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Abstract

A distribution is a smooth sub-bundle of the tangent bundle of a givenmanifold. It can represent a physical

system with restrictions on the degrees of freedom. Bracket generating distributions are a distinguished

class of interest in control theory: when the restriction on the system is given by a bracket generating dis-

tribution, any configuration (e.g. position and orientation) can be obtained using the restricted directions

only.

This thesis focuses on fat distributions (also called strongly bracket generating distributions), which are,

in a sense, the most extreme case of bracket generating distribution. A lot is known about co-rank 1 fat

distributions (also called contact distributions), but much less is known for higher co-ranks.

We focus on co-rank 2 distributions that are induced by the canonical distribution on the Grassmann

bundle of 2-planes of a manifold. We define this class of distributions and refer to them as prolonged

distributions. To be precise, we look at co-rank 2 sub-bundles of the Grassmann bundle Gr2(TX) of

a 4-dimensional manifold X . We consider the canonical distribution on Gr2(TX) and restrict it to the

given sub-bundle. The main question we investigate is under what conditions this restriction defines a fat

distribution on the sub-bundle manifold.

Our contributions go in two directions.

First, we assume the 4-dimensional base manifoldX to be endowed with an almost complex structure J .
We consider the rank-2 sub-bundle of the Grassmann bundle consisting of the 2-planes invariant under
the almost complex structureJ . This sub-bundle forms a 6-dimensionalmanifold and the fibers are in fact

complex Grassmannians. We show that the prolonged distribution of this sub-bundle is a fat distribution

of co-rank 2.

Furthermore, we consider a rank-2 fiber bundle M over a 4-dimensional base manifold X and a bun-

dle map that mapsM into the Grassmann bundle Gr2(TX); we identify necessary and sufficient local

conditions for the bundle map to induce a fat prolonged distributionD of co-rank 2 on the fiber bundle

M . More precisely, we show that requiring the prolonged distributionD onM to be fat is equivalent to

requiring that the fibers ofM –that map into the corresponding Grassmannian-fiber via the bundle map–

are transverse to what we call the infinitesimal cone field on the Grassmannian. As a consequence, we

show that, in this case, ifM is closed, the fibers ofM are either 2-spheres or projective planes, which is

the main result of this thesis.
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Introduction

Distributions (also called tangent distributions) are smooth sub-bundles of the tangent bundle of a mani-

fold. More precisely,

Definition 1 LetM be an n-dimensional manifold. A (smooth) distribution (or tangent distribution)D of

rank r and co-rank k onM of dimension is a (smooth) rank-r sub-bundle of the tangent bundle TM ,

i.e. n = r + k.

They can represent a physical system with restrictions on the degrees of freedom. Consider parallel park-

ing a car, canoe or spaceship: common sense tells us we can park even though we can not move sideways

directly. In geometrical terms, the fact that any configuration (e.g. position and orientation) can be ob-

tained using the restricted directions only, would correspond to a bracket generating distribution on the

configuration space.

Definition 2 A distribution D on a manifoldM is called bracket generating at x ∈ M , if the tangent

space TxM is spanned by

TxM = 〈Dx, [D,D]x, [D, [D,D]]x, . . . 〉.

Here [D,D]x is the subspace defined by

[D,D]x = {[V,W ]x | V,W ∈ ΓD}.

The other spanning elements are given analogously. The distribution is bracket generating if it is bracket

generating at every point x ∈M .

Even though distributions are well-studied objects, only some specific classes are well understood.

Classification problem

The classification of bracket generating distributions up to homotopy is known to be a challenging prob-

lem, see for example [4]. However, there are classification results for specific classes of bracket generating

distributions and specific families therein, often for fixed step, dimension and rank.
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CHAPTER 0. INTRODUCTION

An important tool used to classify many classes of distributions is the h-principle introduced in 1973 by

Gromov, see [7].In particular, the h-principle provided a classification for distributions –and in fact many

more geometric structures– on open manifolds. That leaves us with the classification problem up to ho-

motopy on closed manifolds for these geometric strutures.

In the literature is suggested that bracket generating distributions satisfy the h-principle when they are not

maximally non-integrable. Evidence in this direction is provided in [9]. Intuitively speaking, a distribution

is maximally non-integrable when it has as many non-trivial Lie brackets as possible (implying that it is

bracket generating). Giving a more precise definition (which depends on rank and dimension) is rather

involved and out of the scope of this thesis; here it suffices to say that the class of distributions we focus

on is maximally non-integrable.

Contact and even-contact distributions

The most famous class of non-integrable bracket generating distributions is probably the class of contact

distributions.

Definition 3 A distributionD of co-rank 1 on an n-dimensional manifoldM is called contact at x ∈M
if for every non-zero vector field V in ΓD there exists a vector fieldW in ΓD such that TxM is given

by the span

TxM = 〈Dx, [V,W ]x〉.

IfD is contact at all x ∈M we callD a contact distribution.

Contact distributions appear onmanifolds of odd dimension only. They can be seen as homogeneous ver-

sions of symplectic structures. Therefore a lot ofmachinery from the symplectic context can be applied. In

the contact setting there exists an equivalent for the Darboux Theorem, that provides a local normal form

for symplectic structures. Moreover, contact distributions present global stability due to Gray’s Theorem,

which is analogous to Moser’s stability Theorem in symplectic geometry.

Contact distributions on openmanifolds were classified in 1973 as a particular case of the aforementioned

h-principle. However, there was also progress in the classification for closedmanifolds. In 1989 Eliashberg

defined and classified 3-dimensional overtwisted contactmanifolds, see [6]. He used the h-principle ideas,

but specific to the contact setting. Later in the 2010’s rapid developments took place regarding contact

structures in dimension at least 5. Overtwisted contact manifolds were defined and classified.

Next to contact distributions we have the so-called even-contact distributions which appear on evenman-

ifolds only. A complete classification via the h-principle is given by McDuff, see [10].

Distributions of higher co-rank

Up to dimension 6 there are already quite some classification results for bracket generating distributions

of co-rank greater than 1. Due to the properties of the Lie bracket, the only types of maximally non-

integrable bracket generating distributions that can appear for dimensions 3 to 6 are: (2, 3, 4), (3, 5),

iv



CHAPTER 0. INTRODUCTION

(2, 3, 5), (3, 6), (4, 6), and (2, 3, 5, 6).

For type (2, 3, 4) distributions, also called Engel structures, the sub-classes loose and overtwisted are in-

troduced and classified by the h-principle, in [3] and [5] respectively. It is still an open question if there exist

more classes of maximally non-integrable bracket generating distributions of this type and this question

seems hard to address.

For the (2, 3, 5) distributions, called Cartan structures, the overtwisted class has been defined recently

and it has been shown that the h-principle holds for this class, see [13]. Similarly to Engel’s structures, it

is unclear whether there exist more classes of maximally non-integrable distributions of this type next to

the overtwisted class.

The full classification for type (3, 5), (3, 6) are presented in [9], also via the h-principle.

The bracket generating distributions of type (4, 6) divide into two classes: hyperbolic and elliptic. The

terminology originates from quadratic forms that can be defined for this specific type (see [11]). The

hyperbolic class was classified by means of h-principle type techniques in the same work [9]. The elliptic

class is in fact precisely the class of fat distributions of type (4, 6).

Definition 4 A distributionD on a manifoldM is called fat (or strongly bracket generating) at x ∈M , if

for every choice of vector field V ∈ ΓD that is non-zero at x we have that TxM is equal to the span

TxM = 〈Dx, [V,D]x〉.

Here [V,D]x is the subspace defined by

[V,D]x = {[V,W ]x | W ∈ ΓD}.

The distribution is fat if it is fat at every point x ∈M .

In this same work [9], the authors conjecture that the h-principle does not hold for the elliptic class, i.e. the

fat class. This implies that techniques of a different nature than the h-principle should be used for their

classification. In this thesis we explore exactly that area, concerning the fat distributions of type (4, 6).

Structure of the thesis

In Chapter 1 we introduce several sub-classes of distributions, in particular fat distributions, the central

objects of this text, and state Rayner’s theorem about the admissible ranks for fat distributions. Then we

introduce curvature and define some equivalent formulations for fatness in co-rank 1 and 2.

Chapter 2 provides a brief recap of the Grassmannian, the Grassmann bundle and coordinates on them.

In Chapter 3, we first review the canonical distribution on the Grassmann bundle of a manifold, Then we

look at co-rank 2 fiber bundlesM over a 4-dimensional manifoldX with a bundle map into Grassmann

bundle Gr2(TX); we consider the canonical distribution on Gr2(TX)which induces a distribution onM
via the bundle map, which results into the so-called prolonged distributions. Within this framework, we

state and prove one of the main results of this thesis, Theorem 3.11.

v



CHAPTER 0. INTRODUCTION

Theorem 1 Let (X, J) be 4-dimensional manifold endowed with an almost complex structure J . Then,
the canonical distribution on Gr2(TX) restricts to a fat distribution on the complex Grassmannian bun-

dle Gr2(TX, J) of J -invariant 2-planes.

In Chapter 4 we introduce the so-called infinitesimal cone field; we identify characterizing local properties

for fat prolonged distributions of type (4, 6) in terms of the infinitesimal cone field. The main result of

this chapter, Theorem 4.15, states that the fibers of the fiber bundle M have to be transverse to the

infinitesimal cone field in order to induce a fat prolonged distribution.

Theorem 2 LetM be a rank 2 fiber bundle over a 4-dimensional manifoldX with a bundle map that

maps into Gr2(TX). The canonical distribution on Gr2(TX) induces a fat distribution onM if and only

the fibers ofM map into the Grassmannian-fibers of Gr2(TX), transversely to the infinitesimal cone

field C from Definition 4.9.

In Chapter 5, we use the characterization of fatness in terms of the infinitesimal cone field to obtain topo-

logical constraints on the fibers of a rank 2 fiber bundle over a 4-dimensional manifoldX with a bundle

map that maps into Gr2(TX), such that its prolonged distribution is fat – Theorem 5.8, which is the main

result of this thesis.

Theorem 3 LetM be a co-rank 2 sub-bundle of Gr2(TX) that is closed as a manifold. If the canonical

distribution on Gr2(TX) restricts to a fat distribution onM , then the fibers ofM are homeomorphic

to either spheres or projective planes.
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Chapter 1

Distributions

In this chapter we introduce several of the many well studied sub-classes of distribution, in particular

the class of fat distributions, that are the central objects of this text. In computations later in this text, it is

convenient to use alternative descriptions for fatness. Therefore, after introducing the needed notions, we

state several equivalent definitions. Explicitly for co-rank 1 and 2 we give even simpler characterizations.

1.1 Distributions and integrability

We start with a fundamental sub-class of distributions that ismost opposite to the distributions of concern

in this text. It is the class of distributions that are inducedby foliations. A foliation on amanifoldM consists

of a smooth partition ofM into sub-manifolds, whose tangent spaces define a distribution onM . More

precisely,

Definition 1.1 LetM be an n-dimensional manifold. A foliationF of rank r onM is a partition {Li}i∈I
ofM into disjoint connected sub-manifolds Li, i ∈ I , called the leaves of F , such that the following

holds. For all x ∈M there exists an open neighborhood U and a submersion

f : U → Rn−r,

with the property that, for all i such that Li ∩ U is non-empty, there exists xi ∈ Rn−r such that

Li ∩ U = f−1(xi).

For any rank-r foliationF , one has the induced rank-r distribution TF , consisting of the tangent spaces

to the leaves ofF . In Figure 1.1 we illustrate an example of a distribution induced by a foliation.

Foliations, and their tangent distributions, play a central role in a variety of fields, such as the theory of

integrable systems, non-commutative geometry, and Poisson geometry. Closer to the spirit of this thesis,

important results concerning the classification up to homotopy of foliations can be found in work by A.

Haefliger, see [8], and W. Thurston, [14].
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1.1. DISTRIBUTIONS AND INTEGRABILITY CHAPTER 1. DISTRIBUTIONS

Figure 1.1: Example of a distribution induced by a foliation.

This leads to one of the simplest questions we can ask about distributions: whether they are tangent to

foliations. This is also known as the integrability problem.

Definition 1.2 LetD be a distribution onM . We say thatD is integrable if it is induced by a foliation on

M . That is, for every point x inM there exists a leaf Li ofF such that

Dx = TxLi

The famous Frobenius theorem relates this to the following property.

Definition 1.3 Let D be a distribution onM . We say that D is involutive if it is closed with respect to

the Lie bracket of vector fields, i.e.

[X,Y ] ∈ Γ(D), for allX,Y ∈ Γ(D).

Here, Γ(D) denotes the set of sections of the vector bundleD onM , that is, vector fields onM tangent

toD.

Now the afore mentioned Frobenius theorem states that involutivity of a distributionD is equivalent to

the requirement forD to be tangent to a foliation.

Theorem 1.4 (Frobenius) A distributionD is tangent to a foliatonF ,D = TF if and only if it is involu-

tive.

In the general setting, taking Lie brackets of vector fields tangent to a distribution D results in a flag of

2



1.2. BRACKET GENERATING DISTRIBUTIONS CHAPTER 1. DISTRIBUTIONS

linear sub-spaces of the tangent space TM . Rather than looking at the set Γ(D) of sections of D, one

looks at the sheaf ΓD of local sections ofD. Taking iterated Lie brackets results in a flag

Γ1
D ↪→ Γ2

D ↪→ Γ3
D ↪→ . . .

of sub-sheaves of the sheaf of vector fields onM , where Γ1
D := ΓD and

Γi+1
D := Γi

D + [ΓD,Γ
i
D], i ≥ 1.

D is called regular if the sheaves Γi
D are sheaves of sections of vector sub-bundles of TM . That is,

Definition 1.5 A distributionD onM is called regular if there exists a flag of vector sub-bundles of TM

D ↪→ D2 ↪→ D3 ↪→ . . .

such that the set of global sections ofDi is precisely the set of global sections of the sheaf Γi
D , that is

Γ(Di) = Γi
D(M).

The corresponding integer list of the dimensions of these sub-sheafs at a given point is called the growth

vector, a fundamental numerical invariant associated to the distribution.

Definition 1.6 The growth vector of a regular distributionD is the vector

(rank(D), rank(D2), . . . , rank(Dr))

where r is the minimal integer such that rank(Dr) = rank(Dr+1).

Definition 1.7 A distributionD onM is called regular when its growth vector is constant onM .

An elegant introduction to these notions and related concepts is provided in the book [11] by R. Mont-

gomery.

1.2 Bracket generating distributions

We focus on a sub-class of regular distributions that are so-called bracket generating; these are the distri-

butions for which the growth vector reaches the dimension ofM . This means that eventually the entire

tangent space is spanned by taking k − 1 nested Lie brackets of horizontal vector fields, i.e. vector fields

tangent to the distribution.

3



1.2. BRACKET GENERATING DISTRIBUTIONS CHAPTER 1. DISTRIBUTIONS

Definition 1.8 A regular distributionD onM is called step-k bracket generating if

Dk = TM.

For a bracket generating distributionD the growth vector denotes the type of the distribution.

Note that, for a bracket generating distribution, the last integer of the growth vector indicates the di-

mension of the manifold. From the properties of the Lie bracket follows that a necessary condition for a

manifoldM to admit a bracket generating distributions of step higher than 1 is that the dimension ofM
must be at least 3. A basic example is given below.

Example 1.9. We considerR3 with coordinates {x, y, z}. An example of a bracket generating distribution

D onR3 is point-wise given by the span

Dp = 〈∂y, ∂x + y∂z〉, p ∈ R3.

This distributions is illustrated in Figure 1.2. Note that this distribution is of type (2, 3). 4

Figure 1.2: Bracket generating distribution D on R3 is point-wise given by the span Dp = 〈∂y, ∂x +
y∂z〉, p ∈ R3.

An important property of bracket generating distributions is given by Chow’s theorem.

Theorem 1.10 (Chow) Let D be a bracket generating distribution onM . Then, for all p, q ∈ M there

exists a path

γ : [0, 1] →M,

such that γ(0) = p, γ(1) = q and γ is tangent toD.

Returning to applications in control theory: a system with restricted degrees of freedom corresponding

to a bracket generating distribution has the property that every two points in the configuration space can

be reached using the restricted directions only.

4



1.3. THE CANOE VERSUS THE SPACESHIP CHAPTER 1. DISTRIBUTIONS

1.3 The canoe versus the spaceship

Fat distributions can be considered the most extreme class of maximally non-integrable distributions,

since it is as far away from being integrable as possible.

Definition 1.11 A distributionD on amanifoldM is called fat (or strongly bracket generating) at x ∈M ,

if for every choice of vector field V ∈ ΓD that is non-zero at x we have that TxM is equal to the span

TxM = 〈Dx, [V,D]x〉.

Here [V,D]x is the subspace defined by

[V,D]x = {[V,W ]x | W ∈ ΓD}.

The distribution is fat if it is fat at every point x ∈M .

We properly introduce fat distributions and tools to study them in the next chapter.

Fat distributions do not appear with type (4, 6) only. In fact, all contact distributions are fat. They form

exactly the set of fat distributions with co-rank 1. For higher co-rank fat distributions, the type (4, 6) class
is naturally the first candidate to look at, due to the following result by Rayner.

Theorem 1.12 (Rayner) SupposeD is a rank r-distribution onM with dimM = n. IfD is fat then r is
divisible by 2 and if r < n − 1, then r is divisible by 4. SupposeD is a rank k-distribution onM with

dimM = n. IfD is fat then the following numeric constraints hold

• k is divisible by 2 and if k < n− 1, then k is divisable by 4.

• k ≥ (n− k) + 1

• The sphere Sk−1 admits n− k linearly independent vector fields.

Conversely, given any pair (k, n) satisfying the above, there is a germ of fat distribution of type (k, n)

Indeed, for a non-contact, fat distribution D onM , we have that the rank r must be divisible by 4. The
first co-rank above 1 is 2, so (4, 6) is the first type for which a fat distribution can be encountered. Unlike

in the contact setting, only very few examples of fat distributions with co-rank 1 are known, even fewer

for co-rank greater than 2. A known family of examples is induced by holomorphic contact distributions,

see [1, Example 2.3, p. 4].

Example 1.13. A hololomorphic contact distribution of type (2r, 2r + 1) on a manifold of complex di-

mension 2r + 1 induce a real fat distribution of type (4r, 2r + 2) on the underlying real manifold. 4

In particular this implies that a holomorphic contact distribution of type (2, 3) induces a fat distribution

of type (4, 6). A natural question that arises now is if there are also examples of fat distributions that are

5



1.3. THE CANOE VERSUS THE SPACESHIP CHAPTER 1. DISTRIBUTIONS

Figure 1.3: Configuration space of the canoe: R2 × S1

not associated to holomorphic contact distributions. In this thesis we provide a new concrete family of

such examples, which are natural candidates to answer this question.

Example 1.14. Assumewe paddle a canoe on the water. Our configuration space consists of the positions

of the canoe on the 2-dimensional water surface and its orientations, see Figure 1.3. Together this forms

the 3-dimensional manifoldM = R2 × S1 for which we use the (local) coordinates p = (x, y, θ). We

have control over (combinations of) the following two movements: we can rotate the canoe, changing

the orientation, and we can paddle the canoe forward and backward in the direction of its orientation,

changing the position. This corresponds to a type (2,3) distributionDcanoe on TM spanned by the vector

fields V,W given by

V = ∂θ

W = cos(θ)∂x + sin(θ)∂y

In order to check if the distributionDcanoe is fat, we compute

[V,W ] = − sin(θ)∂x + cos(θ)∂y.

Note that for any p ∈M , indeed

TpM = 〈Vp,Wp, [V,W ]p〉.

HenceDcanoe is fat. In particular, sinceD is a co-rank 1 distribution, it is contact. 4

Other well-known examples of distributions appear in the context of principal bundles. LetM be the total

space of a principal bundle and let the distributionD be given by the horizontal space for a connection∇
onM . Note that if∇ is a flat connection,

[X,Y ] = 0, for allX,Y ∈ ΓD.

6



1.3. THE CANOE VERSUS THE SPACESHIP CHAPTER 1. DISTRIBUTIONS

Figure 1.4: Configuration space of the spaceship: R3 × S2

HenceD is very far from being fat, in fact it is a foliation. In fact, the terminology “fat” has its origin from

this context: in [15] a connection on a principal bundle is called fat when it is very far from being flat,

i.e. it has “a lot of curvature”. However, the definition of fat is more subtle than just not being flat. This

is illustrated in the next example, where we take the canoe from Example 1.14 to a higher dimensional

setting.

Example 1.15. Analogous to Example 1.14, assume we drive a spaceship in the galaxy. The configuration

space consists of the positions of the ship in the 3-dimensional galaxy and its orientations, see Exam-

ple 1.15. This forms the 5 dimensional manifoldM = R3 × S2 for which we use the local coordinates

p = (x, y, z, θ, ϕ). We have control over (combinations of) the following movements: rotation in both

angles, changing the orientation of the spaceship, and moving forward an backward, changing the posi-

tion. This corresponds to a type (3,5) distribution Dship on TM spanned by the vector fields V1, V2, V3
given by

V1 = ∂θ

V2 = ∂ϕ

V3 = cos(ϕ)(cos(θ)∂x + sin(θ)∂y) + sin(ϕ)∂z

In order to see thatDship is not fat it suffices to show that, for the choice of vector V1 at any point p, the
tangent space TpM can not be spanned byDp, [V1, V2]p, [V1, V3]p. Indeed, at any point p we have that

[V1, V2]p = 0.

4

7



1.4. CURVATURE CHAPTER 1. DISTRIBUTIONS

1.4 Curvature

In this section we make precise what is meant by curvature. In order to do so we start with the following

lemma.

Lemma 1.16 LetD be a distribution on amanifoldM . Then themap F̂ : Γ(D)×Γ(D) → Γ(TM/D)
given by

(V,W ) ∈ Γ(D)× Γ(D) 7→ [V,W ] mod Γ(D)

isC∞(M) linear in both entries.

Proof. The map F̂ is skew symmetric, so it is enough to show

[fV,W ] = f [V,W ] mod Γ(D)

for all f ∈ C∞(M) and V,W ∈ Γ(D). We have that

[fV,W ] = −W (f) · V + f · [V,W ]

and V ∈ Γ(D), which implies the statement.

Because of the lemma above, the map F̂ is induced by a bundle map.

Definition 1.17 LetD be a distribution on a manifoldM . The curvature ofD is the linear bundle map

F :
∧2D → TM/D point-wise given by

Fx(v, w) = −[V,W ],

where x ∈M , v, w ∈ Dx and where V,W ∈ Γ(D) are vector fields extending v, w respectively.

Remark 1.18. A distribution D is involutive if and only if its curvature vanishes everywhere. On the con-

trary, a distributionD is fat if and only ifF (v, ·) : D → TM/D is surjective everywhere for all v ∈ Γ(D).

The simpler characterizations of fat distributions we promised at the start of this chapter are closely re-

lated to the dual of the curvature.

Definition 1.19 LetD be a distribution on amanifoldM . We define the annihilator bundleD⊥ ∈ T ∗M
ofD as the bundle of co-vectors annihilatingD.

Remark 1.20. The annihilator bundle D⊥ is canonically dual to TM/D. Hence we can express the dual

of the curvature map as F ∗ : D⊥ →
∧2D∗.

8



1.4. CURVATURE CHAPTER 1. DISTRIBUTIONS

Definition 1.21 The linear bundlemapF ∗ : D⊥ → Λ2D∗ given by the dual of the curvatureF is called

the dual curvature map. Explicitly F ∗ is given by

F ∗(α)(v, w) = α(−[V,W ])

for V,W ∈ ΓD.

Proposition 1.22 The dual curvature map is given by

F ∗(α) = dα|D.

Proof. Let α ∈ D⊥ and letX,Y ∈ ΓD. We have Cartan’s formula

dα(X,Y ) = Xα(Y )− Y α(X)− α([X,Y ]). (1.1)

Since α annihilatesD, α(X) = α(Y ) = 0 and it follows that α(−[X,Y ]) = dα(X,Y ).

Proposition 1.23 Suppose D is a co-rank k distribution on a manifoldM . Then D is fat at x ∈ M if

and only if

ω(α) = dα|D
is a non-degenerate 2-form onD at x, for all α ∈ D⊥ that are non-vanishing at x.

Proof. If we assumeD is fat at x ∈M , i.e. for allX ∈ ΓD and for allW ∈ TM/D, both non-zero at x,
there exists a Y ∈ ΓD such that

[X,Y ] = W.

This is equivalent to requiring that there exists a Y ∈ ΓD such that

α([X,Y ]) = 1

for allX ∈ ΓD and for all α ∈ D⊥, both non-zero at x. Via the same reasoning in the proof of Proposi-

tion 1.22, this is equivalent to requiring that there exists a Y ∈ ΓD such that

−dα(X,Y ) = 1

for allX ∈ ΓD and for all α ∈ D⊥, both non-zero at x. I.e., dα|D is non-degenerate at x.

We have that D⊥ is a k-dimensional vector sub-bundle of T ∗M . Hence, locally, D can be described as

the intersected kernels of some k (independent) 1-forms.

Definition 1.24 Let D be a co-rank k distribution on M . A collection α1, . . . , αk of 1-forms in D⊥

satisfying

D = kerα1 ∩ · · · ∩ kerαk

9
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on an open subset U ofM is called a set of (locally) defining 1-forms forD on U .

Note that a set of locally defining 1-forms locally generateD⊥. This description allows for amoreworkable

equivalent definition of fat. For co-rank 1 the alternative description is straightforward.

Corollary 1.25 Suppose D is a co-rank 1 distribution on an n-dimensional manifoldM . Let x ∈ M
and letD be defined by a 1-form α in a neighborhood U of x. ThenD is contact (i.e. fat) if and only if

ω = dα|D is non-degenerate.

Proof. Since D is of co-rank 1, D⊥ is of rank 1 and α is non-vanishing on U . Hence D⊥
x is given by the

linear span of αx. Let α
′ ∈ D⊥. Then α′

x = cαx for some c ∈ R. Now since

d(cα)|D = cdα|D,

if follows from Proposition 1.23 thatD is contact if and only if ω = dα|D is non-degenerate at x.

Example 1.26. We consider the distributionDcanoe corresponding to the canoe of Example 1.14. Note that

Dcanoe can be expressed via the locally defining 1-form

α = sin(θ)dx− cos(θ)dy.

I.e. we have thatDcanoe = kerα. Now we compute

dα = cos dθ ∧ dx+ sin dθ ∧ dy,

andwe see that dα|Dcanoe is indeed non-degenerate onDcanoe. This shows once again thatDcanoe is contact.

4

A more general equivalent description of fatness is the following.

Proposition 1.27 SupposeD is a co-rankk distribution on ann-dimensionalmanifoldM defined locally

by a pair of 1-forms α1, . . . , αk. ThenD is fat at if and only if the following conditions hold.

1. Each ωi = dαi|D is non-degenerate, i.e. symplectic, for i = 1, . . . , k.

2. At any point x and for any 0 6= v ∈ Dx we have that

co-rank(v⊥1 ∩ · · · ∩ v⊥2) = k,

where v⊥i denotes the symplectic complement of {v} with respect to ωi.

It follows as an immediate generalisation of the description given in [1, p. 4] for co-rank 2.

10
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Definition 1.28 SupposeD is a distribution of co-rank k on manifoldM . Let U be an open inM and

let ω1, ω2 be two non-degenerate 2-forms defined on D|U . The rank measure of the pair ω1, ω2 is the

unique local automorphismR1,2 : D|U → D|U defined by

ω1(·, R·) = ω2(·, ·).

For a distributionD of co-rank k ≥ 2, any pair of annihilating 1-forms α1 and α2 generates a sub-bundle

〈α1, α2〉 ⊂ D⊥. However, if we have thatωi = dαi|D is non-degenerate for i = 1, 2, it is not guaranteed
that all non-zero 1-forms in 〈α1, α2〉 satisfy this property, which is required forD to be fat. We need an

additional condition on the pair α1, α2. This results in the corollary below for co-rank 2 distributions, as

shown in [1, Prop. 2.1, p. 4].

Corollary 1.29 SupposeD is a co-rank 2 distribution on an n-dimensional manifoldM defined locally

by a pair of 1-forms α1, α2. ThenD is fat if and only if the following conditions hold.

1. ωi = dαi|D is non-degenerate for i = 1, 2.

2. The rank measureR1,2 : D → D relating ω1 to ω2 has no real eigenvalues.

Proof. Locally the annihilator bundleD⊥ is generated by α1 and α2.

(⇒) Suppose D to be fat. Then, by Proposition 1.23, we have that ω(α) = dα|D is a non-degenerate

2-form on D for all 0 6= α in the annihilator bundle D⊥. In particular this holds for ω1 = dα1|D and

ω2 = dα2|D , hence the first property is satisfied. We prove the second property by contradiction. Assume

that at a point x ∈ M the rank measure R12 has real eigenvalue λ with corresponding eigenvectorX .

Then we have that

ω1(·, X) = ω2(·, R12X)

= ω2(·, λX)

= λω2(·, X).

This implies that ω1 − λω2 is a degenerate 2-form. Now we observe that

ω1 − λω2 = dα1|D − λdα2|D
= d(α1 − λα2)|D.

Hence d(α1 − λα2)|D is degenerate. But α1 − λα2 is an element in the annihilator bundleD⊥, so this

contradicts Proposition 1.23. HenceR12 does not have a real eigenvalue.

(⇐) Suppose conditions 1) and 2) hold. It suffices to show that every element β in the annihilator bundle

D⊥ satisfies that dβ|D is non-degenerate. Let β be an element of the annihilator bundle D⊥. Then

β = c1α1 + c2α2, for some scalars c1, c2 ∈ R. If either c1 or c2 is equal to zero we have that dβ|D is

non-degenerate by condition 1) and linearity. If both c1, c2 6= 0, we have that

dβ|D = d(c1α1 + c2α2)|D
= c1dα1|D + c2dα2|D
= c1ω1 + c2ω2.

11



1.4. CURVATURE CHAPTER 1. DISTRIBUTIONS

Again, we prove by contradiction. Assume dβ|D is degenerate. Then c1ω1 + c2ω2 is degenerate. Hence

there exists a point x and a vectorX inDx such that

c1ω1(·, X) + c2ω2(·, X) = 0.

Denote byR12 be the rank measure relating ω1 and ω2. Then we have that

c1ω1(·, X) + c2ω1(·, R12X) = 0.

This implies that

ω1(·, λX) = ω1(·, R12X),

where λ = − c1
c2
. Note λ is real. Since both ω1 and ω2 are non-degenerate, we have that λX = R12X .

Hence λ is a real eigenvalue of R12. This contradicts condition 2), hence dβ|D must be non-degenerate.

The statement follows.

Remark 1.30. In the co-rank 2 case, the characterization for fatness from Corollary 1.29 can alternatively

be described in terms of quadratic forms, see [9].

12



Chapter 2

Distributions and the Grassmann bundle

As we have seen in Chapter 1, a rank-r distribution on amanifoldM is defined by a choice of rank-r linear
subspace of of the tangent space TxM for each point x, smoothly varying with respect to x. At a point x,
the set of all possible choices of rank-r linear subspaces of the tangent space is described by the rank-r
Grassmannian of TxM . All the Grassmannians of the tangent spaces for the points inM together form

a fiber bundle, which is called Grassmann bundle ofM . It turns out that every rank-r distribution on a

manifoldM can interpreted as a global section of the rank-r Grassmann bundle ofM . This makes the

Grassmann bundle of a given manifoldM the universal object for distributions onM .

Furthermore, we will see in Chapter 3 that the Grassmann bundle itself is a manifold that comes with a

canonical distribution defined on it. In fact, this is consistent with the Grassmannian being a universal

object for distributions. This canonical distribution plays a central role in the construction of prolonged

distributions, which form the class of distributions that we focus on later in this text.

We first introduce the Grassmannian of a given vector space with its homogeneous coordinates and we

show how to construct an atlas for this manifold. After that, we define the Grassmann bundle of a given

manifold. Thenwe observe that a choice of distribution on amanifoldM corresponds to a choice of global

section of the Grassmann bundle ofM .

2.1 Grassmannian

2.1.1 Spanning vectors

We first introduce the Grassmannian in the classical way, i.e. we describe linear sub-spaces in terms of

spanning sets of vectors. This description provides us with some intuition for these spaces. However,

as we have seen in Section 1.4, it is convenient to be able to use a description of linear sub-spaces using

co-vectors, which we will do afterwards.

Definition 2.1 Let V be a vector space of dimensionn. The rank-r Grassmannian of V is the space of all

linear subspaces of dimension r in V . It is denoted by Grr(V ) or by Grk(V ), where k = n−r indicates
the co-rank.

13
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The Grassmannian Grr(V ) carries the structure of a smoothmanifold of dimension rk. We first introduce

homogeneous coordinates for this space Grr(V ), then we show how to construct an atlas.

Homogeneous coordinates

Choose a basis {x1, . . . , xn} for the n-dimensional vector space V . The spanning set of r linearly inde-
pendent vectors v1, . . . , vr defines an element

〈v1, . . . , vr〉

in Grr(V ). Conversely, a point H ∈ Grr(V ) is described by a (non-unique) spanning set of r linearly

independent vectors

H = 〈v1, . . . , vr〉.

Now consider a second spanning set of vectors forH

H = 〈w1, . . . ,wr〉.

For these two spanning sets that defineH we denote byA andB the rank r matrices

A =

v11 · · · vr1
...

. . .
...

v1n · · · vrn

 and B =

w11 · · · wr1
...

. . .
...

w1n · · · wrn


defining the respective spanning sets with respect to the chosen basis. Observe that the two spanning

sets define the same linear subspaceH if and only if there exists aQ ∈ GLr such that

A = B ·Q.

The discussion above exhibits Grr(V ) as the quotient of the vector space of r × n matrices of rank r 1

under the right action ofGLr.
2

From this perspective, it is natural to denoteH ∈ Grr(V ) as the equivalence class

H = [A]

whereA is any suitable n× r matrix of rank r that serves as representative forH .

Atlas

Here we recall how to construct an smooth atlas for the Grassmannian. We use the notation L =
(l1, . . . , lr), with li ∈ {1, . . . , n}, to indicate the choice of r vectors φL = xl1 , . . . , xlr from the cho-

sen basis {x1, . . . , xn}. We use the notations L⊥ = (lr+1, . . . , ln) and φL⊥ to denote the remaining

numbers in {1, . . . , n} and the corresponding elements xlr+1 , . . . , xln of the basis for V , respectively.

1In fact this space forms the Stiefel manifold Str , it is the manifold of r-tuples of linearly independent vectors in V .
2In fact, the action ofGLr on this manifold is free and proper. This implies directly that the quotient, the grassmanian Grr ,

is a smooth manifold.
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Consider the subset Grr(V )L of all H ∈ Grr(V ) such that xl1 , . . . , xlr project to a basis for H – with

respect to the standard inner product associated to the previously chosen basis {x1, . . . , xn}. Note

that Grr(V )L is open in Grr(V ). For every H ∈ Grr(V )L there exist unique numbers mij , with i ∈
{1, . . . , r} and j ∈ {1, . . . , k} such thatH is given by the span of the vectors

v1 = xl1 +m11xlr+1 + · · ·+m1kxln ,

...

vr = xlr +mr1xlr+1 + · · ·+mrkxln .

As an example, if we set L = (1, . . . , r), an elementH in Grr(V )L is given by the span of the vectors

v1 = x1 +m11xr+1 + · · ·+m1kxn,

...

vr = xr +mr1xr+1 + · · ·+mrkxn.

The numbersmij form the r × k matrix

M =

m11 · · · mr1
...

. . .
...

m1k · · · mrk

 .

The corresponding homogeneous coordinates forH are given by

[
I
M

]
=



1 · · · 0
...

. . .
...

0 · · · 1
m11 · · · mr1
...

. . .
...

m1k · · · mrk


We can then define a chart χL : Grr(V )L → Rrk via[

I
M

]
7→ (m11, ...,mrk).

The inverse map χ−1
L is given by

M 7→
[
I
M

]
, M ∈ Rrk.

χ−1
L can be interpreted as taking M to the span of its graph as illustrated in Section 2.1.1. Seen from

this perspective it is clear that all elements in Grr(V )L must be transversal to the linear subspace of V
spanned by φL⊥ . In this fashion the chart χL can be seen as a projection of the graph.

By varyingLweobtain a cover of Grr , and this construction provides the desired atlas on theGrassmanian.

Note that, for L = (l1, . . . , lr) and L = (l′1, . . . , l
′
r), the intersection Grr(V )L ∩ Grr(V )L′ is given by

15
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Figure 2.1: Graph of elementsM,M ′ ∈ Rrk under χ−1
L

the pointsH ∈ Grr(V ) such that both framesφL andφL′ project to a basis ofH . The resulting transition

function can be described point-wise in terms of the linear map sending the basis

v1 = xl1 +m11xlr+1 + · · ·+m1kxln ,

...

vr = xlr +mr1xlr+1 + · · ·+mrkxln

to the basis

v
′
1 = xl′1 +m′

11xl′r+1
+ · · ·+m′

1kxl′n ,

...

v
′
r = xl′r +m′

r1xl′r+1
+ · · ·+m′

rkxl′n .

ofH , and is smooth.

2.1.2 Switching to co-vectors

Since it is often feasible to describe a distribution D in terms of a set of locally defining 1-forms, it is

convenient also to describe the elements in the Grassmannian and the Grassmann bundle in this way.

Homogeneous coordinates with co-vectors

Sticking to the notation introduced in Section 2.1.1, we construct a second set of homogeneous coordi-

nates for the Grassmannian.

We choose the same dual basis {x1, . . . , xn} for the n-dimensional vector space V . Consider a set of k
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linearly independent 1-forms

α1 = µ1
1x

1 + µ1
2x

2 · · ·+ µ1
nx

n,

...

αk = µk
1x

1 + µk
2x

2 · · ·+ µk
nx

n.

The system of equations

α1 = 0, . . . , αk = 0

defines a pointH ∈ Grk(V ), that is,H = ker(α1)∩· · ·∩ker(αk). Conversely, every pointH ∈ Grk(V )
can be described – in a non-unique way – as the zero locus

k⋂
j=1

ker(αj)

for a set of k suitably chosen forms.

We denote byA the matrix

A =

µ
1
1 · · · µ1

k
...

. . .
...

µk
1 · · · µk

n


defining the respective system. In a similar way to the description with a spanning set of vectors, we

observe that two systems of equations defined by matricesA andB have the same zero locus if and only

if there exists aQ ∈ GLk such that

A = Q · B.
In turn, the Grassmannian Grk(V ) can be identified with the quotient of the vector space of k × n ma-

trices of rank k under the left action of GLk. In this fashion, it is natural to denoteH ∈ Grk(V ) as the
equivalence class

H = [A]

whereA is any suitable k × nmatrix of rank k that serves as representative for the system definingH .

Atlas with co-vectors

Again, we use the notations L = (l1, . . . , lr), with li ∈ {1, . . . , n}, and φL to indicate the choice of r
out ofn co-vectors from the chosen basis {x1, . . . , xn}; and the notationsL⊥ = (lr+1, . . . , ln) andφL⊥

to denote the remaining numbers in {1, . . . , n} and the corresponding remaining elements of the basis

frame, respectively.

We consider the subset Grk(V )L of allH ∈ Gr2(V ) such that {xl1 , . . . , xlr} are non-vanishing 1-forms

when restricted toH . Note that this subset in Grk(V ) is open. For everyH ∈ Grk(V )L there exist unique

numbers µj
i , with i ∈ {1, . . . , r} and j ∈ {1, . . . , k} such thatH is given by the relations

α1 = xlr+1 + µ1
1x

l1 + · · ·+ µ1
rx

lr ,

...

αk = xln + µk
1x

l1 + · · ·+ µk
rx

lr .
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Again we go over the example where we set L = (1, . . . , r). An elementH in Grk(V )L is given by the

relations

α1 = xr+1 + µ1
1x

1 + · · ·+ µ1
rx

r,

...

αk = xn + µk
1x

1 + · · ·+ µk
rx

r.

The numbers µj
i form the k × r matrix

M =

µ
1
1 · · · µ1

r
...

. . .
...

µk
1 · · · µk

r


The corresponding global coordinates ofH are given by

[M : I] =

µ
1
1 · · · µ1

r 1 · · · 0
...

. . .
...

...
. . .

...

µk
1 · · · µk

r 0 · · · 1


We then define a chart χL : Grk(V )L → Rk×r by setting

χL : [M : I] 7→ (µ1
1, ..., µ

k
r).

By varying L we obtain a cover of Grk(V ), and this construction provides us with an atlas on the Grass-

manian.

Remark 2.2. Note that this atlas is compatible with the previously constructed atlas using vectors. Indeed,

note that the transition functionT : Mat2×2 → Mat2×2 for two charts definedon the sameopenGrr(V )L
(in the two respective atlases) is given by

M 7→ M = −MT .

2.2 Grassmann bundle

Grassmannians as fibers

We now turn to the Grassmann bundle over a manifoldX . As the name suggests, this is a fiber bundle

overX , whose fiber over a point x is the Grassmanian of the tangent space TxX .

Definition 2.3 The rank-r Grassmann bundle of an n-dimensional manifoldX is the set

{(x,H) : x ∈ X, H ∈ Grr(TxX)}.

It is denoted by Grr(TX) or Grk(TX), where k = n− r indicates the co-rank.
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The bundle projection πG : Grr(TX) 7→ X is given by

(x,H) → x.

A trivializing atlas for Grr(TX) overX can be obtained right out of a coordinate atlas forX and the atlas

for Grr(V ) introduced earlier. We briefly recall the constructions of trivializations and fibered coordinates

below.

Let U ⊂ X be an open set together with a chart ψ : U → Rn that maps

x 7→ (x1, ..., xn).

Observe that there is a canonical isomorphism

Gr
r(TX)|U ∼= Gr

r(TU);

Moreover, the coordinate vector fields

∂x1 , . . . , ∂xn

corresponding to ψ provide a basis for TxX , for all x ∈ U , inducing the isomorphisms

ϕx : Gr
r(TxX) → Gr

r(Rn), x ∈ X.

Now we can define the trivializationΨ : Grr(TU) → Rn × Grr(Rn) by

(x,H) → (ψ(x), ϕx(H)).

As anticipated, this essentially proves the following well known fact.

Proposition 2.4 The projection

πG : Gr
r(TX) → X

is a fiber bundle with fiber Grr(Rn)

For later use, we recall how to construct fibered coordinates for Grr(TX) using the charts for Grr(V )
discussed at the beginning of this section. Over an open U ⊂ X together with a chart ψ : U → Rn that

maps

x→ (x1, ..., xn)

we consider the coordinate frame

∂x1 , . . . ∂xn .

Similar to the Grassmannian setting, we use the notation L = (l1, . . . , lr), with li ∈ {1, . . . , n}, to
indicate the choice of r coordinate vector fields

φL = ∂xl1
, . . . , ∂xlr
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from the n coordinate vector fields ∂x1 , . . . , ∂xn . we denote by Grr(TU)L the open set

{H ∈ Gr
r(TxX)L : x ∈ U}.

Now we can define fibered coordinate chartΨL : Grr(TU)L → Rn × Rrk) by

(x,H) → (ψ(x), χL(H)).

Varying the choice L of coordinate vectors and the chart (ψ,U) provides us with a fibered atlas for

Grr(TX) → X .

Distributions as sections

Since a rank-r distributionD on a manifoldX is defined by the choice of an r-dimensional subspaceH
of TxX for every point x ∈ X , it can be identified with the section σ of the rank-r Grassmann bundle

Grr(TX) ofX given by

x 7→ H := Dx, x ∈ X

whereH is interpreted as a point in Grr(TxX).

Questions concerning the space of distributions with rank r on a given manifoldX can now be rephrased

in terms of the space (sheaf) of sections ΓGrr(TX) of the corresponding Grassmann bundle overX .
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Chapter 3

Fat prolongation construction

In this chapter we ultimately introduce the prolongation construction and define the class of prolonged

distributions. Prolongations in this context were used by Cartan, for the previously mentioned famous

(2, 3, 5) structures he investigated, see [2]. For a gentle introduction concerning prolongations of distri-

butions and related concepts we refer to [1].

The prolonged distributions form the class for which we investigate fatness for type (4, 6) distributions in
this text. In order to do so, we look at co-rank 2 fiber bundlesM over a 4-dimensional manifoldX with a

bundle map into Grassmann bundle Gr2(TX). Then we consider the canonical distribution on Gr2(TX)
which induces a distribution onM via the bundle map, the so-called prolonged distribution onM . The

main question we investigate is under what conditions this restriction defines a fat distribution on the

fiber bundle manifoldM .

Moreover, we provide a family of examples of fat prolonged (4, 6) distributions: we consider the rank-2
sub-bundle of the Grassmann bundle consisting of the 2-planes invariant under the almost complex struc-

ture J . This sub-bundle forms a 6-dimensional manifold and the fibers are in fact complex Grassmanni-

ans. We show that the prolonged distribution of this sub-bundle is a fat distribution of co-rank 2.

3.1 Prolongation

In this section we first define the canonical distribution on the Grassmann bundle of a given manifold that

was hinted at in the previous chapter. It provides the setup for the prolonged distributions that we define

after that.

Canonical distribution

Now we are setup to define the canonical distributionDcan on Grk(TX) for a given manifoldX .

Definition 3.1 LetX be ann-dimensionalmanifold and consider its GrassmannbundleπG : Grk(TX) →
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X . The canonical distributionDcan on Grk(TX) is the distribution point-wise given by

Dcan
H = (dπG)−1(H) ⊂ TH Grk(TX),

where the pre-image is with respect to the linear subspaceH of the tangent space ofX .

An overview of the maps involved is given in Figure 3.1.

Dcan

Grk(TX) T Grk(TX)

X TX

ι

πG

τG

dπG

Figure 3.1: Canonical distribution on the Grassmann bundle

Remark 3.2. Note thatDcan yields a smooth sub-bundle of T Grk(TX). Hence it defines a smooth distri-

bution. Indeed, let U be an open subset ofX with coordinates (x1, . . . , xn). Let (x,H) ∈ Grk(TU)L
with L = (l1, . . . , lk) (see Chapter 2 for the notation), i.e. the linear subspaceH in TxX is given by the

span of the vectors

v1 = ∂xl1
+m11∂xlr+1

+ · · ·+m1k∂xln
,

...

vr = ∂xlr
+mr1∂xlr+1

+ · · ·+mrk∂xln
.

Then the linear subspaceDcan
H = (dπG)−1(H) is spanned by the tangent vectors in TH Grk(TX) given

by

∂xl1
+m11∂xlr+1

+ · · ·+m1k∂xln
∈ TH Grk(TX)

...

∂xlr
+mr1∂xlr+1

+ · · ·+mrk∂xln
∈ TH Grk(TX).

Prolonged distribution

LetX be an n-dimensional manifold and consider its Grassmann bundle πG : Grk(TX) → X Now let

πM : M → X be a fiber bundle overX together with bundlemapϕ : M → Grk(TX), i.e. the following
diagram commutes.

Grk(TX) M

X
πG

ϕ

πM
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Definition 3.3 The prolonged distributionDprol onM with respect to ϕ is pointwise given by

Dprol
y := (dπM)−1(ϕ(y)) ⊂ TyM.

where we interpret ϕ(y) as a subspace of the tangent space of X . We denote by (M,πM , ϕ) the

defining triple forDprol.

An overview of the maps involved is given in Figure 3.2.

Dprol

Grk(TX) M TM

X TX

ι

πG

ϕ

πM

τM

dπM

Figure 3.2: Prolonged distribution on fiber bundleM

Example 3.4. If we setϕ := idGrk(TX), we see that the prolonged distributionDprol on Grk(TX) is in fact

the canonical distributionDcan on Grk(TX). 4

We revisit Example 1.14 –but now the orientations of the canoe are projectivised– and show that the

contact distributionDcanoe is in fact a prolongation.

Example 3.5. Consider the configuration space of the canoe M = R2 × RP 1 and the plane X =
R2 indicating solely the position of the canoe on the water. We define the map πM : M → X as the

projection given by

(x, y, θ) 7→ (x, y).

Consider the Grassmann bundle Gr1(TR2) ofR2 and the bundle map ϕ : M → Gr1(TR2) given by

(x, y, θ) 7→ H = 〈cos(θ)∂x + sin(θ)∂y〉.

Then the prolonged distributionDprol is point-wise given by

Dprol

(x,y,θ) = (dπM)−1(H)

= 〈cos(θ)∂x + sin(θ)∂y, ∂θ〉,

which is precisely to the contact distributionDcanoe as defined previously. 4

Also the space ship from Example 1.15 –again with projectivised orientations– turns out to be associated

to a prolongation.

Example 3.6. Consider the configuration space of the spaceshipM = R3×RP 2 and the spaceX = R3

indicating the position of the space ship in the galaxy. We define the projection map πM : M → X as

(x, y, z, θ, ϕ) 7→ (x, y, z).
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Consider the Grassmann bundle Gr1(TR3) ofR3 and the bundle map ψ : M → Gr2(TR3) given by

(x, y, z, θ, ϕ) 7→ H = 〈cos(ϕ)(cos(θ)∂x + sin(θ)∂y) + sin(ϕ)∂z〉.

The prolonged distributionDprol is point-wise given by

Dprol

(x,y,z,θ,ϕ) = (dπM)−1(H)

= 〈cos(ϕ)(cos(θ)∂x + sin(θ)∂y) + sin(ϕ)∂z, ∂θ, ∂ϕ〉,

which corresponds to the distributionDship from earlier. 4

In fact, Example 3.5 can be generalized to arbitrary dimensions in such a way that it defines a contact

distribution.

Proposition 3.7 LetX be an n-dimensional manifold and consider its Grassmann bundle Grn−1(TX).
The prolonged distributionDcan on Grn−1(TX) is a contact distribution.

Proof. Let U ⊂ X be an open set with coordinates (x1, . . . , xn), and let H ∈ Grn−1(TxU). We have

thatH ∈ Grn−1(TxU)L for some L. Without loss of generality, we assume L = (1, . . . , n − 1). Then
the elementsH in Grn−1(TxU)L are given by the kernel of the linear 1-form

α1 = dxn −
n−1∑
i=1

mi1dxi

inT ∗
xX , smoothly depending onmi1, as discussed in Chapter 2. It follows that, on the open Grn−1(TU)L,

Dcan is given by the kernel of the one-form

β = dxn −
n−1∑
i=1

mi1dxi.

Now we compute

dβ = −
n−1∑
i=1

mi1 ∧ dxi.

In this chart Grn−1(TU)L, we have that dβ restricts to a non-degenerate 2-form on Dcan. Hence, by

Corollary 1.25,Dcan is contact here. It follows thatDcan is contact everywhere.

Remark 3.8. Like in Example 3.5, we can identify Grn−1(TX) with the projectivization PT ∗X .

3.2 Complex Grassmannian

In this section, we provide a concrete family of examples fat distributions of type (4, 6) using the prolon-

gation construction.
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The general framework is the following. Let (X, J) be an almost complex 4-dimensional manifold. Con-

sider the Grassmann bundle Gr2(TX) overX and letM be the sub-bundle

M := Gr2(TX, J) ⊂ Gr2(TX)

given by the (almost) complex grassmanian onX ,

Gr2(TX, J) = {H ∈ Gr2(TX)|JH = H},

consisting of planesH ∈ Gr2(TX) which are J -invariant.

Note that the fibers ofM have co-dimension 2 within the fibers of Gr2(TX), henceM has dimension

4 + 2 = 6. We consider the prolonged distribution Dprol onM with respect to the inclusion i : M ↪→
Gr2(TX), i.e. we look at the defining triple (M,πG|M , i).

Let U ⊂ X be an open subset ofX together with a local frame φ = (φ1, φ2, φ3, φ4) ofX such that

J |U =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 (3.1)

with respect to φ. We now prove the following lemma, which gives a local description of the inclusion

i : M ↪→ Gr2(TX).

Lemma 3.9 With respect to the coordinates (λ1, λ2, λ3, λ4) for Gr(TxX) induced by φ at x (see Chap-

ter 2), the submanifoldMx ⊂ Gr2(TxX) is described by the equations

λ1 = λ4, λ3 = −λ2.

Proof. In the same spirit as that of Chapter 2, denote by Gr2(TU)L, where L = (1, 2), the open set of

all 2-planes to which the pair {φl1 , φl2} projects to a basis, for l1 6= l2 integers between 1 and 4.

LetH ∈Mx. ThenH is preserved by the complex structure J given by

J |U =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


with respect toφ. Hence the pair {φ1, φ2} or the pair {φ3, φ4} projects to a basis forH (or both). Assume

without loss of generality that the pair {φ1, φ2} projects to a basis forH , i.e. L = (1, 2).

We have thatH ∈ Gr2(TU)L is spanned by

V1 = φ1 + λ1φ3 + λ2φ4

V2 = φ2 + λ3φ3 + λ4φ4
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for λi ∈ R smoothly depending on x. Note that J |U maps φ1 → φ2. Then ifH is preserved under J |U ,
it also maps V1 7→ V2.It follows thatH ∈M if and only ifH is spanned by

V1 = φ1 + λ1φ3 + λ2φ4

V2 = φ2 − λ2φ3 + λ1φ4,

or equivalently, it is given by the intersected kernels of the forms

α1 = φ∗
3 − λ1φ

∗
1 + λ2φ

∗
2

α2 = φ∗
4 − λ2φ

∗
1 − λ1φ

∗
2,

where φ∗
i denotes the dual of φi.

This leads to the equations λ1 = λ4 and λ2 = −λ3.

The lemma above gives a sub-manifold chartMx ∩ Gr2(TU)L → R2 that maps

H 7→ (λ1, λ2)

for the fiberMx over x.

Remark 3.10. Note that if J is integrable, then there exists a local coordinate frame φ such that J is of the

form of eq. (3.1). In this setting, the construction above fits in the coordinate description of the Grassma-

nian given in Chapter 2. In that case we can extend the chart for the fiberMx to the neighborhood U ,

forming fibered coordinates.

Theorem 3.11 The prolonged distributionDprol onM is fat.

Proof. Fatness is a local property, hence it suffices to show thatDprol is fat at an arbitrary point (x,H) ∈
M . As in Lemma 3.9, there exists an open neighbourhoodU of x and a local frame φ = {φ1, φ2, φ3, φ4}
on U such that

J |U =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


H ′ ∈M ∩ Gr2(TU)L is given by the intersected kernels of the forms

α1 = φ∗
3 − λ1φ

∗
1 + λ2φ

∗
2

α2 = φ∗
4 − λ2φ

∗
1 − λ1φ

∗
2.

Recall from Corollary 1.29 that in order to show the distributionDprol is fat on Gr2(TU)L, we have to show

that

1. the two forms ω1 = dα1|D and ω2 = dα2|D are non-degenerate;
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2. the rank measureR1,2 ofDprol relating ω1 to ω2 via

ω1(·, R1,2·) = ω2(·, ·),

has no real eigenvalues.

For 1. we compute

dα1 =dφ∗
3 − dλ1 ∧ φ∗

1 − λ1dφ
∗
1 + dλ2 ∧ φ∗

2 + λ2dφ
∗
2

dα2 =dφ∗
4 − dλ2 ∧ φ∗

1 − λ2dφ
∗
1 − dλ1 ∧ φ∗

2 − λ1dφ
∗
2.

Note that the φi ’s do not depend on λ1 and λ2. In order to check non-degeneracy we compute

ω1 ∧ ω1 = 2φ∗
1 ∧ φ∗

2 ∧ dλ1 ∧ dλ2

ω2 ∧ ω2 = 2φ∗
1 ∧ φ∗

2 ∧ dλ1 ∧ dλ2.

Note here that the resulting terms of 4-forms not including both dλ1 and dλ2 in the wedge product vanish

onDprol. Both ωi ∧ ωi are volume forms onDprol which implies that both ω1 and ω2 are non-degenerate

onDprol.

Now we show 2. At the pointH ∈M we have that

Dprol

H = H + THMx ⊂ T Gr2(TM),

whereH on the right hand side is interpreted as a subspaceH ⊂ TxX . With this in mind we can choose

the following basis forDprol

H :

{V1, V2, ∂λ1 , ∂λ2},
where V1, V2 ∈ TM are the vectors

V1 = φ1 + λ1φ3 + λ2φ4,

V2 = φ2 − λ2φ3 + λ1φ4.

Note they are indeed linearly independent and of in the kernel of the defining 1-forms.

Then we have that the rank measureR12 atH satisfies

V1 7→ V2

V2 7→ −V1
∂λ1 7→ ∂λ2

∂λ2 7→ −∂λ1 .

Hence, with respect to the basis {V1, V2, ∂λ1 , ∂λ2} ofD ∈ Dprol the rank measureR1,2 atH is given

R1,2 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


NoteR1,2 has no real eigenvalues (which is independent of the chosen frame); hence the prolonged dis-

tributionDprol is fat at (x,H). Since (x,H) is chosen arbitrarily, this completes the proof.
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Chapter 4

Fatness and the infinitesimal cone field

In this chapter we introduce the degenerate cones: for each 2-planeH in the Grassmannian, we consider

the 2-planes that intersectH in a subspace with dimension at least 1. We show that locally, this forms a

cone centered at the 2-planeH itself.

Taking the infinitesimal analogue of this cone allows us to define what we call the infinitesimal cone field

on the Grassmannian. We then identify characterizing local properties for fat prolonged distributions

of type (4, 6) in terms of the infinitesimal cone field. Namely, we show that requiring the prolonged

distributionD on fiber bundleM to be fat is equivalent to requiring that the fibers ofM –that map into

the corresponding Grassmannian-fiber via the given bundle map– are transverse to the infinitesimal cone

field.

4.1 Transversality

The tool we use to measure the dimension of intersection of two 2-planes is transversality, which we will

introduce in various forms. The first two definitions below are classical and we use them to define the

degenerate cone for a 2-planeH in the Grassmannian.

Definition 4.1 Let V be a vector space and letW andW ′ be linear subspaces of V . We say thatW
andW ′ are transverse if

V = W +W ′.

In this case we writeW t W ′. IfW andW ′ are not transverse we writeW ��t W ′.

Definition 4.2 LetM be a manifold and letN andN ′ be sub-manifolds ofM . We say thatN andN ′

are transverse at a point x in the intersectionN ∩N ′ if

TxM = TxN + TxN
′.

IfN andN ′ are transverse at all points in the intersectionN ∩N ′ we sayN andN ′ are transverse; in
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that case we writeN t N ′. IfN andN ′ are not transverse we writeN ��t N ′.

Definition 4.3 LetV be a 4-dimensional vector space and consider the co-rank2GrassmannianGr2(V ).
LetH be a point in Gr2(V ). The degenerate cone CH ofH in the Grassmannian Gr2(V ) is a subspace

of Gr2(V ) given by

CH = {H ′ ∈ Gr2(V ) : H ′
��t H}

The reason why this space is called a cone is explained by Proposition 4.5. To arrive there we need the

following lemma.

Lemma 4.4 The degenerate cone CH in the chart (Grr(V )L, χL), where χL(H) = M ∈ Mat2x2, is

given by

χL(CH) = {M +Q ∈ Mat2x2 : Q ∈ Mat2x2, rankQ < 2}. (4.1)

Proof. An elementH ′ ∈ CH ∩ Gr2(V )L \ {H} is a 2-plane in V that has a 1-dimensional intersection

withH with the additional requirement thatΦL projects to a basis forH ′. HenceH ′ can be written as

H ′ = 〈u, v + w〉,

where v is a vector in 〈ΦL⊥〉, which is complementary to H , w is a vector in H , and u is a non-zero

vector in H such that u ⊥ w. Here the orthogonal complement is with respect to the standard inner

product associated to the chosen basis. We illustrate the choice of vectors in Figure 4.1 and the plane that

is defined by them in Figure 4.2. Note that the choice of v and w is sufficient to define H ′, since after

fixing these two, every choice of non-zero vector u inw⊥ ∩H defines the same 2-plane, i.e. the element

H ′ is also given by

H ′ = 〈v + w〉+ w⊥ ∩H. (4.2)

For simplicity, without loss of generality, we assume L = (1, 2). Then the unique spanning vectors in V
forH corresponding to the chart Gr2(V )L are given by

x1 +m11x3 +m12x4, (4.3)

x2 +m21x3 +m12x4; (4.4)

and the chosen vectors are expressed by v = v1x3 + v2x4 and w = w1x1 + w2x2. The unique pair

of spanning vectors in V forH ′ corresponding to the chart Gr2(V )L are then given by adding the vector

v+w, decomposed with respect to this basis asw1 · v andw2 · v, to the respective spanning vectors for

H given in Equation (4.3) and Equation (4.4), see again Figure 4.2. I.e.,H ′ is given by

x1 + (m11 + w1v1)x3 + (m12 + w1v2)x4,

x2 + (m21 + w2v1)x3 + (m12 + w2v2)x4.

In the chart of Gr2(V )L, that corresponds to the matrixM +Q ∈ Mat2x2, whereQ is given by

Q =

(
w1v1 w1v2
w2v1 w2v2

)
,
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Figure 4.1: Choice of vectors v ∈ 〈ΦL⊥〉, complementary toH , andw ∈ H .

Figure 4.2: The planeH ′ = 〈v + w〉+ w⊥ ∩H .
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which is equal to the outer productQ = wTv of the vectorsw and v. ThereforeQ is amatrix of rank < 2.
On the other hand, every matrixQ ∈ Mat2x2 with rank maximally 1 can be written –in a non-unique way–

as an outer product Q = wTv. Two such vectors v, w define an elementH ′ ∈ CH ∩ Gr2(V )L via the

span given in Equation (4.2). The statement follows.

Now we consider the intersection CH ∩ Gr2(V )L. In the chart (Grr(V )L, χL) we fix a norm ‖ · ‖ on the

space Mat2×2
∼= R4. Without loss of generality we take the standard norm onR4. We consider the space

T ⊂ Mat2×2 of matricesQ of norm 1 with rank lower than 2,

T = {Q ∈ Mat2×2 : ‖Q‖ = 1; rankQ < 2}.

Proposition 4.5 The intersection CH ∩Gr2(V )L is a cone over T . Moreover, the space T is an embed-

ded torus T 2.

Proof. We rewrite χL(CH) from eq. (4.1) as a cone over T as follows

χL(CH) = {M + c ·Q : c ∈ R;Q ∈ T}.

Now it suffices to show that the space T is homeomorphic to the torus T 2.

To see this, note that an elementQ in T must be a matrix of rank 1 in particular, since a matrix of norm

1 has rank at least 1. We claim it can be written – still in a non-unique way– as the outer product of

v, w ∈ S1 ⊂ R2. Namely, as in the proof of Lemma 4.4, we have that any rank 1 matrix can be written

as the outer product of two non-zero vectors v, w ∈ R2 given by

Q = wvT =

(
w1v1 w1v2
w2v1 w2v2

)
.

Since the pairs (v, w) and (cv, w/c) generate the same matrixQ via the outer product, for any non-zero

scalar c ∈ R, we can choose v to have norm 1, i.e.

‖v‖2 = v21 + v22 = 1.

Moreover, sinceQ has norm 1, we have that

‖Q‖2 = w2
1v

2
1 + w2

1v
2
2 + w2

2v
2
1 + w2

2v
2
2 = 1,

which can be rewritten as

‖Q‖2 = (w2
1 + w2

2)(v
2
1 + v22)

= ‖w‖2‖v‖2 = 1.

Hence, we have thatw has norm 1 as well

‖w‖2 = w2
1 + w2

2 = 1.
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Nowwe observe that two elements (v, w), (v′, w′) ∈ S1×S1 ∼= T 2 define the samematrixQ if an only

if (v′, w′) = (−v,−w). Hence the space T is equal to the quotient

T = S1 × S1/Z2
∼= T 2/Z2,

whereZ2 acts on T
2 via (v, w) 7→ (−1)i−1(v, w), i ∈ Z2. This is a free, orientation preserving action

and Z2 is finite. Since the quotient of the torus given by a free, orientation preserving action of a finite

group is homeomorphic to a torus of the same dimension, we have that T is homeomorphic to T 2.

Figure 4.3: Quotient of the torus by the action of Z2 given by (θv, θw) 7→ (θv + π, θw + π) is again a

torus.

Remark 4.6. If we describe v and w by the angles θv, θw ∈ S1 then the action of Z2 on the torus T 2 =
S1 × S1 is given by (θv, θw) 7→ (θv + iπ, θw + iπ), i ∈ Z2. Now it can also be seen from the sequence

shown in Figure 4.3 that this quotient of T 2 is again homeomorphic to a copy of the torus T 2.

Remark 4.7. Interpreting the vectors v and w as elements in vector space V , as done in the proof of

Lemma 4.4, gives more intuition behind the reasoning above. The choice of vectors v ∈ S1 ⊂ ΦL⊥ and

w ∈ S1 ⊂ H are illustrated in Figure 4.4. The element H ′ = 〈v + w〉 + w⊥ ∩ H is illustrated in

Figure 4.5. Note that indeed (v, w) and (−v,−w) define the same planeH ′.
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Figure 4.4: Choice of vectors v ∈ S1 ⊂ 〈ΦL⊥〉, complementary toH , andw ∈ S1 ⊂ H .

Figure 4.5: The planeH ′ = 〈v + w〉+ w⊥ ∩H .
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4.2 Infinitesimal cone field

In this section we introduce another notion of transversality that fits well for the purpose of this text: it is

used to phrase Theorem 4.15, the main result of this chapter.

In the intersection with Gr2(V )L, we can write the degenerate cone CH ofH as the union over the ele-

mentsQ in the torus T given by

CH ∩ Gr2(V )L =
⋃
Q∈T

Image(γQL ), (4.5)

where the path γQL : R → (Gr2(TxX)) is given by

t 7→ χ−1
L (M + tQ).

The tangent vector of such curve γQL is given by

dχ−1
L (Q) ∈ TH Gr2(V ),

where the matrix Q is now considered as element in the tangent space TM Mat2×2. In homogeneous

coordinates the path γQL is given by

t 7→
[

I
M + tQ

]
=

[(
I
M

)
+ t

(
0
Q

)]
. (4.6)

In what follows, for simplicity, we identify the tangent spaces TM Mat2×2 and TH Gr2(V ), i.e. a matrixQ
is identified with the tangent vector dχ−1

L (Q).

Remark 4.8. It follows from the expression of paths given in eq. (4.6) that the rank of Q is well defined.

Namely, after multiplying

(
0
Q

)
with an element inGL2, we obtain another matrix of rank 1. The rank of

Q is independent of the choice of basis and the choice of chart containingH .

For each parametrized curve γQL in eq. (4.5), given by

t 7→ χ−1
L (M + tQ), Q ∈ T,

its tangent vector γ̇QL |t=0 is represented by the same matrixQ that appears in the torus T given by

T = {Q ∈ Mat2×2 : ‖Q‖ = 1; rankQ < 2}.

Hence the torusT appears another time in the tangent spaceTH Gr2(V ), generating another infinitesimal

cone CH . (Note that the elements in the linear span {cQ : c ∈ R} that appears in the cone CH are

associated to the tangent vectors of reparemetrizations of the curve γQL .) Considering such cone in the

tangent space TH Gr2(V ), for everyH ∈ Gr2(V ), gives rise to a T 2-cone field on the Grassmannian.
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Definition 4.9 LetV be a 4-dimensional vector space and consider the co-rank2GrassmannianGr2(V ).
The infinitesimal cone field C on the Grassmannian Gr2(V ) is a field of sub-spaces (cones, i.e. non-linear

sub-spaces) of the tangent space, point-wise given by

CH = {Q ∈ TH Grk(V ) : rankQ < 2}.

We notice that CH is well defined thanks to Remark 4.8.

Let Y be a 2-dimensional manifold and letϕY : Y → Gr2(V ) be a smoothmap. Denote the imageϕ(Y )
byΣ.

Definition 4.10 Let y be a point in Y and let y1, y2 be local coordinates in a chart around y. Denote by

H = ϕ(y) the image of y inΣ. We say that ϕ is (elliptically) transverse to the infinitesimal cone field C at

H if ϕ is immersive atH and

CH ∩ Image(dϕ)y = 0.

If ϕ is transverse to the infinitesimal cone field C at all pointsH in Σ we say that ϕ is transverse to the

infinitesimal cone field C; in that case we write Σ t C. If Σ is not transverse to the infinitesimal cone

field C we writeΣ ��t C.

Figure 4.6: Σ transverse to the infinitesimal cone field C, illustrated for the pointsH1, H2, H3 ∈ Σ and

the respective cones CH1 , CH2 , CH3 .

If ϕ is an embedding, its image Σ is a sub-manifold. For sub-manifolds there is a more elegant way of

describing transversality.
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Definition 4.11 LetN be a 2-dimensional sub-manifold of Gr2(V ). We say thatN is (elliptically) trans-

verse to the infinitesimal cone field C atH if

CH ∩ THΣ = 0.

IfN is transverse to the infinitesimal cone field C at all pointsH inN we say thatN is transverse to the

infinitesimal cone field C; in that case we write N t C. If N is not transverse to the infinitesimal cone

field C we writeN ��t C.

For any 2-dimensional sub-manifoldN of Gr2(V ) we can consider the inclusion map ιN : N → Gr2(V )
which is an embedding; in particular it is an immersion. Note thatN being transverse to the infinitesimal

cone field as a sub-manifold is consistent with the meaning of transverse to the infinitesimal cone field for

the immersion ιN according to Definition 4.10.

We work out what the property in Definition 4.10 is in terms of tangent vectors.

Lemma 4.12 Denote by µj
i the coordinate expressions of ϕ with respect to the chart Gr2(V )L of H .

LetΣ be transverse to the infinitesimal cone field C atH = ϕ(y). Then for all non-zero tangent vectors

v ∈ TyY with components (v1, v2) in the chosen chart, the matrix

v1

(
∂µ1

∂y1
(y) ∂µ2

∂y1
(y)

∂µ3

∂y1
(y) ∂µ4

∂y1
(y)

)
+ v2

(
∂µ1

∂y2
(y) ∂µ2

∂y2
(y)

∂µ3

∂y2
(y) ∂µ4

∂y2
(y)

)
. (4.7)

has non-zero determinant.

Proof. The proof is a computation. We have that (dϕ)y : TyY → THΣ is given by(
v1
v2

)
7→ (ϕy1(y), ϕy2(y))

(
v1
v2

)

=


∂µ1

∂y1
(y) ∂µ1

∂y2
(y)

∂µ2

∂y1
(y) ∂µ2

∂y2
(y)

∂µ3

∂y1
(y) ∂µ3

∂y2
(y)

∂µ4

∂y1
(y) ∂µ4

∂y2
(y)


(
v1
v2

)
(4.8)

= v1

(
∂µ1

∂y1
(y) ∂µ2

∂y1
(y)

∂µ3

∂y1
(y) ∂µ4

∂y1
(y)

)
+ v2

(
∂µ1

∂y2
(y) ∂µ2

∂y2
(y)

∂µ3

∂y2
(y) ∂µ4

∂y2
(y)

)
. (4.9)

Let Y be a 2-dimensional manifold and letϕY : Y → Gr2(V ) be a smoothmap. Denote the imageϕ(Y )
byΣ.
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Lemma 4.13 We have that ϕ is transverse to the infinitesimal cone field C atH = ϕ(y) if and only if

the following two conditions hold.

1. The Jacobians of the first and second pair of coordinate maps, respectively given by

B1 =

(
∂µ1

1

∂y1
(y)

∂µ1
1

∂y2
(y)

∂µ1
2

∂y1
(y)

∂µ1
2

∂y2
(y)

)
and B2 =

(
∂µ2

1

∂y1
(y)

∂µ2
1

∂y2
(y)

∂µ2
2

∂y1
(y)

∂µ2
2

∂y2
(y)

)
,

are non-singular matrices.

2. The isomorphismA ∈ GL2(R) given byB1A = B2 has non-real eigenvalues.

Proof. (⇐)We prove the contrapositive of the statement. AssumeΣ is not transverse to the infinitesimal

cone field C at H . First we suppose that ϕ is not immersive at H . We use the coordinate descriptions

from Lemma 4.12. Then the 2× 4matrix in eq. (4.8) is of rank 1. Note that this matrix is precisely(
B1

B2

)
,

therefore, in this case,B1 andB2 must be of rank 1, so condition 2 cannot hold.

Now suppose that ϕ is immersive at H . Since Σ is not transverse to the cone, there exists an element

(v, w) ∈ TyR2 ∼= R2 such that the resulting matrix in the righthandside of eq. (4.7) is in CH , and hence

singular. This implies in particular that the rows are linearly dependent, i.e. there exists a scalar a ∈ R
such that such that(

∂µ2
1

∂y1
(y)

∂µ2
2

∂y1
(y)

)
v1 +

(
∂µ2

1

∂y2
(y)

∂µ2
2

∂y2
(y)

)
v2 = a

((
∂µ1

1

∂y1
(y)

∂µ1
2

∂y1
(y)

)
v1 +

(
∂µ1

1

∂y2
(y)

∂µ1
2

∂y2
(y)

)
v2

)
.

Now this is equivalent to

B−1
1 B2

(
v1
v2

)
= a

(
v1
v2

)
,

so a is an the eigenvalue ofA = B−1
1 B2, with corresponding eigenvector

(
v1
v2

)
. This contradicts condi-

tion 2.

(⇒) Again we prove the contrapositive. First assume condition 1 does not hold. We assume without

loss of generality that B1 is singular. Then one of its eigenvalues must be zero. Let (w1, w2) be the

corresponding eigenvector, i.e. (
∂µ1

1

∂y1
(y)

∂µ1
2

∂y1
(y)

)
w1 +

(
∂µ1

1

∂y2
(y)

∂µ1
2

∂y2
(y)

)
w2 = 0

Then the first row of

w1

(
∂µ1

∂y1
(y) ∂µ2

∂y1
(y)

∂µ3

∂y1
(y) ∂µ4

∂y1
(y)

)
+ w2

(
∂µ1

∂y2
(y) ∂µ2

∂y2
(y)

∂µ3

∂y2
(y) ∂µ4

∂y2
(y)

)
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vanishes, hence the resulting matrix is of rank lower than 2. If it is the zero matrix, it follows from eq. (4.8)

that ϕ is not immersive atH . If it is a matrix of rank 1, the intersection CH ∩ THΣ 6= 0, since this matrix

is contained in the intersection. This showsΣ is not tangent to the infinitesimal cone field C atH .

Now assume condition 1 holds, but condition 2 does not hold. Then A = B−1
1 B2 has a real eigenvalue

a ∈ R. Let w = (w1, w2) be the corresponding eigenvector, i.e. B−1
1 B2w = aw. This is equivalent to

B2w = aB1w which we can write as(
∂µ2

1

∂y1
(y)

∂µ2
2

∂y1
(y)

)
w1 +

(
∂µ2

1

∂y2
(y)

∂µ2
2

∂y2
(y)

)
w2 = a

((
∂µ1

1

∂y1
(y)

∂µ1
2

∂y1
(y)

)
w1 +

(
∂µ1

1

∂y2
(y)

∂µ1
2

∂y2
(y)

)
w2

)
.

This implies that the rows of

w1

(
∂µ1

∂y1
(y) ∂µ2

∂y1
(y)

∂µ3

∂y1
(y) ∂µ4

∂y1
(y)

)
+ w2

(
∂µ1

∂y2
(y) ∂µ2

∂y2
(y)

∂µ3

∂y2
(y) ∂µ4

∂y2
(y)

)

are linearly dependent, hence the resulting matrix is of rank lower than 2. Just as above, this impliesΣ is

not tangent to the infinitesimal cone field C atH . The statement follows.

Remark 4.14. Condition 2 implies that the determinants of the non-singular matrices B1 and B2 must

have the same sign. Namely, sinceA has non-real eigenvalues, the eigenvalues must be a conjugate pair

in particular. Hence the determinant ofA is positive. Then it follows from

detB1 · detA = detB2

that detB1 and detB2 have the same sign. Combining this with the fact that B1 and B2 have non-zero

determinant, we deduce that the immersions as in Definition 4.10 are locally divided into two disjoint

families, one with positive Jacobians and one with negative Jacobians at a point y. Namely, let ϕ+ and

ϕ− be two immersions, transverse to the infinitesimal cone field C, such that ϕ+(y) = ϕ−(y) = H and

the Jacobian of ϕ+ and ϕ− at a point y ∈ Y are positive and negative respectively. Then the images of

(dϕ+)y and (dϕ−)y in TH Gr(V ) are transversal. These two ways to be be transverse to the infinitesimal

cone field are shown schematically in Figure 4.7.

Let Dprol be a prolonged distribution of type (4,6) with defining triple (M,πM : M → X,φ : M →
Gr(TX)), such thatM is a rank-2 bundle over 4-dimensional manifold X . ThenM is a 6-dimensional

manifold; The Grassmann bundle Gr(TX) is a rank-4 bundle overX .

Theorem 4.15 The prolonged distribution Dprol is fat if and only if for every x ∈ X , the image Σx =
ϕ(Mx) of the fiber Mx is transverse to the infinitesimal cone field C defined on the Grassmannian

Gr2(TxM).

Proof. It suffices that this holds for an arbitrarily chosen pointx ∈ X and another arbitrarily chosen point

in its fiberMx. Let x ∈ X . Let y ∈ M such that πM(y) = x and let (x,H) = ϕ(y) be its image under

the bundle map ϕ. Consider the restriction ϕ|Mx : Mx → Σx ⊂ Gr2(TxX) of ϕ to the fiberMx that

maps into the Grassmannian Gr2(TxX).
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Figure 4.7: Schematic images (dϕ−)y and (dϕ+)y from the two disjoint families of immersions, one with

negative Jacobians and one with positive Jacobians at a point y.

We have to show that the prolonged distributionDprol is fat at y ∈M if and only if the imageΣx ofϕ|Mx

is transverse to the infinitesimal cone field CH defined on the Grassmannian Gr2(TxM).

Let U ⊂ X be an open neighborhood around x together with a chart ψ : U → R4 that maps

x 7→ (x1, ..., x4).

We use the coordinates on the Grassmann bundle induced by these local coordinates on X using co-

vectors, see Chapter 2, and we assume without loss of generality that the choice L = (1, 2) induces a
chart around H . Then the map ϕ|Mx expressed in these coordinates in the coordinates (y1, y2) of the
chart around y, is given by

(y1, y2) 7→=

(
µ1
1 µ1

2

µ2
1 µ2

2

)
.

This means that the µj
i are the coordinate functions depending on y1, y2 so that

α1 = x3 + µ1
1x

1 + µ1
2x

2,

αk = x4 + µ2
1x

1 + µ2
2x

2.

define the planeH ⊂ TxX locally. It suffices to show, that the prolongeddistributionDprol is fat aty ∈M
if and only if the two conditions from Lemma 4.13 hold forΣx, the image of ϕ|Mx . Those conditions are

1. The Jacobians of the first and second pair of coordinate functions of ϕ, respectively given by

B1 =

(
∂µ1

1

∂y1
(y)

∂µ1
1

∂y2
(y)

∂µ1
2

∂y1
(y)

∂µ1
2

∂y2
(y)

)
and B2 =

(
∂µ2

1

∂y1
(y)

∂µ2
1

∂y2
(y)

∂µ2
2

∂y1
(y)

∂µ2
2

∂y2
(y)

)
,

are non-singular matrices.

2. The isomorphismA ∈ GL2(R) given byB1A = B2 has non-real eigenvalues.
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Note that the first and second pair of coordinate maps of ϕ correspond to the coordinate functions de-

scribing the defining 1-forms α1, α2. Hence the Bi correspond to the Jacobians Jαi of the coordinate

functions of the locally defining 1-forms.

First we show dαi|Dprol is non-degenerate if and only if Bi = Jαi is non-degenerate for i = 1, 2. We

compute

dα1 = dµ1 ∧ dx1 + dµ2 ∧ dx2

=

(
∂µ1

1

∂x2
dx2 +

∂µ1
1

∂x3
dx3 +

∂µ1
1

∂x4
dx4 +

∂µ1
1

∂y1
dy1 +

∂µ1
1

∂y2
dy2

)
∧ dx1

+

(
∂µ1

2

∂x1
dx1 +

∂µ1
2

∂x3
dx3 +

∂µ1
2

∂x4
dx4 +

∂µ1
2

∂y1
dy1 +

∂µ1
2

∂y2
dy2

)
∧ dx2.

We have that dα1|Dprol is non-degenerate if and only if dα1∧ dα1|Dprol is a (non-degenerate) volume form,

so we compute

dα1 ∧ dα1|Dprol = −2

(
∂µ1

1

∂y1

∂µ1
2

∂y2
− ∂µ1

1

∂y2

∂µ1
2

∂y1

)
dx1 ∧ dx2 ∧ dy1 ∧ dy2

= −2 det Jα1dx1 ∧ dx2 ∧ dy1 ∧ dy2.

Note here that the resulting terms of 4-forms not including both da and db in the wedge product vanish

onDprol, since ∂y1 , ∂y2 ∈ Dprol, and that indeed only dy1 ∧ dy2 ∧ dx1 ∧ dx2 restricts to a volume form

onDprol. Hence dα1|Dprol is non-degenerate if and only if Jα1 is non-degenerate.

Similarly, we compute

dα2 = dµ2
1 ∧ dx1 + dµ2

2 ∧ dx2

=

(
∂µ2

1

∂x2
dx2 +

∂µ2
1

∂x3
dx3 +

∂µ2
1

∂x4
dx4 +

∂µ2
1

∂y1
dy1 +

∂µ2
1

∂y2
dy2

)
∧ dx1

+

(
∂µ2

2

∂x1
dx1 +

∂µ2
2

∂x3
dx3 +

∂µ2
2

∂x4
dx4 +

∂µ2
2

∂y1
dy1 +

∂µ2
2

∂y2
dy2

)
∧ dx2.

and

dα2 ∧ dα2|Dprol = −2

(
∂µ2

1

∂y1

∂µ2
2

∂y2
− ∂µ2

1

∂y2

∂µ2
2

∂y1

)
dx1 ∧ dx2 ∧ dy1 ∧ dy2

= −2 det Jα2dx1 ∧ dx2 ∧ dy1 ∧ dy2,

implying dα2|Dprol is non-degenerate if and only if Jα2 is non-degenerate. Now assume that both Jα1 and

Jα2 are non-degenerate, or equivalently that dα1|Dprol and dα2|Dprol are. Note that we can choose a basis

forH ∈ Dprol given by

{v1, v2, ∂y1 , ∂y1},

where the vi have a non-zero component in ∂xi
and no component in ∂xj

, for (i, j) ∈ {(1, 2), 2, 1)}.
Since we may rescale, we choose the non-zero component in ∂xi

equal to 1, i.e. vi is of the form ∂xi
+

· · ·+0 ·∂xj
. Then from the just computed expressions for dα1 and dα2 we derive that the rank measure
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R12
H satisfies

v1 7→ Av1

v2 7→ Av2

∂y1 7→ A∂y1
∂y2 7→ A∂y2 .

Note that at the pointH we have that

Dprol

H = H + THMx ⊂ T Gr2(TM),

where on the righthandside H is interpreted as the subspace H ⊂ TxX . The rank measure R12
(x,H) at

(x,H) is the linear mapH + THMx → HTMx given by

R12
(x,H) : (wX , wMx) 7→ (A(wX), A(wMx))

with respect to the basis {v1, v2} forH ∈ TxX and the basis {∂y1 , ∂y1} for THMx. HenceR
12
H has non-

real eigenvalues if and only if A has. This implies that the prolonged distributionDprol is fat at y ∈ M if

and only ifΣx is transverse to the infinitesimal cone field CH atH .

Since y was chosen arbitrarily, this completes the proof.

Remark 4.16. Recall result in Theorem 3.11, stating that for the (almost) complex Grassmannian that asso-

ciated to a 4-dimensional almost complex manifoldX the prolonged distributionDprol is fat. We see now

that this result follows directly fromTheorem4.15. Indeed, the local parametrizationϕ : R2 → Gr2(TxX)
–which is implicitly used there– is given by

(λ1, λ2) 7→
(
λ1 −λ2
λ2 λ1

)
The corresponding Jacobians, are given by

B1 =

(
1 0
0 1

)
and B2 =

(
0 −1
1 0

)
,

and, from Lemma 4.13, we see that the almost complex Grassmanians are transverse to the infinitesimal

cone.

In fact, we can replace the complex structure J in the proof of in Theorem 3.11 by J ′ = FJ – which

again defines a complex structure on TxX . That means that we consider the complex Grassmannian

Gr2(TX, J
′) = {H ∈ Gr2(TX)|J ′H = H} instead, where

F =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

Via the same computations as in the proof of Theorem 3.11 we now obtain that the Jacobians of the

corresponding (lightly adjusted) local parametrization are now given by

B′
1 =

(
1 0
0 −1

)
and B′

2 =

(
0 1
1 0

)
,
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so, again by Lemma 4.13, it follows that Gr2(TX, J
′) is transverse to the infinitesimal cone.

Finally, we observe that the determinants of B1, B2 are positive and the determinants of B′
1, B

′
2 are

negative. From the similarity of the charts it follows that this holds in fact for every point in Gr2(TX).
From Remark 4.14, the two complex Grassmanians

Gr2(TX, J) = {H ∈ Gr2(TX)|JH = H} and Gr2(TX, J
′) = {H ∈ Gr2(TX)|J ′H = H},

associated to the complex structures J and J ′ onX are transverse.
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Chapter 5

Fibers inducing fat prolongations

With the machinery developed in Chapter 4, we can deduce some properties of the class of fat prolonged

distributions of type (4, 6) under consideration. The main result of this chapter is showing that for the

family of fat prolonged distributions on a closed fiber bundle manifold M , the fibers of M → X are

forced to be 2-spheres or projective planes.

Again, we consider a 4-dimensional vector space V andH0 be a 2-plane in V . We fix a basis {x1, . . . , x4}
for V such that x1, x2 spanH0 and x3, x4 span the orthogonal complementH⊥ ofH0 with respect to

this basis.

We consider the two realizations of the quaternions inGL4(V ) given by the spans

H1 = 〈I, i1, j1, k1〉 and H2 = 〈I, i2, j2, k2〉,

where I is the identity map on V and the imaginary elements are the complex structures on V given by

i1 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , j1 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , k1 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


and

i2 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , j2 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , k2 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 ,

with respect to the fixed basis.

The unit spheres of imaginary quaternions inH1 andH2 are given by

S(ImH1) = {J ∈ H1 : det J = 1}

and

S(ImH2) = {J ∈ H2 : det J = 1}.

We denote them by S1 and S2 respectively.
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Remark 5.1. BothS1 andS2 are homeomorphic toS2. However, they are disjoint sub-spaces ofGL4(V ).

For a 2-planeH ∈ Gr2(V ) there exist precisely two pairs of elements, i.e. complex structures, in these

imaginary unit quaternion spheres such thatH is preserved under their action on V . The action of the

rotations that these fourH-preserving complex structures induce are illustrated in Figure 5.1. They are

Figure 5.1: Rotations induced by 4 versions of unit quaternions preserving H , two given by

J1(H),−J1(H) ∈ S1 and two given by J2(H),−J2(H) ∈ S2.

distributed evenly over the two spheres, one pair in S1 and one pair in S2. More precisely, consider the

isotropy group Iso(H) ofH with respect to the left action ofGL4(V ) on Gr2(V ) given by

Iso(H) = {A ∈ GL4 : AH ⊂ H}.

We have that Iso(H) intersects both unit quaternion spheres in the two pairs of antipodal elements that

also preserve the orthogonal complementH⊥, i.e.

Iso(H) ∩ S1 = {J1(H),−J1(H)}, Iso(H) ∩ S2 = {J2(H),−J2(H)}.

44



CHAPTER 5. FIBERS INDUCING FAT PROLONGATIONS

Here the orthogonal complement is with respect to the fixed basis {x1, ...x4}. In fact, Ji(H) and Ji(H)
represent a well defined element in the projectifization of the imaginary quaternions

[Ji(H)] ∈ PSi
∼= RP 2

for i ∈ {1, 2}. This allows to introduce two maps

πi : Gr2(V ) → PSi, i ∈ {1, 2}

sending a 2-planeH to the projective class of a complex structures on V preserving it:

πi : H ∈ Gr2(V ) 7→ [Ji(H)].

Lemma 5.2 The maps πi are surjective and smooth.

Proof. For every complex structure on V there is a 2-plane in V invariant under it, so the maps πi are
surjective.

Now we show that πi is smooth. It suffices to show that πi restricts to a smooth map on the open sets

Gr2(V )L. Without loss of generality, we show this for L = (1, 2). The calculations are analogous for the

other charts Gr(V )L′ that cover Gr2(V ).

Recall that χL : Gr2(V )L → R4 ∼= Mat2×2 maps For allH ∈ Gr2(V )L,

H 7→M =

(
m11 m21

m12 m22

)
.

Finally, we denote byB(H)L is the element inGL4(V ) given by
1 0 m11 m21

0 1 m12 m22

−m11 −m12 1 0
−m21 −m22 0 1

 .

Then πi ◦ χ−1
L is given by

M =

(
m11 m21

m12 m22

)
7→ [B(H)L · Ji(H0) ·B−1(H)L], H0 = 〈x1, x2〉

Indeed,B(H)LJi(H0)B
−1(H)L is a complex structure on V preservingH and its complement, hence

its projective class is precisely [J(H)]. We then see that πi ◦ ξ−1
L is smooth, because it involves only

smooth operations in GL4(V ) and the map B : Gr(V )L → GL4(V ) which is given by the mij , and

hence smooth.

We now look at the fibers of the map πi.
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Proposition 5.3 The fiber of πi over [Ji(H)], H ∈ Gr2(TX), is given by the complex Grassmanian

Gr2(TX, Ji(H)).

Proof. A point Ĥ ∈ Gr2(TX) is in π−1
i (H), forH ∈ Gr2(TX), if and only if

[Ji(Ĥ)] = [Ji(H)],

which happens if and only if

Ji(H) = ±Ji(Ĥ),

By definition, both Ji(Ĥ) and its opposite preserve Ĥ (and its orthogonal complement), so Ji(H) also
preserves Ĥ (and its orthogonal complement), and we have

Ĥ ∈ Gr2(TX, Ji(H)) = {H ′ ∈ Gr2(TX)|Ji(H)H ′ = H ′}.

From the proposition above, we obtain the following two corollaries.

Corollary 5.4 The map πi is submersive.

Proof. It follows from Proposition 5.3 from dimension counting. In fact, Proposition 5.3 implies that

the fibers of πi are embedded submanifolds of real dimension 2. Since πi is a smooth map from a 4-
dimensional manifold with 2-dimensional fibers, the rank of dπi is everywhere equal to 2. Finally, since
PSi

∼= RP 2 is 2-dimensional, this implies that πi is a submersion.

Corollary 5.5 The fibers of π1 are transverse to the fibers of π2.

Proof. The fibers ofπ1 andπ2 are given by the complex Grassmannians associated to the class of complex

structures [J1] and [J2] in S1 and S2 respectively. Similar to the complex structures J and J ′ = FJ in

Remark 4.16, the two pairs of Jacobians of their respective parametrizations at a point of intersection have

opposite sign, which implies that they are transverse since they are transverse to the infinitesimal cone

field.

In the following, let Dprol be a prolonged distribution of type (4,6) with defining triple (M,πM : M →
X,ϕ : M → Gr(TX)), such that M is a closed rank-2 bundle over the 4-dimensional manifold X .

For a point x ∈ X we denote the image ϕ(Mx) by Σx, like before. We consider the πi now as maps

Gr2(TxX) → PSi.

Corollary 5.6 Assume the prolonged distribution Dprol induced by ϕ is fat. Then the immersed fibers

Σx ∈ Gr2(TxX) are transverse to the fibers of either π1 or π2.
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Proof. By Theorem4.15,ϕx is transverse to the infinitesimal cone fieldC. Now the statement follows from

the observations in Remark 4.14. An immersion ϕ has to be in one of the two families that is transverse

to the infinitesimal cone field, i.e. its Jacobians are positive or negative. Then it has to be transverse to

one of the two complex Grassmannians the two respective pairs of Jacobians have both positive and both

negative determinants.

The intuition behind the previous two corollaries is given in Figure 5.2.

Figure 5.2: The fibers of π1 and π2 are the complex Grassmannians associated to the base point in the

respective spheres S1 and S2, of which we saw in Remark 4.16 that they are transverse to the cone field

(each in a different way) and in particular they are transverse to each other. In this picture their tangent

spaces are represented the horizontal and vertical lines. The immersed fiber given by (dϕ)y(TyY ) ∈
Gr2(TxX) that is transverse to the cone field must be transverse to the fibers of either π1 or π2. In this

picture it is represented by the blue line transverse to the fibers of dπ2.

Proposition 5.7 Assume the prolonged distribution Dprol induced by ϕ is fat. Consider the immersed

fiberΣx. Then one of the two restricted maps π1|Σx and π2|Σx is a surjective submersion.

Proof. We have that Σx has to be transverse to the fibers of one of the two projections. Without loss of

generality, say it is transverse to the fibers of π2. SinceM is closed, also its fibers are closed, implying that
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Σx is closed as well. Recall that ϕ is an immersion of a 2-dimensional manifold into the 4-dimensional

manifold Gr2(TxX). Then since π2 is a surjective submersion and its fibers are 2-dimensional π2|Σx ,

π2|Σx is a surjective submersion.

Theorem 5.8 The immersed fiberΣx is homeomorphic toRP 2 or S2.

Proof. One of the projections πi is a surjective submersion. Σ is 2-dimensional and so isRP 2. Hence πi
is a coveringmap. The only two covering spaces ofRP 2 areRP 2 andS2, henceΣmust be homeomorpic

to one of them.
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Chapter 6

Conclusion

In this thesis, we focused on co-rank 2 distributions that are induced by the canonical distribution on the

Grassmann bundle of 2-planes of a manifold. We defined this class of distributions and refer to them as

prolonged distributions. We restricted further to distributions of type (4, 6) and investigated the neces-

sary and sufficient conditions for distributions in this class to be fat.

We first looked at rank-2 fiber bundlesM with a 4-dimensional almost complex base manifold (X, J).
We considered the sub-bundle of complex Grassmannians Gr2(TX, J) in Gr2(TX). We showed that

the prolonged distributionDprol of this sub-bundle is a fat distribution of co-rank 2. In order to prove this,

we used a local frame adapted to J onX ; we expressed the defining 1-forms in terms of this frame and

showed that their differentials restrict to non-degenerate 2-forms on D and the rank measure relating

them has non-real eigenvalues.

Then we introduced the degenerate cones corresponding to a point in the Grassmannian and the (related)

infinitesimal cone field. We showed that for a rank-2 fiber bundleM over a 4-dimensional manifoldX ,

the infinitesimal cone field on a fiber of Gr2(TX) detects fatness for the prolonged distribution Dcan of

type (4, 6) on M in the sense of Theorem 4.15: Dprol is fat if and only if the immersed fibers –via the

bundle map– ofM are transverse to the cone field on the associated fiber of Gr2(TX). In order to show

this local characterization of fatness, we first proved a technical result, Lemma 4.13, relating tranversality

to the cone field to properties of the Jacobians of the defining 1-forms: the eigenvalues of the linear

map relating them should have non-real eigenvalues in particular. These eigenvalues re-appeared as the

eigenvalues of the rank measure in the proof of Theorem 4.15.

This Theorem has strong topological consequences for the admitted fibers of the bundle M in case it

is closed as a manifold and its prolonged distribution Dprol is fat. Namely, in case M is closed and its

prolonged distribution is fat, the fibers ofM are either 2-spheres or projective planes. This is stated in

Theorem 5.8, the main result of this thesis. We showed this by defining two surjective submersions from

a fiber ofM onto RP 2, where for each such map RP 2 is represented by the projectification of one of

the two copies of the imaginary quaternion unit sphere in GL4 respectively. We proceeded by showing

that the immersed fiber ofM is transversal to the fibers of one of the two projections, using that they are

transversal to the infinitesimal cone field, by Lemma 4.13. From this we deduced that either one or the

other projection restricts to be a surjective submersion from the fiber ofM ontoRP 2, implying that the

fiber is a covering map forRP 2, which implies the result.
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Outlook

There are several questions that arise after obtaining these results, just as interesting directions to look

into.

Concluding the findings in this thesis

One of the aims we discussed at the start of this thesis was to find concrete examples of fat distributions

of co-rank greater than 1, not associated to holomorphic contact structures. We provided new families

for which this definitely seems the case, but it remains to show this formally. It would be interesting to

work this out for manifolds not allowing a complex structure for example.

More specifically, it would be interesting to see if there exist indeed examples of fiber bundlesM inducing

fat prolonged distributions with projective planes as fibers. In that case it is even more unlikely that the

distribution is associated to a holomorphic contact structure. We have evidence that if an immersed fiber

Σ starting at a center point in one of the charts of the the Grassmannian passes through the center point

of its antipodal chart, it is a sphere. Namely, we suspect this can be shown using a Morse function: on

chart Gr2(TxX)L ∪ Gr2(TxX)L⊥ given by f : Gr2(TxX)L ∪ Gr2(TxX)L⊥ → R, such that

f : [N : M] 7→ detM
detN + detM

.

Moreover, we suspect that if we do not cross the antipodal point, we intersect the antipodal degener-

ate cone (at the antipodal point) in a circle, which would hint at the possibility for fibers that are indeed

homeomorphic to RP 2 as it seems like one could glue the disc formed by Σ of the first chart over this

circle.

Next to this it would be interesting to investigate if we can deduce what the homotopy classes of fat

prolonged distributions are with the tools introduced in this thesis.

Higher dimensional analogues

We think that classification results of a similar nature as for the (4, 6) case we focused on this thesis can

be found for co-rank 2 fat prolonged distributions of rank greater than 4 using generalized techniques. In
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particular, we suspect that there is an analogue for the relation of the degenerate cone and the induced

infinitesimal cone field with fat prolonged distributions for higher dimensions.

The definition for the degenerate cone generalizes to higher dimensions.

Definition 7.1 Let V be a vector space and consider the co-rank k Grassmannian Grk(V ). LetH be a

point in Grk(V ). The degenerate coneCH ofH in the Grassmannian Grk(V ) is the subvariety of Grk(V )
given by

{H ′ ∈ Grk(V ) : H ′
��t H}

In the same way, an infinitesimal cone field is defined.

Definition 7.2 Let V be a vector space and consider the co-rank k Grassmannian Grk(V ). The infinites-

imal cone field C on the Grassmannian Grk(V ) is a field of subverieties of the tangent space, point-wise

given by

CH = {Q ∈ TH Grk(V ) : rankQ < k}

The approach to prove a higher dimensional version of Theorem 4.15, would be to fist generalize the

technical Lemma 4.13.

Higher co-rank fat distributions

We believe that a new class of fat distributions of co-rank greater than 2 can be identified: One can con-

struct fat distributions of co-rank k on a manifoldM admitting k − 1 transversal fibrations with almost

complex structures on the fibers.

The approach we use for this is based on the proof of Rayner’s Theorem (from [12]), where one of the key

ingredients for the existence of formal fat distributions is the existence of several distinct representations

of Clifford algebras, which correspond to linear complex structures on the tangent spaces. The idea of the

construction that would define the new class of examples is that the almost complex structures on the

fibers of the transversal fibrations could be a global realization of a distribution for which at each point

the complex structures on the fibers correspond to the representations of Clifford algebras from Rayner’s

Theorem. We intend to use the prolongation techniques used in this thesis in this generalized setting to

generate a fat prolonged distributions of higher co-rank.
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