
UTRECHT UNIVERSITY 

Department of Information and Computing Science 

Applied Data Science Master Thesis 

 
 

 
Facilitating Neuro-Oncology Research: An 

Extensible Graph Neural Network Framework 
for Brain Tumour Classification 

 

 

 

 

 

 

July 12, 2023 

First Examiner: 

Artem Kaznatcheev 

Candidate: 

Alejandro Alarcón Torres 

Second Examiner: 

Sanna Abeln 

In cooperation with: 

Sebastian Waszak, NCMM 

Birgit Kriener, NCMM 



 2 

Acknowledgements 

First and foremost, I would like to express my gratitude to my advisor, Artem 
Kaznatcheev, for his support, encouragement, and guidance throughout the 
course of this research.  

I also wish to extend my sincere appreciation to Sebastian Waszak and Birgit 
Kriener, who, in collaboration with the Norway Centre for Molecular Medicine 
(NCMM), have made invaluable contributions to my project. Their insights, 
advice, and collaborative spirit have played a pivotal role in shaping this 
research and have enriched my academic experience tremendously. 

Furthermore, I would like to thank the Norway Centre for Molecular Medicine 
(NCMM) for its support and collaboration. The Centre's commitment to 
fostering research excellence and its focus on advancing the frontiers of molecular 
medicine have been instrumental to the progression and success of my project. 



 3 

Abstract 

This study addresses the necessity for precise and efficient brain tumour 
classification techniques, traditionally dependent on manual histopathology, a 
process prone to inaccuracies due to subtle differences in images.  

Edge-definition techniques in cell-graphs play a fundamental role in graph-based 
learning, as they encode the interaction between the tumours’ cells that can be 
crucial for capturing complex histopathological patterns. These patterns, when 
accurately identified, can provide valuable insights into tumour structure and 
potential malignancy, therefore enhancing the precision of cancer diagnosis and 
prognosis. 

The potential of Graph Neural Networks (GNNs) is further explored within this 
context. Recognizing the diversity and complexity of brain tumours, we 
leveraged the flexibility and extensibility of the GraphGym framework in our 
method, which allowed for a more comprehensive and nuanced approach to brain 
tumour classification. The resultant framework is used to evaluate both the 
performance of edge-definition approaches and the effectiveness of different GNN 
architectures.  

The objective is to identify the most effective combination for brain tumour 
classification. The results of this study aim to provide significant insights and 
make a substantial contribution to the advancement of diagnostic accuracy in 
neuro-oncology.  
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1 Introduction 

Brain tumours, a category of cancers affecting millions globally, present a 
significant concern in contemporary healthcare. Their high degree of variability, 
the severity of symptoms, and the profound impact on quality of life make them 
a critical area of focus in ongoing oncological research. The complexity of 
diagnosis and treatment further underscores the need for innovative approaches 
that enhance accuracy and efficiency. 

Understanding the biomedicine involved in brain tumours is crucial to our study. 
Brain tumours arise from several types of cells within the brain and can be 
broadly categorized as primary or secondary, benign, or malignant, each with 
distinct tissue characteristics (Doolittle, 2004). Histopathology (Section 2.1), 
which involves the examination of tissue samples under a microscope, plays a 
vital role in the definitive diagnosis and characterization; it is considered the 
gold standard for tumour diagnosis and classification (Charles et al., 2011). By 
analysing tissue samples, pathologists can assess the cellular composition, 
architectural patterns, and molecular features of brain tumours. 
Histopathological analysis allows for the identification of specific tumour types, 
such as gliomas, which will be the target of this project (Section 1.1).  

While histopathology has been instrumental in diagnosing brain tumours, it 
comes with certain challenges. The images that are dealt with in histopathology 
are vast and rich in detail, which, while providing comprehensive data, also 
makes them computationally heavy and challenging to process efficiently (Shetty 
et al., 2022). Furthermore, subtle differences between tumour types can be 
difficult to discern and quantify, leading to potential discrepancies in diagnosis 
(Shetty et al., 2022). 

By transforming these high-resolution images into graph structures, we can 
capture the key features of the tumour while reducing the computational 
overhead associated with processing such images (Zheng et al., 2022). Graph 
Neural Networks (GNNs) offer a powerful framework to analyse graph-
structured data, enabling the extraction of meaningful representations and 
accurate predictions (Wu et al., 2021). This graph-based approach allows us to 
exploit the complex relationships and dependencies within the tumour 
microenvironment, facilitating comprehensive brain tumour classification and 
providing valuable insights for diagnosis and treatment planning (Doi, 2007).  

A major component of this process involves the edge-definition in cell-graphs, 
which models the complex interactions between tumour cells. The accurate 
definition of these edges is critical to capturing the intricate cellular interactions 
and dependencies. However, this task poses a significant challenge due to the 
inherent complexity and variability of tumour tissues (Nath, 2022). Determining 
the most effective approach for edge-definition is a central aspect of our study. 
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GNNs are a subclass of neural networks designed specifically to work with graph 
data. They operate by passing messages between nodes in a graph, enabling 
them to capture and learn from the complex patterns and relationships within 
the data (Sanchez-Lengeling et al., 2021). While GNNs offer several advantages, 
such as their ability to handle irregular data and their flexibility in terms of 
input size (Sanchez-Lengeling et al., 2021), they also present certain challenges, 
including a higher degree of complexity and potential difficulties in model 
interpretation (Ahmedt-Aristizabal et al., 2022). 

The aim of this project is to provide a framework that enables the exploration 
of the viability and effectiveness of GNNs for brain tumour classification. To 
develop our approach, we have adapted and extended the GraphGym framework 
(You et al., 2020), a flexible and extensible platform for graph-based learning. 

The resulting framework will be accessible to the NCMM and will encompass all 
the essential steps from graph generation to batch training and testing of GNN 
models with a wide range of easily customizable parameters. Furthermore, it 
aims to establish a standard method for evaluating and comparing both edge-
definition techniques and GNN architectures. We also present an evaluation of 
some of the most promising GNN architectures under varying settings. 

1.1 Neuro-oncological context 

Brain cancer encompasses a broad range of neoplastic growths that develop 
within the brain. These abnormal cell growths can arise from the brain itself 
(primary brain tumours) or spread from other parts of the body (secondary or 
metastatic brain tumours) (Al-Hussaini, 2013). Brain tumours pose significant 
challenges due to their intricate location within the central nervous system and 
the potential for invasive behaviour. Invasive cells can migrate away from the 
primary tumour site and invade healthy brain tissue, making it difficult to 
remove all the tumour during surgery (Cheng et al., 2011). 

Brain tumours can be classified into several distinct types based on various 
factors, including their origin, histological features, and genetic characteristics 
(Al-Hussaini, 2013). Among these, gliomas are the most prevalent type of 
primary brain tumour and arise from glial cells1 (Mesfin & Al-Dhahir, 2023). 
Their versatile roles in brain function underline the complexity of gliomas that 
originate from these cells. 

 
1 Glial cells aid in maintaining homeostasis, providing structural support, and regulating the 
speed of electrical impulses traveling along neurons by forming the myelin sheath (Adrienne 
Dellwo, 2023). Furthermore, glial cells are responsible for cleaning up cellular debris and 
pathogens, providing nutrients to neurons, and participating in brain immune responses. 
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Gliomas can be categorized by their grade. In the context of brain tumours, 
grade refers to the degree of malignancy of the tumour and is determined by 
examining the tumour cells under a microscope and assessing how abnormal they 
appear compared to normal cells. A key aspect of this assessment is the 
observation of mitotic activity, which is the process of cell division. High mitotic 
activity indicates that cells are dividing rapidly, a characteristic of aggressive 
tumours. The higher the grade, the more aggressive the tumour is likely to be, 
and the more rapidly it is likely to grow and spread (Brain Tumours - NHS, 
2023). 

High-Grade Gliomas: High-grade gliomas are more aggressive and grow faster. 
Cells are undifferentiated and highly malignant, thus more likely to spread to 
other parts of the brain or spinal cord, having a worse prognosis. 

Low-Grade Gliomas: Low-grade gliomas are less aggressive and grow more 
slowly. They are less likely to spread to other parts of the brain or spinal cord 
(David Reardon, 2019). In a Low-Grade Glioma, cells are well-differentiated and 
exhibit less aggressive tendencies, having a better prognosis. 

 
Figure 1. Histopathological images of Gliomas. Left: Low-Grade Glioma. Right: High-Grade 
Glioma. 

1.2 Graph Based Learning 

Graph-based learning, an emerging paradigm in machine learning, leverages the 
underlying relationships and interactions between data points to generate 
comprehensive, nuanced insights. Predominantly utilized in the realm of deep 
learning, it's a method that adopts the graph theory concept to create models 
and algorithms that not only account for individual data entities, but also for 
the interconnections amongst them.  

Graph Neural Networks (GNNs), a subset of graph-based learning, have arisen 
as a powerful tool to handle data structured as graphs. Data in the form of 
graphs encapsulates relationships between entities (depicted as nodes) using 



 9 

edges. This type of data representation is incredibly versatile, permitting the 
modelling of a myriad of complex systems (Wu et al., 2021). 

Unlike traditional neural networks that require a fixed-size input, GNNs can 
process graphs of any size and shape, ensuring its adaptability across varying 
scopes of data (Sanchez-Lengeling et al., 2021). They preserve the relational 
information between nodes and allow the propagation of information along the 
edges, thereby capturing the global and local dependencies of the graph 
structure. This feature is instrumental in understanding the relationship between 
different regions of interest in complex structures. 

In the medical imaging domain, these networks have demonstrated exceptional 
promise (Levy et al., 2021; Sudbø et al., 2000; Wang et al., 2022). By preserving 
spatial and structural context, GNNs can potentially increase the accuracy of 
classification tasks, offering significant improvements over traditional machine 
learning techniques (Chan et al., n.d.). 

In Figure 2, we can observe the variations in distances, shapes, and sizes across 
the nodes and edges, which may serve as valuable features for the graph-based 
model. These characteristics can vary considerably and may carry specific 
information that could be characteristic of tumour subtypes. 

 
Figure 2. TOP: Examples of WSIs of high-grade glioma (left) and low-grade gliomas (middle and right). 
BOTTOM: Graphs induced from the WSIs of the upper row using Delaunay Triangulation. Courtesy of 
Birgit Kriener, NCMM. 

Preliminary explorations using slide-wide bulk features (e.g., mean and variance 
of the distance distribution and node density, mean and variance of Hu-
moments) have hinted at possible clustering of tumour subtypes, but the results 
were not distinct enough to rely on these features alone. 
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Note the challenge of classifying the graphs into high- and low-grade categories 
based on simple graph metrics such as node and edge densities. GNNs, with 
their ability to capture more nuanced patterns and relationships in the data, are 
expected to perform better in grasping these informative subtleties than broad 
averages on a slide-wide basis. 

This study aims to harness the potential of GNNs to improve brain tumour 
classification, an application of profound significance in medical imaging and 
oncology. By exploring the synergistic relationship between the versatile nature 
of GNNs and the intricate topology of brain tumours, this study takes a 
promising step in exploring new methodologies for brain cancer classification.  
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2 Background 

2.1 Histopathology 

Histopathology is a branch of pathology that involves the microscopic 
examination of tissues to study and diagnose diseases. It combines the fields of 
histology, which focuses on the microscopic structure of tissues, and pathology, 
which deals with the nature and causes of diseases. 

In the context of brain tumour analysis, histopathology plays a crucial role in 
understanding the characteristics and behaviour of tumours (Al-Hussaini, 2013). 
When a brain tumour is suspected, a biopsy or surgical resection is performed 
to obtain a tissue sample. The obtained samples are then processed and prepared 
for histopathological analysis. 

During the preparation, the tissue sample is physically processed and sliced into 
thin sections, which are then stained to enhance specific cellular components. 
These stained tissue sections are mounted on glass slides and examined under a 
microscope in order to determine the characteristics of the tumour.  

Histopathological analysis has traditionally been a manual procedure that relies 
on the expertise of pathologists. However, with the advent of Whole Slide 
Imaging (WSI), entire glass slides containing tissue samples can be scanned and 
converted into high-resolution images (see Figure 3), allowing for digital 
processing and analysis, also called digital pathology. 

 

Figure 3. Example of a Whole Slide Image of a Glioblastoma at increasing augmentations (left to right). 
At highest augmentation we can observe the tumour’s nuclei in dark purple. Note that other cellular 
components are hardly distinguishable, making it hard to delineate cellular boundaries.  

2.2 Graph Neural Networks 

Graph Neural Networks (GNNs) are a class of deep learning models specifically 
designed to handle graph-structured data. GNNs have gained significant 
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attention in recent years for their ability to capture the complex relationships 
and dependencies present in graph data (Mohi ud din & Qureshi, 2022). 

GNNs extend traditional neural network architectures by incorporating message 
passing and aggregation mechanisms that allow nodes in the graph to exchange 
information with their neighbouring nodes (Sanchez-Lengeling et al., 2021). By 
iteratively propagating and updating information across the graph, GNNs learn 
to capture both local and global dependencies, enabling accurate predictions and 
analysis. 

 
Figure 4. Overview of the general structure of Graph Neural Networks, which embed the graph with the 
input layers, perform neighbourhood diffusion in the GNN layers, and finally make a prediction through 
a task-based MLP layer. 

GNNs embrace a whole bunch of architectures that can be told apart from each 
other by the mechanism that is used for message passing. The following sections 
will try to dive deeper into the general structure of GNNs, shown in Figure 4, 
while also giving more details on the message passing layers, which are at the 
core of the GNN models, and determine the characteristic behaviour of the 
different GNN architectures. 

2.2.1 Input Layers 

In GNN models, the graphs are represented as a collection of node features, an 
edge list specifying the source and target of all edges, and optionally, an edge 
feature list providing detailed information about each edge. However, this raw 
data structure is not directly suitable for the Message Passing layers of the GNN 
framework. 

To overcome this, we employ the concept of 'embeddings' facilitated by input 
layers. An embedding in this context is a transformed, dense vector 
representation of the node or edge that can capture the essential characteristics 
of the original graph elements. These embeddings are more amenable to machine 
learning algorithms and are an efficient way to represent the complex data in a 
format that the model can process. 

So, the role of the input layers is to act as an interface that translates this raw 
graph data into a form the model can work with. These layers effectively encode 
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the graph into a set of initial embeddings, assigning each node and edge a feature 
representation, or 'embedding', that serves as the starting point for the complex 
computations that take place in the subsequent layers of the GNN model. 

2.2.2 Inside the core of GNNs 

At the core of the GNNs models, we find a neighbourhood aggregation 
mechanism that is encoded in the message passing layers and is responsible for 
aggregating feature information from a node's immediate neighbours.  

Each message passing layer computes a representation for the nodes and edges 
of the graph through recursive neighbourhood diffusion, where each node creates 
a new feature representation that encapsulates not only its own features but also 
the features of its neighbouring nodes. Stacking L layers allows the network to 
build node representations from the L-hops neighbourhood of each node. This 
way, nodes can "communicate" with each other through this feature exchange 
process, which enables GNNs to consider the overall topology of the graph in 
their computations. 

At a high level, the message passing mechanism involves two main steps: 
message construction and message aggregation. In the message construction 
step, every node computes a message for its neighbouring nodes.  Next, in the 
message aggregation step, each node aggregates the messages it receives from its 
neighbours, as shown in Figure 5. The aggregation functions must be invariant 
to both the number of neighbours and its ordering. The specific way in which 
messages are generated and aggregated can vary and depend on the particular 
architecture of the GNN.  

 
Figure 5. Illustration of the message massing mechanism between two layers. Extracted from 
(Sanchez-Lengeling et al., 2021)  
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In the following subsections, we describe in more detail the message passing 
layers that we will benchmark in this project, and that have been selected 
according to the classification task that was introduced by NCMM. Each of 
these layers employs different aggregators to acquire information from each 
node’s neighbours and have been selected based on recent survey studies where 
they show promising results in other oncological areas (Ahmedt-Aristizabal et 
al., 2022). 

2.2.2.1 Graph Convolutional Networks 

Graph Convolutional Networks (GCNs) (Kipf & Welling, 2016) are a type of 
GNN that effectively capture the complex patterns and dependencies within 
graph data by leveraging the principles of convolution from traditional 
Convolutional Neural Networks (CNNs) and adapting them to work with graph 
structures. 

GCNs operate on an input graph where each node is associated with a feature 
vector. The key operation of a GCN layer is to aggregate the features of 
neighbouring nodes to update the feature of each node through the message 
passing mechanism. 

2.2.2.2 Graph Sample and Aggregation 

Graph Sample and Aggregation (GraphSAGE) (Hamilton et al., 2017) is another 
variant of GNNs that has demonstrated success in learning on graph-structured 
data. Unlike many other GNN architectures such as GCNs, which are designed 
to work with a fixed graph structure, GraphSAGE is designed to generate 
embeddings for nodes in unseen data, enabling inductive learning on large 
graphs. 

The fundamental operation of GraphSAGE involves learning a function that 
generates a node's embedding by sampling and aggregating features from its 
local neighbourhood. Specifically, the GraphSAGE algorithm updates the 
feature vector of each node based on its own features and the aggregated features 
of its neighbours. 

The updating of node features in a GraphSAGE layer can be described by the 
following steps: 

Neighbourhood Sampling: For each node, a fixed-size neighbourhoods is 
sampled. The size of the neighbourhoods is a hyperparameter that determines 
the number of neighbours to consider. 



 15 

Aggregation: The features of the sampled neighbours are aggregated using an 
aggregation function, such as mean, max, or LSTM. The aggregation operation 
captures the local structural information around each node. 

Combination: The aggregated neighbourhood features are then combined with 
the features of the node itself. This is typically done through concatenation 
followed by a linear transformation and a non-linear activation function. 

Normalization: Optionally, the resulting node embeddings can be normalized 
(e.g., using L22 normalization) to prevent the scale of the embeddings from 
growing with the depth of the network. 

2.2.2.3 Graph Attention Networks 

Graph Attention Networks (GAT) (Veličković et al., 2017) are a novel variant 
of GNNs that leverage the power of attention mechanisms, a concept that has 
proven highly successful in various domains such as natural language processing. 
The key innovation in GAT is that it introduces the attention mechanism into 
GNNs, allowing for a more dynamic and adaptive aggregation of neighbourhood 
information. 

The primary operation of a GAT layer involves computing a set of attention 
coefficients for each node and its neighbours. These coefficients determine the 
importance of each neighbour’s features when updating the node's features. The 
attention mechanism allows the model to focus more on the important 
neighbours and less on the less important ones, providing a more nuanced non-
isotropic aggregation of neighbourhood information compared to methods that 
treat all neighbours equally. 

The computation of the attention coefficients in a GAT layer can be described 
by the following steps: 

Attention Score Calculation: An attention score is calculated for each edge (i.e., 
pair of nodes), indicating the importance of the connection. This score is usually 
calculated using a shared attentional mechanism, such as a single-layer 
feedforward neural network with a LeakyReLU3 activation function. 

 
2 L2 normalization, also known as least squares or Euclidean normalization, is a technique used 
in machine learning and data preprocessing to scale the values of a vector so that the sum of 
the squares of its elements equals 1 (Yang et al., 2020). 
3 Leaky ReLU (Rectified Linear Unit) (J. Xu et al., 2020) is an improved version of the ReLU 
activation function. The primary purpose of introducing Leaky ReLU is to address the "dying 
ReLU" problem, which occurs when the learning rate is too high or there is a large negative 
bias, causing some neurons to become inactive and produce zero gradients. 
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Normalization: The attention scores for each node and its neighbours are 
normalized using the softmax function, resulting in the attention coefficients. 

Feature Aggregation: The features of each neighbour are multiplied by the 
corresponding attention coefficient and then summed, resulting in the new 
feature vector for each node. 

2.2.2.4 Graph Isomorphism Networks 

Graph Isomorphism Networks (GIN) (Xu et al., 2018) are a powerful class of 
GNNs that have been designed to capture the expressive power of the Weisfeiler-
Lehman (WL) test4 of isomorphism on graphs. GINs are particularly interesting 
because they have been theoretically shown to be as powerful as the WL test in 
distinguishing different graph structures. 

The core operation of a GIN layer involves aggregating the features of each node 
and its neighbours, and then updating the node's features based on this 
aggregated information. Unlike some other GNN models, GIN introduces a 
learnable parameter that allows it to control the importance of a node's own 
features versus the features of its neighbours when updating the node's features, 
providing a more flexible and adaptive aggregation process. 

2.2.2.5 Normalization and Residual Corrections 

As a final note on the GNN component, each message passing layer can be 
augmented with batch normalisation (BN) (Ioffe & Szegedy, 2015) and residual 
connections (He et al., 2015) in order to improve both the performance as well 
as the training of the models. 

Batch Normalization 

Batch normalization is a technique used to make the training of artificial neural 
networks faster and more stable through normalization of the layers' inputs by 
re-centring and re-scaling. It was proposed to address the issues related to the 
training of deep neural networks, such as internal covariate shift, 

 
4 The Weisfeiler-Lehman (WL) (Douglas, 2011) test is a heuristic method for graph isomorphism 
testing, which aims to determine if two graphs are isomorphic or not (Zemlyachenko et al., 
1985). Graph isomorphism is the problem of determining whether there exists a bijection 
between the vertex sets of two graphs that preserves the adjacency relations. The interpretation 
of the WL test is as follows: 

• If the test returns false, then the two graphs are surely not isomorphic. 
• If the test returns true, then the two graphs may be isomorphic. 
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where parameter initialization and changes in the distribution of the inputs of 
each layer affect the learning rate of the networks (Ioffe & Szegedy, 2015). 

 
Figure 6. Example of a 3-neurons hidden layer, with a batch of size b. 
Each neuron follows a standard normal distribution. Extracted from 
Johann Huber, 2020. 

Batch normalization offers several benefits for GNNs: 

Faster training. Although each training iteration might be slower due to the 
extra calculations during the forward pass and the additional hyperparameters 
to train during backpropagation, the overall training process converges more 
quickly. 

Higher learning rates. Gradient descent usually requires small learning rates for 
the network to converge. As networks get deeper, their gradients get smaller 
during backpropagation, requiring even more iterations. Batch normalization 
allows the use of higher learning rates, further increasing the speed at which 
networks train. 

Easier weight initialization. Weight initialization can be difficult, especially 
when creating deeper networks. Batch normalization helps make weight 
initialization less critical. 

Residual Connections 

In the GNN framework, residual connections are a technique used to improve 
the performance and training of deep neural networks. They are a type of skip 
connection that allows the network to learn residual functions with reference to 
the layer inputs, instead of learning unreferenced functions. As shown in Figure 
7, Residual connections provide an alternative path for data to reach latter parts 
of the neural network by skipping some layers. 
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Figure 7. Example of a Residual Connection. 

This helps in mitigating the vanishing gradient problem, which occurs when 
gradients become too small as they backpropagate through the network, making 
it difficult to train deep models. By allowing gradients to flow directly through 
the network without passing through non-linear activation functions, residual 
connections help in training deeper models more effectively. 

2.2.3 Task-Based Layers 

The final component in the structure of GNNs is a Multi-Layer Perceptron 
(MLP) that is in charge of computing task-dependent outputs. This component 
takes the final representation or embedding that results from the last message 
passing layer and is trained to minimize the error of the task that the model is 
trained for.  

2.3 Entity Representation 

Whole Slide Imaging (WSI) is a powerful technique that digitalizes 
histopathology slides at a high resolution, yielding a vast and detailed dataset 
that contains critical information about tissue and cell structures. However, 
transforming these highly dimensional and complex datasets into a graph 
representation for further processing by GNNs can pose challenges (Pantanowitz 
et al., 2015). Among the many challenges, defining the entities (nodes) and the 
relationships between them (edges) within a graph is a fundamental one (Chan 
et al., n.d.). 

Node definition usually involves representing each cell as a node. In the case of 
WSI, the segmentation step, where cells are identified and separated from the 
surrounding tissue, often determines node creation. Each node is then assigned 
features that describe the cell's morphological and phenotypical properties such 
as size, shape, or texture. 

Edge definition, on the other hand, is a more intricate problem, as it involves 
defining a relationship between nodes. Edge definition should be a deliberate 
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process since it models the critical interactions between cells within the tumour 
environment (Rathinabai & Jeyakumar, 2021). This interaction could be 
determined based on a variety of factors, such as spatial proximity, phenotypical 
similarity, or specific biological interactions. 

Some of the state-of-the-art approaches for defining edges that model cell 
interaction are: 

Voronoi Tessellation: A Voronoi diagram (Figure 8) (Aurenhammer, 1991) is a 
partition of a plane into regions based on the distance to a given set of seeds. 
Each region consists of all points closer to a specific seed than to any other seed. 
Voronoi diagrams can be used to derive graphs from WSIs, where each seed 
represents a nucleus in our tissue, and the edges are determined by the adjacency 
of the regions. Voronoi diagrams can be particularly useful for outlining cell 
borders in histologic sections, which can be challenging to recognize otherwise 
(Bock et al., 2009). 

 
Figure 8. Voronoi tessellation superposed on the 
original WSI using the nuclei as seeds for the 
tessellation. 

 

Delaunay Triangulation: Delaunay Triangulation (Musin, n.d.) is a technique 
that connects a set of points in a plane, forming a triangulation such that no 
point is inside the circumcircle of any triangle. As shown in Figure 9, this results 
in a set of edges with no overlaps that maximize the minimum inside angles of 
the triangles. This method has been employed in various studies, such as the 
one by (Lu et al., 2014), where they used Delaunay triangulation to define the 
connectivity of subgraphs of cells in a WSI. The Voronoi Tessellation is dual to 
the Delaunay Triangulation5. 

 
5 The Voronoi Tessellation and Delaunay Triangulation are duals of each other. This means 
that if we take the Voronoi Tessellation of a set of points in the plane and define edges 
 



 20 

 

 
Figure 9. Graph generated with Delaunay 
triangulation connecting the nuclei of the cells, 
superposed on the original WSI. 

K-Nearest Neighbours (KNN): KNN is an algorithm that computes the distance 
between all pairs of nodes in a graph and creates new relationships between each 
node and its k nearest neighbours (Bhatia & Vandana, 2010). In the context of 
WSIs, KNN can be used to connect nodes (i.e., cellular nuclei) based on their 
distance in the WSI. This approach can help create a graph representation of 
the WSI, where nodes are connected based on their proximity. 

Given the geometric duality between Voronoi Tessellation and Delaunay 
Triangulation (Aurenhammer et al., 2013), applying either of these techniques 
to the same set of points (i.e., the positions of cell nuclei) will yield identical 
graphs in terms of connectivity. This is because the edges that form between 
nodes, that model cell interaction in the graphs, are determined by the same 
spatial relationships, regardless of the technique. Consequently, while both 
methods have their distinct advantages and applications, in the context of 
defining edges for our cell-graphs, they are effectively interchangeable, and 
therefore we will only be using Delaunay Triangulation, as it is the most direct 
approach to compute the edges. 

In Figure 10, we can observe the differences in the graphs created with Delaunay 
triangulation and KNN. Note that the graph created with KNN is a directed 
graph, the edges have a source and a target that cannot be interchanged. This 
is due to the fact that the relationship in KNN is not symmetrical, which means 
a node's K-nearest neighbours do not necessarily count that node among their 
own K-nearest neighbours. 

 
between the nodes if their regions are adjacent, we obtain a graph that is identical to the 
Delaunay Triangulation of that set of points. The duality relationship between Voronoi 
diagrams and Delaunay triangulations is a fundamental concept in computational geometry 
(Aurenhammer et al., 2013). 
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Figure 10. Example of the differences in Edge Definition with the application of Delaunay 
Triangulation (left) and KNN with K = 3 (right). 
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3 Data 

3.1 Nuclei Representation 

In the context of graph-based learning, the nuclei features play a crucial role in 
encoding cellular tissue data as graphs. The data provided by NCMM for this 
project (see Table 1) consisted of 5 different sets of nodes from 2 different 
tumour categories, that had been derived from WSIs, and included the following 
features: 

Nuclei Size: Area enclosed by the nuclear membrane. Nuclei size can be a 
valuable node feature in cell-graphs, as it provides insights into the 
morphological characteristics of cells (Wang et al., 2022). 

Nuclei Position: X and Y coordinates of the nuclei’s centroid in the WSI. In 
Figure 11, we can see the nuclei of a tumour’s WSI represented as dots in a 
plane given their X and Y coordinates. 

Hu Moments: Hu moments are a set of image descriptors that capture the shape 
and texture characteristics of an object (Hu Moments, 2019). They are a set of 
seven numbers calculated using central moments that are invariant to image 
transformations6. Hu Moments can be used to encode the nuclei shape. The 
nuclei shape can be described by a feature vector of seven values that capture 
and quantify the shape of the object in an image, giving a quantification on how 
similar two shapes are (Satya Mallick & Krutika Bapat, 2018). As the main 
distinction between High- and Low-Grade Gliomas is the differentiation of their 
cells (Section 1.1), Hu moments can be useful in tumour classification. 

An example of how the original datasets including the node features mentioned 
above can be found in Table 2. 

 
6 Note: While most Hu moments are invariant to image transformations, the 7th Hu moment is 
an exception as it changes its sign if the image is reflected. 
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Figure 11. Left: Original High-Grade Glioma WSI. Right: Position of the nuclei derived 
from the High-Grade Glioma WSI. figures provided by NCMM. 

Name in NIH Data Portal Nodes Label NIH Link 

TCGA-06-0187-01Z-00-DX3 71705 GBM NIH link 

TCGA-06-0238-01Z-00-DX1 16322 GBM NIH link 

TCGA-DU-7018-01Z-00-DX1 60826 LLG NIH link 

TCGA-HT-7479-01Z-00-DX1 4687 LLG NIH link 

TCGA-HT-8563-01Z-00-DX1 373211 LLG NIH link 
Table 1. Summary of the datasets provided by NCMM. This data was generated from WSIs and contains 
the node features shown in Table 2. Links to the National Health Institute slide viewer in the left column 
for quick visualization of the WSIs. 

NODE_ID COORD_X COORD_Y SIZE HU_1 HU_2 HU_3 HU_4 HU_5 HU_6 HU_7 

0 220 -12629 214.87 0.1606 0.0002 2.103E-06 6.954E-09 -5.593E-16 -1.143E-10 -6.293E-16 

1 460 -12253 
 

172.26 
 

0.1712 
 

0.0033 
 

0.00013 
 

2.757E-06 
 

-5.221E-11 
 

-1.546E-07 
 

-7.775E-12 
 

2 378 -12379 122.25 0.1628 0.0006 2.850E-05 1789E-07 4.028E-13 3.829E-09 3.234E-14 

… 

Table 2. Example of nuclei features provided by NCMM. This represents the starting point in terms of 
data for this study. 

3.2 Data to Graphs 

During the node feature definition, we decided to omit the X and Y coordinates 
from the feature set of the nodes. This decision may appear counter-intuitive as 
the position of a nucleus can provide valuable information about its 
environment. However, it's crucial to remember that these coordinates will 
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already serve a role in the edge definition process, where we used them to 
establish spatial relationships between nuclei (see Section 2.3). 

Including the coordinates as features could lead to redundancy in the graph 
model, which could, in turn, potentially confuse the learning process of our 
GNNs. More importantly, as the GNN models are designed to be invariant to 
the permutation of the nodes, including the absolute spatial coordinates as 
features would violate this principle and could adversely affect the learning 
process. 

Therefore, in our graphs, each node represents a nucleus characterized by its 
size and the seven Hu moment invariants. These features provide rich 
information about the individual nuclei while ensuring that the graph model 
appropriately captures the spatial relationships between them through the edges. 
This approach allows us to maintain the translational invariance of our model 
while preserving the critical spatial information within the edge structure. 

Upon establishing the nodes of our graphs, the next crucial step involves defining 
the edges. This process relies on the techniques delineated in Section 2.3, 
specifically Delaunay Triangulation and K-Nearest Neighbours. 
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4 Methodology 

The primary objective of this study is to assess the effectiveness of GNNs in 
classifying brain tumours using graphs generated from WSIs. This task is 
particularly challenging due to the complex and heterogeneous nature of brain 
tumours, which necessitates the extraction and analysis of intricate relationships 
within the tumour microenvironment. 

However, tracking progress and evaluating task-specific performances is often 
challenging due to the wide variety of architectures available as well as graph 
entity representation optimizations for such specific fields like the one we are 
involved in. 

For that reason, we have built a framework that intends to help with that (see 
Figure 12). This framework brings forward all the necessary steps to complete 
the tumour classification task that was proposed by NCMM. Furthermore, when 
developing the infrastructure, we have prioritized ease-of-use, futureproofing, 
and the facilitation of both breadth and depth in research. 

While our infrastructure builds upon the foundation provided by GraphGym, 
we have adapted and extended this platform to suit the specific requirements of 
brain tumour classification. 

To test our framework, we decided to explore different state-of-the-art graph 
generation pathways from histopathological images and assess how they 
influence the models’ performances. Furthermore, we trained GNN models on 
these graphs, learning to aggregate and transform the feature information from 
the nodes and their local neighbourhoods into global graph representations for 
downstream classification. 

We allow the performance of the GNNs to be evaluated using several metrics, 
namely AUC, F1 score, accuracy, precision, and recall. These metrics provide a 
comprehensive assessment of the model's performance, capturing its ability to 
distinguish between different classes of brain tumours. 

 
Figure 2. Overview of the framework's pipeline. 

Through this framework, we aim to provide an evaluation of GNNs for brain 
tumour classification, shedding light on their strengths and weaknesses, and 
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paving the way for future research in this important area. Furthermore, by 
comparing the performance of GNNs across different edge construction 
methodologies, we seek to understand the influence of the graph structure on 
the model's performance, providing insights that could guide the design of more 
effective GNNs for brain tumour classification. 

4.1 Parameter budget 

In the design of our benchmarking framework, we have carefully considered the 
parameter budget. Our goal was not to find the optimal hyper-parameterization 
for brain tumour classification using GNNs, as this would be computationally 
expensive and beyond the scope of our project. Instead, our aim was to compare 
the performance of different models and their building blocks within a low-
budget parameter limitation. 

This approach allows us to conduct a broad comparison of different models and 
configurations, providing valuable insights into their relative strengths and 
weaknesses. It also enables us to explore the impact of different edge-definition 
mechanisms on the performance of the GNN models. 

While this low-budget parameter limitation restricts the complexity of the 
models and configurations we can explore, it also ensures that our benchmarking 
process is feasible given the computational and storage demands of processing 
the resulting graph structures. This approach aligns with our design 
considerations for ease-of-use and futureproofing, as it allows for a wide range 
of researchers to replicate our experiments and build upon our work. 

In this context, our parameter budget serves as a practical constraint that guides 
our benchmarking process, ensuring that it is both rigorous and feasible. In 
Table 3, we can see a summary of the different parameters that we decided to 
benchmark, including their corresponding values. 

4.2 Framework’s Pipeline 

4.2.1 Data Pre-processing 

It is unclear what theoretical methodologies can define best the edges of our 
graphs in the context of brain oncology. Furthermore, the processing of the 
graphs resulting from WSIs requires extensive CPU and/or GPU resources due 
to their size and complexity, which can be a limiting factor in many research 
settings. 
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To address these challenges, we have taken several design considerations into 
account in the creation of our datasets. Our primary strategy has been to reduce 
the complexity of the problem by performing subsampling on the original WSI 
graphs. This approach allows us to maintain the essential structure and 
information of the graphs while significantly reducing the computational 
demands of processing them. 

The induced subgraphs are then compiled into datasets (see Table 5). These 
present the different edge-definition mechanisms that we have considered for 
this task (Section 2.3). In Table 3, we can see an example of the data formats 
compiled into the datasets.  

 

 

Subgraph ID 
Node Features Edge List Edge Features 

Label 
Node ID Size HU_1 … Edge ID Source Target Edge ID Weight 

0 

0 341.40 0.16 

… 

0 0 2 0 56.92 

GBM 

2 556.59 0.16 1 0 10 1 36.71 

10 222.14 0.18 2 0 18 2 20.0 

18 243.76 0.16 3 0 23 3 56.0 

23 196.5 0.17 7 2 18 7 70.25 

… 

44 10 18 44 34.0 

63 10 23 63 49.68 

104 18 23 104 69.85 

… 

Table 3. Example of a subgraph inside a PyG dataset with Delaunay Triangulation. For each of the 
subgraphs that have been induced, we have its node features, edge list and edge features, as well as their 
label. 

Training our models on these datasets allows for a feasible training time given 
the resources provided for this project. It also enables us to systematically 
evaluate the impact of different edge-definition mechanisms on the performance 
of the GNNs, providing valuable insights for the design of future models and 
experiments. 

4.2.2 Experiment definition 

Our framework allows for easy GNN and training configuration within a single 
file by just specifying the parameters and their desired values. Moreover, it 
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facilitates the generation of a grid of experiments by setting lists of values for 
each of the parameters. This capability simplifies the setup of proof-of-concept 
experiments, providing initial insights into potential model configurations for 
specific tasks. Additionally, it streamlines the fine-tuning process, enabling users 
to experiment with various hyper-parameters. It allows researchers to refine and 
optimize existing configurations, making this framework a versatile tool for both 
exploratory and optimization tasks. 

4.2.3 Training 

In this study, we've developed a comprehensive framework that is designed to 
streamline the process of graph generation, training, and testing of GNNs. A 
crucial component of this framework is its integration with both the Slurm Task 
Manager and CUDA, which offers an efficient and scalable approach to 
managing and executing computational tasks. 

The Slurm Workload Manager (Slurm Workload Manager - Overview, 2021) 
plays a pivotal role in handling the computational tasks in our framework. Slurm 
is a highly configurable open-source workload manager used in a large number 
of high-performance computing clusters around the world. It provides a robust 
framework for job scheduling, queuing, prioritization, and resource management. 
In the context of our work, Slurm enables the efficient management of multiple 
computational tasks, such as generating graphs and training GNN models, 
allowing for easy scalability and improved productivity. It ensures that 
computing resources are optimally utilized and that tasks are executed in an 
orderly and efficient manner. 

Complementing the capabilities of Slurm, our framework also leverages the 
power of CUDA (Compute Unified Device Architecture) (Nickolls et al., 2008), 
a parallel computing platform and application programming interface model 
created by Nvidia. CUDA allows for direct access to the virtual instruction set 
and memory of the parallel computational elements in GPUs. By integrating 
CUDA, our framework can execute GNN training on Nvidia GPUs, significantly 
accelerating the training process and enabling the handling of large and complex 
datasets.  

The synergy between the Slurm Task Manager and CUDA in our framework 
allows for efficient scheduling and rapid execution of computational tasks. This 
integration facilitates handling high volumes of data and complex GNN 
architectures, significantly accelerating the pace of research and providing a 
robust and scalable infrastructure for exploring the effectiveness of GNNs in 
brain tumour classification. 
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4.2.4 Results Aggregation and Visualization 

Finally, this framework stores epoch-resolution results with 5 different 
performance metrics and their standard deviations so researchers can use them 
for their specific requirements. Moreover, the system automatically aggregates 
the results after the training process concludes into easy-to-handle csv files. 

Furthermore, it also provides visualization tools that facilitate visual inspection 
of the results and allow for an easy comparison of how the different parameter 
configurations affect the performance of the models. 

4.3 Datasets 

This section presents an overview of the datasets generated during our study. A 
central part of our research involves defining the edges of cell-graphs, a process 
that plays a crucial role in modelling the intricate interactions between tumour 
cells in brain cancer histopathology images. In our quest to identify the optimal 
edge-definition technique, we have generated multiple datasets using four 
different approaches: Delaunay Triangulation, and K-Nearest Neighbours 
(KNN) with K set to 5, 10, and 15 (Table 4). 

Each method offers a unique way to capture the complex spatial relationships 
between the cells, and the choice of method can significantly impact the 
performance of the GNN models. By comparing the results obtained from these 
different datasets, we aim to identify the most effective edge-definition technique 
and to contribute to the development of standard methods for comparing and 
evaluating such techniques. 

Method Subgraphs Avg. Nodes Avg. In-degree Avg. Edges Avg. Edge Distance 

Delaunay 100 500 2.80 1401.23 61.69 

KNN (K=5) 100 500 4.57 1142.30 36.71 

KNN (K=10) 100 500 9.64 2409.45 52.41 

KNN (K=15) 

 

100 500 14.51 3626.33 64.41 

Table 4. Summary of the datasets used to train the GNN models. 
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4.4 GNN Models 

In Table 5 we can observe the different GNN configurations that we decided to 
benchmark.  

Parameters Values 
GNN Layer Type GAT, GCN, GIN, GraphSAGE 
Residual Connections SkipConcat, SkipSum, Stack 
Dropout Rate 0.0, 0.1 
Input Layers 3, 5 
Message Passing Layers 5, 7, 9 
Task-Based Layers 3, 5 
Table 5. Summary of the different parameters benchmarked and their values. 
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5 Results 

In this section we provide an overview on the results of the benchmark of the 
GNN configurations previously introduced (Section 4.3). Note that in order to 
evaluate and compare both the edge-definition methodologies and the 
performance of the GNN configurations that we propose, we trained the models 
on the different datasets that we created (see Table 4). 

5.1 Edge-Definition Methodologies 

In Figure 13, we can see the AUC distribution, average rank, and rank 
distribution of the different edge-definition approaches. Note that all KNN 
variants ended up with better results than Delaunay, with the best performance 
achieved by K = 10. 

 

 
Figure 3. Benchmarking results comparing the performances achieved by the different edge-definition 
mechanisms proposed. Left: Distribution of the AUC values (Higher is better). Middle: Rank Average 
(Lower is better). Right: Distribution of the Ranks obtained (Lower is better). 
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5.2 GNN Architectures 

In the following sections, we discuss the results obtained from the GNN models 
introduced in Section 4.4, focusing on the performance as well as their 
complexities in terms of number of parameters.  

While we computed several performance metrics, including F1 score, accuracy, 
precision, and recall, our evaluation is primarily based on the Area Under the 
Receiver Operating Characteristic Curve (AUC), which is usually preferred for 
binary classification. This is the standard approach suggested by NCMM for 
evaluating model performance, particularly given the balanced nature of our 
datasets. Precision, recall, and F1-score, while valuable, do not offer a 
comprehensive overview of model performance in our context. 
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5.2.1 Model Performances  

 
Figure 14, part 1. Performance of the models measured by the AUC metric. Left: Distributions of the 
AUC obtained by the different parameters (Higher is better). Middle: Average ranking of the models’ 
performances for the different parameter values against their counterparts (Lower is better). Right: 
Distribution of the rankings obtained by the models’ performances for the different parameter values 
against their counterparts (Lower is better). 
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Figure 14, part 2. 

An examination of the performance results outlined in Figure 14 reveals that 
the GIN layer type consistently obtained the highest AUC scores across all 
datasets, thus highlighting its efficacy in the brain tumour classification task. 

Our findings suggest that configurations utilising a lesser number of input layers 
(specifically, three layers) generally superseded their five-layer counterparts in 
AUC performance. This seemingly contradicts the expectation that higher 
complexity should yield better results, instead suggesting that simpler models 
can adeptly encapsulate the necessary features for precise classification. 

A close look at the results obtained from experiments with various numbers of 
message passing layers (five, seven, and nine layers) discloses that they returned 
AUC scores of near parity. 

Regarding the task-based layers, a noteworthy observation was that augmenting 
the number of layers from three to five did not engender substantial 
improvements in AUC. 

A clear enhancement in model performance was discernible with the addition of 
residual connections, as opposed to their absence (‘stack’). Among these, the 
'skipconcat' residual connection stood out by delivering the best overall results. 

The analysis also revealed that a dropout rate of 0.0 yielded the highest AUC 
among the various configurations tested.  
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5.2.2 Model Complexities  

 
Figure 15, part 1. Complexity of the models measured by their number of parameters. Left: Distributions 
of the model complexities obtained by the different parameters (Lower is better). Middle: Average ranking 
of the models’ complexities for the different parameter values against their counterparts (Higher is better). 
Right: Distributions of the rankings obtained by the models’ complexities for the different parameter 
values against their counterparts (Lower is better). 

 



 36 

 

 

Figure 15, part 2. 

 

Indeed, the analysis of model complexity revealed the GIN layer type to be 
among the most complex models in terms of parameter count. This additional 
complexity is inherent to the design of the GIN layer type and contributes to 
its unique ability to capture intricate patterns within the data. 

Despite its complexity, the GIN layer type consistently exhibited superior 
performance, earning the highest AUC scores. This correlation between 
complexity and high performance in this particular case suggests that the GIN 
layer type effectively harnesses its larger number of parameters to derive 
meaningful insights, a feat not readily achieved by simpler models. 

The analysis of model complexity, gauged by the parameter count, unveiled 
some noteworthy patterns. Configurations with fewer input layers (specifically, 
three) despite being less complex, did not compromise on performance, 
challenging the conventional wisdom that more parameters inherently mean 
superior model quality. 

Variations in the number of message passing layers (five, seven, and nine layers) 
essentially represent alterations in model complexity. However, the impact on 
AUC scores seemed marginal, suggesting that increasing model complexity, as 
indicated by the number of parameters, may not always result in performance 
improvements. 

In the context of task-based layers, the increase in complexity from three to five 
layers did not offer any significant advantage, suggesting that a simpler 
configuration with fewer parameters could suffice for the classification task. 

The introduction of residual connections added a layer of complexity to the 
models, particularly the 'skipconcat' connection, which nonetheless produced the 
best overall results. This instance highlights one of the few scenarios where 
increased complexity correlated with improved performance.  
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6 Discussion 

6.1 Edge Definition Approaches 

KNN with K = 10 achieved the best performance. Contrary to our initial 
intuition that Delaunay Triangulation, being a dual to Voronoi Tessellation, 
would excel in capturing cell interaction, our results showed that all variants of 
the KNN method outperformed Delaunay Triangulation. Interestingly, the best 
performance was achieved with K=10, a variant that deviates substantially from 
the boundary adjacency of cells, which we expected Delaunay to capture closely. 

This outcome prompts an interesting consideration, particularly considering the 
points raised by  Nair et al., 2022. They noted potential issues with the KNN 
method, namely that KNN-based edge generation is not invariant with respect 
to node ordering in a graph, potentially generating non-isomorphic cell-graphs 
from the same tissue image. This lack of invariance might theoretically impact 
the model's robustness to tissue orientation and complicate the learnability of 
histological features. 

However, different tumours might have distinct distribution characteristics, with 
some exhibiting areas where cells form ring-like or palisading structures, or areas 
of high mitotic activity. These unique patterns could potentially be captured 
more effectively by the more flexible KNN, as it doesn't enforce reciprocity and 
might better encapsulate clusters of cells. 

In our study, despite the theoretical concerns, KNN demonstrated robust 
performance in the task of brain tumour classification, outperforming the more 
theoretically appealing Delaunay Triangulation. This result underscores the 
importance of empirical evaluation in complement to theoretical analysis, and 
suggests that there is value in further exploring the balance between theoretical 
soundness and empirical performance in the application of GNNs for 
histopathological image analysis. 

6.2 GNN Models’ Performances 

GIN Layer Type outperforms other proposed types. The GIN layer type ended 
up generating better performances than its counterparts. This could be due to 
the fact that this layer type was specifically designed to tackle the graph 
isomorphism problem (see Section 2.2.2.4). However, the complexity of this 
problem increases with the amount of graph categories to discern from. In this 
project we have been trying to classify our graph into two categories – high- and 



 38 

low-grade gliomas – achieving better results than its counterparts. Nevertheless, 
when scaling this classification problem to more tumour categories, we could 
potentially see other layer types achieving a better trade off in terms of model 
complexity vs. performance. 

For Input Layers, less is more. The 3-layers variants performed better than the 
5-layers variants. This could be explainable with the amount of information that 
could be lost with the initial embedding generation. 

Similar results regardless the amount of Message Passing Layers. The number 
of Message Passing Layers did not affect the classification performance 
significantly, as the 5-, 7- and 9-layer variants showed similar results. While it 
might seem intuitive to add more layers to potentially increase learning capacity, 
it's important to consider the implications of model complexity. More layers 
mean a more complex model, which in turn can lead to an increased risk of 
overfitting, especially when dealing with limited data.  

Increasing the number of task-based layers did not improve performance. There 
were no significant differences when increasing the depth of the task-based layers 
that perform the classification of the graph embedding generated by the message 
passing layers. This could be explained by the fact that binary classification is 
a relatively less complex task compared to multi-class classification or regression. 
Therefore, having more task-based layers may not significantly improve the 
performance because the task might not require a high level of complexity or 
abstraction that additional layers would provide. 

Residual connections improve model performances. Adding residual connections 
between layers allowed for a more efficient training, allowing for better 
performances in the fixed number of epochs of our experiments. 

No Dropout achieved best performance. Reducing the Dropout to zero tends to 
result in overfitting of the models and should usually be avoided as it can lead 
to poor validation performances and generalization of the models outside the 
training datasets. However, we accounted for that by adding Batch 
Normalization operations (see Section 2.2.2.5) that help mitigate the effects of 
removing the Dropout. This allows for a faster and more efficient training while 
also achieving better performances for the fixed number of epochs that we set 
for our experiments. 

6.3 Framework Design Choices 

The design choices for our GNN benchmarking framework reflect our goal of 
enabling reliable prototyping for GNN research applied to WSIs. Acknowledging 
the brief duration of this project and the considerable computational time 
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required for training (which can extend to numerous hours for each experimental 
run), we deemed it necessary to establish certain boundaries. These boundaries 
affect the complexity of the models, the size of the datasets, and the quantity of 
models that could feasibly be tested within the constraints of this project. 

Firstly, our decision to use subsampled datasets allows us to manage the 
computational and storage demands of processing the huge graph structures that 
were generated from the data originally provided. This approach enables us to 
conduct a broad comparison of different models and configurations, providing 
valuable insights into their relative strengths and weaknesses. 

Secondly, our coding infrastructure, with its integration of Slurm task manager 
and CUDA environments, ensures efficient scheduling and management of 
computational tasks, leveraging GPU acceleration for improved performance. 
This design choice facilitates the handling of the computationally intensive task 
of training GNNs on graph-structured data. 

Thirdly, our decision to limit the parameter budget reflects our goal of 
comparing the models and their building blocks within a low-budget parameter 
limitation, rather than finding the optimal hyper-parameterization for brain 
tumour classification using GNNs. This approach allows us to conduct a broad 
comparison of different models and configurations, providing valuable insights 
into their relative strengths and weaknesses. 

However, it is true that the variability in the number of parameters of the models 
and their run/training times makes it a bit difficult to assess their scalability. 
This is an inherent challenge in benchmarking GNNs, and one that future 
research may help to address. 

In our study, we adopted a subsampling approach to manage the original graphs, 
a decision driven by two primary factors. Firstly, subsampling effectively curbs 
computational demands, facilitating more efficient processing. Secondly, due to 
the limited volume of available data, subsampling served as a practical strategy 
for data augmentation, enabling us to generate a more diverse set of samples for 
model training. 

However, it's crucial to note that while subsampling offers these benefits, it also 
introduces certain challenges. Specifically, the process can result in the loss of 
some information, which could potentially impact the performance of the GNNs. 
Additionally, if the sizes of the original graphs and subgraphs are not carefully 
managed, the risk of overfitting increases, which could affect the generalisation 
capabilities of the GNNs. Consequently, a careful balance was necessary to 
maximize the advantages of subsampling while minimizing its potential 
drawbacks. 
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7 Conclusions 

In conclusion, this study presents a significant stride towards improving brain 
tumour classification, a complex task with substantial implications for patient 
diagnosis and treatment in neuro-oncology. Our research aimed to identify the 
most effective combination of edge-definition techniques and GNN architectures.  

The results reveal that the KNN approach with K=10 is the optimal edge-
definition technique, and the Graph Isomorphism Network (GIN) layer type 
outperforms others in this context. These findings offer valuable guidance to 
researchers seeking to further explore the potential of histological image-based 
tumour diagnosis using GNNs. 

We have also introduced a comprehensive framework for evaluating the 
effectiveness of GNNs for brain tumour classification. This framework 
illuminates the strengths and weaknesses of various GNN models and edge 
construction methodologies, offering insights that could inform the design of 
more effective GNNs for this critical task. Moreover, by comparing the 
performance of GNNs across different edge construction methodologies, our 
study elucidates the impact of graph structure on model performance.  

The implications of this research extend beyond brain tumour classification, as 
the framework and insights gained should be generalizable to other areas in 
oncology. By providing a benchmark for model evaluation and comparison, this 
study contributes to the standardization of methodologies in the field and paves 
the way for future research in GNN-based cancer diagnosis. 
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8 Future Work 

Looking forward, we anticipate that the insights gained, and the framework 
developed in this study will drive further advancements in the application of 
GNNs in oncology. Future research could also explore the integration of 
additional biological and clinical variables into the graph models, potentially 
enhancing their predictive power and clinical utility. Through these continued 
efforts, we aspire to further improve the accuracy and efficiency of cancer 
diagnosis, ultimately contributing to improved patient outcomes in neuro-
oncology and beyond. 

While our research has taken significant strides in advancing the application of 
Graph Neural Networks (GNNs) for brain tumour classification, there remain 
several avenues for future exploration. One particularly important direction is 
the need for greater explainability in our models. As we continue to refine the 
accuracy of our GNNs, it's equally crucial that we gain a deeper understanding 
of the factors that primarily drive their decisions.  

Such insights could not only improve our confidence in the model's predictions 
but also potentially reveal novel insights about the characteristics and 
interactions of nuclei that are most indicative of specific tumour types. This 
could pave the way for more targeted and effective treatment strategies in neuro-
oncology.  

To this end, we plan to leverage the suggestions put forth by Sebastian Waszak 
and Birgit Kriener. Their proposition involves training the models on graphs 
where the edge weights are set to unitary values instead of distances, or even 
removing node features entirely. Such approaches could provide a clearer picture 
of whether it's the nuclei characteristics or their interactions that are the 
primary drivers of the models' decisions in classifying the tumour types.  

By isolating these factors, we aim to dissect the contributions of individual nodes 
and edges to the final classification decision. This could lead to a more nuanced 
understanding of how the spatial distribution and relationships of nuclei 
influence the diagnosis of brain tumours. Such insights could potentially inspire 
new questions and hypotheses in neuro-oncology, opening exciting new directions 
for future research.  

Another promising direction for future research involves experimenting with 
different distance metrics for the K-Nearest Neighbours (KNN) edge-definition 
approach, which our study identified as the best performing technique.  

Currently, our KNN approach relies solely on the XY coordinates of the nodes 
to determine their 'closeness'. While this spatial proximity is important, 
incorporating additional information into the distance metric could potentially 
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enrich the edges of our cell-graphs. For instance, we could implement a distance 
metric that considers the node features, such as the size and the seven Hu 
moment invariants of the nuclei. With such a metric, nodes with similar features 
would be 'closer' to each other, even if they are not the nearest in terms of 
spatial coordinates. 

This approach could enable our model to capture not only the spatial 
relationships between nuclei, but also their similarities in terms of physical and 
morphological characteristics. By creating edges that reflect these multi-
dimensional relationships, we could potentially enhance the performance of our 
GNNs and gain more nuanced insights into the factors that drive their decisions. 

Another promising avenue of research could be to explore the potential of 
making the edge-definition mechanism a learnable parameter within the GNN 
itself. Currently, the edges are defined prior to training based on a pre-
determined method, such as KNN or Delaunay Triangulation. However, if the 
edge-definition process could be learned during training, the network might be 
able to better adapt to the specific characteristics of the data. This could 
potentially result in a more flexible model capable of capturing more complex 
and nuanced relationships between nodes. Indeed, the ability to learn and adapt 
the graph structure during training could open up new possibilities for enhancing 
the performance of GNNs in brain tumour classification, as well as other 
applications. 
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A APPENDICES 

A.1 Model Performances 

Dataset Accuracy Precision Recall F1 Score AUC 
Delaunay 0.942 0.964 0.945 0.953 0.994 
KNN (K=10) 0.951 0.953 0.968 0.958 0.998 
KNN (K=15) 0.942 0.947 0.967 0.955 0.994 
KNN5 (K=5) 0.946 0.953 0.965 0.957 0.997 

Table 6. Average performance metrics by Dataset. Higher is better. 

 

Layer Type Accuracy Precision Recall F1 Score AUC 
GAT 0.867 0.868 0.969 0.907 0.975 
GCN 0.852 0.856 0.967 0.898 0.971 
GIN 0.883 0.897 0.953 0.915 0.976 
GraphSAGE 0.853 0.854 0.969 0.897 0.972 

Table 7. Average performance metrics by Layer Type. Higher is better. 

 

Number of Layers Accuracy Precision Recall F1 Score AUC 
Input -0.090 -0.101 0.009 -0.094 -0.124 
Message Passing -0.017 -0.004 -0.082 -0.029 -0.052 
Task-Based 0.015 0.025 -0.063 0.006 0.012 

Table 8. Correlation of number of layers with performance metrics. Higher is better. 

 

Residual connection Accuracy Precision Recall F1 Score AUC 
skipconcat 0.883 0.887 0.972 0.919 0.982 
skipsum 0.887 0.893 0.964 0.919 0.981 
stack 0.733 0.739 0.939 0.811 0.921 

Table 9. Average performance metrics by Residual Connection type. Higher is better. 

 

Dropout Rate Accuracy Precision Recall F1 Score AUC 
0.0 0.954 0.973 0.953 0.962 0.996 
0.1 0.933 0.929 0.970 0.947 0.994 
Table 10. Correlation of Dropout Rate with performance metrics. Higher is better. 
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A.2 Model Complexities and Training Times 
 

Number of Layers Avg. num. of params. Avg. time per epoch + std. 
Input -0.007 -0.023 ± -0.035 
Message Passing 0.312 0.066 ± 0.042 
Task-Based 0.221 -0.029 ± 0.036 

Table 11. Correlation Matrix of number of layers with number of parameters and training time of 
the models. Lower is better. 

 

Layer Type Num. of params. Avg. time per epoch + std. 
GAT 29195.667 0.011 ± 0.001 
GCN 28321.000 0.009 ± 0.000 
GraphSAGE 30987.667 0.007 ± 0.000 
GIN 32127.525 0.007 ± 0.000 

Table 12. Average number of parameters and training time by Layer Type. Lower is better. 

 

Residual connection Avg. num. of params. Avg. time per epoch + std. 
skipconcat 62786.616 0.009 ± 0.001 
skipsum 4937.048 0.008 ± 0.000 
stack 4929.000 0.007 ± 0.000  

Table 13. Average number of Parameters and Training Time by Residual Connection. Lower is better. 


