasteful analysis of
the recursive steps in the value lower bounding.

Their idea is the following. Suppose you are trying to bound the value of T via the laser method. In order to do
this you need to also lower bound the value of some subtensor Tijk which is not a matrix multiplication tensor.

7 ALTERNATIVE BASE TENSORS 36

Therefore we also perform the laser method on Tijk. For this the partition classes Xi, Yj , Zk are themselves
partitioned and then we describe a zeroing out of T⊗n

ijk based on these partitions. If α(i, j, k)m = n then this

essentially describes a further zeroing out of T⊗m. However, this further zeroing out might have helped in
making the block triples more independent. Performing the zeroing out of Tijk before performing step 3 for
T , might make the support more independent, therefore needing less zeroing out in step 3 and 4. Ultimately,
this gives a larger A4 and thus improves the lower bound on Vρ(T). The complexity of this method is much
higher, not the least because they treat Z-variables asymmetrically from X- and Y -variables.

7 Alternative base tensors

The current laser method is limited to showing ω ≤ 2.30 [AFG15]. However, it is conjectured that ω = 2,
because of which a lot of effort is put into improving the upper bound. There are no known ways to construct
good degenerations which are not zeroing outs, so it seems that we are limited to the laser method. One
potential way the bound can be improvement is through better bounds for R̃(cwq). Currently, we only know

q + 1 ≤ R̃(cwq) ≤ q + 2 given by the conciseness and border rank bounds. Alternatively, we could use other
starting tensors than the Coppersmith-Winograd tensors to give better bounds for ω. In this chapter we look
at some alternative starting tensors and perform some computations to judge whether they could be good
starting tensors. This does not lead to any new breakthroughs, but we record our efforts in the hope they
can be continued by others. Our search for alternative base tensors looks at a family of tensors that contains
the Coppersmith-Winograd tensors. Our search was still restricted to very specific tensors. This was mostly
to ease the analysis, but we give some motivation for doing so.

First of all, we restrict to tensors with a laser-ready partition. These have a tight block support and each
subtensor Tijk is a matrix multiplication tensor. This means we can easily apply the laser method to this
tensor. In earlier chapters we have seen that symmetric tensors give the best value and best asymptotic rank,
therefore we further restrict to symmetric laser-ready tensors. We generate these by picking a symmetric tight
set and then assigning matrix multiplication tensors to each block triple. These assignments are restricted
by the sizes of blocks. Let us consider the following example with the support of the Coppersmith-Winograd
tensor.

Suppose we have decided to construct symmetric laser-ready tensors T with block support

{(0, 1, 1), (1, 1, 0), (1, 0, 1), (0, 0, 2), (0, 2, 0), (2, 0, 0)}.

Let T011
∼= ⟨m,n, p⟩ with m,n, p ≥ 1. Then we get |X0| = mn, |Y1| = np and |Z1| = pm. By symmetry

we must have that |X1| = |Y1| = |Z1|. This means that np = pm, so m = n. If T0,0,2
∼= ⟨m′, n′, p′⟩, then

m2 = |X0| = m′n′ and by symmetry this must also be n′p′. We conclude that p′ = m′ = m2

n′ . Thus the
laser-ready tensor is determined by m, p and n′.

The other important feature of a good starting tensor is a low asymptotic rank. If m,n, p > 1 then the
asymptotic rank of T011 is (mnp)ω/3. There is a zeroing out from T to T011, so R̃(T) ≥ (mnp)ω/3. Intuitively
this makes it harder to use such a tensor for an upper bound on ω. It might be possible to use partition
subtensors of the form ⟨m,n, 1⟩ with m,n > 1, but note that the Coppersmith-Winograd tensor only consists
of subtensors of the form ⟨m, 1, 1⟩. A potential reason for this is that it was only possible to find a good bor-
der rank decomposition, because of this feature. We follow this practice and only allow partition subtensors
where two out of three of m,n and p are equal to 1.

We return to our example tensor T and enforce each subtensor to have two out of three of m,n and p equal
to 1. The previously found condition m = n implies that these must both be equal to 1. Then we must
also get m′ = n′ = p′ = 1 and thus we must get that T011 = ⟨1, 1, q⟩ and T002 = ⟨1, 1, 1⟩ for some q ≥ 1.
This means that we can only construct Coppersmith-Winograd tensors CWq. We show that the restrictions
we have enforced so far imply uniqueness for other supports as well. We will write [n]0 to mean the set
{0, 1, . . . , n} which we use to follow standard notation for CWq.

Definition 7.0.1. A set Φ ⊆ [d]0 × · · · × [d]0 is fully tight if Φ = {(i1, . . . , ik) : i1 + · · ·+ ik = d}.

7 ALTERNATIVE BASE TENSORS 37

Lemma 7.0.2. Let T be a symmetric tensor with symmetric partition such that each of its partition sub-
tensors is of the form ⟨1, 1,m⟩, ⟨1,m, 1⟩ or ⟨m, 1, 1⟩ for some positive integer m which may differ per sub-
tensor. If the block support of T is fully tight, then there can only be one q > 1 such that there are partition
subtensors isomorphic to ⟨q, 1, 1⟩, ⟨1, q, 1⟩ and ⟨1, 1, q⟩.

Proof. Let d be the value such that the block support of T is equal to {(i, j, k) ∈ [d]0×[d]0×[d]0 : i+j+k = d}.
We will now determine the size of each Xi. This uniquely determines each partition subtensor up to iso-
morphism as we know these are all isomorphic to matrix multiplication tensors ⟨1, 1,m⟩ or a rotation of it.
This subtensor must be defined on blocks of sizes 1,m,m in some order. For any ℓ ∈ {0, 1, . . . , ⌊d

2⌋}, there is
a triple (d−2ℓ, ℓ, ℓ) in the support. We know that Xd−2ℓ, Yℓ, Zℓ must be 1,m,m in some order. By symmetry
we have |Yℓ| = |Zℓ| and therefore |Xd−2ℓ| has to be 1. We assume that there is an index i such that there are
j, k for which Tijk = ⟨q, 1, 1⟩ with q > 1. Then |Xi| = q, so i and d cannot have the same parity. If d is even
then d− i− 1 ≡ d mod 2, so the triple (i, d− i− 1, 1) shows that |X1| = q, because |Xi| = q, |Yd−i−1| = 1,
so |Z1| = q and there is symmetry. This argument can now be used to say that any j with j ̸≡ d mod 2 has
|Xj | = q, because (1, j, d − j − 1) is a triple with |X1| = q > 1 and |Yd−j−1| = 1. If d is odd then d − i ≡ d
mod 2, so the triple (i, d− i, 0) shows that |X0| = q. From here we show any j ̸≡ d mod 2 has |Xj | = q with
the triple (0, d− j, j).

The size of each block is uniquely determined and thus each partition subtensor is uniquely determined up
to isomorphism and is ⟨1, 1, q⟩ or a rotation of it.

Any tight set is isomorphic to the subset of a fully tight set. If a block support is not fully tight, then it is
possible to have p, q > 1 such that both ⟨p, 1, 1⟩ and ⟨q, 1, 1⟩ are subtensors. We do not consider these now.

Remark 7.0.3. For each d and q there are tensors that satisfy the lemma above. We have found that such
tensors have block sizes (|X0|, . . . , |Xd|) equal to (1, q, 1, q, . . . , q, 1) if d is even and equal to (q, 1, q, . . . , q, 1)
if d is odd. One example of such a tensor is

Full(d, q) :=
∑

a+b+c=d

|Xa|∑
i=1

|Yb|∑
j=1

|Zc|∑
k=1

xa
i y

b
jz

c
k,

where xa
i ∈ Xa, y

b
j ∈ Yb, z

c
k ∈ Zc. This family of tensors includes the small coppersmith-winograd tensors,

cwq = Full(1, q) and the big Coppersmith-Winograd tensors, CWq = Full(2, q).

The family of tensors Full(d, q) consists of laser-ready tensors whose subtensors are all equal to matrix mul-
tiplication tensors. In Chapter 3 we showed that hΛ(Φ) is an upper bound for the asymptotic slice rank. We
can compute this upper bound.

The tensors Full(d, q) are laser-ready tensors in which each block is in a triple in the block support, so they

are concise by Lemma 3.8.10. Therefore
∑d

a=0 |Xa| is a lower bound for the asymptotic rank. The tensors
are symmetric, so we can give lower bounds fu(d, q) for ωu(Full(d, q)) based on Theorem 3.10.1. The python
code that performs the necessary optimisations can be found in Appendix A. Note that all optimisations are
over convex functions, so the code should find the appropiate optimum up to certain precision.

7 ALTERNATIVE BASE TENSORS 38

Table 2 The (rounded) lower bound fu(d, q) for ωu(Full(d, q)) for the first few values of d and q.

fu(d, q) q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9
d = 1 2.17795 2 2.02538 2.06244 2.09627 2.12549 2.15064 2.17245 2.19155
d = 2 2.16805 2.17795 2.19146 2.20551 2.21913 2.23201 2.24405 2.25525 2.26567
d = 3 2.15949 2.06528 2.0738 2.0959 2.11843 2.13902 2.1574 2.17377 2.18839
d = 4 2.15237 2.14713 2.1482 2.15865 2.17158 2.18467 2.19718 2.20887 2.21971
d = 5 2.14641 2.08064 2.08607 2.10402 2.12299 2.14066 2.15663 2.17098 2.1839
d = 6 2.14135 2.13257 2.1323 2.1426 2.15547 2.16845 2.18079 2.19228 2.20289
d = 7 2.137 2.08595 2.09029 2.10625 2.12339 2.13951 2.15417 2.16742 2.17939
d = 8 2.13321 2.12335 2.12314 2.1335 2.14626 2.15905 2.17115 2.18237 2.19272
d = 9 2.12987 2.08784 2.09168 2.10645 2.12245 2.13758 2.1514 2.16391 2.17526
d = 10 2.1269 2.11675 2.11683 2.12724 2.13987 2.15245 2.16431 2.17529 2.1854
d = 11 2.12423 2.0883 2.09188 2.10584 2.12104 2.13547 2.14868 2.16067 2.17156
d = 12 2.12182 2.11168 2.11208 2.1225 2.13499 2.14737 2.15901 2.16978 2.17968
d = 13 2.11963 2.0881 2.09153 2.1049 2.1195 2.13339 2.14614 2.15773 2.16827
d = 14 2.11762 2.10761 2.10831 2.11871 2.13106 2.14326 2.1547 2.16528 2.175
d = 15 2.11577 2.08757 2.09091 2.10382 2.11795 2.13142 2.1438 2.15507 2.16532
d = 16 2.11407 2.10425 2.10519 2.11557 2.12778 2.13981 2.15108 2.16148 2.17104

We make a few observations about this table.

1. The lower bounds for d = 1 and d = 2 match the bounds for cwq and CWq found by Alman [Alm18].
2. Each of the lower bounds we have found is below 2.37, so each of these tensors could potentially be used
in the universal method to give a better upper bound on ω. All of the lower bounds are above 2 except for
the bound for Full(1, 2) = cw2. Therefore we have not found a candidate besides cw2 for establishing ω = 2
via the universal method.
3. Each row is increasing from q = 2. Assuming this holds for all q none of the Full(d, q) with d ≤ 7 can
establish ω = 2. The function fu(d, q) was shown to be increasing in q for the big Coppersmith-Winograd
tensor [Alm18].
4. Each displayed column with q > 1 is increasing in the odd rows and decreasing in the even rows. If this
pattern holds then Full(d, q) cannot establish ω = 2 for odd d. We also suspect that the values in the even
rows do not approach two. In fact the table suggests that fu(d, q) is at least fu(2d+ 1, q).
5. In each row d ≥ 2 in the table we have fu(d, 1) ≥ fu(d, 2).

The observations made in this table suggest that Full(d, q) can be used in the universal method for better
upper bounds on ω. This only works with our current estimates of the asymptotic slice rank and asymptotic
tensor rank. This does not mean that the current version of the laser method can obtain such an upper
bound. The main obstruction is the fact that we do not have good upper bounds on the asymptotic tensor
rank of these tensors. These are hard to find, but we can give a rough indication of what the asymptotic
tensor rank has to be in order to give new upper bounds on ω.

Appendix A also has code that optimises the lower bound for the value from Theorem 6.1.2. From this we
deduce which upper bound r(d, q) of R̃(Full(d,q)) is needed to prove ω ≤ 2.37 using the laser method as
described in Chapter 5.

8 OUTLOOK 39

Table 3 Upper bound r(d, q) on R̃(Full(d,q)) needed to prove ω ≤ 2.37.

r(d, q) q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8 q = 9
d = 1 1.88988 3.26775 4.50153 5.65018 6.73939 7.78348 8.79148 9.76958 10.7223
d = 2 2.7551 3.7872 4.84392 5.89158 6.91871 7.92224 8.90237 9.8605 10.7984
d = 3 3.61072 6.17565 8.50736 10.6782 12.7367 14.7099 16.6149 18.4633 20.2638
d = 4 4.46158 6.57696 8.75218 10.8431 12.8559 14.8007 16.6867 18.5218 20.3125
d = 5 5.30973 9.00298 12.4022 15.5668 18.5677 21.4443 24.2214 26.9162 29.5409
d = 6 6.13224 8.97685 11.6623 14.8419 17.7995 20.5308 23.4774 26.9627 29.5797
d = 7 7.00129 11.2275 14.8018 18.1612 21.225 14.3365 26.9253 29.6681 32.1378
d = 8 7.84129 11.6008 15.0347 20.519 24.418 28.1673 31.7934 35.3157 38.7487

We also make a few observations about this table.

1. In each row r(d, q) is increasing in q. If q increases the value will also increase and thus R̃(Full(d, q)) can
be larger. There is one exception: r(7, 6) is much lower. For some unknown reason the optimisation does not
find an optimal value in this case. We have checked that we can indeed get a better value. With this better
value r(7, 6) is around 24.1. We are unsure why this happened for only this value specifically.
2. We have mentioned that CW6 gives the bound ω < 2.39. In this table one can see why CW6 gave such a
good bound on ω. The bound r(2, 6) is very close to the asymptotic rank of CW6, which is 8.
3. We can compare r(d, q) to the lower bound given by conciseness. The only values in the table for which
r(d, q) is larger than this lower bound are

(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9),

(3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9),

(5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (5, 7)

The row with d = 1 corresponds to cwq. The other two rows, d = 3 and d = 5, contain promising alternative
base tensors.
4. For d ≥ 6 all r(d, q) are below the lower bound from conciseness. We conjecture this is also true for values
outside this table. It is therefore not possible to use Theorem 6.1.2 to find a new upper bound on ω using
these tensors.
5. We also checked the value of Γ for each of these tensors. It seemed to be zero for all optimal distributions.
We are unsure whether this is true in general for Full(d, q).

8 Outlook

This thesis collected some results on the slice rank and the asymptotic slice rank. Some new results were
added, but throughout this year a lot more questions were raised than answered. There are a lot of open
conjectures in the field, but the new results in this thesis raise some more specific questions that we want to
address.

In Chapter 3 Proposition 4.2.10 on the slice rank of k-tensors with support in arithmetic progressions was
proved for k ≥ 6. We remarked that it is unknown whether the proposition holds for k = 5 or k = 4.
This question is related to the question of the maximal size of sets without length k arithmetic progressions.
In particular it answers the question whether a straight-forward application of the slice rank can lead to
exponential improvement on the upper bound. We also remarked that the relatively elementary Lemma 4.2.9
was not known for k = 5. This author is aware of some unsuccessful efforts to prove the lemma for k = 5.
In these efforts linear orders that make constant sequences maximal in Z/nZ for k = 5 were found for some
small values of n.

In Proposition 4.4.7 we showed that symmetric tensors with oblique support have maximal slice rank if and
only if they are regular. It seems as though symmetric, oblique and regular support gives quite a lot of

8 OUTLOOK 40

constraints on the tensor. Thus we wonder if it is possible to classify all tensors or all supports that are
symmetric, oblique and regular. We also remarked that there are some difficulties in establishing an if and
only if condition for the more general situation of Proposition 4.4.4, but this might still be possible. The laser
method finds a large direct sum of matrix multiplication tensors in high powers T⊗n of T if T has tight block
support. Such a direct sum of matrix multiplication tensors has a regular support. Thus more generally, one
can ask if it is always possible to find a zeroing out from T⊗n to a large tensor T ′ with regular support. The
size of T ′ is limited by the asymptotic slice rank of T , but we wonder how close it can get to this asymptotic
slice rank for different starting tensors T .

Theorem 5.3.1 proved that asymptotic slice rank is multiplicative for oblique and symmetric tensors. We
found this result after conjecturing that asymptotic slice rank is in fact submultiplicative for all symmetric
tensors. This conjecture is still open. We believe this conjecture to be true, because we feel that the super-
multiplicative behaviour of the slice rank arises from multiplying an i-slice with a j-slice with i ̸= j. For
symmetric tensors this supermultiplicativity has already taken place in high powers T⊗n and is thus already
accounted for in the asymptotic slice rank. This way of thinking also leads us to wonder if SR(T⊗k) is close

to S̃R(T)k for all symmetric k-tensors T . More specifically, we ask whether there is a constant c, possibly

dependent on k, such that S̃R(T)k ≤ c · SR(T⊗k).

In Chapter 6 we explored some new base tensors. This chapter left a lot of room for further exploration. We
list some options that the author considered, but could not go into. First of all, we chose tensors where all
subtensors were of the form ⟨1, 1,m⟩, but it might very well be possible to obtain bounds on ω via the laser
method by allowing ⟨1,m, n⟩. With the tensors Full(d, q) we established which asymptotic rank is needed
to obtain new upper bounds on ω. The border rank of Full(d, q) is not known for d > 2 and this could be
a way to find a new upper bound on ω. Additionally, our lower bound on the value of Full(d, q) need not

be optimal. The best versions of the laser method use powers CW 2k

q where merging can be exploited. Such
merging should also occur for Full(d, q) with d > 2. This could potentially also be exploited to get bounds
on ω. Lastly, we observed a few patterns in Tables 2 and 3. It would be interesting to see if it can be proven
that these patterns hold for all d and q.

REFERENCES I

References

[Alm18] Josh Alman. Limits on the Universal Method for Matrix Multiplication. 2018. doi: 10.48550/
ARXIV.1812.08731. url: https://arxiv.org/abs/1812.08731.

[AW20] Josh Alman and Virginia Vassilevska Williams. A Refined Laser Method and Faster Matrix Mul-
tiplication. 2020. arXiv: 2010.05846 [cs.DS].

[AFG15] Andris Ambainis, Yuval Filmus and François Le Gall. ‘Fast Matrix Multiplication’. In: Proceedings
of the forty-seventh annual ACM Symposium on Theory of Computing. ACM, June 2015. doi:
10.1145/2746539.2746554. url: https://doi.org/10.1145%2F2746539.2746554.

[Beh46] Felix A. Behrend. ‘On Sets of Integers Which Contain No Three Terms in Arithmetical Progres-
sion.’ In: Proceedings of the National Academy of Sciences of the United States of America 32 12
(1946), pp. 331–2.

[Bin80] Dario Bini. ‘Relations between exact and approximate bilinear algorithms. Applications’. In:
Calcolo 17 (Jan. 1980), pp. 87–97. doi: 10.1007/BF02575865.

[BLR80] Dario Bini, Grazia Lotti and Francesco Romani. ‘Approximate Solutions for the Bilinear Form
Computational Problem’. In: SIAM J. Comput. 9 (Nov. 1980), pp. 692–697. doi: 10.1137/
0209053.

[Blä+19] Markus Bläser et al. Variety Membership Testing, Algebraic Natural Proofs, and Geometric Com-
plexity Theory. 2019. arXiv: 1911.02534 [cs.CC].

[Bor18] Sander J. Borst. ‘Using the slice rank for finding upper bounds on the size of cap sets’. Delft
University of Technology, 2018.

[BCS96] Peter Bürgisser, Michael Clausen and M. Amin Shokrollahi.Algebraic Complexity Theory. Springer
Berlin, Heidelberg, 1996. isbn: 978-3-540-60582-9. doi: https://doi.org/10.1007/978-3-662-
03338-8.

[CVZ21] Matthias Christandl, Péter Vrana and Jeroen Zuiddam. ‘Universal points in the asymptotic
spectrum of tensors’. In: Journal of the American Mathematical Society 36.1 (Nov. 2021), pp. 31–
79. doi: 10.1090/jams/996. url: https://doi.org/10.1090%2Fjams%2F996.

[CW90] Don Coppersmith and Shmuel Winograd. ‘Matrix multiplication via arithmetic progressions’.
In: Journal of Symbolic Computation 9.3 (1990). Computational algebraic complexity editorial,
pp. 251–280. issn: 0747-7171. doi: https://doi.org/10.1016/S0747-7171(08)80013-2. url:
https://www.sciencedirect.com/science/article/pii/S0747717108800132.

[DN05] Paolo D’Alberto and Alexandru Nicolau. ‘Using Recursion to Boost ATLAS’s Performance.’ In:
Jan. 2005, pp. 142–151.

[DS13] Alexander M. Davie and Andrew J. Stothers. ‘Improved bound for complexity of matrix multi-
plication’. In: Proceedings of the Royal Society of Edinburgh: Section A Mathematics 143 (Apr.
2013). doi: 10.1017/S0308210511001648.

[DeB+21] Louis DeBiasio et al. Generalizations and strengthenings of Ryser’s conjecture. 2021. arXiv: 2009.
07239 [math.CO].

[Der22] Harm Derksen. ‘The G-stable rank for tensors and the cap set problem’. In: Algebra & Number
Theory 16.5 (Aug. 2022), pp. 1071–1097. doi: 10.2140/ant.2022.16.1071. url: https:
//doi.org/10.2140%2Fant.2022.16.1071.

[Dia18] Zhuo Diao. On the vertex cover number of 3 uniform hypergraph. 2018. arXiv: 1807.00473
[math.CO].

[DWZ22] Ran Duan, Hongxun Wu and Renfei Zhou. Faster Matrix Multiplication via Asymmetric Hashing.
2022. doi: 10.48550/ARXIV.2210.10173. url: https://arxiv.org/abs/2210.10173.

[EG16] Jordan Ellenberg and Dion Gijswijt. ‘On large subsets of Fn
q with no three-term arithmetic

progression’. In: Annals of Mathematics 185 (May 2016). doi: 10.4007/annals.2017.185.1.8.

https://doi.org/10.48550/ARXIV.1812.08731
https://doi.org/10.48550/ARXIV.1812.08731
https://arxiv.org/abs/1812.08731
https://arxiv.org/abs/2010.05846
https://doi.org/10.1145/2746539.2746554
https://doi.org/10.1145%2F2746539.2746554
https://doi.org/10.1007/BF02575865
https://doi.org/10.1137/0209053
https://doi.org/10.1137/0209053
https://arxiv.org/abs/1911.02534
https://doi.org/https://doi.org/10.1007/978-3-662-03338-8
https://doi.org/https://doi.org/10.1007/978-3-662-03338-8
https://doi.org/10.1090/jams/996
https://doi.org/10.1090%2Fjams%2F996
https://doi.org/https://doi.org/10.1016/S0747-7171(08)80013-2
https://www.sciencedirect.com/science/article/pii/S0747717108800132
https://doi.org/10.1017/S0308210511001648
https://arxiv.org/abs/2009.07239
https://arxiv.org/abs/2009.07239
https://doi.org/10.2140/ant.2022.16.1071
https://doi.org/10.2140%2Fant.2022.16.1071
https://doi.org/10.2140%2Fant.2022.16.1071
https://arxiv.org/abs/1807.00473
https://arxiv.org/abs/1807.00473
https://doi.org/10.48550/ARXIV.2210.10173
https://arxiv.org/abs/2210.10173
https://doi.org/10.4007/annals.2017.185.1.8

REFERENCES II

[Gal14] François Le Gall. ‘Algebraic complexity theory and matrix multiplication’. In: Proceedings of the
39th International Symposium on Symbolic and Algebraic Computation. ACM, July 2014. doi:
10.1145/2608628.2627493. url: https://doi.org/10.1145%2F2608628.2627493.

[Gow21] William T. Gowers. The slice rank of a direct sum. 2021. arXiv: 2105.08394 [math.CO].

[HL13] Christopher Hillar and Lek-Heng Lim.Most tensor problems are NP-hard. 2013. arXiv: 0911.1393
[cs.CC].

[LW22] Yun-Shan Lu and Hung-Lung Wang. A note on the Tuza constant ck for small k. 2022. arXiv:
2206.14376 [math.CO].

[NS17] Eric Naslund and Will Sawin. ‘Upper bounds for sunflower-free sets’. In: Forum of Mathematics,
Sigma 5 (2017). doi: 10.1017/fms.2017.12. url: https://doi.org/10.1017%2Ffms.2017.12.

[Sch22] Alexander Schrijver. On the Shannon capacity of sums and products of graphs. 2022. doi: 10.
48550/ARXIV.2204.06853. url: https://arxiv.org/abs/2204.06853.

[Shi17] Yaroslav Shitov. A counterexample to Strassen’s direct sum conjecture. 2017. arXiv: 1712.08660
[math.CO].

[Str87] Volker Strassen. In: 1987.375-376 (1987), pp. 406–443. doi: doi:10.1515/crll.1987.375-
376.406. url: https://doi.org/10.1515/crll.1987.375-376.406.

[Str69] Volker Strassen. ‘Gaussian elimination is not optimal’. In: Numerische Mathematik 13 (Aug.
1969), pp. 354–356. doi: 10.1007/BF02165411.

[Tao16] Terence Tao. A symmetric formulation of the Croot-Lev-Pach-Ellenberg-Gijswijt capset bound.
May 2016. url: https://terrytao.wordpress.com/2016/05/18/a-symmetric-formulation-
of-the-croot-lev-pach-ellenberg-gijswijt-capset-bound/.

[TS16] Terence Tao and Will Sawin. Notes on the “slice rank” of tensors. Aug. 2016. url: https:
//terrytao.wordpress.com/2016/08/24/notes-on-the-slice-rank-of-tensors/.

[Wil12] Virginia Vassilevska Williams. ‘Multiplying matrices faster than coppersmith-winograd’. In: Sym-
posium on the Theory of Computing. 2012.

[Zui18] Jeroen Zuiddam. ‘Algebraic complexity, asymptotic spectra and entanglement polytopes’. PhD
thesis. University of Amsterdam, 2018.

https://doi.org/10.1145/2608628.2627493
https://doi.org/10.1145%2F2608628.2627493
https://arxiv.org/abs/2105.08394
https://arxiv.org/abs/0911.1393
https://arxiv.org/abs/0911.1393
https://arxiv.org/abs/2206.14376
https://doi.org/10.1017/fms.2017.12
https://doi.org/10.1017%2Ffms.2017.12
https://doi.org/10.48550/ARXIV.2204.06853
https://doi.org/10.48550/ARXIV.2204.06853
https://arxiv.org/abs/2204.06853
https://arxiv.org/abs/1712.08660
https://arxiv.org/abs/1712.08660
https://doi.org/doi:10.1515/crll.1987.375-376.406
https://doi.org/doi:10.1515/crll.1987.375-376.406
https://doi.org/10.1515/crll.1987.375-376.406
https://doi.org/10.1007/BF02165411
https://terrytao.wordpress.com/2016/05/18/a-symmetric-formulation-of-the-croot-lev-pach-ellenberg-gijswijt-capset-bound/
https://terrytao.wordpress.com/2016/05/18/a-symmetric-formulation-of-the-croot-lev-pach-ellenberg-gijswijt-capset-bound/
https://terrytao.wordpress.com/2016/08/24/notes-on-the-slice-rank-of-tensors/
https://terrytao.wordpress.com/2016/08/24/notes-on-the-slice-rank-of-tensors/

A CODE III

A Code

Code needed for both programs

1 import numpy as np

2 from scipy.optimize import minimize, NonlinearConstraint

3 from tabulate import tabulate

4

5 #Define the Full(d,q) tensors.

6 #The information we need is the block support, the value of each subtensor

7 #and the sizes of all the blocks

8 def fullsupport(n,q):

9 support = []

10 for i in range(n+1):

11 for j in range(n+1):

12 k = n-i-j

13 if (i <= j and j <= k) or (i < k and j > k):

14 if (j-i)%2 == 0 and (k-j)%2 == 0:

15 support.append([i,j,k,1])

16 else:

17 support.append([i,j,k,q])

18

19 sizes = [q,1]*int((n+1)/2)

20 if n%2 == 0:

21 sizes.insert(0,1)

22 return (support,n), sizes

23

24 #Given a symmetric distribution on the symmetric block triples

25 #this function returns the marginal distribution

26 def marginals(x, distr, max):

27 marginal = np.zeros(max+1)

28 for triple in range(len(distr)):

29 for block in range(3):

30 marginal[distr[triple][block]] += x[triple]/3

31

32 return marginal

33

34

35 #Function that computes the entropy given a distribution

36 def Entropy(marginaldistr):

37 H = 0

38 for p in marginaldistr:

39 if p != 0:

40 H -= p*np.log2(p)

41 return H

Compute lower bounds fu(d, q)

1 import numpy as np

2

3

4 # Compute the weighted entropy given a distribution on the support given by x

5 def weightedentropy(x, support):

6 xdistr = marginals(x,support[0][0],support[0][1])

7 return Entropy(xdistr) + sum([xdistr[i]*np.log2(support[1][i]) for i in range(len(xdistr))])

8

9 # Compute the log asymptotic slice rank by optimising the distribution on the block support

10 def logasr(support):

11 distr = support[0]

A CODE IV

12 constraint = [{’type’: ’ineq’, ’fun’: lambda x: x},

13 {’type’: ’eq’, ’fun’: lambda x: 1-sum(x)}]

14 x0 = [1/len(distr[0])]*len(distr[0])

15

16 result = minimize(lambda x : -weightedentropy(x, support),

17 x0, constraints=constraint, bounds = [(0,1)]*len(distr[0]))

18

19 return (-result.fun, result.x)

20

21 #Compute the lower bound for omega based on the log asymptotic slice rank

22 #and the estimate for the border rank.

23 def omegau(rank, support):

24 return 2*np.log2(rank)/logasr(support)[0]

25

26 #Allows us to output our results as a LaTeX table.

27 def outputlatextable(rows):

28 print(’Tabulate Table:’)

29 print(tabulate(rows, headers=’firstrow’, tablefmt=’latex’))

30 return

31

32 #Define the header row for our table.

33 rows = [[’’]]

34 for q in range(1,10):

35 rows[0].append(’q = ’ + str(q))

36

37 #Compute the table one row at a time.

38 for d in range(1,17):

39 lowerbounds = [’d = ’+ str(d)]

40 for q in range(1,10):

41 supp = fullsupport(d,q)

42 lowerbounds.append(omegau(sum(supp[1]),supp))

43

44 rows.append(lowerbounds)

45

46 outputlatextable(rows)

Compute upper bounds r(d, q)

1

2 #Function that computes the Gamma term given a distribution.

3 def Gamma(x,distr,max):

4 marg = marginals(x,distr,max)

5 constraint3 = [{’type’: ’ineq’, ’fun’: lambda z: z},

6 {’type’: ’eq’, ’fun’: lambda z: marginals(z,distr,max)-marginals(x,distr,max)}]

7 z0 = x.copy()

8 gamma = minimize(lambda z : -Entropy(z), z0, constraints=constraint3, bounds = [(0,1)]*len(distr))

9

10 return -gamma.fun - Entropy(x)

11

12 #Function that computes the log of the value given the distribution, rho and

13 #the logvalues of the subtensors.

14 def logvalueproblem(x, distr, max, rho):

15 z = []

16 for block in range(len(distr)):

17 if distr[block][0] == distr[block][1] and distr[block][1] == distr[block][2]:

18 z.append(3*x[block])

19 else:

20 z.append(x[block])

21

A CODE V

22 return Entropy(marginals(x, distr,max)) \

23 + sum([z[i]*np.log2(distr[i][3])*rho/3 for i in range(len(distr))]) \

24 - Gamma(x,distr,max)/2

25

26

27

28 # Compute the log of V_{3*rho}(T) given rho and a distribution.

29 def value(rho, distr):

30 constraint = [{’type’: ’ineq’, ’fun’: lambda x: x}, {’type’: ’eq’, ’fun’: lambda x: 1-sum(x)}]

31 x0 = [1/len(distr[0])]*len(distr[0])

32

33 result = minimize(lambda x : -logvalueproblem(x, distr[0], distr[1], rho),

34 x0, constraints=constraint, bounds = [(0,1)]*len(distr[0]))

35

36 return -result.fun

37

38

39

40

41 # The asymptotic rank for which we can establish $\omega \leq a$.

42 # is exactly equal to 2^{value(a,distr)}

43 def lasermethod(a, distr):

44 return np.exp2(value(a,distr))

45

46

47 def fullsupport(n,q):

48 support = []

49 for i in range(n+1):

50 for j in range(n+1):

51 k = n-i-j

52 if (i <= j and j <= k) or (i < k and j > k):

53 if (j-i)%2 == 0 and (k-j)%2 == 0:

54 support.append([i,j,k,1])

55 else:

56 support.append([i,j,k,q])

57

58 sizes = [q,1]*int((n+1)/2)

59 if n%2 == 0:

60 sizes.insert(0,1)

61 return (support,n), sizes

62

63

64

65 #Allows us to output our results as a LaTeX table.

66 def outputlatextable(rows):

67 print(tabulate(rows, headers=’firstrow’, tablefmt=’latex’))

68 return

69

70 #Define the header row for our table.

71 rows = [[’’]]

72 for q in range(1,10):

73 rows[0].append(’q = ’ + str(q))

74

75 #Compute the table one row at a time.

76 for d in range(1,9):

77 rank = [’d = ’+ str(d)]

78 for q in range(1,10):

79 supp = fullsupport(d,q)

80 rank.append(lasermethod(2.37,supp[0]))

A CODE VI

81

82 rows.append(rank)

83

84 outputlatextable(rows)

	Acknowledgements
	Introduction
	Overview of this thesis

	Preliminaries
	Tensors
	Restrictions
	Tensor product
	Slice rank
	Asymptotic ranks
	Border rank
	Entropy and types
	Laser method
	Symmetry
	Slice rank for lower bounds

	Combinatorial estimation of the slice rank
	Vertex cover numbers
	Oblique support
	Asymptotic vertex cover numbers
	Partitions and asymptotic vertex cover numbers

	Multiplicativity of the asymptotic slice rank
	The G-stable rank
	Supermultiplicativity for oblique tensors and complex tensors
	The multiplicativity of asymptotic slice rank for symmetric and oblique tensors

	The laser method
	Lower bounding the value
	Motivation of choices in the laser method
	Proof of Theorem 6.1.2
	Advanced laser methods

	Alternative base tensors
	Outlook
	References
	Code

