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Abstract

A greenhouse is an important growing system that can provide a controlled climate environment and
allow for crop growth in a changing outdoor climate. Due to the high energy cost, labor and resource
scarcity, optimal and automated control of greenhouse horticulture is becoming more and more impor-
tant with the aim of optimizing resource usage while maximizing crop production. Outdoor weather is
a critical disturbance when controlling greenhouse climate and it complicates the modelling and opti-
mization processes.

With the development of Artificial Intelligence (AI) and improved sensing techniques, Reinforce-
ment Learning (RL) is getting more and more attention due to its learning-based control strategies,
independent from having a good model. Up to now, most of the RL applications in greenhouse climate
control do not consider outdoor weather forecast while making control decisions, which means plenty
of useful information is missed and this might lead to control actions which are not optimal. Therefore
in this project, we investigated how weather forecast horizons will affect optimal control of greenhouse
horticulture using reinforcement learning.

After going through different deep RL approaches, Soft Actor-Critic (SAC) and Twin-Delayed
Deep Deterministic Policy Gradient (TD3) stand out because of their capacity to consider continuous
state-action space. As the weather prediction will mainly work well in the short-term due to forecast
uncertainty, moreover, long-term weather forecast will bring various unnecessary noise and a large state
space. As a result, our work mainly focused on short-term weather forecast horizons of 0, 3, 7, 11, 15,
19, 23 time steps of fifteen minutes. To investigate how horizons can affect the control performance,
these seven different horizons were used in experiments using the state-of-the-art continuous control
algorithms, SAC and TD3.

After demonstrating the proposed approaches in a lettuce greenhouse, we found that SAC con-
sistently performed better than TD3 with higher rewards in terms of crop production and net profit,
while resource use was comparable. Furthermore, inclusion of weather forecasts proved essential for
both algorithm learning stability, as well as its training and generalization performance, resulting in
increased yields and net profits, while reducing resource use and the amount of indoor climate con-
straint violations. Moreover, we can also conclude that four hours of weather forecast is the best option.
Longer predictions did not increase performance, whereas using shorter forecasts quickly degraded
performance.
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Figure 1
Large-scale lettuce crop production in greenhouse.[1]

1 Introduction

Between 720 and 811 million people are estimated to be undernourished in 2020 and this number has
slowly been increasing again since 2014 after years of decreasing (FAO et al. (2021)). With current global
population levels estimated at 7.7 billion people and projected to grow to 9.7 billion in 2050, demands for
fresh and nutritional foods are rapidly increasing (United Nations et al. (2019)). Additionally, resources
such as fresh water (Marcelis et al. (2019)), oil and gas reserves, and arable land are becoming increas-
ingly scarce while the effect of global warming becomes more visible. Consequently, it becomes more
and more important to produce high-quality fresh food in a resource-efficient manner. Greenhouses can
offer a helping hand here due to having high crop production rates per covered surface area and being
water-efficient (Stanghellini (2014)). At the same time, the global greenhouse surface area is increasing
rapidly (van Rijswick (2018)). The downside is that they have a relatively high energy consumption and
require a relatively high initial investment (Graamans et al. (2018)).

Greenhouses serve to protect crops from external disturbances, such as adverse weather effects,
i.e., snow, high wind speeds, and extreme relative humidity and temperature situations. It also protects
crops against diseases, pests and insects, while allowing to make use of radiation from the sun for
heating and photosynthesis. A greenhouse provides an environment where climate conditions can be
controlled optimally for optimal crop growth. This allows for both higher quality and larger quantities
of crop production compared to open field crop production (van Straten and van Henten (2010)), as well
as growing crops in a cost- and sustainable, resource-efficient manner. Another benefit is that it allows
crop production during the entire year and in locations where it may have been impossible without a
greenhouse (Bakker et al. (1995)). A visual representation of greenhouse horticulture with lettuce can be
seen in Fig. 1.

Indoor climate variables that can be measured and controlled using the sensors and actuators in-
clude temperature, humidity and carbon dioxide levels. Additionally, the weather disturbances (outside
weather) can be exploited. Especially the energy of the sun is useful. An example is using the incoming
radiation and outside temperature to heat up the greenhouse instead of turning on the heater or the use
of cooler outside air for lowering the indoor temperatures.

During the day, photosynthetically active radiation (PAR) from incoming solar radiation enables
the photosynthesis process in crops where CO2 and H2O are used and converted into glucose. This is
subsequently used by the plant to grow (additionally oxygen O2 is produced and H2O is released due to
transpiration, increasing the humidity concentration in the greenhouse) (Farquhar et al. (1980); Marcelis
et al. (2006)). How much photosynthesis takes places depends on the amount of incoming radiation, the
indoor temperature and the CO2 concentration. During the night there is no sunlight, so no crop growth

[1] From https://www.stockfood.com/images/00228603-Lettuce-growing-in-greenhouse
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Figure 2
Causal relations in greenhouse system, from Challa (1990). V.p.d. is the abbreviation for vapour pressure deficit.

takes place and additional heating is necessary to maintain acceptable indoor temperatures (which are
lower during the night than during the day as no photosynthesis will take place regardless).

The greenhouse for crop production is a complex system that can approximately be divided in
two subsystems: the greenhouse indoor climate and the crop system (van Henten and Bontsema (2009)).
The dynamics of the former are affected by the outside weather, control inputs by the greenhouse actua-
tors and by the crops present in the greenhouse via, for example, (evapo)transpiration and CO2 uptake.
The dynamics of the latter are affected by the current state of the crops, the greenhouse climate as well
as the absence or presence of light Fig. 2.

Greenhouse crop process models have been developed to understand, describe and estimate ef-
fects of the greenhouse climate on crop growth using, for example, Ordinary Differential Equations
(ODEs). Exact modelling approaches depend on the use-case. In this specific work, a lettuce greenhouse
model developed by (van Henten (1994b, 2003)) is used. Use of a crop model, together with developed
models for describing the greenhouse climate allows for automated decision making on greenhouse
climate set-points and crop growth processes using control methods. Implementation of automated de-
cision making algorithms in the control loop requires linking the greenhouse sensors and actuators to
suitable greenhouse crop and climate models. An overview of dynamic greenhouse climate models can
be found in (Lopez-Cruz et al. (2018); Katzin et al. (2022))

Growing crops in a greenhouse requires active climate control, preferably in an automated or
semi-automated fashion. This climate control system can, for example, increase or decrease the temper-
ature of the greenhouse based on changing outside temperatures via heating, increase carbon dioxide
levels (CO2) in the greenhouse, or decrease the indoor relative humidity by heating or ventilation. The
goal of these actions is to optimise long-term crop growth, while maintaining favorable climate condi-
tions for the crop and minimising resource costs.

In practice, settings for climate control systems are largely based on simple, rule-based heuristics,
weather forecasts and crop growers’ past experiences (van Beveren et al. (2015a,b)). Growers decide on
set-points[2] for the various greenhouse climate variables. It is not always possible to maintain optimal
conditions for each variable as the system is complex and highly coupled and may lead to conflicting be-
haviours from the various actuators and unachievable set-points. As such, a band around the set-points
is usually included to allow for deviations and ease trade-offs between control inputs. The instructions
are passed to a climate computer where simple low-level feedback controllers - proportional- integral-
derivative (PID) (and variants)- are used to control the actuators for set-points regulation (van Straten
and van Henten (2010)). These do not require a model of the environment, are easy to implement and
robust, but can only respond to disturbances post-hoc. An extension of feedback control is feed forward
control that has access to anticipated disturbances, but this already requires a model to estimate effects
of control inputs and future disturbances on the current state (van Mourik et al. (2021); van Straten and
van Henten (2010)).

The control decisions that have to be made are highly complex and grower decisions regularly
leave room for improvements as human behaviour is often sub-optimal (Kahneman (2003)). This com-
plexity also means that vast amounts of experience is required and it is becoming increasingly difficult
to find enough skilled laborers for crop management (Sparks (2018)). This is where automation can pro-
vide relief by providing decision support for or partially replacing the crop growers, or both. The recent
Autonomous Greenhouse Challenges indicate a promising future for automated greenhouse manage-
ment, with intelligent systems outperforming human crop growers in crop production quantity, quality

[2] A set-point is the desired value for a given variable.
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and resource-efficiency (Hemming et al. (2019, 2020)). The long term aim is to produce robust and
explainable control systems that allow for resource efficient and fully autonomous greenhouses that
handle both climate regulation and crop growth control strategies (Verdouw et al. (2021); Knibbe et al.
(2022)). Then, only a single remote crop grower is required to supervise multiple greenhouses at once.

Currently proposed automated control strategies in scientific literature mainly focus on control-
ling the climate in the greenhouse via model predictive control (MPC) in simulation studies. It is a
model-based method that has full access to - and makes use of - greenhouse climate and crop models,
and assumes knowledge on the weather forecasts. See, for example, (van Henten and Bontsema (2009);
Ooteghem (2010); van Straten and van Henten (2010); van Beveren et al. (2015a,b); Chen et al. (2018); Xu
and van Willegenburg (2018); Kuijpers et al. (2021, 2022); Boersma et al. (2022a)). These proposed solu-
tions optimizes a given objective function that is defined over a prediction horizon and is often used to
optimize on set-points, but can also be used for set-point regulation (van Henten and Bontsema (2009);
van Straten and van Henten (2010); van Mourik et al. (2021)). It repeatedly receives state-feedback from
the environment and then plans the control inputs for a given horizon using the model of the environ-
ment and the anticipated future disturbances to estimate the development of the indoor dynamics (van
Mourik et al. (2021); van Straten and van Henten (2010)). While these studies are promising, MPC does
have several downsides: First of all, it uses feedback from the simulator to estimate future developments
of the state-variables for planning, which means that it is sensitive to small one-step prediction errors
that originate from model biases or the reality gap,.This can lead to compounding prediction errors and
a significantly degraded prediction accuracy. Secondly, as it plans a series of actions for a given predic-
tion horizon, MPC is sensitive to getting stuck in local optima when the included model is nonlinear.
Additionally, finding optimal trajectories becomes difficult to impossible as the solution space increases
exponentially with increasing model complexity (Knibbe et al. (2022)). Finally, a mathematical model of
the most important processes in the greenhouse and the crop is required. Such a model is typically dif-
ficult to identify correctly, requiring historical data that may not be available, and is often too complex
to actually evaluate. Although MPC provides great insight in greenhouse control, it is unfortunately
not often used in practice (van Beveren et al. (2015b)), and Van Straten and van Henten hypothesized
that self-learning and self-optimizing systems would lead to faster implementation of optimal control
algorithms in practice (van Straten and van Henten (2010)). Thus, using an alternative method that does
not assume access to an underlying mathematical model may be appropriate.

Reinforcement Learning (RL) provides methods to develop learning and optimizing decision-
making algorithms and has seen success in other fields; playing Atari games (Mnih et al. (2013, 2015)),
playing Go and beating the human world champion (Silver et al. (2016)). Other examples are playing
Chess Hassabis (2017)), autonomous driving (Waldrop (2015)), navigating stratospheric balloons (Belle-
mare et al. (2020)) and robotics (Goldberg (2019); Tan et al. (2018); Haarnoja et al. (2018a)). It has also
been used in some agricultural applications, such as nutrient application (Overweg et al. (2021); Gautron
et al. (2022); Turchetta et al. (2022)) and irrigation control Saikai et al. (2023)) in open field horticulture,
as well as in robotics. However, not much work exists on the application of RL to greenhouse control as
of yet.

Two Autonomous Greenhouse Challenges (AGC) were held by WUR, in 2018 and 2020 respec-
tively. Their aim was to grow crops using autonomously controlled greenhouses with the objective of
maximizing net profit. Five teams participating in each challenge, as well as a group of human crop
growers as reference. The first challenge focused on growing cucumbers and the second challenge fo-
cused on growth of cherry tomatoes. A variety of model-free and model-based AI control algorithms
were used by the teams to decide on optimal climate set-points, including RL algorithms. Realisation
of the set-points was achieved using low-level PI- and P-controllers. Model-based Bayesian RL and
model-free Deep Deterministic Policy Gradient (DDPG) were used by two of the teams during the first
challenge, and an unspecified and unexplained algorithm was used during the second challenge. In
both challenges teams pre-trained their algorithms using crop and greenhouse simulators and these
were subsequently applied to a real greenhouse crop growing case (Hemming et al. (2019, 2020)). Little
detail is provided on exact approaches and methods used as these contain sensitive information of busi-
nesses involved, but datasets of the weather as well as the realized greenhouse climate and crop data of
the teams involved are freely available.

Advances in using Reinforcement Learning for optimal control in greenhouses in scientific liter-
ature are made in Wang et al. (2020); Zhang et al. (2021); An et al. (2021); Cao et al. (2022); Ajagekar and
You (2022), each with an economic objective function with the exception of the last. In Wang et al. (2020)
the static datasets from the first Autonomous Greenhouse Challenge were used to train a control system
that decides on hourly CO2 temperature and relative humidity set-points using Behaviour Cloning and
the Deep-Deterministic Policy Gradient (DDPG) algorithm, performance evaluation of the final control
system was done on the same weather dataset. The work by Zhang et al. (2021) uses model-based RL
and decided on hourly actions for the entire next day for indoor temperature and CO2, as well as start-
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ing and end times for both irrigation and lighting. In An et al. (2021), synthetic data from a cherry
tomato simulator is used to first learn surrogate models for the greenhouse climate and crop dynamics.
Its performance to generalize is verified using a static dataset from the second Autonomous Green-
house Challenge. Subsequently these surrogate models are used to train control systems that decides on
hourly set-points for CO2 temperature and relative humidity, as well as whether additional lighting is
used or not using SAC and as an Elitist Genetic Algorithm (EGA). The work of Cao et al. (2022) builds
on the previously mentioned work. It adds functionality to perform online calibrations of the surrogate
models using newly obtained real data and re-optimization of the control system using the latest model
versions.[3] Ajagekar and You (2022) focuses on temperature control in a greenhouse with tomato crops,
although crop dynamics are ignored. Heating or cooling actions are performed on an hourly basis to
maintain temperature within bounds. A variant of Deep Q-Networks is used and DDPG functions as
baseline. Optimization is done by balancing energy use and maintenance of desired condition.

None of these works include weather forecasts in their approach, which is an important factor
to take into account when optimizing control decisions. As such, this work investigates the effect of
short-term weather forecast lengths on performance of low-level control systems using two state-of-
the-art model-free RL control algorithms in Soft Actor-Critic (SAC) (Haarnoja et al. (2018c)) and Twin-
Delayed Deterministic Policy Gradient (TD3) (Fujimoto et al. (2018)). As the focus is on the control of
the greenhouse climate and crop, a very simple crop in lettuce is used.

The following research questions are answered in this work:

• How do various weather forecast horizons affect controller performance?
• How do SAC and TD3 results compare?

The outline of this work is as follows, the used greenhouse and crop model are explained in
Chapter 2. Chapter 3 focuses on Reinforcement Learning, providing preliminaries, descriptions of the
two algorithms and finishes by describing the environment and reward structure. The experiment setup
and simulation results are presented in Chapter 4. Chapter 5 consists of the discussion, summarized key
findings, concluding remarks and finishes with recommendation for future work.

[3] These last two works claim to have extended the datasets with synthetic datasets. However, their reference is missing in the
first paper and incorrect in the second. Regardless, the real-world test claimed to have been performed in the second paper
is not feasible. Algorithm selection for the real-life experiments was based on data from the second Autonomous Greenhouse
Challenge, but this data was not yet available at the time as the challenge was still ongoing.
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2 Lettuce Greenhouse

Figure 3
Schematic overview of the environment of van Henten (1994a, 2003), adapted by Sjoerd Boersma. Control inputs
are given in red, system measurements in blue and the external disturbances are in black. Information flows and
directions are indicated by the dashed arrows.

2.1 Greenhouse lettuce model description

A validated model for climate dynamics and lettuce growth in greenhouses by van Henten (1994b, 2003)
is used in this work. (Additional background on greenhouse modelling can be found in subsection 6.1.)
A visual overview of the model is given in Fig. 3. Control inputs are given in red, system measurements
in blue and the external disturbances are in black. The dashed lines indicate interactions and their
directions. The model is discretized using the explicit fourth order Runge-Kutta method (Press et al.
(1986)), the general form of the resulting discrete-time model is as follows:

x(k + 1) = f(x(k), u(k), d(k); c),

y(k) = g(x(k); c),
(1)

where k ∈ Z≥0 is the the discrete time, x(k) ∈ R4 represents the state variables and its dynamics over
time are represented by f(·), u(k) ∈ represents the used control signals at a given time step, d(k) ∈ R4

represents the weather disturbances at each time step k and c ∈ R29 consists of the greenhouse climate
and lettuce crop model constants. y(k) ∈ R4 consists of the sensor measurements, which are obtained
from the state variables via g(·). f(·) and g(·) both represent non-linear functions that are explained in
2.2. An overview of the variable symbols introduced in this chapter and their descriptions is given in
Table 1. The vectors are defined as:

x(k) =
(
xW xCO2

xT xh
)T

,

u(k) =
(
uCO2

uv uq
)T

,

d(k) =
(
dIo dCO2

dT dh
)T

,

y(k) =
(
yW yCO2

yT yRH
)T

,

(2)

where the time dependencies (current time step k) of the vector components have been left out
for the sake of readability (in other words, xW = xW(k), dIo = dIo(k) and so on). xW describes the crop
dry matter content in kg ·m−2, i.e. the crop weight where all water content has been removed from the
crops. Dry weight is used as it is considered a more accurate measurement of biomass. Crop water con-
tents fluctuates with environmental conditions (crop moisture contents and consequently fresh weight
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will be lower if hot and dry conditions have been experienced recently, for example). The greenhouse
CO2 density xCO2

in kg · m−3, greenhouse air temperature xT in °C and the absolute humidity content
of the air in the greenhouse xh in kg · m−3 are also included in x(k). The control signals u(k) consist of
CO2 injection rate uCO2

in mg ·m−2 · s−1, ventilation rate uv in mm · s−1 and heating supply uq in W ·
m−2. The four weather disturbances included in d(k) are the incoming radiation dIo in W · m−2, outside
carbon dioxide density dCO2

in kg · m−3, outside temperature dT in °C and outside humidity content dh
in kg· m−3. The measured state observations y(k) consist of lettuce dry weight yW in kg · m−2, indoor
CO2 concentration yCO2

in 103· ppm, observed temperature yT in in °C, and finally the relative humidity
yRH in %. This contains very similar information to x(k), but reports the indoor carbon dioxide concen-
tration and humidity in units used by standard measurement sensors.[4]

Table 1
Main symbols.

Category Symbol Description
State variables xW crop dry matter content in kg ·m−2

xCO2
Greenhouse CO2 density in kg ·m−3

xT Greenhouse air temperature in °C
xh Greenhouse air absolute humidity content in kg ·m−3

Control inputs uCO2
CO2 injection rate uCO2

in mg ·m−2 · s−1

uv Ventilation rate uv in mm · s−1

uq Heating supply uq in W · m−2

Disturbances dIo Incoming radiation dIo in W · m−2

dCO2
Outside carbon dioxide density dCO2

in kg · m−3

dT Outside temperature dT in °C
dh Outside absolute humidity content dh in kg·m−3

Measurement yW Lettuce dry weight in kg ·m−2

variables yCO2
Greenhouse CO2 concentration in ppm

yT Greenhouse air temperature in °C
yRH Greenhouse air relative humidity in %

Processes ϕphot, c The gross canopy photosynthesis rate in kg ·m−2 · s−1

ϕresp, W Respired dry matter due to the maintenance respira-
tion of the crop in kg ·m−2 · s−1

ϕresp, c Amount of CO2 released due to crop respiration in kg
·m−2 · s−1

ϕvent, c Mass exchange of CO2 through the vents and due to
leakage in kg ·m−2 · s−1

Qvent, q Energy exchange through the vents and by transmis-
sion through the greenhouse cover in W ·m−2

QIo, q Heating due to incoming solar radiation in W ·m−2

ϕtransp, h Canopy transpiration in kg ·m−2 · s−1

ϕvent, h Mass exchange of water vapour through the vents and
via leakage in kg ·m−2 · s−1

2.2 Model equations

Descriptions of the symbols describing processes in the model can be found in Table 1, the model con-
stants and their descriptions, values and units can be found in Table 2. The state dynamics in continuous
form are described by the following set of deterministic ordinary differential equations:

xW

dt
= cαβϕphot,c(t)− ϕresp, W(t), (3)

where t ∈ R is the continuous time, cαβ is a yield factor for the crop, ϕphot,c(t) is the gross canopy photo-
synthesis rate ϕphot,c(t) in kg ·m−2 · s−1 and ϕresp, W(t) is the respired dry matter due to the maintenance

[4] While sensors exist that can measure either absolute or relative humidity, the added value of measuring both is very limited.
In other works one is used and is used to estimate the other (van Beveren et al. (2015a,b); van Henten and Bontsema (2009)).
Constraints will be imposed on relative humidity and as such including this information has added value (see subsection 3.4).
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respiration[5] of the crop in kg ·m−2 · s−1,

dxCO2
(t)

dt
=

1

ccap, c

(
− ϕphot,c(t) + ϕresp, c(t) + uCO2

(t) · 10−6 − ϕvent,c(t)
)
, (4)

where ccap, c is the volumetric CO2 capacity of the greenhouse air in m3 · [air] m−2 [greenhouse (gh)] [6],
ϕresp, c(t) is the amount of CO2 released by the crop by respiration in kg · m−2 · s−1, and ϕvent,c(t) is the
mass exchange of CO2 through the vents and due to leakage in kg ·m−2 · s−1,

dxT(t)

dt
=

1

ccap, q

(
uq(t)−Qvent, q(t) +QIo,q(t)

)
, (5)

where ccap, q is the effective heat capacity of the greenhouse air in J m−2 [gh] °C−1, Qvent, q(t) is the energy
exchange through the vents and by transmission through the greenhouse cover in W ·m−2 and QIo,q(t)
is heating due to incoming solar radiation in W ·m−2,

dxh(t)

dt
=

1

ccap, h

(
ϕtransp,h(t)− ϕvent,h(t)

)
, (6)

where ccap, h is the volumetric humidity capacity of the greenhouse air in m3 · [air] m−2 [greenhouse
(gh)][6], ϕtransp,h(t) is the canopy transpiration.[7] in kg · m−2 · s−1 and ϕvent,h(t) is mass exchange of
water vapour through the vents and via leakage in kg ·m−2 · s−1.

2.2.1 Processes

The gross canopy photosynthesis rate ϕphot,c(t) in kg ·m−2 · s−1 is described as:

ϕphot,c(t) =
(
1− e−cLAI, WxW(t)

) c
phot
Io

dIo(t) · φ(t)

c
phot
Io

dIo(t) + φ(t)
, (7)

where cLAI, W is the effective canopy surface in m2 · kg−1. The first term (between brackets) is the ef-
fective surface of the crop per square meter and the second term represents the maximum possible
photosynthesis, where c

phot
Io

is the light use efficiency in kg · [CO2] J−1 and φ(t) is extracted for sake of
readability and is unitless:

φ(t) =
(
− c

phot
CO2,1xT(t)

2 + c
phot
CO2,2xT(t)− c

phot
CO2,3

)(
xCO2

(t)− cphot), (8)

where c
phot
CO2,1, cphot

CO2,2 and c
phot
CO2,3 are parameters to describe the effect of temperature on the gross canopy

photosynthesis in m · s−1 · °C−2, m · s−1 · °C−1 and m · s−1 respectively, and cphot is the CO2 compensa-
tion point in kg · m−3.[8] The maintenance respiration of the crop dry matter ϕresp, W(t) in kg m−2 · s−1

described as:
ϕresp, W(t) = cresp, W · ϕresp(t), (9)

where cresp, W is the crop dry matter respiration rate in s−1 and ϕresp(t) is the maintenance respiration in
kg ·m−2:

ϕresp(t) = xW(t) · c(xT(t)−25)/10
Q10,resp , (10)

where cQ10,resp is the maintenance respiration Q10 factor. It describes how crop maintenance respiration
halves for every temperature decrease of 10 °C and how it doubles for every increase of 10 °C. CO2

production by crop respiration ϕresp, c(t) in kg ·m−2 · s−1 is described by:

ϕresp, c(t) = cresp, CO2
· ϕresp(t), (11)

where cresp, CO2
is the respiration coefficient for crop CO2 release in s−1. The mass exchange of CO2 via

the vents and due to leakage ϕvent,c(t) in kg ·m−2 · s−1 is described by:

ϕvent,c(t) =
(
uv(t) · 10−3 + cleak

)(
xCO2

(t)− dCO2
(t)
)
, (12)

[5] Maintenance respiration refers to all respiration that does not lead to a net increase in crop dry matter. The energy it provides
is used for internal processes to maintain itself.

[6] In other words, it is the amount of air present per square meter in the greenhouse and equals the height of the greenhouse.
[7] Canopy refers to the part of the crop that is above ground.
[8] This is the minimum CO2 concentration above which net crop photosynthesis occurs. I.e., the crop CO2 uptake during photo-

synthesis is larger than the amount released due to respiration.
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where cleak is the ventilation leakage through the greenhouse cover in m−3 · [air] m−2 · [gh] s−1. Energy
exchange through the vents and by transmission through the greenhouse cover Qvent, q(t) in W ·m−2 is
defined by:

Qvent, q(t) = (ccap, vuv(t) + cg o)(xT(t)− dT(t)), (13)

where ccap, v is the heat capacity of the greenhouse air in J · m−3 · [gh] °C−1 and cg o is the transmission
of energy through the cover in W ·m−2 · [gh] °C. Heating due to incoming solar radiation QIo,q(t) in W
·m−2 is described as:

QIo,q(t) = crad
o gdIo , (14)

where crad
o g is unitless and describes the fraction of solar radiation that provides heating for the green-

house. The canopy transpiration ϕtransp,h(t) in kg ·m−2 · s−1 is defined as:

ϕtransp,h(t) = c
evap
c a
(
1− e−cLAI, WxW(t)

)
·

(
csat

H2O,1

cR(xT(t) + cT)
e

csat
H2O,2xT(t)

xT(t)+csat
H2O,3 − xh(t)

)
, (15)

where c
evap
c a is the mass transfer coefficient for water vapor between crop canopy and greenhouse air in

m s−1, cR is the gas constant in J K−1 kmol−1 , cT is used to convert °C to K and is in K, and csat
H2O,1, csat

H2O,2,
csat

H2O,3 are parameters used to compute saturated water vapor pressure, with units in J m−3, unitless and
°C, respectively. The mass ϕvent,h(t) mass exchange of water vapour through the vents and via leakage
in kg ·m−2 · s−1 is defined by:

ϕvent,h(t) =
(
uv(t) · 10−3 + cleak

)(
xh(t)− dh(t)

)
. (16)

2.2.2 Measurement output

The measurement equations that convert state variables into standard sensor units, where necessary, are
defined as follows:

yW(t) = xW(t),

yCO2
(t) = gh

(
xT(t), xCO2

(t)
)
,

yT(t) = xT(t),

yRH(t) = gCO2

(
xT(t), xh(t)

)
.

(17)

Measurements for dry weight and temperature are identical to the state variables, however this is not
the case for CO2 and humidity. The indoor CO2 concentration is computed from the indoor temperature
and CO2 density via gCO2

:

gCO2

(
zT(t), zCO2

(t)
)
= 103

R
(
zT(t) + cT

)
PMCO2

· zCO2
(t), (18)

where zT(t) and zCO2
(t) represent variables describing an air temperature in °C and an air CO2 density

in kg ·m−3, respectively. The function yields an air CO2 concentration value in 103 ·ppm. R is the molar
gas constant in J · mol−1 K−1, P is the pressure (of 1 standard atmosphere (atm)) in Pa, MCO2

is the
molar mass of CO2 in kg · mol−1. Similarly, the indoor relative humidity is computed from the indoor
temperature and absolute humidity density via gh:

gh
(
zT(t), zh(t)

)
=

R
(
zT(t) + cT

)
csat

H2O,4 exp
(

csat
H2O,5zT(t)

zT(t)+csat
H2O,6

) · zh(t), (19)

where zh is a variable describing an air humidity density in kg · m−3. The function output is an air
relative humidity value in %. csat

H2O,4, csat
H2O,5 and csat

H2O,6 are parameters used to compute saturated water
vapor pressure, their units are Pa, unitless and °C, respectively.
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Table 2
Model constants in order of appearance.

Symbol Description Value Unit
cαβ Yield factor 0.544 -
ccap, c Volumetric CO2 capacity of the green-

house air
4.1 m3 [air] m−2 [gh]

ccap, q Effective heat capacity of the greenhouse
air

30000 J m−2 [gh] ° C−1

ccap, h Volumetric humidity capacity of the
greenhouse air

4.1 m3 [air] m−2 [gh]

cLAI, W Effective canopy surface 53 m−2 [L] kg−1 [dw]
c

phot
Io

Light use efficiency 3.55 · 10−9 kg [CO2] J−1

c
phot
CO2,1 Parameterizes temperature influence on

gross canopy photosynthesis
5.11 · 10−6 m s−1 ° C−2

c
phot
CO2,2 Parameterizes temperature influence on

gross canopy photosynthesis
2.30 · 10−4 m s−1 ° C−1

c
phot
CO2,3 Parameterizes temperature influence on

gross canopy photosynthesis
6.29 · 10−4 m s−1

cphot Carbon dioxide compensation point 5.2 · 10−5 kg [CO2] m−3 [air]
cresp, W Crop dry matter respiration rate 2.65 · 10−7 s−1

cQ10, resp Maintenance respiration Q10 factor 2 -
cresp, c Coefficient for CO2 release rate due to res-

piration
4.87 · 10−7 s−1

cleak Ventilation leakage trough the greenhouse
cover

7.5 · 10−6 m s−1

ccap, v Heat capacity per volume unit of green-
house air

1290 J m−3 [gh] ° C−1

cg o Overall heat transmission through cover 6.1 W m−2 [gh] ° C−1

crad
o g Solar heat load coefficient 0.2 -
c

evap
c a Mass transfer coefficient for water vapor

between leaf and air
3.6 · 10−3 m s−1

csat
H2O,1 Parameterizes saturation water vapor

pressure
9348 J m−3

cR Gas constant 8314 J K−1 kmol−1

cT For conversion from °C to K 273.15 K
csat

H2O,2 Parameterizes saturation water vapor
pressure

17.4 -

csat
H2O,3 Parameterizes saturation water vapor

pressure
239 °C

R Molar gas constant 8.3144598 J mol−1 K−1

P Pressure (of 1 standard atmosphere (atm)) 101325 Pa
MCO2

Molar mass of CO2 0.0441 kg mol−1
csat

H2O,4 Parameterizes saturation water vapor
pressure

610.78 Pa

csat
H2O,5 Parameterizes saturation water vapor

pressure
17.2694 -

csat
H2O,6 Parameterizes saturation water vapor

pressure
238.3 °C
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3 Reinforcement Learning

3.1 RL preliminaries

(a) (b)
Figure 4
Basic Reinforcement Learning feedback loop (a; left) and the offline learning feedback loop (b; right) that is used in
the algorithms used in this work, where data is logged in a replay buffer (external data set) that is then used for
learning, rather than learning from the reward signal directly.

The Reinforcement Learning problem is approached as a Markov Decision Process (MDP). This
can be defined as a tuple (S,A, P,R), where S ∈ Rm represents the continuous state space and m is the
dimension of the state space, A ∈ Rn represents the continuous action space of the agent and n is the
dimension of the action space, P the transition function p(s′|s, a) that maps a state-action pair (s, a) to
the next state s′, and R the reward function R(r|s, a, s′) that returns a scalar reward value r ∈ R for
taking action a in state s and ending up in the next state s′.

Reinforcement learning requires an agent and an environment for it to interact with. The environ-
ment has a state S, and at each discrete time step k the environment returns a state observation sk ∈ S
to the agent. The agent then selects and executes some action a from the action space using its policy
π, which maps state observations to actions (or action distributions). Based on this interaction, the en-
vironment is updated using the transition function and the agent receives a scalar reward rk as well as
the new observed state of the environment sk+1. See Fig. 4a for an example. The goal in reinforcement
learning is to learn the optimal policy function π∗

θ , with parameters θ, that maximizes the expected sum
of discounted future rewards, also referred to as the expected return:

Gk =

i=T∑
i=k

[
γi−kr(si, ai)

]
, (20)

where γ ∈ [0, 1) is the discount factor that indicates the relative importance of expected rewards in the
distant future and T is the time step at which the episode ends. The optimal policy is then defined as:

π∗
θ = argmax

πθ

J(πθ) = argmax
πθ

i=T∑
i=k

E
τ∼ρπθ

[Gk], (21)

where T is the final time step, E[Gk] is the expected return and τ is the trajectory of states and state-action
pairs that follows from selecting actions using policy πθ, starting in the first state s0 that is sampled from
an initial-state distribution ρ(s0). The expected return Gk for executing a given action a in a given state
s, ending up in the next state s′ and subsequently following a policy π is learned or estimated via the
Q-function:

Qπθ (s, a) = E
τ∼πθ

[Gk|s, a] . (22)

The Bellman equation relates the Q-value for a given state-action pair (s, a) to the Q-value of the ensuing
state-action pair (s′, a′) (Bellman (1957)). This means that Qπ(s, a) can be rewritten to the following:

Qπ(s, a) = E
τ∼π

[r(s, a) + γQπ(s′, a′)] , a′ ∼ π(·|s′), (23)
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where the Q-value for a given state-action pair (s, a) and given a fixed policy π can be learned iteratively
based on the immediate expected received reward r(s, a) and the expected future discounted rewards
(Q-value) for the next state-action pair (s′, a′), where action a′ is taken from policy π.

3.1.1 Deep Reinforcement Learning algorithms for continuous control

Current state-of-the-art Deep Reinforcement Learning algorithms (DRL) for continuous control are Soft
Actor-Critic (SAC) (Haarnoja et al. (2018c)) and Twin-Delayed Deterministic Policy Gradient (TD3) (Fu-
jimoto et al. (2018)). Both of which are model-free, offline and off-policy actor-critic algorithms that
build on the Deep Deterministic Policy Gradient (DDPG) algorithm (Lillicrap et al. (2016)). As such, the
general structure for these algorithms is very similar, albeit slightly different than what was introduced
so far due to their off-policy and offline learning nature. Their general structure will be introduced first,
followed by the algorithm specific details of SAC and then TD3. (See subsection 6.2 in the Appendix for
more background on DRL algorithms and why these algorithm were selected.)

Algorithm properties Both SAC and TD3 make use of two parameterized Q-functions Qϕ1
and

Qϕ2
, which are also referred to as the critics, and one parameterized policy function πθ, which is also

referred to as the actor. Each of these functions is modelled with their own neural network, with pa-
rameters ϕ1, ϕ2 and θ, respectively. The actor maps state observations to actions as is normal, but the
critics now have an additional role besides learning of the Q-function: they provide feedback on per-
formed actions to the actor, which it in turn uses to help learn and improve the policy function. SAC
and TD3 both make use of target networks for the Q-functions, these are parameterized by ϕ−

1 and ϕ−
2 ,

respectively. TD3 makes use of an additional target network for the policy function πθ− , parameterized
by θ−. Their use is to stabilize the learning process (Mnih et al. (2015); Fujimoto et al. (2018)). The target
networks are initialized by copying the parameters of the respective main network they act as target for.

Both algorithms, while their exact approaches differ, make use of a stochastic behaviour policy
πθ(·|s) to interact with the environment for the sake of exploration of the state space and to learn about
the greedy deterministic exploitation policy πθ(s) that is used when evaluating the algorithm policy. This
is referred to as off-policy learning. We differentiate between a data collection mode, where the agent
interacts with the environment, and a learning mode, where the various algorithm functions and param-
eters are updated. See Fig. 4b for a visual illustration.

Data collection The agent receives an observation of the state sk from the environment and selects
an action ak based on a policy πθ, the environment transitions to the next state sk+1 and terminates if
a terminal state is reached as per usual. However, the reward rk that is emitted by the environment is
not immediately used by the agent to learn.[9] Instead, a replay buffer D is used that contains a history
of interactions and transitions. The environment interaction is logged in a (s, a, r, s′, ω) tuple that is
then stored in the replay buffer[10], where ω represents the done signal of the environment that indicates
episode termination. It has a default value of 0, and it takes a value of 1 if s′ is a terminal time step.
Also note that the subscripts k in the tuple have been removed and that the notation for the next state
sk+1 has been replaced with s′, as it is not important in the replay buffer from which exact time step k
in the episode the tuple originates. Regardless, if this is important, information on the time step should
be included in the state observation.

Learning procedure Learning of the Q-functions and the policy function is done in an offline
manner by uniformly sampling batches of tuples B from the replay buffer, these are then used to learn
the critics and the actor via their respective loss functions and stochastic gradient descent. The imple-
mentation details for both the learning of the Q-functions, as well as the learning of the policy differ
between the two algorithms and these are explained in their respective sections. The target networks
are updated via Polyak updates; in other words, the parameters of a target network slowly track the
parameters of their main network counterpart.

[9] An environment is not necessarily required due to the offline and off-policy learning nature of the algorithms; in that case, a
(static) data set of logged transitions is required instead. These approaches can also be combined to supplement each other,
using a data set while also allowing for the gathering of new data via interactions with the environment. While the policy with
which the data is obtained is not very relevant, the quality and diversity of the data in the data set are major factors that affect
the learning process and the quality of the final Q-functions and the policy function. This is not something that is delved into
further in this work.

[10] The size of the replay buffer is a hyperparameter that needs to be set and the buffer works with a First In, First out principle
once it is full. The added value of using a replay buffer is that it improves learning efficiency: it improves data-use efficiency as
it allows learning from previous experiences; additionally,it improves learning stability as it avoids biasing learning towards
recent samples and breaks temporal correlations between samples; sampling from a larger data history makes the learning
process more smooth as even small Q-value changes due to, for example, a bias towards recent samples or temporal correla-
tions can lead to large changes in policy behaviour and as such could greatly affect the data distribution and cause instability
in or even degradation of the learning process; and finally it makes it less likely for the policy to get stuck in local optima
(Mnih et al. (2015)).
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3.2 SAC

SAC makes use of soft Q-learning and a stochastic policy πθ(·|s). In soft Q-learning, an additional
reward term for entropy αH(π(·|s) is introduced in the reward function. Consequently, the optimal
policy aims to maximize future expected return as well as policy entropy. In other words, it aims to
maximize rewards, while acting as randomly as possible. This term helps with both exploration and
regularization[11]. As such, the optimal policy π∗

θ is as follows:

π∗
θ = argmax

πθ

i=T∑
i=k

γi−k E
τ∼ρπθ

(
r(s, a) + κH(πθ(·|s)

)
, (24)

where κ is a temperature coefficient that states the relative importance of the entropy term with respect
to the reward term, this coefficient is tuned automatically during learning. Indeed, setting κ to 0 returns
the original reward function. The Soft Q-function, i.e., entropy-regularized Q-function with parameters
ϕ is as follows:

Qπθ

ϕ (s, a) = E
τ∼πθ

[r(s, a) + γ
(
Qπθ

ϕ (s′, ã′)− κ lnπθ(ã
′|s′)

)
, ã′ ∼ πθ(·|s′), (25)

where ã′ is an action performed in state s′ and sampled using the current behaviour policy
πθ(·|s′). Remember that approximating the Q-function is done by sampling batches from the replay
buffer, as a result the entropy reward for the first time step is excluded as this action comes from the
replay buffer and was sampled using a different policy. lnπθ(ã

′|s′) represents the log-likelihood of tak-
ing a specific action ã′ in state s′. The notations ã and ã′ will be used to differentiate actions that are
selected using the current behaviour policy from those that come from the replay buffer (a and a′) and
were obtained using a previous iteration of the learned policy or from another policy.

SAC makes use of two parameterized Q-functions to approximate the soft Q-function, Qϕ1
and

Qϕ2 , which are also referred to as the critics, and one parameterized policy function πθ, which is also
referred to as the actor. Each of these functions is modelled with their own neural network, with param-
eters ϕ1, ϕ2 and θ, respectively. Each critic has a target network, Qϕ−

1
and Qϕ−

2
, these are parameterized

by ϕ−
1 and ϕ−

2 and initialized by copying the parameters of the function they act as target for.
Whereas the direct output of a deterministic policy function is an action vector, that is not the

case for stochastic policies. Instead, the initial function outputs are two vectors describing the mean µθ

and the (natural) log standard deviation lnσθ for the policy distribution given a state s. The natural log
is easily transformed to the standard deviation σθ by exponentiation. However, rather than sampling
an action ã from the distribution directly, SAC makes use of the reparameterization trick by introducing
a transformation function fS

θ :

ã = fS
θ (ϵ; s)

= tanh (µθ(s) + σθ(s)⊙ ϵ) , ϵ ∼ N (0, 1),
(26)

where ã is the resulting action and ϵ is a noise vector drawn from a spherical Gaussian. The output
is squashed with tanh to ensure actions stay within bounds ([−1, 1]). The reasoning for the use of this
reparameterization approach will be explained when policy learning is discussed. The definition for the
stochastic behaviour policy πθ(·|s), with as output action ã, is then as follows:

πθ(·|s) = πθ(f
S
θ (ϵ; s)|s), ϵ ∼ N (0, 1), (27)

and the greedy deterministic policy πθ(s) used during evaluation episodes is:

πθ(s) = a = tanh(µθ). (28)

3.2.1 Learning procedure:

Learning of the critics is done by minimizing residuals between target values and the predicted Q-values
for each Q-network independently. As such, the loss functions for the Q-networks are:

L(ϕi) = E
(s,a,r,s′,ω)∼D

[
1

2

(
Qϕi

(s, a)− q̂(r, s′, ω)
)2]

, for i ∈ {1, 2}, (29)

[11] Regularization refers to limiting or avoiding, or both, of overfitting to specific data. Overfitting can occur when a model has
too many variables to fit the available data which allows too much flexibility and can generate a fit to specific details, patterns
or relations in the data where there should be none, leading to poor generalization on unseen data. This can, for example, lead
to the incorrect formation of very narrow peaks in the Q-function estimators that affect both target values and can be exploited
by the policy function, resulting in poorer quality of learning (Goodfellow et al. (2016))
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where the target Q-values q̂ used are shared between the two networks and is computed as follows:

q̂(r, s′, ω) = r + (1− ω)γ min
i=1,2

Qϕ−
i
(s′, ã′)− κ log πθ(ã

′|s′)), ã′ ∼ πθ(·|s′), (30)

where r is short for r(s, a, s′) and ã′ is taken from the current behaviour policy πθ(·|s′). Only the lowest
predicted Q-values for the following state-action pairs (s′, ã′) out of the two target Q-network predic-
tions are used to compute the target values for the loss function of both Q-functions. The parameters of
the critics are then updated by minimizing their respective loss functions via stochastic gradient descent.

The policy loss function to be minimized makes use of the minimum predicted Q-value between
the two Q-function approximators and is as follows:

Lπ(θ) = E
s∼D,
ã∼πθ

[
κ log πθ(ã|s)− min

i=1,2
Qϕi(s, ã)

]
, (31)

which is then rewritten using the previously mentioned reparameterization trick, so replacing ã with
fs(ϵ; s). This replaces the expectation over the action distribution, which depends on θ, with an expecta-
tion over noise that does not depend on θ, reducing variance in the policy gradient estimator. The policy
is then updated by minimizing the following loss function using stochastic gradient descent:

Lπ(θ) = E
s∼D,
ϵ∼N

[
κ log πθ(f

S
θ (ϵ; s)|s)− min

i=1,2
Qϕi(s, f

S
θ (ϵ; s))

]
. (32)

The temperature parameter κ is tuned automatically during the algorithm learning process by
minimizing the target entropy loss function:

L(κ) = E
s∼D,
ã∼πθ

[−κ log πθ(ã, s)− κH̄], (33)

where H̄ is the minimum target entropy threshold. The temperature parameter is then updated using
stochastic gradient descent.

Updating of the target Q-networks is done based on weights of the target networks and the main
Q-networks:

ϕ−
i ← ηϕi + (1− η)ϕ−

i for i ∈ {1, 2}, (34)

where η = 0.005 is the Polyak parameter that indicates the relative importance of the main and target
networks during target network updates.

3.3 TD3

TD3 learns a deterministic policy πθ(s). It makes use of two parameterized Q-functions Qϕ1
and Qϕ2

,
which are also referred to as the critics, and one parameterized policy function πθ, which is also referred
to as the actor. Each of these functions is modelled with their own neural network, with parameters ϕ1,
ϕ2 and θ, respectively. Each critic has a target network, Qϕ−

1
and Qϕ−

2
, these are parameterized by ϕ−

1

and ϕ−
2 , the actor also has a target network π−

θ− with parameters θ−. Target networks are initialized by
copying the parameters of the function they act as target for.

Action noise is added to the output of the deterministic policy during training for the sake of
exploration, this results in the following behaviour policy:

πθ(·|s) = clip
(
πθ(s) + ϵ, amin, amax) , ϵ ∼ N (0, σ̃), (35)

where σ̃ is the standard deviation used to draw samples for the action noise covariance matrix, this a
hyperparameter that is tuned in this work and the value will be given later, and amin and amax represent
the action constraint of -1 and 1, respectively, and ensure actions remain within the valid action range.

3.3.1 Learning procedure

The critics are learned by minimizing the following loss function for each Q-network separately:

L(ϕi) = E
(s,a,r,s′,ω)∼D

[(
Qϕi(s, a)− q̂(r, s′, ω)

)2]
, for i ∈ {1, 2}. (36)

where the target Q-values q̂ used are shared between the two networks. Only the lowest predicted Q-
values for the following state-action pairs (s′, ã′) out of the two target Q-network predictions are used
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to compute the target values for the loss function of both Q-functions. This helps alleviate the Q-value
overestimation that was problematic in its predecessor DDPG. Target values are computed as follows:

q̂(r, s′, ω) = r + γ(1− ω) min
i=1,2

Qϕ−
i

(
s′, a′

)
, ã′ ∼ π−

θ−(·|s′), (37)

where the action ã′ is taken from the behaviour policy of the target network π−
θ−(·|s′):

π−
θ−(·|s′) = clip

(
π−
θ−(s

′) + clip(ϵ,−c−, c−), amin, amax) , ϵ ∼ N (0, σ̃−) (38)

where the target policy π−
θ− is used to compute the Q-learning target and (clipped) Gaussian noise is

added to the target policy to smooth the Q-function estimate. The standard deviation σ̃− used for
the added target policy noise that is drawn from a spherical Gaussian has a default value of 0.2, c−

represents the clip value of 0.5 for the added target action noise to ensure the target action remains close
to the deterministic target action. [12]

The policy and all of the target networks are updated less frequently, once every two critic up-
dates, than the critic networks to reduce negative effects of errors in the Q-value estimates on policy
learning. The policy is learned by maximizing Qϕ1

:

J(θ) = E
s∼D

[Qϕ1
(s, πθ(s))] . (39)

The weights of the critic target networks are updated as in SAC:

ϕ−
i ← ηϕi + (1− η)ϕ−

i for i ∈ {1, 2}, (40)

and the weights for the policy target network are updated in a similar manner:

θ− ← ηθ + (1− η)θ−. (41)

[12] Overfitting to narrow spikes in Q-value estimates is a problem when deterministic policies are used to compute target values,
making them sensitive to errors in the Q-function approximators that can be exploited by the policy, result in erroneous
behaviour or lead to high-variance in the target values. The solution proposed by the authors is to smooth the target policy
as a regularization method. This means that action values for a narrow area around the deterministic target actions are fitted
during training with the idea being that similar actions should have similar Q-value estimates, resulting in a more smooth
Q-function.
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3.4 Environment description

This section aims to provide an overview of the environment model transferred from the process model
presented in Chapter 2, so that the RL agent can interact with. This environment description involves a
comprehensive description of several crucial elements: the observation space returned to the agent, the
action space available to the agent, the transition function governing state changes, and the underlying
structure of the reward function.

Observation space The observation space can be denoted by the tuple S = (Y,Xs, U,D, D̂f .
[13],K),

where y ∈ Y ⊆ R4 are the greenhouse measured variables, xs ∈ Xs ⊆ R2 are the estimated state
variables for indoor CO2 density and absolute humidity, d ∈ D ⊆ R4 represents the current weather,
d̂f ∈ D̂f ⊆ R4·Np represents the predicted weather forecast where Np is the number of future steps in
the prediction horizon, u ∈ U ⊆ R3 represent the control signals and k ∈ K ⊆ Z≥0 the time step. The
time interval between two discrete time steps ∆t is 900 seconds, or 15 minutes. This value is used as
the time scale of the greenhouse indoor climate is between 15 minutes and 1 hour, as per Straten et al.
(2000). A state observation s(k) is denoted as (y(k), xs(k), u(k − 1), d(k), d̂f (k)

[13], k(k)).
The measured indoor variables y(k) are described in subsection 2.2. We assume measurements

are accurate - that is, there is no noise in the measurements. xs consists of the indoor CO2 density
(xCO2

(k)) and the absolute humidity (xh(k)), this is the subset of the state variable vector described in
subsection 2.2 that does not overlap with the measurement variables. We assume these can be estimated
correctly from the measurements by rewriting their respective equations in the measurement output. [14]

The previous control signals ui(k − 1) are also included as they are only allowed to change a
maximum of 10% of their maximum values at each time step. The weather observation at the current
time step d(k) as described in subsection 2.2, as well as the weather forecast d̂f (k) are included in the
observation space. We assume the weather forecast is accurate and the weather time-series develops as
per the forecast. d̂f is then defined as follows:

d̂f (k) =
(
d(k + 1)T d(k + 2)T · · · d(k + Np)

T
)T

. (42)

The agent is considered time-aware, i.e., the discrete time step k since the start of the episode is included
in the observation space. The size of the observation space is then 14 + 4 ·Np. It is assumed that the in-
formation in the observation space is perfectly accurate — that is, there is no noise in the measurements
and estimations as mentioned previously, and the weather time-series develops as per the forecast.

Action space The action space (a ∈ A ⊆ [−1, 1]3) is continuous. New control signals u(k) are
obtained by mapping the action vector to the maximum allowed change in control signal per time step,
δumax = 0.10 · umax, this is then added to the previous control signals and the result is clipped to the
physical ranges of the actuator. This translates to the following equation:

u(k) = clip
(
u(k − 1) + a(k) · δumax, umin, umax) . (43)

The control input constraints are as follows:

uCO2
∈ [0, 1.2] mg ·m−2 · s−1,

uv ∈ [0, 7.5] mm · s−1,

uq ∈ [0, 150] W ·m−2,

(44)

and as such umin and umax are defined as:

umin =
(
0 0 0

)T
,

umax =
(
1.2 7.5 150

)T
.

(45)

Transition function The environment transition starts with updating the control signals based
on actions selected by the agent, this develops as per Eq. (43). Subsequently, the state variables x and
the sensor measurements y transition according to the discretized model Eq. (1) that has been discussed
in subsection 2.1. The current and forecast weather data in the observation space are deterministic
and slide through the given weather data set and finally the time step increases incrementally by one.
Pseudocode for the transition function is given in Algorithm 1.

Reward function The agent is rewarded for maximizing its profit, while minimizing constraint
violations. Optimizing net profit requires careful balancing of income by crop production and the costs

[13] The forecast is excluded from the observation space and transition function if no forecast horizon is used.
[14] xCO2

and xh are estimated by rewriting Eq. (18) and Eq. (19), respectively. This is referred to as soft sensing (van Mourik et al.
(2021)).
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Algorithm 1 Transition function pseudocode

1: procedure
2: u(k)← clip

(
u(k − 1) + 0.1 · a(k), umin, umax

)
3: x(k + 1)← f

(
x(k), u(k), d(k); c

)
4: y(k + 1)← g

(
x(k + 1); c

)
5: xs(k + 1)← x2,4(k + 1)
6: d(k + 1)← d(k + 1)

7: d̂f (k + 1)← d̂f (k + 1)[13]

8: k(k + 1)← k(k) + 1

9: s(k + 1)←
(
y(k + 1), xs(k + 1), u(k), d(k + 1), d̂f (k + 1), k(k + 1)

)
of using resources. Maximizing net profit is a commonly used objective in optimal control of greenhouse
climate using RL (Hemming et al. (2019, 2020); Wang et al. (2020); Zhang et al. (2021); An et al. (2021);
Cao et al. (2022)). Furthermore, models do not completely describe the true system over the entire
state-space and negative effects of unfavourable conditions such as extremely high temperatures, CO2

concentrations or relative humidity levels on crop growth are not fully captured by the model. As a
result, the controller will not avoid these states, so it is necessary to impose constraints on the indoor
climate variables to ensure that undesirable conditions are avoided. This means that the reward function
is to be augmented with penalty terms for indoor climate constraint violations, and the structure of the
reward function is now similar to that of an objective function used for MPC (van Henten and Bontsema
(2009)).[15] The full reward function for taking an action a(k) given an observed state s(k) at time step k
and ending up in the next state s(k + 1) following the transition function is defined as follows:

R(k) = β1clet,pϕlet(k+1)−β2cCO2

∆t

1e6
uCO2

(k)−β3cq
∆t

3.6e6
uq(k+1)+pCO2

(k+1)+pT (k+1)+ph(k+1). (46)

The first term in the reward function describes income due to crop growth, where clet, p is the price
per produced lettuce head and ϕlet(k + 1) represents the difference in lettuce head yield between the
current and the next observed state. The second and third term assigns economic costs to the control
inputs, where cCO2

is the cost per kg of CO2 used and cq the price per kWh energy used. Prices for
crops and resources are assumed to be static. β1, β2 and β3 are constants that can be altered from their
default values of 1 in order to prioritize crop growth, or to reduce environmental impacts by increasing
costs associated with CO2 usage, for example. pCO2

, pT and ph are penalties for CO2, temperature and
humidity boundary violations, respectively, and are computed for indoor conditions at s(k + 1). The
values associated with the constants in the reward function and the upcoming penalty functions are
given in Table 3.

The difference in lettuce head yield between two time steps is estimated from crop dry weight as
follows:

ϕlet(k) = clet, hw · dyW(k) · clet, head (47)
where dyW(k) is the difference in crop dry weight between a current and the preceding time step -
dyW(k) = yW(k)− yW(k− 1), and clet, hw is the ratio of crop dry weight to harvestable crop weight that is
used to compute the increase in harvestable yield. This is then converted to an increase in lettuce heads
produced via the constant clet, head that describes the harvestable weight of a singular, grown lettuce
head. The dry weight: harvestable weight ratio varies in reality as it includes the crop fresh weight
which depends on environmental conditions, but for practical reasons a constant ratio is assumed. The
same holds for the assumption on the weight of a lettuce head. The purpose of this conversion is to have
a rough translation of crop dry weight to income. The CO2 upper boundary violation penalty term is
computed as follows:

pCO2
(k) =

{
cpC
· (yCO2

(k)− ymax
CO2

), if yCO2
(k) > ymax

CO2

0, otherwise,
(48)

where cpC
in e ·103 ppm−1 is a constant used to penalize upper CO2 boundary violations. Temperature

boundary violation penalties depend on whether it is an upper or lower boundary violation:

pT (k) =


−cpTl

·
(
ymin

T − yT(k)
)
, if yT(k) < ymin

T

−cpTup
·
(
yT(k)− ymax

T

)
, if ymax

T < yT(k)

0, otherwise,
(49)

[15] These penalty terms were not used in the previous works on RL for greenhouse control, as their control algorithms decided on
indoor climate set-points, rather than direct actuator control. Regulation of set-points is done using simple PID-controllers (or
variants thereof).
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where cpTlwb
and cpTupb

are the constants used to penalize lower and upper temperature boundary vi-
olations in e · C−1, respectively. Finally, relative humidity constraint violations are penalized via the
following equation:

ph(k) =

{
cph
· (yRH(k)− ymax

RH ), if yRH(k) > ymax
RH

0, otherwise,
(50)

where cph
in e ·%−1 is the constant to penalize upper relative humidity boundary violations. Note that

all penalty constants are multiplied with their respective units and a euro constant to ensure units used
across all terms in the reward function are consistent. Their values are found empirically.

Initial conditions The initial state for the indoor conditions are set and the control signals for the
first time step of each run are also predefined. Their values are given in Eq. (51). The first control signals
are performed automatically when the environment is reset, i.e., a first step is always performed with
a =

(
0 0 0

)T and this transition is not logged in the replay buffer. The subsequent control signals for
each of the actuators are decided on by the agent.

x(0) =
(
0.0035 0.001 15 0.008

)T
,

y(0) = g(x(0); c)T ,

u(0) =
(
0 0 50

)T
.

(51)

Table 3
Reward function constants and environment constraints.

Constant Value Unit
clet, p 0.50 e· head−1

clet, hw 17 kg · kg dw−1[16]

clet, head 0.25 kg · head−1

cCO2 0.1906[17] e· kg CO−1
2

cq 0.1281 e· kWh−1

cppC

1
20 e · 103 ppm−1

cpTlwb

1
300 e· °C−1

cpTUpb

1
200 e· °C−1

cpph

1
50 e ·%−1

ymax
CO2

1.6 ·103 ppm
ymin

T 15 °C
ymax

T 25 °C
ymax

RH 90 %

[16] Taken from Baeza et al. (2021).
[17] CO2 price from van Henten and Bontsema (2009) in Dutch Guilder converted to euros is used, without rounding decimals:

(42e− 2/2.20371).
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4 Results

4.1 Experiment setup

The problem is considered episodic, one crop cycle of forty days is assumed with discrete time steps
of fifteen minutes and the episodes terminates after exactly fourty days at k = 3840 when the crops
are harvested. Training is done on 2014 climate data and policy generalization performance is tested
using 2020 climate data. For each algorithm the effect of a variety of weather prediction horizons Np ∈
{0, 3, 7, 11, 15, 19, 23} on profit was be explored, where Np is the number of time steps ahead of the
current time k.

Every experiment is performed five times using different seeds (∈ {27, 28, 42, 43, 94}). Each run
starts with a warm-up phase consisting of three episodes where the agent takes random, uniformly
sampled actions to collect data for the replay buffer. No learning happens during this warm-up phase.
This is followed by the learning-phase that consists of 47 training episodes where the behaviour policy
is used to interact with the environment and learning occurs. Every training episode is followed by
two evaluation episodes where the learned greedy deterministic policy is applied to both the training
and test weather data. These trajectories are not added to the replay buffer. Results of the evaluation
episodes across the five seeds are logged and shown in the results section.

During runs the observations returned to the agent and samples drawn from the replay buffer
used to train the actor and the critics are normalized with a running mean and standard deviation and
then clipped to [−10, 10] to avoid extreme values, as per the VecNormalize wrapper of Stable-Baselines3.
(s, a, r, s′) tuples stored in the replay buffer are not normalized. Additionally, the state variables x were
clipped to minimum values of

(
0 0 0 0

)
and maximum values of

(
400 0.00400 40 0.051

)
. While

the warm-up phase still results in extreme indoor conditions with large constraint violations and thus
initially in low quality data in the replay buffer, this was found to be useful as it helps avoid extremely
poor quality data (i.e., where very large penalties occur) from entering the replay buffer during the
warm-up phase.[18] We found this to be helpful in agent learning to avoid premature policy convergence
and biasing of the policy to the initial samples experienced.[19]

4.2 Weather data

Training data Weather data for March 2nd - April 11th 2014 from the VenLow greenhouse in Bleiswijk
(Kempkes et al. (2014)) is used to train the control agents. The dataset consists of samples captured
at a five-minute time intervals and contains the outdoor global radiation [W · m−2], temperature [°C],
relative humidity [%] and CO2 concentration [ppm]. CO2 data is converted in to CO2 densities in kg
· m−3 and relative humidity in to absolute humidity in kg · m−3 by rewriting equations Eq. (18) and
Eq. (19). The five-minute data is then resampled to 15 minutes.
Test data Weather data for March 2nd - April 11th 2020 from the Second Autonomous Greenhouse
Challenge is used as test data[20]. This data comes from measurements at the same location as the traing
data, Bleijswijk. Radiation, temperature and relative humidity are reported at five-minute time intervals
and was processed in the same manner as the training data. Two hours of data in the early morning of
March 29th 2020 is missing and filled using linear interpolation. CO2 data is not reported, as such the
outside CO2 density trajectory from 2014 data was reused instead. This assumption leads to a slight
underestimation of outside CO2 levels as CO2 levels are rising globally (Friedlingstein et al. (2022)). The
flow of CO2 between the greenhouse and the outside world depends on the difference in CO2 densities
between the two. These differences are generally large due to CO2 injection in greenhouses, and the
slight underestimation is of little effect on this scale. It does still mean that CO2 losses to the outside
world are ever so slightly overestimated in our experiments. However, underestimation of outdoor CO2

levels will always be the case when training on past data with aim of implementation in the future.
Visualized time-series for both weather sequences can be found in the appendix (Fig. 10).

4.3 Hyperparameter tuning

Agent and network hyperparameters were found empirically and are specified in Table 4. The TD3
algorithm adds an additional hyperparameter for the standard deviation used for the action noise. This
is tuned for each prediction horizon Np individually using values in {0.1, 0.2, . . . , 0.6} and the value

[18] Note that the maximum clip values for crop dry weight and for absolute humidity are way higher than can ever be reached
but are reported for sake of completeness.

[19] We explored using different numbers of episodes in the warm-up phase and adjusting the number of learning episodes ac-
cordingly to keep the total number of episodes in an experiment at 50.

[20] Available at https://www.kaggle.com/datasets/piantic/autonomous-greenhouse-challengeagc-2nd-2019
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Table 4
Agent hyperparameters

Value
Learning rate α 1·10−3

Hidden units 32
Hidden layers 2
Discount factor γ 0.8
Activation function ReLU
Minibatch size 64
Replay buffer size 100k

Figure 5
Learning curves describing total received reward on the training weather data set (upper row) and test weather
data (lower row) using the greedy policy for SAC and TD3. The initial random action episodes are not included.
The dotted line represents mean value per evaluation episode, outer lines represent minimum and maximum
observed values across the five seeds.

that yields the best final episode performance on the test data is according to the criterion R̄ − σR is
reported, where R̄ and σR refer to the average and standard deviation of the final rewards across the
seeds, respectively. This is done due to a preference for a more consistent and robust performance
that is less sensitive to randomness across the seeds during the learning process, as is done Duan et al.
(2016). Default values of the Stable-Baselines3 implementations are used for hyperparameters that are
not directly specified here (Raffin et al. (2021)). Adam optimizer is used (Kingma and Ba (2014)) with a
linear learning schedule, where the learning schedule decreases linearly from its starting value to zero
between the first and final training step.

4.4 Simulation results

Overall algorithm performance on the reward function is presented and discussed first. This is followed
by an in-depth investigation of how the weather forecast horizons and the algorithms affect the final
observed net profit, crop yield, control usage, and violations of the indoor climate constraints. A time
series for the policy rollout for a single episode is presented in the final subchapter.

Note that a direct comparison with other works is neither feasible nor sensible, as controller
performance is highly dependent on greenhouse location, type, available sensors and actuators, as well
as crop species, weather conditions, used simulation settings and the used reward or objective function
(van Beveren et al. (2015a); Knibbe et al. (2022)).

4.4.1 Overall performance

The central question discussed in this chapter is:

• What is the effect of the prediction horizon on overall controller performance?

Reward learning curves are presented in Fig. 5 and final values are reported in Table 5. Do
note that differences in weather play a major role in the achievable reward signal and is one of the
main reasons for the absolute differences between training and test results. This also means that it is
more difficult to quantify overfitting to the training data compared to traditional Machine Learning
approaches. We define a generalization error as the difference between the average final train and test
performance. This quantification allows us to perform a relative comparison of overfitting between our
experiments.
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Table 5
Rewards for the final learned policies by SAC and TD3 on the fixed weather data applied to training and testing

datasets over five seeds for various weather forecast horizons. Mean and (standard deviation) values are reported.
0 3 7 11 15 19 23

SAC
Train 9.62

(0.14)
9.91
(0.23)

10.29
(0.10)

10.52
(0.05)

10.56
(0.04)

10.51
(0.05)

10.51
(0.06)

Test 8.30
(0.30)

8.14
(0.99)

9.46
(0.21)

9.89
(0.13)

9.87
(0.06)

9.81
(0.09)

9.64
(0.07)

TD3
Train 9.36

(0.04)
10.03
(0.14)

10.27
(0.14)

10.43
(0.06)

10.42
(0.10)

10.34
(0.19)

10.32
(0.19)

Test 8.20
(0.54)

8.83
(0.15)

9.55
(0.20)

9.57
(0.25)

9.53
(0.13)

9.43
(0.30)

9.44
(0.16)

Experiment time across five seeds for one weather forecast scenario took approximately 2 hours
and 30 minutes in total for SAC experiments and 1 hour and 50 minutes in total for TD3 experiments.
TD3 training time is shorter compared to SAC as it performs only half the total policy and target updates
due to its policy and target network update delay.

From the learning curves, we see both training and test performances improve during the entire
learning procedure, with the exception of the experiment with a 3-step forecast using SAC. This experi-
ment shows a degradation in test performance for at least one of its seeds in the final ten episodes. This
does not show in the training learning curve, indicating performance degradation is due to overfitting.
TD3 generally performs better in the first five to ten episodes but is then overtaken by SAC. Asymp-
totic performance for both algorithms and on both the train and test weather sequences improves with
increasing forecast horizons from 0 to 15 steps. We see that the generalization error decreases with
increasing forecast horizons for both algorithms, indicating that the use of forecasts improves general-
ization performance and reduces the observational overfitting that occurs at lower forecast horizons.
Additionally, variance across the seeds lowers with increased horizons lengths. This highlights the im-
portance of using forecasts for both training and generalization performance as well as well as reducing
algorithm sensitivity to random seeds.

Overfitting when no forecast or a minimal forecast is used makes sense when returning to the
basics of RL. The control agent has to estimate the future discounted reward for a state-action pair and
future rewards are heavily dependent on future weather, on which the agent has very little information
in this case. So, while the agent may be able to estimate the future rewards adequately in the train-
ing case, it implicitly does so based on the static weather sequence used for training and it does not
have enough information in the observed state to generalize this as well to different weather sequences.
Generalization performance can also suffer when no or limited forecast information is provided due to
increased risk that information on crop dry weight and time-awareness is misused by the control agent
to differentiate between very similar weather observations due to the use of a static weather sequence.

For forecast horizons of 11 steps or more, we see that SAC performs better than TD3 on both the
train and test data. It shows lower variance across the various seeds used in the learning procedure as
well as better asymptotic performance. Optimal performance is obtained with a forecast of 15 steps for
both algorithms.

A degradation in generalization performance is visible for SAC at Np = 23 compared to Np = 19
while train performance remains similar, indicating that the agent is now overfitting to the noise in the
observed forecast. This is most likely the result of (1) the discount factor, and (2) using a static weather
data set. It is important to take the discount factor of 0.80 used to train the algorithms into consideration
here, as this means that rewards 11, 15, 19 and 23 steps in the future are assigned 8.6%, 3.5%, 1.4% and
0.6% of their actual reward value when estimating the Q-value, respectively. Especially in the case of
the latter two, it means that - when adding additional forecast knowledge in the state observation - this
is barely used in the Q-function and may clutter the observation space with redundant information or
noise. This affects the learning process speed and quality and increases the risk of overfitting.
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4.4.2 Application

As we are dealing with a multi-objective reward function, it is important to also investigate the indi-
vidual components of the reward function to gain a better understanding of agent behaviour and how
trade-offs are made (Dulac-Arnold et al. (2019)) and what this means in the application context. The
following questions are examined in this chapter to investigate the results from an application point of
view:

• What is the effect of the prediction horizon on net profit?
• What is the effect of the prediction horizon on crop dry weight yield?
• What is the effect of the prediction horizon on total control use?
• What is the effect of the prediction horizon on climate constraint violations?

The latter two questions are answered for each of the control actions and climate constraints separately.
The chapter is concluded with a time-series analysis of a policy from the best performing agent setup.

Table 6
Net profits in euros per m2 for the final learned policies by SAC and TD3 on the fixed weather data applied to

training and testing datasets over five seeds for various weather forecast horizons. Mean and (standard deviation)
values are reported.

0 3 7 11 15 19 23
SAC
Train 10.73

(0.11)
10.86
(0.24)

11.11
(0.11)

11.26
(0.07)

11.28
(0.07)

11.28
(0.04)

11.28
(0.08)

Test 10.49
(0.33)

10.20
(0.82)

11.30
(0.22)

11.61
(0.11)

11.59
(0.02)

11.59
(0.07)

11.56
(0.13)

TD3
Train 10.46

(0.04)
10.89
(0.13)

11.11
(0.17)

11.29
(0.03)

11.23
(0.09)

11.23
(0.06)

11.30
(0.09)

Test 10.51
(0.28)

10.75
(0.14)

11.41
(0.18)

11.44
(0.12)

11.46
(0.19)

11.48
(0.12)

11.66
(0.16)

What is the effect of the prediction horizon on net profit?
The net profit depends on resource costs and income from crop yield, these will be discussed later on in
this chapter. Final net profits are reported in Table 6, the learning curves are located in the appendix. Net
profit increases with increasing horizon length up to an 11-step horizon, after which it plateaus in both
the train and test case for SAC. TD3 shows similar behaviour and net profit in the train case plateaus
at the same level, but net profit on the test case keeps improving slightly with forecast horizon. TD3
net profit in the test case shows larger variance between seeds for horizons of 11 steps or more and is
generally lower than net profits obtained with SAC, with the exception of the longest forecast explored.
Higher net profit values can be obtained when neglecting climate constraints and this will be touched
upon in the discussion.

Table 7
Crop dry weight yield in g · m−2 (instead of kg · m−2 for sake of readability) for the final learned policies by SAC
and TD3 on the fixed weather data applied to training and testing datasets over five seeds for various weather
forecast horizons. Mean and (standard deviation) values are reported.

0 3 7 11 15 19 23
SAC
Train 426.39

(3.60)
424.91
(4.62)

428.82
(3.25)

432.97
(1.67)

432.96
(2.00)

433.43
(1.11)

433.15
(1.97)

Test 443.63
(10.00)

433.33
(19.51)

456.66
(6.34)

465.94
(2.23)

463.73
(0.75)

464.05
(2.06)

464.20
(4.42)

TD3
Train 416.04

(2.81)
425.90
(3.66)

428.22
(5.34)

433.08
(0.72)

430.72
(3.19)

431.80
(2.10)

433.45
(2.63)

Test 445.17
(7.65)

446.57
(5.73)

459.56
(4.96)

461.10
(3.35)

458.95
(5.82)

461.15
(4.38)

466.36
(4.71)

What is the effect of the prediction horizon on crop dry weight yield?
Final crop yields are reported in Table 7, the learning curves are located in the appendix. Note that
values are reported in grams rather than kilograms for sake of readability. SAC yield is higher when
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no horizon is used is than when a three-step horizon is used, this is due to higher CO2 injection in the
no-horizon case and will be elaborated on when control use is discussed. SAC yields for horizons of 11
steps or greater are generally stable in both the training and test cases. TD3 generally reports slightly
higher yields in the test case compared to SAC for forecasts of 7 steps or fewer, but reports yields that
are 3-5 grams lower for the remaining forecasts with exception of the longest forecast where a slightly
higher yield is found. Using the reward function, this roughly translates to a difference of 10.2 - 17 cents
m−2 in income. Finally, variance between seeds in the test case and for horizons larger than 7 steps is
lower for SAC than for TD3.

Figure 6
Learning curves describing total CO2 use per episode on the training weather data set (upper row) and test
weather data (lower row) using the greedy policy for SAC and TD3. The initial random action episodes are not
included. The dotted line represents mean value per evaluation episode, outer lines represent minimum and
maximum observed values across the five seeds.

Table 8
CO2 usage in kg · m−3 for the final learned policies by SAC and TD3 on the fixed weather data applied to

training and testing datasets over five seeds for various weather forecast horizons. Mean and (standard deviation)
values are reported.

0 3 7 11 15 19 23
SAC
Train 2.06

(0.20)
1.63
(0.08)

1.52
(0.06)

1.58
(0.05)

1.57
(0.05)

1.58
(0.06)

1.58
(0.08)

Test 1.91
(0.23)

1.45
(0.14)

1.45
(0.08)

1.60
(0.06)

1.54
(0.06)

1.53
(0.08)

1.57
(0.09)

TD3
Train 1.72

(0.22)
1.87
(0.24)

1.59
(0.09)

1.60
(0.05)

1.57
(0.09)

1.62
(0.06)

1.58
(0.07)

Test 1.76
(0.20)

1.75
(0.20)

1.57
(0.13)

1.62
(0.08)

1.52
(0.12)

1.56
(0.08)

1.62
(0.13)

What is the effect of the prediction horizon on control use?

CO2 use:
Total CO2 use for the final policies are given in Table 8 and learning curves are shown in Fig. 6. Use of
forecasts leads to reduced CO2 use compared to the case without a forecast, but the extent of this still
shows some variance. SAC reports an immediate decrease in use when horizons of 3 and 7 steps are
used. It shows no clear pattern in total CO2 use for the longer forecast horizons in both training and test
cases. TD3 shows an increase in CO2 use in the training case and a similar use in the test case when a
horizon of 3 steps is used compared to no horizon. Use for a 7-step horizon decreases to levels similar for
the SAC horizons of 11 steps or longer. CO2 use for the longer forecasts remains similar but with some
variation and no clear pattern exists. SAC reports smaller between-seed variances than TD3, but these
are still relatively large in magnitude (for example in the test case for Np = 15, the standard deviation
of 0.06 on a value of 1.54 equals almost 4 percent). The learning curves show that using forecasts has
additional benefits as it helps stabilize the learning procedure and reduces sensitivity to seeds used.

Ventilation use:
Total ventilation use for the final policies are given in Table 9 and learning curves are shown in Fig. 7.
SAC ventilation use in both the train and test case reduces when increasing the forecast horizon to 7
steps, it then plateaus and remains stable for the longer horizons. A similar trend is observed for TD3,
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Figure 7
Learning curves describing total ventilation use per episode on training weather data set (upper row) and test
weather data (lower row) using the greedy policy for SAC and TD3. The initial random action episodes are not
included. The dotted line represents mean value per evaluation episode, outer lines represent minimum and
maximum observed values across the five seeds.

Table 9
Total ventilation used in m · m−2 for the final learned policies by SAC and TD3 on the fixed weather data applied
to training and testing datasets over five seeds for various weather forecast horizons. Mean and (standard
deviation) values are reported.

0 3 7 11 15 19 23
SAC
Train 2882

(266)
2520
(392)

2417
(148)

2446
(211)

2530
(113)

2534
(272)

2399
(180)

Test 2375
(346)

2215
(475)

1728
(55)

1774
(103)

1740
(55)

1746
(171)

1708
(121)

TD3
Train 3565

(316)
2660
(157)

2494
(237)

2460
(137)

2378
(130)

2435
(316)

2479
(93)

Test 2843
(341)

2195
(170)

1895
(235)

2039
(179)

1729
(88)

1794
(148)

1829
(66)

but the total ventilation use plateau is higher in the test case and is less stable. Variations between seeds
vary for both algorithms, indicating that ventilation control is hard to learn. The learning curves show
similar behaviour to those for CO2 use in that it helps stabilize learning and reduce variance between
seeds.

Figure 8
Learning curves describing total energy use per episode on training weather data set (upper row) and test
weather data (lower row) using the greedy policy for SAC and TD3. The initial random action episodes are not
included. The dotted line represents mean value per evaluation episode, outer lines represent minimum and
maximum observed values across the five seeds.

Energy use:
Total energy use for the final policies are given in Table 10 and learning curves are shown in Fig. 8. For
reference, 100 MJ translates to a cost of e3.55. The effect of forecast length on energy use is very limited.
SAC results for a 3-step horizon and no horizon are similar in both the train and test case. Extending
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Table 10
Energy usage in MJ · m−2 for the final learned policies by SAC and TD3 on the fixed weather data applied to

training and testing datasets over five seeds for various weather forecast horizons. Mean and (standard deviation)
values are reported.

0 3 7 11 15 19 23
SAC
Train 94.74

(1.83)
92.00
(2.86)

89.33
(0.43)

88.66
(0.82)

88.25
(0.33)

88.63
(0.65)

88.36
(0.56)

Test 118.83
(3.80)

119.62
(7.49)

110.88
(0.99)

110.33
(1.45)

109.26
(0.55)

109.57
(0.75)

110.38
(1.59)

TD3
Train 94.38

(1.41)
90.93
(1.31)

88.44
(0.74)

87.86
(0.44)

87.69
(0.31)

88.32
(1.21)

88.20
(0.97)

Test 120.47
(2.44)

115.16
(3.82)

110.00
(1.83)

110.48
(0.62)

108.27
(0.38)

109.55
(1.18)

109.10
(1.11)

the forecast to 7 steps leads to the largest reduction in energy use in the test case for SAC, but total
energy use in the train case lowers marginally. A plateau is reached and further extension of the forecast
horizon does not affect energy use for SAC on either weather sequence. TD3 energy usage across the
weather sequences and forecast horizons is very similar to SAC. The learning curves show that use of a
small forecast horizon helps stabilize learning early on compared to no forecast and that overall learning
of heating control goes smoothly.

What is the effect of the prediction horizon on climate constraint violations?
All final indoor climate constraint violations are reported in Table 11. Reported values represent the
summed total boundary violations across all discrete time steps in the fourty day episode in their re-
spective units.[21] The learning curves can be found in the appendix.

CO2:
Adding a 3-step forecast halves the total CO2 boundary violations compared to no forecast for the SAC
algorithm in the test weather case. TD3 shows most CO2 constraint violations in both the train and the
test case when no forecast is used, as well as when forecasts of 3, 19 and 23 steps are used. No further
clear patterns are visible for SAC and TD3. It is, however, important to keep in mind that these values
represent the summed violations across the fourty-day time-series and the small values of violations by
both algorithms are essentially trivial as long as they are spread out over the time-series and not the
results of a single event.

Lower temperature boundary:
SAC lower temperature boundary violations plateau in both the training at around 15 °C and test case
at around 245 °C once a forecast horizon of 11 steps is used with limited gain from longer forecasts. TD3
shows a reduction in violations when adding a 3-step horizon compared to the case with no horizon.
No clear pattern in violations for longer horizons, with total violations varying between 30 and 67 °C
and 65 and 110 °C in the train and test cases, respectively. Additionally, TD3 shows larger variations
between seeds for horizons of 11 steps and greater compared to SAC.

Upper temperature boundary:
Upper boundary violations are tricky, in the sense that they are not always avoidable as no active cool-
ing is present in the greenhouse system and heating by outside temperature and the sun can lead to
boundary violations. SAC reports total upper temperature boundary violations of 141.71 °C and 316.68
°C when no horizon is used for the train and test set, respectively. This lowers to an optimum of 110.30
°C and 286.93 °C at a horizon of 11 steps. Results for 15 steps are essentially the same, but violations
increase again with increasing horizon length when larger horizons than 15 steps are used. TD3 reports
total upper temperature boundary violations of 102.88 °C and 282.06 °C when no horizon is used for
the train and test set, respectively. The best upper temperature maintenance for TD3 is only marginally
better and is found when a horizon of 3 steps is used: 102.84 °C and 273.97 °C for the train and test case,
respectively. Performance is marginally worse when horizons of 7 and 11 steps are used, after which
test set performances degrade again to levels worse than when no horizon is used.

Overall TD3 reports lower upper temperature violation values and smaller between-seed varia-
tions than SAC and is better and more robust at maintaining upper temperature boundaries than SAC.

[21] Values are taken and summed at the 15 minute time intervals and are not integrated. In other words, if the upper temperature
boundary is violated by 2°C in two consecutive time steps, this results in an increase of 4 °C in the total episodic constraint
violation value, rather than the integrated violation between the two time steps that is adjusted for the time steps of 15 minutes.
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Table 11
Total amount of boundary constraint violations in their respective unit of the final learned policies by SAC and

TD3 applied to training and testing datasets over five seeds for various weather forecast horizons. Mean and
(standard deviation) values are reported.

0 3 7 11 15 19 23
SAC
CO2 Train 0.70

(0.49)
1.11
(0.50)

0.73
(0.74)

0.42
(0.29)

0.53
(0.48)

0.42
(0.16)

0.29
(0.19)

Test 1.93
(1.91)

0.93
(0.67)

0.30
(0.27)

0.80
(0.26)

0.95
(0.69)

0.60
(0.65)

0.86
(0.86)

Tmin Train 64.80
(24.47)

46.58
(28.13)

21.84
(9.05)

14.18
(8.52)

13.19
(5.59)

16.63
(8.22)

16.85
(9.88)

Test 91.94
(52.64)

94.28
(81.61)

54.84
(26.41)

24.73
(15.18)

21.54
(4.36)

23.29
(15.04)

27.24
(9.24)

Tmax Train 141.71
(18.39)

121.54
(12.89)

116.02
(11.32)

110.30
(7.08)

105.84
(9.31)

113.92
(13.10)

113.82
(4.67)

Test 316.68
(39.81)

306.23
(21.84)

292.45
(12.68)

286.93
(10.94)

286.99
(13.94)

297.79
(13.17)

304.38
(11.29)

RH Train 1.79
(2.94)

0.70
(0.94)

0.50
(0.83)

0.39
(0.55)

0.00
(0.00)

0.22
(0.27)

0.84
(1.02)

Test 4.21
(7.10)

2.58
(3.13)

3.38
(2.04)

2.35
(2.80)

2.25
(2.07)

3.22
(2.99)

7.30
(4.01)

TD3
CO2 Train 1.04

(0.90)
0.87
(0.67)

0.51
(0.34)

0.59
(0.35)

0.75
(0.45)

0.85
(0.62)

1.37
(0.86)

Test 2.37
(1.33)

1.79
(1.61)

0.42
(0.17)

0.97
(0.99)

0.89
(0.49)

2.11
(2.54)

2.86
(1.38)

Tmin Train 100.84
(11.52)

43.81
(6.76)

41.04
(9.07)

42.73
(18.68)

30.91
(9.70)

62.75
(49.27)

66.54
(66.20)

Test 162.78
(81.37)

74.28
(33.58)

84.39
(18.50)

80.54
(51.36)

65.39
(12.89)

93.32
(64.63)

109.17
(46.88)

Tmax Train 102.88
(12.27)

102.84
(9.07)

111.09
(9.56)

109.83
(7.98)

107.33
(7.53)

102.28
(4.58)

107.73
(9.03)

Test 282.06
(20.24)

273.97
(8.39)

282.28
(9.89)

279.01
(9.77)

290.31
(13.33)

290.31
(10.57)

297.30
(8.33)

RH Train 3.65
(3.72)

1.75
(2.43)

0.02
(0.03)

1.14
(1.17)

0.47
(0.94)

0.17
(0.22)

1.25
(1.43)

Test 6.23
(4.71)

4.61
(3.34)

1.40
(0.96)

1.84
(1.90)

4.91
(3.70)

3.34
(1.88)

5.43
(5.05)
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Additionally, unlike SAC, it manages to do so when no horizon or a very small horizon is provided.
Relative humidity:

Both algorithms adhere to the relative humidity boundary well, both in training and test cases. Total
summed violations decrease from 1.79% and 4.21% when no horizon is used to an optimum of 0.00% and
2.25% for the train and test cases respectively when a horizon of 15 steps is used for SAC. Larger horizons
lead to performance degradation again, with test performance for a horizon of 23 steps showing more
violations than when no horizon is used.

TD3 starts with summed violations of 3.65% and 6.23% when no horizon is used. For this al-
gorithm no clear pattern exists between prediction horizon and maintaining relative humidity condi-
tions within boundaries in the train and test data cases. Regardless and as mentioned before, these are
summed boundary violations across fourty days, which means that the very small values reported here
are trivial and boundaries are maintained well.

4.4.3 Time-series

A visualization of time-series for indoor measurements, the disturbances, control inputs and the reward
function is given in Fig. 9. Climate constraints are maintained well, with some minor exceptions for
indoor CO2 as well as the upper temperature constraint on warmer days near the end of the episode.
Relative humidity generally is around 80 to 85% during the night, with lower values during the day due
to increased temperatures. Clear diurnal cycles are visible in CO2 and heating usage: CO2 is injected
during the day and additional heating is used during the night in order to satisfy the lower temperature
constraint. Day-time additional heating only occurs on days where heating due to the sun is not enough
to satisfy the minimum boundary constraint and no more heating is used than is necessary to maintain
the minimum required temperature. Other greenhouse and reinforcement learning works (Wang et al.
(2020); Zhang et al. (2021); An et al. (2021); Cao et al. (2022)) make an additional distinction between a
daytime and nighttime energy price with the latter being lower as was also used during the Autonomous
Greenhouse Challenges (Hemming et al. (2019, 2020)). We experimented with various higher and lower
static energy prices and found total energy use and temperature profiles to be consistent regardless of
price indicating that (1) daytime temperature profiles are mostly dependent on external disturbances
and (2) use of dynamic energy prices would not make a difference, given these climate constraints and
this lettuce-greenhouse-model. Ventilation is mostly used during the afternoon to dehumidify or to cool
the greenhouse, or both. Ventilation use during the last six days is much increased compared to earlier
days in order to compensate for increased external heating. While ventilation at warmer days leads
to increased CO2 losses to the outside world, the agent still considers it beneficial to maximize CO2

injection in to the system. This is clearly visible during the last days where indoor CO2 values drop
rapidly once ventilation is used during the afternoon but no reduction in CO2 injection occurs.

The reward profile shows small negative rewards during the nights due to heating requirements
and positive rewards during the day due to crop growth, as expected. The reward profile shows a day-
time trend similar to the incoming radiation trend, except for the warmer days where upper temperature
constraints are violated or large CO2 losses due to ventilation lead to reduced crop growth, or both.
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Figure 9
Time-series of indoor conditions, external disturbances, the policy rollout and the reward function found for a
single seed and with a prediction horizon of 15 steps using SAC. Measurement variables are represented with
blue lines, disturbances by brown lines, control inputs with red lines and the overall reward with a green line.
Constraints are give with a dashed black line when relevant.
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5 Discussion & Conclusion

We introduced the use of Reinforcement Learning algorithms for optimal control of greenhouse climate
conditions in a greenhouse with lettuce. The state-of-the-art continuous control algorithms, SAC and
TD3, were used and demonstrated that they can learn sensible control strategies using limited weather
forecasts and in limited amounts of time, although at high CO2 losses to the outside world on warmer
days because of ventilation. Policies trained on just a single fixed fourty day weather data trajectory
already generalize well to new weather data without any further training.

We found that inclusion of weather forecast in the agent observation space provides very clear
benefits compared to the case without a forecast, both from a RL and an application point-of-view. The
former will be discussed first, the latter follows. The work is concluded with a brief discussion of the
limitations and suggestions for future work.

5.1 RL perspective

We found the generalization error to be largest when no forecast or a 3-step forecast were used. When
the control agent has access to no or very limited forecast information, it increases the risk of overfitting
to the specific training data due to the use of a static weather sequence. The high expressive power of
neural networks used in Deep Reinforcement Learning agents means that they are at risk of overfitting to
their training environment (Zhao et al. (2019); Song et al. (2019)). For example, information on crop dry
weight or time-awareness, or both, can be misused by the control agent during training to differentiate
between similar weather conditions in the training data for its Q-function and policy estimators. While
this is beneficial for training performance, it does result in poor generalization performance.

Increases in test performance were larger than increases in training performance with increasing
forecast horizon lengths. Furthermore, it also resulted in lower variance between the various seeds. This
highlights the importance of including weather forecasts, not only for overall performance on a static
weather dataset, but also in algorithm generalization performance. [22] The importance of forecast data
in the observation for generalization purposes makes sense, as future rewards are heavily dependent on
future weather. The agent needs access to information on the weather forecast in order to adequately es-
timate future rewards for actions and to decide on whether for example preemptive actions are necessary
to avoid constraint violations, or what the best time is to ventilate the greenhouse for dehumidification
while minimizing energy and CO2 losses, or alternatively whether injecting additional CO2 in to the
greenhouse is beneficial.

Optimal performance is obtained with a forecast of 15 steps for both algorithms. A degradation
in generalization performance while train performance remains similar is visible for SAC at Np = 23
compared to Np = 19, indicating that the agent is now overfitting. This is mostly likely the result of
the used discount factor of 0.80, where rewards at 19 and 23 steps in the future are assigned 1.4% and
0.6% of their actual reward value in the Q-value, respectively. This means that - when adding forecast
knowledge in the state observation - it provides little information for and is barely used in estimating the
Q-function. In addition, it increases the dimensionality of the observation space and may clutter it with
redundant information or noisy patterns. This increases the learning complexity, affects the learning
quality and increases the risk of overfitting as a static dataset is used for training.

A direct comparison with other works is not feasible as controller performance is highly depen-
dent on greenhouse location, type and available sensors and actuators, as well as crop species, weather
conditions, used simulation settings (van Beveren et al. (2015a); Knibbe et al. (2022)) and the used re-
ward or objective function. However, a single static weather dataset to train and evaluate on is also used
in previous works (Wang et al. (2020); An et al. (2021); Cao et al. (2022)) and additional crop information
was included in the observation space, algorithm hyperparameters were unfortunately not reported.
While testing on training data already likely leads to overoptimistic results, we show that this in fact
can be quite the difference. The actions in Zhang et al. (2021) are daily decisions on hourly indoor cli-
mate set-points for the next 24 hours and the observation space consists of the past 24 hours of weather
data and indoor conditions at hourly intervals. Use of past weather provides more relevant information
for future weather estimation to the agent compared to the other three works as it can implicitly estimate
future weather based on the weather of the previous day, but it also runs the risk of overfitting to the
static weather dataset.

One downside of the criterion used for hyperparameter tuning of the TD3 algorithm is that we
inherently bias the results towards the test data set. Reinforcement Learning traditionally does not
make use of a training, test and validation set as it usually ’just’ interacts with an environment, but

[22] Ideally a relative improvement compared to a case without forecast is defined, but this is of little value given the high variance
in no-forecast experiments.
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the dependence on external disturbances in our case means that their use is valuable. While the results
in this work should preferably also be evaluated on an additional validation data set for verification
purposes, it is highly unlikely that it affects conclusions with regards to algorithm performance and the
effect of weather forecast on control policies.

TD3 has more hyperparameters related to exploration and regularization that were not tuned
during our work. Additional tuning can lead to improved TD3 performance, but comes at the cost
of significantly increased computation times. More information on this is given in the appendix (see
subsection 6.5). While this task was fairly simple and obtaining hyperparameters that result in good
performance is easier, this becomes more complicated with increased task complexity as the range of
suitable hyperparameters becomes smaller. This means that hyperparameter tuning becomes more im-
portant to obtain desirable performance (Gu et al. (2016)). Consequently, the better performance, lower
sensitivity to stochasticity during the learning procedure and the simplicity of tuning SAC means the
latter is the preferred algorithm for training reliable control agents.

On a similar note, it is very likely that additional hyperparameter tuning of, for example, the
discount factor and network architecture for each combination of algorithm and weather forecast length
separately will lead to improvements in generalization performance and increased learning stability.
While properly quantifying effects of each forecast horizon separately remains difficult due to the hy-
perparameter sensitivity present in DRL, we have demonstrated the importance of using weather fore-
casts.

5.2 Application perspective

We found using a weather forecast increased net profit and crop yield, while also reducing resource use
and with fewer climate constraint violations occurring. SAC reports higher net profits and crop yields
on the test data for forecast horizons of 11, 15 and 19 steps. The TD3 experiment with a 23-step forecast
reports both the highest net profits and highest total crop yield on the training and test data out of all
experiments, while this is not visible in the overall reward values. However, this is also the experiment
with the largest amount of CO2 boundary constraint violations and negative effects of too high CO2

concentrations are not fully expressed in the model, so more violations of the CO2 constraint caused the
higher observed yields and net profits.

Overall, we found SAC is better at managing lower temperature as well as the CO2 boundary
constraints, but has marginally more upper boundary violations. Relative humidity constraint viola-
tions between the algorithms are similar. However, in reality the total violation values are small and are
trivial as long as they are not the result of single events. Constraint management is also what makes this
a tricky problem to solve as it is not possible to enforce constraints in Reinforcement Learning, so careful
tuning of constraint violation parameters is required. Resource use may be suboptimal if constraints are
too strict, however if constraints are too lenient the agent may decide to ignore them altogether. It may
consider to choose not to ventilate to compensate for high temperatures or relative humidity levels in
order to preserve high indoor CO2 levels, or it may choose to increase indoor CO2 to much higher levels
than the desired constraint, effectively exploiting weaknesses in the reward function.

5.3 Limitations and future work

The use of a static weather set between March 2nd and April 11th 2014 to train on limits this study to
a meteorological spring season. Additionally, it does not capture capture seasonal patterns and annual
differences in climate conditions. We expect that the overfitting effect found in the SAC experiment
with a 23-step forecast may reduce when dynamic weather with more variation in conditions is used.
On the other hand, added variation will likely have a negative effect on experiments where no or a very
short forecasts are used. This is due to the increased uncertainty and variance in weather trajectory
developments beyond their forecast, as this information is required to adequately estimate Q-values.
Additionally, it diminishes the ability of the agent to overfit to the training weather data.

We also assumed the weather forecast and indoor measurements to be perfect, which is not be
the case in reality. Kuijpers et al. (2022) found negative effects of uncertainties in short-term weather
forecast to be very limited at around a 2% reduction in net profit when using a MPC control algorithm for
tomato crop growth, but how this affects performances of lettuce and RL algorithms is not researched as
of yet. Adding forecast and measurement errors means the agent will have to estimate the true forecast
and measurements from the given noisy forecast and measurements. This changes the problem into a
Partially Observable Markov Decision Process (POMDP). This also means that past observations become
more important to improve estimates of the current state (Duan et al. (2016)), either by the agent itself or
via supplementary state estimation techniques (for examples, see van Mourik et al. (2021); Boersma et al.
(2022b)). Additionally, information on estimated forecast and measurements errors can be added to the
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observation space to help the agent. How and how much this negatively affects the learning process
and agent behaviour will depend on the shape and size of the noise, as well as how the forecast errors
are distributed over time.

Whereas MPC is able to decide control actions based on dynamic climate constraints, as well
as dynamic crop and resource pricing and pricing forecasts, this is only feasible for RL if this is also
done during training. This increases both the observation space significantly and much increases learn-
ing complexity. This is brings us to further improvements, such as to make the agent constraint or
price-aware, or both, by including these (static) values in the observation space.[23] This should reduce
learning complexity if static values are used, increase and improve learning speed for RL algorithms
as well as adaptability to situations with, for example, different lettuce and energy prices than were
assumed in this work.

Furthermore, the specific greenhouse and crop model parameters used in the environment were
assumed as latent variables and were not given to the control agent as the goal was to learn control
policies without access to a model or prior knowledge of the environment. Effects of the outside climate
on the indoor climate and the interaction with the crop in the greenhouse vary greatly and while most
relevant parameters can be named, their values are greenhouse- and crop-specific. Some are easy to
measure, for example the greenhouse height, but they are generally unknown. A suggestion for future
work is to combine RL with system identification to improve generalization abilities and transferability
to different environments. This can be done by including rough estimates of some of the more important
constants in the observation space. Two particularly interesting follow-ups would then be to (1) include
rough estimates of some of the more important constants in the observation space and supplement
this with online parameter estimation methods to perform online corrections on parameter estimations
for samples stored in the replay buffer and (2) to implement domain randomization during the learning
procedure. Varying model parameters used during the learning episodes improves agent generalization
and helps bridge the ’reality gap’ where policies learned using a simulator may not transfer to the real
world (Peng et al. (2018)). This results in essentially creating a controller metamodel that can then be
used to adapt to new environments using relatively few new (real world) data samples (Finn et al.
(2017)). However, this does require that the agent is provided with an observation and action history in
their observation space in order for it to infer (hidden) model parameters (Duan et al. (2016)).

[23] A brief additional discussion on the used observation space can be found in the appendix, see subsection 6.6.
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31
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6 Appendix

6.1 Digital Twins in Greenhouse Horticulture

The goal is to have digital twins that give real-time information on the indoor climate and crop status
and perform, amongst others, climate and crop control automatically, but also includes harvesting via
robots and the use of drones for monitoring for example (Verdouw et al. (2021); Knibbe et al. (2022)).
This requires precise tools to estimate and perform online updates on the relevant greenhouse and crop
system parameters in order to develop an accurate model, correction of measurement errors and es-
timation of not directly measurable states from the measurements data, and for prediction of future
developments, as well as algorithms that can optimize control actions within the greenhouse.

6.1.1 Greenhouse and crop modelling approaches

Greenhouse climate dynamics are modelled in a variety of ways and the level of complexity and detail
depends on the use-case (for example describing, understanding or control of the climate). Computa-
tion Fluid Dynamics (CFD) are used to model the indoor climate profile using partial different equations
and are mostly used to investigate spatio-temporal dynamics (Norton et al. (2007); Choab et al. (2019))
as temperatures within a greenhouse can fluctuate by 1.5 - 2 °C, this variance occurs even at similar
heights (van Beveren et al. (2015a)). These however, are not very suitable for optimal control applica-
tions as these models are too computationally expensive and slow, while often also being intractable
for mathematical solvers used in model-based control methods. Instead simplified climate models are
used that assume a perfectly stirred tank, i.e., it is assumed that climate conditions are homogeneous
within the greenhouse, a greenhouse is assumed to be infinitely large and wall-effects are neglected (Roy
et al. (2002)). These generally consist of an energy balance for temperature and, if they are included in
the model, a mass balance(s) for CO2 or the humidity, or both (Lopez-Cruz et al. (2018); Katzin et al.
(2022)). In some cases these models function as an emulator for a more complex model, but they also
exist as standalone models (Knibbe et al. (2022)). These models trade some model accuracy for signifi-
cant increases in computation speed, making the use of solvers feasible and have been found to perform
well for control applications. Some first-principles-based methods to describe the climate dynamics are
mechanistic process models described by ordinary differential equations or difference equations. Al-
ternatively data-driven machine learning methods have also been used to develop surrogate models
of the dynamics (Maestrini et al. (2022)). Where mechanistic models are considered to generalize bet-
ter to other situations (i.e., a wide variety of greenhouse environments), data-driven machine learning
methods reduce computation time and can perform better in the specific case their data originates from
(Rasheed et al. (2019)).

Similarly, a wide variety of crop models exist. In one approach the crop biomass (dry weight of
the crops) is aggregated in to one single state and this is then used to model overall behaviour of the crop
given environmental conditions (Roy et al. (2002)), which works best for simpler crops such as lettuce.
More complex crops such as tomatoes or cucumber require a lot more information to describe (such as
a number of leaves, trusses and fruits, for example) and have clearly distinguished development stages.
More detail is at times included by describing for example the total leaf biomass and total crop biomass
per plant: each leaf and fruit of a plant can be modelled separately, which is called the ”small leaf, small
fruit” approach, or alternatively leaf mass and fruit mass can be aggregated per plant, which is referred
to as the ”big leaf, big fruit” approach (Kuijpers et al. (2019)).

6.1.2 Suitability for RL

While the use of high-fidelity models of the greenhouse indoor climate and for the (separate) crops to
represent the real greenhouse environment is desirable in the long-term, it is not practical for finding
optimal control policies due to two main drawbacks:

• Computational complexity
• Very high dimension of state-space

The first point leads to very long computational times. The second point makes optimization problems
much more difficult. For model-based control algorithms such as model predictive control and model-
based RL algorithms it may mean that they are not able to find tractable solutions or that they may not
be able to find solutions in time (and thus be unable to meet real-time requirements and constraints)
due to the size of the solution space (Knibbe et al. (2022); Dulac-Arnold et al. (2019)). For model-free RL
algorithms both drawbacks make the learning procedure much more difficult and time-consuming.

35



As a result, the decision is made in optimal control to make use a low-dimensional models. These
models still capture the most fundamental features of the problem, while vastly reducing problem com-
plexity and computation times, thus simplifying the optimization problem in the process (Rasheed et al.
(2019)). Policies found by training on the simple model can subsequently be adjusted for and applied
to a higher-fidelity model in order to validate them. If results are not satisfying, the simplified model
needs to be updated and a new controller has to be trained. This is an iterative cycle that ends once ac-
ceptable results are obtained in the high-fidelity environment (Knibbe et al. (2022)). This is very much a
modelling problem with the aim of finding the optimal model complexity for capturing the relevant pro-
cesses while still being simple enough to allow for optimization algorithms to work. While important
to touch on briefly, this is beyond the scope of this work.

As the focus in this work is on the effect of weather forecasts on optimal control of the greenhouse
climate and crop, the decision was made to go a simple crop in lettuce. As real-life data is scarce and
expensive, the decision was made to make use of mechanistic models for the agents to interact with.
Generating synthetic data is frequently done in domains where real world data is scarce, expensive to
obtain or when training in the real world raises safety concerns or takes too long due to physical lim-
itations, for example in robotics (Koos et al. (2013); Peng et al. (2018); Tan et al. (2018); Andrychowicz
et al. (2018); Baar et al. (2018)). A simple lettuce crop model was used, where crop biomass is described
by a single state. Similarly, a greenhouse model that assumes the indoor climate conditions to be homo-
geneous is used. As a result, the decision was made to use the greenhouse with lettuce model by van
Henten (1994b, 2003) that is elaborated on in section 2.

Furthermore, previous works where Reinforcement Learning is applied to greenhouse optimal
control focused on learning policies based on external datasets consisting of static trajectories for indoor
crop status, climate conditions and actuator inputs as well as outdoor climate conditions and without
further interaction with an environment (Wang et al. (2020); Zhang et al. (2021); An et al. (2021); Cao
et al. (2022)). In our work the decision is made to learn from scratch instead, using only the simulation
environment. This allows the agent more flexibility with regards to exploration of the state-space and
avoids implementing a bias towards the experienced control trajectories when using a static, offline data
set.

6.1.3 Types of decision support

Automated decision support in greenhouse horticulture can be provided in three different ways (van
Mourik et al. (2021)). These can be translated in to the Markov Decision Process (MDP) format that is
used in RL, and are as follows:

• Monitoring: State estimation based on sensor measurements or images, or both, as well as online
model parameter correction or calibration if that information is used by the control agent. The aim
is to minimize the overall state estimation error. This includes measurement errors due to sensor
noise and estimations of states that are not directly measurable using available sensors (Duan et al.
(2016)). This requires use of state estimation methods, such as Kalman-Filtering (for examples, see
van Mourik et al. (2021); Boersma et al. (2022b)). Furthermore, crop state estimation can be aided
by computer vision algorithms (see Zhang et al. (2020) for an example).

• Prediction: This consists of the prediction of future rewards by estimating the value- and action-
value-functions (Sutton and Barto (2018)), as well as system identification in the form of the esti-
mation of transition functions P for indoor climate and crop dynamics in order to predict trajectory
developments (Duan et al. (2016); Sutton and Barto (2018); Lopez-Cruz et al. (2018); Knibbe et al.
(2022)). The latter also requires online calibration of the environment model parameters using a
feedback loop with the system as some of the parameters that are assumed constant in models are
in reality dynamic over a crop cycle, thus requiring online corrections (Katzin et al. (2022)). Such a
model can be, for example, a mathematical process model or a surrogate model using neural net-
works. Additionally, this also includes online correction of weather forecasts based on observed
weather (for example, see Kuijpers et al. (2022)).

• Control: Policy π optimization that maps state observations s to a set of control actions a and does
so in a way that optimizes performance for a given objective function (Sutton and Barto (2018)).

Our work focuses on learning control policies using model-free RL. State and parameter estima-
tion and calibration, as well as learning of the transition dynamics are beyond the scope of this work,
but do provide an interesting basis for future work.
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6.2 Algorithm choice

Reinforcement Learning algorithms that use discrete state- or action-spaces are not feasible. With dis-
crete state-spaces the Markov property is no longer satisfied as the guarantee that transition (s, a) leads
to state s’ is lost. Discretizing the action-space for multiple actuators in the system leads to a rapidly
increasing number of combinations that have to be visited during the learning process (curse of di-
mensionality). With developments in deep learning in the early 2010s, Deep Q-Network (DQN) was
developed in 2013 that can learn discrete policies from raw and high-dimensional (image) data using
neural networks as function approximators and without the use of handcrafted features as was the norm
at the time (Mnih et al. (2013, 2015)). Because precise, continuous control of the actuators is desirable
and to limit negative effects of the curse of dimensionality, Deep Reinforcement Learning (DRL) algo-
rithms with neural networks as function approximators and continuous action- and state-spaces will be
used.

6.2.1 Deep Reinforcement Learning Algorithms

Actor-critic algorithms are most suitable RL algorithms to tackle continuous control tasks. They consist
of an actor that learns a policy and takes the actions in the environment, and a critic that learns the
value-function and gives feedback to the actor.

In the last decade research on actor-critics has progressed by essentially extending DQN - that
only works for discrete actions (Mnih et al. (2013, 2015)) - with Deterministic Policy Gradient (DPG), a
policy-based method that can handle continuous action-spaces (Silver et al. (2014)). This resulted in the
Deep Deterministic Policy Gradient algorithm (DDPG) that also makes use of the important experience
replay buffer introduced in DQN for offline learning and is able to handle continuous action-spaces
(Lillicrap et al. (2016)). Learning policies in greenhouse control is a complex task and training times
are expected to be long. As a result the increased sampling- and computational-efficiency of offline
learning actor-critic algorithms is preferred over policy-based as well as other actor-critic algorithms
that learn on-policy and online, such as the Trust Region Policy Optimization (TRPO) (Schulman et al.
(2015)), Advantage actor-crtic (A2C) (Mnih et al. (2016)), Asynchronous Advantage actor-Critic (A3C)
(Babaeizadeh et al. (2016)) and Proximal Policy Optimization Algorithms (PPO) (Schulman et al. (2017)).

Both Twin-Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al. (2018)) and Soft-
Actor Critic (SAC) (Haarnoja et al. (2018b,c)) build on DDPG and are considered state-of-the-art for
continuous control problems, though the latter was found to perform slightly better in four of five con-
trol tasks (Achiam (2018)). The main difference between SAC and TD3 being the fact that the former
makes use of a stochastic actor during training as well as an additional entropy term in the reward term
to make use of the maximum entropy principle, both of which help improve exploration and robustness
as well as reducing variance. It does mean that it not only tries to maximize future reward, but a com-
bination of entropy and future reward instead. TD3 chooses deterministic actions greedily instead and
requires the use of added action noise during the learning process for the sake of exploring.
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6.3 Weather time-series

Figure 10
Time-series of train and test weather data used. The blue and orange dashed line represents the data used for
training and testing, respectively.
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6.4 Learning curves

Figure 11
Learning curves describing total net profit in euros · m−2 on the training weather data set (upper row) and test
weather data (lower row) using the greedy policy for SAC and TD3. The initial random action episodes are not
included. The dotted line represents mean value per evaluation episode, outer lines represent minimum and
maximum observed values across the five seeds.

Figure 12
Learning curves describing the final crop yield in g · m−2 on the training weather data set (upper row) and test
weather data (lower row) using the greedy policy for SAC and TD3. The initial random action episodes are not
included. The dotted line represents mean value per evaluation episode, outer lines represent minimum and
maximum observed values across the five seeds.

6.4.1 Constraint violations

Figure 13
Learning curves describing the summed total CO2 violations in ppm · 10e3 on training weather data set (upper
row) and test weather data (lower row) using the greedy policy for SAC and TD3. The initial random action
episodes are not included. The dotted line represents mean value per evaluation episode, outer lines represent
minimum and maximum observed values across the five seeds.
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Figure 14
Learning curves describing the summed total lower temperature boundary violations in °C on the training
weather data set (upper row) and test weather data (lower row) using the greedy policy for SAC and TD3. The
initial random action episodes are not included. The dotted line represents mean value per evaluation episode,
outer lines represent minimum and maximum observed values across the five seeds.

Figure 15
Learning curves describing the summed total upper temperature boundary violations in °C on the training
weather data set (upper row) and test weather data (lower row) using the greedy policy for SAC and TD3. The
initial random action episodes are not included. The dotted line represents mean value per evaluation episode,
outer lines represent minimum and maximum observed values across the five seeds.

Figure 16
Learning curves describing the summed total relative humidity boundary violations in % on the training weather
data set (upper row) and test weather data (lower row) using the greedy policy for SAC and TD3. The initial
random action episodes are not included. The dotted line represents mean value per evaluation episode, outer
lines represent minimum and maximum observed values across the five seeds.
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6.5 Hyperparameter tuning: Limitations and discussion

Agent hyperparameters are unfortunately not reported in these previous works (Wang et al. (2020);
Zhang et al. (2021); An et al. (2021); Cao et al. (2022)), nor are learning curves reported and are exper-
iments performed across multiple seeds. This means that no indication exists whether they just got
lucky during experiments because of the seed or not, whether a policy would generalize adequately
to unseen data and how much variation in policy behaviour would exist when repeated with differing
seeds, something that we have shown experiments with no forecast are likely very sensitive to.

With the used experiment setup TD3 was found to finish the learning procedure faster, as it
performs only half the total policy and target updates due to the implemented update delay compared
to SAC but performed worse. However, TD3 has more hyperparameters related to exploration and
regularization that are not tuned in this work (target action noise and its clip value, policy and target
network update frequency). Tuning these could improve performance for the current experiment setup
but that comes at the cost of additional and exponentially increasing experimentation time.

Additionally, hyperparameters were set for each of the prediction horizon cases (with the exclu-
sion of action noise for the TD3 algorithm). Alternatively, each prediction horizon case can be seen as
a different environment and hyperparameter tuning should be done separately. Lower discount fac-
tors should increase stability for shorter forecast horizon cases as it reduces variance in Q-function and
policy function estimators that originate from differences in weather beyond their forecast horizon, al-
ternatively a larger discount factor may reduce risk of overfitting to noise in the observations at longer
forecast horizons. Other optimal hyperparameters may differ too due to differences in observation
space information content and size. This comes at the cost of significantly increased computation time
and makes one-to-one comparisons of results more difficult.

While properly quantifying effects of each forecast horizon remains difficult due to the hyper-
parameter sensitivity present in DRL, we have demonstrated the importance of using forecasts. Addi-
tionally, better performance and the simplicity of tuning SAC means it is the preferred algorithm for
training more reliable control agents that are less sensitive to hyperparameter tuning and stochasticity
during the training procedure.

6.5.1 Reward scaling

It is known for the predecessor to TD3, the DDPG algorithm, that performance and stability are very
sensitive to the used reward scale and this optimal reward scaling parameter depends on the used envi-
ronment (Duan et al. (2016); Henderson et al. (2019)). This sensitivity also holds for the SAC algorithm
(Haarnoja et al. (2018b,c)), so it is very likely that this also the case for the TD3 algorithm. No work in
greenhouse control has explored this as of yet and is interesting for future research.

6.6 Observation space

MPC optimal control approaches make use of access to the state variables, model equations and con-
straints to plan an optimal action sequence for a prediction horizon. While constraints can be set on
both state variables and measurement variables, they are only applied on the variables present in the
system equations, which measurements not always are. This means that measurement constraints are
converted to their relevant state variables to set constraints on these instead. For example, a constraint
on relative humidity is converted to the temperature-adjusted humidity density - so in the same unit as
the state variable for humidity, and this is then used as a constraint vector in the optimization procedure
(see van van Henten and Bontsema (2009) for an example). Because of this approach in MPC - implicit
access to both the state and measurement variables - the decision was made to include the state variables
in the observation space as well in this work. However, further preliminary research on the observation
space using only the SAC algorithm suggests that inclusion of estimated state variables for CO2 and
absolute humidity is unnecessary.
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