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Abstract

In this thesis, we discuss some classical results in probabilistic number theory, focusing on when the outputs
of an arithmetic function, usually multiplicative, attain a continuous distribution function. We study the
inception of these theories around the early 20th century in the work of Schoenberg, who inspired Davenport
to show that abundant numbers have a continuous distribution. It was not until 2013 that Jennings, Pollack
and Thompson looked at this problem from a different perspective and generalized the result on abundant
numbers in a new direction. Moreover, Jennings managed to generalize this to other functions besides the
sum of divisors function. While Schoenberg gave necessary and sufficient conditions, those given by Jennings
are purely sufficient. Jennings’ result has the advantage of being easier to apply. In this thesis, we find a
function that satisfies Schoenberg’s but not Jennings’, conditions. We also compare Schoenberg’s conditions
with conditions from modern probability theory.
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1 Introduction

Number theory is the field of study which focuses on the structure of integers and arithmetic functions. On
the other hand, probability theory is the field of study which is interested in studying the distribution of
random variables and their properties like mean and variance. Probabilistic number theory then is the field
which studies the probabilistic properties of arithmetic functions f(n), as the output of f(n) for any arbitrary
n can be hard to predict, especially for large n. One of the most well-known theorems in probabilistic number
theory has to be attributed to Paul Erdős and Mark Kac [6].

Theorem 1.1 (Erdős-Kac, 1940) Let f(n) be a strongly additive function with |f(p)| ≤ 1.
Let

A(n) =
∑
p≤n

f(p)

p
,

and

B(n) =

√√√√∑
p≤n

f(p)2

p
.

Then

lim
x→∞

1

x
#

{
n ≤ x | f(n)−A(n)

B(n)
≤ u

}
=

1√
2π

∫ u

−∞
e−

t2

2 dt.

Hence A(n) can be interpreted as the normal order of f and B(n) as the variance.

Before this, results about arithmetic functions had mostly involved estimating the asymptotic growth average
growth of arithmetic functions. Thus, this result was the first to not only establish the average growth, but
also pin down asymptotically how large the variance from this average is. Moreover, they managed to connect
the behaviour of certain arithmetic functions with one of the more central distributions in probability, the
normal distribution. The inception of probabilistic number theory is probably best attributed to Schoenberg’s
thesis under Issay Schur in 1928 [14]. In his thesis, Schoenberg gives a few examples of numbers which are
continuously distributed along the unit interval. The main example which caught Davenport’s eye was the
choice of the multiplicative function

g(n) :=
φ(n)

n
.

Let the moments µk, for k > 0, of the function above be given by

µk := lim
x→∞

1

n

∑
n≤x

g(n)k.

Then the analytic continuation of these moments for Re s > 0, Φ(s), is given by

Φ(s) =
∏
p

{
1− 1

p
+

1

p

(
1− 1

p

)s}
,

a formula which he obtained from his doctoral advisor Issay Schur. Schoenberg established necessary and
sufficient conditions on Φ(it) so that the numbers

φ(1)

1
,
φ(2)

2
, . . . ,

φ(n)

n
,
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are continuously distributed along the unit interval. An observation we made was that instead of computing
Φ(s) through this analytic continuation, one can compute Φ(it) directly as the characteristic function of
log g(n). Not much is known about how Schur established his representation of Φ(s). However, soon after
Schoenberg’s publication, Davenport applied the same conditions for the numbers

1

σ(1)
,

2

σ(2)
, . . . ,

n

σ(n)
. (1)

Davenport’s paper [2] includes a derivation of Φ(s) through Möbius inversion, which we will discuss in 2.2.
It is worth mentioning that this derivation would have been simpler in Schoenberg’s case, as we have that

g(pk) =
φ(pk)

pk
=
pk − pk−1

pk
= 1− 1

p
,

independent of k. Hence when applying Möbius inversion to g(n) one sees that for k ≥ 2 the terms vanish,
as g(pk)− g(pk−1) = 0. The direct implication is that the product representation of this Φ(s) is without an
infinite sum, whereas this is not generally the case. Davenport’s interest in the numbers (1) arose from his
interest in abundant numbers and its density in the natural numbers. Recall that a natural number n is
called perfect if σ(n) = 2n, abundant if σ(n) > 2n and deficient if σ(n) < 2n. A natural number n is then
called χ-abundant if σ(n) ≥ χn, and define A(χ, n) to be the number of χ-abundant numbers up to and
including n. Notice that the two definitions differ in whether the inequality is strict or not. As Davenport
managed to show that the distribution is in fact continuous, this discrepancy does not matter. He proved
that the density

A(χ) := lim
n→∞

A(χ, n)

n
(2)

exists for every χ and is continuous in χ.
Thus the claim that the limit in (2) exists for every χ and is continuous in χ, is equivalent to the claim that
asymptotically n

σ(n) is continuously distributed along the unit interval; then A(χ, n) equals the number of

numbers m ≤ n for which m
σ(m) ≤ x = 1

χ . The paper of Davenport’s not only discussed the continuity of

the distribution function, but also contained an inclusion-exclusion method to approximate the proportion
of numbers which are χ-abundant, going one step beyond proving the distribution exists, making attempts
to approximate the distribution function.

To clarify, we call z(t) a distribution function for 0 ≤ t ≤ 1 when

1. z(0) = 0 and z(1) = 1,

2. z is non-decreasing,

3. and z is right-continuous.

Let ϕ(t) (or ϕX(t)) denote the characteristic function (of the random variable X).
Further, let d = (a, b) denote the greatest common divisor of integers a and b and φ(n) denote the Euler
totient function. The variable p shall always denote a prime number and sums or products of the form

∑
p

or
∑
p≥7

will always be taken over the primes.
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2 Historical survey

In this section we will discuss some of the historical advances in probabilistic number theory and discuss
proofs of Schoenberg, Davenport and Jennings, Pollack and Thompson.

2.1 Schoenberg’s thesis

Now we will discuss some of Schoenberg’s results of his doctoral thesis pertaining to the distribution of a
countable set of numbers in the unit interval and dissect the proof of his main result. Schoenberg’s paper [14]
on the distribution of numbers was inspired by Weyl’s paper of a similar name [17], whose paper discussed
when numbers

α1, α2, . . .

are equidistributed modulo 1. Schoenberg instead proved theorems on the distribution of arbitrary numbers

x1n, x2n, . . . , xnn (mod 1),

including the relation between numbers f(xjn) and the asymptotic distribution of these numbers modulo 1
for a class of functions f , and the continuity of the aforementioned distribution function. Throughout this
section, let the numbers

x1n, x2n, . . . , xnn (3)

be in the unit interval. For k a positive integer we let their k-th Stieltjes moments be given by

µk := lim
n→∞

1

n

n∑
j=1

xkjn (4)

and the k-th Fourier moments be given by

ωk := lim
n→∞

1

n

n∑
j=1

e2πikxjn . (5)

Let it be noted that Fourier moments allowed Schoenberg to obtain results about numbers when taking them
mod 1. We also let z(t) for 0 ≤ t ≤ 1 be the distribution function of the numbers (3), i.e., for 0 < t < 1 this
is given by

z(t) := lim
n→∞

1

n
· |{1 ≤ j ≤ n | xjn ≤ t}| ,

with z(0) = 0 and z(1) = 1. Before we go any further into his thesis, in Schoenberg’s Third Theorem a
beautiful theorem is applied to extend the domain of a function, and we wish to state it in full here.
[11, p.111]

Theorem 2.1 (Le Roy, Lindelöf) Given a Taylor series

f(x) =

∞∑
k=0

Φ(k)xk

such that for Φ(k)
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1. Φ(s) is holomorphic on Re s > α for some α ∈ R

2. There exists an angle 0 ≤ θ < π so that for any ϵ > 0 and r > 0 we have∣∣Φ(α+ reiψ)
∣∣ < er(θ+ϵ) for − π

2
≤ ψ ≤ π

2

then f(x) is holomorphic on the set of all complex numbers with argument in (θ, 2π− θ). Moreover for every
positive integer m with m− 1 < α < m we have that

∞∑
k=m

Φ(k)xk =

∫ α+i∞

α−i∞

Φ(z)xz

1− e2πiz
dz.

Idea of the proof: To intuitively understand this theorem, it is important to see that this theorem relies on
the residue theorem. One can see that the denominator has a zero of order 1 at every integer, hence all the
poles and residues will occur when z is a positive integer inside the path of integration. For the path of
integration, the path along a semicircle centered at z = α with radius r → ∞ is taken as can be seen in the
image below. The conditions of the theorem are then shown to be sufficient so that the integral purely along
the semicircle approaches zero, hence the integral along the vertical path equals the sum of the residues.

Figure 1: Contour path

2.1.1 Schoenberg’s first two theorems

To properly be able to use both moments of the numbers (3), the following theorem is central and applied
implicitly throughout the whole paper:
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Theorem 2.2 (Schoenberg’s First Theorem) Let f(x) be a function of bounded variance for 0 ≤ x ≤ 1
and z(t) be the distribution function of the numbers (3). Assuming z(t) is continuous, then

lim
n→∞

1

n

n∑
j=1

f(xjn) =

∫ 1

0

f(t)dz(t),

where the integral above is to be interpreted as a Riemann-Stieltjes integral.

Now one can see that for all positive k, ∫ 1

0

tkdz(t) = µk (6)∫ 1

0

e2πitkdz(t) = ωk. (7)

This allowed Schoenberg to establish the following result.

Theorem 2.3 (Schoenberg’s Second Theorem) Let the k-th moments (4) (or (5)) be given and let z(t),
z(0) = 0, be a continuous and monotonic non-decreasing function so that the equation (6) (resp, (7),) holds.
Then the numbers (3) are asymptotically continuously distributed, with z(t) as their distribution function.

This theorem is not of much help in establishing whether any arbitrary set of numbers is asymptotically
distributed mod 1. However, together with the first theorem, this allows us to extend one result with another.

Corollary 2.3.1 Let the numbers in the unit interval

x1n, x2n, . . . , xnn

and their distribution function z(t) be given. Let ψ(t) be another distribution function. Then the numbers

ψ(x1n), ψ(x2n), . . . , ψ(xnn)

are also asymptotically distributed along the unit interval with distribution function z(ψ−1(t)).

One example for this would be

xin :=
i

n
,

z(t) = t,

ψ(t) = sin

(
1

2
πt

)
,

which satisfy the conditions to be a continuous distribution function. Then also the numbers

sin
( π
2n

)
, sin

(
2π

2n

)
, . . . , sin

(nπ
2n

)
,

are asymptotically distributed with their distribution function given by

z(ψ−1(t)) =
2 arcsin(t)

π
.

Another such interesting result is the following corollary:
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Corollary 2.3.2 Let

x1n, x2n, . . . , xnn

be in (0, 1] and suppose that their distribution function z(t) is given. Then the numbers

1

x1n
,

1

x2n
, . . . ,

1

xnn
mod 1

also are asymptotically continuously distributed, with their distribution function given by

z†(t) =

∞∑
j=1

(
z

(
1

j

)
− z

(
1

j + t

))
.

This, for example, allows him to verify and extend a result from Pólya: the numbers

n

1
,
n

2
, . . . ,

n

n
mod 1

are asymptotically distributed, with distribution function

z†(t) =

∫ 1

0

1− xt

1− x
dx.

For k > 1, the numbers

k

√
n

1
, k

√
n

2
, . . . , k

√
n

n
mod 1,

are asymptotically distributed with distribution function

z†k(t) =

∞∑
j=1

1

jk
+

(−1)k−1

(k − 1)!

dk

dxk
log Γ(x+ 1).

2.1.2 Schoenberg’s main theorems

The goal of Schoenberg’s third and fourth theorems is to give conditions for the continuity of z(t), given
the k-th Stieltjes moments, respectively Fourier moments, of the numbers (3). We will merely mention the
fourth theorem and dissect the proof of the third theorem in depth. This is because the third theorem gives
an insightful connection to probability theory and it is more closely related to current results as it can be
applied to multiplicative functions.

Theorem 2.4 (Schoenberg’s Fourth Theorem) Necessary and sufficient conditions for any set of num-
bers

x1n, x2n, . . . , xnn

to be asymptotically continuously distributed when taken mod 1 are the existence of the k-th Fourier moments

ω1, . . . , ωn,

along with the condition that for these Fourier moments

lim
n→∞

1

n

n∑
j=1

|ωj | = 0.
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The fourth theorem seems to use the same tools as discussed in the paper by Weyl; however, this is no
longer the case for the third. We cannot immediately state the third theorem, as its conditions are not
directly on the Stieltjes moments but on an analytic function derived from them. For the sake of brevity we
will refer to Stieltjes moments simply by moments. For numbers in the unit interval

x1n, x2n, . . . , xnn, (3)

Schoenberg assumes that all these moments exist. However as can also be seen in modern probability theory,
this is not a trivial assumption; we will discuss this problem in more detail in Section 4. To show the
connection between the moments to the continuity of z(t), we will extend the moments to the open right
half complex plane, so that for Re s > 0,

Φ(s) =

∫ 1

0

tsdz(t) and Φ(k) = µk. (8)

Further, the limit

Φ(iv) := lim
u→0+

Φ(u+ iv)

exists uniformly for −∞ < v <∞. Then the theorem is as follows.

Theorem 2.5 (Schoenberg’s Third Theorem) Assume that the k-th moments of the numbers (3) exist
for all k ≥ 0. The distribution function z(t) is continuous if and only if the following two conditions are met
for Φ(s):

Φ(0) = 1 and lim
x→∞

1

x

∫ x

0

|Φ(iλ)|dλ = 0. (9)

Then the numbers in (3) are asymptotically continuously distributed.

In order to apply the continuity of the unknown z(t), we will use the following function

f(x) :=

∫ 1

0

dz(t)

1− xt
,

which is analytic and holomorphic on C \ [1,∞]. This function connects z(t) with µk. In particular, for
|x| < 1 we have

f(x) = 1 +

∞∑
k=1

µkx
k.

Before we can relate the final result depending on Φ(s) to this function f , we will need the following lemma
which is an important step towards the second condition in (9).

Lemma 2.6 Let z(t) be given as above. Then the following two statements are equivalent:

(i) z(t) is continuous for t ∈ (0, 1];

(ii) For fixed r ≥ 1 we have that

lim
x→r

(x− r)f(x) = 0

where x approaches r on any path with a fixed angle so the path does not intersect the interval [1,∞).
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Proof: Let θ = 1
r . Then statement (ii) is the same as saying

lim
1
x→θ

(1− xθ)f(x) = lim
1
x→θ

∫ 1

0

1− xθ

1− xt
dz(t) = 0

Notice for the integrand that ∣∣∣∣1− xθ

1− xt

∣∣∣∣ = ∣∣∣∣ 1x − θ
1
x − t

∣∣∣∣ < C,

for some C ∈ R and that for t outside the interval (θ − ϵ, θ + ϵ) we have

lim
1
x→θ

∣∣∣∣ 1x − θ
1
x − t

∣∣∣∣ = 0.

This means that for the integral above

lim
1
x→θ

∫ 1

0

1− xθ

1− xt
dz(t) = lim

1
x→θ

∫ θ−ϵ

0

1− xθ

1− xt
dz(t) +

∫ θ+ϵ

θ−ϵ

1− xθ

1− xt
dz(t) +

∫ 1

θ+ϵ

1− xθ

1− xt
dz(t)

= lim
1
x→θ

∫ θ+ϵ

θ−ϵ

1− xθ

1− xt
dz(t).

The implication (i) =⇒ (ii) now follows quickly. Assuming (i) means that z(t) is continuous at t = θ.
Then

lim
1
x→θ

∫ 1

0

1− xθ

1− xt
dz(t) ≤ C · (z(θ + ϵ)− z(θ − ϵ)) = 0.

Note that this implication also works for θ = 1, with the small adjustment that the important integration
domain becomes (1− ϵ, 1].

The opposite direction we will prove through contraposition. Thus assume that z(t) is not continuous.
Any discontinuities outside of (θ − ϵ, θ + ϵ) in fact do not affect the result as we have seen that outside this
domain, the integrand itself approaches zero. This means that we may focus on the situation where z(t)
exhibits a single jump discontinuity of δ > 0 at t = θ in a neighbourhood of θ. Then we define a new function
z1(t) where

z1(t) =

{
z(t) if 0 ≤ t < θ

z(t)− δ if θ ≤ t ≤ 1.

Similar to above we have

lim
1
x→θ

∫ 1

0

1− xθ

1− xt
dz(t) = lim

1
x→θ

∫ 1

0

1− xθ

1− xt
dz1(t) +

(
1− xθ

1− xθ

)
· δ

and as z1(t) is now continuous at t = θ we see that in fact the integral on the right-hand side again equals
zero. Hence

lim
1
x→θ

(1− xθ)f(x) = δ ̸= 0.

Thus the two statements are equivalent. □

Proposition 2.1 The analytic continuation of the moments, Φ(s), is uniquely defined and holomorphic on
Re s > 0.
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The fact that Φ(s) is holomorphic is a required condition for Theorem 2.1.
Proof : Recall from (8) that for Re s > 0

Φ(s) =

∫ 1

0

tsdz(t).

Firstly, to check it is holomorphic we claim that its complex derivative is given by

Φ′(s) =

∫ 1

0

ts log tdz(t).

Let s = u+ iv be fixed with u > 0 and 0 < |h| < u
2 , so that Re(s+ h) > 0. Then∣∣∣∣Φ(s+ h)− Φ(s)

h
−
∫ 1

0

ts log tdz(t)

∣∣∣∣ = ∣∣∣∣∫ 1

0

(
th − 1

h
− log t

)
tu+ivdz(t)

∣∣∣∣
≤
∫ 1

0

∣∣∣∣ th − 1

h
− log t

∣∣∣∣ tudz(t).
To estimate the quantity in the modulus, we will use the power series of the exponential function∣∣∣∣ th − 1

h
− log t

∣∣∣∣ = ∣∣∣∣eh log t − 1

h
− log t

∣∣∣∣ =
∣∣∣∣∣
∞∑
k=0

(h log t)k

k! − 1

h
− log t

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

(h log t)k

k!

h
− log t

∣∣∣∣∣ =
∣∣∣∣∣
∞∑
k=1

hk−1 logk t

k!
− log t

∣∣∣∣∣
=

∣∣∣∣∣
∞∑
k=2

hk−1 logk t

k!

∣∣∣∣∣ ≤ |h| log2 t
∞∑
k=0

|h|k| log t|k

(k + 2)!

≤ |h| log2 t
∞∑
k=0

(
|h| log 1

t

)k
k!

= |h| log2 te|h| log 1
t .

In the last steps we used that 0 < t < 1 so that | log t| = log 1
t . Now as |h| < u

2 and taking h→ 0 we see that∣∣∣∣Φ(s+ h)− Φ(s)

h
−
∫ 1

0

ts log tdz(t)

∣∣∣∣ ≤ |h|
∫ 1

0

log2 t · t−|h| · tudz(t) ≤ |h|
∫ 1

0

t
u
2 log2 tdz(t) → 0.

To show that the integrals are well-defined at the lower bound, we may use l’Hôpital’s rule. We will
demonstrate this now for the final integral above.

lim
t→0+

log2 t

t−
u
2

= lim
t→0+

2t−1 log t

−u
2 t

−u
2 −1

=
−4

u
· lim
t→0+

log t

t−
u
2

=
−4

u
· lim
t→0+

t−1

−u
2 t

−u
2 −1

=
8

u2
· lim
t→0+

tu/2 = 0.

This function is now unique by a theorem discussed by Hardy in [8]. Again let s = u+ iv. Then

|Φ(s)| =
∣∣∣∣∫ 1

0

tsdz(t)

∣∣∣∣ ≤ ∫ 1

0

tudz(t) ≤
∫ 1

0

dz(t) = z(1)− z(0) = 1,

so that Φ(s) is bounded on Re s > 0. As we have seen above in the proof we will need some knowledge of
the function Φ(s) on the complex axis. To this end we define

Φ(iv) := lim
ϵ→0+

∫ 1

ϵ

tivdz(t), (10)

12



and wish to show that

lim
u→0+

Φ(u+ iv) = Φ(iv).

The reason this needs care is that at v = 0 one would obtain

Φ(0) =

∫ 1

0

t0dz(t),

at the origin, which is improper if we don’t let the lower bound of the integral approach 0 instead. To show
that one can naturally extend Φ to the imaginary axis we have

|Φ(u+ iv)− Φ(iv)| = lim
ϵ→0+

∣∣∣∣∫ 1

0

tu+ivdz(t)−
∫ 1

ϵ

tivdz(t)

∣∣∣∣
= lim
ϵ→0+

∣∣∣∣∫ ϵ

0

tu+ivdz(t) +

∫ 1

ϵ

(tu − 1)tivdz(t)

∣∣∣∣
≤ lim
ϵ→0+

∣∣∣∣∫ ϵ

0

tudz(t)

∣∣∣∣+ ∫ 1

ϵ

(1− tu)dz(t)

≤ lim
ϵ→0+

ϵ · 1 · (z(ϵ)− z(0)) +

∫ 1

ϵ

(1− tu)dz(t),

which does not rely on v. As u→ 0+ we see that the right-hand side approaches zero as z(t) is bounded.

Having gained more insight into the function Φ(s), we can now see where the first condition of (9) comes
into play.

Corollary 2.6.1 The following two are equivalent

(i) Φ(0) = 1;

(ii) z(t) is continuous at t = 0.

Proof : Taking t = 0 in definition (10) we see that

Φ(0) = lim
ϵ→0+

∫ 1

ϵ

dz(t) = lim
ϵ→0+

z(1)− z(ϵ) = 1− lim
ϵ→0+

z(ϵ)

so that Φ(0) = 1 implies

lim
ϵ→0+

z(ϵ) = 0,

i.e., z(t) is continuous at t = 0. □

Now as

f(x) = 1 +
∑
k=1

µkx
k = 1 +

∞∑
k=1

Φ(k)xk for |x| < 1,

we wish to connect the continuity result of Lemma 2.6 to our function Φ. However to apply Lemma 2.6, we
require that x > 1, so we need to extend the representation of f as a function of Φ. To this end we will use
a result stated in full at the start of this section as Theorem 2.1, one which implies that

f(x) = 1 +

∞∑
k=1

Φ(k)xk = 1 +

∫ α+i∞

α−i∞

Φ(z)xz

1− exp 2πiz
dz for 0 < α < 1

13



for x ̸= 0 with the argument of x so that 0 < arg x < 2π, as then we can properly denote

xz = exp z log x = exp z(log |x|+ i arg x).

Importantly, we may now apply the conditions on f for the continuity of z(t) to our function Φ, without
having to deal with a Riemann-Stieltjes integral where we integrate with respect to an unknown distribution
function z(t).

As we have shown that Φ(iv) is well-defined, we may take the path of integration along the imaginary
axis, i.e., let α approach 0, except for the pole at the origin. Hence we will let

f(x) = 1 +

∫
C

Φ(z)xz

1− exp 2πiz
dz,

where C denotes the path along the imaginary axis but with a semi-circle centered at the origin, with radius
0 < χ < 1. In the future we will denote the path along only the semi-circle with S.

Figure 2: Path of integration

Now in the final step we will adapt the condition stated in Lemma 2.6:

lim
x→r

(x− r)f(x) = 0.

Let x = reiθ with r fixed in [1,∞) and 0 < θ < 2π. By l’Hôpital’s rule

lim
θ→0+

|x− r|
θ

= r lim
θ→0+

|eiθ − 1|
θ

= r lim
θ→0+

|ieiθ|
1

= r

Then we have

0 = lim
x→r

(x− r)f(x)

= lim
θ→0+

(reiθ − r)f(reiθ)

= r lim
θ→0+

|eiθ − 1|
θ

· θf(reiθ)

= lim
θ→0+

θf(reiθ)

= lim
θ→0+

θ + θ

∫ −iχ

−i∞

Φ(z)ez(log r+iθ)

1− exp 2πiz
dz + θ

∫
S

Φ(z)ez(log r+iθ)

1− exp 2πiz
dz + θ

∫ i∞

iχ

Φ(z)ez(log r+iθ)

1− exp 2πiz
dz. (11)

14



As it turns out, we can approximate these first two integrals. Recall that |Φ(s)| < 1. For the first:∣∣∣∣∫ −iχ

−i∞

Φ(z)ez(log r+iθ)

1− exp (2πiz)
dz

∣∣∣∣ = ∣∣∣∣∫ −χ

−∞

Φ(iv)eiv(log r+iθ)

1− exp (−2πv)
dv

∣∣∣∣ ≤ ∫ ∞

χ

∣∣e−iv log r · evθ∣∣
exp(2πv)− 1

dv

≤
∫ ∞

χ

evθ

exp(2πv)− 1
dv <

∫ ∞

χ

evπ/2

exp(2πv)− 1
dv,

which is independent of θ, hence its limit in (11) will be 0. For the second, note that as z follows the path
around a semi-circle of radius χ, that

|xz| = e| log |x|+iθ|·|z| ≤ eχ·(r+θ),

so that the second integral can be approximated as such:∣∣∣∣∫
S

Φ(z)ez(log r+iθ)

1− exp (2πiz)
dz

∣∣∣∣ ≤ ∫
S

eχ(log r+θ)

|1− exp (2πiz)|
dz <

∫
S

eχ(log r+π/2)

|1− exp (2πiz)|
dz,

again independent of θ. These two approximations imply that the condition of (11) in fact reduces to

0 = lim
θ→0+

θ

∫ i∞

iχ

Φ(z)ez(log r+iθ)

1− exp(2πiz)
dz = lim

θ→0+
θ

∫ ∞

χ

Φ(iλ)eiλ log r−λθ

1− exp(−2πλ)
dλ.

To clean up this equation we will apply a temporary substitution λ = vk, where k = θ−1:∣∣∣∣θ ∫ ∞

χ

Φ(iλ)eiλ log r−λθ)

1− exp(−2πλ)
dλ

∣∣∣∣ ≤ ∫ ∞

χ/k

|Φ(ivk)| e−v

1− exp(−2πvk)
dv ≤ 1

1− exp(−2πχ)

∫ ∞

χ/k

|Φ(ivk)| e−vdv

≤ 1

1− exp(−2πχ)

∫ ∞

0

|Φ(ivk)|e−vdv.

Hence the condition now becomes

lim
k→∞

∫ ∞

0

|Φ(ivk)|e−vdv = 0.

Notice that the integrand is non-negative. Moreover, as |Φ(iv)| ≤ 1 and as e−v > 0, the condition that this
limit approaches zero wholly depends on k, hence for any fixed m > 0 the following is sufficient

lim
k→∞

∫ m

0

|Φ(ivk)|dv = 0.

Now we reverse the previous substitution v = λk−1 so

lim
k→∞

1

k

∫ km

0

|Φ(iλ)|dλ = lim
k→∞

1

km

∫ km

0

|Φ(iλ)|dλ = 0.

Now with one final substitution x = km the second condition of Theorem 2.5 too has been proven:

lim
x→∞

1

x

∫ x

0

|Φ(iλ)|dλ = 0.

□
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2.2 Davenport’s example function

Davenport applied Schoenberg’s Third Theorem to the ratio of n to its sum of divisors. In order to prove
the continuity of the distribution function of the values g(n) = n

σ(n) , we must study

Φ(s) := lim
n→∞

1

n

n∑
m=1

(
m

σ(m)

)s
. (12)

To evaluate this function we will use a product representation of Φ(s), which we will establish now. Let

ϱs(m) :=
∑
d|m

µ
(m
d

)( d

σ(d)

)s
.

Then by the Möbius inversion formula we also have that(
m

σ(m)

)s
=
∑
d|m

ϱs(d)

and

1

n

n∑
m=1

(
m

σ(m)

)s
=

1

n

n∑
m=1

ϱs(m)
⌊ n
m

⌋
. (13)

The reason that ϱ is more convenient is because of its representation as a product:

ϱs(m) =
∏
pk∥m

((
1− p−1

1− p−k−1

)s
−
(
1− p−1

1− p−k

)s)
=
∏
pk∥m

((
1− p−k−1

1− p−1

)−s

−
(
1− p−k

1− p−1

)−s)
. (14)

This representation follows from the representation as a sum because of the following. Let m = pr11 p
r2
2 . . . prkk

be the prime factorization ofm. Consider the quantity µ
(
m
d

)
. This is equal to zero if and only if md is divisible

by a square. This means that to contribute to the sum, md must have prime factorization m
d = ps11 p

s2
2 . . . pskk ,

where each si must equal either 0 or 1, or si ∈ {0, 1}. In short we will denote −→s := (s1, s2, . . . , sk). This
means that we can start rewriting ϱs using this fact about m

d and the fact that µ(n), σ(n) are multiplicative.
Then

ϱs(m) =
∑
d|m

µ
(m
d

)( d

σ(d)

)s

=
∑

−→s ∈{0,1}k

k∏
i=1

{
µ (psii )

(
pri−sii

σ(pri−sii )

)s}

=

k∏
i=1

{(
prii

σ (prii )

)s
−

(
pri−1
i

σ
(
pri−1
i

))s} .
This is now equal to (14) because

pk

σ(pk)
=

pk

pk+1−1
p−1

=
p− 1

p− p−k
=

1− p−1

1− p−k−1
.
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To show the limit in (12) equals the product representation we are working towards, we will analyze the
product above. Note that for any 1 ≤ v < u < 2 we have that

|u−s − v−s| =
∣∣∣∣s∫ u

v

x−s−1dx

∣∣∣∣
≤ |s|(u− v) ·max

(
u−σ−1, v−σ−1

)
σ = Re s

≤ |s|(u− v)2|σ|.

In the product our u, v are dependent only on prii , hence

u− v =

∣∣∣∣(1− p−k−1

1− p−1

)
−
(
1− p−k

1− p−1

)∣∣∣∣ = ∣∣∣∣p−k − p−k−1

1− p−1

∣∣∣∣ = p−k.

Now we can start estimating ϱs:

|ϱs(m)| =

∣∣∣∣∣∣
∏
pk∥m

((
1− p−k−1

1− p−1

)−s

−
(
1− p−k

1− p−1

)−s)∣∣∣∣∣∣
=
∏
pk∥m

∣∣∣∣∣
(
1− p−k−1

1− p−1

)−s

−
(
1− p−k

1− p−1

)−s∣∣∣∣∣
≤
∏
pk∥m

|s|2|σ|p−k ≤ CΘ(m)
s m−1,

where Cs depends only on s and Θ(m) equals the number of prime divisors of m. Due to Ramanujan [13, 16,
p.83] it is known that

Θ(m) = O
(

logm

log logm

)
.

Then, for |s| bounded, we see that

ϱs(m) = O
(
m−1+ϵ

)
.

Then from 13 we obtain

1

n

n∑
m=1

(
m

σ(m)

)s
=

1

n

n∑
m=1

ϱs(m)
n

m
− 1

n

n∑
m=1

ϱs(m)
( n
m

−
⌊ n
m

⌋)
=

( ∞∑
m=1

ϱs(m)
1

m
−

∞∑
m=n+1

ϱs(m)
1

m

)
+O

(
1

n

n∑
m=1

|ϱs(m)|

)

=

∞∑
m=1

ϱs(m)

m
+O

( ∞∑
m=n+1

|ϱs(m)|
m

)
+O

(
1

n

n∑
m=1

|ϱs(m)|

)
.
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Now for bounded |s| we see that as n approaches ∞, the two error terms approach zero. Hence the limit in
12 exists and equals

Φ(s) = lim
n→∞

1

n

n∑
m=1

(
m

σ(m)

)s
=

∞∑
m=1

ϱs(m)

m

=

∞∑
m=1

1

m

∏
pk∥m

((
1− p−k−1

1− p−1

)−s

−
(
1− p−k

1− p−1

)−s)

=

∞∑
m=1

∏
pk∥m

p−k

((
1− p−k−1

1− p−1

)−s

−
(
1− p−k

1− p−1

)−s)

=
∏
p

{ ∞∑
k=0

p−k

((
1− p−k−1

1− p−1

)−s

−
(
1− p−k

1− p−1

)−s)}

=
∏
p

{
1 +

∞∑
k=1

p−k

((
1− p−k−1

1− p−1

)−s

−
(
1− p−k

1− p−1

)−s)}
.

We can verify that in fact Φ(0) = 1 and that |Φ(s)| ≤ 1 for σ ≥ 0.

2.2.1 Applying Schoenberg’s Theorem to Davenport’s Φ(s)

Theorem 2.5 states that it is sufficient to prove that

Φ(0) = 1 and lim
x→∞

1

x

∫ x

0

|Φ(iλ)|dλ = 0, (15)

with Φ as defined in (12). Notice that the second is equivalent to∫ x

0

|Φ(iλ)|dλ = o(x).

We mention this only as it is easier to state. For the arguments of the product we see that

1 +

∞∑
k=1

p−k

((
1− p−k−1

1− p−1

)−it

−
(
1− p−k

1− p−1

)−it)

= 1 + p−1

((
1− p−2

1− p−1

)−it

− 1

)
+

∞∑
k=2

p−k

((
1− p−k−1

1− p−1

)−it

−
(
1− p−k

1− p−1

)−it)

= 1 + p−1

((
(1− p−1)(1 + p−1)

1− p−1

)−it

− 1

)
+ p−2

∞∑
k=2

p−k+2

((
1− p−k−1

1− p−1

)−it

−
(
1− p−k

1− p−1

)−it)
= 1− p−1 + p−1

(
1 + p−1

)−it
+ ϑpp

−2,

where

ϑp :=

∞∑
k=0

p−k

((
1− p−k−3

1− p−1

)−it

−
(
1− p−k−2

1− p−1

)−it)
.
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For p ≥ 5, ϑp satisfies the upper bound

|ϑp| ≤
∞∑
k=0

p−k

∣∣∣∣∣
(
1− p−k−3

1− p−1

)−it

−
(
1− p−k−2

1− p−1

)−it∣∣∣∣∣
≤

∞∑
k=0

p−k · 2 = 2 · 1

1− p−1
≤ 5

2
,

and as such

|ϑpp−2| ≤ 1

10
.

To prove 15 we require the following steps.

|Φ(it)| =
∏
p

∣∣∣∣1− p−1 + p−1 exp

(
−it log p+ 1

p

)
+ ϑpp

−2

∣∣∣∣ ,
log |Φ(it)| =

∑
p

log

∣∣∣∣1− p−1 + p−1 exp

(
−it log p+ 1

p

)
+ ϑpp

−2

∣∣∣∣
= Re

∑
p

log

(
1− p−1 + p−1 exp

(
it log

p+ 1

p

)
+ ϑpp

−2

)
.

Let z := p−1 − p−1 exp
(
it log p+1

p

)
− ϑpp

−2. If |z| < 1, then we know that log(1 − z) = −z + O
(
z2
)
.

Furthermore, for |z| ≤ 2
3 the implied constant is less than 2 in absolute value. This in fact holds for p ≥ 5,

as by the bounds found above we have

|z| ≤ |p−1|+ |p−1|+ |ϑpp−2| ≤ 1

5
+

1

5
+

1

10
≤ 2

3
.

Now we can further work out the integrand

log |Φ(it)| =Re
∑
p

log

(
1− p−1 + p−1 exp

(
it log

p+ 1

p

)
+ ϑpp

−2

)
= log

∣∣∣∣12 +
1

2
exp

(
it log

3

2

)
+
ϑ2
4

∣∣∣∣+ log

∣∣∣∣23 +
1

3
exp

(
it log

4

3

)
+
ϑ3
9

∣∣∣∣+Re
∑
p≥5

log (1− z)

=Ct − Re
∑
p≥5

(
z +O

(
z2
))

=Ct − Re
∑
p≥5

1− exp
(
it log p+1

p

)
p

− Re
∑
p≥5

ϑpp
−2 +Re

∑
p≥5

O
(
p−2
)
.

As we know that |ϑp| ≤ 5
2 for p ≥ 5, that the implied constant of the last asymptotic is less than 2, that∑

p p
−2 is bounded, and that |Ct| is in fact bounded, we in fact have

log |Φ(it)| =−
∑
p≥5

1− cos
(
t log p+1

p

)
p

+O(1)

=−
∑
p≥5

1

p

(
2 sin2

(
t

2
log

p+ 1

p

))
+O(1).

19



As we wish to show the integral in (15) is o(x), all constant multiples do not matter. Hence for the integral
it remains to show that the following is o(x)∫ x

0

|Φ(it)|dt =
∫ x

0

exp log |Φ(it)|dt

=

∫ x

0

exp

−2
∑
p≥5

1

p
sin2

(
t

2
log

p+ 1

p

) dt

=

∫ x

0

exp

(
−2
∑
p

1

p
sin2

(
λ log

p+ 1

p

))
dλ,

or equivalently that

lim
x→∞

1

x

∫ x

0

exp

(
−
∑
p

2

p
sin2

(
λ log

p+ 1

p

))
dλ = 0. (16)

A careful reader comparing the original paper with this exposition may notice that in Davenport’s paper he
omitted the 2 in front of the sum. We chose to keep it in as it doesn’t affect the result. For the final step we
will make use of the following lemma:

Lemma 2.7 The real numbers log 3
2 , log

4
3 , log

6
5 , . . . , log

p+1
p , . . . are linearly independent over Q. That is

to say, any equation ∑
cp log

p+ 1

p
= 0

with cp ∈ Q and where the p are any finite collection of prime numbers, is only possible if cp = 0 for all p.

Proof: As the p are any finite collection of prime numbers, we may assume cp ̸= 0 for all cp. Then we rewrite
the equation as such:

exp

(∑
cp log

p+ 1

p

)
= 1

∏(
p+ 1

p

)cp
= 1∏

(p+ 1)
cp =

∏
pcp .

Let q be the largest prime number in the collection of primes. Then q divides the right-hand side of the
equation. This q however must divide the left-hand side too, which is only possible if q = 3. However then
we would have the equality

4c33c2 = 3c32c2

which obviously cannot hold. □

Now to prove (16) we will do so with the following two claims. Let ψP (λ) := exp

(
−
∑
p≤P

2
p sin

2
(
λ log p+1

p

))
.

Note that the integrand of (16) is upper bounded by ψP (λ). Then

(i) The limit

lim
x→∞

1

x

∫ x

0

ψP (λ)dλ =: A(P )

exists for every prime P .
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(ii) We have that A(P ) → 0 as P → ∞.

To prove (i) we will look at the Fourier series of our functions. Our function is even, so we have that

exp

(
−2

p
sin2 z

)
=

∞∑
−∞

a(p)n eizn = a
(p)
0 +

∞∑
n=1

a(p)n
(
eizn + e−izn

)
where z = λ log p+1

p and
∞∑
−∞

|a(p)n | <∞ as the second derivative of our function is continuous. Then

ψP (λ) =
∏
p≤P

(
a
(p)
0 +

∞∑
n=1

a(p)n
(
eizn + e−izn

))

=
∏
p≤P

a
(p)
0 +

∞∑
k=1

Ake
ibkλ,

where the bk are sums of the quantities n log p+1
p . By Lemma 2.7 these are all non-zero. This is important

because for any non-zero b we have that

lim
x→∞

1

x

∫ x

0

eibλdλ = lim
x→∞

1

x

[
eibλ

ib

]λ=x
λ=0

= lim
x→∞

1

x

eibx − 1

ib
= 0,

hence

lim
x→∞

1

x

∫ x

0

∞∑
k=1

Ake
ibkλdλ = 0.

This means for (i) that the limit indeed exists:

A(P ) = lim
x→∞

1

x

∫ x

0

ψP (λ)dλ

= lim
x→∞

1

x

∫ x

0

∏
p≤P

a
(p)
0 +

∞∑
k=1

Ake
ibkλdλ

=
∏
p≤P

a
(p)
0 .

Now to prove (ii) we must show that the product of A(P ) diverges to zero as P approaches ∞. To this end,
as

a
(p)
0 =

1

2π

∫ 2π

0

e−
2
p sin2 zdz ≤ 1

2π
· 2π · 1 = 1,

it suffices to show that ∑
p

(
1− a

(p)
0

)
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diverges. We will apply that for 0 ≤ x ≤ 1 we have that 1− e−x ≥ x
2 .∑

p≤P

(
1− a

(p)
0

)
=
∑
p≤P

(
1− 1

2π

∫ 2π

0

e−
2
p sin2 zdz

)

=
1

2π

∑
p≤P

∫ 2π

0

(
1− e−

2
p sin2 z

)
dz

≥ 1

2π

∑
p≤P

∫ 2π

0

2 sin2 z

2p
dz ≥ 1

2π

∫ 2π

0

sin2 zdz ·
∑
p≤P

1

p

which diverges as P → ∞. Thus we have indeed proven that

0 ≤ lim
x→∞

1

x

∫ x

0

|Φ(it)|dt ≤ lim
P→∞

lim
x→∞

1

x

∫ x

0

ψp(λ)dλ = 0,

implying that asymptotically the quantities n
σ(n) are continuously distributed along (0, 1]. □

2.3 Extending Davenport’s result

Instead of stating that a certain sequence of numbers attains a continuous distribution, Jennings, Pollack
and Thompson, hereafter JPT, [10] reformulated the result stating that the limit

D(u) := lim
x→∞

1

x

∑
n≤x

n/σ(n)≤u

1 (17)

exists for u ∈ [0, 1] and is continuous in terms of u. This reformulation showed the possibility of further
generalizing this result by replacing the summand with another multiplicative function f(n). The first
theorem is as follows.

Theorem 2.8 (JPT) Let f be a multiplicative function so that

lim sup
x→∞

1

x

∑
n≤x

|f(n)|2 <∞. (18)

If one of the following conditions holds

i) for every integer k ≥ 0,

lim
x→∞

1

x

∑
n≤x

f(n)

(
n

σ(n)

)k
exists, (19)

ii) both of the following are bounded∑
p

|f(p)− 1|
p

and
∑
p

∑
j≥2

|f(pj)|
pj

,

iii) if |f(n)| ≤ 1 and the following converges ∑
p

f(p)− 1

p
,
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then for u ∈ [0, 1], the following

Df (u) := lim
x→∞

1

x

∑
n≤x

n/σ(n)≤u

f(n) (20)

exists and Df (u) is continuous.

The reason (18) is required is to be able to apply Cauchy-Schwarz in the proof. For the first condition,
the outline of the proof is as follows.
Outline of the proof: The condition in (20) of n/σ(n) ≤ u can be replaced by instead summing with the
indicator function 1u(x), which equals 1 if and only if x ≤ u and 0 otherwise:

Df (u) = lim
x→∞

1

x

∑
n≤x

f(n) · 1u
(

n

σ(n)

)
.

This is nice as one can find a Cauchy sequence of continuous functions of which the indicator function is
its limit. As u ∈ [0, 1], then in turn each continuous function may be approximated via the Weierstrass

Approximation Theorem by another Cauchy sequence of polynomials in n
σ(n) . As the

(
n

σ(n)

)k
form a basis

for the polynomials in terms of n
σ(n) , it then follows that all the limits exists, hence the conclusion follows.

This theorem may be applied to many multiplicative functions. With other results like Wirsing’s Theorem
in mind, JPT looked to extend this result to nonnegative functions f . The reason the theorem above cannot
be applied to some functions f is that already for a relatively ‘small’ function τ(n), which denotes the number
of divisors of n, this result fails to hold. This is because for k = 0, we have that

lim
x→∞

1

x

∑
n≤x

τ(n) ∼ log x,

which is unbounded. Hence came the idea to loosen the condition of being bounded in mean value. Moreover,
instead of dividing only by x, they instead divided by x and the average order of the function f(n):

Theorem 2.9 (JPT) Suppose that f is a nonnegative multiplicative function with the property that as
x→ ∞, ∑

p≤x

f(p)
log p

p
∼ κ log x (21)

for some κ > 0. Suppose also that f(p) is bounded for primes p and that∑
p

∑
j≥2

f(pj)

pj
<∞. (22)

If κ ≤ 1, suppose further that ∑
pj≤x

f(pj) ≪f
x

log x
(for x ≥ 2). (23)

Let

S(f ;x) :=
∑
n≤x

f(n).
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Then the function

D̃f (u) = lim
x→∞

1

S(f ;x)

∑
n≤x

n/σ(n)≤u

f(n)

exists for u ∈ [0, 1], is continuous in terms of u and strictly increasing.

The fact that this distribution function is strictly increasing is a new result and can, with the choice f(n) = 1,
be applied to extend Davenport’s finding that D(u) also is strictly increasing. To familiarise oneself with
the proof of Theorem 2.9 we will follow the proof step by step for the example function f(n) = τ(n). These
conditions on f(p) are required to apply a theorem by Wirsing later in the proof.

Theorem 2.10 (JPT, f(n) = τ(n) fixed) Let τ be the arithmetic function for the number of divisors of a
natural number n, or τ := σ0. Then the following

D̃τ (u) := lim
x→∞

1

S(τ ;x)

∑
n≤x

n/σ(n)≤u

τ(n)

exists, is continuous and strictly increasing.

For x ≥ 1, we define

Fx(u) =
1

S(τ ;x)

∑
n≤x

log(n/σ(n))≤u

τ(n).

The introduction of the log into the summation is because it will simplify the characteristic function ϕx of
Fx, as we will use the characteristic function of Fx(u) to prove both the existence and continuity of the limit.

Notice that with this existence we have D̃τ (e
u) = lim

x→∞
Fx(u).

2.3.1 Proof of existence

To prove the convergence of the Fx as x→ ∞ we will apply Lévy’s Convergence Theorem.

Proposition 2.2 (Lévy) Suppose that {Fx} is a collection of distribution functions indexed by real numbers
x ≥ 1. For each x ≥ 1, let ϕx(t) be the characteristic function of Fx. Then the following are equivalent.

i) The Fx converge weakly to a distribution function F, as x→ ∞;

ii) As x→ ∞, the ϕx converge pointwise on all of R to a function ψ that is continuous at 0.

Then ψ is the characteristic function of F .

To check that our Fx are indeed distribution functions, notice that

lim
v→−∞

Fx(v) = lim
v→−∞

1

S(τ ;x)

∑
n≤x

log(n/σ(n))≤v

τ(n) = 0

24



and that for u ≥ 0, the condition in the summation becomes n
σ(n) ≤ 1, which is trivially true as σ(n) ≥ n.

Then indeed we see that for u ≥ 0, Fx(u) =
1

S(τ ;x)

∑
n≤x

τ(n) = 1. For fixed x it follows that Fx(u) acts as a

step function as u increases. Let Wx be the set of all the values attained by n
σ(n) for n ≤ x, and let Ix,w be

the set of those integers k ≤ x such that k
σ(k) = w, with w ∈Wx. Then we can see that as u increases, Fx(u)

will have a saltus of
∑
k∈Ix,w

τ(k) when u = logw. Hence the Fx are right-continuous and never decreasing
and indeed distribution functions. To compute the characteristic function ϕx of Fx, notice that for a fixed
x, the Fx correspond to a discrete random variable that take on the value log k

σ(k) with probability

1

S(τ ;x)

∑
n≤x

n∈Ix,k/σ(k)

τ(n).

Hence,

ϕx(t) =
∑
n≤x

eit(logn/σ(n)) · 1

S(τ ;x)
τ(n)

=
1

S(τ ;x)

∑
n≤x

τ(n)

(
n

σ(n)

)it
.

To evaluate the existence of the limit ψ we will need the following theorem by Wirsing.

Proposition 2.3 (Wirsing) Suppose that f is a complex-valued multiplicative function with the following
properties. As x→ ∞, there exists some κ > 0 such that∑

p≤x

f(p)
log p

p
∼ κ log x.

Suppose also that f(p) is bounded and that ∑
p

∑
j≥2

|f(pj)|
pj

<∞.

In the case that κ ≤ 1 it is required that for x ≥ 2∑
pj≤x

|f(pj)| ≪f
x

log x
.

Lastly, suppose that ∑
p

1

p
(|f(p)| − Re(f(p))) <∞.

Then as x→ ∞ ∑
n≤x

f(n) ∼ e−γκ

Γ(κ)

x

log x

∏
p≤x

 ∞∑
j=0

f(pj)

pj

 .

Let us now check the conditions for this proposition with the choice τ(n), which then also shows that τ(n)
fulfills the conditions of the main theorem. Notice that for τ(n), we have that τ(pj) = j+1 for j ≥ 0. Hence
the first condition becomes

2 ·
∑
p≤x

log p

p
∼ 2 log x,
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where we obtain κ = 2 by Mertens’ First Theorem. The final condition follows immediately as τ is not only
a real, but also a nonnegative function, i.e., |τ(p)| = Re(τ(p)). To prove the second condition, we will first

compute a closed form of the partial sums of the inner sum. Let Sp,n :=
n∑
j=2

j+1
pj . Then

pSp,n =

n∑
j=2

j + 1

pj−1
=

3

p
+

n−1∑
j=2

j + 2

pj

pSp,n − Sp,n =
3

p
− n+ 1

pn
+

n−1∑
j=2

(
1

p

)j
=

3

p
− n+ 1

pn
+

1

p
· 1− (1/p)n−2

p− 1

Sp,n = (p− 1)
−1

(
3

p
− n+ 1

pn
+

1

p
· 1− (1/p)n−2

p− 1

)
Sp := lim

n→∞
Sp,n = (p− 1)

−1

(
3

p
+

1

p
· 1

p− 1

)
=

3p− 2

p(p− 1)2
.

To show this is bounded, we will compute the double sum not over the primes but over the natural numbers.∑
p

∑
j≥2

j + 1

pj
=
∑
p

Sp ≤
∑
k≥2

Sk =
∑
k≥1

3k + 1

k2(k + 1)

= 2 ·
∑
k≥1

k

k2(k + 1)
+
∑
k≥1

k + 1

k2(k + 1)
= 2

∑
k≥1

1

k(k + 1)
+
∑
k≥1

1

k2
= 2 + ζ(2) <∞.

Having checked all the conditions for 2.3, we thus obtain the following asymptotic formula

S(τ ;x) ∼ e−2γ x

log x

∏
p≤x

 ∞∑
j=0

j + 1

pj

 .

Importantly, we may also use 2.3 for the sum in ϕx. This follows for two reasons, that

∣∣∣∣( n
σ(n)

)it∣∣∣∣ = 1 and

∣∣∣∣∣
(

p

σ(p)

)it
− 1

∣∣∣∣∣ ≤
∣∣∣∣exp(it log p

p+ 1

)
− 1

∣∣∣∣ =
∣∣∣∣∣
∞∑
k=1

(it log p
p+1 )

k

k!

∣∣∣∣∣ ≤ |t| · log p+ 1

p
= |t|

∫ p+1

p

x−1dx ≤ |t|
p
.

This implies that τ(p)
(

p
σ(p)

)it
= τ(p) +O(|t|/p). This fact will be used again when verifying the existence

of the infinite product that is the characteristic function. For now, Wirsing’s formula gives us that

∑
n≤x

τ(n)

(
n

σ(n)

)it
∼ e−2γ x

log x

∏
p≤x

 ∞∑
j=0

j + 1

pj

(
pj

σ(pj)

)it .

Combining the asymptotic formulae we see that for t fixed,

ϕx(t) ∼
∏
p≤x


 ∞∑
j=0

j + 1

pj

(
pj

σ(pj)

)it ·

 ∞∑
j=0

j + 1

pj

−1
 .

For brevity we will write

αp(t) =

∞∑
j=0

j + 1

pj

(
pj

σ(pj)

)it
, ∆p =

∞∑
j=0

j + 1

pj
and ηp =

∞∑
j=2

j + 1

pj
.
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Important facts about these terms are that ∆p = 1 + 2
p + ηp and that one of the conditions of 2.3 was that∑

p
ηp <∞, hence ηp → 0 as p→ ∞. To show that the limit ϕx(t) exists for fixed t, we need to find estimates

for the arguments in the product, i.e., αp(t)∆
−1
p . As τ(p)

(
p

σ(p)

)it
= τ(p) +O(|t|/p), we see that

αp(t) = 1 +
2

p

(
p

σ(p)

)it
+O(ηp)

= 1 +
2

p
+O

(
|t|
p2

+ ηp

)
.

To estimate ∆−1
p , we know that 2

p + ηp → 0 as p → ∞, hence there exists p0 > 0 such that for all p > p0,

0 ≤ ∆p − 1 ≤ 1
2 . This allows us to find an estimate for ∆−1

p by using that 1
z+1 = 1− z +O(z2), so

∆−1
p = 1− (∆p − 1) +O((∆p − 1)

2
)

= 1− 2

p
− ηp +O

(
1

p2
+ ηp

)
= 1− 2

p
+O

(
1

p2
+ ηp

)
.

Now we may estimate the arguments of the product for p > p0:

αp(t)∆
−1
p =

(
1 +

2

p
+O

(
|t|
p2

+ ηp

))(
1− 2

p
+O

(
1

p2
+ ηp

))
= 1− 4

p2
+O

(
|t|
p2

+
1

p2
+ ηp

)
= 1 +O

(
|t|+ 1

p2
+ ηp

)
.

As ∑
p

1

p2
<

∞∑
n=1

1

n2
<∞,

we know that the series ∑
p>p0

|αp(t)∆−1
p − 1|

converges uniformly on any [−T, T ]. This implies that the corresponding infinite product∏
p>p0

αp(t)∆
−1
p

converges to a continuous function of t. As extending this product to all primes instead of just those p > p0
only adds a finite number of terms, the limit of ϕx as x→ ∞ must also be continuous, so that

ψ(t) :=
∏
p


 ∞∑
j=0

j + 1

pj

(
pj

σ(pj)

)it ·

 ∞∑
j=0

j + 1

pj

−1
 (24)

exists. This result allows us to use 2.2 to show that indeed the Fx converge weakly to a distribution function
F whose characteristic function is ψ.
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2.3.2 Proof of continuity

To prove the continuity of F , we will do so with another result of Lévy’s.

Proposition 2.4 (Lévy) Suppose that Y is an infinite convolution of purely discontinuous distribution
functions X1, X2, . . . , i.e., Y = X1 ∗ X2 ∗ · · · . Let dk be the maximal jump in probability for each Xk. If
∞∑
k=1

(1− dk) diverges, then the limit distribution is continuous.

To show that the limit F indeed is an infinite convolution, we will instead show that its characteristic
function is an infinite product of characteristic functions. This comes from the fact that for two independent
distribution functions X,Y , we have that ϕX∗Y = ϕX · ϕY . We see from 24 that ψ indeed is an infinite
product, so let

ϕXp
(t) :=

 ∞∑
j=0

j + 1

pj

(
pj

σ(pj)

)it ·

 ∞∑
j=0

j + 1

pj

−1

.

To prove that F is continuous, we need to determine the maximal jump dp of the Xp. Let Xp be the discrete

random value which takes the value log pj

σ(pj) with probability 1
∆p

· τ(p
j)

pj = 1
∆p

· j+1
pj . Then we see that indeed

ϕXp is the characteristic function of Xp:

ϕXp
(t) =

∞∑
j=0

exp

(
it log

pj

σ(pj)

)
· P
(
Xp = log

pj

σ(pj)

)

=

∞∑
j=0

(
pj

σ(pj)

)it
j + 1

pj
· 1

∆p
=

 ∞∑
j=0

j + 1

pj

(
pj

σ(pj)

)it ·

 ∞∑
j=0

j + 1

pj

−1

.

Now what’s left is to determine the maximal jumps for each of the Xp. As the Xp are defined to have
probabilities equal to 1

∆p
· j+1
pj for j ≥ 0, we see that for j = 0 the probability equals 1

∆p
. As p ≥ 2, notice

that for j > 0 we will always have that j+1
pj < 1, hence the maximal jump for each Xp is in fact dp = 1

∆p
.

To prove the infinite sum diverges, it is sufficient to show that the sum diverges for a subset of p. As we
have seen before in the proof of existence, ∆p = 1 + 2

p + ηp and both 2
p and ηp → 0 as p → ∞, so we may

choose a p0 > 0 such that for each p > p0,∆p < 2. This means that the sum in the proof can be bounded
from below as follows∑

p

(1− dp) ≥
∑
p>p0

(1− dp) =
∑
p>p0

∆p − 1

∆p
≥ 1

2

∑
p>p0

(∆p − 1) ≥ 1

2

∑
p>p0

2

p
=
∑
p>p0

1

p
.

As we know that the sum of the reciprocals of primes diverges, the summation above must also diverge. This
means that the

∑
p(1− dp) indeed diverge and thus ψ(t) and F must be continuous.

2.3.3 Proof of strict monotonicity

We have used F to prove existence and continuity, as the log in the summation condition kept the charac-
teristic function less ‘messy’. To prove strict monotonicity this is no longer required, thus we will directly
show that D̃f is strictly increasing on [0, 1]. We already know that it is never decreasing as τ is nonnegative.
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Thus what remains to show is that for each u, v ∈ [0, 1] with v < u that

D̃τ (u)− D̃τ (v) ≥ lim inf
x→∞

1

x log x

∑
n≤x

v<n/σ(n)≤u

τ(n) > 0. (25)

To estimate this it will be useful to see that τ is supported on squarefree integers. To observe this we will
again need the theorem by Wirsing as stated in 2.3 but applied to the multiplicative function τ(n) · µ2(n),
where µ is the Möbius function defined as follows

µ(n) =

{
0 if n is not squarefree

(−1)k if n is squarefree and k is the number of prime divisors of n.

To apply 2.3, notice that for every prime p, τ(p) = τ(p) · µ2(p) = τ(p) · 1. As the requirements for the
theorem are only dependent on the behaviour of the function for the primes, we see that we can indeed use
the theorem to find an asymptotic formula for summing τ(n)µ2(n):

S(τµ2;x) ∼ e−2γ · x

log x

∏
p≤x

(
1 +

2

p

)
.

To compare the order of magnitude of τ and τµ2, recall that for S(τ ;x) we have

S(τ ;x) ∼ e−2γ x

log x

∏
p≤x

 ∞∑
j=0

j + 1

pj

 = e−2γ x

log x

∏
p≤x

(
1 +

2

p
+ ηp

)
.

Hence we see that

S(τ ;x) ∼ S(τµ2;x)
∏
p≤x

(
1 + 2

p + ηp

1 + 2
p

)
= S(τµ2;x)

∏
p≤x

(1 +O(ηp)) .

As we have already shown that
∑
p ηp < ∞ we see that the product converges as x → ∞, hence the

two asymptotic formulae are of the same order of magnitude. This is useful as the infinite product of the
squarefree asymptotic formula does not have an infinite sum. We will now start analyzing the sum in (25).
To work with the extra condition under the sum, recall that | log p

σ(p) | = | log p
p+1 | = log p+1

p ≍ 1
p . This

implies that we may choose a squarefree natural number m such that v < m
σ(m) ≤ u. Because the continuity

of the distribution function had already been proven, that would have sufficed to show there indeed exists
such an m, however this method allows one to construct such an m when given u and v. Let y > 0 to be
determined later, but for now large enough such that p < y for each prime p dividing m. As we essentially
need to show that the limit in (25) is not zero, it will be sufficient to show this is not the case for just a subset
of the n ≤ x. Namely the n that can be written as the product n = mq, where m is as chosen previously, q
is squarefree and its prime divisors are larger than y, i.e., (q,

∏
p≤y p) = 1, where for brevity we shall from

now on use Πy :=
∏
p≤y p. For this subset of n the contribution to the sum in (25) can be written as∑

q≤x/m
(q,Πy)=1

v<mq/σ(mq)≤u

τ(mq) = τ(m)
∑

q≤x/m
(q,Πy)=1

v<mq/σ(mq)≤u

τ(q).

We wish to analyze these sums by the same asymptotic formulas as above; however, this implies that we
need to simplify the conditions under the sum. To this end we will need the following observations. The
first is that when rewriting the third condition, we obtain that

v
σ(m)

m
<

q

σ(q)
≤ u

σ(m)

m
.
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As we have chosen m such that m
σ(m) ≤ u, we have that uσ(m)

m ≥ 1. As q
σ(q) is always less than 1, we see that

the right-hand-side of the inequalities can be dropped. Now we can further rewrite the left-hand inequality

to be 0 < 1 − v σ(m)
m

σ(q)
q < 1. The second observation is that we can in fact take this inequality out of the

conditions by introducing it to the argument, i.e., sum the quantity τ(q)
(
1− v σ(m)

m
σ(q)
q

)
instead of just

τ(q). Due to the nature of the original inequality, integers q such that the conditions were met now, have
their contribution to the sum diminished by this new factor. On the other hand, integers q such that the
conditions were not met, are now in fact subtracted from the sum. Hence we have that∑

q≤x/m
(q,Πy)=1

v<mq/σ(mq)≤u

τ(mq) = τ(m)
∑

q≤x/m
(q,Πy)=1

vσ(m)/m<q/σ(q)

τ(q)

≥ τ(m)
∑

q≤x/m
(q,Πy)=1

τ(q)

(
1− v

σ(m)

m

σ(q)

q

)
.

To finally remove the condition for q to be coprime to Πy, we will use an indicator function. Let 1y be
defined such that

1y(n) =

{
1 if (n,Πy) = 1

0 if (n,Πy) > 1.

To further simplify the sum above, we define ay(n) = τ(n)1y(n) and by(n) = τ(n)σ(n)n 1y(n). This shortens
said sum to be

S(ay;x/m)− v
σ(m)

m
S(by;x/m).

Now that as we have rewritten the entire sum in terms of S(−;x/m) we see again that we may use Wirsing’s
theorem to asymptotically estimate the S(−;x/m) as these modified formulas still satisfy the conditions for
2.3. An important note beforehand is that we may modify the asymptotic formula for S(τ ;x); instead of
taking the product over all primes up to x, we may take the product over all primes up to x/m as the term
1 + 2

p is bounded. This means for S(τ ;x) we have the following asymptotic formula

S(τ ;x) ∼ e−2γ x

log x

∏
p≤x/m

(
1 +

2

p

)
.

Likewise, for ay we have

S(ay;x/m) ∼ e−2γ x/m

log x/m

∏
p≤x/m

(
1 +

2

p
1y(p)

)

∼ e−2γ

m

x

log x

∏
y<p≤x/m

(
1 +

2

p

)
.

Combining these two we see that

S(ay;x/m) ∼ S(τ ;x)
1

m

∏
p≤y

(
1 +

2

p

)−1

.
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For by we see that

S(by;x/m) ∼ e−2γ x/m

log x/m

∏
p≤x/m

(
1 +

2

p
· σ(p)

p
1y(p)

)

∼ e−2γ

m

x

log x

∏
y<p≤x/m

(
1 +

2

p
· p+ 1

p

)
.

Again, comparing this to the formula for τ we see

S(by;x/m) ∼ S(τ ;x)
1

m

∏
p≤x/m

(
1 +

2

p

)−1 ∏
y<p≤x/m

(
1 +

2

p

(
1 +

1

p

))

∼ S(τ ;x)
1

m

∏
p≤y

(
1 +

2

p

)−1 ∏
y<p≤x/m

(
1 +

2

p

)−1 ∏
y<p≤x/m

(
1 +

2

p

(
1 +

1

p

))

∼ S(τ ;x)
1

m

∏
p≤y

(
1 +

2

p

)−1 ∏
y<p≤x/m

(
1 +

2

p2 + 2p

)
.

Recall that the aim was to prove that

lim inf
x→∞

1

S(τ ;x)

∑
n≤x

v<n/σ(n)≤u

τ(n) > 0.

And after restricting to summing over an ever smaller subset of n we obtained that

lim inf
x→∞

1

S(τ ;x)

∑
n≤x

v<n/σ(n)≤u

τ(n) ≥ lim inf
x→∞

1

S(τ ;x)
τ(m)

(
S(ay;x/m)− v

σ(m)

m
S(by;x/m)

)
.

We will now finish the proof by using the asymptotic formulae to show that the right-hand-side indeed is
always positive.

lim inf
x→∞

1

S(τ ;x)
τ(m)

(
S(ay;x/m)− v

σ(m)

m
S(by;x/m)

)
=τ(m) lim inf

x→∞

(
S(ay;x/m)

S(τ ;x)
− v

σ(m)

m

S(by;x/m)

S(τ ;x)

)

=τ(m) lim inf
x→∞

 1

m

∏
p≤y

(
1 +

2

p

)−1

− v
σ(m)

m

1

m

∏
p≤y

(
1 +

2

p

)−1 ∏
y<p≤x/m

(
1 +

2

p2 + 2p

)
=
τ(m)

m

∏
p≤y

(
1 +

2

p

)−1
(
1− v

σ(m)

m

∏
y<p

(
1 +

2

p2 + 2p

))
.

To prove this is positive, we only need to show that

1− v
σ(m)

m

∏
y<p

(
1 +

2

p2 + 2p

)
is positive. For this final step, recall that the choice of m requires that v < m

σ(m) such that v σ(m)
m < 1.

Lastly, we see that for the terms in the product, we have that 1 < 1 + 2
p2+2p ≤ 1 + O( 1

p2 ). Hence as
y → ∞, we see that this product tends to 1 from above. We can now choose y to be large enough such that

v σ(m)
m

∏
y<p

(
1 + 2

p2+2p

)
too remains less than 1 so that everything remains positive. Thus, D̃τ (u)−D̃τ (v) >

0 for all u, v ∈ [0, 1] with v < u. □
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2.4 Jennings’ further generalization

After the work by JPT to generalize the summand of (17), Jennings [9] showed that one may take this one
step further, which is to generalize the condition of the sum. By following Davenport, it had been natural to
keep the argument n/σ(n) ≤ u; however, Jennings in her work found conditions for a multiplicative function
g so that

D̃f,g(u) := lim
x→∞

1

S(f ;x)

∑
n≤x

g(n)≤u

f(n) (26)

also exists and is continuous. Her main result is as follows:

Theorem 2.11 (Jennings) Suppose that f(n) is a nonnegative multiplicative function such that as x→ ∞,∑
p≤x

f(p)
log p

p
∼ κ log x (27)

for some κ > 0. Suppose also that f(p) is bounded for primes p and that∑
p

∑
j≥2

f(pj)

pj
<∞. (28)

If κ ≤ 1, suppose further that ∑
pj≤x

f(pj) ≪f
x

log x
(for x ≥ 2). (29)

As for g(n), let g(n) be a multiplicative function with image in (0, 1] such that for all j ≥ 1, g(pj) is bounded
away from zero and the series ∑

p

1

p
|| log g(p)||, (30)

converges, where || · || := min(1, | · |). Also suppose that∑
p

g(p)̸=1

f(p)

p
(31)

diverges. Then the limit (26) exists for all u in [0, 1] is continuous. Let S := {n ∈ N | f(n) > 0}. Then

D̃f,g(u) is strictly increasing on the interior of the closure of g(S).

A difference between this theorem and 2.9 is that Jennings specified exactly where the distribution function
would be strictly increasing, whereas 2.9 stated it to be strictly increasing everywhere on [0, 1]. This is
because this is necessarily true for g(n) = n

σ(n) . As condition (27) requires κ > 0, we know that there must

be infinitely many prime p so that f(p) ̸= 0, as otherwise the sum would be finite. Moreover by condition

(31) f(p) is bounded and
∑
p
f(p)
p diverges. Now for n

σ(n) , we know that p
σ(n) = p+1

p = 1 − 1
p+1 . Hence

for any neighbourhood (1− δ, 1), there are infinitely many p with g(p) in that neighbourhood and therefore
there cannot be a p which is closest to 1. Hence with this set of p that have f(p) ̸= 0, we can approximate
any value ν in the unit interval arbitrarily well because we can find a sequence of {pi}∞i=1 with f(pi) ̸= 0
such that

ν ≤
k∏
i=1

(
1− 1

pi + 1

)
and lim

k→∞

k∏
i=1

(
1− 1

pi + 1

)
= ν.

Hence this condition follows directly for g(n) = n
σ(n) .
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3 Completing the diagram

In this section we discuss some of our findings on if, and if so how, we can extend Jennings’ result. As we
have seen historically, first the summand of the distribution function

Df,g(u) = lim
x→∞

1

S(f ;x)

∑
n≤x

g(n)≤u

f(n)

was generalized with a fixed g, and later Jennings was able to make both f and g be general functions
satisfying a set of conditions. This caught our attention as Schoenberg’s necessary and sufficient conditions
can be seen as a complete classification for when

D1,g(u) = lim
x→∞

1

x

∑
n≤x

g(n)≤u

1

exists and is continuous.

3.1 Understanding the conditions on g(n)

We now discuss our findings in trying to find the gaps between Schoenberg’s necessary and sufficient con-
ditions, and Jennings’ sufficient conditions. We attempted to follow the steps of Schoenberg’s example but
with the function

h(n) =
φ(n)

σ(n)
. (32)

We chose this function for two reasons. The first is that we can use Jennings’ conditions to show that this
function does in fact admit a limit law. The second is that examples of multiplicative functions which are

also bounded away from zero for g(pk) seem to be limited. Another possible choice could be prk

σr(pk)
, which

will run into the same issues as our h(n). Our choice naturally fulfills condition 1 as both φ(n) and σ(n) are
multiplicative and the fact that φ(n) < n < σ(n) by definition. We can see it fulfills condition 2 as

h(pk) = pk
p− 1

p

p− 1

pk+1 − 1
=

(1− p−1)2

1− p−k−1
.

For k = 1 we see that

h(p) =
(1− p−1)2

1− p−2
=

1− p−1

1 + p−1

never equals 1 for all primes p, hence condition 4 is also fulfilled. Lastly, notice that

| log h(p)| =
∣∣∣∣log p− 1

p+ 1

∣∣∣∣ = ∫ p+1

p−1

w−1dw ≍ 2

p
,

so that ∑
p

min (1, | log h(p)|)
p

≍
∑
p

2

p2
.
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Thus to check the conditions by Schoenberg we will follow the same steps as taken by Davenport. Recall
that the first big step was to establish a multiplicative representation of Φ(s) through Möbius inversion, so
that

Φ(s) = lim
n→∞

1

n

n∑
m=1

g(m)s =

∞∑
m=1

ϱs(m)

m
+ lim
n→∞

O

(
1

n

n∑
m=1

|ϱs(m)|

)
+O

( ∞∑
m=n+1

|ϱs(m)|
m

)
.

The last error term naturally vanishes as n→ ∞, however for the first one we need more careful estimates.
Recall that

ϱs(m) =
∏
pk||m

{
h(pk)s − h(pk−1)s

}
,

where Davenport bounded the argument of the product by∣∣∣∣∣
(

1

h(pk)

)−s

−
(

1

h(pk−1)

)−s
∣∣∣∣∣ =

∣∣∣∣∣s
∫ h(pk−1)−1

h(pk)−1

w−s−1dw

∣∣∣∣∣ (33)

≤ |s| · |h(pk)−1 − h(pk−1)−1| ·max(h(pk)−1, h(pk−1)−1)−u−1.

Here

|h(pk)−1 − h(pk−1)−1| =
∣∣∣∣p−k − p−k−1

(1− p−1)2

∣∣∣∣ = p−k
∣∣∣∣ 1

1− p−1

∣∣∣∣ ≤ 2p−k

and

h(pk)−1 =
1− p−k−1

(1− p−1)2
,

so 1 ≤ h(pk)−1 ≤ 4.

Then (33) becomes

|h(pk)−1 − h(pk−1)−1| ≤ |s|2p−k · 4|σ+1|,

and thus

|ϱs(m)| ≤ CΘ(m)
s m−1,

where the Cs depends solely on s. Together with the assumption that |s| is bounded, we obtain

ϱs(m) = O
(
m−1+ϵ

)
,

a sufficient estimate so that the error terms vanish. Notice that of course to obtain a sensible upper bound on
h(pk)−1 one requires a lower bound on h(pk) away from zero. We have thus found the product representation
of Φ(s), so the characteristic function of log h(n) is

Φ(it) =
∏
p

1 +
∑
j≥1

p−j
(
h(pj)it − h(pj−1)it

) .

Then to establish whether the distribution is continuous we needed

lim
x→∞

∫ x

0

|Φ(it)|dt = 0,
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to which the same estimates Davenport applied lead to the condition that

lim
x→∞

1

x

∫ x

0

exp

(
−
∑
p

1− cos(t log h(p))

p

)
dt = 0. (34)

Here we can see that the continuity of the distribution function of the numbers h(n) does not depend on
the values of h(pj) for j ≥ 2. However, this step is where problems arise for our function. As h(p) = p−1

p+1 ,

showing that the quantities log(h(p)) are linearly independent over Q is not only hard, it is simply not true.
Already for the set of primes {2, 3, 5, 7}, we see that solving for the linear dependence:

c2 log h(2) + c3 log h(3) + c5 log h(5) + c7 log h(7) = 0 implies

2c34c56c7 = 3c24c36c58c7

2c3+2c5+c73c7 = 22c3+c5+3c73c2+c5 ,

so one obtains a 2-dimensional subspace of solutions of Z4. Even excluding these primes, one sees that as
both p− 1 and p+1 are both even, all the primes dividing these quantities are less than p/2. Thus it might
be possible to show that from some point forward these quantities will be linearly independent, however that
seems unlikely. Hence we see that even though Schoenberg’s conditions are complete, they are sadly not
easily applicable. Further attempts to show that this integral equals zero have led to nothing. We see that in

the exponent, we have an infinite sum of 1
p which is offset by − cos(t log h(p))

p . It seems true that this sum will

diverge as for arbitrary prime p, cos(t log h(p)) should not be close to 1 too often. Another reason to believe
this is as follows. Assume that the limit does not equal 0. Then as t→ ∞ there must be a large enough/not
sparse subset of t for which all of the cos(t log h(p)) lie arbitrarily close to 1. However as t→ ∞ it feels only
natural that the cosines behave like independent random variables so that the cosines should ‘sync up’ to
equal 1 only on a set of density 0. By all the reasons above we believe the integrand will approach zero when
t → ∞, a result of x → ∞. However quantifying these statement has been fruitless. For the nice example

functions regarding n
σ(n) and φ(n)

n we saw that we could apply linear independence; however this seems to

have been a lucky break.

3.2 Conditions for multiplicative g(n)

As the example above shows, checking Schoenberg’s conditions is far from a trivial task and historically, this
had also been noticed. In Davenport’s paper, he also listed several conditions which he applied to n

σ(n) and

were sufficient to obtain his result:

(1) 0 < g(n) ≤ 1,

(2) g(n) is multiplicative,

(3) |g(pk)− g(pk−1)| ≤ Cp−kc,

(4) There exists a prime p0 so that for all primes p > p0, the quantities log g(p) are linearly independent
over Q.

Here, (1) comes from Schoenberg’s theorem, (2) is necessary to apply Möbius inversion and compute the
analytic continuation of the moments, (3) was necessary to show that the error term in Φ(s) on ϱs(m) was
O
(
m−1+ϵ

)
and (4) had been applied to show that the integral (34) equals zero. Notice that these conditions

miss that he needed g(p) to be bounded away from 0.
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After Davenport’s paper, Schoenberg saw he could improve Davenport’s conditions by instead looking
at Fourier transforms of the distribution function, more commonly known nowadays as the characteristic
function [15]. For multiplicative functions, he established the following sufficient conditions

(1) g(pk) > 0,

(2)
∑
p

1
p min (1, |log g(p)|) converges,

(3) there exists an infinite increasing sequence of primes {pi}∞k=1 with g(pi) ̸= g(pj) if
i ̸= j such that

∑∞
k=1

1
pi

diverges.

Then the first two conditions establish the existence of the limiting distribution and the last is required to
establish its continuity. One important difference from Davenport is that this no longer requires all g(pk) to
be bounded away from zero, only that the g(p)’s which are close to zero are sufficiently sparse so that for
those primes,

∑
those primes p

1
p <∞. At first glance this seems to be a boundary case between Schoenberg’s

conditions and Jennings’ conditions as Jennings truly needs all the g(pk) to be bounded away from 0; however
this result is only really required to show the function is strictly increasing on a specific subset, on top of
the continuity. This result too allows for g(n) to extend beyond the unit disk, as long as again, those g(p)
with g(p) > e must be sparse enough that the sum of their reciprocals also converges. Moreover, Schoenberg
lets go of any other condition for g(pk) with k ≥ 2. Simultaneously to Schoenberg, Erdős [5] realized the
following conditions for multiplicative g to attain a continuous distribution

(1) g(n) ≥ 1,

(2)
∑
p

1
p min (1, |log g(p)|) converges,

(3) g(p) ̸= g(q) for all pairs of primes.

Notice that these results are a bit more limited than Schoenberg’s; however Erdős proved this result without
any Fourier transformations. The progress for conditions on multiplicative g(n) then concluded with the
Erdős-Wintner Theorem:

Theorem 3.1 (Erdős-Wintner, 1939) Necessary and sufficient conditions for an additive arithmetic func-
tion f(n) to attain a limiting distribution is that the following three series converge∑

|f(p)|>1

1

p
(35)

∑
|f(p)|≤1

f(p)

p
(36)

∑
|f(p)|≤1

f(p)2

p
. (37)

The characteristic function of the limiting distribution will have the following representation

ϕ(t) =
∏
p

(1− p−1)
∑
k=0

eitf(p
k)

pk
. (38)

The limiting distribution will be continuous if and only if∑
f(p) ̸=0

1

p
(39)

diverges.
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This is in fact the theorem on which Jennings’ conditions are based. Applying Wirsing’s Theorem must
be the reason why she lost the “necessary” direction of the “necessary and sufficient” condition. Beforehand
it had seemed to us that one should be able to ‘complete a commutative diagram’, where first generalizing g
then f or first generalizing f then g should give new insights to when arithmetic functions attain a limiting
distribution. It turns out that, through careful application of the Erdős-Wintner Theorem, Jennings did
not generalize g after generalizing f , but instead she generalized both simultaneously as demonstrated in
the diagram below. This means that when regarding only multiplicative functions, we will not be able to
improve on Jennings’ results by completing the diagram.

Figure 3: Diagram of results

But, multiplicative functions are uncommon, especially in probability theory, so perhaps we might be able
to extend this diagram by instead considering non-multiplicative functions. Schoenberg’s Third Theorem
could allow for such an extension, as his theorem does not require any multiplicativity. In fact, after more
careful inspection of JPT’s Theorem 2.8, we noticed two key elements of the proof which allow for extension
of the results. The first is that the proof solely uses the fact that the existence and continuity of the limit

D(u) = lim
x→∞

1

x

∑
n≤x

n/σ(n)≤u

1

has been established, without any other knowledge of its nature. The second realization is that in the proof,
f being multiplicative is only required for the second and third conditions. These two observations allow for
the following theorem, which is a modification of JPT’s first theorem.

Theorem 3.2 Let f(n) be an arithmetic function that is bounded in mean square, i.e.,

lim sup
x→∞

1

x

∑
n≤x

|f(n)|2 <∞.

Suppose also that g(n) is an arithmetic function for which the limit

D̃1,g = lim
x→∞

1

x

∑
n≤x

g(n)≤u

1
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exists and is continuous, i.e., g attains a continuous distribution. Further suppose that for every nonnegative
k, the limiting mean value

lim
x→∞

1

x

∑
n≤x

f(n) (g(n))
k

exists. Then the limit

D̃f,g = lim
x→∞

1

x

∑
n≤x

g(n)≤u

f(n)

also exists and is continuous.
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4 Schoenberg and modern Probability Theory

One may observe that Schoenberg’s Third Theorem assumes the existence of the moments µk, and those
familiar with probability theory may recognize that their existence is neither immediate nor implicit, even
when given a distribution function. However, in probability theory, for a random variable X the boundedness
of the absolute moments does imply the existence of the moments of a distribution, in this case:

E|X|k = lim
n→∞

1

n

∞∑
j=1

xkjn ≤ lim
n→∞

1

n

∞∑
j=1

1 = 1, or

=

∫ ∞

−∞
tkdz(t) =

∫ 1

0

tkdz(t) ≤ |1− 0| · (z(1)− z(0)) = 1.

However, a requirement for this to be consistent is that X is a measurable function. Whereas this doesn’t
take away from Schoenberg’s Third Theorem, what this does imply is that both proofs by Schoenberg and
Davenport were, at the time, incomplete. This is because they both assumed the moments exist without
ever checking this fact. This is an important oversight. Define the function

g(n) =

{
1
3 if n ∈ [2k, 2k+1 − 1], k ≥ 0 even
2
3 if n ∈ [2k, 2k+1 − 1], k ≥ 1 odd.

Then this function fails to even have a mean value, its first moment. As we have seen in Section 3.2, the
Erdős-Wintner Theorem establishes necessary and sufficient conditions for additive functions to possess a

limiting distribution, essentially fixing the oversight from both proofs as the theorem applies to both log φ(n)
n

and log n
σ(n) . What can be said however is that the characteristic function of a distribution function FX(x)

does always exist:

ϕX(t) := E[eitX ] =

∫ ∞

−∞
eitxdFX(x),

and hence one may wonder why Schoenberg’s Third Theorem depends on the analytic continuation of the
moments. It seems that the main reason for this is that, looking back in time, the study of moments of
a sequence or distribution predates the study of the characteristic function. This is further exemplified in
the works of Schoenberg, as it does not seem he made the connection that the function Φ(it) in his first
paper on the topic [14] and the characteristic function L(t) in his second paper [15] are one and the same.
Perhaps he did make the connection afterwards without publishing. However, in our search of the literature
we could not find the result that the characteristic function can be derived as an ‘analytic continuation’ of
the moments in the same manner that the Gamma function is an ‘analytic continuation’ of the factorial.
In fact applications of the characteristic function only started after Kolmogorov applied measure theory to
lay the axiomatic foundations for modern probability theory, by means of “About the Analytical Methods
of Probability Theory” (1931) and “Foundation of the Theory of Probability” (1933). Of course, this goes
even further to solidify Schoenberg’s result, as his ideas were ahead of probability theory at the time. One
of the main results from the characteristic function follows from the inversion formula

FX(b)− FX(a) +
1

2
P(X = a)− P(X = b) =

1

2π
lim
T→∞

∫ T

−T

e−ita − e−itb

it
ϕX(t)dt,

from which one can show that the distribution function is absolutely continuous if the characteristic function
is absolutely integrable, i.e.,

lim
T→∞

∫ T

−T
|ϕX(t)|dt <∞.
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There is another result on the characteristic function which is in fact stronger. This is the result that if
ϕX(t) → 0 as t→ ∞, then there are no point masses in the distribution [3, p.130–131]. This result, relating
continuity to absolute integrability, in hindsight seems awfully familiar to the work of Schoenberg. In fact,
it can be shown that;

Proposition 4.1 If g(n) attains a distribution function, then Schoenberg’s Φ(it) is the characteristic func-
tion of the additive arithmetic function f(n) = log g(n).

Proof: As in the proof of Erdős-Wintner Theorem in Tenenbaum’s book [16, p. 326], Delange’s Theorem is
a key step:

Theorem 4.1 (Delange) Let g be a multiplicative function with |g| ≤ 1.
Part one. If the following limit is non-zero and exists

M(g) := lim
x→∞

1

x

∑
n≤x

g(n).

Then

i)
∑
p

1−g(p)
p converges

ii) there exists some positive integer k such that g(2k) ̸= 1.

Part two. If i) is satisfied, then g has a mean value given by

M(g) =
∏
p

(1− p−1)

∞∑
j=0

g(pj)

pj
.

This means that

ϕ(t) =M(git) =
∏
p

(1− p−1)

∞∑
j=0

g(pj)it

pj
.

Recall that by following Davenport’s method of establishing Φ(s), for a multiplicative function g, if it exists,
Φ(it) is given by

Φ(it) =
∏
p

1 +
∑
j≥1

p−j
(
g(pj)it − g(pj−1)it

) .

To show that these representations are equal, notice that the sum is absolutely convergent:

|g(pj)it − g(pj−1)it| ≤ 2,

hence the infinite sum is bounded by a geometric series. Thus we may rearrange the terms of the sum
without changing its limit.
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For ϕ(t) we see that the argument of the product becomes

(1− p−1)

∞∑
j=0

g(pj)it

pj
=

∞∑
j=0

g(pj)it

pj
−

∞∑
j=0

g(pj)it

pj+1

=

1 +

∞∑
j=1

g(pj)it

pj

−

 ∞∑
j=1

g(pj−1)it

pj


= 1 +

∞∑
j=1

p−j
(
g(pj)it − g(pj−1)it

)
,

hence the representations are the same. □

4.1 Schoenberg’s theorem applied to the Cantor distribution

Now that we have proven that Schoenberg’s Third Theorem essentially gives conditions for the characteristic
function of a distribution, we wish to show its usefulness by applying his theorem to the aforementioned
Cantor distribution. The continuity is well-established by analysis of the distribution function and can also
be proven by applying Lévy’s Theorem 2.4 to its characteristic function. We will now show that Schoenberg’s
Third Theorem can in fact be used to show the continuity of the Cantor distribution, purely by looking at
the integral of the characteristic function. Thus we need to prove that

lim
x→∞

1

x

∫ x

0

∏
j≥1

∣∣∣∣cos( t

3j

)∣∣∣∣dt = 0.

By making some substitutions and by upper bounding the integrand we obtain the following:

lim
x→∞

1

x

∫ x

0

∏
j≥1

∣∣∣∣cos( t

3j

)∣∣∣∣dt = lim
x→∞

1

x

∫ π

0

∏
j≥1

∣∣∣∣cos( t

3j

)∣∣∣∣ dt+ 1

x

∫ x

π

∏
j≥1

∣∣∣∣cos( t

3j

)∣∣∣∣ dt
≤ lim
x→∞

1

x

∫ π

0

1dt+
1

x

∫ x

π

∏
j≥1

∣∣∣∣cos( t

3j

)∣∣∣∣dt.
Here, the first integral has both a bounded interval and integrand, hence its integral will be bounded. This
means that its contribution will approach zero as x→ ∞. In the next step we will change the limiting upper
bound of x to 3N+1π. This change is inspired by [3, p.133, Exercise 3.3.11], as the 3kπ, for k = 1, 2, . . . ,
form a subsequence of ϕ(t) for which ϕ(3kπ) ̸→ 0 as k → ∞. Then

lim
x→∞

1

x

∫ x

0

∏
j≥1

∣∣∣∣cos( t

3j

)∣∣∣∣dt ≤ lim
N→∞

1

3N+1π

∫ 3N+1π

π

∏
j≥1

∣∣∣∣cos( t

3j

)∣∣∣∣dt
= lim
N→∞

1

3N+1π

N∑
k=0

∫ 3k+1π

3kπ

∏
j≥1

∣∣∣∣cos( t

3j

)∣∣∣∣dt
= lim
N→∞

1

3N+1π

N∑
k=0

3kπ

∫ 3

1

∏
j≥1

∣∣∣∣cos(3kπu

3j

)∣∣∣∣ du.
In the step above we made the substitution 3kπu = t as this takes the variables out of the bounds of
integration. Next we will split the terms of the infinite product in two, the first will be those cosines where
the power of 3 is non-negative, and the second will be those cosines where the power of 3 is negative. Then
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we may further simplify the expression by upper bounding the second product by 1, as all terms are bounded
by 1:

lim
x→∞

1

x

∫ x

0

∏
j≥1

∣∣∣∣cos( t

3j

)∣∣∣∣dt ≤ lim
N→∞

1

3N+1π

N∑
k=0

3kπ

∫ 3

1

k−1∏
m=0

|cos (3mπu)|
∏
j≥1

∣∣∣cos(πu
3j

)∣∣∣du
≤ lim
N→∞

N∑
k=0

3k−N−1

∫ 3

1

k−1∏
m=0

|cos (3mπu)|du

= lim
N→∞

N∑
c=0

3−c−1

∫ 3

1

N−c−1∏
m=0

|cos (3mπu)|du, where c = N − k.

Now let

fN :=

N∑
c=0

3−c−1

∫ 3

1

N−c−1∏
m=0

|cos (3mπu)|du,

where the empty product equals 1. Then we can find the recurrence relation

fN+1 =

N+1∑
c=0

3−c−1

∫ 3

1

N−c∏
m=0

|cos (3mπu)|du

= 3−1

∫ 3

1

N∏
m=0

| cos(3mπu)|du+

N+1∑
c=1

3−c−1

∫ 3

1

N−c∏
m=0

|cos (3mπu)|du

= 3−1

∫ 3

1

N∏
m=0

| cos(3mπu)|du+ 3−1
N∑
c′=0

3−c
′−1

∫ 3

1

N−c′−1∏
m=0

|cos (3mπu)|du

= δN +
1

3
fN ,

where

δN := 3−1

∫ 3

1

N∏
m=0

| cos(3mπu)|du.

Now let

δ := lim
N→∞

δN .

If this limit exists, then

lim
N→∞

fN =
3

2
δ,

hence it is sufficient to show that δN → 0 as N → ∞. We will show the following: for all but a sparse set
(density 0) of numbers x in the unit interval the inequality

cos (3mπx) ≤ 1

2

holds for infinitely many m ≥ 0. Our integral is from 1 to 3, and | cos(πx)| has period 1 (and for larger m the
functions | cos(3mπx)| are definitely also 1-periodic), hence it is sufficient to show this for the unit interval.
Then for our inequality above, for m = 1 we have

cos(πx) ≤ 1

2
implies x ∈

[
1

3
,
2

3

]
.
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We can also restate the right-hand side to be those x for which the first digit in the ternary expansion is a
1, as it is precisely the middle third of the unit interval. This leaves out the boundary point x = 2

3 , but for
our purposes it is sufficient to consider only the aforementioned x. For m = 1, the inequality is

cos(3πx) ≤ 1

2
implies x ∈

[
1

9
,
2

9

]
∪
[
4

9
,
5

9

]
∪
[
7

9
,
8

9

]
.

Now these are those x for which the second digit in the ternary expansion is a 1, as these are again the middle
thirds of the intervals

[
0, 13

]
,
[
1
3 ,

2
3

]
and

[
2
3 , 1
]
. Hence for the m-th inequality, we see that the inequality is

satisfied for those x which have a 1 at the m + 1-st digit of the ternary expansion. Thus showing that the
inequality holds infinitely often for almost all x in the unit interval follows from saying that almost all x
have infinitely many 1’s in their ternary expansion, which is true. But in fact if that inequality holds for
infinitely many m for all x except for a set of density 0, then that means that∫ 1

0

lim
N→∞

N∏
m=0

| cos(3mπu)|du ≤
∫ 1

0

lim
k→∞

k∏
m=0

(
1

2

)
du = 0.

Hence for δN we have

lim
N→∞

δN = lim
N→∞

3−1

∫ 3

1

N∏
m=0

| cos(3mπu)|du,

=
2

3

∫ 1

0

lim
N→∞

N∏
m=0

| cos(3mπu)|du,

≤ 0.

As δN is an integral of a non-negative function, we see that

0 ≤ lim
N→∞

δN ≤ 0.

Thus, the Cantor distribution is continuous. □
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5 Polynomial representations for f(n)

The second theorem 2.9 by JPT applies to many multiplicative functions f . One of the arithmetic functions
that works as well is the function that counts the number of representations a number has as a sum of two
squares, up to some symmetry:

r(n) :=
1

4
#{(x1, x2) ∈ Z2 \ {0} | x21 + x22 = n}.

The reason this is interesting is that, even though r(n) is an arithmetic function, we can also interpret this
result as asking, “in how many ways can n be represented by the integer polynomial or quadratic form
f(x1, x2) = x21 + x22.” Let us first show that this function indeed satisfies the conditions of the theorem. A
classic results states that for p prime, we have that

r(p) =


1 if p = 2,

2 if p ≡ 1 mod 4,

0 if p ≡ 3 mod 4.

Thus the first condition of the theorem becomes finding κ > 0 such that∑
p≤x

r(p)
log p

p
= 1 + 2

∑
p≤x
p≡1(4)

log p

p
∼ κ log x.

This follows from the more general result that for (l, k) = 1,∑
p≤x
p≡l(k)

log p

p
∼ 1

φ(k)
log x.

This result is one that lies deep in number theory, as in [1, p.148–154], where it is used as an intermediary
step to prove Dirichlet’s result on primes in arithmetic progressions. From this, we see that∑

p≤x

r(p)
log p

p
∼ log x.

Further values for primes powers are

r(pk) =


1 if p = 2,

k + 1 if p ≡ 1 mod 4,

1 if p ≡ 3 mod 4 and 2 | k,
0 else.

One can see that the second condition is also fulfilled, as r(pk) ≤ τ(pk) and we already checked that the
double sum of the latter converges. In this case, we have that κ ≤ 1, or in fact κ = 1, hence we need to
check that ∑

pj≤x

r(pj) ≪r
x

log x
,
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holds. Observe that ∑
pj≤x

r(pj) =
∑
p≤x

r(p) +
∑
j≥2

∑
p≤x1/j

r(pj)

≤
∑
p≤x

2 +
∑
j≥2

∑
p≤x1/j

(j + 1)

≤ 2
x

log x
+

⌊ log x
log 2 ⌋∑
j=2

∑
p≤x1/2

(j + 1)

≤ 2
x

log x
+

⌊ log x
log 2 ⌋∑
j=2

(j + 1) · x1/2

log x1/2

≤ 2
x

log x
+

(⌊ log x
log 2 ⌋+ 4)(⌊ log x

log 2 ⌋ − 1)

2

x1/2

1
2 log x

= O
(

x

log x

)
+O

(
(log x)2x1/2

log x

)
= O

(
x

log x

)
.

Now we see that indeed, all the conditions are satisfied for the multiplicative function r(n), thus the distri-
bution function

D̃r(u) = lim
x→∞

1

S(r;x)

∑
n≤x

n/σ(n)≤u

r(n)

exists and is continuous. By geometric interpretations, we see that 4 · r(n) is a function that counts the
number of lattice points inside a circle of radius

√
n, hence the above becomes

D̃r(u) = lim
n→∞

1

πn

{
(x1, x2) ∈ Z2 | 0 < x21 + x22 ≤ n and

x21 + x22
σ(x21 + x22)

≤ u

}
. (40)

One might ask what other quadratic forms or even other types of polynomials also mimic this behaviour.
Considering the arithmetic function that counts the number of representations of a number n as a sum of k
squares

rk(n) := #

{
k∑
i=1

x2i = n | xi ∈ Z

}
,

then it is known [7, p.131–132] that only for k = 1, 2, 4, 8, the function

fk(n) :=
rk(n)

2k
,

is multiplicative. Hence these are the first functions for which we hopefully can get a similar result through
Theorem 2.9. Notice that when k = 2 we have that f2(n) = r(n), our function from earlier. Before, we
computed S(r;x) by geometrically interpreting the sum of squares, and in fact we can do the same for the
other rk:

S(f1;x) ∼
√
x,

S(f4;x) ∼
1

8
· π

2

2
x2,

S(f8;x) ∼
1

16
· π

4

24
x4.
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Sadly, f1(n) does not satisfy the conditions for Theorem 2.9 as the first conditions fails because f1(p) = 0.
The functions f4 and f8 also fail the first conditions. We have that

r4(n) = 8
∑
4∤d|n

d,

r8(n) = (−1)n16
∑
d|n

(−1)dd3.

Hence for prime values we have for fk:

f4(p) = p+ 1,

f8(p) = p3 + 1.

Thus the first conditions fails in both cases∑
p≤x

p+ 1

p
log p =

∑
p≤x

log p+
∑
p≤x

log p

p
= x+O

(
x

log x

)
,

∑
p≤x

p3 + 1

p
log p.

The first result comes from Chebyshev’s first function, and the second clearly cannot be O(log x). Hence
these representations, even though multiplicative, fail to be approximated by Wirsing’s Theorem. Perhaps
quicker to verify this fact is that f4 and f8 are in fact not bounded for primes. This seems to happen due
to the amount of variables allowing for too many representations, hence it might be helpful to only consider
binary quadratic forms. A problem is that most of the results in this field do not always have that the
number of representations of n is a multiplicative function, but only that the set of represented numbers is
closed under multiplication. And most cases don’t even have that. Nonetheless, we conclude with an open
question we did not have time for in our thesis. We believe that the multiplicative condition is only necessary
to allow the application of our current known methods, and is not necessary for the result to hold. In fact,
the result (40) can be interpreted to be a statement on the integer points on the interior of the circle.

Let f(x1, x2) = ax21+bx1x2+cx
2
2 be a binary quadratic form, with a, b, c ∈ Z, discriminant D = b2−ac < 0

and a > 0. The condition on the discriminant is to ensure that f represents only positive or negative numbers,
and the condition on a is to ensure f only represents positive integers. This is to exclude instances such as
Pell’s equation, where there are infinitely many representations for certain integers. These conditions can
also be geometrically interpreted so that the condition f(x1, x2) ≤ n results in a compact subset of R2. Now
let Rf (n) denote the number of representations of n, i.e.,

Rf (n) = #{(x1, x2) ∈ Z2 | f(x1, x2) = n}.

Before we obtained S(f ;x) by geometric interpretations, and for these binary quadratic forms we can do the
same. Then

S(f ;n) := V ol{f(x1, x2) ≤ x | (x1, x2) ∈ R2}

=

∫∫
f(x1,x2)≤n

dx1dx2.
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This area is that of a skew ellipse, hence we will use the following substitution to compute it.

n ≥ ax21 + bx1x2 + cx22

1 ≥ 1

4an

(
(2ax1 + bx2)

2 + (
√
−Dx2)2

)
1 ≥ 1

4an

(
u2 + v2

)
4an ≥ u2 + v2.

This inequality gives us a circle with radius
√
4an, hence the area is 4πan. For the Jacobian of this trans-

formation from the ellipse to the circle, we have∣∣∣∣∂x1

u
∂x1

v
∂x2

u
∂x2

v

∣∣∣∣ = ∣∣∣∣ u
∂x1

u
∂x2

v
∂x1

v
∂x2

∣∣∣∣−1

=

∣∣∣∣2a b
0

√
−D

∣∣∣∣−1

=
1

2a
√
−D

.

Thus for S(f ;n) we obtain

S(f ;n) =

∫∫
u2+v2≤4an

1

2a
√
−D

dudv

=
4πan

2a
√
−D

=
2πn√
−D

.

Thus our two conjectures, one only for f and another for both f and g are as follows.

Conjecture 5.1 Let f(x1, x2) be an integer binary quadratic form. If it is also a positive definite form, the
limit

D̃f (u) = lim
x→∞

√
−D
2πx

∑
n≤x

n/σ(n)≤u

Rf (n) = lim
n→∞

√
−D
2πn

{
(x1, x2) ∈ Z2 | 0 < f(x1, x2) ≤ n and

f(x1, x2)

σ(f(x1, x2))
≤ u

}

exists for every u ∈ [0, 1] and is continuous in terms of u.

Conjecture 5.2 Let f(x1, x2) be an integer binary quadratic form. If it is also a positive definite form, and
g(n) satisfies the conditions of Schoenberg, then the limit

D̃f,g(u) = lim
x→∞

√
−D
2πx

∑
n≤x

g(n)≤u

Rf (n) = lim
n→∞

√
−D
2πn

{
(x1, x2) ∈ Z2 | 0 < f(x1, x2) ≤ n and g(f(x1, x2)) ≤ u

}
.

exists and is continuous for every u ∈ [0, 1].
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