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Abstract

Adistribution is a smooth sub-bundle of the tangent bundle of a given manifold. It can represent a physical
system with restrictions on the degrees of freedom. Bracket generating distributions are a distinguished
class of interest in control theory: when the restriction on the system is given by a bracket generating dis-
tribution, any configuration (e.g. position and orientation) can be obtained using the restricted directions
only.

This thesis focuses on fat distributions (also called strongly bracket generating distributions), which are,
in a sense, the most extreme case of bracket generating distribution. A lot is known about co-rank 1 fat
distributions (also called contact distributions), but much less is known for higher co-ranks.

We focus on co-rank 2 distributions that are induced by the canonical distribution on the Grassmann
bundle of 2-planes of a manifold. We define this class of distributions and refer to them as prolonged
distributions. To be precise, we look at co-rank 2 sub-bundles of the Grassmann bundle Gry(7X) of
a 4-dimensional manifold X. We consider the canonical distribution on Gro(7'X') and restrict it to the
given sub-bundle. The main question we investigate is under what conditions this restriction defines a fat
distribution on the sub-bundle manifold.

Our contributions go in two directions.

First, we assume the 4-dimensional base manifold X to be endowed with an almost complex structure .J.
We consider the rank-2 sub-bundle of the Grassmann bundle consisting of the 2-planes invariant under
the almost complex structure J. This sub-bundle forms a 6-dimensional manifold and the fibers are in fact
complex Grassmannians. We show that the prolonged distribution of this sub-bundle is a fat distribution
of co-rank 2.

Furthermore, we consider a rank-2 fiber bundle M over a 4-dimensional base manifold X and a bun-
dle map that maps M into the Grassmann bundle Gro(7'X); we identify necessary and sufficient local
conditions for the bundle map to induce a fat prolonged distribution D of co-rank 2 on the fiber bundle
M. More precisely, we show that requiring the prolonged distribution D on M to be fat is equivalent to
requiring that the fibers of M -that map into the corresponding Grassmannian-fiber via the bundle map-
are transverse to what we call the infinitesimal cone field on the Grassmannian. As a consequence, we
show that, in this case, if M is closed, the fibers of M are either 2-spheres or projective planes, which is
the main result of this thesis.



Contents

ntroduction

(1_Distributions]

[1.17 Distributions and integrability| . . . . . . . . . . . ..

[1.2 Bracket generating distributions| . . . . . . . .. ... .

1.3 Thecanoeversusthespaceship|. . . . . . . . . . . . . L

[2.1.1T Spanningvectors|. . . . . . . . . ...

[2.1.2 Switching to co-vectors|. . . . . . . . . . . .. ... ... .

[3 Fat prolongation construction|

3.1 Prolongation| . . . . . .. .. L

3.2 Complex Grassmannian|. . . . . . . . ... ... ... ...,

T [the infinitesimal field

4.1 Transversality] . . . . . . . . . . e
4.2 Infinitesimalconefield . ... ... ... ... .. ... .....

[5  Fibers inducing fat prolongations|

[6_Conclusion|

7_Outlook

13
13
13
16
18

21
21
24

28
28
34

43

49

50



Introduction

Distributions (also called tangent distributions) are smooth sub-bundles of the tangent bundle of a mani-
fold. More precisely,

Definition 1 Let M be an n-dimensional manifold. A (smooth) distribution (or tangent distribution) D of
rank v and co-rank k on M of dimension is a (smooth) rank-r sub-bundle of the tangent bundle T'M,
ieen=1r+k.

They can represent a physical system with restrictions on the degrees of freedom. Consider parallel park-
ing a car, canoe or spaceship: common sense tells us we can park even though we can not move sideways
directly. In geometrical terms, the fact that any configuration (e.g. position and orientation) can be ob-
tained using the restricted directions only, would correspond to a bracket generating distribution on the
configuration space.

Definition 2 A distribution D on a manifold M is called bracket generating at x € M, if the tangent
space T, M is spanned by

T.M = (D,,|D,D|,,[D,[D,D].,...).
Here [D, D], is the subspace defined by
[D, D], ={[V,W], | V,IW € I'D}.

The other spanning elements are given analogously. The distribution is bracket generating if it is bracket
generating at every pointx € M.

Even though distributions are well-studied objects, only some specific classes are well understood.

Classification problem

The classification of bracket generating distributions up to homotopy is known to be a challenging prob-
lem, see for example [4]. However, there are classification results for specific classes of bracket generating
distributions and specific families therein, often for fixed step, dimension and rank.
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An important tool used to classify many classes of distributions is the h-principle introduced in 1973 by
Gromoy, see [7]].In particular, the h-principle provided a classification for distributions -and in fact many
more geometric structures- on open manifolds. That leaves us with the classification problem up to ho-
motopy on closed manifolds for these geometric strutures.

In the literature is suggested that bracket generating distributions satisfy the h-principle when they are not
maximally non-integrable. Evidence in this direction is provided in [9]. Intuitively speaking, a distribution
is maximally non-integrable when it has as many non-trivial Lie brackets as possible (implying that it is
bracket generating). Giving a more precise definition (which depends on rank and dimension) is rather
involved and out of the scope of this thesis; here it suffices to say that the class of distributions we focus
on is maximally non-integrable.

Contact and even-contact distributions

The most famous class of non-integrable bracket generating distributions is probably the class of contact
distributions.

Definition 3 A distribution D of co-rank 1 on an n-dimensional manifold M is called contact atx € M
if for every non-zero vector field V' in I'D there exists a vector field W in I'D such that T,, M is given
by the span

T, M = <DI7 [‘/7 W]:Jc)

If Dis contact at all x € M we call D a contact distribution.

Contact distributions appear on manifolds of odd dimension only. They can be seen as homogeneous ver-
sions of symplectic structures. Therefore a lot of machinery from the symplectic context can be applied. In
the contact setting there exists an equivalent for the Darboux Theorem, that provides a local normal form
for symplectic structures. Moreover, contact distributions present global stability due to Gray's Theorem,
which is analogous to Moser's stability Theorem in symplectic geometry.

Contact distributions on open manifolds were classified in 1973 as a particular case of the aforementioned
h-principle. However, there was also progress in the classification for closed manifolds. In 1989 Eliashberg
defined and classified 3-dimensional overtwisted contact manifolds, see [6]. He used the h-principle ideas,
but specific to the contact setting. Later in the 2010's rapid developments took place regarding contact
structures in dimension at least 5. Overtwisted contact manifolds were defined and classified.

Next to contact distributions we have the so-called even-contact distributions which appear on even man-
ifolds only. A complete classification via the h-principle is given by McDuff, see [10].

Distributions of higher co-rank

Up to dimension 6 there are already quite some classification results for bracket generating distributions
of co-rank greater than 1. Due to the properties of the Lie bracket, the only types of maximally non-
integrable bracket generating distributions that can appear for dimensions 3 to 6 are: (2,3,4), (3,5),
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(2,3,5), (3,6), (4,6),and (2,3,5,6).

For type (2, 3, 4) distributions, also called Engel structures, the sub-classes loose and overtwisted are in-
troduced and classified by the h-principle, in [3] and [5] respectively. Itis still an open question if there exist
more classes of maximally non-integrable bracket generating distributions of this type and this question
seems hard to address.

For the (2, 3, 5) distributions, called Cartan structures, the overtwisted class has been defined recently
and it has been shown that the h-principle holds for this class, see [13]. Similarly to Engel’s structures, it
is unclear whether there exist more classes of maximally non-integrable distributions of this type next to
the overtwisted class.

The full classification for type (3, 5), (3, 6) are presented in [9], also via the h-principle.

The bracket generating distributions of type (4, 6) divide into two classes: hyperbolic and elliptic. The
terminology originates from quadratic forms that can be defined for this specific type (see [11]). The
hyperbolic class was classified by means of h-principle type techniques in the same work [9]. The elliptic
class is in fact precisely the class of fat distributions of type (4, 6).

Definition 4 A distribution D on a manifold M is called fat (or strongly bracket generating) at x € M, if
for every choice of vector field V' € I'D that is non-zero at  we have that T, M is equal to the span

T.M = (D,, [V, D].).
Here [V, D], is the subspace defined by
V. D], ={[V,W], | W € I'D}.

The distribution is fat if it is fat at every pointx € M.

In this same work [9], the authors conjecture that the h-principle does not hold for the elliptic class, i.e. the
fat class. This implies that techniques of a different nature than the h-principle should be used for their
classification. In this thesis we explore exactly that area, concerning the fat distributions of type (4, 6).

Structure of the thesis

In Chapter [1]we introduce several sub-classes of distributions, in particular fat distributions, the central
objects of this text, and state Rayner’s theorem about the admissible ranks for fat distributions. Then we
introduce curvature and define some equivalent formulations for fatness in co-rank 1 and 2.

Chapter[2] provides a brief recap of the Grassmannian, the Grassmann bundle and coordinates on them.

In Chapter 3| we first review the canonical distribution on the Grassmann bundle of a manifold, Then we
look at co-rank 2 fiber bundles M over a 4-dimensional manifold X with a bundle map into Grassmann
bundle Gro (T X ); we consider the canonical distribution on Gro (7" X') which induces a distribution on M
via the bundle map, which results into the so-called prolonged distributions. Within this framework, we
state and prove one of the main results of this thesis, Theorem|3.11
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Theorem 1 Let (X, J) be 4-dimensional manifold endowed with an almost complex structure .J. Then,
the canonical distribution on Gr (7' X ) restricts to a fat distribution on the complex Grassmannian bun-
dle Gro(7T'X, J) of J-invariant 2-planes.

In Chapter[4we introduce the so-called infinitesimal cone field; we identify characterizing local properties
for fat prolonged distributions of type (4, 6) in terms of the infinitesimal cone field. The main result of
this chapter, Theorem [4.15| states that the fibers of the fiber bundle M have to be transverse to the
infinitesimal cone field in order to induce a fat prolonged distribution.

Theorem 2 Let M be a rank 2 fiber bundle over a 4-dimensional manifold X with a bundle map that
maps into Gry (7' X). The canonical distribution on Gro (7' X') induces a fat distribution on M if and only
the fibers of M map into the Grassmannian-fibers of Gro(7X ), transversely to the infinitesimal cone
field C from Definition[4.9

In Chapter[5] we use the characterization of fatness in terms of the infinitesimal cone field to obtain topo-
logical constraints on the fibers of a rank 2 fiber bundle over a 4-dimensional manifold X with a bundle
map that maps into Gro (7' X), such that its prolonged distribution is fat - Theorem which is the main
result of this thesis.

Theorem 3 Let M be a co-rank 2 sub-bundle of Gry(7°X) that is closed as a manifold. If the canonical
distribution on Gro(7'X) restricts to a fat distribution on M, then the fibers of M are homeomorphic
to either spheres or projective planes.

Vi



Chapter 1

Distributions

In this chapter we introduce several of the many well studied sub-classes of distribution, in particular
the class of fat distributions, that are the central objects of this text. In computations later in this text, it is
convenient to use alternative descriptions for fatness. Therefore, after introducing the needed notions, we
state several equivalent definitions. Explicitly for co-rank 1 and 2 we give even simpler characterizations.

1.1 Distributions and integrability

We start with a fundamental sub-class of distributions that is most opposite to the distributions of concern
in this text. Itis the class of distributions that are induced by foliations. A foliation on a manifold M consists
of a smooth partition of M into sub-manifolds, whose tangent spaces define a distribution on M. More
precisely,

Definition 1.1 Let M be an n-dimensional manifold. A foliation F of rank r on M is a partition { L; };cs
of M into disjoint connected sub-manifolds I;, © € I, called the leaves of F, such that the following
holds. For all z € M there exists an open neighborhood U and a submersion

f:U—=R",
with the property that, for all 7 such that L; N U is non-empty, there exists x; € R"™" such that

Li N U = f_l({L‘i).

For any rank-r foliation F, one has the induced rank-r distribution T'F, consisting of the tangent spaces
to the leaves of F. In Figure[1.1]we illustrate an example of a distribution induced by a foliation.

Foliations, and their tangent distributions, play a central role in a variety of fields, such as the theory of
integrable systems, non-commutative geometry, and Poisson geometry. Closer to the spirit of this thesis,
important results concerning the classification up to homotopy of foliations can be found in work by A.
Haefliger, see [8], and W. Thurston, [14].
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Figure 1.1: Example of a distribution induced by a foliation.

This leads to one of the simplest questions we can ask about distributions: whether they are tangent to
foliations. This is also known as the integrability problem.

Definition 1.2 Let D be a distribution on M. We say that D is integrable if it is induced by a foliation on
M. That is, for every point x in M there exists a leaf L; of F such that

The famous Frobenius theorem relates this to the following property.

Definition 1.3 Let D be a distribution on M. We say that D is involutive if it is closed with respect to
the Lie bracket of vector fields, i.e.

[X,Y] €T(D), forall X,Y €T(D).

Here, I'(D) denotes the set of sections of the vector bundle D on M, that is, vector fields on M tangent
to D.

Now the afore mentioned Frobenius theorem states that involutivity of a distribution D is equivalent to
the requirement for D to be tangent to a foliation.

Theorem 1.4 (Frobenius) A distribution D is tangent to a foliaton F, D = T'F if and only if it is involu-
tive.

In the general setting, taking Lie brackets of vector fields tangent to a distribution D results in a flag of
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linear sub-spaces of the tangent space 7'M. Rather than looking at the set I'(D) of sections of D, one
looks at the sheaf I'p of local sections of D. Taking iterated Lie brackets results in a flag

[p = T5 T3 ...
of sub-sheaves of the sheaf of vector fields on M, where '}, := I'p and
Gt =T%+ [[p, ], > 1.
Diis called regular if the sheaves I';; are sheaves of sections of vector sub-bundles of 7'M That is,
Definition 1.5 Adistribution D on M is called regular if there exists a flag of vector sub-bundles of T'M
D D* = D*— ...

such that the set of global sections of D; is precisely the set of global sections of the sheaf I'%,, that is
[(D') = Ty (M).
The corresponding integer list of the dimensions of these sub-sheafs at a given point is called the growth

vector, a fundamental numerical invariant associated to the distribution.

Definition 1.6 The growth vector of a regular distribution D is the vector
(rank(D), rank(D?), ..., rank(D"))

where 7 is the minimal integer such that rank(D") = rank(D"*1).

Definition 1.7 A distribution D on M is called regular when its growth vector is constant on M.

An elegant introduction to these notions and related concepts is provided in the book [11] by R. Mont-
gomery.

1.2 Bracket generating distributions

We focus on a sub-class of regular distributions that are so-called bracket generating; these are the distri-
butions for which the growth vector reaches the dimension of M. This means that eventually the entire
tangent space is spanned by taking k — 1 nested Lie brackets of horizontal vector fields, i.e. vector fields
tangent to the distribution.
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Definition 1.8 A regular distribution D on M is called step-k bracket generating if
D =TM.

For a bracket generating distribution D the growth vector denotes the type of the distribution.

Note that, for a bracket generating distribution, the last integer of the growth vector indicates the di-
mension of the manifold. From the properties of the Lie bracket follows that a necessary condition for a
manifold M to admit a bracket generating distributions of step higher than 1 is that the dimension of M
must be at least 3. A basic example is given below.

Example 1.9. We consider R? with coordinates {z,y, z}. An example of a bracket generating distribution
D on R3? is point-wise given by the span

D, = (0,0, +y0.), p€R>
This distributions is illustrated in Figure Note that this distribution is of type (2, 3). A

Figure 1.2: Bracket generating distribution D on R? is point-wise given by the span D, = (8y, 0 +
yd.), peR’

An important property of bracket generating distributions is given by Chow's theorem.

Theorem 1.10 (Chow) Let D be a bracket generating distribution on M. Then, for all p, g € M there

exists a path
v :[0,1] = M,

such that y(0) = p, 7(1) = g and v is tangent to D.
Returning to applications in control theory: a system with restricted degrees of freedom corresponding

to a bracket generating distribution has the property that every two points in the configuration space can
be reached using the restricted directions only.
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1.3 The canoe versus the spaceship

Fat distributions can be considered the most extreme class of maximally non-integrable distributions,
since it is as far away from being integrable as possible.

Definition 1.11 Adistribution D on a manifold M is called fat (or strongly bracket generating) at x € M,
if for every choice of vector field V' € I'D that is non-zero at x we have that T, M is equal to the span

T.M = (D,,[V,D],).
Here [V, D], is the subspace defined by
V,D], ={[V, W], | W € I'D}.

The distribution is fat if it is fat at every point x € M.

We properly introduce fat distributions and tools to study them in the next chapter.

Fat distributions do not appear with type (4, 6) only. In fact, all contact distributions are fat. They form
exactly the set of fat distributions with co-rank 1. For higher co-rank fat distributions, the type (4, 6) class
is naturally the first candidate to look at, due to the following result by Rayner.

Theorem 1.12 (Rayner) Suppose D is a rank r-distribution on M with dim M = n. If D is fat then r is
divisible by 2 and if r < n — 1, then r is divisible by 4. Suppose D is a rank k-distribution on M with
dim M = n. If D is fat then the following numeric constraints hold

* kis divisible by 2 and if K < n — 1, then k is divisable by 4.
ck>n—-k)+1

+ The sphere S¥~! admits n — k linearly independent vector fields.

Conversely, given any pair (k, n) satisfying the above, there is a germ of fat distribution of type (k, n)

Indeed, for a non-contact, fat distribution D on M, we have that the rank  must be divisible by 4. The
first co-rank above 1is 2, so (4, 6) is the first type for which a fat distribution can be encountered. Unlike
in the contact setting, only very few examples of fat distributions with co-rank 1 are known, even fewer
for co-rank greater than 2. A known family of examples is induced by holomorphic contact distributions,
see [T} Example 2.3, p. 4].

Example 1.13. A hololomorphic contact distribution of type (27, 2r + 1) on a manifold of complex di-
mension 27 + 1 induce a real fat distribution of type (4r, 2r 4+ 2) on the underlying real manifold. A

In particular this implies that a holomorphic contact distribution of type (2, 3) induces a fat distribution
of type (4, 6). A natural question that arises now is if there are also examples of fat distributions that are
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Figure 1.3: Configuration space of the canoe: R? x S*

not associated to holomorphic contact distributions. In this thesis we provide a new concrete family of
such examples, which are natural candidates to answer this question.

Example 1.14. Assume we paddle a canoe on the water. Our configuration space consists of the positions
of the canoe on the 2-dimensional water surface and its orientations, see Figure[1.3] Together this forms
the 3-dimensional manifold M = R? x S for which we use the (local) coordinates p = (:13, Y, 9). We
have control over (combinations of) the following two movements: we can rotate the canoe, changing
the orientation, and we can paddle the canoe forward and backward in the direction of its orientation,
changing the position. This corresponds to a type (2,3) distribution D“"°¢ on T'M spanned by the vector
fields V, W given by

V =0,
W = cos(0)0, + sin(0)0,

In order to check if the distribution D“"°¢ is fat, we compute
[V, W] = —sin(6)0, + cos(#)0,.

Note that for any p € M, indeed

T,M = <Vp> Wh, 14 W]p>-
Hence D" is fat. In particular, since D is a co-rank 1 distribution, it is contact. A
Other well-known examples of distributions appear in the context of principal bundles. Let M be the total

space of a principal bundle and let the distribution D be given by the horizontal space for a connection V
on M. Note that if V is a flat connection,

[X,Y]=0, forall XY €I'D.
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.6

Figure 1.4: Configuration space of the spaceship: R? x 52

Hence D is very far from being fat, in fact it is a foliation. In fact, the terminology “fat” has its origin from
this context: in [15] a connection on a principal bundle is called fat when it is very far from being flat,
i.e. it has “a lot of curvature”. However, the definition of fat is more subtle than just not being flat. This
is illustrated in the next example, where we take the canoe from Example[T.14]to a higher dimensional
setting.

Example 1.15. Analogous to Example[T.14] assume we drive a spaceship in the galaxy. The configuration
space consists of the positions of the ship in the 3-dimensional galaxy and its orientations, see Exam-
pIe This forms the 5 dimensional manifold M = R3 x S? for which we use the local coordinates
p = (z,y, 2,0, ¢). We have control over (combinations of) the following movements: rotation in both
angles, changing the orientation of the spaceship, and moving forward an backward, changing the posi-
tion. This corresponds to a type (3,5) distribution D*"P on T'M spanned by the vector fields Vi, V5, V3
given by

Vi=0p
‘/2 = acp
V3 = cos(¢)(cos(8)0, + sin(0)0y) + sin(¢)0,

In order to see that D°"? is not fat it suffices to show that, for the choice of vector V; at any point p, the
tangent space 7}, M can not be spanned by D,, [V4, Va],, [V1, V5], Indeed, at any point p we have that

[‘/17 ‘/2]1) - O
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1.4 Curvature

In this section we make precise what is meant by curvature. In order to do so we start with the following
lemma.

Lemma 1.16 Let D be a distribution on a manifold M. Then the map F': T'(D) xT'(D) — I'(T'M /D)

given by
(V,W) eT'(D) x I'(D) — [V, W] modT'(D)

is C°° (M) linear in both entries.

Proof. The map F'is skew symmetric, so it is enough to show
[fV.W] = fIV.W] modI'(D)
forall f € C°(M)and V,WW € I'(D). We have that
[fV W] ==W(f)-V+[-[V.W]
and V' € I'(D), which implies the statement. O

Because of the lemma above, the map F'is induced by a bundle map.

Definition 1.17 Let D be a distribution on a manifold M. The curvature of D is the linear bundle map
F: N*D — TM /D point-wise given by

Fe(v,w) = =[V, W],

where x € M, v, w € D, and where V, W € T'(D) are vector fields extending v, w respectively.

Remark 1.18. A distribution D is involutive if and only if its curvature vanishes everywhere. On the con-
trary, a distribution Diis fatif and only if F'(v, -): D — T'M /Dis surjective everywhere for allv € I'(D).

The simpler characterizations of fat distributions we promised at the start of this chapter are closely re-
lated to the dual of the curvature.

Definition 1.19 Let D be a distribution on a manifold M. We define the annihilator bundle D+ € T* M
of D as the bundle of co-vectors annihilating D.

Remark 1.20. The annihilator bundle D+ is canonically dual to 7'M /D. Hence we can express the dual
of the curvature map as F'*: D+ — /\2 D,
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Definition 1.21 The linear bundle map F* : D+ — A?D* given by the dual of the curvature F is called
the dual curvature map. Explicitly F™* is given by

Fr ) (v, w) = a(=[V,W])

for V,W € I'D.

Proposition 1.22 The dual curvature map is given by

F*(a) = dalp.

Proof. Letav € D+ and let X, Y € I'D. We have Cartan’s formula
da(X,Y) = XaY) —Ya(X) — a([X,Y]). (1.1

Since a annihilates D, a(X) = a(Y) = 0 and it follows that a(—[X, Y]) = da (X, Y). O

Proposition 1.23 Suppose D is a co-rank k distribution on a manifold M. Then D is fat at x € M if
and only if
w(a) = da|p

is a non-degenerate 2-form on D at z, for all & € D+ that are non-vanishing at .

Proof. Ifwe assume Disfatatz € M, i.e. forall X € I'D andforall W &€ T'M /D, both non-zero at x,

there existsa Y € I'D such that
[(X,Y]=W.

This is equivalent to requiring that there exists a Y € "D such that
o[X,Y]) =1

forall X € I'D and for all « € D+, both non-zero at . Via the same reasoning in the proof of Proposi-
tion this is equivalent to requiring that there exists a Y € I'D such that

—da(X,Y) =1
for all X € I'D and for all &« € D+, both non-zero at . l.e., da|p is non-degenerate at z. O

We have that D is a k-dimensional vector sub-bundle of 7% M. Hence, locally, D can be described as
the intersected kernels of some k (independent) 1-forms.

Definition 1.24 Let D be a co-rank k distribution on M. A collection o, . .., ay of 1-forms in D+
satisfying
D =kerag N---Nkeray
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on an open subset U of M is called a set of (locally) defining 1-forms for D on U.

Note that a set of locally defining 1-forms locally generate D-. This description allows for a more workable
equivalent definition of fat. For co-rank 1 the alternative description is straightforward.

Corollary 1.25 Suppose D is a co-rank 1 distribution on an n-dimensional manifold M. Letz € M
and let D be defined by a 1-form « in a neighborhood U of x. Then D is contact (i.e. fat) if and only if
= da|p is non-degenerate.

Proof. Since D is of co-rank 1, D+ is of rank 1 and « is non-vanishing on U. Hence Dj is given by the
linear span of a,. Leta’ € D+, Then o, = ca, for some ¢ € R. Now since

d(ca)|p = cda|p,
if follows from Proposition|1.23|that D is contact if and only if w = da|p is non-degenerate at z. O

Example 1.26. We consider the distribution D“"*¢ corresponding to the canoe of Example[1.14] Note that
D¢ can be expressed via the locally defining 1-form

a = sin(0)dz — cos(0)dy.
l.e. we have that D“"°¢ = ker ae. Now we compute
da = cosdf A dx + sindf A dy,

pance is indeed non-degenerate on D“"°¢, This shows once again that D<"°¢ is contact.
A

and we see that do

A more general equivalent description of fatness is the following.

Proposition 1.27 Suppose D is a co-rank k distribution on an n-dimensional manifold M defined locally
by a pair of 1-forms i, . .., ag. Then D is fat at if and only if the following conditions hold.

1. Each w; = day|p is non-degenerate, i.e. symplectic, fori = 1,... k.
2. Atany point z and for any 0 # v € D, we have that
co-rank(vLl N---N ULZ) =k,

where v denotes the symplectic complement of {v} with respect to w;.

It follows as an immediate generalisation of the description given in [1} p. 4] for co-rank 2.

10
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Definition 1.28 Suppose D is a distribution of co-rank k£ on manifold M. Let U be an open in M and
let wy, wo be two non-degenerate 2-forms defined on D|y;. The rank measure of the pair wy, ws is the
unique local automorphism RY?: D|y; — D]y defined by

wi(-, R) = wal-, ).

For a distribution D of co-rank k > 2, any pair of annihilating 1-forms «; and as generates a sub-bundle
(a1, an) C D+, However, if we have that w; = da|p is non-degenerate fori = 1, 2, itis not guaranteed
that all non-zero 1-forms in (a1, ae) satisfy this property, which is required for D to be fat. We need an
additional condition on the pair oy, ao. This results in the corollary below for co-rank 2 distributions, as
shown in [1} Prop. 2.1, p. 4].

Corollary 1.29 Suppose D is a co-rank 2 distribution on an n-dimensional manifold M defined locally
by a pair of 1-forms a1, ap. Then D is fat if and only if the following conditions hold.

1. w; = doy|p is non-degenerate for i = 1, 2.

2. The rank measure RY? : D — D relating w; to wy has no real eigenvalues.

Proof. Locally the annihilator bundle D+ is generated by cr; and avs.

(=) Suppose D to be fat. Then, by Proposition we have that w(«) = dalp is a non-degenerate
2-form on D for all 0 # « in the annihilator bundle D=, In particular this holds for w; = day |p and
wy = dan|p, hence the first property is satisfied. We prove the second property by contradiction. Assume
that at a point # € M the rank measure R'? has real eigenvalue \ with corresponding eigenvector X.
Then we have that
wi(+, X) = wa(+, R™X)

= (,dg(', )\X)

= )\CL)Q(', X)
This implies that w; — Aws is a degenerate 2-form. Now we observe that

w1 — )\CUQ = dOé1|D — )\dOZQlD
= d(Oél — )\Oég)|p.

Hence d(a1 — /\a2)|p is degenerate. But a; — Ao is an element in the annihilator bundle D+, so this
contradicts Proposition Hence R'? does not have a real eigenvalue.

(<) Suppose conditions 1) and 2) hold. It suffices to show that every element 3 in the annihilator bundle
D+ satisfies that df|p is non-degenerate. Let 3 be an element of the annihilator bundle D+. Then
[ = ci1aq + caan, for some scalars ¢, co € R. If either ¢ or ¢y is equal to zero we have that dﬁ\p is
non-degenerate by condition 1) and linearity. If both ¢, ca # 0, we have that

df|p = d(cron + c2a0)|p
= CldOé1|D + CQdOé2|D

= C1W1 + CoWwa.

11
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Again, we prove by contradiction. Assume dﬁ\p is degenerate. Then cjw; + caws is degenerate. Hence
there exists a point x and a vector X in D, such that

C1w1<', X) + ngg(', X) =0.
Denote by R'2 be the rank measure relating w; and ws. Then we have that
clwl(-, X) -+ ngl(', RIQX) = 0.

This implies that
w1 (-, AX) = wi (-, RX),

where A = _%' Note \ is real. Since both w; and ws are non-degenerate, we have that A\X = R'2X.
Hence \ is a real eigenvalue of R'2. This contradicts condition 2), hence df|p must be non-degenerate.
The statement follows. O

Remark 1.30. In the co-rank 2 case, the characterization for fatness from Corollary can alternatively
be described in terms of quadratic forms, see [9].
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Chapter 2

Distributions and the Grassmann bundle

As we have seen in Chapter 1, a rank-r distribution on a manifold M is defined by a choice of rank-r linear
subspace of of the tangent space 7', M for each point z, smoothly varying with respect to x. At a point ,
the set of all possible choices of rank-r linear subspaces of the tangent space is described by the rank-r
Grassmannian of T}, M. All the Grassmannians of the tangent spaces for the points in M together form
a fiber bundle, which is called Grassmann bundle of M. It turns out that every rank-r distribution on a
manifold M can interpreted as a global section of the rank-r Grassmann bundle of M. This makes the
Grassmann bundle of a given manifold M the universal object for distributions on M.

Furthermore, we will see in Chapter [3]that the Grassmann bundle itself is a manifold that comes with a
canonical distribution defined on it. In fact, this is consistent with the Grassmannian being a universal
object for distributions. This canonical distribution plays a central role in the construction of prolonged
distributions, which form the class of distributions that we focus on later in this text.

We first introduce the Grassmannian of a given vector space with its homogeneous coordinates and we
show how to construct an atlas for this manifold. After that, we define the Grassmann bundle of a given
manifold. Then we observe that a choice of distribution on a manifold M corresponds to a choice of global
section of the Grassmann bundle of M.

2.1 Grassmannian

2.1.1 Spanning vectors

We first introduce the Grassmannian in the classical way, i.e. we describe linear sub-spaces in terms of
spanning sets of vectors. This description provides us with some intuition for these spaces. However,
as we have seen in Section|1.4] it is convenient to be able to use a description of linear sub-spaces using
co-vectors, which we will do afterwards.

Definition 2.1 Let I/ be a vector space of dimension n. The rank-r Grassmannian of V' is the space of all

linear subspaces of dimension 7 in V. Itis denoted by Gr" (V) or by Gr(V'), where k = n —r indicates
the co-rank.

13



2.1. GRASSMANNIAN CHAPTER 2. DISTRIBUTIONS AND THE GRASSMANN BUNDLE

The Grassmannian Gr” (V') carries the structure of a smooth manifold of dimension k. We first introduce
homogeneous coordinates for this space Gr” (1), then we show how to construct an atlas.

Homogeneous coordinates

Choose a basis {x1, ..., z,} for the n-dimensional vector space V. The spanning set of 7 linearly inde-
pendent vectors vy, . . ., v, defines an element
<V1, e 7Vr>

in Gr" (V). Conversely, a point H € Gr"(V) is described by a (non-unique) spanning set of  linearly
independent vectors
H = {(vi,...,v.).

Now consider a second spanning set of vectors for H
H = (wy,...,w,).
For these two spanning sets that define H we denote by A and B the rank r matrices

V11 U Wy 1 Wr
A= + . and B =

Uin *° Urn Win -+ Wep

defining the respective spanning sets with respect to the chosen basis. Observe that the two spanning
sets define the same linear subspace H if and only if there exists a () € (G L, such that

A=B-Q.

The discussion above exhibits Gr" (1) as the quotient of the vector space of 7 X n matrices of rank 7’
under the right action of GL,.. [

From this perspective, it is natural to denote H € Gr"(V/) as the equivalence class
H =[4]

where A is any suitable n X r matrix of rank r that serves as representative for H.

Atlas

Here we recall how to construct an smooth atlas for the Grassmannian. We use the notation £ =

(I, ..., 1), withl; € {1,...,n}, to indicate the choice of r vectors ¢y = x,, ..., 2, from the cho-
sen basis {1, ...,7,}. We use the notations L~ = (l,;1,...,l,) and ¢, to denote the remaining
numbers in {1, ..., n} and the corresponding elements Ty, -2y, of the basis for V, respectively.

"In fact this space forms the Stiefel manifold St.., it is the manifold of r-tuples of linearly independent vectors in V.
2|n fact, the action of G L, on this manifold is free and proper. This implies directly that the quotient, the grassmanian Gr,.,
is a smooth manifold.

14



2.1. GRASSMANNIAN CHAPTER 2. DISTRIBUTIONS AND THE GRASSMANN BUNDLE

Consider the subset Gr" (V). of all H € Gr"(V) such that a;,, . . ., 2y, project to a basis for H - with
respect to the standard inner product associated to the previously chosen basis {21, ..., x,}. Note
that Gr" (V') ¢ is open in Gr" (V). For every H € Gr"(V'). there exist unique numbers m;;, with i €
{1,...,r}andj € {1,...,k} such that H is given by the span of the vectors

Vi =T My, oo+ Mgy,

Ve = Xy, + Mp Xy, o My,

As an example, if we set £ = (1,...,7), an element H in Gr" (V') is given by the span of the vectors

Vi =21 +M1Tpqq + -0+ Mgy,

Ve = Tp + Mp1Tpgq1 + -0 My Ty

The numbers m;; form the r X k matrix

mir -0 Myl
M =

mig - Myk

The corresponding homogeneous coordinates for H are given by

-1 0
IT |0 1
M| mi me1

Mk - My

We can then define a chart xz: Gr" (V) — R via

[]\]4] = (M1, ey Myg).

The inverse map le is given by
1

M [M} M e R™.
XZl can be interpreted as taking M to the span of its graph as illustrated in Section m Seen from
this perspective it is clear that all elements in Gr" (V') . must be transversal to the linear subspace of V'

spanned by ¢, 1. In this fashion the chart x can be seen as a projection of the graph.

By varying £ we obtain a cover of Gr”, and this construction provides the desired atlas on the Grassmanian.
Note that, for £ = (I3,...,l,) and L = (I}, ... 1), the intersection Gr" (V). N Gr" (V') z: is given by
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CHAPTER 2.

DISTRIBUTIONS AND THE GRASSMANN BUNDLE

(-

<>(U'“f )(!f> I

TS
Cear, %)

Figure 2.1: Graph of elements M, M’ € R"* under le

the points H € Gr" (V') such that both frames ¢, and ¢+ project to a basis of H. The resulting transition
function can be described point-wise in terms of the linear map sending the basis

Vi =2, +mndy,, +oc

v, =, + M1 21,44 —+ ..

to the basis

r /
Vi =Ty Emy e

/ /
vy :xl/r+mr1xl' +

r+1

of H, and is smooth.

2.1.2 Switching to co-vectors

+ Mgy,

+ M2y,

/
+ ,rn/lkml;L )

/
+ mrkasl%.

Since it is often feasible to describe a distribution D in terms of a set of locally defining 1-forms, it is
convenient also to describe the elements in the Grassmannian and the Grassmann bundle in this way.

Homogeneous coordinates with co-vectors

Sticking to the notation introduced in Section|2.1.1} we construct a second set of homogeneous coordi-

nates for the Grassmannian.

We choose the same dual basis {:1:1, ..., "} for the n-dimensional vector space V. Consider a set of k

16



2.1. GRASSMANNIAN CHAPTER 2. DISTRIBUTIONS AND THE GRASSMANN BUNDLE

linearly independent 1-forms

1 _ 1.1 1,.2 1,..n
« _/“'le +M2ZL‘ +unxa

of = pyat + psa® - 4 ppa”

The system of equations
at=0,...,

" =0
defines a point H € Gry(V), thatis, H = ker(a!)N---Nker(a*). Conversely, every point H € Gry (V)
can be described - in a non-unique way - as the zero locus

m ker(a?)

for a set of k suitably chosen forms.

We denote by A the matrix

plo
A=+ -
p ek

defining the respective system. In a similar way to the description with a spanning set of vectors, we
observe that two systems of equations defined by matrices A and BB have the same zero locus if and only
if there exists a () € G Ly, such that

A=0Q- B
In turn, the Grassmannian Gry (V") can be identified with the quotient of the vector space of & X n ma-
trices of rank & under the left action of G Ly. In this fashion, it is natural to denote H € Gry (V) as the
equivalence class

H=[A]

where A is any suitable & x n matrix of rank k that serves as representative for the system defining H.

Atlas with co-vectors

Again, we use the notations £ = (ly,...,[,), with[; € {1,...,n}, and ¢, to indicate the choice of r
out of n co-vectors from the chosen basis {x!, ..., 2"}; and the notations L+ = (I,41,...,l,)and ¢,1
to denote the remaining numbersin {1,...,n} and the corresponding remaining elements of the basis

frame, respectively.

We consider the subset Gri, (V) of all H € Gro(V) such that {z'1, ..., z!"} are non-vanishing 1-forms
when restricted to /1. Note that this subset in Gri, (V) is open. For every H € Gri (V) there exist unique
numbers !, withi € {1,...,r}andj € {1,...,k} such that H is given by the relations

Iy 1.1 1.1
on =2l 4 pfal 4 pal
k_.lr

ap =2 ke o ke

17
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Again we go over the example where we set £ = (1,...,7). An element H in Gri(V') is given by the
relations

1 1.1 1
051:'1.71+ +/L1.I' +".+/’err7

o = 2"+ pkat ook

The numbers ,ug form the £ X r matrix

po iy
M=|:
I y

The corresponding global coordinates of H are given by
M% /%1« 1 -+ 0
M= o0
N]f Nf 0o --- 1
We then define a chart . Grg (V) — R¥*" by setting
Xeo M) e (g, ).

By varying £ we obtain a cover of Gri(V), and this construction provides us with an atlas on the Grass-
manian.

Remark 2.2. Note that this atlas is compatible with the previously constructed atlas using vectors. Indeed,
note that the transition function 7 : Matyyo — Matsyo for two charts defined on the same open Gr’”(V)L
(in the two respective atlases) is given by

M—M=-M",

2.2 Grassmann bundle

Grassmannians as fibers

We now turn to the Grassmann bundle over a manifold X. As the name suggests, this is a fiber bundle
over X, whose fiber over a point x is the Grassmanian of the tangent space T, X.

Definition 2.3 The rank-r Grassmann bundle of an n-dimensional manifold X is the set
{(x,H): z€ X, He Gr"(T,X)}.

It is denoted by Gr"(T'X) or Gri(T'X), where k = n — r indicates the co-rank.

18
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The bundle projection 7¢: Gr" (T X) — X is given by

(x,H) — x.

Atrivializing atlas for Gr” (T'X ) over X can be obtained right out of a coordinate atlas for X and the atlas
for Gr" (V') introduced earlier. We briefly recall the constructions of trivializations and fibered coordinates
below.

Let U C X be an open set together with a chart ) : U — R" that maps
zes (2., 2",
Observe that there is a canonical isomorphism
Gr'(TX)|y =26 (TU);

Moreover, the coordinate vector fields
811, ooy Oy

n

corresponding to 1 provide a basis for T, X, for all z € U, inducing the isomorphisms

o G (T,X) — Gr"(R"), ze€X.

Now we can define the trivialization ¥ : Gr"(TU) — R" x Gr"(R") by

(z, H) = ((x), 0z (H)).

As anticipated, this essentially proves the following well known fact.

Proposition 2.4 The projection
¢ G (TX) = X

is a fiber bundle with fiber Gr" (R™)

For later use, we recall how to construct fibered coordinates for Gr"(7'X') using the charts for Gr" (V)
discussed at the beginning of this section. Over an open U C X together with a chart ¢y : U — R" that
maps

x— (..., 1"

we consider the coordinate frame

)

n*

Similar to the Grassmannian setting, we use the notation £ = (ly,...,l.), with[; € {1,...,n}, to
indicate the choice of r coordinate vector fields

¢£:axl17"'7axlr
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from the n coordinate vector fields O, . . ., O, . we denote by Gr"(T'U ) » the open set

{Hear(T,X),: x € U}.

Now we can define fibered coordinate chart U, : Gr"(TU), — R™ x R"*) by

(z, H) = (¥(2), xc(H)).

Varying the choice £ of coordinate vectors and the chart (), U) provides us with a fibered atlas for
Gr'(TX) — X.

Distributions as sections

Since a rank-r distribution D on a manifold X is defined by the choice of an r-dimensional subspace H
of T, X for every point z € X, it can be identified with the section ¢ of the rank-r Grassmann bundle
Gr"(T'X) of X given by

xr—H=D,, x€X

where H is interpreted as a point in Gr" (7, X ).

Questions concerning the space of distributions with rank r on a given manifold X can now be rephrased
in terms of the space (sheaf) of sections I' Gr" (T'X) of the corresponding Grassmann bundle over X.
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Chapter 3

Fat prolongation construction

In this chapter we ultimately introduce the prolongation construction and define the class of prolonged
distributions. Prolongations in this context were used by Cartan, for the previously mentioned famous
(2, 3,5) structures he investigated, see [2]. For a gentle introduction concerning prolongations of distri-
butions and related concepts we refer to [1].

The prolonged distributions form the class for which we investigate fatness for type (4, 6) distributions in
this text. In order to do so, we look at co-rank 2 fiber bundles M over a 4-dimensional manifold X with a
bundle map into Grassmann bundle Gry(7"X'). Then we consider the canonical distribution on Gry(7°X)
which induces a distribution on M via the bundle map, the so-called prolonged distribution on M. The
main question we investigate is under what conditions this restriction defines a fat distribution on the
fiber bundle manifold M.

Moreover, we provide a family of examples of fat prolonged (4, 6) distributions: we consider the rank-2
sub-bundle of the Grassmann bundle consisting of the 2-planes invariant under the almost complex struc-
ture J. This sub-bundle forms a 6-dimensional manifold and the fibers are in fact complex Grassmanni-
ans. We show that the prolonged distribution of this sub-bundle is a fat distribution of co-rank 2.

3.1 Prolongation

In this section we first define the canonical distribution on the Grassmann bundle of a given manifold that
was hinted at in the previous chapter. It provides the setup for the prolonged distributions that we define
after that.

Canonical distribution

Now we are setup to define the canonical distribution D" on Gry(7'X) for a given manifold X.

Definition 3.1 Let X be an n-dimensional manifold and consider its Grassmann bundle 7€ : Gre(TX) —
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X. The canonical distribution D“" on Gry (T X ) is the distribution point-wise given by
D" = (dn) N (H) C Ty Gri(TX),

where the pre-image is with respect to the linear subspace H of the tangent space of X.

An overview of the maps involved is given in Figure[3.1]

Pean
o
Grk(TX) <T— TGI’k(TX)

| Joe

X TX

Figure 3.1: Canonical distribution on the Grassmann bundle

Remark 3.2. Note that D®" yields a smooth sub-bundle of T Gri (7' X). Hence it defines a smooth distri-
bution. Indeed, let U be an open subset of X with coordinates (z1,...,z,). Let (x, H) € Grg(TU),
with £ = (Iy, ..., ;) (see Chapterfor the notation), i.e. the linear subspace H in T, X is given by the
span of the vectors

vy = 8@1 +m10, + -+ mlkaxln>

lr1

v, = (9% + mTlé’xlrﬂ et mrkamln.

Then the linear subspace D& = (dw®)~!(H) is spanned by the tangent vectors in Ty Gr(T X)) given
by

&le + mllaxl,‘+1 +ot mlk@ﬂn < TH Grk(TX)

&% + mﬂ@x + -+ mrkaxln € TH Grk(TX)

Irt1

Prolonged distribution

Let X be an n-dimensional manifold and consider its Grassmann bundle 7¢: Gr,(TX) — X Now let
7M. M — X beafiber bundle over X together with bundlemap ¢: M — Gri(TX), i.e. the following
diagram commutes.

Gry, (TX

) < M
h lﬂM
X
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Definition 3.3 The prolonged distribution DP" on M with respect to ( is pointwise given by
. My—1
Dzro' = (dr™) (ely)) <CT,M.

M

where we interpret ©(y) as a subspace of the tangent space of X. We denote by (M, 7" ) the

defining triple for DP™',

An overview of the maps involved is given in Figure[3.2]

Dprol
P M \[
Grp(TX) «— M «<— TM

M ldﬂ_]t{
e

X TX

Figure 3.2: Prolonged distribution on fiber bundle M

Example 3.4. If we set ¢ ‘= idg,, (7x), we see that the prolonged distribution D™ on Gry, (7'X) is in fact
the canonical distribution D" on Gry (T X). A

We revisit Example -but now the orientations of the canoe are projectivised- and show that the
contact distribution D“"°¢ is in fact a prolongation.

Example 3.5. Consider the configuration space of the canoe M = R? x RP! and the plane X =
R? indicating solely the position of the canoe on the water. We define the map 7™ : M — X as the
projection given by

(z,y,0) = (z,y).
Consider the Grassmann bundle Gr!(TR?) of R? and the bundle map ¢: M — Gr!(TR?) given by

(,y,0) — H = (cos(0)0,, + sin(8)0,).

prol

Then the prolonged distribution D

DE, ) = (a7 (1)

= (cos(#)0y + sin(0)0,, Op),

is point-wise given by

which is precisely to the contact distribution D“"¢ as defined previously. A

Also the space ship from Example —again with projectivised orientations- turns out to be associated
to a prolongation.

Example 3.6. Consider the configuration space of the spaceship M = R3 x RP? and the space X = R?
indicating the position of the space ship in the galaxy. We define the projection map 7™ : M — X as

(3773/72797 80) = (I,y,Z).
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Consider the Grassmann bundle Gr!(TR?) of R? and the bundle map 1/: M — Gr?(TRR3) given by

(x,y,2,0,0) — H = (cos(¢)(cos(0)d, + sin()9,) + sin(¢)0.).

prol

The prolonged distribution DP™ is point-wise given by

D?;?;,z,e,go) = (dWM)fl(H)

= (cos(p)(cos(#)0, + sin(0)9,) + sin(y)0., Oy, 0,),

which corresponds to the distribution D" from earlier. JAN

In fact, Example [3.5] can be generalized to arbitrary dimensions in such a way that it defines a contact
distribution.

Proposition 3.7 Let X be an n-dimensional manifold and consider its Grassmann bundle Gr,,_1 (7°X).
The prolonged distribution D“" on Gr,,_1(7'X) is a contact distribution.

Proof. Let U C X be an open set with coordinates (x1,...,2,), and let H € Gr,,_1(T,U). We have
that H € Gr,,—1(T,U) for some L. Without loss of generality, we assume £ = (1,...,n — 1). Then
the elements H in Gr,,_1(T,U) are given by the kernel of the linear 1-form

n—1

o = dx, — E m1dx;

=1

inT7* X, smoothly depending on m;;, as discussed in Chapter It follows that, on the open Gr,,_1(T'U) ,
D" is given by the kernel of the one-form

n—1

i=1

Now we compute
n—1

i=1
In this chart Gr,,_1(T'U) ., we have that d/3 restricts to a non-degenerate 2-form on D“". Hence, by
Corollary[1.25] D“" is contact here. It follows that D" is contact everywhere. O

Remark 3.8. Like in Example we can identify Gr,,_1 (7'X) with the projectivization PT*X.

3.2 Complex Grassmannian

In this section, we provide a concrete family of examples fat distributions of type (4, 6) using the prolon-
gation construction.

24



3.2. COMPLEX GRASSMANNIAN CHAPTER 3. FAT PROLONGATION CONSTRUCTION

The general framework is the following. Let (X, .J) be an almost complex 4-dimensional manifold. Con-
sider the Grassmann bundle Gry(7'X') over X and let M be the sub-bundle

M = Gry(TX,J) C Gra(TX)
given by the (almost) complex grassmanian on X,
Gr2<TX, J) = {H € Gr2<TX)|JH = H},

consisting of planes H € Gry(T'X') which are J-invariant.

Note that the fibers of M have co-dimension 2 within the fibers of Gro(7°X'), hence M has dimension
4 + 2 = 6. We consider the prolonged distribution DP on M with respect to the inclusion i: M <
Gra(TX), i.e. we look at the defining triple (M, 7|y, 7).

Let U C X be an open subset of X together with a local frame ¢ = (¢1, ¢2, @3, P4) of X such that

0 -1 0 O
1 0 0 O

Il = 0 0 0 -1 (3.1)
0O 0 1 0

with respect to ¢. We now prove the following lemma, which gives a local description of the inclusion
i: M < Gry(TX).

Lemma 3.9 With respect to the coordinates (A1, Ao, A3, A4) for Gr(7,, X) induced by ¢ at x (see Chap-
ter, the submanifold M, C Gry(T,X) is described by the equations

Mo=M, A= o

Proof. In the same spirit as that of Chapter 2} denote by Gry(TU) .z, where £ = (1,2), the open set of
all 2-planes to which the pair {¢y, , ¢1, } projects to a basis, for [ # [ integers between 1 and 4.

Let H € M,. Then H is preserved by the complex structure .J given by

with respect to ¢. Hence the pair {¢1, @2} or the pair {¢3, ¢4 } projects to a basis for H (or both). Assume
without loss of generality that the pair {¢1, ¢2} projects to a basis for H, i.e. £ = (1,2).

We have that H € Gro(T'U) . is spanned by

Vi = ¢1 4+ Mg + Ao
Vo = @2 + X393 + A\a¢y
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for \; € R smoothly depending on z. Note that J| maps ¢1 — ¢o. Then if H is preserved under .J

U

it also maps V; — Va.lt follows that H € M if and only if H is spanned by

Vi=¢1+ M3+ Aaga

Va = ¢a — Aag3 + Mg,
or equivalently, it is given by the intersected kernels of the forms

o = @5 — My + Aody

gy = ¢y — Aoty — Mgy,
where ¢} denotes the dual of ¢;.
This leads to the equations Ay = Ay and Ay = — 3. O

The lemma above gives a sub-manifold chart M, N Gro(TU ), — R? that maps
H— ()\1,)\2)

for the fiber M, over x.

Remark 3.10. Note that if J is integrable, then there exists a local coordinate frame ¢ such that .J is of the
form of eq. (3.1). In this setting, the construction above fits in the coordinate description of the Grassma-
nian given in Chapter In that case we can extend the chart for the fiber M, to the neighborhood U,
forming fibered coordinates.

Theorem 3.11 The prolonged distribution D™ on M is fat.

Proof. Fatness is a local property, hence it suffices to show that DP™' is fat at an arbitrary point (x,H) €

M. Asin Lemma there exists an open neighbourhood U of z and a local frame ¢ = {¢1, ¢2, P3, P4}

on U such that

0 0
1 0 0

To=1, o

0 0

H' € M N Gry(TU) is given by the intersected kernels of the forms

ap = ¢35 — M@ + Ao
Qg = d)Z - )\2¢>1k - )\1¢§-

Recall from Corollary([1.29|that in order to show the distribution D™ is fat on Gry(T'U) £, we have to show
that

1. the two forms w; = day|p and wy = das|p are non-degenerate;
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2. the rank measure R'2 of DP™ relating w; to w, via
12 _
wl('aR ) _w2('a')7

has no real eigenvalues.

For 1. we compute
dag =dg3 — dA; A ¢ — Ardgy + dAg A @5 + Aaded)y
Note that the ¢;'s do not depend on A; and A». In order to check non-degeneracy we compute
w1 Awp =207 A o5 AdAp AdAg
W9 /\w2 == 2¢T VAN QZS; VAN d/\1 VAN d)\g

Note here that the resulting terms of 4-forms not including both dA\; and d\5 in the wedge product vanish

on DP', Both w; A w; are volume forms on DP™ which implies that both w; and w, are non-degenerate
on DrP!,

Now we show 2. At the point H € M we have that
DY = H + TyM, C T Gry(TM),

where H on the right hand side is interpreted as a subspace H C T, X . With this in mind we can choose
the following basis for D%

{‘/1’ ‘/Qa a)q ; a)\Q}a
where V, V5, € T'M are the vectors
Vi = @1+ M3 + Aoy,
Vo = ¢ — Aoz + A1 @y

Note they are indeed linearly independent and of in the kernel of the defining 1-forms.
Then we have that the rank measure R'? at H satisfies

ViV,

Vo =13

a,\l — 8)\2

8)\2 — —8>\1.

Hence, with respect to the basis { V1, V5, 0y, , Oy, } of D € DP™ the rank measure R at H is given

0 -1 0 0
2 |1 0 0 0
Bo=10 0 0 -1

0 0 1 0

Note 212 has no real eigenvalues (which is independent of the chosen frame); hence the prolonged dis-
tribution DP™' is fat at (, H). Since (x, H) is chosen arbitrarily, this completes the proof. O
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Chapter 4

Fatness and the infinitesimal cone field

In this chapter we introduce the degenerate cones: for each 2-plane H in the Grassmannian, we consider
the 2-planes that intersect H in a subspace with dimension at least 1. We show that locally, this forms a
cone centered at the 2-plane H itself.

Taking the infinitesimal analogue of this cone allows us to define what we call the infinitesimal cone field
on the Grassmannian. We then identify characterizing local properties for fat prolonged distributions
of type (4,6) in terms of the infinitesimal cone field. Namely, we show that requiring the prolonged
distribution D on fiber bundle M to be fat is equivalent to requiring that the fibers of M -that map into
the corresponding Grassmannian-fiber via the given bundle map- are transverse to the infinitesimal cone
field.

4.1 Transversality

The tool we use to measure the dimension of intersection of two 2-planes is transversality, which we will
introduce in various forms. The first two definitions below are classical and we use them to define the
degenerate cone for a 2-plane H in the Grassmannian.

Definition 4.1 Let V' be a vector space and let W and W' be linear subspaces of V. We say that W
and W' are transverse if

V=wW+W.

In this case we write W M W’. If W and W' are not transverse we write W # W',

Definition 4.2 Let M be a manifold and let N and N/ be sub-manifolds of M. We say that N and [N’
are transverse at a point x in the intersection N N N if

T.M =T,N +T,N'.

If N and N’ are transverse at all points in the intersection N N N’ we say IV and N’ are transverse; in
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that case we write N M N’. If N and N’ are not transverse we write N i N'.

Definition 4.3 Let | be a 4-dimensional vector space and consider the co-rank 2 Grassmannian Gra (V).
Let H be a point in Gra(V'). The degenerate cone €y of H in the Grassmannian Gry (V) is a subspace
of Gro(V') given by

Cy={H €crn(V): H # H}

The reason why this space is called a cone is explained by Proposition To arrive there we need the
following lemma.

Lemma 4.4 The degenerate cone € in the chart (Gr" (V) .z, xz), where xo(H) = M € Matg,s, is
given by

Xc(€h) = {M + Q € Matgs: QQ € Matgys, rank @ < 2}. 4.1)

Proof. Anelement H' € €5 N Gra(V). \ {H} is a2-plane in V that has a 1-dimensional intersection
with H with the additional requirement that ® . projects to a basis for H'. Hence H' can be written as

H' = (u,v + w),

where v is a vector in (® 1), which is complementary to H, w is a vector in H, and w is a non-zero
vector in H such that w L w. Here the orthogonal complement is with respect to the standard inner
product associated to the chosen basis. We illustrate the choice of vectors in Figure[4.T]and the plane that
is defined by them in Figure Note that the choice of v and w is sufficient to define H’, since after
fixing these two, every choice of non-zero vector u in w* N H defines the same 2-plane, i.e. the element
H'is also given by

H = {(v+w)+w-NH. (4.2)

For simplicity, without loss of generality, we assume £ = (1, 2). Then the unique spanning vectors in V'
for H corresponding to the chart Gro(V') - are given by

T1 + M1T3 + M2y, (4.3)

To + Mo1T3 + M12T4; (4.4)

and the chosen vectors are expressed by v = v123 + V224 and w = wyT; + Wax2. The unique pair
of spanning vectors in V' for H' corresponding to the chart Gra (V') are then given by adding the vector
v + w, decomposed with respect to this basis as w; - v and wy - v, to the respective spanning vectors for
H given in Equation and Equation , see again Figure l.e., H' is given by

xr| + (mn + W1U1)$3 -+ (m12 + w1U2)$4,

To + (m21 + ’LU21)1)333 —+ (mlz + w2v2)x4.

In the chart of Gro(V') £, that corresponds to the matrix M + @) € Maty,o, where () is given by
wivp wWiv2
- ( )
WoV1 W2V9
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—

Figure 4.2: The plane H' = (v + w) +w* N H.
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which is equal to the outer product ) = w” v of the vectors w and v. Therefore () is a matrix of rank < 2.
On the other hand, every matrix () € Matg,o with rank maximally 1 can be written -in a non-unique way-
as an outer product ) = w’v. Two such vectors v, w define an element H' € €5 N Gra(V) via the

span given in Equation (4.2). The statement follows. O
Now we consider the intersection €5 N Gra(V) 2. In the chart (Gr" (V') ¢, x ) we fixanorm || - || on the

space Mats o = R*. Without loss of generality we take the standard norm on R*. We consider the space
T C Matyyo of matrices () of norm 1 with rank lower than 2,

T ={Q € Mataxo: ||Q| = 1;rank @ < 2}.

Proposition 4.5 The intersection € N Gry(V') . is a cone over T'. Moreover, the space 7 is an embed-
ded torus T2.

Proof. We rewrite x (&) from eq. as a cone over T as follows
Xe(Cx)={M+c-Q:ceR;QeT}.

Now it suffices to show that the space 1" is homeomorphic to the torus 7°2.

To see this, note that an element () in T" must be a matrix of rank 1 in particular, since a matrix of norm
1 has rank at least 1. We claim it can be written - still in a non-unique way- as the outer product of
v,w € ST C R% Namely, as in the proof of Lemma we have that any rank 1 matrix can be written
as the outer product of two non-zero vectors v, w € R? given by

_ T _ [Wi1V1 W1V
Q =wv' = :

W1 WaV2

Since the pairs (v, w) and (cv, w/c) generate the same matrix () via the outer product, for any non-zero
scalar ¢ € R, we can choose v to have norm 1, i.e.

|v]]? = v} +v3 = 1.
Moreover, since () has norm 1, we have that
IQI* = wiv + wivy + wivy + wiv; = 1,

which can be rewritten as

lo)* 2) (1 +v3)

|
5.
_l’_
&

Hence, we have that w has norm 1 as well

||wH2 = w% —|—w§ =1.
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Now we observe that two elements (v, w), (v/,w’) € S x S = T? define the same matrix ( if an only
if (v, w') = (—v, —w). Hence the space T is equal to the quotient

T = Sl X SI/ZQ %JTQ/ZQ,

where Z acts on T? via (v, w) — (—=1)""'(v,w), i € Zy. Thisis a free, orientation preserving action
and Zs is finite. Since the quotient of the torus given by a free, orientation preserving action of a finite
group is homeomorphic to a torus of the same dimension, we have that 7" is homeomorphicto 72. O

>
e A A
!
/
A\ /\\
faicdsy
<

N
7
gl
=
7
A
5
P

Figure 4.3: Quotient of the torus by the action of Z? given by (0,,60,,) — (0, + 7,0, + 7) is again a
torus.

Remark 4.6. If we describe v and w by the angles 8,,,0,, € S* then the action of Z, on the torus 7?2 =
St x Stis given by (0,,0,) — (0, + i, 0, + iT), i € Zs. Now it can also be seen from the sequence
shown in Figurethat this quotient of 72 is again homeomorphic to a copy of the torus 72

Remark 4.7. Interpreting the vectors v and w as elements in vector space V/, as done in the proof of
Lemma gives more intuition behind the reasoning above. The choice of vectors v € S' C ®,. and
w € S* C H areillustrated in Figure 4.4 The element H' = (v + w) + w* N H is illustrated in
Figure[4.5| Note that indeed (v, w) and (—v, —w) define the same plane H'.
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Figure 4.5: The plane H' = (v + w) + w' N H.
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4.2 Infinitesimal cone field

In this section we introduce another notion of transversality that fits well for the purpose of this text: it is
used to phrase Theorem the main result of this chapter.

In the intersection with Gro(V') 2, we can write the degenerate cone € of H as the union over the ele-
ments () in the torus 1" given by

CyNaGry(V), = U Image(’y?), (4.5)
QEeT

where the path ’y?: R — (Gro(T, X)) is given by
t Xz (M +tQ).
The tangent vector of such curve ’y? is given by

dxz (@) € T Gra(V),

where the matrix () is now considered as element in the tangent space Ty Matays. In homogeneous
coordinates the path ’y? is given by

=t [(2) 8]

In what follows, for simplicity, we identify the tangent spaces T, Matay2 and Ty Gra(V'), i.e. a matrix @
is identified with the tangent vector dy ' (Q).

Remark 4.8. It follows from the expression of paths given in eq. that the rank of () is well defined.

0
Namely, after multiplying ( ) with an element in G' Ly, we obtain another matrix of rank 1. The rank of

Q

( is independent of the choice of basis and the choice of chart containing H.
For each parametrized curve 'yg in eq. , given by
t=xg (M +1tQ), QeT,
its tangent vector 722|t:0 is represented by the same matrix () that appears in the torus 7" given by
T ={Q € Matays: [|Q] = 1;rank @ < 2}.

Hence the torus 7" appears another time in the tangent space T’y Gro (1), generating another infinitesimal
cone Cy. (Note that the elements in the linear span {c@: ¢ € R} that appears in the cone Cy are
associated to the tangent vectors of reparemetrizations of the curve /) Considering such cone in the
tangent space Ty Gra(V), for every H € Gry(V), gives rise to a T?-cone field on the Grassmannian.
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Definition 4.9 Let | be a 4-dimensional vector space and consider the co-rank 2 Grassmannian Gra (V).
The infinitesimal cone field C on the Grassmannian Gry (V) is a field of sub-spaces (cones, i.e. non-linear
sub-spaces) of the tangent space, point-wise given by

Cu={Q €Ty Gr(V): rankQ < 2}.

We notice that Cy is well defined thanks to Remark[4.8]

Let Y be a 2-dimensional manifold and let ¢y : Y — Gra(V') be a smooth map. Denote the image ¢(Y)
by X..

Definition 4.10 Let y be a pointin Y and let 1, y» be local coordinates in a chart around y. Denote by
H = ¢(y) the image of y in 2. We say that ¢ is (elliptically) transverse to the infinitesimal cone field C at
H if pisimmersive at H and

Cy N Image(dy), = 0.

If @ is transverse to the infinitesimal cone field C at all points H in X we say that ¢ is transverse to the
infinitesimal cone field C; in that case we write X  C. If ¥ is not transverse to the infinitesimal cone
field C we write 3 # C.

Figure 4.6: X transverse to the infinitesimal cone field C, illustrated for the points Hy, Hy, H3 € X and
the respective cones Cy,, Cr,, Cp,.

If (o is an embedding, its image Y is a sub-manifold. For sub-manifolds there is a more elegant way of
describing transversality.
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Definition 4.11 Let N be a 2-dimensional sub-manifold of Gro(V'). We say that N is (elliptically) trans-
verse to the infinitesimal cone field C at H if

CanNTygxX =0.

If NV is transverse to the infinitesimal cone field C at all points H in [N we say that N is transverse to the
infinitesimal cone field C; in that case we write N h C. If N is not transverse to the infinitesimal cone
field C we write N f C.

For any 2-dimensional sub-manifold N of Gro(1") we can consider the inclusion map ¢ : N — Gra(V)
which is an embedding; in particular it is an immersion. Note that N being transverse to the infinitesimal
cone field as a sub-manifold is consistent with the meaning of transverse to the infinitesimal cone field for
the immersion ¢ according to Definition{4.10

We work out what the property in Definition|4.10|is in terms of tangent vectors.

Lemma 4.12 Denote by ,uz the coordinate expressions of o with respect to the chart Gro(V') . of H.
Let 3 be transverse to the infinitesimal cone field C at H = ¢(y). Then for all non-zero tangent vectors
v € T,Y with components (v, v3) in the chosen chart, the matrix

O Ouz o Ouz
u g}g (y) g}ﬁ; (y) ¥ vy gﬂi (y) gzi (y) ‘ 4.7)
a—yl(y) a—yl(y) Tw(y) a—yQ(?/)

has non-zero determinant.

Proof. The proof is a computation. We have that (dy),: 1,,Y — Ty is given by

Pily) F(y)
_ %lyﬁ(y) %%(y) (vl) (4.8)
g_fﬁ(y) g_fﬁ(y) U2
a—yl(y) @(y)
. (%Z(y) g—gz(y))w (3—@) 3—@)) -
oY) W) o) Fiy)
O

Let Y be a 2-dimensional manifold and let ¢y : Y — Gry(V') be a smooth map. Denote the image ¢(Y)
by X..
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Lemma 4.13 We have that ¢ is transverse to the infinitesimal cone field C at H = ¢(y) if and only if
the following two conditions hold.

1. The Jacobians of the first and second pair of coordinate maps, respectively given by

out out ou? ou?
B (o) 9, g B [m® 5,
=\ ons Ony an 27| oy ou3 )
W) F,2Y) W) a3 Y)

are non-singular matrices.

2. The isomorphism A € G Ly(R) given by B; A = Bs has non-real eigenvalues.

Proof. (<=) We prove the contrapositive of the statement. Assume ¥ is not transverse to the infinitesimal
cone field C at H. First we suppose that  is not immersive at H. We use the coordinate descriptions
from Lemma Then the 2 X 4 matrix in eq. is of rank 1. Note that this matrix is precisely

(),

therefore, in this case, By and By must be of rank 1, so condition 2 cannot hold.

Now suppose that ¢ is immersive at H. Since X is not transverse to the cone, there exists an element
(v,w) € T,R?* = R? such that the resulting matrix in the righthandside of eq. isin C'y, and hence
singular. This implies in particular that the rows are linearly dependent, i.e. there exists a scalar a € R
such that such that

o D, & o W, —a o W, . 2 W,
0, Y 70 (Y) o (W) 7 (W)

Now this is equivalent to
_ v v
Vo Vo

. . - . . . v . . .
so a is an the eigenvalue of A = B; 1 B,, with corresponding eigenvector (J) . This contradicts condi-
2
tion 2.
(=) Again we prove the contrapositive. First assume condition 1 does not hold. We assume without
loss of generality that By is singular. Then one of its eigenvalues must be zero. Let (w,ws) be the
corresponding eigenvector, i.e.

oui oy
8’% <y wy + 8y% (y Wy = 0
ez (y 2y
oY1 0y2
Then the first row of 5 5 5 5
o g—g; y) g—éjf(y) o g—;‘;(y) gg; ()
o) G W) Fa)
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vanishes, hence the resulting matrix is of rank lower than 2. If it is the zero matrix, it follows from eq.
that ( is not immersive at H. If it is a matrix of rank 1, the intersection Cyy N Ty # 0, since this matrix
is contained in the intersection. This shows Y is not tangent to the infinitesimal cone field C at H.

Now assume condition 1 holds, but condition 2 does not hold. Then A = Bl_lBg has a real eigenvalue
a € R. Letw = (wy, ws) be the corresponding eigenvector, i.e. Bl_lng = qw. This is equivalent to
Bsw = aBjw which we can write as

(3,% <y>> o (Szg <y>> oy a ((a <y>> - (% <y>> W) |
a—yl(y) @(?/) a—yl(y) a_w(y)
This implies that the rows of

w G 3w Yily) 2(y)
e ) O (y) 9 (y)

are linearly dependent, hence the resulting matrix is of rank lower than 2. Just as above, this implies X is
not tangent to the infinitesimal cone field C at H. The statement follows. O

Remark 4.14. Condition 2 implies that the determinants of the non-singular matrices By and By must
have the same sign. Namely, since A has non-real eigenvalues, the eigenvalues must be a conjugate pair
in particular. Hence the determinant of A is positive. Then it follows from

det By - det A = det B,

that det B; and det By have the same sign. Combining this with the fact that B; and B> have non-zero
determinant, we deduce that the immersions as in Definition are locally divided into two disjoint
families, one with positive Jacobians and one with negative Jacobians at a point y. Namely, let ¢, and
©_ be two immersions, transverse to the infinitesimal cone field C, such that ¢, (y) = ¢_(y) = H and
the Jacobian of ¢ and ¢_ ata pointy € Y are positive and negative respectively. Then the images of
(de4)y and (dy_), in Ty Gr(V') are transversal. These two ways to be be transverse to the infinitesimal
cone field are shown schematically in Figure [4.7]

Let DP™ be a prolonged distribution of type (4,6) with defining triple (M, 7" : M — X, ¢: M —
Gr(T' X)), such that M is a rank-2 bundle over 4-dimensional manifold X. Then M is a 6-dimensional
manifold; The Grassmann bundle Gr(7'X) is a rank-4 bundle over X.

Theorem 4.15 The prolonged distribution D™ is fat if and only if for every x € X, the image ¥, =
©(M,,) of the fiber M, is transverse to the infinitesimal cone field C defined on the Grassmannian
Gro (TIM)

Proof. It suffices that this holds for an arbitrarily chosen point z € X and another arbitrarily chosen point
in its fiber M,,. Letx € X. Lety € M such that 7™ (y) = x and let (x, H) = ©(y) be its image under
the bundle map . Consider the restriction ¢|p, : M, — X, C Gro(T,X) of ¢ to the fiber M, that
maps into the Grassmannian Gry(7, X).
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Figure 4.7: Schematic images (dy_),, and (dy_ ), from the two disjoint families of immersions, one with
negative Jacobians and one with positive Jacobians at a point y.

We have to show that the prolonged distribution D is fat at y € M if and only if the image X, of |,
is transverse to the infinitesimal cone field Cy defined on the Grassmannian Grg(TmM).

Let U C X be an open neighborhood around x together with a chart ¢ : U — R* that maps
e (2t ot

We use the coordinates on the Grassmann bundle induced by these local coordinates on X using co-
vectors, see Chapter and we assume without loss of generality that the choice £ = (1, 2) induces a
chart around H. Then the map |y, expressed in these coordinates in the coordinates (i1, y2) of the

chart around y, is given by
1,1
Hi o Ha
Y1,Y2) == .
w32) <u¥ M%)
This means that the ,uz are the coordinate functions depending on ¥, Y2 so that
o =2 + e + 1,
o = 2t + piat + psat.

definethe plane H C T, X locally. It suffices to show, that the prolonged distribution DPisfataty € M
if and only if the two conditions from Lemma hold for X2, the image of ¢y, . Those conditions are

1. The Jacobians of the first and second pair of coordinate functions of ¢, respectively given by

i Opg ou2 o2
B — (a—yi(y) a—y;(y;> and B, — (a—yl(y) a—yQ(y)) |

oud oud ou3 ou3
a—yl(y) Dy Y ﬂ(@ a—yQ(y)
are non-singular matrices.

2. Theisomorphism A € G Lo(R) given by B; A = By has non-real eigenvalues.
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Note that the first and second pair of coordinate maps of ¢ correspond to the coordinate functions de-
scribing the defining 1-forms a;, as. Hence the B; correspond to the Jacobians J*¢ of the coordinate
functions of the locally defining 1-forms.

First we show day;|perer is non-degenerate if and only if B; = J% is non-degenerate for i = 1,2. We
compute

da1 = d[ﬁl A d[L‘l + d[ﬁg A dIL‘Q

Oy O O )i Oy
= | =—tdzy + ——dw3 + ——d ——Ldy; + ——dy ) Ad
(8@ T2 D T3 024 T4+ o0 Y1 Dy Y2 T

Oy Opts Oy Oyt O
22400 + 2 2day + —2dzy 4+ —2dy; + —2dys | A das.
+ (811 T Dy x3 + D2y g+ oy Y1+ B Y2 T2

We have that dag ]ppm is non-degenerate if and only if da; A dag \me is a (non-degenerate) volume form,
SO we compute

Opi Opy  Opt Opg
dOél A daf1|DPro\ — —2 ( ,ul M2 Iul /‘LQ

— dr; ANdxy Ady; Ad
Oy1 Oys 0ya ay1> ' ’ " v

= —2det Jaldl’l A dxe A dy; A dys.

Note here that the resulting terms of 4-forms not including both da and db in the wedge product vanish
on DP™ since Oy, Oy, € Dr and that indeed only dy; A dys A dzy A da; restricts to a volume form
on DP. Hence da |pel is non-degenerate if and only if J*! is non-degenerate.

Similarly, we compute

dag = du% N dz; + du% A dxg

oud o ot o ot
—d —d —d —dy; + —d Ad
(0@ To + Dy T3+ D4 Ty + oy, Y1 B Y2 1

A3 Opy A3 Op3 0
—=d —=d —=d —=d —=d A dzs.
+ (83:1 r1 + D T3+ Dy T4+ oy Y1+ 90 Y2 T3

and

ou? o2 Ou ou?
doz2/\da2\ppm:—2( HLOHy _ 9K MZ)dxl/\dxg/\dyl/\dyg
Oy Oy 0y Oy

= —2det J*?dx; A dzg A dy; A dys,

implying dag | perol is non-degenerate if and only if J*? is non-degenerate. Now assume that both J*! and
J? are non-degenerate, or equivalently that da |mew and dOé2|Dprol are. Note that we can choose a basis
for H € DP™ given by

{Uh V2, ayp 8yl}a

where the v; have a non-zero component in d,, and no component in d,, for (i,7) € {(1,2),2,1)}.
Since we may rescale, we choose the non-zero component in 0, equal to 1, i.e. v; is of the form 0., +
<40 8%,. Then from the just computed expressions for da; and dag we derive that the rank measure
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R1? satisfies

v — Avg
Vg — Avg
Oy, — A0y,
Oy, = ADy,.

Note that at the point H we have that
DY = H 4 Ty M, C T Gry(TM),

where on the righthandside H is interpreted as the subspace H C T,X. The rank measure R%ﬁ ) at
(x, H) is the linear map H + Ty M, — HT M, given by

Ry (wx,wa,) = (A(wx), A(wa,))

with respect to the basis {vy, va } for H € T, X and the basis {3,,, 9y, } for Ty M,.. Hence R}} has non-
real eigenvalues if and only if A has. This implies that the prolonged distribution D' is fatat y € M if
and only if 3J,, is transverse to the infinitesimal cone field Cy at H.

Since y was chosen arbitrarily, this completes the proof. O

Remark 4.16. Recall resultin Theorem|(3.11] stating that for the (almost) complex Grassmannian that asso-
ciated to a 4-dimensional almost complex manifold X the prolonged distribution D™ is fat. We see now
that this result follows directly from Theorem[4.15] Indeed, the local parametrization ¢ : R? — Gry(7},X)
-which is implicitly used there- is given by

Al — s
()\1,)\2) — <)\2 )\1 )

The corresponding Jacobians, are given by

10 0 —1
Bl—(o 1) and BQ—(1 0),

and, from Lemma4.13} we see that the almost complex Grassmanians are transverse to the infinitesimal
cone.

In fact, we can replace the complex structure J in the proof of in Theorem by J' = F'J - which

again defines a complex structure on 7, X. That means that we consider the complex Grassmannian
Gro(TX,J") ={H € Gry(TX)|J'H = H} instead, where

10 0 O
01 0 O
F= 00 -1 0
00 0 -1

Via the same computations as in the proof of Theorem [3.11| we now obtain that the Jacobians of the
corresponding (lightly adjusted) local parametrization are now given by

, (1 0 , (0 1
Bl_(O _1> and BQ—<1 O>’
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so, again by Lemma it follows that Gro(7°X, J') is transverse to the infinitesimal cone.
Finally, we observe that the determinants of By, By are positive and the determinants of B/, B, are
negative. From the similarity of the charts it follows that this holds in fact for every point in Gro(7'X).
From Remark the two complex Grassmanians

Gr(TX,J)={H € Gry(TX)|JH = H} and Gry(TX,J")={H € Gry(TX)|J'H=H},

associated to the complex structures J and J' on X are transverse.

42



Chapter 5

Fibers inducing fat prolongations

With the machinery developed in Chapter[4] we can deduce some properties of the class of fat prolonged
distributions of type (4, 6) under consideration. The main result of this chapter is showing that for the
family of fat prolonged distributions on a closed fiber bundle manifold M, the fibers of M — X are
forced to be 2-spheres or projective planes.

Again, we consider a 4-dimensional vector space V' and H be a 2-plane in V. We fix a basis {x1, ..., x4}
for V such that o1, x5 span Hy and x3, 74 span the orthogonal complement H* of Hj with respect to
this basis.

We consider the two realizations of the quaternions in G L4(V") given by the spans
Hy = (1,i,j1, ki) and Hy = (1,2, j2, ka),

where [ is the identity map on V' and the imaginary elements are the complex structures on V' given by

0 0 —-120 0O —-1.0 O 00 0 -1
i = 0 O 0 1 i = 1 0 0 O K — 00 -1 0
1 0 0 0]’ 0O 0 0 -1}’ 01 0 0
0 -1 0 O 0O 0 1 0 1 0 O 0
and
0O -1 0 O 00 -1 0 0O 0 0 -1
iy — 1 0 0 0 iy = 00 0 -1 Ky — 0O 0 1 0
0 0 0o 11’ 1 0 O 0 ’ 0O -1.0 0|’
0O 0 -1 0 01 O 0 1 0 0 0

with respect to the fixed basis.

The unit spheres of imaginary quaternions in H; and Hl, are given by
S(imH,;) ={J € Hy: detJ =1}

and

S(imHy) = {J € Hy: detJ = 1}.

We denote them by S; and S5 respectively.
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Remark 5.1. Both S; and Sy are homeomorphic to S2. However, they are disjoint sub-spaces of G L4(V').

For a 2-plane H € Gry(V') there exist precisely two pairs of elements, i.e. complex structures, in these
imaginary unit quaternion spheres such that H is preserved under their action on V. The action of the
rotations that these four H-preserving complex structures induce are illustrated in Figure They are

Figure 5.1: Rotations induced by 4 versions of unit quaternions preserving H, two given by

Ji(H),—J1(H) € Sy and two given by Jo(H ), —Jo(H) € Ss.
distributed evenly over the two spheres, one pair in S and one pair in S,. More precisely, consider the
isotropy group Iso(H) of H with respect to the left action of GL4 (V') on Gry (V') given by

Iso(H) ={AeGL,: AH C H}.

We have that Iso( H ) intersects both unit quaternion spheres in the two pairs of antipodal elements that
also preserve the orthogonal complement H*' e

iso(H) N Sy = {Ji(H), —J (H)}, 1so(H) N Sy = {Jo(H), —Jo(H)}.
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Here the orthogonal complement is with respect to the fixed basis {1, ...x4 }. In fact, J;(H) and J;(H)
represent a well defined element in the projectifization of the imaginary quaternions

[J:(H)] € PS; & RP?
fori € {1, 2}. This allows to introduce two maps
mi: Gro(V) — PS;, i€{1,2}
sending a 2-plane H to the projective class of a complex structures on V' preserving it:

T - H e GTQ(V) — [J,(H)]
Lemma 5.2 The maps 7; are surjective and smooth.

Proof. For every complex structure on V' there is a 2-plane in V' invariant under it, so the maps 7; are
surjective.

Now we show that 7; is smooth. It suffices to show that 7; restricts to a smooth map on the open sets
Gra(V') 2. Without loss of generality, we show this for £ = (1, 2). The calculations are analogous for the
other charts Gr(V') o/ that cover Gra (V).

Recall that xz: Gra(V); — R* & Matyys maps Forall H € Gra(V),,

HHM:CMIWﬁ.

mia Mao2

Finally, we denote by B(H ) is the elementin G L4(V) given by

1 0 mi1 Moy

0 1 Mg Moo
—My11 —My2 1 0
—TM921 —Mo2 0 1

Then 7; o le is given by

M = (m“ m21) — [B(H)z - Ji(Ho) - B™N(H)z), Hy= (21, 22)

mia Ma2

Indeed, B(H)J;(Ho)B~'(H) is a complex structure on V' preserving H and its complement, hence
its projective class is precisely [J(H)]. We then see that m; o £, is smooth, because it involves only
smooth operations in GL4(V') and the map B: Gr(V)z — GL4(V') which is given by the m;;, and
hence smooth.

O

We now look at the fibers of the map ;.
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Proposition 5.3 The fiber of 7; over [J;(H)|, H € Gry(T'X), is given by the complex Grassmanian
GFQ(TX, Jz(H))

Proof. Apoint H € Gry(TX)isinm; '(H), for H € Gry(TX), if and only if
[Ji(H)] = [J:(H)],

which happens if and only if

Ji(H) = +J;(H),
By definition, both JZ(]:I) and its opposite preserve H (and its orthogonal complement), so J;( H ) also
preserves H (and its orthogonal complement), and we have

H e Gry(TX, J;(H)) = {H € Gry(TX)|J;,(H)H = H'}.

From the proposition above, we obtain the following two corollaries.

Corollary 5.4 The map m; is submersive.

Proof. It follows from Proposition from dimension counting. In fact, Proposition implies that
the fibers of m; are embedded submanifolds of real dimension 2. Since m; is a smooth map from a 4-
dimensional manifold with 2-dimensional fibers, the rank of d; is everywhere equal to 2. Finally, since
PS; = RP?is 2-dimensional, this implies that 7; is a submersion. O

Corollary 5.5 The fibers of 7r; are transverse to the fibers of m,.

Proof. Thefibers of m; and 7 are given by the complex Grassmannians associated to the class of complex
structures [J1] and [J5] in S; and S5 respectively. Similar to the complex structures J and J' = F'J in
Remark[4.76] the two pairs of Jacobians of their respective parametrizations at a point of intersection have
opposite sign, which implies that they are transverse since they are transverse to the infinitesimal cone
field. H

In the following, let DP™' be a prolonged distribution of type (4,6) with defining triple (M, 7 : M —
X,p: M — Gr(TX)), such that M is a closed rank-2 bundle over the 4-dimensional manifold X.

For a point x € X we denote the image ¢(M,) by X, like before. We consider the m; now as maps
Gry(TxX) — PS;.

Corollary 5.6 Assume the prolonged distribution DP™' induced by ¢ is fat. Then the immersed fibers
Y. € Gry(T,X) are transverse to the fibers of either 71 or 7.
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CHAPTER 5. FIBERS INDUCING FAT PROLONGATIONS

Proof. By Theorem[4.15] o, is transverse to the infinitesimal cone field C. Now the statement follows from
the observations in Remark[4.74] An immersion ¢ has to be in one of the two families that is transverse
to the infinitesimal cone field, i.e. its Jacobians are positive or negative. Then it has to be transverse to
one of the two complex Grassmannians the two respective pairs of Jacobians have both positive and both
negative determinants. O

The intuition behind the previous two corollaries is given in Figure[5.2]

-\

(dr)u ()

1} [clﬁ,)“

e e T D e

T PS,
[y

Figure 5.2: The fibers of m; and m, are the complex Grassmannians associated to the base point in the
respective spheres S7 and Sy, of which we saw in Remark[4.16]that they are transverse to the cone field
(each in a different way) and in particular they are transverse to each other. In this picture their tangent
spaces are represented the horizontal and vertical lines. The immersed fiber given by (dy),(7,Y) €
Grg(TxX) that is transverse to the cone field must be transverse to the fibers of either 7 or 5. In this
picture it is represented by the blue line transverse to the fibers of dms.

Proposition 5.7 Assume the prolonged distribution DP™ induced by ¢ is fat. Consider the immersed
fiber ... Then one of the two restricted maps 7 \gz and 7r2|gz is a surjective submersion.

Proof. We have that 32, has to be transverse to the fibers of one of the two projections. Without loss of
generality, say it is transverse to the fibers of 5. Since M is closed, also its fibers are closed, implying that
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CHAPTER 5. FIBERS INDUCING FAT PROLONGATIONS

Y], is closed as well. Recall that ¢ is an immersion of a 2-dimensional manifold into the 4-dimensional
manifold GrQ(TxX). Then since 74 is a surjective submersion and its fibers are 2-dimensional Wz‘gl,
7T2‘2m is a surjective submersion. O

Theorem 5.8 The immersed fiber 3, is homeomorphic to RP? or S2.

Proof. One of the projections ; is a surjective submersion. X is 2-dimensional and so is RP2. Hence T;
is a covering map. The only two covering spaces of R P? are R P% and .52, hence X must be homeomorpic
to one of them. 0O
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Conclusion

In this thesis, we focused on co-rank 2 distributions that are induced by the canonical distribution on the
Grassmann bundle of 2-planes of a manifold. We defined this class of distributions and refer to them as
prolonged distributions. We restricted further to distributions of type (4, 6) and investigated the neces-
sary and sufficient conditions for distributions in this class to be fat.

We first looked at rank-2 fiber bundles M with a 4-dimensional almost complex base manifold (X, .J).
We considered the sub-bundle of complex Grassmannians Gra(7'X, J) in Gra(7'X'). We showed that
the prolonged distribution DP™' of this sub-bundle is a fat distribution of co-rank 2. In order to prove this,
we used a local frame adapted to J on X; we expressed the defining 1-forms in terms of this frame and
showed that their differentials restrict to non-degenerate 2-forms on D and the rank measure relating
them has non-real eigenvalues.

Then we introduced the degenerate cones corresponding to a pointin the Grassmannian and the (related)
infinitesimal cone field. We showed that for a rank-2 fiber bundle M over a 4-dimensional manifold X,
the infinitesimal cone field on a fiber of Gro(7'X') detects fatness for the prolonged distribution D" of
type (4,6) on M in the sense of Theorem Drl s fat if and only if the immersed fibers -via the
bundle map- of M are transverse to the cone field on the associated fiber of Gro(7°X). In order to show
this local characterization of fatness, we first proved a technical result, Lemmal4.13| relating tranversality
to the cone field to properties of the Jacobians of the defining 1-forms: the eigenvalues of the linear
map relating them should have non-real eigenvalues in particular. These eigenvalues re-appeared as the
eigenvalues of the rank measure in the proof of Theorem|4.15

This Theorem has strong topological consequences for the admitted fibers of the bundle M in case it
is closed as a manifold and its prolonged distribution DP™' is fat. Namely, in case M is closed and its
prolonged distribution is fat, the fibers of M are either 2-spheres or projective planes. This is stated in
Theorem|5.8) the main result of this thesis. We showed this by defining two surjective submersions from
a fiber of M onto RP?, where for each such map RP? is represented by the projectification of one of
the two copies of the imaginary quaternion unit sphere in G L4 respectively. We proceeded by showing
that the immersed fiber of M is transversal to the fibers of one of the two projections, using that they are
transversal to the infinitesimal cone field, by Lemma From this we deduced that either one or the
other projection restricts to be a surjective submersion from the fiber of M onto R P?, implying that the
fiber is a covering map for R P2, which implies the result.
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Outlook

There are several questions that arise after obtaining these results, just as interesting directions to look
into.

Concluding the findings in this thesis

One of the aims we discussed at the start of this thesis was to find concrete examples of fat distributions
of co-rank greater than 1, not associated to holomorphic contact structures. We provided new families
for which this definitely seems the case, but it remains to show this formally. It would be interesting to
work this out for manifolds not allowing a complex structure for example.

More specifically, it would be interesting to see if there exist indeed examples of fiber bundles M inducing
fat prolonged distributions with projective planes as fibers. In that case it is even more unlikely that the
distribution is associated to a holomorphic contact structure. We have evidence that if an immersed fiber
. starting at a center point in one of the charts of the the Grassmannian passes through the center point
of its antipodal chart, it is a sphere. Namely, we suspect this can be shown using a Morse function: on
chart Gry(7T, X )2 U Gra(T,X) o1 givenby f : Gro(T, X )z UGro(T, X )1 — R, such that

n det M
det N + det M~

Moreover, we suspect that if we do not cross the antipodal point, we intersect the antipodal degener-
ate cone (at the antipodal point) in a circle, which would hint at the possibility for fibers that are indeed
homeomorphic to RP? as it seems like one could glue the disc formed by Y of the first chart over this
circle.

f:N: M]

Next to this it would be interesting to investigate if we can deduce what the homotopy classes of fat
prolonged distributions are with the tools introduced in this thesis.

Higher dimensional analogues

We think that classification results of a similar nature as for the (4, 6) case we focused on this thesis can
be found for co-rank 2 fat prolonged distributions of rank greater than 4 using generalized techniques. In
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CHAPTER 7. OUTLOOK

particular, we suspect that there is an analogue for the relation of the degenerate cone and the induced
infinitesimal cone field with fat prolonged distributions for higher dimensions.

The definition for the degenerate cone generalizes to higher dimensions.

Definition 7.1 Let V' be a vector space and consider the co-rank k Grassmannian Grg (V). Let H be a
pointin Gr (V). The degenerate cone € of H in the Grassmannian Gr (1) is the subvariety of Grg (V)

given by
{H e Gry(V): H #§ H}

In the same way, an infinitesimal cone field is defined.

Definition 7.2 Let V' be a vector space and consider the co-rank k Grassmannian Grg (V). The infinites-
imal cone field C on the Grassmannian Gr (V') is a field of subverieties of the tangent space, point-wise
given by

Cy = {Q €Ty Gl’k(V)Z rankQ < k}

The approach to prove a higher dimensional version of Theorem [4.15] would be to fist generalize the
technical Lemma

Higher co-rank fat distributions

We believe that a new class of fat distributions of co-rank greater than 2 can be identified: One can con-
struct fat distributions of co-rank k£ on a manifold M admitting k& — 1 transversal fibrations with almost
complex structures on the fibers.

The approach we use for this is based on the proof of Rayner's Theorem (from [12]), where one of the key
ingredients for the existence of formal fat distributions is the existence of several distinct representations
of Clifford algebras, which correspond to linear complex structures on the tangent spaces. The idea of the
construction that would define the new class of examples is that the almost complex structures on the
fibers of the transversal fibrations could be a global realization of a distribution for which at each point
the complex structures on the fibers correspond to the representations of Clifford algebras from Rayner’'s
Theorem. We intend to use the prolongation techniques used in this thesis in this generalized setting to
generate a fat prolonged distributions of higher co-rank.
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