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Abstract

This study presents an exploration of the transcriptomic profiles of pediatric high-grade brain tumors and their

correlation with survival outcomes. By leveraging RNA-sequencing data, we employed techniques including

Principal Component Analysis (PCA) and differential gene expression analysis using DESeq2 to identify

distinct molecular signatures and differentially expressed genes across various tumor types. Notably, our study

shed light on the consistent upregulation of Melanoma Antigen Gene A3 (MAGE-A3) across different tumors,

suggesting its potential role in tumorigenesis. Subsequent survival analysis, employing the Kaplan-Meier

method and the log-rank test, revealed a statistically significant association between high MAGE-A3 expression

and lower survival rates. This underscores the prognostic potential of MAGE-A3 in pediatric high-grade brain

tumors. However, another gene of interest, COL17A1, despite being significantly downregulated, did not

demonstrate a significant correlation with survival outcomes, exemplifying the complex relationships in the

tumor's molecular profile. Our study contributes insights into the molecular heterogeneity of pediatric

high-grade brain tumors, thereby laying the groundwork for future research to further unravel the complex

genetic interactions and their implications on patient survival.
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Introduction

1. Introduction

1.1. Pediatric High-Grade Brain Tumors: Prevalence, Challenges, and Treatment Limitations

High-grade brain tumors are characterized by aggressive growth and often poor prognosis,
representing some of the most malignant forms of brain cancers seen in children. They are hard to
treat and call for fresh research to boost treatment outcomes and the quality of life for children
diagnosed with these diseases. This study focuses on deciphering the immune transcriptomic profile
of various high-grade brain tumors in children. Immune transcriptomic profiling is a method that uses
high-throughput sequencing technologies to identify and quantify the mRNA (transcripts) within a
cell or tissue sample (Conesa et al., 2016). This allows researchers to measure the activity of the
immune system at the molecular level, providing a detailed look at how the immune system responds
to various conditions, including disease states like cancer (Alizadeh et al., 2000; Bindea et al., 2013).
Specifically, in this study, immune transcriptomic profiling is used to understand the immune response
in pediatric high-grade brain tumors. High-grade brain tumors make up around 15-20% of all brain
tumors in children, with the occurrence rates ranging between 0.5 and 4 cases per 100,000 kids
(Ostrom et al., 2015). The 5-year survival rates for children diagnosed with high-grade brain tumors
are still quite low. They range between 30–60%, which is a stark contrast to the over 90% survival
rates with leukemia, another more common childhood cancer (Ward et al., 2014; Pui et al., 2015).

In recent years, the field of immunotherapy has seen substantial advancements, most notably
the development of Chimeric Antigen Receptor T-cell (CAR-T) therapy. This innovative treatment
modifies a patient's T cells to specifically target and destroy cancer cells, a breakthrough that has
significantly enhanced outcomes for certain leukemia types. The success of CAR-T therapy highlights
the power and potential of immunotherapies, and underscores the importance of understanding the
immune transcriptomic profile, particularly in the context of pediatric high-grade brain tumors
(Maude et al., 2018).

Factors contributing to the challenges in treating pediatric high-grade brain tumors include
their relative rarity, heterogeneity, the presence of the blood-brain barrier, and the potential for severe
long-term side effects from current treatment modalities (Jones & Baker, 2014; Daneman & Prat,
2015; Merchant et al., 2010).

Research into children is especially relevant, because treating pediatric high-grade brain
tumors is more challenging than treating adult patients due to several factors. Firstly, pediatric tumors
often exhibit distinct molecular and genetic profiles, which can affect tumor behavior, growth
patterns, and response to treatments, making it difficult to extrapolate adult treatment approaches to
children (Jones et al., 2012; Gupta et al., 2018). Secondly, the pediatric central nervous system is still
developing, making it more vulnerable to the adverse effects of aggressive treatments, such as
radiation and chemotherapy, potentially leading to long-term cognitive, motor, and endocrine
impairments (Mulhern et al., 2004; Ris & Noll, 1994). By examining a range of tumors this research
aims to elucidate some of the complex interplay between tumor and immune cells. Consult Table 1 for
further information on the different tumor types, incidences and prognosis.
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Table 1

Tumor types, incidences, and prognosis (CNS - Central Nervous System)

Tumor Type Incidence Prognosis Description Source

AtypicalTeratoid /
Rhabdoid Tumor 1-2% of pediatric CNS 15-30% 5-year survival

ATRT is a rare and fast-growing cancerous tumor of the
brain and spinal cord. It commonly appears in children aged
three years and younger, although it can occur in older
children and adults.

Fruhwald et
al. (2016)

Craniopharyngioma Rare Variable
Craniopharyngioma is a rare type of brain tumor derived
from pituitary gland embryonic tissue. It can cause
hormonal imbalances and pressure effects.

Müller (2014)

Ependymoma 8-12% of pediatric CNS 50-70% 5-year survival

Ependymomas are tumors that arise from ependymal cells
lining the ventricles and central canal within the spinal cord.
These tumors can occur anywhere in the central nervous
system.

Pajtler et al.
(2015)

Glioblastoma 3% of pediatric CNS <20% 2-year survival

Glioblastoma is an aggressive type of cancer that can occur
in the brain or spinal cord. It forms from cells called
astrocytes that support nerve cells. It can occur at any age
but tends to occur more often in older adults.

(Nikitovic et
al., 2016);
Stupp et al.
(2005)

Glioma 20-30% of pediatric CNS 20-35% 5-year survival
Gliomas are a type of tumor that starts in the glial cells of
the brain or the spine. They range from slow-growing (low
grade) to fast-growing (high grade), with varying prognosis.

Fangusaro
(2012)

Medulloblastoma 20% of pediatric CNS 60-70% 5-year survival
Medulloblastoma is a cancerous tumor—most often brain
cancer. It is the most common malignant tumor of the
cerebellum in children.

Ramaswamy
et al. (2016)

1.2. The Tumor Microenvironment and Its Role in Immunosuppression and Immune Response

Immunotherapies are a type of treatment that use the body's immune system to find and
destroy cancer cells. They have shown great potential in treating different cancers, like skin cancer
(melanoma) and a type of lung cancer (non-small cell lung cancer) (Ribas & Wolchok, 2018; Reck et
al., 2016), and childhood leukemia (Ward et al., 2014; Pui et al., 2015) .

The study of how the immune system responds to cancer is very important because the
environment where the tumor grows plays a big role in how the cancer develops. This environment,
known as the tumor microenvironment (TME), shapes how cancer cells, immune cells, and other cells
interact. This complex relationship can affect how the tumor grows, how it responds to treatments,
and how it can sometimes evade the immune system (Quail & Joyce, 2013). The tumor
microenvironment (TME) also contains supportive cells such as cancer-associated fibroblasts and
tumor-associated macrophages, which can aid in tumor growth.

Within the Tumor Microenvironment (TME), various immune cells have differing roles,
playing both supportive and defensive parts in the body's response to a tumor. Some immune cells,
such as a type called lymphocytes, have the capacity to recognize and eliminate cancer cells, aiding
the body's fight against the tumor (Dong et al., 2017). Other types of immune cells may inadvertently
assist the tumor. These cells can suppress the body's immune response, providing an opportunity for
the tumor to grow and evade the immune system (Weber et al., 2017). A third group of immune cells
can have a dual role depending on their state. They can either support or harm the tumor, adding
another layer of complexity to the immune response in the TME (Mantovani et al., 2017). By better
understanding the interplay between these immune cells and the tumor, it is possible to develop more
effective strategies for cancer treatment.
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When it comes to high-grade brain tumors in children, different immune responses can
manifest compared to adults, making pediatric-specific research necessary for the development of
effective treatments (Simon et al., 2015). High-grade brain tumors are known to suppress the immune
system, making it harder for immune-based therapies to work (Jackson et al., 2019). On top of that,
the blood-brain barrier (BBB), a natural defense mechanism of the brain, can prevent many treatments
from reaching the brain (Daneman & Prat, 2015). By studying the immune response to these types of
tumors, researchers might find new ways to overcome these challenges and improve the quality of life
and outcomes for these young patients.

1.3. Decoding Immunological Signatures: The Potential for Personalized Treatments

Immunosignatures describe unique patterns of immune response in the context of specific
diseases or conditions. An immunosignature, in simple terms, is like a unique "fingerprint" that the
immune system leaves when it responds to a disease (Restifo et al., 2012). Broadly speaking,
immunosignatures encompass two main components, Immunophenotypes and immunomodulatory
signatures:

● Immunophenotypes pertain to the characterization of immune cells by identifying specific
surface markers (proteins found on the cell surface). This gives us an idea of the type and
state of the immune cells present in the tumor environment. It is like taking a census of the
immune cells within the tumor, helping us understand what types of cells are there and in
what proportion (Maecker et al., 2012).

● Immunomodulatory signatures, on the other hand, refer to the expression of
immune-modulating factors by the tumor cells themselves. These factors, which could be
proteins like cytokines or chemokines, can change the behavior of the immune cells, often
leading to an environment that suppresses the immune response and allows the tumor to grow
(Vinay et al., 2015). It is akin to the tumor cells 'sending signals' to trick the immune system
into helping them survive and proliferate.

Immunosignatures play an integral role in shaping our understanding of disease progression
and potential treatments. With this in mind, our study seeks to address two key research questions:

● Question 1: "Which genes are differentially expressed in pediatric high-grade brain tumors
and what unique immunosignatures can we identify from these expression patterns?"

● Question 2: "Do these identified immunosignatures significantly influence survival outcomes
in patients diagnosed with these pediatric high-grade brain tumors?"

These research questions guide our objective to not only characterize the immune
transcriptomic profile of pediatric high-grade brain tumors but also to explore their association with
patient survival rates. Understanding the survival outcomes associated with specific
immunosignatures can provide insights into the prognosis of these aggressive cancers. While the focus
on immune transcriptomic profiles can enhance our understanding of the tumor microenvironment and
its role in cancer progression, linking these findings to survival outcomes brings a clinical relevance to
our study.
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2. Data

The utilization of patient data in this study was carried out with care and respect for patient
privacy. All data were pseudonymized and analyzed collectively to ensure confidentiality. For further
details, consult Appendix A.

2.1. Count Data: RNA-seq

RNA-seq, short for RNA sequencing, is a technology that allows for the comprehensive
examination of all the RNA in a sample. The process typically starts with the conversion of RNA to
cDNA, which is then broken down into short fragments (reads) that are sequenced. The sequence data
is then analyzed to provide a snapshot of the cellular activity at the time the sample was collected,
offering insights into the transcriptome—the complete set of RNA transcripts produced by the
genome at a specific moment (Wang, Gerstein & Snyder, 2009).

The procedure to analyze RNA-seq data typically involves several key steps:
1. RNA-seq short reads: RNA is first converted into a library of cDNA fragments through

either RNA fragmentation or cDNA synthesis. These fragments are then sequenced to
produce millions of short sequence reads. The quality of these reads is paramount as the
downstream analysis heavily relies on the accuracy of this data.

2. Quality control: This step assesses the quality of the raw sequence data to ensure its
reliability for further analysis. Tools such as FastQC provide a fast and efficient way to
analyze whether the raw sequence data has any problems, such as low-quality sequences,
contamination, or overrepresented sequences. Another tool, Picard, provides a set of Java
command-line utilities for manipulating high-throughput sequencing data and formats,
providing deeper metrics for the quality control step (Andrews, 2010; Broad Institute, 2019).

3. Mapping to reference genome: After quality control, the sequenced reads are aligned or
mapped to a reference genome. The reference genome used is GRCh38.

4. Generating count data: Following the mapping of reads to the reference genome, the
subsequent step involves quantifying gene expression. This is typically done by counting the
number of reads mapped to each gene, a process called read counting (Anders et al., 2015).

The final result is a matrix of gene expression data, with rows corresponding to genes and
columns corresponding to individual samples. This data can then be used for a variety of downstream
analyses, including differential gene expression analysis, clustering, and pathway analysis. As shown
in table 2.

Table 2

Count Data

Gene Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

ENSG00000223972.5 139 54 54 43 70

ENSG00000227232.5 1081 1488 1377 778 1030

ENSG00000278267.1 13 7 7 8 29

……………………… … … … … …
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2.2. Selected Data Exploration Results

2.2.1. Metadata
Alongside the clinical data, we also possess a metadata set. This metadata comprises valuable

supplementary information that aids in our analysis and interpretation of the main data. This
information can include aspects such as demographic data, relevant medical history, tumor grading,
and any other data elements that provide context to our main dataset. A preview of this metadata is
available in Table 3.

Table 3

Metadata

In our initial analysis, we started with a dataset comprising 182 samples, representing various
types of pediatric high-grade brain tumors. However, our preliminary data cleaning process identified
33 longitudinal data points with duplicate patient identifiers, which were subsequently removed to
avoid potential biases in our analysis. Our initial dataset encompassed eight pediatric high-grade brain
tumors. However, for the purpose of our analysis, we chose to use simplified versions or collective
names for these tumor types. The reason behind this decision was to enhance the readability and
accessibility of our research, while ensuring our analysis could remain robust and significant despite
the inherent variation and complexity in tumor subtypes. By consolidating subtypes under broader
categories, we were able to maintain a manageable number of categories for comparison while still
preserving the essential distinctions that characterize these various forms of pediatric high-grade brain
tumors. This simplified approach will facilitate a more straightforward interpretation of our findings
without compromising the depth and accuracy of our analysis. Additionally, we decided to exclude
Astrocytoma, a cancer type represented by only a single sample, due to the imbalance this could
introduce into our analysis. Following these data cleaning steps, we were left with a dataset of 147
samples, which consisted of samples from 65 female and 82 male patients, providing a
gender-balanced perspective in our ensuing analyses.

Table 4 provides an overview of the distribution of tumor types within our dataset,
specifically detailing the number of samples, the age range of patients, and the average age at
diagnosis for each tumor type. A closer look at underscores the unique nature of each tumor type and
the patient population it affects. For instance, it is evident that ATRT predominantly affects the
youngest children in our study, while Glioblastoma tends to occur in older children. To further
visualize the age distribution across different tumor types, we created two figures, which are available
in Appendix C.
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Sample Diagnosis Gender Age

Sample 1 Medulloblastoma female 12.5

Sample 2 Craniopharyngioma male 14.6

Sample 3 Glioblastoma female 7.9
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Table 4

Overview: distribution of tumor types

Tumor Type Number of samples Age range (years) Average age at diagnosis

ATRT 10 0-4 2.2

Craniopharyngioma 12 1-17 9.6

Ependymoma 20 0 - 9 2.8

Glioblastoma 11 1 - 18 11.4

Glioma 55 0 -19 7.6

Medulloblastoma 39 2 - 19 8.9

2.2.2. Survival Data
This data provides us with information regarding the patient's outcome, allowing us to

understand the lethality of each tumor type and the effectiveness of treatments (table 5).

Table 5

Survival Data

With our survival data, we performed survival analysis, comparing the prognosis derived from
the literature against our actual observed survival rates. This is visible in Table 6.

Table 6

Survival: Literature vs. our data

Tumor Type Diagnosed Survivors Prognosis (literature) Actual Survival Rate

ATRT 10 3 15-30% 5-year survival 30% 5-year survival

Craniopharyngioma 12 12 Variable 100%

Ependymoma 20 17 50-70% 5-year survival 85% 5-year survival

Glioblastoma 11 1 <20% 2-year survival 90.90% 2-year survival

Glioma 55 28 20-35% 5-year survival 83.63% 5-year survival

Medulloblastoma 39 32 60-70% 5-year survival 94.87% 5-year survival
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Sample Age at Diagnosis Date Of Death

Sample 1 8

Sample 2 0 2022-02-23

Sample 3 2
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Our analysis showcased notable discrepancies between observed survival rates and those
projected in the literature for various tumor types. For Atypical Teratoid/Rhabdoid Tumor (ATRT), a
survival rate of 30% at the 5-year mark is in line with the 15-30% literature prognosis, indicating
consistency with established expectations for this tumor type. The Craniopharyngioma patients
surprisingly demonstrated a 100% survival rate, deviating significantly from the variable prognostic
expectations from the literature. This may be indicative of less aggressive disease behavior in our
cohort or an exceptional efficacy of the therapeutic measures undertaken. Ependymoma and
Medulloblastoma exhibited survival rates surpassing the literature's prognosis. Specifically,
Ependymoma showed an 85% 5-year survival rate, exceeding the 50-70% cited in literature.
Medulloblastoma showcased an impressive 94.87% survival rate, well above the 60-70% 5-year
survival rate anticipated. These outcomes hint at possible selection bias towards less aggressive
disease forms or exceptionally effective treatment strategies. Conversely, the observed survival rates
for Glioblastoma and Glioma significantly exceeded the expectations based on existing literature. For
Glioblastoma, the survival rate stood at 90.90% at the 2-year mark, far exceeding the usual prognosis
of less than 20%. Glioma also exhibited a higher than anticipated 5-year survival rate at 50.91%,
against the 20-35% expected survival range.

These observations underscore potential advancements in treatment strategies for these tumor
types, exceeding historical expectations. Such discrepancies necessitate further investigation into the
contributing factors, ranging from variations in disease biology to advancements in therapeutic
techniques. A deeper understanding of these factors can help improve prognosis predictions and
contribute to the development of more effective treatment methods.

2.3. Data Preparation for Analysis

While dealing with the RNA-seq data, it was necessary for us to ensure all pre-processing
steps were in place before conducting our analysis. The raw RNA-seq data was carefully processed
and cleaned, which was essential for making valid comparisons across samples and ensuring the
accurate representation of the biological phenomena we were studying (Bahassi el & Stambrook,
2014; Schafer & Graham, 2002). In RNA-seq datasets, it is not uncommon to observe what could be
considered as "missing values". This term, in this specific context, refers to genes that are not detected
in some samples. These non-detected genes can occur for a variety of reasons including, but not
limited to, the inherent sensitivity of RNA and its susceptibility to degradation. However, it is crucial
to understand that these are not "missing" in the traditional sense, as they may indicate that certain
genes are not expressed in particular samples, a phenomenon that is expected in RNA-seq data (Liu et
al., 2019). In our dataset, while some genes were not detected in all samples, this does not imply
missingness in the data, but rather represents a natural part of the biological variation among different
samples. This absence is actually an informative part of the dataset and provides important insights
into the gene expression patterns across different conditions (McCall et al., 2011). Consequently, the
observed non-detection of some genes in certain samples does not present a problem for our analysis.
Techniques such as DESeq2 are designed to handle this kind of data and utilize statistical models that
account for the presence of non-detected genes (Love, Huber & Anders, 2014). Therefore, we can
confidently proceed with our downstream analysis without worrying about potential biases introduced
by these "missing values".

Our study began with 182 separate RNA-seq datasets, each providing gene count data. These
individual datasets were merged into a single consolidated dataset that captured the gene counts for all
the samples, facilitating further analysis. In addition to the gene count data, we also had two other
types of datasets. One contained metadata, offering information about each sample like the patient's
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age, diagnosis, and treatment history. The second dataset provided detailed information about the
patients' survival, capturing if the children survived or if they succumbed to their disease.

Before conducting the differential expression analysis using DESeq2, an important step in our
data processing was to filter and focus on immune-related genes. From the count dataset which
included 60.357 genes, we only included approximately 1700 genes that were recognized as
immune-related, based on information retrieved from the reputable gene database NanoString
(NanoString Technologies, 2023). Focusing on these specific genes allowed us to narrow down the
scope of our analysis to the most relevant factors. This is particularly useful when dealing with
high-dimensional data like transcriptomic profiles, where the number of genes (variables) far exceeds
the number of samples, potentially leading to statistical issues and difficulties in interpretation (Parekh
et al., 2016).

Next, we focused on normalization of gene expression values. This is a crucial step because
the number of sequencing reads attributed to a particular gene is not only influenced by its expression
level but also by the total number of reads sequenced for a sample (Dillies et al., 2013). Therefore, to
ensure a fair comparison across samples, DESeq2 was employed for normalization. DESeq2
calculates normalization factors to adjust for differences in sequencing depth across samples (Love,
Huber & Anders, 2014). DESeq2 will be discussed in great detail in the method section.

10



Methods

3. Methods

3.1. Translating Biological Research into Data Science Objectives

In translating our biological research question into a data science task, we recognized our key
objectives. Originally, we aimed to understand the immune transcriptomic profiles of pediatric
high-grade brain tumors and their differences across tumor types. Guided by this, our investigation
involved exploring the RNA-seq data to reveal underlying patterns in gene expression tied to the
immune response. To translate the research question into a data science question, we focused on the
following objectives:

First of all, identifying differentially expressed genes (DEGs) related to the immune response
in pediatric high-grade brain tumors. This objective allowed us to narrow down the scope of our
analysis to genes that were most relevant to our research question (Love, Huber & Anders, 2014). By
comparing the DEGs across various tumor types, we aimed to uncover the specific immunosignatures
associated with each tumor (Anders & Huber, 2010). Clustering samples based on gene expression
patterns to identify unique immunosignatures.

In addition, survival analysis forms a crucial part of our study's approach, as it allows us to
analyze and interpret the 'time-to-event', where the event could be any specific outcome of interest
such as death, disease progression, or recovery. In the context of our research, survival analysis allows
us to monitor the proportion of patients surviving over time across different tumor types. Additionally
it enables us to explore how differing immune response profiles may affect patient survival times
(Hosmer Jr, Lemeshow & May, 2008).

If our study finds, for instance, that certain immunosignatures are linked to poor survival
rates, this could inform clinical decision-making by identifying patients who may need more
aggressive or targeted treatment strategies. On the other hand, if certain immunosignatures are
associated with better survival rates, this could help identify patients who might do well with less
aggressive treatments, thereby reducing unnecessary side effects and improving their quality of life.
This kind of data could also stimulate further research into novel therapeutic strategies, such as the
development of drugs targeting the immune system in a way that mimics the beneficial
immunosignatures (Galon & Bruni, 2019). Therefore, by integrating the study of immunosignatures
with survival analysis, we can enhance our understanding of the interplay between the immune system
and tumor biology (Therneau & Grambsch, 2000).

3.2. Method Selection for Analysis: DESeq2

The selection of methods for our analysis was predominantly driven by the nature of our data
and the research questions we sought to answer. As our data comprised of RNA-seq counts, we
required robust methods that could handle the inherent properties of this type of data, including its
discrete nature, high dimensionality, and presence of technical and biological variability (Oshlack,
Robinson & Young, 2010). Our entire workflow of methods is visible in Figure 1.

To identify differentially expressed genes (DEGs), we opted for the DESeq2 method (Love,
Huber & Anders, 2014). For readers interested in a deeper mathematical exploration of these steps, we
recommend the original DESeq paper by Love, Huber & Anders (2014). The article provides
comprehensive mathematical underpinnings behind the model's structure and the data normalization
methods employed in DESeq.
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Figure 1

Workflow of methods

Differential gene expression analysis is a critical component in many biological studies,
particularly those involving transcriptomic data. One of the robust and widely-used methods for this
purpose is DESeq2, a powerful approach designed to analyze count data derived from
high-throughput sequencing assays such as RNA-seq (Love, Huber & Anders, 2014). DESeq2 allows
for the identification of differentially expressed genes between two or more conditions, accounting for
the typical features of RNA-seq data such as overdispersion and mean-variance relationship. In the
forthcoming analysis, we will be applying DESeq2 to our data to identify key genes that are
differentially expressed among different samples.

In the following sections, the implementation of DESeq2 will be explained in more detail,
detailing each step of the process, from normalization of raw counts and modeling of count data, to
the shrinkage of log2 fold changes and the testing for differential expression. Consult Figure 2 for the
structure of the entire DESeq2 analysis.

Figure 2

DESeq2 Analysis
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We will consider the following subset of our data for a more detailed walk-through of the DESeq2
analysis steps (copy of Table 2):

Gene Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

ENSG00000223972.5 139 54 54 43 70

ENSG00000227232.5 1081 1488 1377 778 1030

ENSG00000278267.1 13 7 7 8 29

3.2.1. Size Factor Estimation
Before any analysis, DESeq normalizes the raw count data to account for sequencing depth

and library composition. DESeq2 expects a matrix of raw counts, which reflect gene abundance, but
can also depend on other factors such as gene length, sequencing depth, and library composition.
DESeq2 estimates size factors to account for these "uninteresting" factors, making the expression
levels more comparable between samples. For instance, in the provided data, the count for
ENSG00000227232.5 is considerably higher than the counts for the other two genes. This difference
could be due to a higher sequencing depth rather than an actual increased expression of
ENSG00000227232.5.

DESeq2 calculates size factors to scale the counts for each gene and normalize these
discrepancies across all samples. It does so by calculating a pseudo-reference sample by taking the
geometric mean for each gene across all samples. The size factor for each sample is then calculated as
the median of the ratios of the counts in each sample to the pseudo-reference sample (Love, Huber &
Anders, 2014). The normalization method DESeq employs is called the median of ratios. Here is the
simplified version of how it works:

1. A pseudo-reference sample is created by calculating the geometric mean for each gene across
all samples. This geometric mean serves as a kind of "average" gene expression level. The
geometric mean is used instead of the arithmetic mean because it is less sensitive to extreme
values, providing a more stable reference point.

2. For each gene in each sample, the ratio of the gene's count to the corresponding count in the
pseudo-reference sample is calculated.

3. The median of these ratios in each sample is calculated and taken as the "size factor" for that
sample.

4. Each raw count is then divided by the respective sample's size factor to get normalized counts.

In the context of our study, normalization plays an essential role in accurate representation
and interpretation of the gene expression data. For instance, let us consider the expression of
MAGE-A3 in two samples, Sample 41 and Sample 63, as depicted in Table 7. Before normalization,
the raw count of MAGE-A3 is higher in Sample 41 (1334 counts) compared to Sample 63 (975
counts). If we were to interpret this data without normalization, we might conclude that the expression
of MAGE-A3 is higher in Sample 41. However, this could be misleading as it doesn not account for
differences in sequencing depth or other potential biases between the two samples. Upon applying
normalization, the counts for MAGE-A3 drastically change. The normalized count for Sample 41 is
1091, while for Sample 63, it is 2282. After normalization, we observe that MAGE-A3 expression is
actually higher in Sample 63, a conclusion opposite to what we would have drawn from the raw
counts.
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Table 7

Example of Impact of Normalization on MAGE-A3

MAGE-A3 Sample 41 Sample 63

Raw Counts 1334 975

Normalized Counts 1091 2282

DESeq models count data using the negative binomial distribution. This distribution is
particularly suited to RNA-seq count data, which is discrete, over-dispersed (the variance is greater
than the mean), and non-negative. The distribution in our RNA-seq count data is not normally
distributed, as shown in figure 3. This is essential because the count data is modeled using a
generalized linear model (GLM) that assumes a negative binomial distribution (Anders and Huber,
2010). The negative binomial distribution has two parameters: the mean (µ) and the dispersion (α).
The mean is directly estimated from the normalized counts, but the dispersion is more complex.

Figure 3

Distribution RNA-seq

Note: In Figure 3, the x-axis represents the expression counts, signifying the frequency of gene
expression, whereas the y-axis denotes the number of genes expressed at that frequency. The graph
represents a negative binomial distribution, which is typical in RNA-seq data.
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3.2.2. Dispersion Estimation
Dispersion is a measure of variability in the data. For example, ENSG00000278267.1 in the

sample data shows lower counts and less variation across samples compared to ENSG00000227232.5,
which would result in a lower dispersion estimate. Dispersion is a statistical metric that gauges
variability in the data, computed as the square of the coefficient of variation. If a gene has a dispersion
value of 0.04, it suggests a 20% fluctuation around the anticipated mean (Love, Huber & Anders,
2014). DESeq provides a method for estimating the dispersion parameter (α) for each gene. Here are
the steps involved:

1. An initial estimate of dispersion for each gene is calculated using maximum likelihood
estimation, creating a "dispersion plot".

2. A trend line (red line in the dispersion plot) is fitted to these initial dispersion estimates.
3. The dispersion estimates are then "shrunk" towards the fitted curve using an empirical Bayes

approach to obtain final dispersion estimates. This process of shrinkage helps to stabilize the
estimates, reducing the influence of random variability.

Based on the description, it seems that our data aligns well with what is expected in this kind
of analysis. The dispersion estimates and the process of shrinking them towards the trend line appear
to operate as expected, which is crucial for the reliability of the downstream analysis, like identifying
differentially expressed genes. Consult Figure 4 for our Dispersion Curve.

Figure 4

Gene-Wise Dispersion Curve

Note. The x-axis represents the mean normalized counts, indicating the average gene expression
levels, while the y-axis shows dispersion, reflecting the variability of gene expression across different
samples. Each point on the graph corresponds to a gene, with its position representing the relationship
between the gene's average expression level and its dispersion.
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3.2.3. Generalized Linear Model
DESeq employs the normalized counts, size factors, and dispersion estimates to construct a

generalized linear model (GLM) for each gene. This GLM, grounded in the negative binomial
distribution, helps determine the expected true count for each gene in every sample, which is adjusted
for the size factor. The final model DESeq utilizes can be written as:

𝑙𝑜𝑔2(𝑐𝑜𝑢𝑛𝑡
𝑖𝑗

) = β
0

+ β
𝑖
 •  𝑥

𝑗
+ ϵ

Where:
● is the log2 expression level in the control samples (reference).β

0

● is the log2 Fold Change in gene i.β
𝑖
 

● is 1 for treated and 0 for control.𝑥
𝑗

● is the random error.ϵ

The hypothesis that DESeq tests for each gene is whether the log2FC ( ) is equal to 0,β
𝑖

meaning there is no difference in expression between the two conditions. If is significantlyβ
𝑖
 

different from zero, then the gene is considered differentially expressed.

3.2.4. Shrinkage of Log Fold Changes
In the next step, DESeq2 calculates the log2 fold changes for each gene. Fold changes

measure the relative difference in gene expression between conditions. The log2 fold changes are then
shrunk to stabilize the estimates and reduce the effect of outliers or genes with low counts (Love,
Huber & Anders, 2014).

3.2.5. Testing for Differential Expression and Generating P-Values
1. A Wald test is performed for each gene to identify those that are differentially expressed

between conditions (Love, Huber & Anders, 2014). The Wald test generates a p-value for
each gene that reflects the strength of evidence against the null hypothesis (no difference in
expression between conditions).

2. Finally, to control the rate of false positives due to multiple hypothesis testing, DESeq2
applies the Benjamini-Hochberg procedure to adjust the p-values, effectively controlling the
false discovery rate (FDR) at a certain level, set to 5% in our study (Benjamini & Hochberg,
1995).

3.3. Method Selection for Analysis: Principal Component Analysis (PCA)

To explore our RNA-seq data thoroughly and gain insights into the structure within our
samples, we leveraged Principal Component Analysis (PCA), a powerful technique for dealing with
high-dimensional datasets. PCA is frequently used in genomics to unravel the internal structure of
gene expression data and account for the variance within the data (Jolliffe & Cadima, 2016).
The principal utility of PCA lies in its ability to transform an original set of variables into a smaller set
of uncorrelated variables, termed as principal components, without losing much of the original data's
variance (Ringnér, 2008). This reduction in dimensionality eases the interpretation and visualization
of complex datasets.When applying PCA to our RNA-seq data, our primary aim was to explore
inherent patterns or clusters within the data and highlight any potential outliers requiring further
exploration (Abdi & Williams, 2010).
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3.4. Method Selection for Analysis: Survival Analysis

Survival analysis is a branch of statistics focused on analyzing the time until an event of
interest occurs. It is often employed in medical research to study the time from treatment to an event
such as death or relapse (Rich, 2010). In the context of high-grade pediatric brain tumors, survival
analysis allows us to explore the duration from diagnosis or the start of treatment until an event like
death or progression of the disease.

3.4.1. Application of the Kaplan-Meier Method in Our Research
In our survival analysis, we'll primarily use the Kaplan-Meier method, which provides a

non-parametric estimation of the survival function from lifetime data (Kaplan & Meier, 1958). In
essence, this method generates a survival curve that depicts the proportion of patients surviving over
time. In practice, we will create separate Kaplan-Meier survival curves for different tumor types. This
approach will enable us to visualize and compare the survival probabilities for each tumor type over
time. We will use a similar approach to compare survival probabilities associated with cytotoxic and
immunosuppressive gene signatures. By overlaying these survival curves on the same graph, we will
be able to visually compare survival experiences across different groups. Any significant divergence
between the curves could suggest differences in survival probabilities. In essence, Kaplan-Meier
survival curves allow us to observe and compare the survival outcomes of different patient groups
over time. The vertical drops in the curve signify the occurrence of the event (death or disease
progression), while the flat parts represent periods with no events. The differences in these curves can
reveal the influence of tumor type and gene signature on patient survival.

Even though our dataset presents complete information, with only 'event' data (deaths) and no
censored (dropout) data, the use of the Kaplan-Meier method provides consistency and
reproducibility, two critical aspects of any scientific endeavor. Being a standard method in survival
analysis, the Kaplan-Meier method ensures that our research can be reliably compared with others
(Bland & Altman, 1998). By employing the Kaplan-Meier method, our research remains in line with
the standard survival analysis methodologies, enhancing its validity and reliability.

The essential working of the method in steps:

1. For each point in time where at least one event (like death or disease progression) occurred,
we note down how many people were still in the study and had not had the event yet. This is
our 'at risk' group.

2. Then, we look at how many people in the 'at risk' group had the event at this specific time.
This gives us a ratio of the number of events to the number of people 'at risk'.

3. We subtract this ratio from 1 to get the survival probability at that specific time point.
4. Finally, we multiply all these survival probabilities together up to the time of interest. This

gives us the overall probability of survival up to that time.

3.4.2. Statistical Significance Evaluation using Log-Rank Test
To statistically test the observed differences in survival curves, we will use the log-rank test,

which can validate whether the observed differences in survival probabilities are statistically
significant or due to chance (Bland & Altman, 2004). If the log-rank test returns a significant p-value,
we can reject the null hypothesis of no difference in survival between the groups being compared.
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3.4.3. Immunosignatures and Survival Analysis
The term "immunosignature" is traditionally used to depict a snapshot of the host immune

response through gene expression patterns associated with immune function (Stafford et al., 2014).
However, in the context of our study, we have broadened this term to represent the top altered genes in
each tumor type, both up and downregulated, irrespective of their direct association with immune
function. This approach mirrors that taken by other studies that have also examined top altered genes
to identify signatures correlating with disease outcome (Tsai et al., 2015; Zhang et al., 2019). For
instance, Tsai et al. (2015) selected the top altered genes in hepatocellular carcinoma to form a
signature related to patient prognosis, while Zhang et al. (2019) used the most differentially expressed
genes to predict survival in lung adenocarcinoma. Due to time constraints, this focused approach
allows us to gain insights into potential relationships between these key gene expression alterations
and patient survival outcomes, without necessitating a more exhaustive gene-by-gene analysis. Such
targeted approaches have been used in similar high-throughput studies to efficiently identify the most
impactful genetic alterations (Tarazona et al., 2011).

Building upon our revised understanding of "immunosignatures," our approach is closely
aligned with the two main components we have identified: immunophenotypes and
immunomodulatory signatures. When we focus on the most significantly altered genes, we indirectly
gain insight into the different types of immune cells in the tumor microenvironment, thereby decoding
immunophenotypes. These genes could serve as potential indicators of immune cell states and
proportions within the tumors.Regarding immunomodulatory signatures, our study of key gene
alterations might uncover factors produced by the tumor cells that influence the immune response.
Upregulated genes could highlight elements produced excessively by tumor cells, potentially skewing
the immune response to favor tumor growth. So, by broadening the scope of 'immunosignatures', we
are capturing a snapshot of both the immune cell characteristics and the tumor's immune-modulating
factors, providing insights into the complex tumor-immune dynamics.

In order to establish potential links between the immunosignatures (upregulated and
downregulated genes) of the various tumor types and survival, we performed a series of analyses,
using the Kaplan-Meier estimator and log-rank (Kleinbaum & Klein, 2010).

1. Gene Expression Categorization: For each gene of interest, the samples were classified into
two distinct groups: those exhibiting high expression (defined as expression levels above the
median) and those with low expression. This categorization allowed us to compare the
survival rates of patients with high gene expression to those with lower expression.

2. Survival Analysis: Survival times were evaluated for each group, and the aim was to identify
any significant disparities in survival between patients with high gene expression and those
with low expression. We leveraged the Kaplan-Meier method to estimate these survival
probabilities. The Kaplan-Meier survival curves were plotted separately for the
high-expression and low-expression groups.

3. Significance Testing: The log-rank test was utilized to determine the statistical significance
of any differences observed in the survival analysis.
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4. Results

4.1. Principal Component Analysis: Delineation of Tumor Types

To gain insights into the overall gene expression patterns within different types of pediatric
high-grade brain tumors, we focused our analysis on our 1700 immune-related genes. Having
established this focus, we employed Principal Component Analysis (PCA). This technique reduces the
dimensionality of our complex gene expression dataset, enabling the visualization of the primary
sources of variation (Abdi & Williams, 2010).

Our PCA plot revealed clear and distinct clusters corresponding to each tumor type (Figure
5). This separation indicates that each tumor type possesses a unique gene expression profile, further
validating the inherent molecular differences between them. These distinct gene expression patterns
could be reflective of the diverse pathophysiological processes underpinning each tumor type, which
can potentially be exploited for differential diagnosis and targeted therapies.

Moreover, the PCA also displayed certain outliers within these clusters. These outliers
represent samples that have different gene expression profiles compared to the majority of the other
samples within their tumor type. These outliers are not merely data anomalies but can serve as starting
points for further analysis. They may represent unique subtypes of the tumors that are not yet
recognized or may point to individual variations in the tumor's genetic makeup.

Figure 5

Principal Component Analysis color-coded according to tumor type
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4.2. Differential Gene Expression Analysis

We performed a differential gene expression analysis comparing each tumor type to the
reference point, Craniopharyngioma. Craniopharyngioma was chosen as the reference point for
comparison due to its unique molecular profile and its often benign nature, providing an interesting
contrast to the aggressive malignant characteristics typically associated with other pediatric
high-grade brain tumors. The term "upregulated" refers to the process where a gene has an increased
rate of expression (Alberts et al., 2002). In contrast, "downregulation" is the process where a gene has
a decreased rate of expression (Alberts et al., 2002). Analyzing the results of our differential
expression study, it is clear that specific genes show significantly altered expression in different
pediatric high-grade brain tumors compared to the reference point, Craniopharyngioma. Table 8
provides an overview of the number and percentage of significantly differentially expressed genes in
each tumor type.

Table 8

Significantly differentially expressed genes

Tumor Type Upregulated Downregulated

Atypical Teratoid/Rhabdoid Tumor 121 (7.1%) 722 (43%)

Ependymoma 131 (7.7%) 823 (48%)

Glioblastoma 98 (5.8%) 548 (32%)

Glioma 173 (10%) 763 (45%)

Medulloblastoma 201 (12%) 1092 (64%)

As shown in the table, a varying percentage of genes showed significant differential
expression in each tumor type, indicating the unique molecular signatures of each. The subsequent
sections will delve into the specific genes of interest, visually represented through a volcano plot
(Figure 6), and further discuss the top upregulated and downregulated genes for each tumor type

To provide a overview of our gene expression data, we utilized a volcano plot, a type of
scatter-plot that displays the statistical significance (p-values) versus fold-change of differential
expression on the y and x axes, respectively. In our volcano plot (Figure 6), each point represents an
individual gene. The y-axis displays the negative logarithm (base 10) of the p-value, thus amplifying
the distinction between statistically significant and non-significant results. The x-axis represents the
log2 fold change of the gene expression between Craniopharyngioma and Glioma tumor types. Genes
with a higher absolute log2 fold change (either positive or negative) are located farther from the
y-axis, indicating a greater difference in expression between the two tumor types.

The genes upregulated in Medulloblastoma compared to Craniopharyngioma are represented
by points to the right of the plot, while the downregulated genes are shown to the left. The genes with
statistically significant differential expression (e.g., p < 0.05) are higher on the plot. We have chosen
to show these results as an example because these result differ the most in comparison to
craniopharyngioma in terms of upregulated and downregulated genes.

The volcano plot aids in visually emphasizing the genes that are significantly differentially
expressed and exhibit a substantial fold-change. These genes, marked in Figure 6, provide interesting

20



Results

leads for further investigation into their potential role in the pathogenesis of pediatric high-grade brain
tumors.

Figure 6

Volcano plot differentially expressed genes (Craniopharyngioma vs. Medulloblastoma)

The results in Tables 9 and 10 highlight the top differentially expressed genes across various
types of pediatric high-grade brain tumors, providing insights into the molecular changes associated
with these diseases (Bustin & Nolan, 2017).

Table 9

Top upregulated genes

ATRT Ependymoma Glioblastoma Glioma Medulloblastoma

MAGEA3 (14.91) MAGEA3 (11.70) MAGEA3 (21.87) MAGEA3 (18.95) MAGEA3 (24.66)

EN1 (5.83) SYCP1 (8.01) SYCP1 (5.84) SYCP1 (6.68) SYCP1 (12.47)

SYCP1 (5.81) RELN (5.69) DLL3 (5.55) MAGEA12 (7.56) MAGEA12 (7.56)

The MAGEA3 gene was consistently upregulated across all analyzed tumor types. MAGEA3
belongs to the melanoma-associated antigen gene family and has been linked with poor prognosis and
survival in different cancer types (Jin et al., 2021). Overexpression of this gene suggests its possible
role in the aggressive behavior of these pediatric tumors. SYCP1 also showed consistent upregulation
across various tumor types. SYCP1 is typically involved in meiosis, and its dysregulation could
suggest cell cycle abnormalities in these tumor types (Crichton et al., 2022). EN1 is a homeobox
transcription factor previously associated with tumorigenesis and cancer progression in different
tissues (Peluffo et al., 2019).
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Table 10

Top downregulated genes

ATRT Ependymoma Glioblastoma Glioma Medulloblastoma

GH2 (-25.12) MMP12 (-11.84) PRL (-11.71) MMP12 (-12.03) COL17A1 (-10.87)

CCL11 (-23.97) PITX2(-11.23) COL17A1 (-11.25) PRL (-10.57) TRIM29 (-10.76)

TRIM29 (-11.54) SERPINB7 (-10.97) FGF19 (-9.67) CCL11 (-10.57) PLA2G2A (-9.54)

In terms of downregulated genes, GH2 and CCL11 were found to be downregulated in ATRT.
GH2 is associated with growth hormone activity, and its downregulation may affect tumor growth.
CCL11 is a small cytokine associated with the inflammatory response. Downregulation might imply
an altered immune response within the tumor environment (Miller et al., 2010). Furthermore, the
PITX2 and PRL genes, involved in pituitary development and hormone regulation respectively, were
found downregulated in Ependymoma (Kelberman et al., 2009; Suh et al., 2002). This downregulation
could be linked to alterations in hormone-related pathways, which may play a role in tumor
progression.

It is important to interpret these results with caution as changes in gene expression do not
necessarily mean the gene itself is a cause or effect of cancer development. Many factors, including
alterations in gene regulation, gene mutations, and interactions with other genes or proteins, can
contribute to changes in gene expression. While this study provides insight into the potential role of
these genes in pediatric high-grade brain tumors, more comprehensive functional studies are needed to
understand their specific roles in tumorigenesis, progression, and potential as therapeutic targets.
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4.3. Survival Analysis

We conducted a survival analysis for six types of pediatric high-grade brain tumors: Atypical
Teratoid/Rhabdoid Tumor (ATRT), Craniopharyngioma, Ependymoma, Glioblastoma, Glioma, and
Medulloblastoma. Our findings revealed significant differences between the observed and expected
survival outcomes for each tumor type (p < 0.00001), implying that the actual survival rates in our
sample deviated markedly from the rates reported in the literature. In essence, our Kaplan-Meier
survival analysis, in combination with chi-square tests, substantiates that the actual survival rates for
these pediatric high-grade brain tumors in our dataset significantly differ. Consult Table 11 and Figure
7 for the complete results

Figure 7

Survival Curve Per Tumor Type

Note. Figure 7 illustrates the survival curves per tumor type. Each line represents a different tumor type,
showing the survival probability over time since diagnosis. The p-value (p = 1e-08) suggests that the differences
in survival rates among the tumor types are statistically significant.

Table 11

Survival Analysis results

Tumor Type Diagnosed Survivors Expected Deaths Chi-square

Atypical
Teratoid/Rhabdoid
Tumor

10 3 1.82 15.73

Craniopharyngioma 12 12 5.41 6.16

Ependymoma 20 17 7.90 3.65

Glioblastoma 11 1 3.39 14.14

Glioma 55 28 19.45 4.71

Medulloblastoma 39 32 16.04 7.43
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4.4. Immunosignatures and Survival Analysis

Pediatric high-grade brain tumors demonstrate distinct molecular profiles, as evidenced by
our differential gene expression analysis. To further explore the prognostic implications of these
molecular changes, we focused on the most significantly upregulated and downregulated genes from
each tumor type to generate an "immunosignature" for each tumor type.

Using the Kaplan-Meier survival analysis method and the log-rank test, we aimed to correlate
these immunosignatures with survival outcomes. Due to time constraints we will only use the top
regulated genes for Medulloblastoma. MAGE-A3 emerged as the most significantly upregulated gene,
and its expression demonstrated a statistically significant association with survival outcomes, with a
p-value of 0.044. Particularly, we observed that samples with high expression of MAGE-A3 have a
significantly lower survival expectancy than those with low expression. This finding emphasizes the
potential role of MAGE-A3 as a marker of disease progression and suggests its value as a prognostic
factor in Medulloblastoma, indicating poorer prognosis with higher gene expression. This points to
the critical need to consider the level of MAGE-A3 expression in therapeutic planning and
management of the disease.

In contrast, despite being the most significantly downregulated gene, COL17A1 did not show
a significant correlation with survival outcomes, with a p-value of 0.68. This observation suggests a
complex scenario where the influence of COL17A1 on survival may be indirect, dependent on other
genetic or clinical factors. Consult Figure 8 for the results of the curves.

Figure 8

Survival Curve Medulloblastoma Based on Magea3 and COL17A1 Expression

Note. Figure 8 represents the survival curves for Medulloblastoma patients based on the expression of
Magea3 and COL17A1. Each line demonstrates survival probability over time for patients with high
or low expressions of these two genes.
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5. Conclusion

5.1. Summary of Findings

Our data analysis of pediatric high-grade brain tumors has delivered significant insights into
the molecular landscape and survival rates of these aggressive malignancies. The Principal
Component Analysis (PCA) effectively delineated distinct clusters corresponding to each tumor type,
indicating the presence of unique gene expression profiles for each.

We then performed differential expression analysis, which led to the identification of several
differentially expressed genes across the various tumor types. In particular, key genes such as
MAGEA3 and SYCP1 showed consistent upregulation across different tumor types. In the context of
Medulloblastoma, the expression of MAGEA3 presented a notable correlation with survival
outcomes, with a statistically significant p-value of 0.044. This suggests MAGEA3's potential role not
only in disease progression but also as a prognostic indicator.

On the other hand, genes like GH2, CCL11, PITX2, and PRL were found to be downregulated
in certain tumors. Interestingly, COL17A1 emerged as the most significantly downregulated gene in
Medulloblastoma. However, its expression did not demonstrate a significant association with survival
outcomes, returning a p-value of 0.68. This points towards the complex interactions and dependencies
between gene expression and survival, warranting further investigation.

These findings not only highlight the molecular diversity of pediatric high-grade brain tumors
but also offer potential targets for future research and potential therapeutic interventions. They further
emphasize the significance of the immunosignature and its correlation with survival outcomes in these
tumors.

Our survival analysis also presented a contrast between the anticipated survival rates based on
the literature and the actual survival rates observed in our dataset. Despite the generally poor
prognosis associated with these tumors, certain types, such as Ependymoma and Medulloblastoma,
exhibited higher survival rates than anticipated. This data underscores the importance of continued
study and data collection to improve prognostic accuracy.

5.2. Answer to the Research Question

In response to our first research question: "Which genes are differentially expressed in
pediatric high-grade brain tumors and what unique immunosignatures can we identify from these
expression patterns?" - our study has successfully accomplished the goal of characterizing the immune
transcriptomic profile of pediatric high-grade brain tumors. DESeq2 analysis led us to distinguish
unique gene expression patterns and differentially expressed genes tied to these tumors that may
influence their development. A noteworthy finding was the upregulation of the gene MAGEA3 across
various tumor types, which adds depth to our understanding of the complex tumor microenvironment
and its pivotal role in the progression of these malignancies.

Addressing our second research question: "Do these identified immunosignatures
significantly influence survival outcomes in patients diagnosed with these pediatric high-grade brain
tumors?" - we investigated the correlation of identified immunosignatures with patient survival rates.
Our results indicate the significant role of MAGEA3, specifically in Medulloblastoma, where its
expression was significantly associated with survival outcomes (p-value 0.044). This suggests its
promising role as a prognostic marker. However, the case of the gene COL17A1 highlighted the
complex interactions at play. Despite being the most significantly downregulated gene in
Medulloblastoma, it did not show a significant association with survival outcomes (p-value 0.68).
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Furthermore, our comparison of expected versus observed survival rates revealed potential
discrepancies, indicating a possible underestimation of survival chances in certain tumor types. This
finding emphasizes the importance of ongoing data collection and analysis to enhance the accuracy of
prognostic predictions.

By connecting the dots between our findings on immune transcriptomics and survival
outcomes, we offer a clinically relevant viewpoint to the study of pediatric high-grade brain tumors.
Our findings underscore the potential impact of molecular heterogeneity on survival, laying the
groundwork for future research.
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6. Discussion

6.1. Implications of Findings

The consistent upregulation of MAGEA3 across different tumor types, as identified in our
research, underscores its potential significance in the tumorigenesis and progression of these
aggressive tumors. While the specific role of MAGEA3 in these tumors requires further elucidation,
its presence in multiple tumor types suggests a broad spectrum of influence that warrants further
investigation. Similarly, the downregulation of genes like COL17A1, despite no significant correlation
with survival outcomes in our study, adds to our understanding of the molecular complexities of these
tumors.

Our research also brings the importance of understanding the nuanced relationships between
gene expression and survival outcomes into focus. Survival rates for certain tumor types were higher
than anticipated, highlighting the potential need to revise prognostic models. This observation
underscores the need for continuous data collection and meticulous analysis to refine our
understanding of these aggressive diseases and enhance prognostic accuracy.

Taken together, our findings serve to broaden the existing body of knowledge in pediatric
high-grade brain tumor research. The correlations identified here can help guide future research,
which can potentially translate into improved diagnostic methods, treatment planning, and therapeutic
interventions. This study lays a robust groundwork for future exploration into the relationships
between gene expression, tumorigenesis, and patient outcomes, promising potential advancements in
the field of pediatric oncology.

6.2. Comparison with Previous Studies

Our findings offer both unique insights and confirming evidence for the known heterogeneity
of pediatric high-grade brain tumors. The distinct gene expression profiles for each tumor type found
in our study is in line with previous genomic analyses that have revealed fundamental molecular
differences between various pediatric brain tumors (Sturm et al., 2014; Ramaswamy et al., 2016). Our
study builds on this by linking specific gene expression profiles with survival outcomes, extending the
understanding of how these molecular differences could potentially translate to clinical prognosis.

For instance, we found that the MAGEA3 gene was consistently upregulated across all
analyzed tumor types. This is in line with the work of Jin et al. (2021), who linked the MAGEA3 gene
to poor prognosis and survival in different cancer types. Our findings suggest that overexpression of
this gene may contribute to the aggressive behavior of these pediatric tumors.

Moreover, we observed distinct survival rates across the various tumor types, which differed
significantly from the expected survival rates from the literature. While previous studies have
highlighted the poor prognosis associated with Glioblastoma (Ostrom et al., 2015) and
Medulloblastoma (Ramaswamy et al., 2016), our study observed considerably higher survival rates.
This divergence could be due to multiple factors, including advancements in treatments or potential
selection bias within our study population.

Our study also reaffirms the role of certain genes, like EN1, associated with tumorigenesis
and cancer progression in different tissues (Peluffo et al., 2019), demonstrating the interconnected
nature of cancer biology across different cancer types.

In contrast, we also observed some genes which have not been frequently reported in
literature, providing new directions for future research. One such gene is GH2, associated with growth
hormone activity, which we found to be downregulated in Atypical Teratoid/Rhabdoid Tumor
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(ATRT). This novel finding could stimulate further research into its potential role in tumor growth and
the possibility of targeting such genes for treatment.

6.3. Limitations

Even though our study has provided significant insights, it is not without its limitations. The
absence of a healthy control group in our dataset limited our ability to fully contextualize the
differential gene expression observed in pediatric high-grade brain tumors. In future studies, inclusion
of a healthy control group could offer a more robust comparison for the characterization of the
transcriptomic landscape of these tumors.

Additionally, our dataset, despite being comprehensive, only represents a subset of all
pediatric high-grade brain tumors. This could potentially introduce selection bias, which should be
considered when interpreting the findings. Future research should aim to utilize larger and more
diverse cohorts, with integrated molecular and clinical data to offer more comprehensive insights.

While our "immunosignature" approach proved insightful, it may not capture the full
complexity of the tumor's molecular profile, which could involve subtle changes in several genes
rather than drastic changes in a few. Especially in our survival analysis, which examined the
associations between survival outcomes and the expression of only two genes (MAGEA3 and
COL17A1), was inherently limited in scope. While the analysis of these genes did reveal promising
potential, it is necessary to acknowledge that it represents just a fraction of the possible gene-survival
associations within our dataset. Future studies should aim to expand this analysis to include more
genes and explore the potential relationships therein.

Finally, it is worth noting that our project was conducted within a limited time frame of just
eight weeks. This constraint inevitably meant that many potential avenues of exploration and analysis
fell beyond our reach. Many aspects of this complex topic, from extending the survival analysis to
exploring additional tumor types, were not feasible within our limited timeframe. This, however, does
not diminish the value of our findings but rather highlights the potential for further research.

6.4. Future Directions

Our study paves the way for several exciting avenues for future research. Primarily, the roles
of the identified genes, especially MAGEA3 and SYCP1, warrant further investigation. Detailed
exploration into their precise roles in tumorigenesis and progression of pediatric high-grade brain
tumors could provide potential targets for therapeutic interventions.

Moreover, we limited our survival analysis to two genes (MAGEA3 and COL17A1) and to
one tumor type (Medulloblastoma) due to constraints of time and resources. Therefore, expanding
survival analysis to include more genes and diverse tumor types will likely offer a more holistic
understanding of how gene expression correlates with survival outcomes. Such an expanded
investigation could serve to enhance the prognostic accuracy and inform the development of
personalized therapeutic strategies.

In addition, the "immunosignatures" identified in this study, based on the expression of
around 1700 immune-related genes, should be considered a starting point, open to refinement or
expansion. The selection of these genes was driven by the current state of knowledge and available
resources, and hence is subject to potential biases and limitations. Future research should seek to
confirm and possibly broaden these immunosignatures, incorporating new discoveries and emerging
data.

Lastly, to provide a more comprehensive view of differential gene expression in pediatric
high-grade brain tumors, future studies could benefit from integrating data from healthy controls. This
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would allow for a more robust identification of gene expression patterns uniquely associated with
these tumors.

While our findings provide valuable insights into the complex molecular landscape of
pediatric high-grade brain tumors, they also highlight the importance of continuous research efforts to
refine and expand our understanding, with the ultimate goal of improving patient prognosis and
therapeutic strategies.
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8. Appendix

Appendix A. Ethical and Legal Considerations

Our study adhered strictly to the basic criteria for processing sequencing data as defined by
the Princess Máxima Center. The following criteria were maintained: The Princess Máxima Center
was the joint data controller for the biological data used in this study. All included subjects were
patients of the center, fulfilling the first criteria (Princess Máxima Center, 2023). Informed consent
was obtained from all patients or their guardians, fulfilling the second criteria. All metadata were
collected from patients who provided informed consent and were accessed via the Central Subject
Registry (CSR) (Princess Máxima Center, 2023). To maintain patient confidentiality and adhere to
ethical standards, all directly identifiable data in the dataset were either removed or pseudonymized.
This is in compliance with the third basic criteria outlined by the center (Princess Máxima Center,
2023).

Requesting sequencing data or generating new sequencing data was carried out as per the
guidelines of the Princess Máxima Center. When sequencing data was not available for selected
cohorts, new sequencing data was generated by the Laboratory of Pediatric Oncology (LPO). All
requests were initiated by contacting the Sequence Facility of the LPO and the procedure included the
delivery of a completed institutional metadata sheet before processing. This was done to improve the
FAIRness (Findability, Accessibility, Interoperability, and Reusability) of the data (Princess Máxima
Center, 2023). Following the generation of new sequencing data, the process involved subsequent data
analyses and registration of the sequenced data with the delivered metadata on the Máxima storage.
The corresponding metadata was registered on the Trecode platform (Princess Máxima Center, 2023).
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Appendix B. R Code

# Load Packages
library(tidyverse)
library(DESeq2)
library(readxl)
library(pheatmap)
library(psych)
library(EnhancedVolcano)
library(ggthemes)
library(survival)
library(purrr)
library(survminer)

# Set Working Environment
setwd("C:/Users/cbogaar3/surfdrive/Shared/Data source files")

# Load all data
count_data <- readRDS("count_data.Rdata")
meta <- readRDS("meta.Rdata") # Includes Survival Data
gene <- readRDS("gene.Rdata")
immune_genes <- readRDS("immune_genes.Rdata")

#################################
# 1. Exploratory analysis (meta)
#################################

# View the first few rows of the data
head(meta)

# Summary of the data
summary(meta)

# Checking structure
str(meta)

# Count of Patients by Gender
gender_counts <- meta %>%
group_by(gender) %>%
summarise(count = n())
print(gender_counts)

# Plot Age distribution
ggplot(meta, aes(x = age_at_diag)) +
geom_histogram(binwidth = 1, fill = "blue", color = "black") +
labs(x = "Age at Diagnosis", y = "Count", title = "Age at Diagnosis Distribution")

# Count of Patients by Diagnosis_simple (Tumor type)
diagnosis_simple_counts <- meta %>%
group_by(Diagnosis_simple) %>%
summarise(count = n())
print(diagnosis_simple_counts)

# Boxplot of Age at Diagnosis by Diagnosis_simple
ggplot(meta, aes(x = Diagnosis_simple, y = age_at_diag)) +

geom_boxplot() +
theme(axis.text.x = element_text(angle = 90)) +
labs(x = "Tumor Type (Diagnosis Simple)", y = "Age at Diagnosis", title = "Age at

Diagnosis by Tumor Type")

# Count of Patients by Gender and Diagnosis_simple
gender_diagnosis_counts <- meta %>%

group_by(gender, Diagnosis_simple) %>%
summarise(count = n())

print(gender_diagnosis_counts)
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# Boxplot of Age at Diagnosis by Tumor Type with Individual Data Points
ggplot(meta, aes(x = Diagnosis_simple, y = age_at_diag, fill = Diagnosis_simple)) +

geom_boxplot(alpha = 0.7) +
geom_jitter(width = 0.3, size = 1, alpha = 0.5) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
labs(x = "Tumor Type", y = "Age at Diagnosis", fill = "Tumor Type") +
ggtitle("Age at Diagnosis by Tumor Type")

# Boxplot of Age at Diagnosis by Tumor Type
ggplot(meta, aes(x = Diagnosis_simple, y = age_at_diag, fill = Diagnosis_simple)) +

geom_boxplot() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
labs(x = "Tumor Type", y = "Age at Diagnosis", fill = "Tumor Type") +
ggtitle("Age at Diagnosis by Tumor Type")

####################################
# 2. Exploratory analysis (survival)
####################################

# Death Percentage
death_percentage <- sum(meta$event_occur == 1) / nrow(meta) * 100
print(paste0("Percentage of children who have died: ", round(death_percentage, 2), "%"))

# Death Probability per tumor type
death_probability_by_tumor_type <- meta %>%

group_by(Diagnosis_simple) %>%
summarise(death_probability = sum(event_occur == 1) / n() * 100)

print(death_probability_by_tumor_type)

# Visualisation
ggplot(death_probability_by_tumor_type, aes(x = reorder(Diagnosis_simple,
-death_probability), y = death_probability, fill = Diagnosis_simple)) +

geom_bar(stat = "identity") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
xlab("Tumor Type") +
ylab("Death Probability (%)") +
labs(fill = "Tumor Type") +
ggtitle("Probability of Death by Tumor Type")

# Mean Survival Time by tumor type
mean_survival_by_tumor_type <- meta %>%

group_by(Diagnosis_simple) %>%
summarise(mean_survival = mean(Time_after_diagnosis))

print(mean_survival_by_tumor_type)

# Bar chart for Mean Survival Time by Tumor Type
ggplot(mean_survival_by_tumor_type, aes(x = Diagnosis_simple, y = mean_survival, fill =
Diagnosis_simple)) +

geom_bar(stat = "identity") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
labs(x = "Tumor Type", y = "Mean Survival Time", fill = "Tumor Type") +
ggtitle("Mean Survival Time by Tumor Type")

# Kaplan Meier for simple Diagnosis
meta$Diagnosis_simple <- as.factor(meta$Diagnosis_simple)
fit <- survfit(surv_object ~ meta$Diagnosis_simple)
color_palette <- c("red", "blue", "green", "purple", "orange", "black")
plot(fit, col = color_palette, lty = 1,

xlab = "Time After Diagnosis (years)", ylab = "Survival Probability",
main = "Survival Curves by Tumor Type", xlim = c(0, 10))

legend("bottomright", legend = levels(meta$Diagnosis_simple),
col = color_palette, lty = 1, cex = 0.6)

# Calculate log-rank
logrank_test <- survdiff(surv_object ~ meta$Diagnosis_simple)
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print(logrank_test)

###########################################
# 3. DESeq2: Differentially Expressed Genes
###########################################

# DESeq2: DESeqDataSetFromMatrix
dds <- DESeqDataSetFromMatrix(

countData = count_data,
colData = meta,
design = ~ diagnosis

)

# Normalization
dds_normal <- estimateSizeFactors(dds)

# Check top 5 samples
sizeFactors(dds_normal)[1:5]

# Extracting Normalized counts
count_normal <- counts(dds_normal, normalized = TRUE)
count_normal[1:5, 1:5]

# Unsupervised Learning - Clustering using PCA
vsd <- vst(dds_normal, blind = TRUE)
vsd_mat <- assay(vsd)
vsd_immune_mat <- vsd_mat[rownames(vsd_mat) %in% immune_genes$ID, ]
vsd_immune_cor <- cor(vsd_immune_mat)

# Plot correlation heatmap
library(ComplexHeatmap)
library(circlize)
png("figures/cor.png")
p <- Heatmap(

vsd_immune_cor,
name = "cor",
show_column_names = FALSE,
show_row_names = FALSE,
cluster_rows = TRUE,
cluster_columns = TRUE,
top_annotation = HeatmapAnnotation(diagnosis = meta$diagnosis),
column_title_rot = 90

)
draw(p, heatmap_legend_side = "right")
dev.off()

# Set reference level - Craniopharyngioma
dds$diagnosis <- relevel(dds$diagnosis, ref = "Craniopharyngioma")

# PCA Analysis - Plot PCA
plotPCA(vsd, intgroup = "diagnosis")

# DESeq Core Analysis
dds <- DESeq(dds)

# Getting the normalized counts
norm_counts <- counts(dds, normalized = TRUE)
norm_counts[1:5, 1:5]

# Checking the distribution of count data
png("figures/count_disribution.png")
p <- ggplot(count_data) +

geom_histogram(aes(x = log2(sample_63 + 1)), stat = "bin", bins = 30) +
xlab("expression counts") +
ylab("Number of genes")

p
dev.off()
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mean_counts <- apply(count_data[, 1:147], 1, mean)
variance_counts <- apply(count_data[, 1:147], 1, var)
df <- data.frame(mean_counts, variance_counts)
png("figures/mean_var.png")
p <- ggplot(df) +

geom_point(aes(x = log2(mean_counts), y = variance_counts)) +
scale_y_log10(limits = c(1, 1e9)) +
scale_x_log10(limits = c(1, 1e9)) +
geom_abline(intercept = 0, slope = 1, color = "red")

p
dev.off()

# Filter the data for "Craniopharyngioma" and "Medulloblastoma" tumor types
filtered_data <- plotCounts(dds, gene = "ENSG00000188290.10", intgroup = "diagnosis",
returnData = TRUE) %>%

filter(diagnosis %in% c("Craniopharyngioma", "Medulloblastoma"))

# Create a density plot
ggplot(filtered_data, aes(count)) +

geom_density(aes(fill = diagnosis), alpha = 0.5) +
ggtitle("Gene HES4") +
labs(fill = "Diagnosis")

# Define contrasts
diagnosis <- c("Craniopharyngioma", "ATRT", "Ependymoma", "Glioblastoma", "Glioma",
"Medulloblastoma")
contrasts <- lapply(setdiff(diagnosis, "Craniopharyngioma"), function(x) c("diagnosis", x,
"Craniopharyngioma"))

# Perform differential expression analysis for each contrast
results.list <- lapply(contrasts, function(con) results(dds, contrast = con, alpha = 0.05))

# Add gene names to the results
ATRT_res <- results.list[[1]]
ATRT_res$geneName <- gene$GeneName[match(rownames(ATRT_res), gene$ID)]
Ependymoma_res <- results.list[[2]]
Ependymoma_res$geneName <- gene$GeneName[match(rownames(Ependymoma_res), gene$ID)]
Glioblastoma_res <- results.list[[3]]
Glioblastoma_res$geneName <- gene$GeneName[match(rownames(Glioblastoma_res), gene$ID)]
Glioma_res$geneName <- gene$GeneName[match(rownames(Glioma_res), gene$ID)]
Medulloblastoma_res <- results.list[[5]]
Medulloblastoma_res$geneName <- gene$GeneName[match(rownames(Medulloblastoma_res),
gene$ID)]

# Filter immune related genes for each contrast
ATRT_immune_res <- ATRT_res[idx,]
Ependymoma_immune_res <- Ependymoma_res[idx,]
Glioblastoma_immune_res <- Glioblastoma_res[idx,]
Glioma_immune_res <- Glioma_res[idx,]
Medulloblastoma_immune_res <- Medulloblastoma_res[idx,]

# Summary results
summary(ATRT_immune_res)
summary(Ependymoma_immune_res)
summary(Glioblastoma_immune_res)
summary(Glioma_immune_res)
summary(Medulloblastoma_immune_res)

# Filter based on padj < 0.05 and abs(log2FoldChange) > 2
ATRT_immune_res_filter <- subset(ATRT_immune_res, padj < 0.05 & abs(log2FoldChange) > 2)
Ependymoma_immune_res_filter <- subset(Ependymoma_immune_res, padj < 0.05 &
abs(log2FoldChange) > 2)
Glioblastoma_immune_res_filter <- subset(Glioblastoma_immune_res, padj < 0.05 &
abs(log2FoldChange) > 2)
Glioma_immune_res_filter <- subset(Glioma_immune_res, padj < 0.05 & abs(log2FoldChange) >
2)
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Medulloblastoma_immune_res_filter <- subset(Medulloblastoma_immune_res, padj < 0.05 &
abs(log2FoldChange) > 2)

# Order results based on padj
ATRT_immune_res_filter <- ATRT_immune_res_filter[order(ATRT_immune_res_filter$padj),]
Ependymoma_immune_res_filter <-
Ependymoma_immune_res_filter[order(Ependymoma_immune_res_filter$padj),]
Glioblastoma_immune_res_filter <-
Glioblastoma_immune_res_filter[order(Glioblastoma_immune_res_filter$padj),]
Glioma_immune_res_filter <- Glioma_immune_res_filter[order(Glioma_immune_res_filter$padj),]
Medulloblastoma_immune_res_filter <- MedulThere was an interruption in the code. Here's the
continuation:

```R
# loblastoma_immune_res_filter[order(Medulloblastoma_immune_res_filter$padj),]

ATRT_immune_res_filter
Ependymoma_immune_res_filter
Glioblastoma_immune_res_filter
Glioma_immune_res_filter
Medulloblastoma_immune_res_filter

###########################################
# 4. Immunosignatures and Survival Analysis
###########################################

# Get the top upregulated gene for Medulloblastoma
top_upregulated_med <-
Medulloblastoma_immune_res_filter[which.max(Medulloblastoma_immune_res_filter$log2FoldChang
e), ]
# Get the top downregulated gene for Medulloblastoma
top_downregulated_med <-
Medulloblastoma_immune_res_filter[which.min(Medulloblastoma_immune_res_filter$log2FoldChang
e), ]

# Retrieve expression levels for specified genes
magea3_exp_samples <- norm_counts["ENSG00000221867.9", ]
col17a1_exp_samples <- norm_counts["ENSG00000065618.21", ]

# Convert row names to a separate column
meta$Sample_ID <- rownames(meta)

# Add this information to your metadata dataframe.
meta$magea3_exp <- magea3_exp_samples[meta$Sample_ID]
meta$col17a1_exp <- col17a1_exp_samples[meta$Sample_ID]

# Create new binary variables based on the median expression of each gene
meta$magea3_high <- ifelse(meta$magea3_exp > median(meta$magea3_exp, na.rm = TRUE), 1, 0)
meta$col17a1_high <- ifelse(meta$col17a1_exp > median(meta$col17a1_exp, na.rm = TRUE), 1,
0)

# Replace NA values with the maximum value of the column
meta$Time_after_diagnosis[is.na(meta$Time_after_diagnosis)] <-
max(meta$Time_after_diagnosis, na.rm = TRUE)
print(meta$Time_after_diagnosis)

# Load the required libraries
library(survival)
library(survminer)

# Assume that meta$status is the status variable: 1 for event/death, 0 for censored
# And Time_after_diagnosis is the survival time
fit_magea3 <- survfit(Surv(Time_after_diagnosis, status) ~ magea3_high, data = meta)
fit_col17a1 <- survfit(Surv(Time_after_diagnosis, status) ~ col17a1_high, data = meta)

# Plot the survival curves
ggsurvplot(fit_magea3, data = meta, risk.table = TRUE, pval = TRUE, conf.int = TRUE,
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legend.title = "Magea3 Expression", legend.labs = c("Low", "High"),
title = "Kaplan-Meier Survival Curve Based on Magea3 Expression")

ggsurvplot(fit_col17a1, data = meta, risk.table = TRUE, pval = TRUE, conf.int = TRUE,
legend.title = "COL17A1 Expression", legend.labs = c("Low", "High"),
title = "Kaplan-Meier Survival Curve Based on COL17A1 Expression")

# Plot the survival curves without risk table
ggsurvplot(fit_magea3, data = meta, risk.table = FALSE, pval = TRUE, conf.int = TRUE,

legend.title = "Magea3 Expression", legend.labs = c("Low", "High"),
title = "Kaplan-Meier Survival Curve Based on Magea3 Expression")

ggsurvplot(fit_col17a1, data = meta, risk.table = FALSE, pval = TRUE, conf.int = TRUE,
legend.title = "COL17A1 Expression", legend.labs = c("Low", "High"),
title = "Kaplan-Meier Survival Curve Based on COL17A1 Expression")

# Subset data for only Medulloblastoma patients
medulloblastoma_meta <- meta[meta$diagnosis == "Medulloblastoma",]

# Assume that meta$status is the status variable: 1 for event/death, 0 for censored
# And Time_after_diagnosis is the survival time
fit_magea3 <- survfit(Surv(Time_after_diagnosis, status) ~ magea3_high, data =
medulloblastoma_meta)
fit_col17a1 <- survfit(Surv(Time_after_diagnosis, status) ~ col17a1_high, data =
medulloblastoma_meta)

# Plot the survival curves with risk table at the top
ggsurvplot(fit_magea3, data = medulloblastoma_meta, risk.table = TRUE, risk.table.y.text =
FALSE,

risk.table.title = "Number at risk by time",
pval = TRUE, conf.int = TRUE, legend.title = "Magea3 Expression",
legend.labs = c("Low", "High"), risk.table.height = 0.25,
title = "Survival Curve for Medulloblastoma Based on Magea3 Expression",
tables.theme = theme_cleantable(), font.main = c(12, "bold", "darkblue"),
font.submain = c(15, "bold", "darkblue"),
font.caption = c(14, "plain", "darkblue"),
font.xaxis = c(14, "bold", "darkblue"),
font.yaxis = c(14, "bold", "darkblue"),
font.tickslab = c(12, "plain", "darkblue"),
font.legend = c(14, "plain", "darkblue"))

ggsurvplot(fit_col17a1, data = medulloblastoma_meta, risk.table = TRUE, risk.table.y.text =
FALSE,

risk.table.title = "Number at risk by time",
pval = TRUE, conf.int = TRUE, legend.title = "COL17A1 Expression",
legend.labs = c("Low", "High"), risk.table.height = 0.25,
title = "Survival Curve for Medulloblastoma Based on COL17A1 Expression",
tables.theme = theme_cleantable(), font.main = c(12, "bold", "darkblue"),
font.submain = c(15, "bold", "darkblue"),
font.caption = c(14, "plain", "darkblue"),
font.xaxis = c(14, "bold", "darkblue"),
font.yaxis = c(14, "bold", "darkblue"),
font.tickslab = c(12, "plain", "darkblue"),
font.legend = c(14, "plain", "darkblue"))

###########################################
# 5. The END
##########################################
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Appendix C. Additional Information

Figure 9 is a boxplot mapping the age at diagnosis for each tumor type. This boxplot offers a
visual representation of the minimum, first quartile, median, third quartile, and maximum age at
diagnosis for each tumor type, effectively illustrating the range and distribution of ages at diagnosis.

Figure 9

Age at Diagnosis by Tumor Type

In addition to this, we constructed Figure 10, which is a graph showing the distribution of
different tumor types within each age category. This second figure provides a clear picture of how the
prevalence of each tumor type changes across different age groups. Together, these figures offer
comprehensive insights into the relationship between age and tumor type.

Figure 10

Distribution of Tumor Types per Age Category
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