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Abstract

Automatic Speech Recognition (ASR) models have shown great progress

in recent years. Whisper is one of the latest models, showing state-of-the-

art performance on a broad range of unseen datasets. This makes it a use-

ful model for a broad range of applications, such as converting audio files

into text transcripts. Detectives of the National Police Corps have a large

amount of audio data to process for their investigations. Manual process-

ing is tedious and resource intensive. Whisper can be a useful tool for speed-

ing up investigations and alleviating the workload. While Whisper per-

forms well out-of-the-box, its performance can still be further improved.

Through the method of hyperparameter tuning and comparing different

implementations of Whisper, the processing time, memory usage, and

accuracy have been optimized. Firstly, we show that reducing computa-

tional precision improved the performance in all models tested. Secondly,

reducing beam size to a more greedy strategy reduced processing time and

memory usage with minimal influence on accuracy. Thirdly, larger batch

sizes decreased processing time and increased accuracy, but also increased

memory usage. Lastly, implementing Voice Activity Detection increased

accuracy and decreased processing time without increasing memory us-

age. We conclude that Faster-Whisper is the overall best performing model

for the current use-case. It has the best trade-off between processing time,

memory usage, and accuracy. Consequently, this allows for the greatest

transcription throughput when multiple instances of the model are used in

parallel.
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1. Introduction

1.1 Motivation and context

The National Police Corps (Korps Nationale Politie) possesses a vast amount

of audio data. Data from seized devices and data storage mediums, such as

voice notes from (encrypted) smartphones, must be processed before being

used as evidence in an investigation. Manual analysis by listening to the

audio is a tedious and highly labor-intensive process, which robs detectives

of precious time that could have been spent on important tasks that can

not be automated. To help alleviate the workload of detectives, a Speech

to Text model can be used to develop a software tool that can automati-

cally transcribe the audio data into a searchable and readable text format.

This allows a detective to find specific audio files more quickly, listen to the

relevant sections of the audio and transcribe it for use as evidence in their

investigation. Due to privacy, confidentiality, and legality concerns, every-

thing has to be hosted on-premises instead of using a cloud-based service

or API. As such, there is a great need for a high-performing model that can

run efficiently on relatively limited hardware capacity. The scope of this the-

sis is to investigate what models are available, which models perform best,

what parameters return peak performance in terms of speed and accuracy,

and what pre-processing can be performed in order to provide the all-round

best performing model.

1.2 Literature review

1.2.1 History

Automatic Speech Recognition (ASR), also known as Speech to Text (STT/S2T)

is a group of technologies and methods that enables a computer to recognize
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1.2 Literature review

and transcribe spoken language into text. Insights from computer science

and computational linguistics are combined to realize ASR. In 1952, Bell

Labs created the Automatic Digit Recognizer (AUDREY), a rudimentary

machine by modern standards, but nonetheless considered to be the birth

of ASR [1]. Development progressed throughout the following decades,

with groups such as IBM, Carnegie Mellon [2], [3], MIT, Dragon[4], and

DARPA getting involved in ASR research. A breakthrough occurred in 1987,

when SPHINX was developed. This was the first system that was speaker-

independent, as prior systems had to be trained to each specific speaker [5].

1.2.2 Definitions

1.2.2.1 Word Error Rate

In order to quantitatively evaluate the performance of ASR models, we re-

quire performance metrics to be defined. On the most common and impor-

tant metrics is Word Error Rate (WER). WER is essentially the Levenshtein

distance, but adapted to function at a word level instead of a phoneme level.

Put simply, the WER is the number of edit operations, i.e. substitutions,

deletions or insertions, required to change the hypothesis string into the

reference string. WER will always be positive, due to the fact that addition

and division operations are performed on non-negative real numbers. If the

reference and hypothesis strings are identical, the WER will be exactly 0.

Mathematically, WER is defined as follows:

WER =
S + D + I

N

where

S denotes the number of substitutions

D denotes the number of deletions

I denotes the number of insertions

N denotes the number of words in the reference.
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Introduction

1.2.2.2 Memory

Memory usage is another performance metric that will be used to opti-

mize the performance, more specifically the efficiency of the ASR model. A

Graphics Processing Unit (GPU) contains some amount of Video Random

Access Memory (VRAM). VRAM is used as a buffer to store a model, espe-

cially the model parameters and input, in order to perform the calculations

required during training and inference. The amount of memory available

in a GPU is very often the bottleneck in terms of hardware requirements

for running a specific model. This issue is further worsened by the fact that

VRAM size is fixed in a GPU and can not be upgraded by the user. The solu-

tion is to employ a more capable, but expensive GPU that has more VRAM

installed, or multiple GPUs and run them as a cluster (also expensive).

1.2.2.3 Real Time Factor

Additionally, Real Time Factor (RTF) is one more metric related to model

performance, more specifically the speed of transcription. RTF describes the

ratio between the length, i.e. duration of the input audio, and the processing

time required to transcribe the input audio. The closer to 0 the RTF is, the

faster the model is at transcribing audio. Mathematically, RTF is defined as

follows:

RTF =
P
I

where

P denotes the processing time of the given audio input

I denotes the duration of the given audio input.

1.2.2.4 Spectrograms

Spectrograms are a visual representation of a signal frequency spectrum

over time. They are a good way to visually represent audio data, as can

be seen in Figure 1.1.
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1.2 Literature review

Figure 1.1: Example of a spectrogram1

In a regular spectrogram, frequencies are plotted on a linear scale. How-

ever, research has shown that humans perceive audio frequencies on a non-

linear scale [6], [7]. One proposed solution to this is the melody (mel) scale.

1.2.2.5 Mel scale

The mel scale is based on the perception of pitch by human listeners, in other

words, frequencies perceived to be equal distance from one another [8]. The

mel scale mimics how the human hearing works, with high precision in the

lower-end of the frequency band, where speech is located, and low preci-

sion in the higher-end of the frequency band. There are various mathemat-

ical definitions for the mel scale, but generally the formula contains a lin-

ear/logarithmic component. The differences between most formulas is the

corner/break frequency. The mel scale will follow the Hertz scale linearly

up to and including the corner frequency. Above the corner frequency the

mel scale will increase logarithmically. This linear/logarithmic characteris-

tic can be seen more clearly in Figure 1.2.

Usually, formulas set the corner frequency to 1000 Hz, which will then

equal 1000 mels. Corner frequencies of 625 Hz [9] or 700 Hz [10] have also

been proposed. For the purpose of ASR, the mel scale formula is most com-

1https://commons.wikimedia.org/w/index.php?curid=5544473
2https://commons.wikimedia.org/wiki/File:Mel_scale.PNG
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Figure 1.2: Plot of the mel scale with a corner frequency of 1000 Hz2

monly expressed as follows:

m =
1000
log2

(1 +
f

1000
)

with a corner frequency of 1000 Hz [11]. A mel spectrogram is a spectro-

gram where the frequencies are plotted based on the mel scale, in contrast

with the linear frequency usually seen on a ’normal’ spectrogram. The ad-

vantage of the mel scale is that it is designed to mimic how humans perceive

audio. Accordingly, a log-mel spectrogram has the mel scale transformed to

a logarithmic scale instead of linear, as can be seen in Figure 1.3

1.2.2.6 Convolutional Neural Networks

Convolutional neural networks (CNN) are artificial neural networks that

make use of a convolution function in at least one of its layers [12], [13]. The

3https://towardsdatascience.com/getting-to-know-the-mel-spectrogram-
31bca3e2d9d0
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Figure 1.3: An example of a log-mel spectrogram3

convolutional layer applies filters to an image to extract certain features. A

CNN is particularly well-suited to tasks with images, being used in many

different processing and recognition tasks. CNNs are also useful for dimen-

sionality reduction, which in turn reduces the computational complexity of

processing a spectrogram.

1.2.2.7 Attention

Attention is a technique in artificial neural networks (ANN) that is intended

to imitate (human) attention as understood in the domains of neuroscience

and psychology. In an ANN, attention will enhance certain parts of the

input sequence, while simultaneously diminishing other parts of the se-

quence. The idea is that the ANN should allocate more focus to a certain,

important parts of the input, despite the fact that it may be a small por-

tion of the input. In essence, certain parts of the input are ’weighted’ more

than others. Using gradient descent, an ANN learns that a section of the

input being more important than another depends on context. This learned

attention representation of which sections to focus, or give attention to, is

known as an attention mask. The advantage of attention for speech tasks is

that a model can flexibly utilize the most relevant parts of an arbitrary input

sentence.
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1.2.2.8 Self-attention

Self-attention is variant of attention. Where attention links an input se-

quence with an output sequence, self-attention focuses on a single input

sequence. Self-attention allows an ANN to let a sequence learn information

about itself.

1.2.2.9 Cross-attention

Cross-attention is yet another take on attention as a concept. Cross-attention

uses the attention mask from one modality to highlight features extracted

from another modality. This is in contrast to self-attention, where a modality

uses its own attention mask to highlight its own features.

1.2.2.10 Transformers

Recent works with transformer architecture have achieved good performance

on many tasks, including Speech to Text. In this thesis, we will investigate

Speech to Text models with transformer architecture. Transformers are neu-

ral networks that implement the concept of attention and self-attention, al-

lowing the network to process a complete input sequence at once instead of

sequentially, unlike a Recurrent Neural Network (RNN) [14]. The attention

mechanism provides context for any arbitrary point in the input sequence.

This structure allows a transformer model to run at a much higher level of

parallelization, which in turn greatly reduces training times. Brought to life

in the 2017 paper titled "Attention is All You Need" [15], transformers are

now considered as "foundation models" [16] due to the paradigm shift they

have brought to the field of artificial intelligence. Transformers are useful

due to their ability to generalize to many different applications and data

types, be it computer vision (images/videos) or natural language process-

ing (text/audio).

1.2.3 Related work

The ASR field has made remarkable progress in recent years. With the de-

velopment of the wav2vec 2.0 model, self-supervised pre-training on unla-
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1.2 Literature review

beled speech data has been made possible [17]. Following the pre-training, a

fine-tuning phase with labeled data is used to optimize the self-learned rep-

resentations for character or phoneme predictions. The wav2vec model out-

performs the state-of-the-art semi-supervised model, while simultaneously

using 100 times less labeled data [17]. While the wav2vec model performs

well, it has the limitation of needing to be fine-tuned to a specific dataset.

This hampers the performance of the model on data not seen and fine-tuned

to.

Researchers from OpenAI have made an attempt to counteract the weak-

nesses of the wav2vec model by developing a weakly-supervised trans-

former model named Whisper [18]. An overview of the model architec-

ture is shown in Figure 1.4. The input for the model is an audio file, seg-

mented into 30-second chunks, which are accordingly transformed into log-

mel spectrograms. Afterwards, two one-dimensional convolutional layers

with a Gaussian Error Linear Unit (GELU) [19] activation function are used

to compress the spectrograms to a lower spatial size, which greatly reduces

the computational complexity. Hereafter, sinusoidal position embeddings

are added the output of the previous step and passed on to the encoder

transformer blocks. Using the attention mechanism and encoded informa-

tion, the decoder transformer blocks predict which word follows the cur-

rent word being transcribed. The overall model architecture is based on the

’classic’ encoder-decoder architecture [15]. The encoder-decoder architec-

ture consists of a stack of 6 identical encoder layers, followed by a stack of

6 identical decoder layers. The final output of the model is a text transcript

of the input audio, including timestamps.

This model requires no dataset specific fine-tuning to achieve good re-

sults in terms of WER, which we discussed in the definitions section, and

accordingly improving the zero-shot performance. In essence, the Whisper

model works as-intended "out of the box" on any data it is given. This per-

formance has been obtained by massively scaling up the quantity of train-

ing data, on the order of magnitudes, compared to previous efforts. The

typical supervised model uses around 1.000 hours of training data, which

is significantly less than what is possible with unsupervised models [18].
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Figure 1.4: Overview of the Whisper model architecture4

Whisper uses around 680.000 hours of training data, which is much closer

to the scale of unsupervised models. The Whisper authors suggest that

"simple scaling of weakly supervised pre-training has been underappreci-

ated so far for speech recognition" [18]. Their work has shown that trad-

ing off quantity over quality can be the right choice, and that it increases

the generalization and robustness of the model. Another advantage of the

Whisper model is that is also trained with languages other than English,

with approximately 117.000 hours spread between 96 languages. As im-

pressive as this all is, there are still some weaknesses. The largest Whis-

per model has approximately 1550 million parameters, and consequently is

highly resource-intensive and relatively slow during transcription. This is

further worsened by the characteristic that transcription process of the au-

dio runs sequentially in the order that the it is spoken. Another downside

is that timestamps tend to only be accurate on an utterance or phrase level,

not a word or phoneme level. The sequential nature of the transcription

process means that if the timestamp of the initial chunk is inaccurate, that

following chunks will drift further away from the correct timing. In certain

scenarios the Whisper model can exhibit hallucinations, i.e. putting words

4https://openai.com/research/whisper
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1.2 Literature review

in the transcript that were not present in the audio file.

While the Whisper model is highly impressive, there are still weaknesses

and areas where it can be improved upon. Multiple variants and re-implementations

of Whisper have been developed since the original publishing, and are still

being improved upon.

1.2.4 Whisper variants

The implementation of Whisper available in the Hugging Face Transformers

library5 uses a batching algorithm for the transcription process, where audio

chunks are grouped together into batches and processed in parallel. The

addition of batching alone has shown great transcription speed increases in

benchmarks, with 8 times gain being observed.

faster-whisper6 is an implementation that uses the CTranslate27 back-

end , which is a library optimized for fast and efficient inference with Trans-

former models . This implementation runs up to 4 times faster than the

original OpenAI implementation, while at the same time reducing memory

consumption. Furthermore, Silero Voice Activity Detection (VAD)8 is used

to remove parts of the audio that do not contain speech. This step should

help increase transcription speed, as the audio chunks to be transcribed will

contain as little silence as possible, which in turn can reduce hallucinations

as well.

The third variation of the Whisper model is WhisperJAX9. This imple-

mentation of Whisper is modified to run on the JAX framework, whereas

the original OpenAI implementation runs on the PyTorch framework. A

batching algorithm for transcription is also used in the WhisperJAX imple-

mentation. In addition to support for the usual GPU acceleration, Tensor

Processing Unit (TPU) acceleration is also possible. The WhisperJAX devel-

opers claim that it is currently the fastest Whisper implementation, with it

5https://github.com/huggingface/transformers
6https://github.com/guillaumekln/faster-whisper
7https://github.com/OpenNMT/CTranslate2
8https://github.com/snakers4/silero-vad
9https://github.com/sanchit-gandhi/whisper-jax

13



Introduction

Figure 1.5: Overview of the WhisperX model architecture11

being able to transcribe up to 70 times faster than the original Whisper im-

plementation when using TPU acceleration, and more than 13 times faster

when using GPU acceleration.

One of the latest attempts at resolving the issues from the original Whis-

per implementation is the WhisperX10 model [20]. This model combines

the CTranslate2 back-end from the faster-whisper implementation with the

wav2vec 2.0 model. An overview of the model architecture can be seen in

Figure 1.5

Using forced alignment, referring to the process where transcripts in

the native spelling of the target language are aligned to audio data, tran-

scripts can be segmented on a phoneme level. This allows one to obtain

highly accurate (to the order of milliseconds) timestamps on either a word

or phoneme level. This model also supports VAD and speaker diarization

out-of-the-box using pyannote-audio12. In order to improve batching per-

formance and reduce hallucinations, VAD pre-processing is added in Whis-

perX. Further adaptations to reduce hallucinations are present in the form

of parameter modifications in Whisper’s transcribe function, where the –

condition_on_prev_text parameter is modified. Conditioning on previous

text is a process where the output of the previous chunk is used as context

for the current chunk. The idea is that this will improve consistency of the

transcription between chunks and improve the ’flow’ of the text. In Whis-

per, this parameter is True by default. However, setting it to False, which is

the case in WhisperX, reduces hallucinations and occurrences of the model

getting stuck in a loop of repetitive text.

10https://github.com/m-bain/whisperX
11https://arxiv.org/abs/2303.00747
12https://github.com/pyannote/pyannote-audio
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1.3 Research question

1.3 Research question

Considering that the National Police Corps has a large and burgeoning

amount of audio data that needs to be processed, it follows that there is

a great motivation for the realisation of a faster Speech to Text model. The

literature review suggest that there are variants of the Whisper model that

improve on the original implementation on all aspects of performance. Fur-

thermore, we believe that these variants can be optimized even further by

tweaking their parameters.

With the knowledge from related works, and taking the research motiva-

tion and context into account, we arrive at the following research question:

What optimizations can be made to improve the transcription performance and

efficiency of Whisper and its variants?

From the main research question we derive three subquestions, all of

which play a role in answering the main research question. Each subques-

tion concerns a different aspect of the performance of the Whisper model

and its variants that will be investigated through multiple experiments, and

are divided as follows:

Subquestion 1: What is the effect of batch size on memory usage of Whis-

perX?

Subquestion 2: How can the RTF be decreased for all Whisper variants?

Subquestion 3: How does VAD affect Faster-Whisper’s WER?

15



2. Data

2.1 Description of the data

The dataset used as reference for analysis and comparisons of model per-

formance is the Corpus Gesproken Nederlands (CGN) dataset [21]. In total,

CGN contains roughly 900 hours, or almost 9 million words, of modern

Dutch, spoken by both Dutch and Flemish people. The the total file size

for the dataset is 129,1 GB in uncompressed form. The dataset consists of

14 components, ranging from component A to component O. All audio files

are in WAVE (.wav) format. An overview of the components and the type

of audio they contain is provided in Table 2.1.

Component Type of audio

A Spontaneous conversations (’face-to-face’)
B Interviews with Dutch teachers
C Telephone dialogues recorded at switchboard
D Telephone dialogues recorded using mini disc recorder
E Business negotiations
F Interviews and discussion broadcast on radio and television
G Discussion, debates, meetings (particularly political)
H Lessons
I Spontaneous comments (including sports) broadcast on radio and television
J Current affairs sections and reports broadcast on radio and television
K News bulletins broadcast on radio and television
L Reflections and commentaries broadcast on radio and television
M Masses, lectures, solemn speeches
N Lectures, lectures, readings
O Pre-read texts

Table 2.1: Overview of dataset components

2.2 Data exploration results

Initial exploratory analysis has been performed to gain a general overview

of the contents, characteristics and descriptives of the CGN dataset. For

each component, the number of audio files, mean duration of audio files

16



2.2 Data exploration results

Figure 2.1: Histogram of the duration of audio files (seconds) in the CGN
dataset

(minutes), total duration of audio files (minutes), and number of speakers

are recorded. The findings from the exploratory analysis are show in Table

2.2. It can be noted that component K has noticeably different descriptives

than the other components, with a very large number of files of relatively

short duration. This can be more clearly observed in Figure 2.1.

Component File count Mean duration Total duration Speakers

A 1537 8.77 13478.93 2+
B 160 18.99 3037.72 2
C 649 8.65 5611.23 2
D 581 6.63 3851.12 2
E 67 9.57 640.95 2+
F 642 5.97 3829.73 2+
G 248 8.83 2189.35 2+
H 265 9.86 2613.40 2+
I 325 3.82 1240.49 1
J 506 2.06 1041.35 1+
K 5581 0.38 2136.61 1
L 365 2.42 881.03 1
M 16 8.14 130.20 1
N 78 12.01 936.78 1+
O 1761 3.54 6228.24 1

Table 2.2: Overview of file descriptives for each component
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Data

Figure 2.2: Waveform of the full-length audio sample

2.3 Preparation of the data

Data to be used for transcription by the Whisper model (or any of its vari-

ants) does not require any specific preparation to be performed. File types

supported are m4a, mp3, webm, mp4, mpga, wav, and mpeg. Internally,

Whisper uses ffmpeg to read the input audio files and resample to 16KHz.

Next, the input audio is split into 30-second chunks. Subsequently, the au-

dio is converted to a log-mel spectrogram, which we discuss in the next

section.

2.3.1 Log-Mel spectrogram

This section demonstrates the computation and visualization of a log-mel

spectrogram. Whisper uses a different approach for computing the Log-

Mel spectrogram, namely by applying a Short-Time Fourier Transformation

(STFT) on the 30-second audio chunks and afterwards using a mel filterbank

matrix to project the STFT into a mel spectrogram.

Reference file in Appendix C is used for the following demonstration.

Figure 2.2 shows a waveform of the audio file in its entirety, totaling roughly

10 minutes.

Next, Figure 2.3 shows the first 30-second audio chunk taken from the

beginning of the file.

Afterwards, the audio chunk is converted into a ’regular’ spectrogram,

that is with the y-axis linearly displaying frequency as Hz. It can be noted

that it is quite hard to see any meaningful audio activity in Figure 2.4, and

thus little useful information can be derived.

18



2.3 Preparation of the data

Figure 2.3: Waveform of the first 30-second chunk from the audio sample

Figure 2.4: Frequency (Hz) spectrogram of the chunk

Converting the frequency spectrogram to display the mel scale, one can

notice that more activity can be seen, thus more information can be derived

from Figure 2.5.

Finally, the mel spectrogram is modified to show the mel spectrogram on

a decibel (logarithmic) scale. One can observe much more meaningful visual

activity in Figure 2.6, which is exactly why the log-mel transformation is an

important step.

2.3.2 Choosing a suitable dataset subset

A subset of the CGN dataset, namely the component C directory, has been

chosen to be used for experimentation. The component c directory has the

most similar characteristics to the NFI-FRITS dataset, which is the dataset

used internally by the National Police Corps for experimentation and val-

idation purposes [22]. Both component C and NFI-FRITS consist of tele-

phone conversations recorded at a switchboard. These similarities mean

that component C can be considered as most representative for experimen-

19



Data

Figure 2.5: Mel spectrogram of the chunk

Figure 2.6: Log-mel spectrogram of the chunk

20



2.4 Ethical and legal considerations of the data

tation purposes. The similarity between datasets should give a higher like-

lihood of the findings from this report being applicable to the the National

Police Corps’ use-case and data.

Another important aspect to note is that samples are taken from compo-

nent C. This is done to reduce the computational requirements and experi-

ment running times to an acceptable and workable level. An approximately

5% random sample is taken from the NL subdirectory, which equals 18 files.

As explained in Appendix B, we randomly select 18 files from a given direc-

tory and move them to a specified subdirectory. This subdirectory is used

for further experimentation and remains fixed. The sampling is done with-

out replacement, meaning the 5% sample is used as the development subset.

A 10% sample from the remaining files of component C are used as the test

subset later on, as to avoid overlap. Table 2.3 provides an overview of the

number of files in each subset.

Subset Number of files

Development 18
Test 36

Table 2.3: Overview of dataset subsets created

2.4 Ethical and legal considerations of the data

The project that developed the CGN dataset was funded by the Dutch and

Flemish governments, and by the Nederlandse Organisatie voor Weten-

schappelijk Onderzoek (NWO/Dutch Research Council). The rights to the

CGN research and dataset are held by the Nederlandse Taalunie (Dutch

Language Union). The corpus is licensed to be freely accessible for scien-

tific usage. For the purposes of this thesis there are no legal objections.
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3. Method

3.1 Overview

The general method is the comparison of different variants of the Whis-

per model and the tuning of parameters to find the best trade-off between

performance metrics for the use-case presented in this thesis. Figure 3.1

provides a visual overview of the method.

Figure 3.1: Visualization of the method

3.2 Variables

For each Whisper model variant, there are multiple parameters that can be

specified for use during the model run. If not otherwise specified, default

values will be used. The models provide many parameters, of which only

a select portion will be used to tune the performance of the model. The

selection of which parameters to use for tuning is based on the model pa-

pers, code, documentation, and theory. An overview of the parameters and

a short explanation of each parameter is provided in Table 3.1.

Parameter Meaning

dtype Data type of the computation. Specifies the inference precision.
compute_type Same as dtype

beam_size Specifies the ’width’, i.e. N candidates at each split during beam search
vad_filter Specifies if VAD is enabled during transcription
batch_size Number of samples propagated through the network per forward pass

Table 3.1: Overview of parameters and their meaning
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3.2 Variables

3.2.1 dtype & compute_type

Both dtype and compute_type parameters control the exact same thing,

namely the amount of precision used during model inference. One can con-

ceptualize this as the number of decimals used during calculation. More

decimals equals a more accurate calculation, but will require more com-

puting resources and use more memory. For the Whisper models, the ex-

pectation is that lower precision will reduce memory usage and computing

requirements, without greatly reducing the accuracy of the models’ tran-

scription.

3.2.2 beam_size

The beam_size parameter is directly related to the beam search algorithm

used in Whisper. This parameter controls the width of the beam, that is the

number of candidates (ν, κ, or β) kept at each split. For example, a beam size

of 2 implies that only the 2 best candidates are considered at each split, from

which they will expanded upon at the next split. The remaining candidates

are disregarded and will not be expanded upon. A visual representation

of a the beam search algorithm with a beam size of 2 is provided in Figure

3.2. The expectation is that a smaller beam size will increase transcription

speed, as fewer candidates are considered at each split, thus requiring less

computation. The downside of a smaller beam-size is that memory usage

will increase, and potentially accuracy will reduce. The trade-off between

increased speed and increased memory usage will be investigated. With

beam size set to 1, the beam search algorithm is effectively equivalent to the

best-first search algorithm. Here, the algorithm only selects the best or most

promising candidate at each split and disregards all other candidates. The

algorithm becomes greedy at this point.

3.2.3 vad_filter

In Faster-Whisper, Voice Activity Detection (VAD) can be enabled by setting

the vad_filter parameter to True. The expectation is that enabling VAD will

increase transcription accuracy, as background-noise and other non-speech
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Figure 3.2: A visualization of the beam search algorithm, with a beam size of
21

activity will have been removed, and only segments with speech activity

are processed through the transcription pipeline.

3.2.4 batch_size

Batch size refers to the number of samples that are propagated through

the neural network in each (forward) pass. The higher the batch size, the

more memory is required. In theory, a larger batch size should also provide

higher accuracy, as the gradient descent estimate is more accurate due to

having a larger sample size, thus more information to consider during cal-

culation. The expectation is that a smaller batch size will be beneficial, as it

will reduce memory usage. With memory usage reduced enough, it can be

possible to run parallel instances of the model, which can increase overall

transcription throughput considerably.

3.2.5 Default values

Table 3.2 provides an overview of the selected tuning parameters used for

each model, and the accompanying default value.

1https://d2l.ai/chapter_recurrent-modern/beam-search.html

24



3.3 Experiments

Model Parameter Default value

Whisper dtype float32
Faster-Whisper compute_type float16
Faster-Whisper beam_size 5
Faster-Whisper vad_filter False

WhisperX compute_type float16
WhisperX batch_size 16

Table 3.2: Overview of default model parameter values

Although not clearly specified as a model parameter, both Whisper and

WhisperX implicitly contain the beam_size parameter. By default, in Whis-

per and WhisperX beam_size is set to 5.

3.3 Experiments

3.3.1 Baseline

The first of the experiments to be performed is the establishment of baseline

values for the performance metrics. To perform this experiment, a devel-

opment subset is to be transcribed using the Whisper, Faster-Whisper, and

WhisperX models set to the default parameter values shown in Table 3.2.

3.3.2 Transcription speed

Next, transcription speed will be optimized in the second experiment. Us-

ing the selected parameters for each model shown in Table 3.2 and the hy-

potheses proposed in subsection 3.2, the parameter values will be modified

and the performance metrics during transcription of the development sub-

set will be logged.

3.3.3 Memory usage

In the third experiment, memory usage will be optimized. This experiment

is similar in setup to the second experiment. The parameters from Table 3.2

and hypotheses from subsection 3.2 are used as guidance. Once again, the

development subset will be transcribed and performance metrics logged.
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3.3.4 Test subset

As a final experiment, the parameters returning the best performance on the

reference file are selected for further experimentation on a 10% test subset B

of the component C directory of the CGN dataset.

3.4 Calculation of performance metrics

3.4.1 WER

Calculation of the Word Error Rate (WER) for analysis in the results section

of this research paper will be performed using the JiWER package2. The

reference and hypothesis strings are standardized, i.e. lowercased and re-

moval of non-words, before the WER is calculated. Standardization is also

handled by JiWER.

3.4.2 Memory usage

Next, memory usage of all model runs are tracked using Weights & Biases3

(WandB). While memory usage is logged in bytes, it is converted to giga-

bytes for easier interpretation of results.

3.4.3 RTF

Lastly, processing time for each model run is also tracked using WandB.

Dividing the processing time by the total duration of audio files processed

returns the RTF.

2https://github.com/jitsi/jiwer
3https://wandb.ai/site
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3.5 A proposal for the modification of Whisper pre-

processing

In the pre-processing/pre-transcription phase of Whisper, the audio file to

be transcribed is split into 30 second segments and converted to a Log-

Mel spectrogram. In an attempt to speed up this process, the feasibility of

switching to a Mel-frequency cepstral coefficients (MFCC) spectrogram was

investigated. An MFCC spectrogram is computed by taking the logarithm

of a Log-Mel spectrogram and then performing a discrete cosine transfor-

mation (DCT). MFCC is a more compressed form of Log-Mel, akin to a

’spectrum of a spectrum’. A MFCC spectrogram usually has 13 or 20 co-

efficients instead of the usual 32-64 coefficients seen in Log-Mel. Following

this logic, a MFCC spectrogram should, in theory, be more efficient to pro-

cess than Log-Mel spectrogram. However, there are downsides to MFCC.

The biggest downside in the scope of this thesis is that a Whisper model

modified to use MFCC would require retraining. Retraining requires a lot

of time and massive resources that are not, as of writing, at my disposal.

Another downside is that MFCC is less strongly correlated, and in turn still

inferior to Log-Mel when used on strong classifiers or learners with a large

amount of training data available. Ultimately, it can be concluded that the

downsides outweigh the benefits for the Whisper use-case.
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4. Results

4.1 Overview of the results

The performance of the models tested using the 5% development subset is

shown in Table 4.1. Results from experiment 1 are presented at the first row

for each model. These are the baseline values for each model. Results from

experiment 2 and 3 are shown in columns RTF and memory usage.

For all tested models, it can be observed that setting the dtype/compute_-

type parameter to a lower setting reduces memory usage and RTF, while

having negligible influence on WER.

Regarding Faster-Whisper, setting the beam_size to 1 returns the lowest

RTF and lowest memory usage, while increasing WER by approximately

2.90% compared to baseline. The largest reductions are seen in RTF, with

reductions of 81.25% measured. Further, setting the vad_filter to True de-

creases the WER by about 3.29%, bringing the accuracy back closer to base-

line. RTF is further reduced by 1.82%, and memory usage by 2.62%.

Concerning WhisperX, it can be noted that batch_size has minimal influ-

ence on WER, with at most 0.61% difference observed. Increasing the batch

size reduces RTF, but increases memory usage as well. Decreasing the batch

size reduces memory usage, but increases RTF instead.

In absolute terms, WhisperX is the fastest model, as the RTF is the lowest.

The caveat is that WhisperX has considerably higher memory usage than

Faster-Whisper.

The most promising parameters from experiments 1,2, and 3 with the

development subset are chosen for further experimentation on an indepen-

dent test subset of the dataset. The findings from experiment 4 are shown

in Table 4.2. The findings here follow the main trend seen with the develop-

ment subset, with WhisperX being faster, but using more memory.
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Model Parameter Value WER RTF Memory usage (mean)

Whisper dtype float32 0.349 0.450 11.50 GB
Whisper dtype float16 0.353 0.378 10.73 GB

Faster-Whisper compute_type float16 0.335 0.203 5.11 GB
Faster-Whisper compute_type int8 0.316 0.175 3.32 GB
Faster-Whisper beam_size 5 0.316 0.175 3.32 GB
Faster-Whisper beam_size 4 0.320 0.156 3.20 GB
Faster-Whisper beam_size 3 0.328 0.146 3.16 GB
Faster-Whisper beam_size 2 0.337 0.135 3.17 GB
Faster-Whisper beam_size 1 0.345 0.112 3.13 GB
Faster-Whisper vad_filter True 0.334 0.110 3.05 GB

WhisperX compute_type float16 0.330 0.068 9.64 GB
WhisperX compute_type int8 0.330 0.064 8.17 GB
WhisperX batch_size 40 0.330 0.062 8.51 GB
WhisperX batch_size 32 0.330 0.063 8.52 GB
WhisperX batch_size 24 0.330 0.073 7.81 GB
WhisperX batch_size 16 0.330 0.064 8.17 GB
WhisperX batch_size 8 0.330 0.067 7.50 GB
WhisperX batch_size 4 0.330 0.106 4.53 GB
WhisperX batch_size 2 0.329 0.122 4.39 GB
WhisperX batch_size 1 0.332 0.136 4.22 GB

Table 4.1: Overview of the findings for all model and parameter combinations
tested on the development subset

Model Parameter Value WER RTF Memory usage (mean)

Faster-Whisper beam_size 5 0.333 0.172 3.54 GB
Faster-Whisper beam_size 1 0.364 0.131 3.48 GB
Faster-Whisper vad_filter True 0.335 0.127 3.41 GB

WhisperX batch_size 16 0.328 0.065 7.16 GB
WhisperX batch_size 8 0.328 0.065 5.99 GB
WhisperX batch_size 4 0.328 0.105 4.97 GB

Table 4.2: Overview of the findings for most promising model and parameter
combinations tested on the test subset

4.2 Alternative approaches

4.2.1 Whisper-JAX

During initial testing of different Whisper variants, it was observed that one

model performed so poorly that further experimentation would be futile.

The Whisper-JAX implementation was riddled with bugs and issues related

to stability and performance. VRAM usage was also unusually high at ap-

proximately 11.9 GB, which meant that only the medium model could be
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tested on the available hardware (NVIDIA T4). Attempts to run the large-

v2 model were unsuccessful, as loading the model would increase VRAM

usage to the point that it exceeds limits of available compute resources for

this thesis. In accordance with the Whisper-JAX documentation, reduced

precision and smaller batch size parameter combinations were attempted in

an effort to curb VRAM usage, but to no avail. Initial results of Whisper-

JAX with the parameters shown in Table 4.3 on the reference file are shown

in Table 4.4.

Parameter Value

Precision float16
Model size medium
batch_size 1

Table 4.3: Initial Whisper-JAX parameter values

Run Elapsed time

1 (warm-up) 158s
2 102s
3 102s

Table 4.4: Initial Whisper-JAX results on reference file

It can be observed that run 1 is slower approximately 1.55 times slower

than the succeeding two runs. This observation is explained by the fact that

on the first run, the model has to initialise and compile all the required com-

ponents Just In Time (JIT), i.e. at the first moment the components are called.

Once compiled, subsequent model runs use the compiled components from

cache, which allows faster run times. The described phenomenon is more

commonly known as "warm-up".

4.2.2 Hugging Face Transformers

Another discontinued implementation is the Whisper model provided via

the Hugging Face Transformers library1. This implementation was not con-

sidered for further experimentation as inference is only supported for short-

1https://huggingface.co/docs/transformers/model_doc/whisper
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form audio, that is to say, audio files shorter than 30 seconds. With a suitably

configured pipeline, one could in theory use this implementation for long-

form audio of arbitrary length, as long as the pipeline handles segmentation

of the input audio into 30 second chunks.
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5. Conclusion

In this study, we investigate how the performance of Whisper can be im-

proved. Through the comparison of different Whisper variants and the tun-

ing of hyperparameters, we answer the research question: "What optimiza-

tions can be made to improve the transcription performance and efficiency

of Whisper and its variants?".

Firstly, experiments 1,3, and 4 show that memory usage can be reduced

through multiple strategic choices. Reducing the level of computational pre-

cision decreases memory usage on all models tested. Decreasing the batch

size reduces memory usage in WhisperX, as do smaller beam sizes in Faster-

Whisper.

Subsequently, experiments 1,2, and 4 show that transcription speed will

increase by reducing the level of computational precision. Larger batch sizes

have also been shown to increase transcription speed. Reducing beam size

increases transcription speed too.

Furthermore, experiments 1 to 4 show that enabling Voice Activity De-

tection (VAD) decreases the Word Error Rate (WER), thus improving the

accuracy of the model. The effects on memory usage and speed are also fa-

vorable, with memory usage reducing and speed increasing. There are thus

no downsides to enabling VAD.

As is often the case, there are trade-offs between model performance

and accuracy. Larger batch sizes increase transcription speed, but increase

memory usage. Reducing the beam size will increase transcription speed

and reduce memory usage, but will reduce accuracy by a small amount.

The choices one makes will depend on the constraints set by the specific

use-case and implementation.

In conclusion, implementing Faster-Whisper with compute_type set to

int8, beam_size set to 1, and vad_filter set to True will give the best results.
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This model with the aforementioned parameters values will return the high-

est overall transcription throughput, as the lower memory usage will per-

mit the usage of multiple, parallel instances of the model. In our findings,

Faster-Whisper offers the best trade-off between model performance and

accuracy. For the problem statement described in the introduction of this

thesis, Faster-Whisper is the best choice.

5.1 Discussion

5.1.1 Implications

Contrary to our initial assumptions, WhisperX may not always be the best

model to use. While the initial expectation was that WhisperX would per-

form better on all metrics due it being newer and having more features than

Faster-Whisper, our findings showed that this is not always the case. Model

choice depends on the demands and constraints of the specific use-case, and

no one-size-fits-all solution exists at this time. For the National Police Corps,

implementing either WhisperX or Faster-Whisper is a large improvement

over the original Whisper model. The higher processing speed and lower

WER lead to better results, both in terms of accuracy and quantity. Conse-

quently, this leads to higher quality investigations.

5.1.2 Limitations

A limitation of this study is that only Dutch language audio has been used.

Although Whisper has been designed as a multilingual model, it cannot be

guaranteed that the findings of this study will be directly applicable to other

languages.

Another limitation is that the subset of the dataset used during exper-

imentation consists exclusively of telephone dialogue. Guarantees cannot

be given as to whether the results shown in this study generalize to other

forms of speech or conversations.

The relatively small amount of data used in this study is also a limitation.

33



Conclusion

The component C directory contains only 55 hours of audio. It remains to

be seen if the results observed here remain scaling linearly when the scale

of data is in the hundreds or even thousands of hours.

One other limitation is that model runs have been performed over the

course of multiple days. This was necessary due to Google Colab’s usage

limits blocking access to GPU resources after a certain threshold of usage

was surpassed. Another downside of using Google Colab is that there are

no guarantees for runtime priority or resource availability. As such, there

are backend factors out of our control that may influence the results of the

model performance.

Lastly, while the beam_size parameter was only tested on Faster-Whisper,

WhisperX also contains this parameter. Unfortunately, at time of writing,

WhisperX contains a bug that prevents the model from responding to cer-

tain parameter modifications in the transcribe function. As such, the effects

of beam_size on WhisperX could not be tested.

5.1.3 Ethical implications and considerations

As it stands, the Whisper model will not be used to create evidence or make

some other type of decision that will influence the outcome of a legal pro-

ceeding. The model is used solely as a tool to transcribe confiscated audio

data, which can then be more easily searched through by detectives. Legal

procedures and due diligence remain as they were previously, as current

laws do not give any form of extra leniency to AI tools. The manual listen-

ing and eventual correction by a detective is mandatory if a transcript will

be used as evidence in a case. As such, we see no ethical implications of this

research.

5.1.4 Future research

Due to legal constraints, an essential requirement from the National Police

Corps is that the Whisper models tested must be able to run locally. For

use-cases where no such requirement is present, it could be worthwhile to

experiment and evaluate the performance of WhisperJAX with Tensor Pro-
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cessing Unit (TPU) acceleration instead of GPU acceleration. The caveat of

using TPUs is that the hardware is proprietary and used by Google exclu-

sively. The only way one can use TPUs is through Google’s cloud comput-

ing services. Nevertheless, the claimed performance gains are so attractive

that one should attempt to use TPUs if the use-case allow it.

At time of writing, WhisperX uses pyannote.audio for Voice Activity De-

tection (VAD). Another VAD implementation that shows promising result is

NVIDIA NeMo. Future research could investigate whether the use of NeMo

could improve the overall performance of WhisperX with regard to speed,

memory usage and accuracy.

As was discussed in the limitations, the effects of certain parameter mod-

ifications could not be tested on WhisperX. Future research should investi-

gate if the results from Faster-Whisper apply to WhisperX as well.
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A. GitHub repository

Repository containing code created for this thesis
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B. Scripts

shuf -zen18 nl/* | xargs -0 mv -t nl/sample_5_dev

Script for creating the 5% development subset

shuf -zen36 nl/* | xargs -0 mv -t nl/sample_10_test

Script for creating the 10% test subset
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C. Reference audio file

Value Metric

Name fn008000
Duration 580s
Format wav
Dataset CGN

Directory component c
Language Dutch
Speakers 2

Table C.1: Description of reference audio file

40



Bibliography

[1] R. Pieraccini and I. Director, “From audrey to siri,” Is speech recogni-
tion a solved problem, vol. 23, 2012.

[2] Reddy, Erman, Fennell, and Neely, “The hearsay-i speech under-
standing system: An example of the recognition process,” IEEE Trans-
actions on Computers, vol. C-25, no. 4, pp. 422–431, 1976. DOI: 10.
1109/TC.1976.1674624.

[3] B. P. Lowerre and B. R. Reddy, “Harpy, a connected speech recogni-
tion system,” The Journal of the Acoustical Society of America, vol. 59,
no. S1, S97–S97, Apr. 1976. DOI: 10 . 1121 / 1 . 2003013. [Online].
Available: https://doi.org/10.1121/1.2003013.

[4] J. Baker, “The dragon system–an overview,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 23, no. 1, pp. 24–29, 1975.
DOI: 10.1109/TASSP.1975.1162650.

[5] K.-F. Lee, H.-W. Hon, and R. Reddy, “An overview of the sphinx
speech recognition system,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 38, no. 1, pp. 35–45, 1990.

[6] A. J. Oxenham, “How we hear: The perception and neural coding
of sound,” Annual review of psychology, vol. 69, pp. 27–50, Jan. 2018,
ISSN: 0066-4308. DOI: 10.1146/annurev-psych-122216-011635.

[7] L. H. Carney and J. M. McDonough, “Nonlinear auditory models
yield new insights into representations of vowels,” en, Attention,
Perception, & Psychophysics, vol. 81, no. 4, pp. 1034–1046, May 2019,
ISSN: 1943-393X. DOI: 10.3758/s13414-018-01644-w.

[8] P. Pedersen, “The mel scale,” Journal of Music Theory, vol. 9, no. 2,
pp. 295–308, 1965.

[9] P. Lindsay and D. Norman, Human Information Processing: An Intro-
duction to Psychology. Academic Press, 1977, ISBN: 9780124509603.
[Online]. Available: https://books.google.nl/books?id=6d9OAAA
AMAAJ.

[10] J. Makhoul and L. Cosell, “Lpcw: An lpc vocoder with linear predic-
tive spectral warping,” in ICASSP ’76. IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol. 1, 1976, pp. 466–469.
DOI: 10.1109/ICASSP.1976.1170013.

[11] J. Harrington and S. Cassidy, Techniques in Speech Acoustics. Springer
Netherlands, 1999. DOI: 10.1007/978-94-011-4657-9. [Online].
Available: https://doi.org/10.1007/978-94-011-4657-9.

[12] K. O’Shea and R. Nash, “An introduction to convolutional neural
networks,” CoRR, vol. abs/1511.08458, 2015. arXiv: 1511 . 08458.
[Online]. Available: http://arxiv.org/abs/1511.08458.

41

https://doi.org/10.1109/TC.1976.1674624
https://doi.org/10.1109/TC.1976.1674624
https://doi.org/10.1121/1.2003013
https://doi.org/10.1121/1.2003013
https://doi.org/10.1109/TASSP.1975.1162650
https://doi.org/10.1146/annurev-psych-122216-011635
https://doi.org/10.3758/s13414-018-01644-w
https://books.google.nl/books?id=6d9OAAAAMAAJ
https://books.google.nl/books?id=6d9OAAAAMAAJ
https://doi.org/10.1109/ICASSP.1976.1170013
https://doi.org/10.1007/978-94-011-4657-9
https://doi.org/10.1007/978-94-011-4657-9
https://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458


Bibliography

[13] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of
a convolutional neural network,” in 2017 international conference on
engineering and technology (ICET), Ieee, 2017, pp. 1–6.

[14] L. R. Medsker and L. Jain, “Recurrent neural networks,” Design and
Applications, vol. 5, no. 64-67, p. 2, 2001.

[15] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,”
no. arXiv:1706.03762, Dec. 2017, arXiv:1706.03762 [cs]. DOI: 10.4855
0/arXiv.1706.03762. [Online]. Available: http://arxiv.org/abs/
1706.03762.

[16] R. Bommasani, D. A. Hudson, E. Adeli, et al., “On the opportunities
and risks of foundation models,” CoRR, vol. abs/2108.07258, 2021.
arXiv: 2108.07258. [Online]. Available: https://arxiv.org/abs/
2108.07258.

[17] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, Wav2vec 2.0: A
framework for self-supervised learning of speech representations, 2020.
arXiv: 2006.11477 [cs.CL].

[18] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I.
Sutskever, Robust speech recognition via large-scale weak supervision,
2022. arXiv: 2212.04356 [eess.AS].

[19] D. Hendrycks and K. Gimpel, “Bridging nonlinearities and stochas-
tic regularizers with gaussian error linear units,” CoRR, vol. abs/1606.08415,
2016. arXiv: 1606.08415. [Online]. Available: http://arxiv.org/
abs/1606.08415.

[20] M. Bain, J. Huh, T. Han, and A. Zisserman, Whisperx: Time-accurate
speech transcription of long-form audio, 2023. arXiv: 2303.00747 [cs.SD].

[21] ivdnt.org, Corpus Gesproken Nederlands (CGN), nl-NL. [Online]. Avail-
able: https://taalmaterialen.ivdnt.org/download/tstc-corpu
s-gesproken-nederlands/ (visited on 06/25/2023).

[22] D. van der Vloed, J. Bouten, and D. van Leeuwen, “NFI-FRITS: A
forensic speaker recognition database and some first experiments,”
in Proc. The Speaker and Language Recognition Workshop (Odyssey 2014),
2014, pp. 6–13. DOI: 10.21437/Odyssey.2014-2.

42

https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2212.04356
https://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://arxiv.org/abs/2303.00747
https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/
https://taalmaterialen.ivdnt.org/download/tstc-corpus-gesproken-nederlands/
https://doi.org/10.21437/Odyssey.2014-2

	Introduction
	Motivation and context
	Literature review
	Research question

	Data
	Description of the data
	Data exploration results
	Preparation of the data
	Ethical and legal considerations of the data

	Method
	Overview
	Variables
	Experiments
	Calculation of performance metrics
	A proposal for the modification of Whisper pre-processing

	Results
	Overview of the results
	Alternative approaches

	Conclusion
	Discussion

	Acknowledgements
	GitHub repository
	Scripts
	Reference audio file
	Bibliography

