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Abstract 

Prolonged pesticide exposure is known to raise health 

risks to respiratory, reproductive, neurological, 

endocrine, and circulatory systems. To give some 

indication about the degree of exposure near households 

in the Netherlands, a mixed model (OBOmod) is being 

developed by Utrecht University's Institute of Risk 

Assessment Sciences (IRAS) which considers many 

variables to determine indoor concentration of different 

pesticides.  

The effect of including meteorological estimates 

(specifically windspeed) alongside the Gaussian plume-

based pesticide dispersion model part of OBOmod has 

not yet been studied. This paper compared seven spatial 

interpolation models using a total of ten metrics and 

recommended the use of a hyperbolic trend surface 

model to minimize bias caused by random error and 

trends in estimates, which Gaussian plume models are 

known to be most sensitive to. The metrics were 

evaluated using ideal annual model hyperparameters 

determined using Bayesian optimization with a 

logarithmic loss function. 
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1. Introduction 

Pesticide exposure, whether direct or indirect, is known to raise the risk of 

various health consequences owing to interference with the respiratory, 

reproductive, neurological, endocrine, and circulatory systems (Rani L. et 

al, 2021). At Utrecht University's Institute of Risk Assessment Sciences 

(IRAS) a mixed model is being developed to estimate pesticide exposure 

through indoor dust in several households of the Netherlands.  

While this mixed model considered many different variables which 

influence pesticide exposure like dissipation, drift and outdoor to indoor 

exchange, one neglected aspect of the model is the use of high spatial 

resolution meteorological data for dispersion estimates. It is unclear, for 

example, how different spatial interpolation models affect final pesticide 

dispersion estimates (Figueiredo D. M. et al, 2022).  

This paper investigated the stability and reproducibility of different spatial 

interpolation models for windspeed estimation using a variety of metrics. 

The results of these metrics were evaluated to recommend a model to be 

used for future research which analyzes the effect of interpolated 

windspeed estimates on pesticide exposure estimates using the dispersion 

model part of OBOmod.  

Reduction of seasonal, annual trends and random error in the windspeed 

estimates were detrimental to improve the performance of the gaussian 

plume model used by the dispersion model part of OBOmod (see chapter 

2.3). 

Basic understanding of spatial interpolation and geographic information 

systems is expected by the reader, but a brief overview [9] covering these 

topics and other topics covered in this paper is available in the appendix.    
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1.1 Structure 

First background information is provided, needed to understand the 

context of this paper (chapter 2). Here the problem and causes of pesticide 

drift are briefly mentioned and the role windspeed plays is described 

(chapter 2.1). Windspeed itself is also explained as a meteorological 

condition and what external processed can influence it (chapter 2.2). Then a 

brief overview is given about the dispersion model and what factors can 

influence final pesticide dispersion estimates (chapter 2.3).  

Next (chapter 3) more detail is given about the procedures used to 

prepare the meteorological data (chapter 3.1), the considerations that have 

been taken into account to ensure windspeed estimates are compatible with 

the format expected by the dispersion model of OBOmod (chapter 3.2); the 

concessions that have been made to reduce computational time (chapter 

3.3); the methods used to train spatial interpolation models with a 

description of the different metrics used (chapter 3.4) and finally a 

description of the exact spatial interpolation models used with references to 

existing studies using these models (chapter 3.5) 

 Then the results (chapter 4) of the different metrics are presented where 

a model is recommended (chapter 5) based on the metric results.  

Finally, the reasons to not include auxiliary variables like temperature 

and windspeed; the reasons why hyperparameters were optimized 

annually instead of daily and the reasons that more sophisticated models 

were not used are discussed (chapter 6). 
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1.2 Considerations  

Abbreviations are used for both the metrics and models in this paper. 

This was done to make referencing these metrics and models in figures and 

text more compact.  

 

Figure 1.2.1: Metrics used in the paper with their abbreviations. 

 

Abbreviation Model 

TS1 Linear trend surface 

TS3 Hyperbolic trend surface 

IDW Inverse distance weighted 

MQ-RBF Multi quadratic radial basis function 

OK Ordinary kriging with spherical variogram (vsph) 

UK1 Universal kriging with linear regression + vsph 

UK3 Universal kriging with hyperbolic regression + vsph 

Figure 1.2.2:  Spatial interpolation models used in the paper with their abbreviation. 

 

  

Stability metric Surface metric 

Abbreviation Name Abbreviation Name 

SAV Seasonal-annual 

variability 

MaxSR Maximum surface 

roughness 

SSV Seasonal-seasonal 

variability 

MedSR Median surface 

roughness 

ARV Annual-random 

variability 

MadSR MAD surface roughness 

RRV Random-random 

variability 

MiMaSD Minimum-maximum 

surface deviation 

GLV Global-local 

variability 

MadSD MAD surface deviation 
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2. Conceptual framework 

2.1 Pesticide exposure and drift 

Within the agricultural sector, pesticide drift is a major contributor to 

off-target contamination. This can occur through the evaporation of 

pesticide droplets before they reach their intended target, or because of 

wind-blown soil particles.  

Additionally, the inherent chemical properties of the pesticide itself can 

impact its volatility and therefore its tendency to drift (Schampheleire D. et 

al, 2009). Pesticides with higher volatility are more likely to evaporate into 

the atmosphere under warm and dry conditions, while increased humidity 

can reduce evaporation rates (Bish M. et al, 2021).  

Precipitation can also impact pesticide behavior, with the potential to 

reduce vaporization while increasing leaching into soil and water sources 

(Zaller J. et al 2022).  

Windspeed also influences the deposition of pesticide droplets on 

ground and air. As wind speed increases, the deposition of droplets 

decreases. This effect is more pronounced for smaller droplets than for 

larger droplets (Zhang H. et al 2017). 

Therefore, incorporating meteorological data into exposure assessments 

is crucial to improve the accuracy and reliability of exposure estimates. One 

of the key factors affecting exposure estimates is the variability of 

meteorological conditions. Meteorological conditions, such as temperature, 

wind speed, and rainfall, can significantly influence the behavior of 

pesticides in the environment.  
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2.2 Windspeed as a meteorological condition 

Wind speed is a fundamental atmospheric parameter measured in (m/s) 

caused by air moving from high to low pressure, most commonly due to 

temperature or topology variations.  

Temperature changes between air masses cause pressure variances, 

which result in wind. Winter provides increased temperature gradients, 

especially when cold fronts move in from the polar regions, resulting in 

higher-than-normal wind speeds. As the air temperature drops, the chilling 

effect of any wind rises (Pryor S. C. et al, 2020). 

The topology of a region can influence wind speed by altering the 

pressure gradient force. This is the force that moves air from high-pressure 

locations to low-pressure areas. Topology also affects wind speed by 

influencing local weather conditions. Mountains, for example, can force air 

to climb and chill, resulting in precipitation and lower wind speeds. Valleys, 

on the other hand, can cause air to sink and warm, resulting in increased 

wind speeds (Wever N., 2012). 
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2.3 Gaussian plume model 

Gaussian plume models are commonly used to simulate the dispersion 

of air pollution. It is simple to use and can provide quick pollutant 

concentration estimates. It does, however, have certain restrictions. It 

presupposes, for example, that the plume is well-mixed and that the wind 

speed and direction are constant throughout the plume (Henderson S.B., 

1987).  

When adding external meteorological data as auxiliary variables to 

gaussian plume models, it is critical to minimize negative impact caused by 

adding uncertainty and inaccuracy to the model.  

For example, if the auxiliary variables are not well-correlated with the 

pollutant concentration, the model may yield inaccurate results (Hosni 

Snoun et al., 2023).  

Biased estimates of auxiliary variables can also have a negative impact 

on Gaussian plume models. Factors like extreme outliers, roughness, 

trends, local, and random error all contribute to bias in auxiliary variable 

estimates. The biggest factors contributing to bias depend on the model 

used for the auxiliary variable estimates. Previous research has shown that 

for several type of Gaussian models, random error, and trends were the 

biggest contributor to biased estimates (Park C. et al, 2022).  
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3. Data & Methods 
 

The following chapters will further elaborate on the source and nature of 

the wind speed data used; preprocessing steps to clean the data; 

computational complexity reduction methods; spatial interpolation models 

pertaining to windspeed and finally the metrics which give a measure of 

stability and reproducibility of model estimates.  

3.1 KNMI weather stations 

The Royal Netherlands Meteorological Institute (KNMI) is the official 

weather agency of the Netherlands. It is also the national meteorological, 

climate, air quality, seismology research and information center.  Their 

main responsibilities include weather forecasting and monitoring of 

weather, climate, air quality, and seismic activity. The KNMI provides both 

hourly and daily data [1] for a variety of meteorological conditions, 

windspeed being one of them. A total of 47 weather stations were available 

spaced relatively equally throughout the Netherlands, with some exception 

which are clustered around coastal regions. Some stations were also 

situated on the sea, further away from the coast.  

Fig 3.1.1:  Map of the Netherlands with location of KNMI weather stations 
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      3.1 KNMI weather stations 

 

The stations can be identified by their station code which is represented 

as a three-digit whole number in the range {209 … 391}. There is no spatial 

location data provided in this dataset, requiring the use of an external data 

source [2], which was merged with the data provided by the KNMI for each 

station code. This external data source uses the CRS (WGS:84).      

Windspeed in this dataset is measured in the unit (0.1/𝑚𝑠−1). Four 

variables were available which denote some function of windspeed but only 

the average windspeed (FG) was used for interpolation.  

To align with the validation set available for the dispersion model, daily 

measurements in the year 2017 were chosen.  

 

Missing values  

Three weather stations had missing values or incomplete data for the 

year 2017: Wilhelminadorp (323), Wijk aan Zee (257) and Huibertgat (285). 

The number of invalid entries ranged between 232 and 365 days. Due to the 

high number of invalid entries these stations were removed from the 

dataset instead of employing an imputing strategy. This would not cause 

negative side-effects for following two reasons:   

1. The three stations were centered around a dense cluster of other 

stations where the difference in measurements (for the available 

days) between the closest neighbors were insignificant, with a 

minimum difference of 0.01% and a maximum of 0.06%.  

2. Data reduction techniques would already have reduced the number 

of stations measuring a value at the same grid cell (see chapter 3.3.3).  
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Extreme outliers  

Majority of stations measured windspeed values centered around a 

mean of 4.5 𝑚/𝑠  without too many extreme outliers. However, several 

stations alongside the coast measured extreme outliers up to 18 𝑚/𝑠. These 

extreme outliers also showed an upwards seasonal trend between the 

months July and February. This might have been caused by a diurnal 

pattern known to be present for windspeed along coastal areas. (Dennis 

Elliot et al, 2004; Semedo A., 2018; Miao, S., 2021). 

Fig 4.1.3:  Random sample of stations with their data distribution in (0.1/𝑚𝑠−1). 
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3.2 Dispersion model considerations   

Windspeed estimates would be employed with a simplified version of 

the OPS-st model in the future, which is one of five independent models 

employed by OBOmod. OPS-st is an abbreviation for the short term (st) 

Operational Priority Substances model (OPS). This is a sophisticated 

Gaussian plume model that is used to calculate air transport, dispersion, 

and concentrations at receptor locations throughout the Netherlands. It 

computes concentrations that are used as input to the gComis ventilation 

model, which estimates concentrations in interior air based on outdoor 

concentrations by utilizing exchange rates between indoor and outdoor air 

The innerworkings of the OPS-st model (even the simplified version) are 

beyond the scope of this paper; more information about this model can be 

found in the scientific paper about OBOmod [3]. This paper only concerned 

itself with the format the windspeed estimates needed to have, to be 

compatible as an input parameter for the OPS-st model.  

The OPS-st model uses the BRP Gewaspercelen (BRPG) [4] map as its 

source. This map used a geodatabase file format made by ESRI using the 

CRS <Amersfoort / RD New> (EPSG:28992) with an accuracy of 1 meter [5]. 

This map contained crop fields in the Netherlands represented as a 

collection of non-uniform multi-polygon objects.  

The dispersion model supported different representations for receptors 

including multi-polygons, equal distance grid cells, hexagon grid cells and 

centroids of equal distance grid cells. Grid cells needed to have a minimum 

diameter of 1 𝑘𝑚. This paper used centroids of equal distance grid cells with 

a diameter of 5 𝑘𝑚.  

For simulations, pesticide dispersion estimates can be generated on an 

hourly basis using the dispersion model.  
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3.3 Complexity reduction 
 

Receptor reduction 

By default, the BRPG map consists of 785′710 features represented as 

multi-polygons using between 3 to 8 coordinates per feature. Receptors 

represented by multi-polygons require each individual point to be 

estimates. This increases the receptor points far above 785′710 for a total of 

3′928′550 receptors. To keep the computational complexity low a series of 

reduction techniques were utilized to lower the total number of receptors 

from 3′928′550 to 1′813.  

1. A tessellation technique was used to generate a grid of 5 𝑘𝑚2 cells. 

This requires the use of a simplified reference map (see chapter 3.3.2) 

where the BRPG map acted as a source for the CRS. The diameter of 

5 𝑘𝑚 was chosen as it produced a grid with a spatial resolution high 

enough to reduce the number of station collisions whilst minimizing 

the number of receptors generated (see chapter 3.3.3). 

2. Next the same reference map was used again to intersect all grid cells 

which fall outside the boundaries of the Netherlands (cells 

representing the sea).  

3. Then the centroids of the grid cells were calculated and used as 

receptors instead of the entire polygon.  

4. Finally, the cells representing the KNMI stations were removed.  
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Reference map blending 

Generation of a grid of cells using the BRPG map was ill suited as it 

contains many open holes and noisy surfaces alongside the coast. The 

smaller the cell diameter becomes, the more this noisy surface influences 

the cells created based on the outlines of the map.  

Although it is possible to reduce the features of the BRPG map to a single 

multi-polygon and smooth the outline, using a variety of algorithms, each 

of these algorithms have their pros and cons further elaborated in a blog 

post comparing different maps of Germany [5]. The biggest problem with 

using such methods is that they can skew the shape of the true map 

boundaries, essentially adding or removing new or existing plots of lands 

along the coast which are not actually present. Therefor the decision was 

made to use a simplified reference map which contained a continuous 

outline of the Netherlands, making tessellation more stable.  

 

 
 

Fig 3.3.1:  BRPG map (left) compared to reference map with KNMI stations (right).   
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Larger grid cell diameter 

After some experimentation, it became apparent that using cells with a 

diameter of 5 𝑘𝑚 would be sufficient to ensure majority of measurements 

were within a cell individually. Here only two edge cases occurred where 

two measurements were within the same cell; and one measurement was 

intersecting with multiple cells. The first edge case was solved by taking the 

mean of the measurements whilst the second edge case was solved by 

selecting the cell closest to the measurement.   

The simplified dispersion model supported grid cells with a diameter 

up to 1 𝑘𝑚 which would result in a total of 42’418 receptors being 

generated, but at a diameter of 5 𝑘𝑚 only 1’813 receptors are generated. 

The total computational time needed to train multiple models with 

different hyperparameters at different time (days) intervals and 

individually validating intermediate results could therefore be significantly 

reduced when using a grid with larger diameter cells.  

For reference, one iteration of training of an IDW model with 42′418 

receptors took about 38 seconds whilst the same model with 1’813 receptors 

took about 7 seconds.  

 

Fig 3.3.2:  Example of a correct intersection (1), intersection with one station and 

multiple cells (2) and an intersection of multiple stations in a single cell (3). 
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3.4 Training and validation  

In the previous chapter, different techniques were used to reduce the 

number of receptors. This was done to reduce the computational time of the 

dynamic training routine.  

Spatial-leave-one-out cross validation (SLOO-CV) was used to 

determine the RMSE.  

 Finally, models with hyper-parameters determined by the dynamic 

training routine were utilized with different metrics which give a measure 

of stability and reproducibility of model estimates.  

 

Dynamic training routine 

Hyperparameters are not chosen randomly or sequentially, but rather a 

process of dynamic incrementation or decrementing of hyperparameters 

was used to reduce the amount of training iterations required. 

After each training iteration the model was validated and the 

performance gain or loss in RMSE from the previous iteration was 

measured. This performance gain or loss was fed to a logarithmic loss 

function which calculates a loss value. This loss value was then used by an 

unique weight function which decided an appropriate parameter for the 

next iteration.  

This meant that models were trained bi-directionally to finally reach an 

equilibrium where the loss value would be below a minimum threshold 

which would subsequently halt the routine.  

 

Fig 3.4.1:  Abstract overview of the dynamic training routine process. 
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                                               3.4 Training and validation | Dynamic training routine 

 

This process was repeated for each model for each day to calculate the 

best daily parameters (BDP). The mean of all BDP parameters were 

calculated to determine the best annual parameters (BAP). The idea being 

that models using BAP have a lower RMSE for any random day on average 

compared to models using no parameter (NP) but introduce enough of a 

smoothing effect to reduce overfitting caused by using BDP (see chapter 6.2) 

This hyperparameter tuning mechanism is different from existing 

methods like grid or random search which are static training routines 

where a fixed number of hyperparameters generated by a predefined 

distribution are evaluated. A dynamic training routine generates new 

parameters each iteration based on some random or deterministic function.   

The dynamic training routine is comparable to a technique called 

Bayesian optimization but uses a logarithmic function instead of a random 

gaussian function.  

This method allowed for much more efficient training and validation of 

models where a wider range of hyper-parameters were evaluated.  
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                                               3.4 Training and validation | Dynamic training routine 

 

 

Fig 3.4.2:  Training results (left) compared to sill parameter weights (right) using the 

dynamic training routine for one variation of an ordinary kriging model. Parameters are 

increased or decreased exponentially based on the loss or gain in RMSE until they reach 

an equilibrium where the loss or gain in RMSE is below a threshold at iteration 25.  

 

The implementation of the dynamic training routine is configurable to 

test different variations of a model (ex: linear or hyperbolic kriging models) 

and optionally with different set of intervened scenarios (ex: simulating 

extreme weather conditions alongside the coast). Parameters are generated 

by a set of different weight functions which can be tweaked to train different 

parts of the model (ex: sill, range, and nugget values for kriging models). 

The logarithmic loss function can also be tweaked to calculate less or more 

drastically changing loss values. More information about how this routine 

works and what parts can be tweaked can be found on the repository [7] 

and the wiki page [8].   
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Model metrics 

To validate the interpolation performance, stability metrics and 

reproducibility metrics were defined. The stability metrics cover annual, 

seasonal, and random accuracy at a global and local level. The 

reproducibility metrics are related to the effect different interpolation 

methods have on the generated surfaces over time.  

A total of 5 samples were generated based on the windspeed dataset 

from KNMI. Sample sizes were divisible by 4, contained 12 days of data and 

sizes of compared samples were within the same like-terms. This was done 

to prevent bias caused by population insensitivity (Zhan S. et al, 2022).  

 

Fig 3.4.3:  List of different metric data samples sets with their descriptions. 

 

  

Data set Description 

Seasonal set The data is split into 4 seasons these being Spring (March to May), 

Summer (June to August), Autumn (September to November) 

and Winter (December to February). The first day of each week 

per month per season is picked for a total of 48 days with 12 days 

per season. 

Annual set The first 4 days of each month are chosen for 48 days per year.   

Random set 48 random days are picked for a single year. 

Clustered set The data for 48 random days is taken for 12 clustered stations 

near the province of Zeeland.   

Sparse set The data for the same dates as the clustered set is taken for 6 

random stations in the center of the Netherlands and 6 stations in 

the north of the Netherlands where the distance between stations 

was maximized around two central stations. 
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Stability metrics 

To measure stability, 5 metrics using the model RMSE with different 

formulas covering local/global, annual/seasonal, and random variability. 

These metrics aim to provide a better overview of the strengths and 

weaknesses of each individual model in different scenarios and how stable 

the estimates are in these scenarios.  

   Some models might be more accurate at specific dates but struggle at 

dates with extreme outliers at densely clustered stations (ex: this can 

happen in extreme weather conditions along the coastline).  

 

Reproducibility metrics  

To measure similarity of model estimates at different time intervals the 

random set was used to generate surfaces for each day. A total of five 

metrics were defined which covered the surface variability and the 

difference between the minimum, maximum and mean absolute deviations 

between estimates at different time intervals.  
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                                                                                   3.4 Training and validation | Figure 3.4.4 

 

Metric Description 

SAV Seasonal-annual variability calculates the maximum difference in RMSE 

between each seasonal set with the average RMSE of the annual set. This 

metric describes how much prediction errors differ between each seasonal 

and annual trend. The lower this difference is, the less sensitive the 

interpolation method is for temporal trends.   

The mean RMSE of each seasonal set is compared with the annual set to 

calculate 4 residuals. The maximum difference between these 4 residuals is 

used as the score. 

SSV Seasonal-seasonal variability calculates the maximum difference in RMSE 

between seasons. This metric describes how much predictions can differ 

per season. The lower this difference is, the more stable predictions of this 

interpolation method are between seasons.  

The mean RMSE of each seasonal set is calculated as 4 residuals. The 

maximum difference between these 4 residuals is used as the score. 

ARV Annual-random variability calculates the average difference in RMSE of 

the random set and the annual set. This metric describes how much 

predictions can differ between a random set of days and the annual trend. 

The lower this difference is, the less sensitive the interpolation method is to 

long term anomalies in measurements.  

The mean RMSE of the random and annual sets are calculated as 2 

residuals. The difference between these 2 residuals is used as the score.  

RRV Random-random variability calculates the maximum difference in RMSE 

between parts of the random set. This metric describes how the predictions 

can differ within the random set. The lower this difference is, the less 

sensitive the interpolation method is to short term anomalies in 

measurements. 

The mean RMSE of 4 splits of the random set is calculated as 4 residuals. 

The maximum difference between these 4 residuals is used as the score.   

GLV Global-local variability calculates the difference in RSME between the 

clustered and sparse set. This metric describes how predictions can differ 

between samples of varying spatial densities. The lower this difference is 

the less spatially sparse predictions are influenced by spatially dense data.  

The RMSE of the clustered and sparse sets are calculated as 2 residuals. 

The difference between these 2 residuals is used as the score. 

Fig 3.4.4:  List of stability metrics with their description and point distribution. 
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                                                                                   3.4 Training and validation | Figure 3.4.5 

 

Metric Description 

MaxSV 

MedSV 

MadSV 

The surface variability (SV) at each point is calculated using the 

integrated squared second derivative standardized by its maximum.  

This formula expects data with some base line (ex. sea-level for 

topology or zero line for analogue signals). The standard deviation of 

the observations of that day is used as the base line.  

Here the maximum, median and MAD of the SV values are taken as 

three scores separately.  

MiMaSD Minimum-maximum surface deviation calculates the difference 

between the minimum and maximum value of a predicted surface for 

each day.  

Here the average deviation of all days is taken as the score.  

MadSD MAD surface deviation calculates the MAD of a predicted surface 

for each day.  

Here the average of all MAD values of all days is taken as the score.  

Fig 3.4.5:  List of surface metrics with their descriptions. 
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3.5 Windspeed interpolation 
 

Linear and hyperbolic trend surface 

Trend surfaces are commonly used as a baseline to capture a good mix 

of the local extremes and the overall global trend when using 

meteorological data (Guo B. et al 2021). In an existing study a first order 

polynomial model (also referred as linear model) and a third order 

polynomial model (also referred as a cubic or hyperbolic model) were used 

for windspeed interpolation in Iraq (Ali S., 2012). Both linear and hyperbolic 

trend models were compared in this paper.  

 

Multi quadratic radial basis function 

An anisotropic radial basis function was used in an existing study for 

long term windspeed spatial interpolation for diverse surfaces in the US 

(Lee C. 2022). Another study explored both anisotropic and multi-quadratic 

radial basis functions for where the latter generally performed better 

(Reinhardt K. et al 2018). As the surface in the Netherlands is mainly flat, 

only a multi quadratic radial basis function was explored in this paper.  

 

Inverse distance weighing.  

There are several studies which cover the use of IDW for windspeed 

interpolation but one notable one compared a wide range of modified IDW 

models which consider both observation to observation and observation to 

receptor dependencies to improve the predictions and reduce sensitivity to 

severely clustered observations (Li Z., 2021).  However, since observations 

of the KNMI weather stations are not this severely clustered, a regular IDW 

model was used. 
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Ordinary kriging with spherical variogram. 

Multiple studies exist which tested the accuracy of ordinary kriging for 

spatial interpolation. Using a spherical variogram is preferable for data that 

has a short spatial correlation like windspeed (Burrough et al., 2015; Cressie, 

2015). Another study analyzing affected areas by dust storms in Iran using 

satellite images compared a wide variety of kriging methods and concluded 

that ordinary kriging with a spherical variogram had a lower standard error 

compared to exponential or linear variograms (Ekhtesasi M. R. et al, 2012).  

Based on these two studies, the choice was made to only explore ordinary 

kriging and other kriging models with spherical variograms.   

 

Universal kriging with linear and hyperbolic regression model. 

Different regression models have been used with universal kriging 

models for windspeed interpolation where one notable study concluded 

that hyperbolic and spherical models produce a lower RMSE than Gaussian 

based models (Wang, Y., 2020). Another notable study compared linear, 

spherical, and hyperbolic models against a neural kriging model for 

windspeed in Sicily and concluded that linear and hyperbolic models 

performed better against spherical models (Cellura, M. et al, 2008). Therefor 

the choice was made to explore both linear and hyperbolic regression 

models alongside a spherical variogram.   
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4. Results 
 

The following chapters compare the performance of different spatial 

interpolation models using daily, annual, and no optimized parameters. 

Next the generated surfaces are shown visually. Finally, the results of the 

stability and reproducibility metrics of the models using BAP are presented.   

4.1 Daily, annual, and non-weighted errors  

As expected, models using BDP always had the lowest RMSE for a single 

day. Majority of the time models using BAP had a lower RMSE than those 

using NP, but some instances existed where NP produces a lower RMSE. 

For example, on January 1st, the RMSE of models using BAP compared to 

NP was increased by an average of 0.07308, whilst on October 18th, the 

RMSE was reduced by an average of 0.13749.  

When the average RMSE of all days in the year between models using 

BAP and NP was calculated, BAP on average reduced the RMSE by 0.11873 

per day. 
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                                                        4.1 Daily, annual and non-weighted errors | Figure 4.1.1 

 

Fig 4.1.1:  Example of BAP and BDP used for January 1st 

 

 

 

 

 

 

 

 

 

 

 

Model Best annual parameters  Best daily parameters 

TS1 case_weight = 1.151302 case_weight = 1.09743 

TS3 case_weight = 1.00050 case_weight = 1.01732 

MQ-RBF alpha_seed = 1.166434 

smoothing_factor = 90.770461 

alpha_seed = 1.34922 

smoothing_factor = 78.6283 

IDW nmax=6  

idp=1.028791 

nmax=6  

idp=1.07923 

OK vgm="Sph" 

psill=348.3421 

range=40943.12 

nmax=6 

vgm="Sph" 

psill=347.8823 

range=40944.28 

nmax=6 

UK1 vgm="Sph" 

psill=188.709 

range=13714.15 

nmax=6 

vgm="Sph" 

psill=188.653 

range=13713.522 

nmax=6 

UK3 vgm="Sph" 

psill=188.7081  

range=13714.12 

nmax=6 

vgm="Sph" 

psill=188.651  

range=13713.517  

nmax=6 
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                                            4.1 Daily, annual and non-weighted errors | Figure 4.1.2 – 4.1.3 

Fig 4.1.2:  RMSE results on January 1st, RMSE(BAP) > RMSE(NP) 

 

Fig 4.1.3:  RMSE results on October 18th, RMSE(BAP) < RMSE(NP) 

  

Model RMSE (BAP)  RMSE (BDP) RMSE (NP) 

TS1 12.2824 10.8142 12.23348 

TS3 12.92801 11.6253 12.92795 

MQ-RBF 13.77851 13.37851 13.48196 

IDW 13.98033 13.92033 13.96693 

OK 13.70217 13.44217 13.62906 

UK1 14.32642 14.26642 14.28966 

UK3 13.66884 13.61531 13.62607 

Model RMSE (BAP)  RMSE (BDP) RMSE (NP) 

TS1 12.23751 10.6827 12.73446 

TS3 12.38736 11.8154 12.62145 

MQ-RBF 13.4674 13.39335 13.51874 

IDW 13.9183 13.89374 13.97534 

OK 13.6232 13.4182 13.71921 

UK1 14.39231 14.37224 14.41833 

UK3 13.67724 13.65232 13.67829 
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4.2 Generated surfaces 
 

The surfaces generated by the different models were visually unique, 

but one thing they had in common was that higher windspeed values were 

located more closely on the coast whilst lower windspeed values were 

located closer to the border with Germany. Windspeed values ranged 

between a minimum of 3 (𝑚/𝑠) and a maximum of 10 (𝑚/𝑠). For readability 

the windspeed estimates were rounded upwards before creating the 

figures. Surfaces generated by models using BAP, BDP or NP were visually 

equivalent with some exceptions like the MQ-RBF model. In the figures the 

tag ‘[best_case]’ refers to models using BAP and ‘[avg_case]’ refers to models 

using NP. White grid cells represent the KNMI stations. 

 

Fig 4.2.1:  Surfaces generated by TS1 and TS3. 
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                                                                                           4.2 Generated surfaces | Figure 4.1.5 

 

  

 

Fig 4.2.2:  Surfaces generated by MQ-RBF, IDW and OK. 
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                                                                               4.2 Generated surfaces | Figure 4.1.6 – 4.1.7 

 

  

Fig 4.2.3:  Surfaces generated by UK1 and UK3. 

 

 

Fig 4.2.4:  Surfaces compared between MQ-RBF models using BAP and NP.  
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4.3 Metric results 
 

The results of the stability metrics showed that TS3 and TS1 were within 

the top 3 majority of the time whilst UK1 and UK3 were occasionally within 

the top 3.  OK performed decently, averaging 4th place majority of the time 

whilst MQ-RBF performed poorly majority of the time. IDW performed 

well on the GLV metric but poorly in all other metrics. For most stability 

metrics the difference between the first two places and the last 5 places was 

highest whilst differences diminished after the 4th place (see figure 4.3.1).  

For all reproducibility metrics UK3 scores the best followed by OK and 

IDW however this was not the case for MiMaSD and MadSD where IDW 

and OK scored significantly better than UK3. MQ-RBF performed decently 

averaging 4th place, majority of the time besides at metric MadSD where it 

took 1st place. TS1 performed the worst overall besides metric MiMaSD 

where it scored very close to UK3 for the 3rd place. Differences in scores 

were highest for MaxSV and lowest for the MadSD metric (see figure 4.3.1).  

To quantify results, a pointing system was introduced using a rating 

from 7 points (1st place) to 1 point (last place).  

UK3 performed best overall in all metrics. TS3 performed best overall 

for the stability metrics and UK3 performed best overall for the 

reproducibility metrics. UK3 and TS3 performed better with seasonal or 

annual variability. UK1 performed best with global and local variability 

with UK3 performing slightly better than TS3. TS3 performed best overall 

for random variability in the data with UK3 performing significantly worse 

(see figure 4.3.2).   
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                                                                                     4.3 Stability metric results | Figure 4.3.1 
 

Fig 4.3.1:  Stability and surface metric results for each model rounded to 4 decimals. 

  

 

Metric 

Leaderboard 

1st 2nd 3rd 4th 5th 6th 7th 

SAV TS3 

(1.3148) 

UK3 

(1.4789) 

TS1 

(1.5205) 

OK 

(1.5882) 

MQ-RBF 

(1.6909) 

IDW 

(1.7082) 

UK1 

(1.7618) 

SSV UK3 

(1.8719) 

TS3 

(2.1027) 

MQ-RBF 

(2.1589) 

OK 

(2.2040) 

TS1 

(2.3240) 

UK1 

(2.4070) 

IDW 

(2.4161) 

ARV TS1 

(0.4969) 

TS3 

(0.5005) 

OK 

(0.6501) 

UK3 

(0.6724) 

IDW 

(0.7787) 

MQ-RBF 

(0.7825) 

UK1 

(0.909) 

RRV TS3 

(1.8952) 

UK1 

(2.1186) 

TS1 

(2.2327) 

MQ-RBF 

(2.4194) 

OK 

(2.4428) 

IDW 

(2.4963) 

UK3 

(2.7148) 

GLV UK1 

(0.059) 

IDW 

(0.3549) 

TS1 

(0.5003) 

OK 

(0.8134) 

UK3 

(0.9943) 

TS3 

(1.3590) 

MQ-RBF 

(3.1946) 

 

MaxSV UK3 

(27.1947) 

OK 

(30.4828) 

IDW 

(31.0395) 

MQ-RBF 

(33.4901) 

UK1 

(37.5314) 

TS3 

(38.6613) 

TS1 

(62.6854) 

MedSV UK3 

(12.2785) 

OK 

(13.8667) 

IDW 

(13.7342) 

MQ-RBF 

(14.3151) 

TS3 

(16.2958) 

UK1 

(17.8332) 

TS1 

(22.6922) 

MadSV UK3 

(4.7468) 

OK 

(5.1472) 

IDW 

(5.2679) 

MQ-RBF 

(5.9620) 

TS3 

(6.2661) 

UK1 

(6.4736) 

TS1 

(9.7963) 

MiMaSD IDW 

(48.5701) 

UK3 

(50.8512) 

TS1 

(50.8888) 

OK 

(53.0801) 

MQ-RBF 

(53.6334) 

TS3 

(54.5250) 

UK1 

(57.1220) 

MadSD MQ-RBF 

(10.5552) 

OK 

(11.4156) 

UK1 

(11.7740) 

IDW 

(11.9801) 

UK3 

(12.0932) 

TS3 

(12.4917) 

TS1 

(12.9181) 
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                                                                                     4.3 Stability metric results | Figure 4.3.2 

 

 

Figure 4.3.2: Point distribution of models with different section of metrics where the 

best models are highlighted for each section and the maximum obtainable points are 

defined in the last row.   

 

 

 

 

  

 

Model 

Total metric points 

All 

metrics 

Stability 

metrics 

Surface 

metrics 

SAV + 

SSV 

GLV ARV + 

RRV 

TS1 34 25 9 8 5 12 

TS3 40 28 12 13 2 13 

MQ-RBF 37 15 22 8 1 6 

IDW 40 14 26 3 6 5 

OK   48 20 28 8 4 8 

UK1 39 17 13 3 7 7 

UK3 51 21 30 13 3 5 

Max 

      

70 35 35 14 7 14 
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5. Conclusion 
 

This paper aimed to recommend a spatial interpolation model to be used 

for future research which analyzes the effect of interpolated windspeed 

estimates on pesticide exposure estimates using the dispersion model part 

of OBOmod. This dispersion model is based on a Gaussian plume model 

whose performance is known to be sensitive to different forms of bias in 

estimates of auxiliary variables. Therefor it was recommended to use a 

model which minimized these factors. Random error or trends in estimates 

where the factors which had the highest effect to biased estimates (see 

chapter 3.2). 

To evaluate performance of different models, several metrics were defined 

which evaluate model stability and reproducibility. These metrics required 

annual stable RMSE results based on optimized models. A dynamic training 

procedure was used to calculate BAP and the performance increase of BAP 

was measured by comparing it to BDP and NP. Looking at RMSE results 

one might assume that TS1 would be the best performing model but after 

comparing results using the different metrics it became apparent that TS3 

and UK3 produce more stable and reproducible estimates than TS1.  

UK3 scored the highest on average on all metrics but TS3 scored 

significantly higher in metrics which measure bias in areas that have the 

highest effect on dispersion model performance. For example, TS3 scored 

significantly better than UK3 in metrics measuring random error, 

equivalently in metrics measuring trends and comparably in metrics 

measuring local error.  

Therefor it can be concluded that TS3 is the most effective model to be used 

for windspeed interpolation which will potentially produce the lowest 

negative effect to pesticide dispersion estimates.  
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6. Discussion 

6.1 Use of auxiliary variables 

Windspeed as a meteorological condition is affected greatly by 

temperature and topology of a surface (see chapter 2.2) therefor it would 

make sense to include such measurements as auxiliary variables in the 

models used. This is commonly done in kriging models referred to as co-

kriging. This, however, is only viable when auxiliary variables are at a 

higher spatial resolution than the to be estimated variable (Wan H. et al, 

2021).  

Therefor temperature measurements could not be included as they 

would be within the same spatial resolution as windspeed measurements, 

being that both sources are provided by the same KNMI weather stations. 

Other data sources for temperature measurements at a higher resolution do 

exist, but those only cover small areas of the Netherlands, not the entire 

country at large.  

Topology as an auxiliary variable does not have this problem, as many 

sources exists which provide height and depth measurements of the surface 

in the Netherlands. However, these datasets often interpolate 

measurements themselves for larger areas, as measuring each individual 

square meter of land is practically impossible. Another problem is that 

many datasets covering the entire surface of the Netherlands are generated 

using lidar sensors underneath an UAV, using lasers stations in the air or 

ground using a technique called laser scanning confocal microscopy 

(LSCM) or using satellite images. All these techniques bring their own 

biases and measurements errors, which would have to be accounted for.  

Another thing to point out is that the influence topology has to 

windspeed is only relevant with drastic differences in terrain (ex: in a 

mountainous area), which is not applicable for the surface in the 

Netherlands, being primarily flat lands around or slightly below the sea 

level, so the effect topology plays can be considered insignificant.   
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6.2 Using BDP instead of BAP for metrics  

Metrics defined to measure different forms of bias in models were using 

annually optimized hyperparameters instead of daily optimized hyper-

parameters (see chapter 3.4). In the results it became apparent that models 

using BDP always had a lower RMSE than models using BAP, so the choice 

to use BDP over BAP for the metrics might have yielded a different 

conclusion and outcome. The choice to use BAP over BDP was single done 

to reduce overfitting.  

Tests were performed where manual intervention was used to simulate 

extreme measurements on certain dates. When training models with BDP 

and BAP on this intervened training set and then validating results using 

the non-intervened training set, it became clear that models using BAP have 

significantly lower RMSE than models using BDP. This was because by 

averaging the BDP for the entire year to calculate BAP, you essentially 

introduce a degree of smoothing called weight smoothing which can help 

reduce overfitting of models (Chen T. et al, 2021)  
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6.3 Use of more sophisticated models 

Existing research using more sophisticated models for windspeed 

interpolation is available, but such models were not considered to reduce 

computational time, model implementation complexity or overfitting of 

estimates.   

For example, models which use both deterministic and stochastic 

methods (so-called combined models) could be used which provide less 

bias when dealing with spatially clustered measurements (Li J. et al 2014).  

Neural network-based models, like neural kriging could also be used for 

windspeed interpolation which produce much lower RMSE than OK, UK1 

or UK3 models, but such models tend to overfit estimates with spatially 

distanced measurements (Cellura, M. et al, 2008).  

  Another type of model which was considered is Taylor Kriging. Such 

models were used for windspeed interpolation in several studies. This 

model is a modification of kriging that uses a Taylor-based linearization 

approach to handle nonlinear trend functions, resulting in an iterative 

parameter estimation strategy. One downside of using such a model is that 

it requires significantly more computational resources and is more complex 

to implement (Liu H. et al, 2010). 

Something to mention is that more complex models do not always 

produce better performing results or stable estimates as became apparent 

from the results in this study and existing studies (Reinhardt K. et al, 2018).  
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A. Appendix 
 

 
[1] KNMI weather station windspeed data:  
https://www.daggegevens.knmi.nl/klimatologie/daggegevens   
 
[2] KNMI weather station location data: https://github.com/arsalan-
anwari/thesis_project_f2/blob/main/Data/knmi_weather_stations.csv  
 
[3] OBOmod scientific paper: 
https://doi.org/10.1016/j.scitotenv.2022.153798   
 
[4] BRP Gewaspercelen 2017: 
https://service.pdok.nl/rvo/brpgewaspercelen/atom/v1_0/downloads/br
pgewaspercelen_definitief_2017.zip   
 
[5] Amersfoort / RD New CRS information: https://epsg.io/28992  
 
[6] Blog post about simplifying features of a map:  
https://www.r-bloggers.com/2021/03/simplifying-geospatial-features-
in-r-with-sf-and-rmapshaper/  
 
[7] Source code dynamic training routine: https://github.com/arsalan-
anwari/thesis_project_f2/blob/main/dynamic-training-routine.R  
 
[8] Page to dynamic training routine wiki page: 
https://github.com/arsalan-anwari/thesis_project_f2/blob/main/Docs/ 
dynamic-training-routine.md   
 
[9] Paper of spatial interpolation and GIS overview: 
https://github.com/arsalan-anwari/thesis_project_f2/blob/main/Docs/ 
Spatial%20statistics%20overview.pdf  

  

  

https://www.daggegevens.knmi.nl/klimatologie/daggegevens
https://github.com/arsalan-anwari/thesis_project_f2/blob/main/Data/knmi_weather_stations.csv
https://github.com/arsalan-anwari/thesis_project_f2/blob/main/Data/knmi_weather_stations.csv
https://doi.org/10.1016/j.scitotenv.2022.153798
https://service.pdok.nl/rvo/brpgewaspercelen/atom/v1_0/downloads/brpgewaspercelen_definitief_2017.zip
https://service.pdok.nl/rvo/brpgewaspercelen/atom/v1_0/downloads/brpgewaspercelen_definitief_2017.zip
https://epsg.io/28992
https://www.r-bloggers.com/2021/03/simplifying-geospatial-features-in-r-with-sf-and-rmapshaper/
https://www.r-bloggers.com/2021/03/simplifying-geospatial-features-in-r-with-sf-and-rmapshaper/
https://github.com/arsalan-anwari/thesis_project_f2/blob/main/dynamic-training-routine.R
https://github.com/arsalan-anwari/thesis_project_f2/blob/main/dynamic-training-routine.R
https://github.com/arsalan-anwari/thesis_project_f2/blob/main/Docs/%20dynamic-training-routine.md
https://github.com/arsalan-anwari/thesis_project_f2/blob/main/Docs/%20dynamic-training-routine.md
https://github.com/arsalan-anwari/thesis_project_f2/blob/main/Docs/%20Spatial%20statistics%20overview.pdf
https://github.com/arsalan-anwari/thesis_project_f2/blob/main/Docs/%20Spatial%20statistics%20overview.pdf
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