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Abstract

A better understanding of pediatric brain tumor immune microenviron-
ment is crucial for developing effective immune-based treatments. The
primary aim of this research was to compare the immune-related gene ex-
pressions of various high-grade pediatric brain tumors compared to Cran-
iopharyngioma, a low-grade tumor. This is due to the absence of control
group from healthy tissue at the time of this research. We also aimed to
detect clusters of genes that behave similarly and their association with

various tumor types.

In addressing our primary objective, we employed differential expression
analysis using DESeq?2 in R. We observed marked disparities in immune-
related gene expression profiles among tumor types. Medulloblastoma
demonstrated a striking 64% downregulation in gene expression. Contrast-
ingly, Ependymoma and Glioma displayed 7.7% and 10% upregulation

of gene expression, respectively. Specifically MAGEA3 was top highly ex-

pressed gene across all tumor types.

Using Weighted Gene Co-expression Analysis (WGCNA), we identified
eight distinct immune-related gene modules, three of which showed a
strong correlation with Medulloblastoma. The gene PIAST in the module
with the highest positive correlation showed a notably significant associa-

tion with Medulloblastoma.

Keywords: Pediatric brain tumors, Immunotherapy, Gene expression, Dif-
ferential expression analysis, WGCNA, RNA-Seq, DESeq?2.
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1. Introduction

1.1 Pediatric High-Grade Brain Tumors

Brain tumors are classified by the World Health Organization (WHO) into
four grades, with Grade I being the least aggressive and Grade IV being the
most aggressive [1]. Pediatric high-grade brain tumors represent a particu-
larly devastating category of cancers affecting children. Unlike lower grade
tumors, these high-grade malignancies are characterized by rapid growth
and a propensity for invasion, leading to significant morbidity and mortal-
ity among pediatric patients[2]. According to the Central Brain Tumor Reg-
istry of the United States (CBTRUS), brain and other CNS tumors are the
most common solid cancer site in individuals aged 0-14 years, with a sub-
stantial impact on pediatric cancer mortality [2]. Children with high-grade
gliomas (HGG), including diffuse midline gliomas (DMG) and glioblastoma
multiforme (GBM), face a bleak 5-year overall survival rate of less than
20%[3]. The delicate and complex environment of the central nervous sys-
tem (CNS) renders many conventional cancer treatments, like surgery, par-
ticularly risky [4]. In addition the diagnosis and treatment of a high-grade
brain tumor can result in psychological, cognitive, and social challenges for
the child and their family, there by increasing the overall burden of the dis-

ease [5].
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Table 1.1: Pediatric high grade brain Tumor Types

Brain Tumor Types Characteristics

ATRT Atypical teratoid /Rhaboid tumors are rare malignant
intracranial neoplasms most commonly occurring in
infants and young children. They account for only
1% to 2% of all pediatric brain tumors|[6].

Gliomas (including High-grade gliomas (HGGs) occur at an incidence of
Glioblastoma) 0.8 per 100,000 children per year. Approximately 20%
of all childhood gliomas are HGGs[7].

Craniopharyngiomas Craniopharyngiomas are low-grade, slow-growing
benign epithelial tumors and account for approxi-
mately 5% to 10% of pediatric brain tumors|[8].

Ependymomas Ependymomas are the third most common brain tu-
mor in children and account for approximately 8% to
10% of all childhood CNS tumors[9].

Medulloblastoma Medulloblastoma is an embryonal tumor of the pos-
terior fossa and is the most common malignant brain
tumor in children. It comprises up to 20% of all pedi-
atric brain tumors[2].

1.2 Brain Tumor Immunology: the Need for Im-

mune Microenvironment Study
The brain was traditionally thought to be an immune-privileged site, but it
is now recognized that immune cells can and do infiltrate brain tumors [10].
From multiple studies over the past decade, it has become clear that the
brain tumor microenvironment (TME) is a fundamental regulator of cancer
progression and therapeutic efficacy in primary and metastatic brain malig-
nancies. Insights into the biological processes within the brain TME identi-
fied potential therapeutic targets with several now under clinical evaluation
such as the adoptive cell therapy with chimeric antigen receptor (CAR) T
cells for patients with Glioblastoma patients that targets tumor-associated

antigens[11].

Current therapeutic strategies for pediatric high-grade brain tumors are
limited and often insufficient. Standard treatments typically include surgery,
radiation therapy, and chemotherapy. However, these modalities can re-

sult in severe long-term side effects, including cognitive impairment and



1.3 Gene Expression Analysis of RNA sequencing data

endocrine dysfunction, especially considering the developing nature of the
pediatric brain[12]. Furthermore, certain high-grade brain tumors like Dif-
fuse Intrinsic Pontine Glioma (DIPG) are notoriously difficult to treat due to
their location in the brainstem, rendering surgical resection practically im-
possible [13]. Chemotherapy has failed to show benefit over radiotherapy,
and the standard care with radiotherapy offers only temporary relief[14].
Recent advancements in cancer treatment, such as immunotherapy, present
promising alternatives in light of current therapy limitations. Immunother-
apy has demonstrated success in treating leukemia and complements tradi-
tional treatment methods[15]. However, applying immunotherapy to pedi-
atric brain tumors requires generating tailored immune responses, under-
standing unique tumor sites, and investigating potential targets [16]. De-
spite the significant advancements in understanding tumor immunology in
adults, the knowledge of the immune landscape in pediatric tumors, espe-
cially high-grade brain tumors, is still in its infancy[17]. Most of the existing
research has been focused on adult tumors, with findings often extrapo-
lated to pediatric cases. However, the pediatric immune system and tumor
biology are distinct from those of adults, indicating that such extrapolations
may not always be appropriate or accurate [18]. The current limitations in
our understanding of pediatric brain tumor immunology impede the ad-
vancement of effective immunotherapies for pediatric brain tumors. Study-
ing the immune tumor microenvironment in these patients can pave the
way for the development of innovative treatment options and unveil new
therapeutic avenues, ultimately enhancing clinical outcomes and improve

the lives of affected children.
1.3 Gene Expression Analysis of RNA sequenc-

ing data
Bulk RNA sequencing, or RNA-Seq, is a technology that allows for the com-
prehensive quantification of the transcriptome, that is the complete set of
RNA transcripts produced by the genome at a given time. RNA-Seq enables
an unbiased view of the transcriptome, allowing for the discovery of novel

transcripts and alternative splicing events [19]. The generation of count data
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begins with the preparation of an RNA sample, which is then sequenced
using high-throughput technology. The sequenced reads are then mapped
back to the reference genome or transcriptome. This mapping process al-
lows to assign each read to a specific gene, resulting in raw count data. For
each gene, the count is the number of reads that have been assigned to it,
providing a measure of its expression level in the RNA sample [20]. When
applied to cancer research, RNA-Seq can offer valuable insights into the
molecular mechanisms underlying disease progression. Differential expres-
sion analysis of RNA-Seq data can identify genes that are upregulated or
downregulated in tumor samples compared to normal tissues, or compared
among different tumor types. These differentially expressed genes could
contribute to tumorigenesis and may serve as potential targets for therapeu-
tic intervention [21]. Differential expression analysis is an analysis method
used to identify genes that exhibit significant changes in expression levels
between different conditions. It provides key insights into the biological
processes and pathways that are altered under different clinical conditions.
By comparing gene expression profiles between different groups, we can
identify genes that are specifically associated with a particular condition.
These genes can serve as potential biomarkers for diagnosis, prognosis, or
therapeutic targeting. Differential expression analysis can be applied to a
wide variety of data types. For example, it can be used to compare gene ex-
pression profiles derived from microarray data, single-cell RNA sequencing
(scRNA-seq) data, or bulk RNA sequencing data [22], [23].



1.4 Objectives

1.4 Objectives

The primary objective of this research was to compare immune-related gene
expressions in various types of high-grade pediatric brain tumors including
ATRT, Ependymoma, Glioblastoma, Glioma, and Medulloblastoma, as com-
pared to Craniopharyngioma, a low-grade and benign tumor[8]. This is due
to the absence data of control group from healthy tissues at the time of the
research. We addressed this objective through the application of differential

gene expression analysis using DESeq2 R package.

Our secondary objective was to identify co-expressed gene modules(clusters
of genes with similar co-expression) and explore their correlation with the
various tumor types. In response to this objective, we utilized the Weighted
Gene Correlation Network Analysis (WGCNA) method implemented in R.

By analyzing the immune-related gene expressions in these various pe-
diatric brain tumors and understanding the gene clusters and their associ-
ations with specific tumor types, we hoped to gain insights into pediatric
brain tumor immune micro-environment. The implementation of differ-
ential expression analysis in DESeq2 and WGCNA methods is detailed in
methods Chapter 3.



2. Data

2.1 Sample collection and Meta data

The research cohort included 147 children patients with brain tumors. Data
was collected between March 8th, 2019 and May 28th, 2022 after approval
of the BioBank and Data Access Committee of the Princess Méxima Center,
Utrecht, the Netherlands. The patients were diagnosed based on histopatho-
logical assessment. The age of the patients in the sample ranged from 0 to
19 years old, of which 82 of them are male and 65 are female (See Table 2.1).
Tumor types included Atypical Teratoid Rhabdoid Tumor(ATRT), Cranio-
pharyngioma, Medulloblastoma, Glioblastoma, Glioma, and Ependymoma.
The tumor grades, classified as per the World Health Organization (WHO)
guidelines, were included in the metadata [1], a data frame with sample
rows samples( represent tumor tissues) and clinical trait columns shown in
Table 2.2. The main differential expression analysis was based on count data
and tumor type comparison from this data frame. We also explored the cor-
relation between these tumor types and gene modules (gene clusters that

exhibit high co-expression values across the samples).

Table 2.1: Distribution of Tumor types by Age Category and Gender

Gender Age Tumor types Total
ATRT Craniopharyngioma Ependymoma Glioblastoma Glioma Medulloblastoma
0-4 5 0 4 0 7 1 17
Female 272 0 2 3 1 12 6 24
10-14 0 1 0 0 8 4 13
15-199 0 0 0 3 5 3 11
Total 5 3 7 4 32 14 65
0-4 5 2 12 1 8 6 34
Male 59 0 0 1 2 9 6 18
10-14 0 5 0 2 4 10 21
15-19 0 2 0 2 2 3 9
Total 5 9 13 7 23 25 82

2.2 RNA Sequencing

The RNA sequencing procedure, a key part of data collection process, was
undertaken by clinical and laboratory professionals at Princess Maxima Can-
cer Center. The process, detailed in the following paragraphs, ensured the
high-quality of the gene expression data used in this study. Tumor tis-
sue samples were acquired during standard surgical resection procedures

from all the patients. Total RNA was isolated from fresh frozen tumor ma-
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2.2 RNA Sequencing

Table 2.2: Meta Data: data frame where rows are samples and columns are
associated clinical traits.

Sample Diagnosis Gender Age
sample_1 Medulloblastoma female 12.5
sample_2 Craniopharyngioma male 14.6
sample_3 Glioblastoma female 7.9
sample_ 4  Craniopharyngioma male 1.0
sample_5 Glioma male 2.0
sample_6 Glioma female 11.8
sample_147

terial using the AllPrep DNA/RNA /Protein Mini Kit (QIAGEN) accord-
ing to standard protocol on the QiaCube (Qiagen). RNA-seq libraries were
generated with 300ng RNA using the KAPA RNA HyperPrep Kit with Ri-
boErase (Roche), this libraries are complementary DNA(cDNA) which con-
tain all the information from the tissue sample. Subsequently sequencing
(reading small random sections of cDNA) was done using NovaSeq 6000
system (2x150 bp) (Illumina). The RNA sequencing data were processed
as per the GATK 4.0 best practices workflow for variant calling, using a
wdl and cromwell based workflow[24]. This included performing quality
control with Fastqc (version 0.11.5) to calculate the number of sequencing
reads and the insert size Picard (version 2.20.1) for RN A metrics output and
MarkDuplicates. The raw sequencing reads were aligned using Star (ver-
sion 2.7.0f) to the reference human genome called GRCh38 (complete set
of human RNA) and gencode version 29 (Broad Institute. Picard. GItHub
2019). Finally, expression counts were determined at gene level using Sub-
read Counts. These counts are mapped read counts generated from the raw
read counts. These mapped counts represent the abundance of genes, which
are the main focus of our analysis. The dataset contains count data for a total

of 60,357 genes. Below Table2.3 is a snapshot of the count data structure.

11
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Table 2.3: Count Data: Each row corresponds to a unique gene with its associ-
ated counts for each sample.

Gene Sample_1 Sample 2 Sample 3 Sample 4 Sample 5
ENSG00000223972.5 139 54 43 70 94
ENSG00000227232.5 1081 1377 778 1030 2218
ENSG00000278267.1 13 7 8 29 7
ENSG00000243485.5 134 69 47 39 20
ENSG00000284332.1 0 0 0 0 0
ENSG00000237613.2 31 27 1 20

2.3 Data pre-processing and Normalization

Gene counts are generally influenced by different factors that are less bio-
logically relevant such as sequencing depth, or library composition. Each
RNA sequencing experiment generates a large number of reads. However,
during the quality control, alignment, and counting processes, some reads
may be discarded, resulting in different total read counts(library size) for
each sample. Therefore, an apparent higher gene expression in sample_-
1 compared to sample_2 could be due to a larger library size of sample_1
rather than actual higher gene expression. To account for this, it is impor-
tant to normalize the gene counts before performing differenial analysis. In
our study normalization of count data was performed using DESeq2, which
accounts sequencing depth variation among samples. The normalization
processes at the back-end of the DESeq2 R package are summarized inf the

following sections. The overall workflow of DESeq is depicted in Figure 2.1.

Step 1: Estimating Pseudo-Reference Sample: DESeq?2 starts by creat-
ing a representative sample called the pseudo-reference sample. It does this
by calculating the average gene expression for each gene across all samples.

This helps establish a baseline for comparison.

Step 2: Calculating Gene Expression Ratios: DESeq?2 calculates the ra-

tios of gene expression counts for each gene in each sample relative to the

12



2.3 Data pre-processing and Normalization

pseudo-reference sample. This shows how much a gene is expressed in

comparison to the average expression level.

Table 2.4: Normalization: size factor estimation

Gene Sample_1 | Sample_2 | Pseudo-reference sample
ENSG00000223972.5 139 54 V139 x 54 = 334.93
ENSG00000227232.5 | 1081 1377 /1081 x 1377 = 1184.49
ENSG00000278267.1 13 7 V13 x7 =837
ENSG00000243485.5 134 69 V134 x 69 = 110.63
ENSG00000284332.1 0 0 VO x0=0
Gene | Sample_1 | Sample_2 | Ratio of Sample_1/ref | Ratio of Sample_2/ref

139 54 V139 x 54 = 334.93 siroz = 0.161
1081 1377 | v/1081 x 1377 = 1184.49 T = 1.164
13 7 V13 x 7 =837 557 = 0.837
134 69 V134 x 69 = 110.63 e = 0.623
0 0 V0 x0=0 3 = NaN

Step 3:Median Ratio Calculation: DESeq?2 then finds the median (mid-

dle value) of these ratios for each sample. By using the median, which is less

affected by extreme values, it ensures that rare genes or outliers don’t overly

influence the normalization process.The normalization_factor for sample_1
and sample_2 are calculated as median(0.415, 0.912, 1.554, 1.211, 0) = 0.924
and median(0.161, 1.164, 0.837, 0.623, 0)= 1.1469 respectively.

Step 4: Normalizing Gene Expression: finally, count values are normal-

ized by dividing them using the median values (size factors) as shown in

Table2.5.
Table 2.5: Normalization of raw counts
Gene Sample_1 Sample_2
139 _ 54 _
ENSG00000223972.5 O’%%W = 150.41 W =47.09
ENSG00000227232.5 W = 1169.46 17469480 — 1200.75

The impact of normalization becomes more evident, for instance when

13
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Figure 2.1: Workflow of expression analysis using DESeq2 and
WGCNA:DESeq2 starts with the input of Count Data, which undergoes Size
Factor Estimation to produce Size Factors. These are then used to normalize
the Count Data, resulting in Normalized Count Data. This Normalized Count
Data is used in Dispersion Estimation to generate Dispersion Estimates and

in Model Fitting, along with Meta Data. Final results include LogFoldChange
and P-values. The right box, labeled as WGCNA, represents the process of
module detection and correlation with tumor types. It takes normalized count
data and Meta Data as input and performs Network Formation to create a
Network, Module Detection to identify Modules, and Correlation to estab-
lish a Correlation with tumor types. Final results include Modules, Correlation
Coefficient and Hub Genes

comparing the expression levels of MAGEA3 in glioma and medulloblas-
toma. Without normalization, a higher expression is observed in glioma
(raw count: 1334), potentially leading to skewed interpretations. However,
normalization reveals a higher MAGEA3 expression in medulloblastoma
(normalized count: 2282), illustrating the need for normalization to ensure

accurate and unbiased comparisons across samples.

Table 2.6: Raw and normalized counts of MAGEA3 expression in glioma and
medulloblastoma samples

Glioma (Sample_41) Medulloblastoma (Sample_63)

1334 975
1091 2282

Raw Counts
Normalized Counts

14



2.4 Exploratory data analysis

2.4 Exploratory data analysis

To understand the underlying structure and sample relationships, we per-
formed unsupervised analyses. Principal component analysis (PCA) was
conducted using the log-transformed normalized counts of the count data.
By reducing our high-dimensional data into key components, PCA cap-
tured the main trends of variation in gene expression. This gave us a vi-
sualization where we could see how samples relate to each other and spot
outliers. These insights from the PCA are crucial as they provide impor-
tant insights into the overall structure of the data and guide further down-
stream analyses[25]. The PCA plot displayed in Figure 2.2 visually demon-
strates distinct clustering patterns among different tumor types. Each tumor
type forms separate clusters, indicating that they contribute significantly to
the observed variation in the dataset. The plot reveals a clear separation
between Medulloblastoma, Craniopharyngioma, Glioma, ATRT, Ependy-
moma, and Glioblastoma samples, suggesting that these tumor types have
distinct gene expression profiles. And there are no notable outliers ob-

served.

15
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Figure 2.2: illustrates a Principal Component Analysis(PCA) of the gene ex-
pression data. PC1 and PC2, the axes, capture the maximum variation within
the dataset. Each point represents a sample, color-coded by tumor type. The
position of each sample is determined by the expression of immune-related
genes in the sample. Samples that cluster together share similar gene expres-
sion profiles, highlighting potential groupings of tumors. There are no notable

outlier samples.
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3. Method

This chapter discusses the details of our analysis methods, focusing on
DESeq? for differential expression analysis, and Weighted Gene Co-expression
Network Analysis (WGCNA). These techniques form the core of our analy-

sis pipeline, which was illustrated in Figure 2.1.

3.1 Differential Expression Analysis with DESeq2
The differential gene expression analysis was performed using the DESeq?2,
a commonly used R package for differential gene expression analysis of
count data from high-throughput RNA sequencing. DESEq2 implements
statistics such as variance estimation through a Negative Binomial Distri-
bution, aiding in the identification of differentially expressed genes by ap-
plying negative binomial Generalized Linear Model (GLM). Additionally,
DESeq2 employs statistical testing methods such as the Wald test and the
Likelihood Ratio test, which are crucial for determining statistical signif-
icance. Importantly, DESeq2 also controls the false discovery rate (FDR)
during multiple testing. These attributes make DESeq?2 a suitable choice for
RNA-Seq data analysis[26]-[29].

The count data in our research exhibits the characteristics of most RNA-
seq data. A considerable number of genes with low expression levels, a
long right tail, representing genes with high expression levels, and a wide
dynamic range (gene expression level ranges from 0 to millions), capturing
a broad span of expression levels as shown in Figure 3.1a). Moreover, the
relationship between the mean and variance in the count data is not linear,
with genes exhibiting higher mean expression levels tending to have greater
variance across samples, as indicated by the scatter plot above the red line in
Figure 3.1b). To accurately model count data, DESeq2 employs a negative-
binomial (NB) distribution. The NB distribution is well-suited for RNA-seq
counts due to their observed overdispersion, where counts show greater
variability than expected under a Poisson distribution Figure 3.1b). The NB
distribution incorporates an additional parameter, the dispersion («), which

captures the relationship between the mean and variance of the normalized

17
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Figure 3.1: Characteristics of gene count distribution across samples

counts. It is modeled using the formula:

Kjj ~ NB(mean = pij, dispersion = ;) 3.1)

Here, K;; represents the observed count for gene i in sample j, y1;; denotes
the mean count, and «; represents the gene-specific dispersion parameter.
The mean expression levels can be easily estimated using the observed nor-
malized counts across all tumor types. In contrast, the estimation of disper-
sion, which will be discussed below, provides insights into the variability of

gene expression.

The following sub-sections will highlight the main statistical calculations

behind DESeq2 package.

3.1.1 Dispersion Estimation
The dispersion parameter quantifies the variability of gene counts within

each tumor type, representing how the variance deviates from the mean.
For instance, a dispersion of 1 indicates no deviation from the mean. DE-
Seq2 estimates the dispersion value for each gene based on its mean expres-

sion level and observed variance across samples. The dispersion formula is

18



3.1 Differential Expression Analysis with DESeq2

given by[27]:

variance of counts

Dispersion = (3.2)

mean squared count

For instance the estimation of dispersion for Gene A and Gene B in cer-

tain tumor type is demonstrated in Table 3.1

Table 3.1: This table demonstrates how dispersion is estimated for each gene
within one tumor Type based on the observed count data.

Gene | Mean Expression | Variance of Counts Dispersion
Gene A 10 (10 — 7.67)> =5.29 | 5.29/100 = 0.0529
Gene B 8 (8 —5.67)> =529 | 5.29/64 = 0.0827

In DESeq?2, dispersion estimates are obtained by considering the rela-
tionship between mean expression and variation values, as illustrated in
the dispersion plot figure 3.2. Moreover, to improve the reliability of disper-
sion estimates, DESeq2 employs a shrinkage method that shares informa-
tion across genes. This approach ensures that genes with similar expression
levels have similar dispersion values. The resulting shrunken dispersion

values are represented by blue dots in the dispersion figure 3.2.

3.1.2 Model Fitting

The differential expression analysis in DESeq2 uses a generalized linear
model (GLM)[27]. In our case the GLM captures the relationship between
gene expression of tumor types as compared to the reference tumor type.
For our analysis we used, DESeq?2 that applies a simplified form of the GLM
where we only consider a single predictor, namely the tumor type. The

simplified model can be expressed as:

log, (count;;) = Bo+ B - xj +€ (3.3)

Here, By represents the baseline log2 expression level for the reference tu-

mor type, and B; denotes the log2 fold change for each gene between the ref-
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3.1 Differential Expression Analysis with DESeq2

erence tumor type and the tumor type of interest. The variable x; indicates
the tumor type for each sample, taking the value 1 for samples from tumor
type of interest, 0 otherwise. For instance, if Gene A in Medulloblastoma
shows a log2 fold change of -1.96, this means Gene A’s expression is approx-
imately halved (since 2719 ~ 0.5 or a 50% decrease) in Medulloblastoma
compared to Craniopharyngioma. In this example, the negative log2 fold
change indicates that Gene A is downregulated in Medulloblastoma rela-
tive to Craniopharyngioma, and the magnitude of the fold change (-1.96)
suggests that its expression level in Medulloblastoma is about half of that in

Craniopharyngioma.

3.1.3 Hypothesis Testing

DESeq2 implements hypothesis testing to assess the significance of dif-
ferential expression each gene, in specifc tumor types compared to Cranio-
pharyngioma. The goal of hypothesis testing is to determine whether the
observed difference in read counts for a given gene is greater than what
would be expected due to natural random variation. The null hypothesis Hyp
assumes no differential expression, which translates to a log2 fold change
(Iog2FC) of zero for a given gene. To test this hypothesis, DESeq2 utilizes
the Wald test, a statistical test that evaluates whether the data provides suf-
ficient evidence to reject the null hypothesis. For a detailed mathematical
explanation of how dispersion estimates and shrinkage, model fitting are
performed in DESeq?2, readers are encouraged to refer to the original arti-
cle and accompanying methodological chapter by Love, Huber, and Anders
[27].

3.1.4 Implementation of DESeq2 in R

DESeq2 package was implemented in R version 4.2.2. Due to absence of
samples from health tissue at the time of this research, Craniopharyngioma,
a benign and low-grade type of tumor was used as a baseline comparison
tumor type during the differential expression analysis. The implementa-
tion of DESeq2 in R together with R code is presented under the appendix
Section 7.1.
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3.2 Weighted Gene Co-expression Network Anal-

ysis (WGCNA)
For the Weighted gene co-expression network analysis(WGCNA), the WGCNA
R package was used. This was used to detect the presence of gene mod-
ule (cluster) structure after gene co-expression network construction. After-
ward, we explored the correlation between modules using eigengene! and

their correlation with the tumor type[30]. The steps detailing the implemen-
tation of WGCNA are provided below.

Step 1: Construction of a similarity matrix

The construction of our weighted gene co-expression network started by
defining a measure of similarity between each pair of genes based on their
co-expression (based on normalized counts) across all samples. We utilized
the absolute value of Pearson correlation as similarity measure (s;;), which

is defined between gene i and gene j, across all samples as [30]:

sij = |cor (i, )] (3.4)

We then generated a similarity matrix dataset, S = [s;;], with a pairwise

similarity measure for all genes.

Table 3.2: Gene co-expression matrix, with each entry representing the pair-
wise correlation coefficient between the expression profiles of two genes,
rounded to one decimal place. This table only shows the first five genes.

Gene ID> ENSG001 ENSGO002 ENSG003 ENSG004 ENSGO005

ENSGO001 1.0 0.5 0.1 0.2 0.2
ENSGO002 0.5 1.0 0.2 0.2 -0.0
ENSGO003 0.1 0.2 1.0 0.4 0.0
ENSG004 0.2 0.2 0.4 1.0 0.2
ENSGO005 0.2 -0.0 0.0 0.2 1.0

Eigengene is defined as the first principal component of a given module. It can be
considered a representative of the gene expression profiles in a module.
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3.2 Weighted Gene Co-expression Network Analysis (WGCNA)

Step 2: Transformation of the similarity matrix into an adjacency matrix

The transformation of the similarity matrix S into an adjacency matrix A
emphasizes significant gene-gene relationships and minimize the influence
of weaker, potentially spurious associations. Our transformation was based
on a power adjacency function, ensuring the construction of a weighted net-
work that retains information about the strength of gene interactions (co-

expression values were transformed to [0, 1]).

For a given pair of genes i and j, the adjacency a;; is computed as:

aij = Siﬁj (i # ) (35

Here, B denotes the soft-thresholding parameter that fine-tunes the sen-
sitivity of the network. In this analysis, based on the scale-free topology cri-
terion, a B value of 4 was chosen. This specific § value ensured that the net-
work adhered to the scale-free topology (with R? > 0.8). Choosing a param-
eter is a trade-off between a high scale-free topology fit (R2) and the mean
number of connections for the network. For instance, a parameter value that
leads to an R2 value close to 1 may lead to networks with very few connec-
tions. The authors of the methodology, Bin Zhang and colleagues suggest,
choosing a parameter value that leads to satisfying scale-free topology, such
as R? > .8. Our choice of B was in line with this recommendation. Based on

this, the adjacency matrix was generated as displayed in table3.3.
Step 3: Hierarchical Clustering and Module Detection

After creating the gene network, in this step, we applied average link-
age hierarchical clustering for module detection. Modules are clusters of
densely interconnected genes. This process resulted in a dendrogram where
each branch represents a module of highly co-expressed genes. The def-

inition of modules was achieved by Dynamic Branch Cut methods of the

2Gene ID*s are made up for demonstration.
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Figure 3.3: Network properties for different hard and soft thresholds, hard
thresholds (top row) and soft thresholds (bottom row): the top plot visualizes
scale-free topology with regression fitting index R?(top plot), and the bottom
plot is mean connectivity. Points are labeled by the corresponding adjacency
function parameter.

Table 3.3: Snapshot of the adjacency matrix, derived from the gene co-
expression matrix using a power function (power = 4). Each cell represents
the adjacency between two genes, calculated as the absolute value of the co-
expression raised to the power of 4.

ENSGO001 ENSGO002 ENSGO003 ENSG004 ENSGO005
ENSGO001 | 1.00 0.06 0.00 0.00 0.00
ENSGO002 | 0.06 1.00 0.00 0.00 0.00
ENSGO003 | 0.00 0.00 1.00 0.04 0.00
ENSGO004 | 0.00 0.00 0.04 1.00 0.00
ENSGO005 | 0.00 0.00 0.00 0.00 1.00

dendrogram applied in WGCNA R package. This was indeed one of the

limitations as it was difficult to determine the presence of clusters[31].
Step 4: Module Clinical traits correlation

Finally, the relationship between the identified modules of gene expres-
sion and the tumor types were assessed using correlation analysis. To as-

sess the relationships, the module eigengenes® for each module, calculated

3ModuleEigengenes summarizes the gene expression of entire co-expression mod-
ules. This is done by performing singular value decomposition (SVD) on a subset of the
scaled expression matrix containing only genes that are assigned to each module. The
module eigengene (ME), defined as the first dimension of the SVD matrix, retains the

most variation, and we use this vector as a summary of gene expression for the whole
module.[30]
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3.2 Weighted Gene Co-expression Network Analysis (WGCNA)

in the previous step as the first principal component of the gene expression
data for the module, were correlated with the tumor types. This correlation
essentially measures how much the major pattern of gene expression in a
module corresponds with each type of tumor. Each module eigengene rep-
resents the major gene expression profile for a module. Therefore, by corre-
lating these with tumor types, we aimed to identify modules whose gene ex-
pression patterns are strongly associated with particular tumor types. These
modules, in turn, provide insights into the groups of genes that act might
be critical to characterize pediatric brain tumors. The correlation coefficients
range from -1 to 1, with values close to -1 indicating a strong negative asso-
ciation (as the module eigengene value increases, the likelihood of the par-
ticular tumor type decreases), values close to 1 indicating a strong positive
association (as the module eigengene value increases, the likelihood of the
particular tumor type also increases), and values close to zero indicating no
or weak association. Here, we conducted this correlation analysis for each
module against each tumor type, providing a comprehensive overview of
which modules are relevant to each type of tumor and the nature of their
relationship, whether they are positively or negatively associated. This step
in our analysis helps in identifying gene networks that may play significant

roles in specific types of pediatric brain tumors that require further analysis.
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4, Results

The findings from differential expression and WGCNA analysis are pre-

sented in the sections that follow.

4.1 Differential Expression Analysis

For the differential analysis, the gene expressions in ATRT, Ependymoma,
Glioblastoma, Glioma, and Medulloblastoma are computed in comparison
to Craniopharyngioma. This allowed us to identify key differences in gene
expression profiles among these tumor types. The differential expression
analysis yields a DESeq object, where each row is a unique gene Ensembl
identifier, and columns represent various statistical metrics. While all these
metrics contribute to the overall understanding of gene expression variabil-
ity, our analysis primarily focuses on the log2FoldChange and padj values.
These two metrics, respectively, allow us to identify the magnitude and di-
rection of gene expression changes, and to account for multiple testing to
minimize false discovery rate. The details of these metrics, along with oth-
ers, are provided in Table 4.1. We defined a widely used cut-off point for
the significantly differentially expressed genes if thier adjusted P-value is less
than 0.05. Moreover, upregulated or downregulated genes are defined by

adjusted P-value less than 0.05 and greater than 2 absolute logfoldchange.

Table 4.1: Description of Key Columns in Differential Expression Analysis
DESeq Result

Statistic Description

baseMean The mean of normalized count values, averaged over all samples. It provides a mea-
sure of the overall expression level of a gene across all samples.

log2FoldChange Represents the log2 fold change in gene expression between Medulloblastoma and
Craniopharyngioma (the baseline). A negative value indicates downregulation in
Medulloblastoma compared to Craniopharyngioma, while a positive value indi-
cates upregulation.

1fcSE The standard error of the log2 fold change estimate. It provides a measure of the un-
certainty associated with the log2 fold change estimate.
stat It is the Wald statistic, which is the log2 fold change estimate divided by its standard

error. It is used to test the null hypothesis that the log2 fold change is zero (i.e., there
is no difference in gene expression between the two conditions).

pvalue The p-value associated with the Wald test. A small p-value (typically, less than 0.05)
suggests that we can reject the null hypothesis of no difference in gene expression
between the two conditions.

padj The p-value adjusted for multiple testing using the Benjamini-Hochberg proce-
dure. It controls the false discovery rate, which is the expected proportion of false
positives among all genes declared differentially expressed.

From the differential expression analysis identified significant differences
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4.1 Differential Expression Analysis

in the expression of immune-related genes across different tumor types when
compared to Craniopharyngioma. Medulloblastoma, for example, exhib-
ited the highest percentage of downregulated genes (64%), suggesting a
potential suppression of certain immune-related functions in this tumor
type, although further functional annotation is required. On the other hand,
Ependymoma had 7.7% of genes upregulated. Similarly, Glioma showed
10% upregulated and 45% downregulated genes, while Glioblastoma also
demonstrated significant differential gene expression. These findings pro-

vide baseline insights into the immune landscapes of these tumors.

Table 4.2: Differential Expression Analysis of Immune-Related Genes: Each
row represents the type of brain tumor. The columns provide the number and
percentage of genes that are upregulated and downregulated in each tumor
type compared to Craniopharyngioma.

DEGs compared to Upregulated Genes (%) Downregulated Genes
Craniopharyngioma (%)

ATRT 121 (7.1%) 722 (43%)
Ependymoma 131 (7.7%) 823 (48%)
Glioblastoma 98 (5.8%) 548 (32%)

Glioma 173 (10%) 763 (45%)
Medulloblastoma 201 (12%) 1092 (64%)

The number of Differentially Expressed Genes (DEGs) varied between
343 in Glioblastoma and 863 in Medulloblastoma. Remarkably, each tu-
mor type displayed a distinct set of DEGs not identified in the other tumor
types. Specifically, ATRT had 30, Ependymoma had 37, Glioblastoma had
8, Glioma had 14, and Medulloblastoma had 271. The barplot 4.1 below
shows the number of differentially expressed genes (DEGs) across five tu-
mor types. Each blue dot represents DEGs intersection and its correspond-
ing bar denotes the number of genes in the specific tumor type. For in-
stance, the first bar with a single dot under Medulloblastoma reveals 271
exclusively differentially expressed number of genes in that type, while the
subsequent bar implies 179 genes that are differentially expressed shared

with at least one other tumor type.

The Volcano plot presented in Figure 4.2 showcases the differentially ex-
pressed genes in ATRT compared to Cranipharyngioma. The dots are in-

dividula gene. Significantly expressed genes are in red color. The X-axis
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shows the logFoldChange. Upregulated genes are at the right side of zero,

while downregulated genes are ploted left to zero. The absolute logfold-

changes increase as we move either dierction from zero. Beside the MA plot

provides interesting insight on the relationship between the fold change and

the average expression of

genes. the blue dots are genes that are differen-

tially expressed, and, genes deviating from the center line indicate the abso-

lute value change. Genes below the central line being downregulated and

genes above the central are upregulated. Further illustrations, including

additional Volcano and MA plots per each tumor type, can be found in the

Appendix (Section 8.1) to support the presented results.
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Figure 4.1: UpSetR shows overlapping differentially expressed genes among
five tumor types (ATRT, Ependymoma, Glioblastoma, Glioma, and Medul-

loblastoma).
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Figure 4.2: The x-axis represents the log2 fold change values, and the y-axis
represents the -log10 transformed p-values. Each point on the plot corre-
sponds to a gene. Genes with significant differential expression are high-
lighted in red and lie beyond the absolute Log2FoldChange threshold, which
is 2. For instance, the gene MAGEAS3, which is indicated by a point at approx-
imately 14 on the x-axis and 6 on the y-axis, is expressed at a level that is ap-
proximately 16384 times upregulated in ATRT (2(14) = 16384) compared to
Craniopharyngioma.
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to genes that are significantly differentially expressed (beyond the absolute

value of log? fold change threshold, P-value <0.05). For instance, a gene with
a log?2 fold change of -2 is expressed at a level that is one-fourth (272 = 0.25)
of its expression level in Craniopharyngioma, indicating that it is four times

downregulated in ATRT tumors compared to Craniopharyngioma.

We ranked the top five upregulated and downregulated genes based on
a p-value <0.05 and an absolute logFoldChange value greater than 2. The
gene MAGEA3 appeared as the top consistently upregulated gene across
all tumor types with the highest fold change in Medulloblastoma (approxi-
mately 25,794,709-fold!), and the lowest in Glioma (approximately 514,825-

LogFoldChange is calculated from the log?2 fold change using the formula: FC =
21082FC Eor instance, for 'SYCP1’ in Medulloblastoma, where l0g2FC = 12.477781, FC =




4.1 Differential Expression Analysis

fold). Moreover, gene SYCP1 was the second top upregulated gene across
all tumor types except in ATRT (see Table 4.3). The downregulation pat-
tern of gene expression is less consistent across tumor types. For instance,
COL17A1 is downregulated accross all tumor types except in ATRT. It is
worth noting this is not the gene with highest LogFoldChange except in
Medulloblastoma tumor types. Moreover, MMP12 is most underegulated
gene in Ependymoma and Glioma tumor types. There are no similar studies
that use craniopharyngioma as refernece tumor establish this down regula-
tion comparison of gene expressions. The top 5 most downregulated genes
are summarized in Table4.3 with their respective LogFoldChange.

Table 4.3: Top 5 Upregulated and Downregulated genes with their respective
LogFoldChange values across different tumor types

Upregulated Genes(Highlighted in red are genes that are upregulated across all tumor)
Ependymoma Glioblastoma Glioma Medulloblastoma

ENT1 (5.83)

RELN (5.69) DLL3 (5.55) MAGEA12 (7.56) | MAGEA12 (7.56)
PRAME (5.69) FBP2 (5.57) ENI1 (5.16) MAGEC?2 (4.99) GNGT!1 (6.84)
PMCH (5.12) HOXD4 (550) | MAGEA12 (5.03) | KLRC2 (4.98) RELN (6.73)

Downregulated Genes(genes highlighted in green are genes downregulated frequently)
GH2 (-25.12) PRL (-11.71)
CCL11 (-23.97)

PITX2 (-11.23)
SERPINBY (-10.97)
CEACAMBG (-9.62)

PRL (-10.57)
CCL11 (-10.19)

FGF19 (-9.67)
GH2 (-9.47)
ALDH3B?2 (-8.60)

PLA2G2A (-9.54)
LAMBS3 (-9.28)
SAAL1 (-9.08)

PRL (-10.50)
CEACAMEG (-9.07)

WNT3A (-9.46)

212477781~ 5,684. This means the expression of 'SYCP1 is about 5,684 times higher in
Medulloblastoma compared to the Craniopharyngioma.
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4.2 Weighted Correlation Network Analysis

In the application of the Weighted Gene Co-expression Network Analysis
(WGCNA), eight distinct gene modules emerged. These modules are clus-
ters of genes with similar expression patterns, consisted of different num-
bers of genes, ranging from 35 to 408 and the top 5 most interconnected

(hub) genes presented in table 4.4.

Table 4.4: Gene Modules and Their Top 5 highly connected genes in their re-
spective module

Modules = Number of Top 5 Hub Genes

Genes
Modulel 35 ZNF205, MBD3, DVL1, TELO2, MAP2K2
Module2 408 TRIM33, MAPKS8, CCNT2, ATF2, TXNDC16
Module3 40 CDC42, PSMA1, PRDX3, PSMA6, PSMC2
Module4 73 RAD51, CCNB2, CHEK1, BIRC5, CDC25A
Module5 59 ARHGEF6, MASP1, PRKCA, FEZ1, CX3CR1
Module6 356 CD53, C3AR1, LAPTM5, ITGB2, PTPRC
Module? 358 IL7R, IL2RG, SLAMF1, SLAMF6, ILIRN
Module8 38 COL4A1, COL4A2, HSPG2, CDH5, ITGA1

4.2.1 Module -trait correlation
Following the module detection steps from the previous subsection, we

explored the potential of module to clinical trait correlation, particularly
their relationships with various types of tumors. To this end, we computed
the correlations of these modules’ eigengenes with different tumor types.
The eigengenes, serving as representative gene expression profiles within
the respective modules, demonstrated varied degrees of correlation across
the tumor types. The relationship between the module eigengenes and the
tumor types is captured in the correlation table 4.4 shown below. Notably,
three modules exhibited a high correlation with Medulloblastoma: Module
2, Module 5, and Module 6, with correlation coefficients of 0.82, -0.74, and
-0.69, respectively.

To understand the gene’s significance in correlation with the tumor types,
we looked at Module 2, which showed a strong positive correlation with
Medulloblastoma. The correlation analysis based normalized mean count

of each sample and tumor type of Medulloblastoma (1 if "yes" and 0 if "no"),
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4.2 Weighted Correlation Network Analysis

allowed us to detect individual genes that exhibited a high relationship with
Medulloblastoma. Based on this analysis, gene PIAS1 was the most signif-
icantly correlated gene with Medulloblastoma. PIAS1, short for Protein In-
hibitor of Activated STAT 1 as part of the PIAS family, PIAS1 is known to
play a regulatory role in the JAK-STAT signaling pathway, a critical pathway
in immune responses and cellular processes like proliferation and differen-
tiation [32]. The role of PIAST has been illustrated as a key player in the pro-
cess of Epithelial-mesenchymal-transition (EMT), a process linked to tumor
metastasis. Additionally, PIAS1, acting as a SUMO E3 ligase, is downregu-
lated by TGFbeta, a potent inducer of EMT. This suggests that PIAST serves
as a negative regulator of EMT and its downregulation may, therefore, facil-
itate EMT and possibly tumor progression[33]. Although we couldn’t find
concrete evidence on the role of PIAS1 in Medulloblastoma tumor types,

this initial finding could be used as a baseline for further research.
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Figure 4.4: The heatmap show the correlation between gene modules (Y-axis) and
tumor types (X-axis). Each cell in the heatmap represents the correlation between

a specific gene module and a tumor type, with the color indicating the strength and
direction of the correlation. For instance, gene module 2 shows a strong positive cor-
relation (0.82) with Medulloblastoma, suggesting that the expression of genes in this
module is associated with the presence of this tumor type. Conversely, Module 5 has a
strong negative correlation (-0.74) with Medulloblastoma, indicating that the genes in
this module are less likely to be expressed in this type of tumor.
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5. Discussion

Our study was designed with two key objectives in mind. First, we
aimed to identify the differences in immune-related gene expression across
different pediatric brain tumors. Second, we sought to detect clusters of

genes that behave similarly and their relationship with different tumor types.

5.1 Differential Expression Analysis

In response to our first objective, we employed differential expression anal-
ysis using DESeq2 R package[27]. We used Craniopharyngioma, a benign
and low-grade tumor as a reference tumor. This was due to the absence of
data from healthy tissue samples at the time of this research. In this analysis,
We identified substantial disparities in the immune-related gene expression
among the tumors types as compared to the reference tumor. Strikingly,
Medulloblastoma exhibited the highest proportion of downregulated genes
(64%). Medulloblastoma is an embryonal tumor of the posterior fossa and
is the most common malignant brain tumor in children. It comprises up
to 20% of all pediatric brain tumors[2]. On the other hand, Ependymoma,
Glioma, and Glioblastoma displayed notable proportions of upregulated
genes, suggesting a possible distinctive immune landscape within these tu-
mors. To get a better understanding of the differential expression analysis,
we have applied a commonly used threhsold of P-value less than 0.05, and
absolute LogFoldChange greater than 2. This enabled us to rank top 5 up-
regulated and downregulated gene list. To our knowledge, there are no
similar researches available to draw a comparison, however, most of the
top upregulated genes are well studied in different contexts in previous re-
search. For instance MAGEAS3, is a tumor-specific shared antigen that is of-
ten expressed in lung cancer and melanoma. In addition, other tumor types
express MAGEA3 less frequently. Its expression is absent in normal tissues,
with the exception of the testis and the placenta, but its level is linked to the
severity of the illness as well as the patient’s prognosis[34]. Moreover, in line
with the findings of our study, MAGEA3, which was consistently highly ex-
pressed across all tumor types, it has been reported that, it is one of the most
frequently expressed cancer-testis (CT) antigens in pediatric brain tumors,

with expression noted in 56% of cases [35], [36]. This antigen expression can
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be leveraged for immunotherapy, considering the potential of CT antigens
as targets for cancer treatment, one study suggested[37]. Importantly, previ-
ous studies have successfully used demethylating agents such as decitabine
(DAC) to upregulate the expression of MAGEAS3, thereby increasing the vis-
ibility of tumor cells to the immune system and enhancing their susceptibil-
ity to cytotoxic T lymphocytes [38]. MAGEA3 was significantly upregulated
when a protein called fibronectin was silenced in human thyroid carcinoma
cells. This upregulation led to increased cell migration and invasion, con-
tributing to the progression of human thyroid cancer [39]. These findings
further highlights the potential relevance of MAGEA3 in the behavior and

progression of various tumor types.

In contrast one of the downregulated gene in our research, COL17A1 also
known as (Collagen XVII) is a transmembrane protein involved in maintain-
ing the link between intra- and extracellular structural elements, essential
for epidermal adhesion. COL17A1 is encoded by the COL17A1 gene and
consists of three a1 chains. Previous research has connected chromosomal
translocations, especially those resulting in oncogenic fusion proteins, with
the initiation of human cancer [40]. It has been observed that this gene is
usually upregulated in GBM, contrasting with our result where it is down-
regulated compared to Craniopharyngioma[41]. Additional studies found
a new PTEN-COL17A1 fusion gene that could increase COL17A1 expres-
sion, leading to enhanced tumor invasiveness through upregulated matrix
metalloproteinase (MMPs) expression [42]. Other researches indicated that
COL17A1 might serve as a prognostic biomarker and therapeutic target for
GBM. In GBM samples, COL17A1 gene expression has been identified in
less than 1% of cases [42]. Moreover, COL17A1 expression was found in
malignant, but not benign, melanocytic tumors. There is a correlation be-
tween increased COL17A1 expression and poor outcomes in colorectal car-
cinoma, suggesting a role in tumor progression [43], [44]. MMP12, Matrix
Metallopeptidase 12, is another gene we identified as being significantly
downregulated in Ependymoma and Glioma tumor types. Matrix Metal-
lopeptidase 12 (MMP12), also known as Human Macrophage Metalloelas-

tase (HME), is an enzyme that belongs to the matrix metalloproteinase fam-

36



5.2 Gene Module Detection and Correlation

ily. These enzymes are known for their role in the degradation of extracellu-
lar matrix, contributing to physiological processes like embryogenesis and
tissue remodeling, and pathological processes like inflammation and tumor
invasion [45]. Although the significance of MMP12 in human brain tumors
is not well established, one research demonstrated the role of Matrix Metal-
loproteinas(MMPs), including MMP12, in the progression of human brain
tumors [46]. In another research it has been shown to play a role in the
development of atherosclerosis and pathogenesis of aortic aneurysm [47],
[48]. MMP12 has also been detected in glioma cell line [49]. In a compre-
hensive study by Zarin et al. that examined MMP2, MMP9, and MMP12 ex-
pression across sixty human brain tumors, the expression levels of MMP12
was found to be higher in some tumors compared to other MMPs tested,
however it has lower expression level among grade III tumor types when

compared to the expression level of MMP2.

5.2 Gene Module Detection and Correlation

In addressing our second objective, the weighted gene co-expression net-
work analysis (WGCNA), and WGCNA R package was employed[30]. The
WGCNA allowed us to identify eight distinct modules, each encompassing
a different set of genes whcih bahve similarly based on their expression. The
high connectivity of certain genes within their respective modules suggests
these genes could hold a crucial role in these co-expression networks. They
might be the key players in the biological processes or pathways related
to each tumor type. Interestingly, Modules 2 which includes genes such
as TRIM33, MAPK8, CCNT2, ATF2, TXNDC16, and module 5 (ARHGEFb6,
MASP1, PRKCA, FEZ1, CX3CR1), and module 6 (CD53, C3AR1, LAPTM5,
ITGB2, PTPRC) demonstrated a high correlation with Medulloblastoma. These
modules might contain genes significantly contributing to the molecular
characteristics of Medulloblastoma. For instance The finding of TRIM33
as a highly connected gene in Module2 aligns with the studies, such as
that by Koso et al., who employed transposon-based insertional mutage-
nesis to model medulloblastoma in mice. In their investigation, TRIM33
was one of the Common Insertion Sites (CIS) genes in both their screen and

in the medulloblastoma model developed in Ptch1 and Trp53 mutant back-
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grounds. This overlap underlines TRIM33’s possible role as a driver gene in
medulloblastoma pathogenesis[50]. Moreover, the gene PIAS1 from Mod-
ule 2, in particular, demonstrated a strong positive correlation with Medul-
loblastoma. Given PIAS1’s regulatory role in the JAK-STAT signaling path-
way and the epithelial-mesenchymal-transition (EMT), understanding its
role might offer new insights into the pathophysiology of Medulloblastoma

and potentially uncover new therapeutic targets[33].

5.3 Limitations

Our results could have been impacted by the lack of comparison(refernce)
group of healthy tissue in the gene expression analysis. While this method
has enabled us on how the gene expression of various tumor types differs,
it does not provide a comprehensive picture of how these gene expressions
differ from those of normal, healthy tissue. This omission may have an
impact on our findings because the identified genes may not be specifi-
cally dysregulated in the tumor types under investigation but rather may
represent a general response to any pathological condition in the brain tis-
sue. Future studies could overcome this by using comparisons from existing

healthy tissue banks or reference gene expression databases.
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6. Appedix A

6.1 Ethical and legal consideration of the data

The study was conducted with strict adherence to ethical and EU General
Data Protection Regulation(GDPR) guidelines. Prior to the collection of clin-
ical samples and RNA sequencing data, informed consent was obtained
from parents or legal guardians after providing a detailed explanation of
the study’s purpose. To ensure privacy and confidentiality, all patient sam-
ples were pseudo-anonymized. This pseudonymization process involved
replacing personal identifiers in the dataset with artificial identifiers. Thus,
the connection between patients” identities and their corresponding data
was protected while still permitting individual-level data analysis. Access
to the data is granted only to authorized individuals or entities, and this ac-
cess is controlled by the BioBank and Data Access Committee of the Princess
Maxima Center, Utrecht, the Netherlands. This process of ‘controlled ac-
cess’ ensures that the data is protected and only accessible to those with the

necessary permissions.

Before granting access to the data, a data sharing agreement (DSA) is
signed. This DSA, composed by the BioBank and Data Access Committee
and the legal department of the Princess Maxima Center, aligns with the
specific requirements of the Princess Maxima Center. The DSA ensures that
the data is used responsibly and ethically and that the privacy and rights
of the individuals whose data is included in the dataset are upheld. In the
analysis phase, samples are recorded with their research identifiers, further

ensuring the privacy of the individuals involved.
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7. Appendix B

7.1 Running DESeq2in R

DESeq?2 package was implemented inR version 4.2.2. Craniopharyngioma, a
benign and low-grade type of tumor was used as a baseline comparison tu-
mor type during the differential expression analysis. This approach allowed
us to identify key differences in gene expression profiles among these tumor
types. The steps present the detailed implementation of DESeq?2 in our re-

search.

Creation of DESeqDataSet: from the matrix of count data, a DESeq-
DataSet object was created. The DESeqDataSet is an R object that encap-
sulates the count data along with meta-data for the samples and genes. In
the process of creating this object, raw count data was inputted, alongside a
table of sample information of the "meta data" that describes variables such

as patient tumor type, gender and age.

Design Formula: the design formula used in the DESeq2 analysis de-
scribes the variables that will be used for normalization and the variables
that will be tested for differential expression. In this study, the design for-

mula was specified as

design ~ tumor_type

Adjustment for Multiple Testing: the p-values obtained from the DE-
Seq?2 analysis were adjusted for multiple testing using the Benjamini-Hochberg
procedure. This procedure controls the false discovery rate (FDR), which is
the expected proportion of false positives among all rejected hypotheses. By
controlling the FDR, we limit the probability of making Type I errors when
performing multiple comparisons. After running full gene expression anal-
ysis, we have filtred 1773 immune related genes for further downnstream

analysis.

Genes are identified as "significantly differentially expressed’ if they met
two stringent criteria: an adjusted P value of less than 0.05 and an absolute
log2 fold change of at least 2. This dual-threshold approach ensures that
only genes with both statistically significant changes (P < 0.05) and substan-
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7.1 Running DESeq?2 in R

tial expression differences (log2 fold change > 2) were selected for further
downstream biological pathway analysis. This rigorous selection process
enhances the reliability of the subsequent pathway analysis by focusing on

the most biologically relevant genes.
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8. Appendix C

8.1 Additional Differential Expression Anlysis Re-
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Figure 8.1: Sample characteristics: ATRT exclusively occurs in the 0-4 age group.
Medulloblastoma and Glioma are most prevalent in the 10-14 and 0-4 age groups re-
spectively, while Glioblastoma peaks in the 15-19 age group.
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8.1 Additional Differential Expression Anlysis Results
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Figure 8.2: The x-axis represents the average normalized counts, a measure of gene
expression level, while the y-axis represents the log2 fold change, indicating the de-
gree of differential expression between the two tumor types. Each point on the plot
corresponds to a gene. Genes that are significantly differentially expressed (beyond
the absolute value of log2 fold change threshold). For instance, a gene with a log2 fold
change of -2 is expressed at a level that is one-fourth (2(-2) = 0.25) of its expression
level in Craniopharyngioma, indicating that it is four times downregulated in ATRT
tumors compared to Craniopharyngioma.
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8.1 Additional Differential Expression Anlysis Results
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Figure 8.3: The x-axis represents the l0g2 fold change values, and the y-axis repre-
sents the -log10 transformed p-values. Each point on the plot corresponds to a gene.
Genes with significant differential expression are highlighted and lie beyond the abso-
lute log?2 fold change threshold and above the -10g10 p-value threshold. For instance,
the gene LAMB3, which is indicated by a point at approximately -10 on the x-axis
and 90 on the y-axis, is expressed at a level that is approximately 1/1024th (2(-10)

= 0.0009765625) of its expression level in Craniopharyngioma, indicating that it is
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8.2 Weighted Gene Co-expression Analyis
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Figure 8.5: The dendrogram represents the hierarchical clustering of genes, resulting
in the identification of eight distinct modules. Below the dendrogram, each color box
represents a module
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8.2 Weighted Gene Co-expression Analyis
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Figure 8.4: Pvalue and False Discovery Rate(FDR): The plot illustrates the rela-
tionship between the adjusted p-values (padj) and the number of genes associated with
each padj value. The upper right corner represents genes correctly identified as dif-
ferentially expressed. Conversely, the lower left corner indicated by the yellow arrow
are genes that are false positives, i.e., they are incorrectly identified as differentially
expressed.
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9. Appendix D

9.1 R code

The code used for the analysis in this paper is available at the following
GitHub repository: https:/ /github.com/AmdomH/DEA-Immune-Related-

Genes

#Load library

library(tidyverse)

library (DESeq2)

library (readxl)

library (pheatmap)

library (psych) # for descriptive statistics

library (EnhancedVolcano) # for enhanced volcano plot

library (ggthemes)

if (!requireNamespace ("WGCNA", quietly = TRUE)) install.packages("WGCNA")

if (!'requireNamespace("BiocManager", quietly = TRUE)) install.packages("
BiocManager")

if ('requireNamespace ("GO.db", quietly = TRUE)) BiocManager::install("GO.db",
update = TRUE, ask = FALSE)

library (WGCNA)

library (GEOquery)

library (ComplexHeatmap) # required for ComplexHeatmap

library (EnhancedVolcano)# for nicer volcano plots

library (UpSetR) #bar plots

library (gridExtra)

library (CorLevelPlot)

#Set working directory

setwd ("C:/Users/aweldeab/surfdrive3/Documents/Data source files")
#Load count data and Meta data

# Load count_data from .Rdata file

load ("count_data.Rdata")

load ("meta.Rdata")

load("gene.Rdata")

load ("immune _genes.Rdata")

HUARBHHBABHBRAHBRAFHBARHHAAAHBHAHBHH
# Chapter 01: Descriptive Analysis
HHEAHHHAAHH AR H B AR AR BABHBRAH BB RS HBHRS
ggplot (meta, aes(x=diagnosis, fill=gender)) +
geom_bar (position="dodge") +
labs (x="Diagnosis", y="Count", £fill="Gender") +

theme_solarized ()

; meta%>%

group_by (gender) %>%

summarise (perc= n()/nrow(meta) * 100)
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9.1 R code

#create table

table (meta$diagnosis, meta$age_cat)

#Box plot

ggplot (meta, aes(x=diagnosis, y=age, fill=diagnosis)) +
geom_boxplot () +
geom_jitter (width = 0.2, size = 1, color = "black")+
ylab("Age in Years")+
labs ( x="Diagnosis", y="Age", fill="Diagnosis") +
scale_y_continuous (breaks= c(0:20))+

theme_economist_white ()

HAHHHHBAHAHHB R AR AR AR AR ARHAR AR B R AR BRH R AR R B HHHHH
## Chapter 02 Exploratory Analysis
HHARHARH AR H AR R AR BB BB AR BB B SR HHRHH BB R BB SRS HH
dds<- DESeqDataSetFromMatrix (countData = count_data,
colData = meta,
design = ~ diagnosis)

dds_normal<- estimateSizeFactors(dds)

sizeFactors (dds_normal) [1:5] #check top 5 samples
count _normal<- counts(dds_normal, normalized = TRUE) #Extrating Normalized
counts

count_normal [1:5,1:5]

vsd <- vst(dds_normal, blind = TRUE)#scaling the data
vsd_mat<- assay(vsd)#Extract the vst matrix

vsd_mat[1:3, 1:3]

#subset the immune related genes
by <- join_by(gene_name==GeneName)
immune _genes<- left_join(immune_genes, gene,by)

immune _genes?’>%head ()

vsd_immune _mat <- vsd_mat[rownames(vsd_mat) %in% immune_genes$ID.x, ]
dim(vsd_immune _mat)
vsd_immune_cor<- cor(vsd_immune_mat) #compute correlation

vsd_immune _cor [1:5,1:5]

set.seed (123)

# Create the Heatmap object

p<-Heatmap (vsd_immune_cor,
name = "cor",
show_column_names = FALSE, # hide column labels
show_row_names = FALSE, # hide row labels
cluster_rows = TRUE, # cluster rows

cluster_columns = TRUE, # cluster columns
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top_annotation = HeatmapAnnotation(diagnosis = meta$diagnosis),
column_title_rot = 90

)

draw(p, heatmap_legend_side = "right")# Draw the heatmap

#Plot PCA

pcaData <- plotPCA(vsd, intgroup = "diagnosis", returnData = TRUE)

cbbPalette <- c("#CC79A7", "#56B4E9", "#009E73", "#FOE442", "#0072B2", "#

D55E00")
pcaData%>%

ggplot (aes (PC1, PC2, color=diagnosis))+
geom_point (size = 2, alpha=1)+
scale_color_manual (values =cbbPalette)+

theme_economist_white ()

HAHRAHBHHAHARAHBH BB HA R AR RH B R AR AR HH B R AR AR RS RSB HH

# Chapter 03 Differential analysis

HUEABHHAAHB AR AR BABHBAARBAR AR AABHBAAHBAAHBAAHBBR S

dds <- DESeq(dds)# Perform differential expression analysis
norm_counts <- counts(dds, normalized = TRUE)

norm_counts[1:5, 1:5]

plotDispEsts (dds)

#Checking the distributin count data

ggplot (count_data) +
geom_histogram(aes(x = log2(sample_63+1)), stat = "bin", bins = 30) +
xlab("expression counts") +
ylab("Number of genes") +

theme_economist_white ()

#Plot mean-variance

mean_counts <- apply(count_datal[,1:147], 1, mean)
variance_counts <- apply(count_datal,1:147], 1, var)
df <- data.frame(mean_counts, variance_counts)

p<-ggplot (df) +

geom_point (aes(x=1log2(mean_counts), y=variance_counts)) +
scale_y_logl0(limits = c(1,1e9)) +
scale_x_logl0(limits = c(1,1e9)) +
geom_abline (intercept = 0, slope = 1, color="red")+
theme_economist_white ()

p

#create contrasts

diagnosis <- c(’Craniopharyngioma’, ’ATRT’, ’Ependymoma’, ’Glioblastoma’, °’
Glioma’, ’Medulloblastoma’)

contrasts <- lapply(setdiff (diagnosis, "Craniopharyngioma"), function(x) c("
diagnosis", x, "Craniopharyngioma"))

contrasts
results.list <- lapply(contrasts, function(con) results(dds, contrast = con,

alpha = 0.05))
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9.1 R code

137 #### ATRT vs Craniopharyngioma

138 ATRT _res<-results.list[[1]]

139 ATRT _res

140 summary (ATRT _res)

141 #### Ependymoma vs Craniopharyngioma

142 Ependymoma_res<- results.list [[2]]

143 Ependymoma_res

144 summary (Ependymoma_res)

145 #### Glioblastoma vs craniopharungioma
146 Glioblastoma_res<- results.list[[3]]

147 Glioblastoma_res

148 summary (Glioblastoma_res)

149 #### Glioma vs Craniopharyngioma

150 Glioma_res<- results.list [[4]]

151 Glioma_res

152 summary (Glioma_res)

153 #### Medulloblastoma vs Craniopharyngioma
154 Medulloblastoma_res<- results.list[[5]]
155 Medulloblastoma_res

156 summary (Medulloblastoma_res)

158 ## Add gene names

159 #idx <- match( rownames(res), gene$ID )

160 ATRT _res$geneName<- gene$GeneName [match(rownames (ATRT _res), gene$ID )]

161 Ependymoma_res$geneName<- gene$GeneName [match(rownames (Ependymoma_res), gene$
ID )]

162 Glioblastoma_res$geneName<- gene$GeneName [match(rownames (Glioblastoma_res),
gene$ID )]

163 Glioma_res $geneName<- gene$GeneName [match(rownames(Glioma_res ), gene$ID )]

164 Medulloblastoma_res$geneName<- gene$GeneName [match(rownames (Medulloblastoma_
res), gene$ID )]

165 head (ATRT _res)

166 #Filter immune related genes

167 idx <- which(ATRT_res$geneName %in% immune_genes$gene_name)#create index

168 ATRT _immune_res <- ATRT _res[idx,]

160 Ependymoma_immune_res<- Ependymoma_res[idx,]

170 Glioblastoma_immune_res<- Glioblastoma_res[idx,]

171 Glioma_immune_res<- Glioma_res[idx,]

172 Medulloblastoma_immune_res<- Medulloblastoma_res[idx,]

173 head (Medulloblastoma_immune_res)

176 ## Summary results

177 summary (ATRT _immune _res );

178 head (ATRT _immune _res)

179 summary (Ependymoma_immune _res) ;
180 head (Ependymoma_immune _res)

181 summary (Glioblastoma_immune_res)

182 head(Glioblastoma_immune_res)
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summary (Glioma_immune _res) ;
head (Glioma_immune_res)
summary (Medulloblastoma_immune_res) ;

Medulloblastoma_immune_res

HUHHAHAEHAH B RS HAEHAH RS RS RS HAH RS R RS H RS RS RS H S H S H 1S
# Chapter 04 Filtering DE genes
HUEARBHBAAH BB AR BRARBHBAASHBRABH AR R BAASHBRAR R AR HBERH
# ATRT
top_upregulated ATRT <- ATRT_immune_res %>%as.data.frame ()%>%
arrange (desc (log2FoldChange)) %>/
head (5)
top_downregulated ATRT <- ATRT_immune_res %>%as.data.frame()%>%
arrange (log2FoldChange) %>%
head (5)
# Ependymoma
top_upregulated _Ependymoma <- Ependymoma_immune_res %>%as.data.frame()%>%
arrange (desc (log2FoldChange)) %>%
head (5)
top_downregulated _Ependymoma <- Ependymoma_immune_res ¥%>%as.data.frame()%>%
arrange (log2FoldChange) %>%
head (15)

5 # Glioblastoma

top_upregulated_Glioblastoma <- Glioblastoma_immune_res %>%as.data.frame()%>%
arrange (desc (log2FoldChange)) %>%
head (5)
top_downregulated_Glioblastoma <- Glioblastoma_immune_res %>%as.data.frame ()
h>%
arrange (log2FoldChange) %>%
head (5)
# Glioma
top_upregulated_Glioma <- Glioma_immune_res %>%as.data.frame()%>%
arrange (desc (log2FoldChange)) %>%
head (5)
top_upregulated_Glioma
top_downregulated_Glioma <- Glioma_immune_res ¥%>%as.data.frame()%>%
arrange (log2FoldChange) %>%
head (5)
top_downregulated_Glioma
# Medulloblastoma
top_upregulated_Medulloblastoma <- Medulloblastoma_immune_res ¥%>%as.data.frame
O %>%
arrange (desc (log2FoldChange)) %>%
head (5)
top_downregulated_Medulloblastoma <- Medulloblastoma_immune_res %>%as.data.
frame () %>%
arrange (log2FoldChange) %>%
head (5)
HHHAHFHAHAHBAAHBAAHH AR A BB RS H B R AR B AR H R AR SR AR HBHRH

# Chapter 05 Visualizations
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HU#HHHHHBHAHHHBHBH SRR HAH AR B R AR R R RS R R B RS RS
#Volcano plot

pl<- EnhancedVolcano (ATRT_immune_res,

lab = ATRT_immune_res$geneName,
X = ’log2FoldChange’,
y = ’padj’,

pCutoff = 0.05,
FCcutoff = 2,
cutofflLineType = ’dotted’,
labSize = 3,
title=NULL,
xlim = c(-30, 30),
selectLab = c(top_upregulated ATRT$geneName , top_
downregulated _ATRT$geneName))
pl + theme_economist_white ()
#MA Plot
plotMA (ATRT _immune_res, ylim=c(-2,2))
#Adjusted P-values plots
ggplot (as.data.frame (ATRT _immune_res), aes(padj)) +

geom_histogram(color = "black", fill = "#0072B2", bins = 30) +
geom_vline (aes (xintercept = 0.05), color = "red",size = 1) +
geom_hline (aes(yintercept = 20), color = "red",size = 1) +

geom_segment (aes(x = 0.2, y = 100, xend = 0.001, yend = 10), arrow = arrow(

length = unit(0.1, "cm")), size=1.5, color="orange") +
geom_text (aes(x = 0.2, y = 100, label = "FDR"), hjust = -0.1, vjust = 1.5,
size = 5, color = "black")
labs(x = "padj", y = "Frequency") +
scale_x_continuous (breaks = seq(0, 1, by = 0.2)) +

theme_minimal ()

# Get DEGs for each result

3 # Order results based on padj

ATRT _immune _res_filter <- subset (ATRT_immune_res, padj < 0.05 & abs(
log2FoldChange) > 2)

Ependymoma_immune _res_filter <- subset(Ependymoma_immune_res, padj < 0.05 &
abs (log2FoldChange) > 2)

Glioblastoma_immune_res_filter <- subset(Glioblastoma_immune_res, padj < 0.05
& abs (log2FoldChange) > 2)

Glioma_immune_res_filter <- subset(Glioma_immune_res, padj < 0.05 & abs(
log2FoldChange) > 2)

Medulloblastoma_immune_res_filter <- subset(Medulloblastoma_immune_res, padj <

0.05 & abs(log2FoldChange) > 2)

ATRT_immune _res_filter <- ATRT_immune_res_filter[order (ATRT_immune_res_filter$
padj),]

Ependymoma_immune _res_filter <- Ependymoma_immune_res_filter [order (Ependymoma _
immune _res_filter$padj) ,]

Glioblastoma_immune_res_filter <- Glioblastoma_immune_res_filter [order (

Glioblastoma_immune_res_filter$padj),]

7 Glioma_immune_res_filter <- Glioma_immune_res_filter[order (Glioma_immune_res_

filter$padj),]
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Medulloblastoma_immune_res_filter <- Medulloblastoma_immune_res_filter [order (
Medulloblastoma_immune_res_filter$padj),]

ATRT _immune _res_filter

ATRT_DEGs <- ATRT_immune_res_filter$geneName

Ependymoma_DEGs <- Ependymoma_immune_res_filter$geneName

Glioblastoma _DEGs <-Glioblastoma_immune_res_filter$geneName

Glioma_DEGs <- Glioma_immune_res_filter$geneName

Medulloblastoma_DEGs <- Medulloblastoma_immune_res_filter$geneName

# Create a list of DEGs
degs <- 1list (ATRT = ATRT_DEGs, Ependymoma = Ependymoma_DEGs, Glioblastoma =
Glioblastoma_DEGs,
Glioma = Glioma_DEGs, Medulloblastoma = Medulloblastoma_DEGs)
# Make the UpSet plot

upset (fromList (degs), order.by = "freq", set_size.show=FALSE, matrix.color = "
blue", text.scale = 1,
sets.bar.color =c("maroon", "blue", "green", "purple", "orange")
)

HUHHAEHAEHAHHAHSHAHHH RS H SRS H AR RSB SRS H RS RS R SRS H RS H S
# Chapter 06 WGCNA
HAHAHHHHAHAHAHBHHAH AR AR AH B AR AR AR AH B R AR AR A SRS HHH
count_data_filter <- count_data %>Y%
rownames _to_column ("ENSEMBL") %>%
filter (ENSEMBL %in% rownames (ATRT_immune_res)) %>%
column_to_rownames ("ENSEMBL")

count _data_filter[1:3,1:3]

gsg <- goodSamplesGenes (t(count_data_filter)) #Explore good samples
summary (gsg)

gsg$allOK

table (gsg$goodGenes) ;table (gsg$goodSamples)

data <- count_data_filter [gsg$goodGenes == TRUE,]# remove genes that are
detectd as outliers

#PCA

pca <- prcomp (t(data))

pca.dat <- pca$x

3 pca.var <- pca$sdev~2

pca.var.percent <- round(pca.var/sum(pca.var)*100, digits = 2)
#create this as data.frame

pca.dat <- as.data.frame(pca.dat)

7 ggplot (pca.dat, aes(PCl, PC2, color= )) +

geom_point () +

geom_text (label = rownames(pca.dat)) +

labs(x = pasteO(’PCl: ’, pca.var.percent[1], * %°),
y = paste0(’PC2: ’, pca.var.percent[2], ’ %’))

samples.to.be.excluded <- c("sample_81")#0utliers
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9.1 R code

data.subset <- datal,!(colnames(data) %in% samples.to.be.excluded)]
colData <- meta %>%

filter (!row.names (.) %in% samples.to.be.excluded)

# create dds
dds2 <- DESeqDataSetFromMatrix (countData = data.subset,
colData = colData,
design = ~ 1) # not specifying model
## remove all genes with counts < 15 in more than 75 of samples (31%
0.75=23.25)
## suggested by WGCNA on RNAseq FAQ
dds75 <- dds2[rowSums (counts (dds2) >= 15) >= 24,]

nrow (dds75) #

# perform variance stabilization

dds_norm <- vst(dds75)

# get normalized counts
norm.counts <- assay(dds_norm) %>/

t ()

## 4 Network Construction: The main network

# Choose a set of soft-thresholding powers

power <- c(c(1:10), seq(from = 12, to = 50, by = 2))
# Call the network topology analysis function

sft <- pickSoftThreshold(norm.counts,

powerVector = power,
networkType = "signed",
verbose = 5)

#### Visualize

sft.data <- sft$fitIndices

# visualization to pick power

al <- ggplot(sft.data, aes(Power, SFT.R.sq, label = Power)) +
geom_point () +
geom_text (nudge_y = 0.1) +
geom_hline(yintercept = 0.8, color = ’red’) +
labs(x = ’Power’, y = ’Scale free topology model fit, signed R~2’) +
theme_classic ()

a2 <- ggplot(sft.data, aes(Power, mean.k., label = Power)) +
geom_point () +
geom_text (nudge_y = 0.1) +
labs(x = ’Power’, y = ’Mean Connectivity?’) +
theme_classic ()

grid.arrange(al, a2, nrow = 2)

##4A convert matrix to numeric

norm.counts [] <- sapply(norm.counts, as.numeric)
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soft_power <- 4
temp_cor <- cor
cor <- WGCNA::cor

## Co-expression

7 # Calculate the co-expression (correlation) matrix

correlation_matrix <- cor(norm.counts)
# View the correlation matrix

correlation_matrix[1:5, 1:5]

### Adjacancy matrix
# Calculate the adjacency matrix based on the chosen power (beta)

A = adjacency(norm.counts, power = soft_power)

##4B memory estimate w.r.t blocksize

bwnet <- blockwiseModules (norm.counts,
maxBlockSize = 2000,
TOMType = "signed",
power = soft_power,
mergeCutHeight = 0.25,
numericlLabels = FALSE,
randomSeed = 1234,
verbose = 3)

cor <- temp_cor

#Module Eigengenes
module_eigengenes <- bwnet$MEs
# get number of genes for each module

table (bwnet$colors)

#Plot dendogram and modules
plotDendroAndColors (bwnet$dendrograms [[1]], bwnet$colors,
"Modules",
dendrolLabels = FALSE,
addGuide = TRUE,
hang= 0.03,
guideHang = 0.05)

#module trait associations
# create traits file - binarize categorical variables
trait<-colData %>%

mutate (gender _bin = ifelse(grepl(’female’, gender), 1, 0)) %>%

select (gender _bin)

# binarize categorical variables
colData$type <- factor(colData$diagnosis, levels = c("Craniopharyngioma"

Medulloblastoma", "Glioblastoma","Glioma", "Ependymoma","ATRT" ))

type.out <- binarizeCategoricalColumns (colData$type,
includePairwise = FALSE,

includelevelVsAll = TRUE,
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9.1 R code

minCount = 1)

colnames (type.out)

traits <- cbind(trait, type.out)

# Define numbers of genes and samples
nSamples <- nrow(norm.counts)

nGenes <- ncol(norm.counts)

nSamples;nGenes

module.trait.corr <- cor(module_eigengenes, traits, use = ’p’)

module.trait.corr

module.trait.corr.pvals <- corPvalueStudent (module.trait.corr, nSamples)
module.trait.corr.pvals

# visualize module-trait association as a heatmap

heatmap.data <- merge(module_eigengenes, traits, by = ’row.names’)

head (heatmap.data)

heatmap.data <- heatmap.data %>} ### renames the columns for visisbility

rename_all (“str_replace_all(., "data.", "")) %>%
rename_all (“str_replace_all(., ".vs.all", "")) %>%
rename_all(“str_replace_all(., "_bin", ""))

colnames <- names (heatmap.data)

# Rename the selected ones

colnames [1:8] <- c("Modulel", "Module2", "Module3", "Module4",

Module6", "Module7", "Module8")

# Assign the new names back to the dataframe

names (heatmap.data) <- colnames

cbbPalette <- c("#D55E00","#009E73")

par (cex.axis=0.8, cex.main=1.5)

CorLevelPlot (heatmap.data,
x = names (heatmap.data) [11:15],
y = names (heatmap.data) [1:8],
cexLabX = .7,
titleX = "tumor types",
signifCutpoints = c(0, 0.001, 0.01, 0.05, 1),
cexMain = 1,
colFrame = "white",

col = cbbPalette

#### Module mapping
module.gene.mapping <- as.data.frame (bwnet$colors)

module .gene.mapping%>%head ()

##### ADD Gene Names

#Intramodular analysis: Identifying driver genes

"Moduleb"
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#Calculate the module membership and the associated p-values

#intramodular connectivity is calculated as the correlation of the eigengene
and the gene expression profile.

module .membership.measure <- cor(module_eigengenes, norm.counts, use = ’p’)

module .membership.measure.pvals <- corPvalueStudent (module.membership.measure,
nSamples)

module .membership.measure.pvals[1:9,1:10]

turquoise<-module.membership.measure.pvals["MEturquoise",]
hub_t<-as.data.frame (turquoise)%>%

arrange (turquoise) %>/

head ()

ATRT_immune_res [rownames (hub_t) ,]

###Using the gene significance you can identify genes that have a high
significance for trait of interest

#Using the module membership measures you can identify genes with high module
membership with module

#who has high correlation with Meduloblastoma.

# Calculate the gene significance and associated p-values
gene.signf.corr <- cor(norm.counts, traits$data.Medulloblastoma.vs.all, use =
’p?)
gene.signf.corr.pvals <- corPvalueStudent (gene.signf.corr, nSamples)
gene.signf.corr.pvals %>%
as.data.frame () %>%

arrange (V1) %>%

head (5)
top2_MB<- Medulloblastoma_immune_res[c("ENSG00000033800.13", "ENSG00000115738
.10"), 1
top2_MB

#Identifying top 5 module hubs

hub_genes <- function(module_color) {
ME <- module.membership.measure.pvals[pasteO("ME", module_color), 1]
module_genes <- names (bwnet$colors) [bwnet$colors == module_color]
module_pvals <- ME[module_genes]
hub_genes <- sort(module_pvals, decreasing = FALSE)
top_5 <- hub_genes[1:5]
top_5_df <- data.frame(ID = names(top_5), pvalue = top_5)
top_5_df <- dplyr::inner_join(top_5_df, gene, by = "ID")
return (top_5_df)

}

colors<-unique (bwnet$colors) [1:8]

for (i in 1:length(colors)) {
print (bwnet$colors[i])

print (hub_genes (colors[il))
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505 ### END #HHHHHHHHHHHHH#H#H
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