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Dr. Á. del Pino Gómez
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Introduction

In the field of differential topology, people are often interested in manifolds endowed with some
geometric structure. In this thesis we will look at geometric structures called distributions. In
particular, we are interested in a special type of distributions which are called bracket-generating.
In a moment, we will start off with giving a brief introduction to these objects. As one investigates
distributions, several questions frequently arise:

What manifolds admit such a structure?
Which of these structures are homotopic to each other?
What is the topology of the space of such structures?

A useful tool to try and answer these questions is the h−principle. Here the ‘h’ represents homotopy.
By showing that the h−principle holds for a certain family of geometric structures, we can gain
insights into the existence of these structures and the topology of the space of geometric structures.
In this introduction we will comment on this principle and discuss previous research conducted in
this field. Finally, we will discuss the outline of the thesis and discuss the main result it presents.

Distributions

Mathematically speaking, we define a distribution as a subbundle of the tangent bundle. So what
does this mean? At every point in our manifold, we can look at the tangent space which consists
of all vectors which are tangent to the manifold at that specific point. Taking a linear subspace of
these vectors at each point in the manifold, defines a distribution. As an example, suppose we pick
a 2-dimensional subspace, i.e. a plane, in a smooth manner at every point in the manifold. In this
case, we say a distribution is of rank 2. We can then investigate whether this plane turns when
moving into different directions, or if the plane stays still.

A more intuitive interpretation of a distribution is the following. One can see the vectors in the
distribution as the “allowed directions of motion”. To illustrate this concept, consider the example
of a coin rolling on a table. In Figure 1, the x− and y−coordinate indicate the position of the coin,
and θ indicates the direction the coin points in. Hence, the state space of the coin can be described
by the manifold R2 × S1.

Figure 1: Illustration of the rolling coin distribution Dcoin.

We observe that the motions of the coin form a rank 2 distribution, Dcoin, which is spanned by the
following two vector fields:

Dcoin = ⟨∂θ, cos(θ)∂x + sin(θ)∂y⟩.
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Intuitively, the first vector field allows us to rotate the coin in any direction, and the second vector
field enables us to roll the coin in the direction it is pointing in. Note that by moving along these
vector fields, we can place the coin in any desired position and direction!

Keeping up with this philosophy, a question one can ask then is: given two points on the mani-
fold, can we find a path from one to the other, following the allowed directions of motion? This
brings us to the definition of bracket-generating distributions. We define these as distributions for
which at every point one can move in any direction by moving along infinitesimal directions tangent
to the distribution. Observe that the rolling coin example is indeed a bracket-generating distribution.

A way of mathematically measuring whether one can move in certain directions along a distribution,
is the Lie bracket. Namely, the Lie bracket of two vector fields measures their failure to commute.
Thus, applying the Lie bracket to two vector fields tangent to a distribution, can give us a third
direction, which we can apparently also move in, while staying tangent to the distribution. Therefore,
formally we define bracket-generating distributions as the following.

Definition 0.1. Let M be a manifold and let D ⊆ TM be a distribution on M . We can look at the
following sequence:

D
(1)

∶= D ⊆ D
(2)

∶= [D,D] ⊆ D(3)
∶= [D, [D,D]] ⊆ ⋅ ⋅ ⋅ ⊆ TM.

We say D is bracket-generating if D
(l)

= TM for some l ≥ 1.

Contact structures are a classic example of a widely-studied class of bracket-generating distributions.
They are defined on odd-dimensional manifolds and generate the whole tangent bundle by a single
application of the Lie bracket. Engel structures are bracket-generating distributions defined on 4-
dimensional manifolds, which generate the whole tangent bundle after applying the Lie bracket twice.
This thesis will focus on bracket-generating distributions on 5−manifolds called (2, 3, 5)−structures.
The name is quite suggestive: these are distributions of rank 2, which after applying the Lie bracket
once, generate a rank 3 distribution and after two applications, generate the whole tangent bundle.
In 1910, the French mathematician Élie Cartan gave a solution to the (local) equivalence problem for
maximally bracket-generating 2-distributions on 5-manifolds, i.e. (2, 3, 5)−structures [4]. In doing
so, he made a surprising connection with the complex Lie algebra of type G2. Therefore, in the
literature, these structures are also referred to as distributions of Cartan type. Many of the original
contributions of this thesis are inspired by known results on contact and Engel structures, and in a
number of cases we shall therefore discuss these first, in order to justify and clarify the findings on
(2, 3, 5)−structures.

Let us take a look at a real-life example of a (2, 3, 5)−manifold (i.e. a manifold that admits a
(2, 3, 5)−structure). Take a stationary ball of radius R and a second ball of radius r which rolls
on the first. See also Figure 2. We can identify the configuration space Q with the manifold
(g,x) ∈ SO3 × S2, where the first term g describes the rotation of the second ball relative to
its initial position and Rx describes the point of contact between the two balls. Note that this
configuration space is 5-dimensional. It turns out that Q admits a (2, 3, 5)−structure! Namely, the
distribution which describes the motions of the ball of radius r, where it rolls without twisting or
slipping, is a rank 2 distribution. We call it the rolling distribution, and denote it by Dρ, where

ρ =
R
r
is the ratio of the two radii. This distribution is a (2, 3, 5)−structure, provided the values of

the Gaussian curvatures are disjoint, i.e. if R ≠ r [2].

The h−principle

A PDR, short for partial differential relation, is a condition one can impose on a section and its
derivatives. For example, requiring that the derivative df ∶ TM → TN of a map f ∶ M → N is
injective, implies that f is an immersion. Sometimes we want to investigate whether an immersion
exists between two manifolds. A necessary condition, is that there exists a map f ∶ M → N and
a lift F ∶ TM → f

∗
TN . We call a pair of such maps a formal solution, and an actual immersion

a solution to the PDR. Thus, looking at the space of formal solutions, can help us in proving the
existence of actual solutions.

However, just proving that a formal solution exists is not sufficient. Hence, a natural question to
ask is:
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Figure 2: Illustration of the rolling distribution [2, p.7].

Given a formal solution, can we transform it into a genuine solution?

This is where the h−principle comes into play, which we define as follows.

Definition 0.2. Let R be a PDR. We say R satisfies the h−principle if the inclusion

i ∶ {solutions of R} ↪ {formal solutions of R}

is a weak homotopy equivalence.

Let us elaborate a little on this definition. Namely, showing that the inclusion above is surjective on
π0-level means that we can homotope every formal solution into a genuine one. Moreover, injectivity
of the inclusion map on π0−level shows that any two solutions which are formally homotopic, are
also homotopic through genuine solutions. Thus, showing that the h−principle holds for a PDR can
shed light on the existence and classification up to homotopy of certain geometric structures. Let
us give a brief history overview of this mathematical principle.

The concept of the h−principle first appeared in [25] by Gromov and [28] by Gromov and Eliashberg
under the name of w.h.e-principle. The name h−principle was first introduced in 1969 by Gromov
in his book [27]. Before the h−principle (or w.h.e.-principle) was officially defined, people already
proved that it holds for certain spaces of geometric structures. For example, Smale [39] (1958) and
Hirsch [29] (1959) proved that the inclusion

Imm
f(M,N) ↪ Imm(M,N)

is a weak homotopy equivalence if dim(M) < dim(N). Here Imm
f(M,N) is the space of formal

immersions, which contains the pairs of maps as discussed above. In 1969, Gromov showed that
there are more general methods for proving h−principles [24]. Namely, using these methods, he

proved the following powerful result. Note that we use SolR(M) and SolfR(M) below, to denote the
space of solutions and the space of formal solutions of the partial differential relation R, respectively.

Theorem 0.3. [Gromov, 1969] Let M be an open manifold and E →M a vector bundle. Then any
open, Diff-invariant differential relation R ⊂ J

r(E) satisfies the h−principle, i.e.

SolR(M) ↪ Sol
f
R(M)

is a weak homotopy equivalence.

We say a differential relation is open, if it is open in the topology endowed on the jet bundle, and
it is Diff-invariant, if it is invariant under diffeomorphisms of the base manifold M . For more on
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jet bundles and differential relations we refer to [15]. It turns out that there are a lot of geometric
structures which can be expressed as an open and Diff-invariant PDR. This is because operators
such as the Lie bracket, the wedge product, the de Rham differential and forms are preserved by
diffeomorphisms of M . Therefore, for open manifolds, Gromov’s theorem is a very useful tool. Also
contact, Engel and (2, 3, 5)-structures can be expressed as open, Diff-invariant PDR’s. A natural
question at this point is then the following: What about closed manifolds?

In 1983, Bennequin proved that the h−principle fails in general for contact structures on closed
manifolds [1]. However, it turns out that the h−principle on closed manifolds does hold for a spe-
cial family of contact structures, which are called overtwisted. For this, we go back to the 70’s,
when Lutz [37] and Martinet [30] showed that any closed 3-dimensional manifold admits a contact
structure. They used a construction which we call Lutz twisting. This turns out to be a very useful
construction, not only to prove existence, but also to prove that the h−principle holds for these
overtwisted contact structures. This was proven in dimension 3 by Eliashberg in 1989 [13]. Most of
the research conducted on contact structures in the past years has been on tight contact structures,
which are contact structures which are not overtwisted. Quite recently, in 2018, del Pino and Vogel
proved in their paper that on closed manifolds there is also an h−principle for overtwisted Engel
structures [12]. A main open question in the study of Engel structures is if the h−principle holds or
fails on closed manifolds in general.

After contact and Engel structures, (2, 3, 5)−structures are an interesting class of distributions to
investigate, for dimensional reasons. As mentioned before, we know by Gromov that the h−principle
holds for them on open manifolds. However, on closed manifolds we still know very little. Whether
the h−principle holds or fails in general is an open question! One can also wonder if, similarly to
contact and Engel structures, we can define a special class of overtwisted (2, 3, 5)−structures, for
which we could prove an h−principle on closed manifolds. This brings us to the contents of this
thesis.

What is the thesis about?

The goal of the thesis is to define a special class of (2, 3, 5)−structures, which are called overtwisted,
and to prove that the h−principle holds for these structures on closed manifolds. The idea will be to
define the overtwisted (2, 3, 5)−structures in such a way that we precisely have all the ingredients in
order to prove that the h−principle indeed holds for them. The main result of this thesis is stated
in the following theorem.

Theorem 0.4. Let M be a closed 5-dimensional manifold. Then the inclusion

Dist
OT
(2,3,5)(M,∆) ↪ FDist

OT
(2,3,5)(M,∆),

is a weak homotopy equivalence.

Here, Dist
OT
(2,3,5)(M,∆) and FDist

OT
(2,3,5)(M,∆) denote the spaces of overtwisted and formal over-

twisted (2, 3, 5)−structures, respectively, both with a fixed embedding ∆ of the overtwisted disc.
These concepts will be explained in more detail later on in the thesis. This result is an original
contribution to the research field. Since our focus is on proving Theorem 0.4, the structure of the
thesis is also adjusted accordingly. Let us give an outline of the contents.

The first two chapters will serve as introductory chapters. In Chapter 1 we discuss bracket-generating
distributions, and pay special attention to contact and Engel structures. As mentioned before, we
will often refer back to these structures, as our results on (2, 3, 5)−structures will be inspired by
known results on contact and Engel structures. In Chapter 2 we introduce (2, 3, 5)−structures,
discuss a local description and prove that they can indeed be expressed as an open, Diff-invariant
relation.

In Chapter 3 we prove Theorem 3.8, which shows that we can construct a (2, 3, 5)−structure on
mapping tori admitting a suitable formal (2, 3, 5)−structure. This is a new result, and it already
highlights some of the constructions we will present in the proof of Theorem 0.4. Subsequently, we
will discuss Lutz twisting in contact and Engel manifolds in Chapter 4. In Chapter 5 we will define
Lutz twisting in (2, 3, 5)−manifolds, and this will resemble the constructions in Chapter 4. After
having defined Lutz twisting, we can then define the notion of an overtwisted disc and thereafter
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overtwisted (2, 3, 5)−structures in Chapter 6. Additionally, we will prove in this chapter, that in the
presence of one overtwisted disc, one can produce extra copies by homotopy. This will ensure that
we preserve the fixed embedding ∆ of the overtwisted disc in the proof of Theorem 0.4. In Chapter
6 we will also discuss Conjecture 6.4, which will not be proved in this thesis, but we will use it to
prove the main result.

In several cases, the proof of that an h−principle holds follows a particular scheme. For instance, del
Pino and Vogel used this scheme in [12] to prove the h−principle for overtwisted Engel structures on
closed manifolds. The idea is the following. First we triangulate the manifold, and then we obtain
the required condition in the codimension-1 skeleton. What is left, is to obtain the desired structure
in the top-simplices. This last step is also called the extension problem. In Chapter 7 we reduce
the proof of Theorem 0.4 to the extension problem, and lastly in Chapter 8, we finish the proof of
Theorem 0.4 by performing the extension.

To conclude, we will summarise the proof of Theorem 0.4, and discuss some open questions and
ideas for potential future research. The thesis also contains three appendices, which entail several
interesting topics in differential/contact topology I have researched during the making of this thesis.
They can provide more background into topics in the field, but in order to preserve the flow of the
story, they are not included in the main body.
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Chapter 1

Bracket-generating distributions

This chapter will be a brief introduction to distributions, and in particular bracket-generating dis-
tributions. Smooth distributions are locally spanned by vector fields, to which we can apply the
Lie bracket. Applying this operation iteratively can yield new, i.e. linearly independent, vector
fields. If eventually we can span the whole tangent bundle with these vector fields, we call a distri-
bution bracket-generating. Recall that the rolling coin distribution discussed in the introduction, is
an example of a bracket-generating distribution. The object of interest in this thesis is also a type
of bracket-generating distributions. In the first section of this chapter we will go over some basic
definitions regarding distributions and the Lie bracket, and in the second and third section we will
discuss two types of bracket-generating distributions, called contact and Engel structures.

1.1 Distributions

Let us formally define distributions.

Definition 1.1. Let M be a smooth manifold. A distribution of rank k on M is a rank-k
subbundle of TM . A distribution is said to be smooth if it is a smooth subbundle of TM .

We write Dist(M) for the space of all smooth distributions on M , and we endow it with the
C

0−topology.

Remark 1.2. We note that there are two types of Whitney C
r−topologies, the weak and the strong

C
r−topology. See [21] for more on these topologies. When trying to prove an h-principle, one

should be careful with these topologies. Namely, differential relations are often open in the strong,
but not in the weak, because they involve constraints all the way up to infinity. Therefore, when
perturbing distributions in an ϵ−close manner for ϵ > 0 very small, we want to do this in the strong
topology. However, if we then construct homotopies between these distributions (by for example
linear interpolation), these will only be continuous in the weak topology. Therefore, we are interested
in the homotopy type of certain subspaces of Dist(M) with respect to the weak topology. ▶

If ξ is a distribution, we can write
ξ = ∪p∈Mξp

where ξp is a k−dimensional linear subspace of TpM . Being a smooth distribution means that at ev-
ery point in the manifold there is a neighbourhood U , and smooth vector fieldsX1, ..., Xk ∶ U → TM ,
such that ξp is spanned by X1∣p, ..., Xk∣p for every p ∈ U [36, p. 491]. All the distributions we will
be considering in this thesis are smooth.

Given a distribution, we can look at vector fields which are tangent to it. This gives us the following
correspondence:

{Distributions on M} ↔ {C∞
−modules of vector fields of point wise constant rank on M} .

Here we identify a distribution ξ with the space Γ(ξ) ⊂ X(M) consisting of vector fields tangent to
ξ. We can recover ξ from Γ(ξ) by evaluating evaluating the vector fields at every point in M . The
space Γ(ξ) is in fact a C

∞−module, which satisfies the sheaf condition.

Lemma 1.3. Let M be a smooth manifold and let ξ be a distribution on M . Then Γ(ξ) is a
C

∞
-module.
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Proof. Let X,Y ∈ Γ(ξ) and let f ∈ C
∞(M). We note that X(M) is a C

∞−module with the
operations

(X + Y )p = Xp + Yp

(fX)p = f(p)Xp.

Since ξp ⊆ TpM is a smooth linear subspace and Xp, Yp ∈ ξp, we have that Xp + Yp, f(p)Xp ∈ ξp.
The module structure is immediately inherited from X(M).

Remark 1.4. We introduce this correspondence as in the rest of the thesis we will often identify a
distribution with its sheaf of sections, i.e. the vector fields which are tangent to it. We will use this
identification from now on without explicitly pointing out the correspondence. ▶

1.1.1 Involutive and non-integrable distributions

The Lie bracket is an operator on vector fields, and since smooth distributions are locally spanned by
vector fields, we can apply this operator on them. The Lie bracket of two vector fields measures their
failure to commute. If the Lie bracket [X,Y ] of two vector fields X and Y tangent to a distribution
ξ, is linearly independent of the initial two, it means that we can also move in the direction [X,Y ],
while staying tangent to the distribution. This brings us to the next definition.

Definition 1.5. A distribution ξ is said to be involutive if for every two vector fields X and Y
tangent to ξ, their Lie bracket [X,Y ] is also tangent to ξ [36, p. 492].

If ξ = ⟨Xi ∣ i ∈ I⟩ for vector fields Xi on M , then we can define the following distribution:

[ξ, ξ] ∶= ⟨Xi, [Xj , Xk] ∣ i, j, k ∈ I⟩.

If ξ is an involutive distribution, we sometimes use the shorthand notation [ξ, ξ] ⊂ ξ.

Example 1.6. Let ξ = ⟨X,Y ⟩ be a distribution of rank 2 on R3
spanned by the following two vector

fields
X = x∂x + ∂y + x(y + 1)∂z and Y = ∂x + y∂z.

We note that
[X,Y ] = ∂z − ∂x − (y + 1)∂z = −Y.

Therefore [ξ, ξ] ⊂ ξ, and thus ξ is involutive [36, p. 498-499]. △

We have seen that a distribution ξ is involutive if [ξ, ξ] ⊂ ξ. However, it can also be the case that
applying the Lie bracket yields a “new”, i.e. linearly independent, vector field. This motivates the
following definition for distributions of rank 2.

Definition 1.7. Let M be a smooth manifold of dimension n and let ξ be a rank 2 distribution on
M . We say ξ is non-integrable if [ξ, ξ] is a rank 3 distribution.

We denote by Distn.i.(M) the space of non-integrable 2-distributions on M , and we endow it with
the C

1−topology. We endow this space with the C
1−topology, as the key property of non-integrable

distributions has to do with first derivatives. We can also define a formal analogue of these distri-
butions.

Definition 1.8. Let M be a smooth manifold of dimension n. A formal non-integrable 2-
distribution is a pair ξ ⊂ E where ξ is a rank 2 distribution and E a rank 3 distribution on M ,
together with an isomorphism

ξ ∧ ξ ≅ E/ξ.

We denote by FDistn.i.(M) the space of formal non-integrable distributions and we endow it with
the C

0−topology, see also Remark 1.9. We note that non-integrable distributions are also formally
non-integrable, where the isomorphism is induced by the Lie bracket. I.e. we have the inclusion

Distn.i.(M) ↪ FDistn.i.(M), ξ ↦ (ξ, [ξ, ξ], [., .]).
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Remark 1.9. Let us clarify what we mean when we endow the space FDist(M) with the C
0−topology.

First of all, we note that FDist(M) is a Serre fibration over a subset V of Dist(M)×Dist(M) con-
sisting of pairs (ξ2, E3) such that ξ ⊂ E , and where the projection map is given by projecting to the
distributions. Let (ξ, E , φ), (ξ̃, Ẽ , φ̃) ∈ FDist(M). We want to define what it means for (ξ, E , φ) and
(ξ̃, Ẽ , φ̃) to be close. We can endow the space Dist(M) ×Dist(M) with the C

0−topology, and the
space of linear maps can also be topologised by for example the topology induced by the Euclidean
metric by identifying linear maps with matrices.

We note that if ξ̃ is C
0−close to ξ, we have that ξ̃ is transverse to TM/ξ. Let π ∶ TM → ξ

be a projection onto ξ. We can choose this projection by for example choosing a metric on
M . Let η ∶ TM → TM/ξ be a quotient map such that ξ̃ is precisely the complement of ξ, i.e.
η
−1(TM/ξ) = ξ̃. We note that η

−1 ◦ φ ◦ (π∣ξ̃ ∧ π∣ξ̃) is a linear map from ξ̃ ∧ ξ̃ to TM/ξ̃.

We then define (ξ, E , φ) and (ξ̃, Ẽ , φ̃) to be C
0
-close, if and only if ξ and ξ̃ and E and Ẽ are

C
0−close as distributions, and φ̃ and η

−1 ◦ φ ◦ (π∣ξ̃ ∧ π∣ξ̃) are close as linear maps. One can
show that this topology on FDist(M) is also the coarsest topology such that the projection map
FDist(M) → Dist(M) ×Dist(M) is continuous. ▶

There exists in fact an h−principle for this type of distributions.

Theorem 1.10. Let M be an n-dimensional manifold with n > 3. Then the inclusion

Distn.i.(M) ↪ FDistn.i.(M)

is a weak homotopy equivalence.

A proof of Theorem 1.10 can be found in [10, p. 77] and it essentially uses the Smale–Hirsch theorem
for the h-principle for immersions. Since Smale-Hirsch also holds in a parametric and relative setting,
Theorem 1.10 holds in a parametric and relative setting as well. This h−principle will be a useful
tool in this thesis to prove other h−principles.

1.1.2 Bracket-generating distributions

Since taking the Lie bracket of two vector fields yields another vector field, one can apply the Lie
bracket iteratively on vector fields tangent to a distribution. This motivates the following definitions.

Definition 1.11. We call a string “a”, where a is a formal variable, a bracket expression of length
1. We call

[A(a1, ..., ai), B(ai+1, ..., ai+j)]
a bracket expression of length i+ j + 1 where A(−) and B(−) are bracket expressions of length
i and j respectively [11, p. 5].

Definition 1.12. Let ξ be a distribution. We define its associated Lie flag as the sequence of
C

∞
-modules

Γ
(1)(ξ) ⊂ Γ

(2)(ξ) ⊂ ⋅ ⋅ ⋅ ⊂ Γ
(i)(ξ) ⊂ Γ

(i+1)(ξ) ⊂ . . .

where Γ
(i)(ξ) = ⟨A(a1, ..., ai)∣a1, ..., ai ∈ ξ⟩C∞ is the C

∞
-span of bracket-expressions of length ≤ i

[11, p. 5].

We note that Γ
(1)(ξ) = Γ(ξ).

Example 1.13. Let ξ = ⟨∂x + z2∂y, ∂z⟩ a rank 2 distribution on R3
. This distribution is also called

the Martinet distribution. We can compute the following Lie brackets,

[∂x + z
2
∂y, ∂z] = −2z∂y,

[∂z,−2z∂x] = −2∂y.

From this follows that

Γ(ξ) = ⟨∂x + z
2
∂y, ∂z⟩C∞

Γ
(2)(ξ) = ⟨∂x + z

2
∂y, ∂z,−2z∂y⟩C∞

Γ
(3)(ξ) = ⟨∂x + z

2
∂y, ∂z,−2z∂y,−2∂y⟩C∞ = X(R3).
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Here X(M) denotes the module of all vector fields onM . We note that the corresponding distribution

of Γ
(2)(ξ) is of rank 2 if z = 0 and of rank 3 if z ≠ 0. Therefore, when we evaluate Γ

(2)(ξ) at every
point, this does not give us a well-defined distribution. This motivates the following definition. ([11,
p. 6]) △

Definition 1.14. We say a distribution ξ is weakly regular if all the Γ
(i)(ξ) in its associated Lie

flag correspond to genuine distributions. In this case we write Γ
(i)(ξ) = ξ(i) [11, p. 6].

We note that the Martinet distribution in Example 1.13 is not weakly regular.

Lemma 1.15. Let ξ be a weakly regular distribution on M . Then there exists an integer m such

that ξ
(i)

= ξ
(m)

for all i ≥ m [11, p. 6].

Proof. Since ξ is weakly regular, we know that all the ξ
(i)

are distributions. If ξ
(i+1)

≠ ξ
(i)

then

we must have that rank(ξ(i+1)) > rank(ξ(i)), since ξ
(i)

⊂ ξ
(i+1)

. However, the rank of all the
distributions in the Lie flag are bounded by the rank of TM . Therefore, eventually the flag must
stabilise.

This result justifies the following definition ([11, p. 6]):

Definition 1.16. Let ξ be a weakly regular distribution which stabilises in the m
th

step. The growth
vector of ξ is the vector given by

(rank(ξ(1)), rank(ξ(2)), ..., rank(ξ(m))) .
All the distributions we will be considering in this thesis from now on will be weakly regular.

Definition 1.17. We say a distribution ξ is bracket-generating if ξ
(m)

= X(M) for some integer
m ≥ 1 [11, p. 8].

If a distribution is bracket-generating, then infinitesimally, we are able to move in all directions of
the tangent space. This result is also known as Chow’s theorem [7]. We note that the Martinet

distribution in Example 1.13 is bracket-generating as ξ
(3)

= X(M). In the following two sections
we will discuss contact and Engel structures, which are both special types of bracket-generating
distributions. Also the structures we are mainly focusing on in this thesis, (2, 3, 5)−structures, are
bracket-generating distributions on 5−manifolds, with growth vector (2, 3, 5), as the name suggests.

1.2 Contact structures

In this section we will study a special type of bracket-generating distributions called contact struc-
tures.

Definition 1.18. Let ξ be a rank-2 distribution on a 3-manifold M such that locally ξ = ⟨X,Y ⟩ on
an open U ⊂M . We say ξ is a contact structure on U if ⟨X,Y, [X,Y ]⟩ = TM on U .

We denote the space of contact structures on a 3-manifold M by Cont(M) and we endow it with
the C

1−topology. We endow this space with the C
1−topology because when working with contact

structures, we are interested in first derivatives.

Example 1.19. Let ξ be the rank 2 distribution on R3
spanned by the vector fields ∂y and ∂x+y∂z.

We note that
[∂y, ∂x + y∂z] = ∂z,

and thus ξ is a contact structure. In fact, ξ is called the standard contact structure on R3
, and

it is depicted in Figure 1.1 [11, p. 24]. △

Remark 1.20. Contact structures have a unique local model. This was proven by the French mathe-
matician Darboux [8], and the neighbourhoods which admit this model are also called Darboux balls.
See Section A.2 for a proof of this result using a technique called Moser’s trick. ▶

Remark 1.21. A contact structure can also be defined as the kernel of a 1-form α such that α∧dα ≠ 0.
See [11, p. 22] for a proof that this is indeed an equivalent definition. We will sometimes use
this equivalent definition in proofs. Furthermore, contact structures can in fact be defined on all
manifolds M with dimension 2n + 1 for n ≥ 1. Then, a contact structure is defined as the kernel
of a 1-form α such that α ∧ dα

n
≠ 0. This corresponds to a maximally non-integrable hyperplane

distribution. When we prove that contact structures have a unique local model in Section A.2, we
use this definition based on the 1-form. ▶
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Figure 1.1: Illustration of the standard contact structure on R3
[15, p. 88].

Example 1.22. Let T3
≃ S1 × S1 × S1 ∋ (x, y, z) denote the 3-torus and let k ∈ Z+

be an integer.
We can define the following distribution on T3

:

ξk = ⟨∂z, sin(πkz)∂x − cos(πkz)∂y⟩.

We note that

[∂z, sin(πkz)∂x − cos(πkz)∂y] = πk cos(πkz)∂x + πk sin(πkz)∂y ∉ ξk,

as sin(πkz)∂x−cos(πkz)∂y and πk cos(πkz)∂x+πk sin(πkz)∂y are linearly independent for all z ∈ S1.
We conclude that ξk is a contact structure on T3

[11, p. 24]. △

The next lemma tells us more about when distributions on R3
are contact. For rank-2 distributions

on 3-manifolds, one can also interpret these as local conditions for being contact.

Lemma 1.23. Let ξ = ⟨∂x, cos(f)∂y + sin(f)∂z⟩ be a distribution on R3
, with f ∶ R3

→ R a smooth
function. Then

- is contact if and only if ∂f
∂x

≠ 0,

- is involutive if and only if ∂f
∂x

= 0.

Proof. We note that

[∂x, cos(f)∂y + sin(f)∂z] = − sin(f)fx∂y + cos(f)fx∂z.

This is linearly independent of ∂x and cos(f)∂y + sin(f)∂z if and only if fx =
∂f

∂x
≠ 0. And thus ξ is

contact if and only if ∂f
∂x

≠ 0, and ξ is involutive if and only if ∂f
∂x

= 0.

Remark 1.24. When we consider ξ as a plane in R3
, we note that ξ is contact if and only if ξ is

turning in the x−direction, whereas ξ is involutive if and only if the plane is still. Furthermore, we

note that the set {(x, y, z) ∈ R3∣∂f
∂x

≠ 0} is an open set, and thus being contact is an open property,
whereas being involutive is a closed property. I.e. if ξ is contact in a point, it is also contact in a
small neighbourhood around that point. This is not necessarily the case with involutive. ▶

1.2.1 The h-principle for contact structures on open manifolds

The formal analogue of a contact structure is defined in the following way.

Definition 1.25. A formal contact structure is a rank-2 distribution ξ on a 3-manifold M
together with an isomorphism

ξ ∧ ξ ≅ TM/ξ.

We denote the space of formal contact structures by FCont(M) and we endow it with the C
0−topology.

We note that any contact structure is also a formal contact structure, where the isomorphism is in-
duced by the Lie bracket [11, p. 22-23]. I.e. we have the inclusion

Cont(M) ↪ FCont(M), ξ ↦ (ξ, [., .]).

12



Remark 1.26. Just like the space of formal non-integrable distributions, the space of formal contact
structures also forms a Serre fibration over Dist(M). When we say that we endow FCont(M)
with the C

0−topology, we mean this in the same way as we endowed the space FDist(M) with the
C

0−topology, i.e. we endow the space Dist(M) with the C
0−topology and we endow FCont(M)

with the coarsest topology such that the projection map FCont(M) → Dist(M) is continuous. ▶

The contact condition can also be expressed as a differential relation, and the following lemma shows
that this relation is in fact open and Diff-invariant.

Lemma 1.27. Being a contact structure is an open and Diff-invariant partial differential relation.

Proof. Let M be a 3-dimensional manifold. Then the following differential relation is equivalent to
the contact condition

Rcontact = {j1(X1, X2)(M) ∣X1, X2, [X1, X2] are linearly independent} ⊂ J1(TM × TM)

whereX1 andX2 are vector fields onM . Note that vectors being linearly independent is equivalent to
some determinant being non-zero. From this follows thatRcontact is an open subset of J

1(TM×TM).
Also, diffeomorphisms of M preserve the Lie bracket and determinants being non-zero, and thus
Rcontact is indeed Diff-invariant.

The following theorem states that the h−principle for contact structures holds on open manifolds.
This is a consequence of Theorem 0.3 by Gromov, and the previous lemma.

Theorem 1.28. Let M be an open manifold. Then the inclusion

Cont(M) ↪ FCont(M),

is a weak homotopy equivalence.

Naturally, one can ask whether the h−principle for contact structures also holds on closed manifolds.
In the early 80’s, Bennequin [1] showed that the answer in general is no. He proved the following
statement:

Theorem 1.29 (Bennequin). In the space of plane fields in S3 there is a connected component that
contains two different connected components of positive contact structures.

This result shows that there is a connected component in FCont(S3) which contains two contact
structures which are not homotopic. I.e. this shows that the map π0(Cont(S3)) → π0(FCont(S3))
is not injective. Therefore, the h−principle for contact structures cannot hold in general for closed
manifolds. However, it does hold for a particular family of contact structures, called overtwisted
contact structures. We will discuss these objects in Section 4.1.

1.3 Engel structures

In the last section of this chapter, we will take a look at another type of bracket-generating distri-
butions, namely Engel structures.

Definition 1.30. Let D be a rank-2 distribution on a 4-manifold M . We say D is an Engel
structure if

• E ∶= [D,D] is a rank 3 distribution,

• [E , E] = TM .

We denote the space of Engel structures on a manifold M by Engel(M) and we endow it with the
C

2−topology. We note that when we are working with Engel structures, we are interested in the
first and second derivatives, which is why we endow it with the C

2−topology.

Remark 1.31. Let D = ⟨X1, X2⟩ be an Engel structure. Then

• E = ⟨X1, X2, [X1, X2]⟩,

• [E , E] = ⟨X1, X2, [X1, X2], [X1, [X1, X2]], [X2, [X1, X2]]⟩ = TM .

13



We note that we must have that either [X1, [X1, X2]] ∈ E or [X2, [X1, X2]] ∈ E . I.e. the map

D × E/D [.,.]
−−→ TM/E

induced by the Lie bracket has a kernel W ⊂ D, which we call the characteristic line field [12,
p. 6]. ▶

Remark 1.32. Just like contact structures, Engel structures also have a unique local model. This
was first proven by Engel in 1889 [16]. This is also where the name Engel structure comes from.
The result states that given an Engel manifold (M,D), with local coordinates (t, x, y, z) ∈ M , we
can (locally) write

D = ker(dz − ydx, dy − tdx) = ⟨∂t, ∂x + y∂x + t∂y⟩.
▶

If D is an Engel structure, then E = [D,D] is also a special type of distribution, called an even-
contact structure.

Definition 1.33. Let M be a 4-manifold and let E be a rank 3 distribution. We say E is an
even-contact structure if [E , E] = TM .

It follows that D is an Engel structure if and only if E = [D,D] is an even-contact structure.

Remark 1.34. We note that if E is an even-contact structure then the map

E × E
[.,.]
−−→ TM

induced by the Lie bracket has a kernel W ⊂ E . This kernel is characterised by the property that
[W, E] ⊂ E , which means that all flows tangent to W preserve the even-contact structure E . ▶

Let us now look at some examples of Engel structures.

Example 1.35. Let D be a rank-2 distribution on R4
given by D = ⟨∂w, ∂x + z∂y +w∂z⟩. We note

that

[∂w, ∂x + z∂y + w∂z] = ∂z,
[∂z, ∂x + z∂y + w∂z] = ∂y.

Therefore
E ∶= [D,D] = ⟨∂w, ∂x + z∂y + w∂z, ∂z⟩

is a rank-3 distribution, and

[E , E] = ⟨∂w, ∂x + z∂y + w∂z, ∂z, ∂y⟩ = ⟨∂x, ∂y, ∂z, ∂w⟩ = TR4
.

We conclude that D is an Engel structure. Furthermore, since

[∂w, ∂z] = 0,

we note that ⟨∂w⟩ ⊂ D is the characteristic line field [11, p. 17]. △

Example 1.36. Let (M, ξ) be a contact 3-manifold, such that ξ = ⟨X,Y ⟩. We then define the
following distribution on M × [0, 1]:

D(p,t) ∶= ⟨∂t, cos(t)Xp + sin(t)Yp⟩.

We note that

[∂t, cos(t)Xp + sin(t)Yp] = − sin(t)Xp + cos(t)Yp
[cos(t)Xp + sin(t)Yp,− sin(t)Xp + cos(t)Yp] = [Xp, Yp].

Since ξ is a contact structure, [Xp, Yp] is linearly independent of Xp and Yp. Therefore D is an
Engel structure on M × [0, 1] with the characteristic line field ⟨∂t⟩. The Engel structure D is also
called the contact prolongation of ξ [6, p. 5]. △

Just like in the contact case, we want to know when distributions on R4
are Engel. Again, one can

also view these as local conditions for rank-2 distributions on 4-manifolds for being Engel. Before
we can look at these conditions, we need to define the concept of convexity.
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Definition 1.37. Let f ∶ R → Sn with n ≥ 2 be a map. We say f is convex at t if f(t), ḟ(t) and
f̈(t) are linearly independent, i.e. the velocity and acceleration at time t are linearly independent
vectors.

Using this definition we can describe local conditions for being Engel in the next lemma [6, p. 5]:

Lemma 1.38. Let D = ⟨∂t, H = f∂x + g∂y + h∂z⟩ be a rank-2 distribution on R4
, where f, g, h ∶

R4
→ R are smooth functions. We may assume that H has unit length, and thus for each (x, y, z)

we can look at the map
H(x,y,z) ∶ R → S2.

Then D is Engel at (x, y, z, t) if and only if at least one the following conditions holds:

• the map H(x,y,z) is convex,

• the vectors H(x,y,z)(t) and Ḣ(x,y,z)(t) span a contact structure in a neighbourhood Op((x, y, z))×
{t}.

Proof. First of all, for E to be a 3-distribution, we must have that [∂t, H] =∶ Ḣ produces a new
linearly independent vector field. I.e. the map H(x,y,z) is an immersion. It follows that E =

⟨∂t, H, Ḣ⟩. Then either Ḧ ∶= [∂t, Ḣ] or [H, Ḣ] must give us the fourth linearly independent vector
field. This is equivalent to H(x,y,z) being convex or the vectors H(x,y,z)(t) and Ḣ(x,y,z)(t) spanning
a contact structure in a neighbourhood Op(x, y, z) × {t}, respectively.

1.3.1 The h-principle for Engel structures on open manifolds

The formal analogue of an Engel structure is defined in the following way.

Definition 1.39. A formal Engel structure is a rank-2 distribution D on a 4-manifoldM together
with a flag W ⊂ D ⊂ E ⊂ TM , where W is a line field and E a rank-3 distribution, and isomorphisms

D ∧D ≅ E/D and D/W ∧ E/D ≅ TM/E .

We denote the space of formal Engel structures by FEngel(M) and we endow it with the C
0−topology.

We note that any genuine Engel structure is also a formal Engel structure, where the isomorphisms
are induced by the Lie bracket [12, p. 6]. I.e. we have the inclusion

Engel(M) ↪ FEngel(M), D ↦ (W, D, [D,D], [., .], [., .]).

Remark 1.40. Just like formal non-integrable distributions and formal contact structures, we do not
literally endow FEngel(M) with the C

0−topology, but by this we mean the following. We note that
FEngel(M) → Dist(M)×Dist(M)×Dist(M) is a Serre fibration where the projection is given by
projecting to the flag of distributions. We endow Dist(M) with the C

0−topology, and we topologise
FEngel(M) with the coarsest topology such that this projection map is continuous. ▶

The Engel condition can also be expressed as a differential relation, and the following lemma proves
that this relation is in fact open and Diff-invariant.

Lemma 1.41. Being an Engel structure is an open and Diff-invariant relation.

Proof. Let M be a 4-dimensional manifold. The the following differential relation is equivalent to
the Engel condition:

REngel = {j2(X1, X2)(M) ∣X1, X2, [X1, X2], [X1, [X1, X2]] are linearly independent},

where X1 and X2 are vector fields on M . Using the exact same reasoning as in Lemma 1.27, it
follows that REngel ⊂ J

2(TM × TM) is indeed open and Diff-invariant.

The following theorem states that the h−principle for Engel structures on open manifolds holds.
Just like in the contact case, this is a consequence of Theorem 0.3 by Gromov and the previous
lemma.

Theorem 1.42. Let M be an open manifold. Then the inclusion

Engel(M) ↪ FEngel(M)

is a weak homotopy equivalence.
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Naturally, one can wonder if the h-principle for Engel structures also holds on closed manifolds.
Unlike in the contact case, we do not know the answer to this question. Whether this is the case
is one of the main open questions in this field. However, we do know that there is a special class
of Engel structures, called overtwisted Engel structure, for which the h−principle does hold on
closed manifolds. This was proven by del Pino and Vogel in 2018 [12], as also mentioned in the
introduction.
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Chapter 2

(2,3,5)-structures

In this chapter we will discuss the main object of interest of this thesis, (2, 3, 5)−structures. Just
like contact and Engel structures, these are a type of bracket-generating distributions. We will first
discuss the definition and go over some local (2, 3, 5)−conditions. Thereafter, we will prove that
there exists a (non-unique) local model for (2, 3, 5)-structures and we will define what we call the
standard (2, 3, 5)−structure. Lastly, we will look at formal (2, 3, 5)−structures and as a corollary of
Gromov’s h-principle, prove that the h-principle holds for (2, 3, 5)−structures on open manifolds.

2.1 Definition and local conditions

The name of a (2, 3, 5)−structure is certainly suggestive. The formal definition is the following.

Definition 2.1. Let M be a 5-dimensional manifold, and let D be a smooth rank 2 distribution on
M . We say D is a (2, 3, 5)-structure if D has growth vector (2, 3, 5), i.e. we have isomorphisms

D ×D
[.,.]
−−→ D

(2)/D

D ×D
(2)/D [.,.]

−−→ TM/D(2)
.

We denote the space of (2, 3, 5)-structures by Dist(2,3,5)(M) and we endow it with the C
2
-topology.

Just like with Engel structures, when working with (2, 3, 5)−structures we are interested in the first
and second derivatives, since we are applying the Lie bracket twice. This is why we endow it with
the C

2−topology.

Remark 2.2. Recall that locally, smooth distributions can be described as a span of vector fields.
Let D = ⟨X1, X2⟩ with X1 and X2 vector fields on M . Then D is a (2, 3, 5)-structure if

⟨X1, X2, [X1, X2], [X1, [X1, X2]], [X2, [X1, X2]]⟩ = TM.

If D is oriented and {X1, X2} is a framing of D compatible with this orientation, then we call
{X1, X2, [X1, X2], [X1, [X1, X2]], [X2, [X1, X2]]} a (2, 3, 5)-framing. ▶

Example 2.3. Let
D = ⟨∂t, X ∶= ∂x + y∂z + t∂y + t

2
∂w⟩,

be a rank 2 distribution on R5
, with coordinates (t, x, y, z, w). We see that

[∂t, X] = ∂y + 2t∂w,

[∂t, [∂t, X]] = 2∂w,

[X, [∂t, X]] = −∂z.

Every Lie bracket gives a new vector field which is linearly independent from the previous vector
fields. From this follows that the growth vector of D is (2, 3, 5) and thus D is a (2, 3, 5)−structure.

△

We now want to describe conditions for when a 2-distribution D is locally a (2, 3, 5)−structure.
These local conditions will help us several times later on in this thesis to prove that certain distri-
butions are (2, 3, 5).
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Fix coordinates (p, t) ∈ D4×R, and let ∂t ∈ D. Let {W (p), X(p), Y (p), Z(p)} be a framing of TpD
4
,

then we can identify the vector field

(p, t) ↦ (Hp(t))1 ⋅W + (Hp(t))2 ⋅X + (Hp(t))3 ⋅ Y + (Hp(t))4 ⋅ Z,

with maps (Hp ∶ R → S3)p∈D4 . Thus D can be described in terms of a smooth D4
-family of curves

(Hp)p∈D4 . We write D = ⟨∂t, H⟩.
Proposition 2.4. Let D be a 2-distribution on a 5-dimensional manifold, locally described by
D4−family of maps (Hp)p∈D4 . Then D is a (2, 3, 5)-structure near (p, t) ∈ D4 × R if and only
if the following conditions hold:

(i) Hp is an immersion at time t.

(ii) Hp(t), Ḣp(t), Ḧp(t) are linearly independent, i.e. the map Hp is convex at t,

(iii) ⟨Hq(t), Ḣq(t)⟩ is a non-integrable 2-distribution in the level set Op(p) × {t},

(iv) [Hp(t), Ḣp(t)] is linearly independent of Hp(t), Ḣp(t) and Ḧp(t).
Proof. First of all, condition (i) is equivalent to D being non-integrable. Namely, we note that Hp(t)
is tangent to D4 × {t0} for t0 ∈ R, thus

[∂t, Hp(t)] = ∂t(Hp(t)) −Hp(t)(∂t) = ∂t(Hp(t)) − 0 = Ḣp(t).

We also note that [∂t, Hp(t)] is tangent to D4 × {t0} for t0 ∈ R, thus the condition of D being non-

integrable is equivalent to Hp(t) and Ḣp(t) being linearly independent. In turn, this is equivalent
to the curve Hp being an immersion.

Secondly, for D to be a (2, 3, 5)-distribution, the distribution [D,D] must be bracket-generating,
i.e. we must have that

⟨∂t, Hp(t), Ḣp(t), [∂t, Ḣp(t)], [Hp(t), Ḣp(t)]⟩ = TM.

Since Ḣp(t) is tangent to the foliation by level sets D4 × {t0} for t0 ∈ R, we have that [∂t, Ḣp(t)] =
Ḧp(t). Furthermore, [Hq(t), Ḣq(t)] ∉ ⟨Hq(t), Ḣq(t)⟩ if and only if ⟨Hq(t), Ḣq(t)⟩ is non-integrable.
Therefore, condition (i)-(iv) are then equivalent to

⟨∂t, Hp(t), Ḣp(t), Ḧp(t), [Hp(t), Ḣp(t)]⟩ = TM.

2.2 The Monge normal form

For contact and Engel structures we know that locally there exists a unique model, see Remark
1.20 and 1.32. For (2, 3, 5)−structures we also have a local description, called the Monge normal
form [38, p. 1]. However, contrary to the contact and Engel case, this model is non-unique. In
this section we will define the notion of the Monge normal form, and we will prove that locally any
(2, 3, 5)−structure can be put in such form. Lastly, we will define the standard (2, 3, 5)−structure,
which has a specific Monge normal form.

A Monge equation is a first order partial differential equation of the form

w
′(x) = F (x, z(x), z′(x), z′′(x), w(x)). (2.1)

It turns out that it can be convenient to encode (2, 3, 5)−structures by such Monge equations. We
note that any curve (x, z(x), w(x)) ∈ R3

can be extended to a curve (x, z(x), z′(x), z′′(x), w(x)) ∈
J
2(R,R) × R ≅ R5

. By construction, such a curve is tangent to the distribution given by

DF = ker(dz − ydx, dy − tdx, dw − F (x, z, y, t, w)dx) = ⟨∂t, ∂x + y∂z + t∂y + F (x, z, y, t, w)∂w⟩.

Here we use the coordinates (x, z, y, t, w) ∈ R5
. On the other hand, the projection of any curve which

is tangent to the distributionDF (for which the pullback of dx is nowhere zero) to the (x, z, w)−plane
is also a solution to the differential equation (2.1). Thus, there is a clear correspondence between
Monge equations and distributions of the form DF .
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Definition 2.5. We say the distribution

DF ∶= ⟨∂t, ∂x + y∂z + t∂y + F∂w⟩

with F ∶ R5
→ R is in Monge normal form.

We see that

[∂t, ∂x + y∂z + t∂y + F∂w] = ∂y + (∂tF )∂w,
[∂t, ∂y + (∂tF )∂w] = (∂ttF )∂w,

[∂y + (∂tF )∂w, ∂x + y∂z + t∂y + F∂w] = ∂z,

and thus DF is (2, 3, 5) precisely when ∂ttF ≠ 0. It turns out that any (2, 3, 5)−structure can locally
be described by such a Monge equation for which ∂ttF is nowhere zero, which we prove in the next
proposition [22].

Proposition 2.6. Let (M,D) be a (2, 3, 5)−manifold, and let B ⊂ M be a ball in M with local
coordinates (x, z, y, t, w). Then there is a function F ∶ R5

→ R with ∂ttF ≠ 0 such that

D = DF ∶= ⟨∂t, ∂x + y∂z + t∂y + F (x, z, y, t, w)∂w⟩.

Proof. Locally, we can pick the following vector fields:

T,X ∈ D, Y ∈ E/D, Z ∶= [X,Y ], W linearly independent of X,Y and Z.

Thus, locally {T,X, Y, Z,W} is a frame for TR5
. Using the flow of the vector field T , we can see

T = ∂t as one of the coordinate directions, and we can assume that the vector fields X,Y, Z and
W are tangential to the fibres induced by this flow box. Then, for every value of t we see that the
distribution

Ẽ ∶= ⟨X,Y,W ⟩
is an even-contact structure. There exists a Darboux theorem for even-contact structures [11, p. 18],
and from this follows that there are coordinates (x, y, z, w) such that we can write

Ẽ = ker(dz − ydx) = ⟨∂x + y∂z, ∂y, ∂w⟩.

We can then view the vector field X as a function of t, for which we have

X(x,y,w,z)(t) = ∂x + y∂z +G∂y + F∂w,

with functions G,F ∶ R5
→ R. Since D is non-integrable, Xp must be an immersion. From this

follows that ∂tG ≠ 0, and using the implicit function theorem we can replace G by t, i.e. Xp(t) is of
the form

Xp(t) = ∂x + y∂z + t∂y + F∂w.

Lastly, we must have that ∂ttF is non-zero, which ensures that [T, [T,X]] is linearly independent
of {T,X, [T,X], [X, [T,X]]}.

As mentioned in the beginning of this section, this Monge normal form is not unique. Different
functions F can yield equivalent 2-plane fields DF . Monge equations have been used to classify
(2, 3, 5)−structures up to local diffeomorphism, see for example [43]. In the next definition we single

out the case where F = t
2
. Note that this is precisely the (2, 3, 5)−structure from Example 2.3. We

will use this local model later on when we define overtwisted discs in (2, 3, 5)−manifolds in Chapter
6. Since F = t

2
is probably the most simple function one can think of, for which ∂ttF ≠ 0, we refer

to it as the standard (2, 3, 5)−structure.

Definition 2.7. Let (R5
, Dst) be the (2, 3, 5)−manifold with

Dst = ⟨∂t, ∂x + y∂z + t∂y + t
2
∂w⟩.

We call Dst the standard (2, 3, 5)−structure on D5
.
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Example 2.8. In the introduction of this thesis we discussed the example of the rolling distribution.
Very recently, in February 2023, Randall proved in his paper [38] that this distribution has the
following Monge normal form:

Dρ = ker(dz − ydx, dy − tdx, dw − (ty2 + 1

α2 − 1
(
√
tw −

1

2
√
tx

)
2

) dx)

where α is a constant depending on the radii R and r. △

In Section 1.3, we showed that given a contact manifold (M, ξ), we can construct an Engel structure
on the manifold M × [0, 1]. We call this Engel structure a contact prolongation. Analogously, in the
next proposition we show that given an Engel manifold (M,D), we can construct a (2, 3, 5)−structure
on the manifold M × [0, 1]. Similarly, we call this (2, 3, 5)−structure the Engel prolongation.

Proposition 2.9. Let (M,DE) be an Engel manifold. Then there exists a (2, 3, 5)−structure D(2,3,5)
on M × [0, 1], such that on every fibre, D(2,3,5) restricts to the given Engel structure DE.

Proof. We know that for Engel structures, there exists a local canonical form [16]. I.e., there are
local coordinates (t, x, y, z) ∈M such that

DE = ker(dz − ydx, dy − tdx) = ⟨∂t, ∂x + y∂z + t∂y⟩.

Now let (t, x, y, z, w) denote local coordinates in M × [0, 1]. We can define the distribution

D(2,3,5) ∶= ker(dz − ydx, dy − tdx, dw − t
2
dx) = ⟨∂t, ∂x + y∂z + t∂y + t

2
∂w⟩.

We note that this is indeed a (2, 3, 5)−structure, which restricts to DE on each fibre M × {w}.

2.3 The h-principle for (2, 3, 5)−structures on open manifolds

We can also define a formal analogue of a (2, 3, 5)−structure.

Definition 2.10. A formal (2, 3, 5)-structure is a 2-distribution D on a 5-dimensional manifold
M together with a flag D ⊂ E ⊂ TM , where E is a rank-3 distribution, and isomorphisms

D ∧D ≃ E/D and D ∧ E/D ≃ TM/E .

We denote the space of formal (2, 3, 5)−structures by FDist(2,3,5)(M) and we endow it with the

C
0−topology. We note that any genuine (2, 3, 5)−structure is also a formal (2, 3, 5)−structure,

where the isomorphisms are induced by the Lie bracket. I.e. we have the inclusion

Dist(2,3,5)(M) ↪ FDist(2,3,5)(M), D ↦ (D, [D,D], [., .], [., .]).

Remark 2.11. Just as with the other spaces of formal objects we have seen thus far, let us briefly
clarify what we mean when we endow FDist(2,3,5)(M) with the C

0−topology. We note that
FDist(2,3,5)(M) → Dist(M)×Dist(M) is a Serre fibration where the projection is given by projecting

to the distributions. We endow Dist(M) with the C
0−topology and we topologise FDist(2,3,5)(M)

with the coarsest topology such that this projection map is continuous. ▶

The (2, 3, 5)−condition can also be expressed as a differential relation, and the following lemma
proves that this relation is open and Diff-invariant.

Lemma 2.12. Being a (2, 3, 5)−structure is an open and Diff-invariant relation.

Proof. Let M be a 5−dimensional manifold. Then the following differential relation is equivalent to
the (2, 3, 5)−condition:

R(2,3,5) = {j2(X1, X2)(M) ∣X1, X2, [X1, X2], [X1, [X1, X2]], [X2, [X1, X2]] are linearly independent},

where X1 and X2 are vector fields on M . Using the exact same reasoning as in Lemma 1.27, it
follows that R(2,3,5) ⊂ J

2(TM × TM) is indeed open and Diff-invariant.

The following theorem states that the h−principle for (2, 3, 5)−structures holds on open manifolds.
Just like for contact and Engel structures, this is a consequence of Theorem 0.3 by Gromov and
Lemma 2.12.
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Theorem 2.13. Let M be an open manifold. Then the following inclusion

Dist(2,3,5)(M) ↪ FDist(2,3,5)(M),

is a weak homotopy equivalence.

The main result of this thesis, as also mentioned in the introduction, is that the h−principle
also holds on closed manifolds, but for a special family of (2, 3, 5)−structures called overtwisted
(2, 3, 5)−structures. We will define these objects in Chapter 6. Whether the h−principle holds on
closed manifolds for (2, 3, 5)−structures in general, is unknown.

Remark 2.14. Recall that for a manifold to admit a (2, 3, 5)−structure, it must certainly admit
a formal (2, 3, 5)−structure. In [9] Dave and Haller address the existence problem of orientable
(2, 3, 5)−structures, i.e. which manifolds admit an orientable rank 2 distribution with growth vector
(2, 3, 5)? Their approach is split into two steps. First some immediate topological obstructions are
observed, which has partly to do with Proposition C.18. For example, for a manifold to admit an
orientable (2, 3, 5)−structure it must always be spinnable.

On open manifolds, if the topological requirements are met, then an orientable (2, 3, 5)−structure
exists. The proof of this result uses the h-principle for (2, 3, 5)−structures on open manifolds, i.e.
it is enough to show that the manifold admits a formal (2, 3, 5)−structure. However, we do not
know whether this h−principle holds for closed manifolds, and thus it is also not immediately clear
if every closed manifold admits an orientable (2, 3, 5)−structure. Nevertheless, in [9] some examples
of (2, 3, 5)−structures on closed manifolds are constructed. ▶
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Chapter 3

Bracket-generating distributions
on the mapping torus

In this chapter we construct explicit bracket-generating distributions on mapping tori admitting
a suitable formal analogue of these distributions. For example, in the last section of this chapter
we will construct an explicit (2, 3, 5)−structure on all mapping tori admitting a suitable formal
(2, 3, 5)−structure. This is in fact a new result, as it was not known whether this was possible up
until now. Next to this being an original contribution of the thesis, this particular construction is
also quite interesting because it already highlights some of the key issues we are going to encounter
when proving the h-principle for overtwisted (2, 3, 5)−structures on closed manifolds. Namely, it
uses the idea of adding more turning into a structure, in order to achieve the (2, 3, 5)−condition.
See also the end of Section 3.3 for more remarks on this. In the first two sections we construct an
explicit contact structure and an explicit Engel structure on the mapping torus. These constructions
are more simple than the (2, 3, 5)−construction, and are thus enlightening to look at first.

3.1 A contact structure on the mapping torus

In this section we construct an explicit contact structure on mapping tori admitting a suitable formal
contact structure. We will first prove the following preparatory lemma, which allows us to write
distributions on the mapping torus in a certain form such that they are easier to work with.

Lemma 3.1. Let N be a parallelizable n−manifold with n ≥ 1 and let φ ∶ N → N be a diffeomor-
phism. Let D be a distribution of rank 1 ≤ k ≤ n on the mapping torus

Mφ ∶=
N × [0, 1]

(x, 1) ∼ (φ(x), 0) ,

which is parallelizable and transverse to the fibres. Then there exist vector fields X1, ..., Xk−1 on
N × R tangential to the fibres, and a map f ∶ N × R →Mφ invariant under the Z−action given by

Z ×N × R → N × R, (z, x, t) ↦ (φz(x), z + t)

such that
f
∗
D = ⟨∂t, X1, ..., Xk−1⟩.

Proof. We pick a vector field T ∈ D which is transverse to the fibres in Mφ. Then let

f ∶ N × R →Mφ

be the map given by f(x, t) = ϕTt (x), where ϕTt is the flow of T at time t. From this follows that

f
∗
T = ∂t.

Furthermore, since f
∗
D is a rank k distribution, we can pick vector fields X1, ..., Xk−1 on N × R

tangential to the fibres such that

f
∗
D = ⟨∂t, X1, ..., Xk−1⟩.

We note that f is automatically invariant under the Z−action because the vector field T is defined
on the mapping torus Mφ.
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Remark 3.2. Note that the map f in the lemma above is a quotient map from N ×R to the mapping
torus Mφ. The flow of the vector field T ∈ D is in fact homotopic to the map φ. Therefore, when
we quotient using the map f or φ, we obtain the same structure Mφ. However, the map f has the
desired property that we can express (the pull-back of) D in the explicit form as above, which is
why we proved this lemma. The invariance under the Z−action will not be used in this section, but
it will become important in the last section where we construct a (2, 3, 5)−structure on a mapping
torus. ▶

From now on, we will not explicitly write down the pull-back of the map we have constructed in the
lemma above, but we will just write down the formal contact structure in the desired form. Note
that we are thus implicitly using this pull-back in the proof of the next theorem.

Theorem 3.3. Let N be a parallelizable 2-dimensional manifold and let φ ∶ N → N be a diffeo-
morphism. Let ξ be a formal contact structure on the mapping torus Mφ which is orientable and
transverse to the fibres. Then Mφ admits a genuine contact structure.

Proof. We note that Lemma 3.1 allows us to write ξ = ⟨∂t, X⟩ where X is a vector field tangent
to the fibres. Let Y ∈ TM/ξ be a vector field on Mφ linearly independent of ∂t and X, which is
tangential to the fibres. We then define the following vector fields on N × {t}:

Xt ∶= cos(kt)Xt + sin(kt)Yt
Y t =

˙
Xt.

Here k > 0 is a constant. We note that

Y t =
˙
Xt = k (− sin(kt)Xt + cos(kt)Yt) + cos(kt)Ẋt + sin(kt)Ẏt.

For large values of k, the contribution of the derivatives of the frame {Xt, Yt} becomes arbitrarily
small, and the vector fields Xt and Y t become linearly independent. From this follows that ξ ∶=
⟨∂t, X⟩ is a genuine contact structure.

Remark 3.4. Let us give some intuition behind the proof of Theorem 3.3. Imagine we reparameterise
the t−coordinate such that it becomes very stretched out. Then the derivatives of the frame {Xt, Yt}
with respect to t become almost zero. Therefore, if we then turn in Xt and Yt with constant speed,
we obtain the contact condition. If we then parameterise the t−coordinate back to the starting
situation, we obtain the very fast turning which we see in the vector field Xt defined above. ▶

3.2 An Engel structure on the mapping torus

Similarly as in the contact case, we are now going to construct an explicit Engel structure on all
mapping tori admitting a suitable formal Engel structure. Just as in the previous section, we use
Lemma 3.1 to write a formal Engel structure in a form which is easier to work with. The following
theorem was first proven by Geiges [17], as an additional comment in a review on [33].

Theorem 3.5. Let N be a parallelizable 3-dimensional manifold and let φ ∶ N → N a diffeomor-
phism. Let W ⊂ D ⊂ E ⊂ TM be a formal Engel structure on the mapping torus

Mφ ∶=
N × [0, 1]

(x, 1) ∼ (φ(x), 0) ,

which is orientable and transverse to the fibres N × {t} for all t ∈ [0, 1]. Then Mφ also admits a
genuine Engel structure.

Proof. From Lemma 3.1 we know that we can write D = ⟨∂t, X⟩ and E = ⟨∂t, X, Y ⟩ with X and Y
vector fields tangential to the fibres. Let W be a vector field also tangent to the fibres, and linearly
independent of X and Y . We then define the following vector fields

Xt ∶= cos(kt)Xt + sin(kt)Yt + k
δ
Wt,

Y t ∶=
˙
Xt,

W t ∶=
¨
Xt.
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Here k > 0 and δ > 0 are positive constants. We note that

Y t =
˙
Xt = k(− sin(kt)Xt + cos(kt)Yt) + cos(kt)Ẋt + sin(kt)Ẏt + k

δ
Ẇt,

and

W t =
¨
Xt = −k

2 (cos(kt)Xt + sin(kt)Yt)+2k (− sin(kt)Ẋt + cos(kt)Ẏt)+cos(kt)Ẍt+sin(kt)Ÿt+kδẄt.

We will show that for appropriate values of k and δ, these three vectors Xt, Y t and W t are linearly
independent. Note that this will mean that ⟨∂t, X⟩ is in fact an Engel structure on Mφ (see also
Lemma 1.38). We look at the following matrix

M ∶=
⎛
⎜⎜⎜
⎝

cos(kt) −k sin(t) +O(kδ) −k2 cos(kt) +O(k)
sin(kt) k cos(kt) +O(kδ) −k2 sin(kt) +O(k)
k
δ O(kδ) O(k)

⎞
⎟⎟⎟
⎠
.

We note that this is a matrix of the vectors Xt, Y t and W t as columns, with respect to the basis
{Xt, Yt,Wt}. Here we have used to notation O(ka) to indicate the terms of order at most k

a
.

We can work out the determinant of this matrix and we obtain

det(M) = k3+δ +O(k2+2δ).

Again, O(k2+2δ) indicates terms of order at most k
2+2δ

. We note that if 0 < δ < 1 and k > 1, then

we have that k
3+δ

> k
2+2δ

. Thus choosing δ < 1 and k sufficiently large enough, means that the
leading term will overcome the coefficients which appear in the error term. We conclude that there
exist k and δ such that the determinant of M is non-zero, and thus values for k and δ such that the
vector fields Xt, Y t and W t are linearly independent. We conclude that D ∶= ⟨∂t, X⟩ is an Engel
structure on Mφ.

Remark 3.6. Again, let us provide some intuition behind the construction above. The idea is
very similar to idea behind the construction in the previous section. Suppose we reparameterise the
t−coordinate such that it becomes very stretched out. Then the derivatives of the frame {Xt, Yt,Wt}
with respect to t are almost zero. Thus by turning in Xt and Yt with constant speed and adding
a small contribution of Wt for convexity, we obtain the Engel condition. If we then reparameterise
the t−coordinate back to the original situation, we obtain the very fast turning we see in the vector
field Xt. ▶

3.3 A (2, 3, 5)-structure on the mapping torus

In this section we construct a (2, 3, 5)-structure on all mapping tori admitting a suitable formal
(2, 3, 5)−structure. Up to now it was not known whether this was possible, and thus this construction
is an original result. Furthermore, the construction already highlights some of the key issues one
has to overcome when proving Theorem 0.4, the main result of this thesis, on the h-principle of
overtwisted (2, 3, 5)−structures. To construct this (2, 3, 5)−structure, we first prove the following
preparatory lemma. Note that we again use Lemma 3.1, to write a formal (2, 3, 5)−structure into a
form which is easier to work with.

Lemma 3.7. Let N be a parallelizable 4−dimensional manifold and let φ ∶ N → N a diffeomorphism.
Let D ⊂ E ⊂ TM be a formal (2, 3, 5)−structure on the mapping torus

Mφ ∶=
N × [0, 1]

(x, 1) ∼ (φ(x), 0) ,

which is orientable and transverse to the fibres. Then there exists a rank 3 distribution Ẽ on Mφ

such that

• Ẽ is formally homotopic to E,

• f
∗Ẽ = ⟨∂t, X̃, Ỹ ⟩ for vector fields X̃ and Ỹ on N × R tangential to the fibres,

• Ẽ ∩ (N × {t}) is non-integrable for all t ∈ [0, 1].
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Proof. From Lemma 3.1 we know that we can write f
∗
D = ⟨∂t, X⟩ and f

∗E = ⟨∂t, X, Y ⟩ for vector
fields X and Y on N × R tangential to the fibres. We write ξt ∶= ⟨Xt, Yt⟩, and we note that this is
a distribution of rank 2 on the 4-manifold N × {t}. From the isomorphism D ∧ E/D ≅ TM/E we
obtain the isomorphism

ξt ∧ ξt ≅ TM/ξt.
We then invoke Theorem 1.10, first on the subsets N × [n − δ, n + δ] ⊂ N × R for n ∈ Z and for
some 0 < δ < 1, relative to the endpoints of the intervals. From this we obtain a non-integrable
distribution ξ̃t on N × {t} for t ∈ [n − δ, n + δ] homotopic to ξt. Note that on every interval, the
distribution f

∗
D looks the same (as it is a pull-back of a distribution by a quotient map), and thus

on every interval we can also choose ξ̃t the same. This will be helpful when we quotient again by
the map f to construct a distribution on the mapping torus.

We then do the same for the distributions ξt for t ∈ [n + δ − ϵ, n + 1 − δ + ϵ] with 0 < ϵ < δ, also
relative to the end-points. This ensures that ξ̃t is non-integrable for all t ∈ [0, 1]. Because the
h−principle in Theorem 1.10 holds in a parametric setting, we can find vector fields X̃ and Ỹ such
that X̃t = X̃ ∩ (N × {t}) and Ỹt = Ỹ ∩ (N × {t}) and ξ̃t = ⟨X̃t, Ỹt⟩. Then the push-forward of the
distribution ⟨∂t, X̃, Ỹ ⟩ by the map f is the desired distribution Ẽ .

From now on we will use Lemma 3.1 and 3.7, but for simplicity we will not explicitly write down the
pull-back by f . We will for example write D = ⟨∂t, X⟩ for the distribution on Mφ, but the reader
should note that implicitly we are using a pull-back of a quotient map which makes use of the flow
lines of the vector field transverse to the fibres and tangent to D.

Theorem 3.8. Let N be a parallelizable 4-dimensional manifold and let φ ∶ N → N a diffeomor-
phism. Let D ⊂ E ⊂ TM be a formal (2, 3, 5)−structure on the mapping torus

Mφ ∶=
N × [0, 1]

(x, 1) ∼ (φ(x), 0) ,

which is orientable and transverse to the fibres N × {t} for all t ∈ [0, 1]. Then Mφ also admits a
genuine (2, 3, 5)−structure.
Proof. From Lemma 3.1 we know that we can write D = ⟨∂t, X⟩ and E = ⟨∂t, X, Y ⟩. From Lemma
3.7 we know there exists a rank 3 distribution Ẽ = ⟨∂t, X̃, Ỹ ⟩ formally homotopic to E such that
ξ̃t = ⟨X̃t, Ỹt⟩ is non-integrable.

We now pick a vector field Z̃ ∈ ⟨[X̃, Ỹ ]⟩ on Mφ, tangential to the fibres which is then linearly

independent of X̃ and Ỹ by construction. Furthermore, we pick a vector field W̃ on Mφ tangential

to the fibres, which is linearly independent of X̃, Ỹ and Z̃.

We then define the following vector fields on N × {t}:
Xt ∶= cos(kt)X̃t + sin(kt)Ỹt + k

δ
W̃t

Y t ∶=
˙
Xt

Zt ∶= [Xt, Y t]

W t ∶=
¨
Xt.

Here k > 0 and δ < 0 are constants. Note that showing these four vector fields are linearly indepen-
dent, implies that ⟨∂t, X⟩ is a (2, 3, 5)-structure on Mφ. We will show that for appropriate values
of k and δ, this is indeed the case.

We see that

Y t =
˙
Xt = k (− sin(kt)X̃t + cos(kt)Ỹt) + k

δ ˙̃Wt + cos(kt) ˙̃Xt + sin(kt) ˙̃Yt,
and

Zt = [Xt, Y t]

= k
1+δ (cos(kt)[W̃t, Ỹt] − sin(kt)[W̃t, X̃t]) + k[X̃t, Ỹt] + k

2δ[W̃t,
˙̃Wt]

+ k
δ (cos(kt)[X̃t,

˙̃Wt] + sin(kt)[Ỹt, ˙̃Wt] + cos(kt)[W̃t,
˙̃Xt] + sin(kt)[W̃t,

˙̃Yt])

+ cos
2(kt)[X̃t,

˙̃Xt] + cos(kt) sin(kt) ([X̃t,
˙̃Yt] + [Ỹt, ˙̃Xt]) + sin

2(kt)[Ỹt, ˙̃Yt].
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Lastly we see that

W t =
¨
Xt

= −k
2 (cos(kt)X̃t + sin(kt)Ỹt) + 2k (− sin(kt) ˙̃Xt + cos(kt) ˙̃Yt) + k

δ ¨̃Wt + cos(kt) ¨̃Xt + sin(kt) ¨̃Yt.

We then look at the following matrix

M ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

cos(kt) −k sin(kt) +O(1) O(k1+δ) −k2 cos(kt) +O(k)
sin(kt) k cos(kt) +O(1) O(k1+δ) −k2 sin(kt) +O(k)

0 O(1) k +O(k1+δ) O(k)
k
δ O(1) O(k1+δ) O(k)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠
.

We note that this is a matrix of the vectors Xt, Y t, Zt and W t as columns, with respect to the ba-
sis {X̃t, Ỹt, Z̃t, W̃t}. Here we have used the notation O(ka) to indicate the terms of order at most k

a
.

One can compute the determinant of this matrix and we obtain

det(M) = k4+δ +O(k3) +O(k4+2δ).

We note that for all −1 < δ < 0 we have that 4 + δ > 3, 4 + 2δ. Thus, choosing k sufficiently large,
means that the leading term will overcome the coefficients which appear in the error term. We
conclude that there exist k > 0 and −1 < δ < 0, such that the determinant of M is non-zero, and
thus values for k and δ such that the vector fields Xt, Y t, Zt and W t are linearly independent. We
conclude that D ∶= ⟨∂t, X⟩ is a (2, 3, 5)−structure on Mφ.

Figure 3.1: Illustration of the vector field Xt from the proof of Theorem 3.8. Here the black
horizontal axes represent the vector fields X̃0 and Ỹ0 and the vertical axis represents W̃0. The blue
dots indicate the tilted vectors X̃ϵ, Ỹϵ and W̃ϵ. We see that the vector field Xt, indicated here by
the green line, turns quite aggressively in the X̃t and Ỹt direction, and there is a slight contribution
in the W̃t direction for convexity.
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Remark 3.9. Let us make some remarks regarding Theorem 3.8 and its proof.

(i) First of all, let us give some intuition behind the construction above. A way of thinking about
it is the following. Imagine we reparameterise the t−coordinate such that it becomes very
stretched out. Then this will make the family of non-integrable distributions ξ̃t more constant
in t. In this way, the first and second derivatives of the frame {X̃t, Ỹt, Z̃t, W̃t} can be made
arbitrarily small. If we then turn in X̃t and Ỹt with constant speed, and add a little W̃t for
convexity, we obtain the (2, 3, 5)−condition. If we now parameterise the t−coordinate back to
[0, 1], we obtain the very fast turning which we see in the vector field Xt defined above.

(ii) In the proof above, we can actually also choose δ > 0, but we should however be more careful.
Let us explain. Let A be a vector field linearly independent of X̃, Ỹ and Z̃, then we note that
ξ̃t ⊕ ⟨At⟩ is an even-contact structure. We can choose W̃t to be in the kernel Wt of ξ̃t ⊕ ⟨At⟩.
This means that [Wt, ξ̃t⊕ ⟨At⟩] ⊂ ξ̃t⊕ ⟨At⟩. This ensures that the Z̃ component in the vector

field Zt does not get killed by the k
1+δ

-term. One can compute a similar matrix M and its
determinant, and one will see that for 0 < δ < 1

2
, this matrix has non-zero determinant.

(iii) We have shown in this chapter that in a quite similar manner, one can construct contact
structures, Engel structures and (2, 3, 5)-structures on all mapping tori admitting a suitable
formal analogue of these structures. An open question at this point is the following: does a
similar construction also work for other rank-2 distributions?

(iv) As also mentioned in the beginning of this chapter, the construction of the (2, 3, 5)−structure
on the mapping torus already highlights some of the key issues we are going to encounter when
proving the h−principle for overtwisted (2, 3, 5)−structures on closed manifolds. Namely, when
we reduce the problem to the extension problem in Chapter 7, we use a very similar construction
in order to achieve the (2, 3, 5)−condition in a neighbourhood of the codimension-1 skeleton.
There, we also use this idea of dilating the parameter t, such that the derivatives of the
frame with respect to t become very little, and introducing the turning in order to achieve the
(2, 3, 5)−condition.

▶
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Chapter 4

Contact and Engel Lutz twisting

In this chapter we will focus on modifications of distributions called Lutz twisting. Lutz twisting is
a surgery on a distribution where part of it is replaced by a distribution which “twists” more. For
contact and Engel structures, Lutz twisting has already been introduced before in the literature, see
[20] and [12], and we will discuss these in the next two sections. In order to define Lutz twisting,
we first discuss the concept of adding torsion into a structure. This is a more general construction,
and Lutz twisting will be a specific case of adding torsion along certain hypersurfaces.

So why are we interested in these surgeries? Well, using the Lutz twist, one can define the notion
of an overtwisted disc in a contact or Engel manifold. Structures containing an embedding of an
overtwisted disc are so called overtwisted. For overtwisted contact and Engel structures there exist
h−principles on closed manifolds. This makes the Lutz twist an interesting concept to investigate. In
the next chapter, we will define the notion of a (2, 3, 5)−Lutz twist, which will very much resemble the
twisting in the contact and Engel case. Thus, it is insightful to treat the contact and Engel twisting
first. Eventually, we will use the (2, 3, 5)−Lutz twist, to prove the h−principle for overtwisted
(2, 3, 5)−structures, i.e. Theorem 0.4.

4.1 Contact Lutz twisting

In this section we will discuss torsion and Lutz twisting in contact structures. Torsion in contact
manifolds was first introduced by Giroux in [20], and is therefore often referred to as Giroux torsion
in the literature. Adding torsion or Lutz twisting, is a surgery performed on contact structures,
which again yields a contact structure containing more “twisting”. Lutz twisting was first discussed
in R. Lutz’s thesis [37] (which was never published), and thus the surgery is named after this French
mathematician. Lutz introduced this procedure in order to construct examples of contact structures
in manifolds other than S3. At the time, only few examples were known, and this allowed him to
construct contact structures in all closed 3-manifolds. The result that every orientable manifold
admits a contact structure, was shown and published by Martinet in [30], in which he used/altered
the construction of Lutz.

4.1.1 Local model along a hypersurface

Giroux torsion is a surgery in a contact manifold which is performed along hypersurfaces. There-
fore, we are first going to describe a local model for a contact structure along a hypersurface in this
subsection.

Let (M, ξ) be a contact manifold and let N be an orientable transverse hypersurface. In order to
define torsion, we want to describe ξ in local coordinates along N . Therefore, let T be a vector field
tangent to ξ and transverse to N , and let ϕt denote its flow. Taking ϵ > 0 small, we can use the flow
of T to describe a tubular neighbourhood U(N) ≅ N × (−ϵ, ϵ) of N ≅ N × {0}. This allows us to
take coordinates (p, t) ∈ N × (−ϵ, ϵ), such that ∂t = T .

We can then pick a vector field H on N × (−ϵ, ϵ) such that ξ = ⟨∂t, H⟩. This means that we can
describe ξ by maps (Hp ∶ (−ϵ, ϵ) → S1)p∈N , by normalizing the vector field H, and we can look at
the vector field

Ḣ ∶= [∂t, H].
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We are now ready to prove the following proposition. It gives us an explicit description of ξ in the
tubular neighbourhood of N .

Proposition 4.1. Let (M, ξ) be a contact manifold, and let N ⊂ M be a transverse hypersurface.
Let U(N) ≅ N × (−ϵ, ϵ) be the tubular neighbourhood induced by the vector field T ∈ D, as described
above. Then there is a framing {X ∈ ξ ∩ TN, Y } of TN such that ξ in U(N) can be described as

ξ(p, t) = ⟨∂t, H = cos(t)Xp + sin(t)Yp⟩.

Proof. Because of how we constructed U(N) we know that we can describe ξ in this neighbourhood
as

ξ = ⟨∂t, H⟩
where

Hp(t) = (Hp(t))1 ⋅Xp + (Hp(t))2 ⋅ Yp,
for vector fields X and Y on U(N). If we choose the vector field X ∈ ξ ∩ TN , then we must have
that ∂t(Hp(t))2 ≠ 0, as ξ is a contact structure. Therefore, using the implicit function theorem, and
rescaling the vector fields, we get that ξ is of the form

ξ = ⟨∂t, H = Xp + tYp⟩.

Then, by reparameterising the t−coordinate and scaling the vector fields, we get that there are
vector fields X ∈ ξ ∩ TN and Y such that ξ is of the desired form

ξ = ⟨∂t, H = cos(t)Xp + sin(t)Yp⟩

on U(N).

4.1.2 Construction of the contact Lutz twist

In this section we will describe the construction of adding Giroux torsion along a hypersurface,
and thereafter define Lutz twisting. Let (M, ξ) be a contact manifold and let N be a hypersurface
transverse to ξ. From Proposition 4.1 we know that there is a tubular neighbourhood U(N) ≅

N × (−ϵ, ϵ) where we have an explicit description of what ξ looks like, namely

ξ(p, t) = ⟨∂t, H = cos(t)Xp + sin(t)Yp⟩.

Therefore, we can describe the structure ξ by a family of maps Hp ∶ (−ϵ, ϵ) → S1 given by

Hp(t) = (cos(t), sin(t)) .

Note that the coordinates of these maps are determined by the directions of the vector fields Xp and
Yp, and thus depend on the point p ∈ N .

To introduce torsion in the contact structure, we are going to replace the maps (Hp)p∈N , by maps

(Gp)p∈N . The maps (Gp)p∈N ∶ (ϵ, ϵ) → S1 consist of three parts:

(1) The first part of the curve is equal to Hp((−ϵ, 0]).

(2) The middle part of the curve is a loop in S1 starting and ending at Hp(0).

(3) The last part of the curve is equal to Hp([0, ϵ)).

The explicit expression for the curves (Gp)p∈N ∶ (ϵ, ϵ) → S1 is then given by

(cos (π + ϵ
ϵ t + π) , sin (π + ϵ

ϵ t + π))

for t ∈ (−ϵ, ϵ). Note that we have adjusted the speed and have translated the variable t, such that
the curves are defined on the interval (−ϵ, ϵ).

By replacing the maps (Hp)p∈N by (Gp)p∈N , we obtain a new structure which we will denote by
L(ξ). We note that L(ξ) has the following properties:

• L(ξ) is the same as ξ outside of the tubular neighbourhood N × (−ϵ, ϵ),

29



• L(ξ) is tangent to the vector field T on N × (−ϵ, ϵ),

• the distribution L(ξ) makes an additional turn along ∂t with respect to ξ.

We claim that the resulting structure is again a contact structure.

Lemma 4.2. The structure (M,L(ξ)) is a contact manifold.

Proof. First of all, we note that we have only altered the contact structure inside N × (−ϵ, ϵ), thus
we only have to prove something inside this neighbourhood. We consider the curves (Gp)p∈N from
the construction above. We note that these curves are immersions, which is a sufficient condition
for being contact.

The construction we described above, is the process of adding torsion along the hypersurface N .
Lutz twisting is a special case of adding torsion, which we specify in the next definition.

Definition 4.3. Let (M, ξ) be a contact manifold, and let N ⊂ M be a transverse hypersurface.
Then, we say the contact structure L(ξ) is obtained from ξ by the construction described above, by
adding Giroux torsion along N .

If N the boundary of a tubular neighbourhood of a transverse knot, then we say L(ξ) is obtained
from ξ by adding a Lutz twist along N .

Figure 4.1: An illustration of a contact Lutz twist added along the boundary of the tubular neigh-
bourhood of a transverse knot γ ∶ S1 → M . Here the tubular neighbourhood is indicated in blue,
and the distribution L(ξ) in red. We see the L(ξ) makes a full turn around ∂ν(L), in the radial
direction (which is the t−direction in the construction we have seen).

Remark 4.4. As mentioned in the introduction of this chapter, Lutz twisting allows us to define
the notion of an overtwisted disc in a contact manifold. We will not formally define this here, but
here is is the general idea. Recall, that a Lutz twist contains a neighbourhood where the contact
structure makes a full turn, i.e. a 2π−turn. We can look at a subset of this contact manifold, where
the contact structure only makes half a turn, i.e. a π−turn. This contact submanifold is called an
overtwisted disc. In Figure 4.2 we see an illustration of the overtwisted disc. It portrays a slice of the
tubular neighbourhood of the transverse knot along which we Lutz twist. Note that in this picture,
the Lutz twist starts all the way in the center, i.e. at the knot. This structure is homotopic to the
structure we originally defined as the Lutz twist.

A contact structure is called overtwisted if it contains an embedding of the overtwisted disc. It turns
out that the h−principle holds for overtwisted contact structures on closed manifolds. This was first
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proven by Eliashberg in 1989 [13].

We point out that in the Engel and the (2, 3, 5)−case, the overtwisted disc will be defined as adding
a full Lutz twist along some hypersurface. In fact, we could also define the overtwisted disc in a
contact manifold as a full Lutz twist, because it turns out that these definitions are equivalent. I.e.
a contact structure which contains an overtwisted disc defined by half a Lutz twist, is homotopic to
a contact structure with an overtwisted disc defined by a full Lutz twist, and vice versa. However,
the half-Lutz twist definition is more common in the literature, which is why we also introduce it
here. ▶

Figure 4.2: An illustration of the overtwisted disc [31, p. 148]. Here the planes portray the distri-
bution at that point, and we see that moving radially outward, the distribution makes half a turn.

4.2 Engel Lutz twisting

In this section we will discuss Engel torsion and Lutz twisting. Just like in the contact case, adding
Engel torsion is a surgery on Engel structures, and Engel Lutz twisting is a specific case of adding
torsion along certain hypersurfaces. The surgery was first introduced by del Pino and Vogel in [12],
and it allowed them to prove an h-principle for overtwisted Engel structures on closed manifolds.
The material in this section is based on their paper, but the construction given here is more explicit.
This will also be insightful for the next chapter, as in Section 5.2 we will see how to construct a
(2, 3, 5)−Lutz twist, which will be done in a very similar manner.

4.2.1 Local model along a hypersurface

Similarly as in the contact case, Engel torsion is added along a hypersurface transverse to the distri-
bution. Therefore, we first want to describe an Engel structure along such a transverse hypersurface.
We will construct a local model in this subsection.

Before we can describe this local model, we need to do some preliminary work. Let (M,D) be an
Engel manifold and let N be an orientable transverse hypersurface. Let E denote the distribution
[D,D]. We note that we can also define the following distributions:

• a line field LN ∶= D ∩ TN ,

• a plane field ξN ∶= E ∩ TN which contains LN .

N
+
= {x ∈ N ∣ ξN is a positive contact structure close to x}

N
−
= {x ∈ N ∣ ξN is a negative contact structure close to x}

N
0
= N − (N+

∪N
−).

We note that N is transverse to W at all x ∈ N
+ ∪ N

−
, and W is tangent to N at all points

x ∈ N
0
. Since being contact is an open condition, we note that the sets N

+
and N

−
are open and

by construction N
0
is closed. See Figure 4.3 for an illustration of these spaces.

In order to define adding torsion, we want to describe D in local coordinates along N . Therefore, let
T be a vector field tangent to D and transverse to N , and let ϕt denote its flow. Taking ϵ > 0 small,
we can use the flow ϕt of T to describe a tubular neighbourhood U(N) ≅ N×(−ϵ, ϵ) of N ≅ N×{0}.
This allows us to take coordinates (p, t) ∈ N × (−ϵ, ϵ), such that ∂t = T . We want to choose this
vector field T such that the neighbourhood N × (−ϵ, ϵ) has certain nice properties. Namely,
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Figure 4.3: An illustration of D along a hypersurface N .

• Outside a little neighbourhood of N
0 × (ϵ, ϵ) we choose T such that it is tangent to W,

• If T is tangent to W at (p, 0), then the orbit of T through p for t ∈ (−ϵ, ϵ) is part of the leaf
of W at p,

• If T is not tangent to W at (p, 0), the orbit of T through p for t ∈ (−ϵ, ϵ) is never tangent to
W.

These assumptions on T ensure that the properties ∂t has at a point (p, 0) ∈ N × {0} also hold at
the entire fibre {p} × (−ϵ, ϵ).

Since we have chosen T tangent to D, we can pick a vector field H on N × (−ϵ, ϵ) such that
D = ⟨∂t, H⟩, and D∩T (N × {t}) is spanned by the restriction of H to N × {t}. In fact we can then
describe D by maps (Hp ∶ (−ϵ, ϵ) → S2)p∈N , and we can look at the vector fields

Ḣ ∶= [∂t, H] and Ḧ ∶= [∂t, Ḣ].

On N
0
we know that W is tangent to N , and thus ∂t is not tangent to W. Therefore, ⟨H, Ḣ, Ḧ⟩ is a

framing of TN . We have already fixed an orientation of N , and thus this framing is either positive
or negative. This gives us reason to define the following spaces:

N
0,+

= {x ∈ N ∣ ⟨H, Ḣ, Ḧ⟩ is a positive framing of TN at x}
N

0,−
= {x ∈ N ∣ ⟨H, Ḣ, Ḧ⟩ is a negative framing of TN at x}.

In order to construct a local model of an Engel structure along a hypersurface, we need to pick a
framing of the hypersurface in a careful way. This motivates the following definition.

Definition 4.5. Let (M,D) be an Engel manifold and let N ⊂ M be a hypersurface transverse to
D. We say that {X,Y, Z}, where X, Y and Z are vector fields on N , is a frame associated to
(D,N) if X ∈ D ∩ TN , Y ∈ E ∩ TN and {Xp, Yp, Zp} is a frame of TpN for p ∈ N .

Using such framings, the following proposition gives us a more explicit description of D in U(N).
Proposition 4.6. Let (M,D) be an Engel manifold and let N ⊂M be a hypersurface transverse to
D. Let U(N) ≅ N × (−ϵ, ϵ) be the tubular neighbourhood induced by the vector field T as described
above. Then there is a frame {X,Y, Z} associated to (D,N) such that D in U(N) can be described
as

D(p, t) = ⟨∂t, H = cos(t)Xp + sin(t)Yp + g(p, t)Zp⟩
where g ∶ N × (−ϵ, ϵ) → R such that

• g(p, t) = 0 if ∂t is tangent to W at (p, 0), i.e. if p ∈ N
+ ∪N

−
,

• g(p, t) is convex if p ∈ N
0,+

,

• g(p, t) is concave if p ∈ N
0,−

.

Proof. As discussed above, we have that D = ⟨∂t, H⟩ where (Hp ∶ (−ϵ, ϵ) → S2)p∈N with

Hp(t) = (Hp(t))1 ⋅Xp + (Hp(t))2 ⋅ Yp + (Hp(t))3 ⋅ Zp.

Since D is an Engel structure at least one of the two conditions must hold
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(i) the vectors Hp(t), Ḣp(t) and Ḧp(t) are linearly independent,

(ii) ⟨Hp(t), Ḣp(t)⟩ span a contact structure in a neighbourhood of (p, t).

This means that the curvesHp ∶ (−ϵ, ϵ) → S2 must be immersions, and thus by choosingX ∈ D∩TN
and Y ∈ E ∩ TN appropriately, and invoking the implicit function theorem, we get that the Taylor
expansion of Hp looks like

Hp(t) = Xp + tYp +O(t2).
By scaling the vectors and reparameterising the t−coordinate, we can write

Hp(t) = cos(t)Xp + sin(t)Yp +O(t2).

Note that these vector fields X and Y are not the exact same as before, but for simplicity we still
denote them like this.

Since D is an Engel structure we must have that the image of Hp is either convex or concave (in
the case of condition (i)), or that Hp is contained in a maximal circle on the sphere (in the case of
condition (ii)). In both cases we have that Hp is graphical over the equator spanned by the vector
fields X and Y . Therefore, using the implicit function theorem we get that there is a vector field Z
on N such that

Hp(t) = cos(t)Xp + sin(t)Yp + g(p, t)Zp
for a function g ∶ N × (−ϵ, ϵ) → R. On the subspace N

0
⊂ N we have that ⟨H, Ḣ, Ḧ⟩ forms a

framing of TN , which means that the function g must be either convex or concave here. Since this
framing is positive on N

0,+
we must have that g is convex here, and on N

0,−
we must have that g

is concave. If ∂t is tangent to W at (p, 0), we are in the situation of condition (ii). Therefore, g can
be chosen to be 0 at these points.

The last thing we will show in this subsection, is that we can homotope an Engel structure such
that it has an even more explicit local model around a transverse hypersurface. This will help us in
the next subsection to define Engel torsion in a very explicit way.

Lemma 4.7. Let (M,D) be an Engel manifold and let N ⊂ M be a hypersurface transverse to D.
Let U(N) ≅ N×(−ϵ, ϵ) be the tubular neighbourhood induced by the vector field T as described above.
Then there is a frame {X,Y, Z} associated to (D,N) such that D is homotopic as Engel structures
to D, which in a neighbourhood N × (−δ, δ) with 0 < δ < ϵ, can be described as

D = ⟨∂t, H = cos(t)Xp + sin(t)Yp + α(p)t2Zp⟩,

where α ∶ N → R is a function such that

• α(p) = 0 if p ∈ N
+ ∪N

−
,

• α(p) > 0 if p ∈ N
0,+

,

• α(p) < 0 if p ∈ N
0,−

.

Proof. From Proposition 4.6 we know that in U(N) the Engel structure D can be described as

D(p, t) = ⟨∂t, H = cos(t)Xp + sin(t)Yp + g(p, t)Zp⟩

with g as in Proposition 4.6. From the properties listed in the proposition, we know that g is of the
form

g(p, t) = α(p)t +O(t3),
where α ∶ N → R is as in the statement. We then define the following vector fields for s ∈ [0, 1]:

Fs(p, t) ∶= cos(t)Xp + sin(t)Yp + gs(p, t)Zp

with
gs(p, t) ∶= sg(p, t) + (1 − s) (χ(t)g(p, t) + (1 − χ(t))α(p)t2) .

Here χ is a bump function which is 0 in a very small interval around t = 0, as depicted in Figure
4.4. We note that χ̇ is of order 1

ϵ
and χ̈ is of order 1

ϵ2
.
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Figure 4.4: Illustration of the bump function used in the proof of Lemma 4.7 (and later on also in
the proof of Lemma 5.4).

Let Ds(p, t) ∶= ⟨∂t, Fs(p, t)⟩. We see that D0 is of the form

D0 = ⟨∂t, cos(t)Xp + sin(t)Yp + α(p)t2Zp⟩

in a small neighbourhood around t = 0, and that D1 = D. We want to show that the distributions
Ds are in fact Engel structures in U(N). We see that

ġs(p, t) = sġ(p, t) + (1 − s) (χ̇(t)(g(p, t) − α(p)t2) + χ(t)(ġ(p, t) − 2α(p)t) + 2α(p)t)
g̈s(p, t) = sg̈(p, t) + (1 − s) (χ̈(t)(g(p, t) − α(p)t2) + 2χ̇(t) (ġ(p, t) − 2α(p)t) + χ(t)(g̈(p, t) − 2α(p)) + 2α(p)) .

Furthermore,

Ḟs,p(t) = − sin(t)Xp + cos(t)Yp + ġs(p, t)Zp
F̈s,p(t) = − cos(t)Xp − sin(t)Yp + g̈s(p, t)Zp.

We want to show that Fs,p(t), Ḟs,p(t) and F̈s,p(t) are linearly independent. From our assumptions
on χ we see that

ġs(p, t) = s (2α(p)t +O(t2)) + (1 − s) (O (1ϵ )O(t3) +O(t)O(t2) + 2α(p)t)

g̈s(p, t) = s (2α(p) +O(t)) + (1 − s) (O ( 1

ϵ2
)O(t3) + 2O (1ϵ )O(t2) +O(t)O(t) + 2α(p)) .

We note that for t ∈ (−ϵ, ϵ) and ϵ small, that the vector field Fs,p(t) is close to Xp, Ḟs,p(t) close to

Yp and F̈s,p(t) close to −Xp + 2α(p)Zp. Then by Lemma 1.38 it follows that indeed for p ∈ N
0
the

distributions Ds are Engel.

Now for p ∈ N
+∪N−

we have that α(p) = 0, and thus F̈s,p(t) is not necessarily linearly independent

of Fs,p(t) and Ḟs,p(t). We then compute

[Fs,p(t), Ḟs,p(t)] = [Xp, Yp] + (1 −O(t2))ġs(p, t)[Xp, Zp] +O(t)ġs(p, t)[Yp, Zp],

where we used the fact that g = 0 for p ∈ N
+∪N−

. For p in the interior of N
+∪N−

we have that g
is zero, and thus gs is constantly zero. It follows that on the boundary of N

+ ∪N
−
, the derivative

ġs must also be zero. From this follows that [Fs,p(t), Ḟs,p(t)] = [Xp, Yp], and since {Xp, Yp} is

non-integrable for p ∈ N
+ ∪ N

−
, we note that Fs,p(t), Ḟs,p(t) and [Fs,p(t), Ḟs,p(t)] are linearly

independent on N
+ ∪ N

−
. We conclude that Ds is also Engel on N

+ ∪ N
−
, which finishes the

proof.
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4.2.2 Construction of the Engel Lutz twist

In this section we will describe the construction of adding Engel torsion along a hypersurface. As
mentioned before, the idea of this construction is based on the construction in [12], but in this
section we will additionally give a more explicit formula for the torsion. Thereafter, we will define
Lutz twisting as a specific case of adding torsion along certain hypersurfaces. In Section 5.2 we will
see how to construct a (2, 3, 5)−Lutz twist, which will be done almost analogously.

Let (M,D) be an Engel manifold and let N be a hypersurface transverse to D. From Proposition
4.6 we know that there is a tubular neighbourhood U(N) ≅ N × (−ϵ, ϵ) where we have an explicit
description of what D looks like, namely

D(p, t) = ⟨∂t, H = cos(t)Xp + sin(t)Yp + g(p, t)Zp⟩

with g ∶ N × (−ϵ, ϵ) → R as in Proposition 4.6. From Lemma 4.7 we know that D is homotopic
through Engel structures to D, which in a neighbourhood N × (−δ, δ) with δ < ϵ can be described
as

D = ⟨∂t, H = cos(t)Xp + sin(t)Yp + α(p)t2Zp⟩

with α(p) as in Lemma 4.7. We can describe the structure D on N × (−δ, δ) by a family of maps
Hp ∶ (−δ, δ) → S2 given by

Hp(t) =
1√

1 + α(p)2t4
(cos(t), sin(t), α(p)t2).

Note that the coordinates of these maps are determined by the directions of the vector fields Xp, Yp
and Zp, and thus depend on the point p ∈ N .

To introduce torsion in the Engel structure, we are going to replace the maps (Hp)p∈N by maps

(Gp)p∈N . First, we construct a C
2
-family of maps (Fp)p∈N , and then we smooth this family to

obtain (Gp)p∈N .

The curves (Fp)p∈N ∶ (−δ, δ) → S2 consist of three parts:

(1) The first part of the curve is equal to Hp((−δ, 0]),

(2) The middle part of the curve is the unique circle in S2 through Hp(0), tangent to the equator

spanned by Xp and Yp, and which has the same curvature as Hp at t = 0,

(3) The last part of the curve is equal to Hp([0, δ)).

To explicitly construct these curves we first need to find the curvature of Hp at t = 0.

Lemma 4.8. The curvature of the map Hp ∶ (−δ, δ) → S2 given by

Hp(t) =
1√

1 + α(p)2t4
(cos(t), sin(t), α(p)t2)

at t = 0 is equal to
√
1 + 4α(p)2.

Proof. Let T (t) = H
′
p(t)

∣H ′
p(t)∣

, then the curvature of Hp at t is given by

κ(t) = ∣T ′(t)∣
∣H ′

p(t)∣
.

For shorthand notation we use αp ∶= α(p). We note that

H
′
p(t) = (1 + α

2
pt

4)−3/2 (−(1 + α
2
pt

4) sin(t) − 2α
2
pt

3
cos(t), (1 + α

2
pt

4) cos(t) − 2α
2
pt

3
sin(t), 2αpt) .

It follows that

∣H ′
p(t)∣ =

√
(1 + α2

pt
4)2 + 4α4

pt
6 + 4α2

pt
2

(1 + α2
pt

4)3/2
,
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and thus

T (t) = 1√
(1 + α2

pt
4)2 + 4α4

pt
6 + 4α2

pt
2
(−(1 + α

2
pt

4) sin(t) − 2α
2
pt

3
cos(t), (1 + α

2
pt

4) cos(t) − 2α
2
pt

3
sin(t), 2αpt) .

Differentiating this expression and filling in t = 0 we get

T
′(0) = (−1, 0, 2αp),

and thus

κ(0) = ∣T ′(0)∣
∣H ′

p(0)∣
=

√
1 + 4α2

p

1
=

√
1 + 4α2

p.

From this follows that the middle part of the curve Fp is a circle of radius 1√
1+4α2

p

, tangent at the

point (1, 0, 0) to the equator spanned by Xp and Yp. Such a circle can be described by the following
formula:

t↦
⎛
⎜
⎝
cos (t)
1 + 4α2

p

+
4α

2
p

1 + 4α2
p

,
sin (t)√
1 + 4α2

p

,
2αp

1 + 4α2
p

−
2αp cos (t)
1 + 4α2

p

⎞
⎟
⎠
, for t ∈ [0, 2π].

Note that when α(p) = 0, this formula describes the equator spanned by Xp and Yp.

Combining this curve with the map Hp(−δ, δ), we can find an explicit expression for the curves

(Fp)p∈N ∶ (−δ, δ) → S2, consisting of three parts:

(1) For t ∈ (−δ,− π⋅δ

π+
√
1+4α2

pδ
] it is given by

1√
1 + α2

p (
π+

√
1+4α2

pδ√
1+4α2

pδ
t + π√

1+4α2
p

)
4

⎛
⎜
⎝
cos

⎛
⎜
⎝
π +

√
1 + 4α2

pδ√
1 + 4α2

pδ
t +

π√
1 + 4α2

p

⎞
⎟
⎠
, sin

⎛
⎜
⎝
π +

√
1 + 4α2

pδ√
1 + 4α2

pδ
t +

π√
1 + 4α2

p

⎞
⎟
⎠
,

αp
⎛
⎜
⎝
π +

√
1 + 4α2

pδ√
1 + 4α2

pδ
t +

π√
1 + 4α2

p

⎞
⎟
⎠

2⎞
⎟⎟
⎠
.

(2) For t ∈ [− π⋅δ

π+
√
1+4α2

pδ
, π⋅δ

π+
√
1+4α2

pδ
] it is given by

⎛
⎜⎜⎜⎜⎜⎜
⎝

cos (π+δ
√
1+4α2

p

δ
t + π)

1 + 4α2
p

+
4α

2
p

1 + 4α2
p

,

sin (π+δ
√
1+4α2

p

δ
t + π)

√
1 + 4α2

p

,
2αp

1 + 4α2
p

−

2αp cos (
π+δ

√
1+4α2

p

δ
t + π)

1 + 4α2
p

⎞
⎟⎟⎟⎟⎟⎟
⎠
.

(3) For t ∈ [ π⋅δ

π+
√
1+4α2

pδ
, δ) it is given by

1√
1 + α2

p (
π+

√
1+4α2

pδ√
1+4α2

pδ
t − π√

1+4α2
p

)
4

⎛
⎜
⎝
cos

⎛
⎜
⎝
π +

√
1 + 4α2

pδ√
1 + 4α2

pδ
t −

π√
1 + 4α2

p

⎞
⎟
⎠
, sin

⎛
⎜
⎝
π +

√
1 + 4α2

pδ√
1 + 4α2

pδ
t −

π√
1 + 4α2

p

⎞
⎟
⎠
,

αp
⎛
⎜
⎝
π +

√
1 + 4α2

pδ√
1 + 4α2

pδ
t −

π√
1 + 4α2

p

⎞
⎟
⎠

2⎞
⎟⎟
⎠
.

Note that we have adjusted the speed and have translated the variable t such that the curves are
defined on (−δ, δ) and are C

2
. In Figure 4.5 you can see what the maps (Fp)p∈N look like.
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Figure 4.5: Illustration of the maps (Fp)p∈N , which are formed by adding an extra loop, indicated

in blue, to the maps Hp, with the same convexity as Hp at t = 0. On the subsets N
+
or N

−
we know

from Proposition 4.6 that the image of Hp is a piece of the equator through (1, 0, 0) and (0, 1, 0).
The map Fp is this curve Hp with an additional loop around the equator. On the subset N

0,+
we

know that the map Hp is convex, and on N
0,−

is concave. The maps Fp are in this case the same
but with an extra convex or concave loop in the middle.

We now want to smooth (Fp)p∈N to obtain the desired maps (Gp)p∈N . The relevant properties of
the curves (Fp)p∈N depend only on their 2−jet, as we are only interested in first and second deriva-

tives when working with Engel structures. The three segments of the curves are already C
2
-smooth,

and any C
2
-small smoothing yields therefore a smooth family of curves (Gp)p∈N with the same

properties regarding convexity as (Fp)p∈N .

By replacing the maps (Hp)p∈N by (Gp)p∈N , we obtain a new structure which we will denote by

L(D). We note that L(D) has the following properties:

• L(D) is the same as D outside of the tubular neighbourhood N × (−δ, δ),

• L(D) is tangent to the vector field T on N × (−δ, δ),

• on N
+ ∪ N

−
the even-contact structures associated to L(D) and D are the same, but L(D)

make an additional turn along ∂t.

We claim that the resulting structure L(D) is still an Engel structure.

Lemma 4.9. The structure (M,L(D)) is an Engel manifold.

Proof. First of all, we note that we have only altered the Engel structure inside N × (−δ, δ), thus
we only have to prove something inside this neighbourhood. We consider the curves (Fp)p∈N from

the construction above. We note that whenever Hp is a convex or a concave curve, so if Fp. This is

a sufficient condition for L(D) to be an Engel structure.

Let U be the set of p ∈ N such that Hp is everywhere tangent to the equator through (1, 0, 0)
and (0, 1, 0). By construction, the maps Fp are also tangent to this equator, see also Figure 4.5.

However, we cannot immediately conclude that L(D) is Engel from this. This is because the set U
is closed and the contact condition (also condition (ii) in the proof of Proposition 4.6) must hold in
a neighbourhood of the point. To fix this problem, we note that the maximal circles tangent to the
curves Fp, C

∞
-converge to the equator as (p, t) approaches U . Therefore, the contact condition, i.e.

condition (ii), must also hold in a small neighbourhood of U . We conclude that L(D) is indeed an
Engel structure everywhere.

Definition 4.10. Let (M,D) be an Engel manifold and N ⊂ M a transverse hypersurface. By
Lemma 4.7 we know that we can homotope D such that it is of the form

D = ⟨∂t, H = cos(t)Xp + sin(t)Yp + α(p)t2Zp⟩,
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in a neighbourhood N×(−δ, δ), with δ > 0 and {X,Y, Z} a frame associated to (D,N), as in Lemma
4.7.

Then, we say the Engel structure L(D) is obtained from D by the construction described above, by
adding Engel torsion along N .

If N is a 3-torus, then we say L(D) is obtained from D by adding an Engel-Lutz twist along N
[12, p. 22-23].

Remark 4.11. Similarly as in the contact case, the Engel-Lutz twist is also used to define the notion
of an overtwisted disc in an Engel manifold. This is introduced in [12]. In this paper, Engel-Lutz
twisting is defined as adding Engel torsion along a 3-torus which is obtained from a transverse knot.
The fact that the hypersurface is constructed from a transverse knot, is used in the proof of the
h−principle for overtwisted Engel structures on closed manifolds. The definition of the overtwisted
disc also contains several additional technical conditions. Here we do not discuss this result or proof,
and thus we have slightly simplified the definition of the Lutz twist above. ▶

Remark 4.12. To conclude this chapter let us briefly recap the constructions we have seen. In the
contact case we have seen how we can replace the structure in a neighbourhood of a transverse
hypersurface with a structure which “twists” more. As seen in Figure 4.1, this literally meant that
the contact structure would make an additional loop in S1, with respect to the t−direction. Similarly,
in the Engel case we have seen how we can replace the structure in a neighbourhood of a transverse
hypersurface with a structure which also contains more twisting. The resulting structure makes an
additional loop in S2, parameterised by the t−coordinate, with the same convexity as the original
structure. Both resulting distributions are again contact or Engel. In the next chapter we will
introduce the notion of (2, 3, 5)−torsion and the (2, 3, 5)−Lutz twist. This construction will very
much resemble the constructions we have seen in this chapter. ▶
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Chapter 5

(2, 3, 5)-Lutz twisting

After having discussed contact and Engel Lutz twisting in the previous chapter, we are now going
to discuss Lutz twisting in (2, 3, 5)−manifolds. The material in this chapter is inspired by the
Engel-Lutz twist construction and we follow a very similar scheme as before: we first introduce
local models of a (2, 3, 5)−structure along a hypersurface, and then introduce the torsion in such
a model. The (2, 3, 5)−Lutz twist is a specific case of adding torsion, and it will be important for
defining overtwisted (2, 3, 5)−structures and proving that the h-principle holds for this family of
(2, 3, 5)-structures on closed manifolds. The results in this chapter have not been introduced before
in the literature, and thus this chapter is an original contribution of the thesis.

5.1 Local model along a transverse hypersurface

Let (M,D) be a (2, 3, 5)-manifold and let N be an orientable transverse hypersurface. Just like in
the previous chapter, we first want to find out what the (2, 3, 5)−structure looks like in a neighbour-
hood of N .

First of all, let E denote the distribution [D,D]. We then note that we can also define the following
distributions:

• a line field LN ∶= D ∩ TN ,

• a plane field ξN ∶= E ∩ TN which contains LN ,

• a 3-dimensional subspace FN ∶= [ξN , ξN] of TN which contains ξN .

In order to describe D along N , we choose a vector field T tangent to D and transverse to N , and we
let ϕt denote its flow. We can use the flow ϕt to describe a tubular neighbourhood U(N) ≅ N×(−ϵ, ϵ).
This leads to the following definition.

Definition 5.1. Let (M,D) be a (2, 3, 5)−manifold and N ⊂ M a hypersurface transverse to D.
We say that the tubular neighbourhood U(N) as described above, is the tubular neighbourhood
associated to T .

On this tubular neighbourhood we have that D = ⟨∂t, H⟩ where H is a vector field tangent to N .
From this follows that we can describe D as a family of maps (Hp ∶ (−ϵ, ϵ) → S3)p∈N . We can then
look at the vector fields

Ḣ ∶= [∂t, H] and Ḧ ∶= [∂t, Ḣ].
Since D is a (2, 3, 5)-structure, we must have that ⟨H, Ḣ, Ḧ, [H, Ḣ]⟩ is a framing of TN (see also
Proposition 2.4). By fixing an orientation on N , this framing can be either positive or negative.

In order to construct a local model of a (2, 3, 5)−structure along a hypersurface, we need to pick a
framing of the hypersurface in a careful way. This motivates the following definition.

Definition 5.2. Let (M,D) be a (2, 3, 5)−manifold and let N ⊂M be a hypersurface transverse to
D. We say that {X,Y, Z,W}, where X, Y , Z and W are vector fields on N , is a frame associated
to (D,N) if X ∈ D∩TN , Y ∈ E ∩TN , Z ∈ FN and {Xp, Yp, Zp,Wp} is a frame of TpN for p ∈ N .

Using such framings, the following proposition gives us a more explicit description of D in U(N).
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Proposition 5.3. Let (M,D) be a (2, 3, 5)−manifold and let N ⊂ M be a hypersurface transverse
to D such that LN is a trivial line field. Let U(N) be the tubular neighbourhood associated to T .
Then there exists a frame {X,Y, Z,W} associated to (D,N), such that D in U(N) can be described
by the model

D(p, t) = ⟨∂t, H = cos(t)Xp + sin(t)Yp + g(p, t)Zp + h(p, t)Wp⟩
where

• g ∶ N × (−ϵ, ϵ) → R a function which is cubic in t,

• h ∶ N × (−ϵ, ϵ) → R a function which is quadratic in t.

Proof. Let {T,X, Y, Z,W} be a framing of TM such that {X,Y, Z,W} is a framing of TN associated
to (D,N). As also discussed above, we get that D = ⟨∂t, H⟩ where (Hp ∶ (−ϵ, ϵ) → S3)p∈N with

Hp(t) = (Hp(t))1 ⋅X + (Hp(t))2 ⋅ Y + (Hp(t))3 ⋅ Z + (Hp(t))4 ⋅W.

Since D is a (2, 3, 5)-structure the following conditions must hold (see also Proposition 2.4):

(i) Hp is an immersion at time t.

(ii) Hp(t), Ḣp(t), Ḧp(t) are linearly independent, i.e. the map Hp is convex at t,

(iii) ⟨Hq(t), Ḣq(t)⟩ is a non-integrable 2-distribution in the level set Op(p) × {t},

(iv) [Hp(t), Ḣp(t)] is linearly independent of Hp(t), Ḣp(t) and Ḧp(t).

We note that we can rescale the vector field X, such that the coefficient in front of it becomes 1.
Then let a(p, t) be the coefficient in front of Y . Since Hp is an immersion, we know that ∂ta ≠ 0,
and thus we can apply the implicit function theorem parametrically on t, and replace a by t. I.e.
we now have that Hp(t) is of the form

Hp(t) = Xp + tYp +B(p, t)

where B(p, t) is a vector in the span of Z and W . Rescaling the vector fields X and Y and
reparameterising in t, we can write

Hp(t) = cos(t)Xp + sin(t)Yp + B̃(p, t)

where again B̃(p, t) is a vector in the span of Z and W . We can Taylor expand B̃(p, t) as follows

B̃(p, t) = t2Fp +G(p, t)

where ⟨F,G(−, t)⟩ = ⟨Z,W ⟩, and G(p, t) is of third order in t. This follows from the convexity of
the curve Hp. We can also expand G(p, t) as

u(p, t)Fp + v(p, t)Zp,

with functions u and v both vanishing up to order three. From this follows that we can write

Hp(t) = cos(t)Xp + sin(t)Yp + g(p, t)Fp + h(p, t)Zp,

where g(p, t) = t2 + u(p, t) is quadratic in t and h(p, t) = v(p, t) is cubic in t, which was the desired
result.

In order to construct an explicit formula for torsion in (2, 3, 5)−manifolds, we want to simplify the
local model that we have seen in the previous proposition. Thus, in the next lemma we prove that
any (2, 3, 5)-structure is homotopic to a (2, 3, 5)-structure which has a more simple description in a
neighbourhood of a given transverse hypersurface. Note that we are replacing the distribution with
a distribution with the same 2-jet.

Lemma 5.4. Let (M,D) be a (2, 3, 5)−manifold and let N ⊂ M be a hypersurface transverse to
D. Let U(N) be the tubular neighbourhood associated to T . Then there exist a frame {X,Y, Z,W}
associated to (D,N) such that D is homotopic as (2, 3, 5)−structures to D̃ which in a neighbourhood
N × (−δ, δ) with δ < ϵ can be described as

D̃(p, t) = ⟨∂t, H̃ = cos(t)Xp + sin(t)Yp + t
2
Wp⟩.
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Proof. From Proposition 5.3 we know that in U(N) the (2, 3, 5)-structure D can be described as

D(p, t) = ⟨∂t, H = cos(t)Xp + sin(t)Yp + g(p, t)Zp + h(p, t)Wp⟩
with g cubic and h quadratic in t, i.e. we can write

g(p, t) = t3 +O(t4) and h(p, t) = t2 +O(t3).
Note that with a rescaling of Zp and Wp, we can indeed assume that the coefficients in front of t

3

and t
2
in g and h above are 1. We then define the following vector fields for s ∈ [0, 1]:

Fs(p, t) ∶= cos(t)Xp + sin(t)Yp + gs(p, t)Zp + hs(p, t)Wp

with
gs(p, t) ∶= sg(p, t) + (1 − s)χ(t)g(p, t)

and
hs(p, t) ∶= sh(p, t) + (1 − s)(χ(t)h(p, t) + (1 − χ(t))t2)

where χ is a bump function which is 0 in a very small interval around t = 0, as depicted in Figure
4.4. We note that χ̇ is of order 1

ϵ
and χ̈ is of order 1

ϵ2
.

Let Ds(p, t) ∶= ⟨∂t, Fs(p, t)⟩. We see that D0 is of the form

D0 = ⟨∂t, cos(t)Xp + sin(t)Yp + t
2
Wp⟩

in a small neighbourhood around t = 0, and that D1 = D. We want to show that the distributions Ds

are in fact (2, 3, 5)-structures in U(N). Recall the following conditions for being a (2, 3, 5)-structure
(see also Proposition 2.4):

(i) Fs,p is an immersion at time t.

(ii) Fs,p(t), Ḟs,p(t), F̈s,p(t) are linearly independent, i.e. the map Fs,p is convex at t,

(iii) ⟨Fs,p(t), Ḟs,p(t)⟩ is a non-integrable 2-distribution in the level set Op(p) × {t},

(iv) [Fs,p(t), Ḟs,p(t)] is linearly independent of Fs,p(t), Ḟs,p(t) and F̈s,p(t).
Since the coefficients in front of Xp and Yp have not changed, we note that Fs,p and Ḟs,p are still
linearly independent, and thus Fs,p is an immersion (condition (i)).

For condition (ii) we see that

Fs,p(t) = cos(t)Xp + sin(t)Yp + gs(p, t)Zp + hs(p, t)Wp

Ḟs,p(t) = − sin(t)Xp + cos(t)Yp + ġs(p, t)Zp + ḣs(p, t)Wp

F̈s,p(t) = − cos(t)Xp − sin(t)Yp + g̈s(p, t)Zp + ḧs(p, t)Wp.

We note that

ġs(p, t) = sġ(p, t) + (1 − s)χ̇(t)g(p, t) + (1 − s)χ(t)ġ(p, t)
g̈s(p, t) = sg̈(p, t) + (1 − s)χ̈(t)g(p, t) + 2(1 − s)χ̇(t)ġ(p, t) + (1 − s)χ(t)g̈(p, t)
ḣs(p, t) = sḣ(p, t) + (1 − s) (χ̇(t)(h(p, t) − t

2) + χ(t)ḣ(p, t) + 2(1 − χ(t))t)
ḧs(p, t) = sḧ(p, t) + (1 − s) (χ̈(t)(h(p, t) − t

2) + 2χ̇(t)(ḣ(p, t) − 2t) + χ(t)ḧ(p, t) + 2(1 − χ(t))) .
As a result of our assumptions on χ, we have the approximations

ġs(p, t) = s (3t2 +O(t3)) + (1 − s)O (1ϵ ) (t
3
+O(t4)) + (1 − s)O(t) (3t2 +O(t3))

g̈s(p, t) = s (6t +O(t2)) + (1 − s)O ( 1

ϵ2
) (t3 +O(t4)) + 2(1 − s)O (1ϵ ) (3t

2
+O(t3)) + (1 − s)O(t) (6t +O(t2))

ḣs(p, t) = s (2t +O(t2)) + (1 − s) (O (1ϵ )O(t3) +O(t) (2t +O(t2)) + 2 (1 −O(t)) t)

ḧs(p, t) = s (2 +O(t)) + (1 − s) (O ( 1

ϵ2
)O(t3) + 2O (1ϵ )O(t2) + χ(t) (2 +O(t)) + 2 (1 − χ(t)))

= s (2 +O(t)) + (1 − s) (O ( 1

ϵ2
)O(t3) + 2O (1ϵ )O(t2) + χ(t)O(t) + 2)

= 2 + sO(t) + (1 − s) (O ( 1

ϵ2
)O(t3) + 2O (1ϵ )O(t2) +O(t)O(t)) .
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Furthermore we have that

cos(t) = 1 +O(t2), sin(t) ∼ t, gs(p, t) ∼ t3, hs(p, t) ∼ t2.

Therefore, for t close enough to 0, we have that Fs,p lies very close to the vector field Xp, Ḟs,p very

close to the vector field Yp and F̈s,p very close to the vector field −Xp+ 2Wp. From this follows that
indeed for t close enough to 0, we have that Fs,p is convex.

For condition (iii) we compute

[Fs,p(t), Ḟs,p(t)] = [Xp, Yp] + (cos(t)ġs(p, t) + sin(t)gs(p, t))[Xp, Zp]
+ (cos(t)ḣs(p, t) + sin(t)hs(p, t))[Xp,Wp] + (sin(t)ġs(p, t) − cos(t)gs(p, t))[Yp, Zp]
+ (sin(t)ḣs(p, t) − cos(t)hs(p, t))[Yp,Wp] + (gs(p, t)ḣs(p, t) − hs(p, t)ġs(p, t))[Zp,Wp].

For t close to 0, we have that [Fs,p(t), Ḟs,p(t)] is close to the vector field [Xp, Yp]. Since near 0, the
vector fields Fs,p(t), Ḟs,p and F̈s,p(t) lie very close to the vector fields Xp, Yp and −Xp + 2Wp re-

spectively, it follows that ⟨Fs,p(t), Ḟs,p(t)⟩ is indeed non-integrable, and [Fs,p(t), Ḟs,p(t)] is linearly
independent of Fs,p(t), Ḟs,p and F̈s,p(t).

We conclude that D is homotopic through (2, 3, 5)−structures Ds to D0, which on N × (−δ, δ), for
a δ < ϵ, is of the form

D0 = ⟨∂t, cos(t)Xp + sin(t)Yp + t
2
Wp⟩.

This was the desired result.

5.1.1 Reducing convexity

As mentioned before, in order to explicitly define torsion in a (2, 3, 5)−manifold, we need to work
with a local model around a transverse hypersurface. In the previous subsection we have shown that
there is indeed a local model (Proposition 5.3), and that we can simplify it by homotopy (Lemma
5.4). In this subsection we show that we can further homotope the distribution in Lemma 5.4, while
keeping the frame fixed, such that it becomes “less convex”. This will ensure that once we add
(2, 3, 5)-torsion, the resulting structure is still (2, 3, 5). For the proof of this result we will need a
bump function of which we can control its second derivative. Let us give the construction of such a
bump function.

Figure 5.1: Illustration of the step function ζ, which is build up out of 5 parts, as given in equation
(5.1).
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First take a look at Figure 5.1. Here we portray a step function ζ. We see that it is formed out of
5 parts, which are explicitly given by

ζ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if t ∈ [0, a],
q ⋅ (t − a)2 if t ∈ [a, 2a]
1−2qa2

c
t + qa

2 − 2a−4qa3

c
if t ∈ [2a, 2a + c]

−q ⋅ (t − 3a − c)2 + 1 if t ∈ [2a + c, 3a + c]
1 if t ∈ [3a + c, δ)

. (5.1)

We note that at the points t = a, 3a+ c the function ζ is automatically C
1
. For the function ζ to be

C
1
at the points t = 2a, 2a + c, we need to demand that

a = −
c

2
+

√
1

4
c2 +

1

2q
.

From this follows that we can choose q freely, and still construct a C
1
function ζ. Furthermore,

we note that ζ is not C
2
. Namely, in the first, third and last part of the function, the second

derivative is 0, whereas the second derivative in the second part is 2q, and in the fourth part is −2q.
However, we can take a C

2−smoothing of the function ζ, which we will still denote by ζ, which has
an arbitrarily close 1−jet, and is C

2−smooth. We note that we can pick this smoothing such that
ζ
′′(t) ∈ [−2q, 2q] for all t ∈ [0, δ).

By mirroring the function ζ in the y−axis, we get a C2−smooth bump function, which we will denote

by ζ, see Figure 5.2. Its second derivative ζ
′′(t) lies in [−2q, 2q] for all t ∈ (−δ, δ).

Figure 5.2: Illustration of the bump function ζ, which arises by mirroring the C
2
-smooth step

function ζ in the y−axis. We will use this bump function in the proof of Lemma 5.5.

Using this bump function, we are now going to homotope the local model from Lemma 5.4, to a
model which is less convex.

Lemma 5.5. Let (M,D) be a (2, 3, 5)−manifold and let N ⊂M be a hypersurface transverse to D.
Let U(N) ≅ N × (−ϵ, ϵ) be the tubular neighbourhood associated to T . Let {X,Y, Z,W} be a frame
associated to (D,N). By Lemma 5.4 we know that D is homotopic to D̃, which on a neighbourhood
N × (−δ, δ), for δ < ϵ, is given by

D̃ = ⟨∂t, H̃ = cos(t)Xp + sin(t)Yp + t
2
Wp⟩.

Then for every 0 < α < 1, there is a homotopy between D̃ and D through (2, 3, 5)−structures, where
D on a neighbourhood N × (−µ, µ) with µ < ϵ can be described as

D(p, t) = ⟨∂t, H = cos(t)Xp + sin(t)Yp + αt
2
Wp⟩.

Proof. From Lemma 5.4 we know indeed that D is homotopic to D̃ through (2, 3, 5)−structures,
and D̃ can be described in a neighbourhood N × (−δ, δ) as

D̃(p, t) = ⟨∂t, H = cos(t)Xp + sin(t)Yp + t
2
Wp⟩.

43



We then define the following distributions on N × (−δ, δ),

Ds ∶= ⟨∂t, Fs,p(t) ∶= ⟨cos(t)Xp + sin(t)Yp + fs(t)Wp⟩,

with
fs(t) ∶= (1 − s)t2 + s(ζ(t)t2 + (1 − ζ(t))αt2),

where ζ is the bump function as constructed above, and 0 < α < 1. We note that D0 = D and that

D1 = ⟨∂t, cos(t)Xp + sin(t)Yp + αt
2
Wp⟩

in a neighbourhood N × (−µ, µ) for µ < δ. We want to show that the distributions Ds are
(2, 3, 5)−structures by showing that the conditions from Proposition 2.4 hold for the maps Fs,p.

We note that condition (i) is satisfied since we have not changed the coordinates in front of Xp and

Yp, which ensure that Fs,p(t) and Ḟs,p(t) are linearly independent. For condition (ii) we compute:

Fs,p(t) = cos(t)Xp + sin(t)Yp + fs(t)Wp

Ḟs,p(t) = − sin(t)Xp + cos(t)Yp + ḟs(t)Wp

F̈s,p(t) = − cos(t)Xp − sin(t)Yp + f̈s(t)Wp.

Since fs(t) is quadratic in t, we note that the vector field Fs,p(t) lies very close to the vector field
Xp. Furthermore, we see that

ḟs(t) = 2(1 − s)t + s ( ˙ζ(t) (t2 − αt
2) + ζ(t) (2t − 2αt) + 2αt)

f̈s(t) = 2(1 − s) + s (¨ζ(t) (t2 − αt
2) + 2

˙
ζ(t) (2t − 2αt) + ζ(t) (2 − 2α) + 2α) .

We can then make the following approximation:

ḟs(t) = 2(1 − s)t + s (O (1
δ
) (t2 − αt

2) +O(t)(2t − 2αt) + 2αt) .

From this follows that the vector field Ḟs,p(t) lies very close to the vector field Yp. Now let us unpack

all the terms in the expression f̈s(t). We know that
¨
ζ(t) ∈ [−2q, 2q], and that ζ(t) is of order t.

We then see that

f̈s(t) = 2 − 2s(1 − α) + s
¨
ζ(t)(t2 − αt

2) + 4st
˙
ζ(t)(1 − α) + sO(t)(2 − 2α).

We note that the term 4st
˙
ζ(t)(1 − α) is positive for all t ∈ (−δ, δ), that the term sO(t)(2 − 2α) is

small, and that also the term s
¨
ζ(t)(t2 − αt

2) is small if we choose q small. Therefore, we can make
sure that f̈s(t) > 0 for all t ∈ (−δ, δ). This means that the vector field F̈s,p(t) lies very close to
the vector field −Xp + c(p, s)Wp, where c ∶ N × [0, 1] → R>0 is a function depending on p and the

homotopy parameter s. From this we may conclude that Fs,p(t), Ḟs,p(t) and F̈s,p(t) are linearly
independent.

For condition (iii) we compute

[Fs,p(t), Ḟs,p(t)] =[Xp, Yp] + (cos(t)ḟs(t) + sin(t)fs(t))[Xp,Wp]
+ (sin(t)ḟs(t) − cos(t)fs(t))[Yp,Wp].

Using the approximations above, we note that for t close to 0, the vector field [Fs,p(t), Ḟs,p(t)] lies
very close to the vector field [Xp, Yp]. Using the fact that ⟨Xp, Yp⟩ is a non-integrable distribution,

we can conclude that for t close enough to 0, ⟨Fs,p(t), Ḟs,p(t)⟩ is also a non-integrable distribution,

and [Fs,p(t), Ḟs,p(t)] is linearly independent of Fs,p(t), Ḟs,p(t) and F̈s,p(t).

It follows that for t close enough to 0, D is homotopic through D1 through (2, 3, 5)-structures, which
proves the desired result.
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Remark 5.6. We note that the homotopy in Lemma 5.5 keeps the frame fixed, and reduces the
convexity of the map H̃. Therefore, this homotopy is only C

1−small, whereas the homotopy in
Lemma 5.4 is C

2−small. In the next chapter we explain how to add a (2, 3, 5)−Lutz twist in this
particular model. For the resulting structure to still be (2, 3, 5), we needed to reduce the convexity
of H̃, which is why we introduce this particular homotopy in Lemma 5.5. Just like in the Engel case,
the (2, 3, 5)−Lutz twist will be constructed by adding an extra loop to maps Hp ∶ (−µ, µ) → S2

for p ∈ N . Here the equator of S2 is spanned by the vector fields X and Y as in Lemma 5.5. We
need the loop to be relatively close to this equator, as the properties of the vector fields X and
Y will ensure that property (iii) of Proposition 2.4 holds for the resulting structure. Reducing the
convexity of the map H̃ will ensure this, although it may seem counter-intuitive at first. ▶

5.2 Construction of the (2, 3, 5)-Lutz twist

In this section we will describe the construction of adding (2, 3, 5)−torsion along a hypersurface. As
mentioned before, this construction will resemble the construction of the Engel-Lutz twist. After we
have described how to add torsion, we will define (2, 3, 5)−Lutz twisting.

Let (M,D) be a (2, 3, 5)-manifold and let N be a hypersurface transverse to D. From Proposition
5.3 we know that there is a tubular neighbourhood U(N) ≅ N × (−ϵ, ϵ) where we have an explicit
description of what D looks like, namely

D(p, t) = ⟨∂t, Hp(t) = cos(t)Xp + sin(t)Yp + g(p, t)Zp + h(p, t)Wp⟩

with g and h as in Proposition 5.3. From Lemma 5.4 and 5.5 we know that D is homotopic through
(2, 3, 5)-structures to D which in a neighbourhood N × (−µ, µ) with µ < ϵ can be described as

D(p, t) = ⟨∂t, Hp(t) = cos(t)Xp + sin(t)Yp + αt
2
Wp⟩,

with 0 < α < 1, as in Lemma 5.5. We can describe the structure D by a family of maps (Hp) ∶

(−µ, µ) → S2 given by

Hp(t) =
1√

1 + α2t4
(cos(t), sin(t), αt2).

Note that the coordinates of these maps are determined by the directions of the vector fields Xp, Yp
and Wp, and thus depend on p ∈ N .

In this section we explain how to introduce (2, 3, 5)−torsion in D. We do this by replacing the
family (Hp)p∈N by maps (Gp)p∈N . Just like in the Engel case, we first construct a C

2
-family of

maps (Fp)p∈N and then we smooth this family to obtain (Gp)p∈N . The maps (Fp)p∈N ∶ (−µ, µ) → S2

consist of three parts:

(1) The first part of the curve is equal to Hp((−µ, 0]),

(2) The middle part of the curve is the unique circle through Hp(0), tangent to the equator

spanned by Xp and Yp, and which has the same curvature as Hp at t = 0,

(3) The last part of the curve is equal to Hp([0, µ)).

From Lemma 4.8 we know that the curvature of Hp at t = 0 is equal
√
1 + 4α2. From this follows

that the middle part of the map Fp is a circle of radius 1√
1+4α2

, tangent at the point (1, 0, 0) to the

equator spanned by Xp and Yp. Such a circle can be described by the following formula:

t↦ ( cos (t)
1 + 4α2

+
4α

2

1 + 4α2
,

sin (t)√
1 + 4α2

,
2α

1 + 4α2
−

2α cos (t)
1 + 4α2

) , for t ∈ [0, 2π].

Combining this map with the curve Hp(−µ, µ), we can find an explicit expression for the curves

(Fp)p∈N ∶ (−µ, µ) → S3 consisting of three parts:
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(1) For t ∈ (−µ,− π⋅µ

π+
√
1+4α2µ

] it is given by

1√
1 + α2 (π+

√
1+4α2µ√

1+4α2µ
t + π√

1+4α2
)
4
(cos(π +

√
1 + 4α2µ√

1 + 4α2µ
t +

π√
1 + 4α2

) , sin(π +
√
1 + 4α2µ√

1 + 4α2µ
t +

π√
1 + 4α2

) ,

α (π +
√
1 + 4α2µ√

1 + 4α2µ
t +

π√
1 + 4α2

)
2⎞
⎟
⎠
.

(2) For t ∈ [− π⋅µ

π+
√
1+4α2µ

, π⋅µ

π+
√
1+4α2µ

] it is given by

⎛
⎜⎜⎜
⎝

cos (π+µ
√
1+4α2

µ
t + π)

1 + 4α2
+

4α
2

1 + 4α2
,
sin (π+µ

√
1+4α2

µ
t + π)

√
1 + 4α2

,
2α

1 + 4α2
−

2α cos (π+µ
√
1+4α2

µ
t + π)

1 + 4α2

⎞
⎟⎟⎟
⎠
.

(3) For t ∈ [ π⋅µ

π+
√
1+4α2µ

, µ) it is given by

1√
1 + α2 (π+

√
1+4α2µ√

1+4α2µ
t − π√

1+4α2
)
4
(cos(π +

√
1 + 4α2µ√

1 + 4α2µ
t −

π√
1 + 4α2

) , sin(π +
√
1 + 4α2µ√

1 + 4α2µ
t −

π√
1 + 4α2

) ,

α (π +
√
1 + 4α2µ√

1 + 4α2µ
t −

π√
1 + 4α2

)
2⎞
⎟
⎠
.

Note that we have adjusted the speed and have translated the variable t such that the curves are
defined on (−µ, µ) and are C

2
. In Figure 5.3 you can see an illustration of Fp. We see indeed that

the second part of the curve is an extra loop, tangent to Hp at t = 0, with the same curvature.

Figure 5.3: Illustration of the maps (Fp)p∈N from the (2, 3, 5)−torsion construction. Here the yellow

curve represents Hp((−µ, 0]), the purple circle is the middle part of the curve Fp and the pink curve

represents the curve Hp([0, µ)).

We now want to smooth the family (Fp)p∈N to obtain the desired maps (Gp)p∈N . The relevant

properties of the curves (Fp)p∈N regarding convexity, depend only on their 2-jet. Any C
2
-small
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smoothing yields therefore a smooth family of curves (Gp)p∈N with the same properties (Fp)p∈N .

By replacing the maps (Hp)p∈N by (Gp)p∈N we obtain a new structure L(D). We note that L(D)
has the following properties

• L(D) is the same as D outside of the tubular neighbourhood N × (−µ, µ),

• L(D) is tangent to the vector field T on N × (−µ, µ),

• the structure L(D) makes an extra turn in the W -direction with respect to the original struc-
ture D.

We claim that for appropriate values of α, the resulting structure L(D) is still a (2, 3, 5)-structure.

Lemma 5.7. Let D be defined as in Lemma 5.5. Then for every α > 0 small enough, the structure
(M,L(D)) as described above, is a (2, 3, 5)−manifold.

Proof. First of all, we note that we have only altered the (2, 3, 5)-structure inside the tubular neigh-
bourhood N × (−µ, µ), thus we only have to prove it is (2, 3, 5) in this region. We consider the
curves (Fp)p∈N from the construction above. To prove that L(D) is (2, 3, 5) we should prove the
following conditions from Proposition 2.4:

(i) Fp is an immersion at time t.

(ii) Fp(t), Ḟp(t), F̈p(t) are linearly independent, i.e. the map Fs,p is convex at t,

(iii) ⟨Fp(t), Ḟp(t)⟩ is a non-integrable 2-distribution in the level set Op(p) × {t},

(iv) [Fp(t), Ḟp(t)] is linearly independent of Fp(t), Ḟp(t) and F̈p(t).

Since Hp is (locally) an immersion everywhere, and the added turn in the middle part of Fp is also
an immersion, we conclude that Fp is a local immersion for every t ∈ (−µ, µ). Furthermore, since

Hp is convex or concave, Fp is also convex or concave, and thus Fp(t), Ḟp(t) and F̈p(t) are linearly
independent vectors. This ensures conditions (i) and (ii).

For condition (iii) first let t ∈ [− π⋅µ

π+
√
1+4α2µ

, π⋅µ

π+
√
1+4α2µ

], then we see that

Fp(t)
α→0
−−−→ (cos (π + µ

µ t + π) , sin (π + µ
µ t + π) , 0) ,

and

Ḟp(t) =
π + µ

√
1 + 4α2

µ

⎛
⎜⎜⎜
⎝

− sin (π+µ
√
1+4α2

µ
t + π)

1 + 4α2
,
cos (π+µ

√
1+4α2

µ
t + π)

√
1 + 4α2

,
2α sin (π+µ

√
1+4α2

µ
t + π)

1 + 4α2

⎞
⎟⎟⎟
⎠

thus

Ḟp(t)
α→0
−−−→

π + µ
µ (− sin (π + µ

µ t + π) , cos (π + µ
µ t + π) , 0) .

Therefore, we see that

[Fp(t), Ḟp(t)]
α→0
−−−→

π + µ
µ (cos2 (π + µ

µ t + π) [Xp, Yp] − sin
2 (π + µ

µ t + π) [Yp, Xp]) =
π + µ
µ [Xp, Yp].

From this we see that

⟨Fp(t), Ḟp(t)⟩
α→0
−−−→ ⟨Xp, Yp⟩

and combining this with

[Fp(t), Ḟp(t)]
α→0
−−−→

π + µ
µ [Xp, Yp],

we can indeed conclude that condition (iii) holds for t ∈ [− π⋅µ

π+
√
1+4α2µ

, π⋅µ

π+
√
1+4α2µ

].

For t ∈ (−µ,− π⋅µ

π+
√
1+4α2µ

] ∪ [ π⋅µ

π+
√
1+4α2µ

, µ) the curves Fp are essentially the same as the curves

Hp, up to a translation of the variable t. Since ⟨Hp(t), ˙Hp(t)⟩ spans a non-integrable distribution

for t ∈ (−µ, µ), we can conclude that ⟨Fp(t), Ḟp(t)⟩ also spans a non-integrable distribution for
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t ∈ (−µ,− π⋅µ

π+
√
1+4α2µ

] ∪ [ π⋅µ

π+
√
1+4α2µ

, µ).

For the last condition, first let t ∈ [− π⋅µ

π+
√
1+4α2µ

, π⋅µ

π+
√
1+4α2µ

]. We see that

F̈p(t) = (π + µ
√
1 + 4α2

µ )
2 ⎛
⎜⎜⎜
⎝

− cos (π+µ
√
1+4α2

µ
t + π)

1 + 4α2
,
− sin (π+µ

√
1+4α2

µ
t + π)

√
1 + 4α2

,
2α cos (π+µ

√
1+4α2

µ
t + π)

1 + 4α2

⎞
⎟⎟⎟
⎠
.

We note that [Fp(t), Ḟp(t)] has a Zp-component whereas Fp(t), Ḟp(t) and F̈p(t) do not. Therefore,

condition (iv) indeed holds for t ∈ [− π⋅µ

π+
√
1+4α2µ

, π⋅µ

π+
√
1+4α2µ

].

Again, for t ∈ (−µ,− π⋅µ

π+
√
1+4α2µ

]∪[ π⋅µ

π+
√
1+4α2µ

, µ) the curves Fp are essentially the same as the curves

Hp, up to a translation of the variable t. Therefore, for t ∈ (−µ,− π⋅µ

π+
√
1+4α2µ

] ∪ [ π⋅µ

π+
√
1+4α2µ

, µ),
condition (iv) already holds for the curves Fp.

Since these conditions only depend on the 2-jets of the curves (Fp)p∈N , they automatically also hold

for the maps (Gp)p∈N . From this we may conclude that L(D) is a (2, 3, 5)-structure.

Remark 5.8. In the proof above it becomes clear why we needed to reduce the convexity of the
functions H̃ in Lemma 5.5. Namely, we see that only for small values of α > 0, the distribution
L(D) is a (2, 3, 5)−structure. Intuitively, if α > 0 is large, the Wp-component in part (2) of the
function Fp becomes quite large, which means that the extra loop moves further away from the
equator spanned by Xp and Yp. This then could influence the non-integrability of the distribution

⟨Fp(t), Ḟp(t)⟩. ▶

We are now ready to introduce the definitions of (2, 3, 5)−torsion and Lutz twisting.

Definition 5.9. Let (M,D) be a (2, 3, 5)−manifold, and let N ⊂ M be a transverse hypersurface.
From Lemma 5.5 we know that we can homotope D such that it is of the form

D = ⟨∂t, H = cos(t)Xp + sin(t)Yp + αt
2
Zp⟩

in a neighbourhood N × (−µ, µ) with µ > 0 and {X,Y, Z,W} a frame associated to (D,N), as in
Lemma 5.5. Let 0 < α < 1 be small enough such that L(D) is a (2, 3, 5)−structure.

Then, we say the (2, 3, 5)−structure L(D) is obtained from D, by the construction described above,
by adding (2, 3, 5)−torsion along N .

If N is the boundary of the tubular neighbourhood of a transverse 3-manifold, then we say L(D) is
obtained from D by adding a (2, 3, 5)−Lutz twist along N .

Remark 5.10. Let us shed some light on why we define (2, 3, 5)−Lutz twisting along the boundary
of the tubular neighbourhood of a 3-dimensional submanifold. In the next chapter we will define
the overtwisted disc in a (2, 3, 5)−manifold by Lutz twisting in a particular setting. In the extension
part in Chapter 8, we will need to move the overtwisted disc around in the manifold, as we will
use it to obtain the (2, 3, 5)−condition in the top-simplices. It turns out that it will be easier to
move around 3-dimensional transverse submanifolds, and thereby moving around the overtwisted
disc. This is why we define Lutz twisting along these particular hypersurfaces. ▶

Remark 5.11. Let us comment on some notation. Let (M,D) be a (2, 3, 5)-manifold and let N ⊂M
be a transverse hypersurface. From now on, we will write L(D) for the structure which is obtained
from D by adding a (2, 3, 5)−Lutz twist along N . Note that this does not change the definition. We
first still implicitly carry out the homotopy from Lemma 5.5 before we add the torsion, but we do
not denote this. ▶
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Chapter 6

The overtwisted disc

Recall that in Chapter 5, we have defined (2, 3, 5)−torsion and Lutz twisting. The goal of this
chapter is to define the notion of an overtwisted disc in a (formal) (2, 3, 5)−manifold. Also re-
call that the main result we are trying to prove, Theorem 0.4, is an h−principle for overtwisted
(2, 3, 5)−structures, i.e. (2, 3, 5)−structures which contain an embedding of the overtwisted disc.

In the previous chapter we have seen that Lutz twisting in (2, 3, 5)−manifolds is defined as adding
torsion along the boundary of the tubular neighbourhood of a transverse 3-manifold. In the first sec-
tion of this chapter, we will look at the existence of such transverse 3-manifolds in (2, 3, 5)−manifolds.
Thereafter, in Section 6.2, we will show how to shrink the tubular neighbourhood of such a sub-
manifold, which will secure some desired properties of these objects. In Section 6.3, we will discuss
a result on transverse embeddings, Conjecture 6.4, which will introduce another property the over-
twisted disc will have to possess. In the fourth section, we will then be ready to formally define the
overtwisted disc.

Last but not least, we will show that we can replicate these discs via homotopy such that extra copies
appear. See also Proposition 6.13. We call this the self-replicating property of the overtwisted disc.
This will be useful in the final step of the proof of Theorem 0.4, the extension, where we use the
overtwisted disc to obtain the (2, 3, 5)−condition in the top-simplices.

The material in this chapter has not been published before, and thus this is an original contribution
of the thesis.

6.1 Transverse submanifolds

In this section we will show that transverse 3−submanifolds exist in (2, 3, 5)−manifolds. As men-
tioned before, Lutz twists are added along the boundaries of tubular neighbourhoods of transverse
3-manifolds. To prove that these submanifolds exist, we use the fact that there is a (non-unique)
local model for (2, 3, 5)−structures, the Monge normal form, as explained in Section 2.2.

Lemma 6.1. Let (M,D) be a (2, 3, 5)−manifold, and let B ⊂M be a ball inM with local coordinates
(t, x, y, z, w) such that

D = ⟨∂t, ∂x + y∂z + t∂y + F (t, x, y, z, w)∂w⟩
with F ∶ R → R a function with ∂ttF ≠ 0. Then there is an embedding

g ∶ D3
↪ B ⊂M

such that L ∶= g(D3) is transverse to D.

Proof. We denote D3 ∶= {(x1, x2, x3) ∣x21 + x
2
2 + x

2
3 ≤ 1}, and we map

g(x1, x2, x3) = (0, 0, lx1, lx2, lx3),
where l is chosen such that indeed g(D3) ⊂ B. We note that L = g(D3) = ⟨∂y, ∂z, ∂w⟩, and thus by
construction, L is transverse to D.

This lemma tells us that there exist transverse 3-dimensional submanifolds L in a (2, 3, 5)−manifold.
We note that the boundary of the normal bundle, ∂ν(L), is a hypersurface along which one can add
torsion.
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6.2 Shrinking the tubular neighbourhood

In the previous section we have seen that transverse 3-manifolds exist in (2, 3, 5)−manifolds. The
boundary of the tubular neighbourhood of such a submanifold is a hypersurface. In this section we
will introduce some notation which will allow us to introduce some properties for these hypersur-
faces. The goal of this, is to specify a condition which allows us to shrink the tubular neighbourhood
as much as we want. This will help us later on in showing that in the presence of an overtwisted
disc, new ones appear via homotopy.

Let us work in the same setting as in Lemma 6.1. By the tubular neighbourhood theorem we know
that

∂ν(L) ≅ ∂(L × D2
h),

where h is the radius of the 2-disc which is small enough such that ν(L) ⊂ B and that ∂ν(L) is
transverse to D. Recall from the proof of Lemma 6.1 that we constructed L such that it has radius
l. From now on, we say

l is the radius of ν(L) and h is the height of ν(L).

Figure 6.1: Illustration of a transverse 3−manifold in a ball B ⊂ M . Here we see that the normal
bundle ν(L), indicated in red, has height h, and that the 3-manifold L, indicated in blue, has radius
l.

In the next section, we will define the overtwisted disc in a (2, 3, 5)−manifold as a Lutz twist which is
added along a hypersurface of the form ∂ν(L) (along with some other properties). A crucial property
of the overtwisted disc will be that we can shrink the tubular neighbourhood of L, such that the
middle part of it becomes as thin as we want, while also staying transverse to the distribution.
See Figure 6.2 for an illustration of this. We need this property later on, for moving pieces of the
overtwisted disc around in the manifold, while also staying transverse to the (2, 3, 5)-structure, and
for showing that in the presence of an overtwisted disc, new ones appear via homotopy.

Figure 6.2: Illustration of a 3-manifold L, indicated in blue, and its normal bundle ν(L), indicated
in red, which has been shrunk such that it becomes very thin in the middle part of L.

The reason we shrink it in this hourglass shape, is because at the edges we want the structure to
match up nicely with the rest of the structure outside B. We should however, be careful, because
we still want the red band to be transverse to D. We note that the radius l of L is given by the
embedding, but that we are free to choose the height h of ν(L). We will now explain how to choose
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h small enough such that we can indeed shrink ∂ν(L) in this way, while preserving transversality.

First of all, we note that there are local coordinates, such that D cuts L vertically, i.e. it makes a
90 degree angle with respect to L. However, moving away from L, this angle will change. Take a
look at Figure 6.3. Here we denote this angle by θ and it changes roughly linearly in h. We want
the angle that the red line makes to be less than the angle that the distribution makes, i.e. less than
θ. This gives us the following bound:

h

l/4 < tan (π
2
± C ⋅ h) .

If we choose h small enough, we note that π
2
±C ⋅ h ≥

π
4
, and thus the following bound is sufficient:

h < min ( l
4
,
π

4C
) =∶ τ0.

We call τ0 the shrinking constant of L ,as setting this bound for h will give us a lot of freedom in
shrinking the tubular neighbourhood. As mentioned before, this will be a very important property of
the overtwisted disc later on in the extension part, for moving pieces of the overtwisted disc around
in the manifold, while also staying transverse to the distribution, and for showing the self-replicating
property of the overtwisted disc.

Figure 6.3: In blue we see a transverse 3-manifold L with radius l. Along L the distribution is
vertical, which is illustrated by the vertical orange lines, but moving away from L, the distribution
will tilt. The angle it makes is given by θ. We want this angle to be less than the red angle indicated
in the figure, which ultimately defines the shrinking constant τ0 as defined above.

6.3 Transverse embeddings of 3-manifolds

As mentioned before, the overtwisted disc will be defined as a Lutz twist which is added along the
boundary of the tubular neighbourhood of a transverse 3-manifold. For the extension part of the
proof of Theorem 0.4, we will need to move the overtwisted disc towards the top-simplices. Recall
from the introduction that we can reduce the h-principle from Theorem 0.4 to an extension problem,
where we only need to obtain the desired (2, 3, 5)−condition in the top-simplices. We will do this
by moving the 3-manifold, while also keeping it transverse to the distribution. This brings us to the
following definition.

Definition 6.2. Let M be manifold, D a distribution on M and N a manifold with dim(N) ≤

dim(M). We say an embedding f ∶ N ↪M is transverse to D, if

dpf(TpN)⊕Df(p) = TpM

for every p ∈ N .

We can also define a formal analogue of these types of embeddings.

Definition 6.3. Let M be manifold, D a distribution on M and N a manifold with dim(N) ≤

dim(M). A pair (f, (Fs)s∈[0,1]) is called a formal transverse embedding if

• f ∶ N ↪M is an embedding,
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• for every s ∈ [0, 1], Fs ∶ TN → TM is a monomorphisms which lifts f , i.e.

N M

TN TM

f

Fs

commutes,

• F0 = dg and Fs(TpN)⊕Df(p) = Tf(p)M for every p ∈ N .

For moving transverse 3-manifolds around in our manifold, we would like to have an h−principle
for these maps. This brings us to the next statement. Note that this statement contains the term
“loose”, which we will comment on in Remark 6.5.

Conjecture 6.4. Let M be a n−dimensional manifold, and D a bracket-generating distribution on
M . Let N be a manifold such that codim(N) = rank(D). Then, there exists an h−principle for
transverse embeddings of N with respect to D if

• codim(N) ≥ 3,

• codim(N) = 2, and if the embeddings of N into M are loose.

Remark 6.5. Let us briefly comment on the term “loose” in Conjecture 6.4. In [35], Murphy proves
an h−principle for a class of Legendrian embeddings in contact manifolds of dimension greater or
equal to 5. She calls these Legendrian embeddings loose. The idea is very similar to that of proving
an h−principle for distributions which are overtwisted. Namely, the class of embeddings is defined
in such a way, that all the ingredients are present to prove that the h−principle indeed holds. This
is also how we want to define these loose transverse embeddings, but since the statement has not
been proven yet, the explicit definition of loose is not immediately clear at this moment.

We are not going to prove this result in the thesis, due to its complexity and lack of time. Unfortu-
nately, there has not been a proof written down in the literature yet, which is why we denote it as a
conjecture. However, for now, we will think of loose transverse embeddings as a class of transverse
embeddings, for which the h−principle above indeed holds. ▶

As a corollary of Conjecture 6.4, we have the following result.

Corollary 6.6. Let (M,D) be a (2, 3, 5)−manifold and let

f0 ∶ L
3
↪M, f̃1 ∶ U ⊂ L↪M

be embeddings transverse to D, with U ≅ D3
and f0 loose. Then there exist maps

fs ∶ L↪M

transverse to D for all s ∈ [0, 1] with fs∣∂L = f0∣∂L and f1∣U = f̃1.

This corollary will help us in Chapter 8 to attach pieces of the overtwisted disc to the top-simplices.
Since we need to use this result when moving the overtwisted disc, we will need the embedding of
the 3-manifold which we use for the Lutz twisting, to be loose. Therefore, when we formally define
the overtwisted disc, the term “loose” will also appear.

6.4 The overtwisted disc

In this section we will formally define the notion of an overtwisted disc in a (2, 3, 5)−manifold. We
will define it by adding a Lutz twist along the boundary of the tubular neighbourhood of a transverse
3-manifold. The definition given here is very similar to the definition in [12] by del Pino and Vogel for
overtwisted discs in Engel manifolds. Just like the overtwisted disc in Engel manifolds, we will require
the overtwisted disc in a (2, 3, 5)−manifold to satisfy an additional quantitative property. Note that
the definition below contains a looseness assumption, which does not appear in the definition in [12].
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Definition 6.7. Consider the (2, 3, 5)−manifold (D5
, Dst) and let L be a 3-dimensional submanifold

as in Section 6.1, with shrinking constant τ0, which is embedded in M by a loose embedding. Let
∂ν(L) denote the boundary of the tubular neighbourhood of L, and let ∂ν̃(L) denote the boundary
of a slightly smaller tubular neighbourhood of L. Let L(Dst) be the (2, 3, 5)−structure obtained from
Dst by adding a (2, 3, 5)−Lutz twist along ∂ν̃(L). Then

∆OT = (D5
, DOT = L(Dst)) ⊂ (D5

, Dst)
is an overtwisted disc.

We say a (2, 3, 5)−manifold (M,D) is overtwisted if there is an embedding

ψ ∶ ∆OT ↪ (M,D)
which pulls back the (2, 3, 5)−structure, i.e. ψ∗(D) = DOT .

Remark 6.8. Let us explain why we add the Lutz twist in the definition above, not along ∂ν(L),
but along the boundary of a slightly smaller tubular neighbourhood ∂ν̃(L). This ensures that the
overtwisted disc is entirely contained in the tubular neighbourhood ν(L). This will help us later on
when we shrink the overtwisted disc in showing the self-replicating property in Section 6.5. See also
Figure 6.4 for an illustration of the overtwisted disc. ▶

Figure 6.4: An illustration of the overtwisted disc as in Definition 6.7. Here the 3-dimensional
submanifold L is indicated in blue, and the boundary of the tubular neighbourhood ν(L) in red.
Furthermore, we note that the Lutz twist, which is schematically indicated in green, is added along
the boundary of the slightly smaller tubular neighbourhood ν̃(L).

We denote the space of overtwisted (2, 3, 5)−structures by Dist
OT
(2,3,5)(M), and we can endow it with

the subspace topology coming from Dist(2,3,5)(M). The statement we are trying to prove, Theorem
0.4, is on the space of (2, 3, 5)−structures with a fixed overtwisted disc. By this we mean that we
are essentially establishing a specific model for the overtwisted disc, by fixing an embedding.

Let ∆ ∶ D5
→ M be a smooth embedding. We define Dist

OT
(2,3,5)(M,∆) ⊂ Dist(2,3,5)(M) to be

the space of those (2, 3, 5)−structures such that the pullback by ∆ is DOT . Similarly, we define

FDist
OT
(2,3,5)(M,∆) ⊂ FDist(2,3,5)(M) to be the space of formal overtwisted (2, 3, 5)−structures,

which are genuinely (2, 3, 5) on im(∆), and the pullback by ∆ is DOT . We endow both spaces with
the subspace topology.

Remark 6.9. In the next section we will show that in the presence of an overtwisted disc, we can
produce new ones by homotopy. This allows us to use/alter one of these discs in the proof of Theorem
0.4, while there is also still a disc present of the fixed model. In the extension part of the proof
of Theorem 0.4, we will move pieces of the overtwisted disc around in the manifold. As explained
before, we shall need to shrink the tubular neighbourhood ν(L) for this. The upshot of defining
the overtwisted disc in the standard (2, 3, 5)−structure Dst, is that the latter is preserved under the
scaling we will perform (see also Lemma 6.10). ▶

6.5 Self-replication of the overtwisted disc

In Chapter 8 we are going to use the overtwisted disc to prove Theorem 0.4. However, as mentioned
earlier in this chapter, the spaces Dist

OT
(2,3,5)(M,∆) and FDist

OT
(2,3,5)(M,∆) contain structures with a
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fixed embedding of the overtwisted disc. When we use the disc in the extension part, how do we know
if it is still the same as the initial model? In this section we are going to show that in the presence of
an overtwisted disc, we can produce new ones by homotopy. We call this the self-replicating property
of the overtwisted disc. It allows us to leave one of these discs (in the fixed model) for what it is.
So when we talk about self-replication in this section, we mean that we are going to homotope the
structure, such that another copy of the overtwisted disc will appear. In this section it will also be-
come clear that the shrinking constant in Definition 6.7 will be a key ingredient in the self-replication.

Let us briefly outline how we are going to show this self-replicating property. In the first subsection
we are going to shrink the tubular neighbourhood ν(L) by using a scaling map. Thereafter, we are
going to construct a bump function, which will allow us to construct a hypersurface along which we
can Lutz twist. In the last subsection, we will show that Lutz twisting along this newly constructed
hypersurface, will produce two overtwisted discs in the initial model.

6.5.1 Shrinking the tubular neighbourhood

For the self-replication, we first want to shrink the original overtwisted disc. We do this by scaling
the tubular neighbourhood ν(L) by the following map:

ψλ ∶ D5
→ D5

, (x, z, y, t, w) ↦ (λx, λ3z, λ2y, λt, λ3w),
where 0 < λ < 1 is a constant. See Figure 6.5 for an illustration of this. We write ψ

∗(ν(L)) for the
scaled tubular neighbourhood.

Figure 6.5: An illustration of the scaling function ψλ applied to the tubular neighbourhood ν(L),
where L is a 3-dimensional submanifold transverse to the (2, 3, 5)−structure. We denote the shrunken
tubular neighbourhood by ψ

∗
λ(ν(L)).

An important property of the map ψλ, is that it preserves the (2, 3, 5)−structure Dst along ν(L).
This is proven in the following lemma.

Lemma 6.10. Let (D5
, Dst) be the standard (2, 3, 5)−manifold with

Dst = ⟨∂t, ∂x + y∂z + t∂y + t
2
∂w⟩.

Then the diffeomorphism ψλ preserves Dst.

Proof. We note that Dst = ker(α, β, γ) where

α = dy − tdx

β = dz − ydx

γ = dw − t
2
dx.

We see that

ψ
∗
λα = λ

2
dy − λ

2
tdx = λ

2
α

ψ
∗
λβ = λ

3
dz − λ

3
ydx = λ

3
β

ψ
∗
λγ = λ

3
dw − λ

3
t
2
dx = λ

3
γ.

Since ker(λ2α, λ3β, λ3γ) = ker(α, β, γ), the diffeomorphism ψλ indeed preserves Dst.
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6.5.2 A suitable bump function

In this subsection we construct a bump function which will connect the smaller tubular neighbour-
hood ψ

∗
λ(ν(L)) to the edge of the ball B, see Figure 6.6. This will ensure that when we Lutz twist

along this newly-formed hypersurface, it all matches up nicely to the rest of the (2, 3, 5)−structure.
If we view the radius of L as the x−axis, with x = 0 as its center, we note that the figures in
this section portray the positive x−values. For the negative x−values, we perform the processes
described in this section analogously, but mirrored in x = 0.

We need the bump function to have the following properties:

• The slope of the function should be at most h
l/4 .

• As λ gets closer to 0, the bump function should contain a larger horizontal part at height λh.

• At the upper corner the function should contain a small horizontal part at height h.

Let us shed light on why we want these properties for the bump function. In Definition 6.7 we
required L to have shrinking constant τ0. In Section 6.1 we explained that requiring h < τ0 means
that we can cut off the tubular neighbourhood ν(L) with a slope of h

l/4 as in Figure 6.3, while

the distribution stays transverse to ν(L). Therefore, the first condition above, ensures that the
distribution is still transverse to the bump function. The second condition will become more clear
in the next section. Namely, in this horizontal part at height λh, we will eventually see the (scaled)
original overtwisted disc, plus an extra copy next to it. This is why we require the bump function to
be more horizontal when λ gets closer to 0. Lastly, we require the function to contain a small part
of height h at the upper corner, because when we Lutz twist along the bump function, we want it
to match up with the Lutz twisting at the boundary of ν(L) in a smooth manner.

Figure 6.6: An illustration of the bump function φλ which connects ψ
∗
λ(ν(L)) to the edge of the

ball B. Note that φλ partly runs along the dotted line with slope 4h
l
.

Let us give a more explicit expression for this bump function to show that it indeed exists. We can
express the dotted line in Figure 6.6 by a map f ∶ R → R with

f(m) = 4h

l
m − 3h.

Note that for simplicity we parameterise the length and height of the overtwisted disc by a single
parameter, while in fact h depends on two and l on three variables. However, this construction still
clearly illustrates the purpose and properties of the bump function.

We can then construct the map φλ ∶ [0, l + ϵ] → R with

φλ(m) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λh if m ∈ [0, λ+3
4
l]

4h
l
m − 3h if m ∈ [λ+3

4
l, l]

h if m ∈ [l, l + ϵ]
,

which has all the desired properties as discussed above. We then take a C
1
-small smoothing of φλ

(which we will still denote by φλ), which will give us a smooth function with the same desired prop-
erties. The bump function φλ([0, l+ ϵ]) together with the scaled tubular neighbourhood ψ

∗
λ(ν(L)),
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form a hypersurface along which we can Lutz twist. In the next section we will see that when we
do this carefully, two copies of the overtwisted disc will appear.

6.5.3 An extra copy of the overtwisted disc appearing

In the previous subsection we showed that we can construct a bump function φλ which connects
ψ
∗
λ(ν(L)) with the edge of the ball B. We note that ∂(ψ∗

λ(ν(L))) and φλ together form a hy-
persurface, which we denote by Hλ. See also Figure 6.7. We denote the boundary of the tubular
neighbourhood ν(L) by H1. In this subsection we will show that along Hλ we have an isomorphic
copy of the (original) overtwisted disc in D along H1, and thereafter we will show that next to the
overtwisted disc along Hλ, there exists another isomorphic copy. Recall that this was the purpose
of this section, and that we call this the self-replicating property of the overtwisted disc.

Figure 6.7: Illustration of the hypersurfaces H1 and Hλ. The hypersurface Hλ is formed by the
scaled boundary ∂(ψ∗

λ(ν(L))) and the bump function φλ.

First of all, suppose we ‘undo’ the Lutz twist of D along H1. We denote the resulting structure by
L−1(D). Recall from Definition 6.7 that L−1(D) looks like Dst over B. From Lemma 6.10 we know
that this local model is preserved under the scaling of ψλ. We then want to add a Lutz twist along
Hλ, in such a way, such that there appears an overtwisted disc along Hλ which is isomorphic to the
initial overtwisted disc along H1. This is shown in the next lemma.

Lemma 6.11. Let Lλ(L−1(D)) denote the structure which arises from adding a Lutz twist along
Hλ. Then, for every λ, there exist an isomorphism

Φλ ∶ Lλ(L−1(D))∣∂(ψ∗
λ(ν(L))) → L1(L−1(D)),

from an overtwisted disc along ∂(ψ∗
λ(ν(L))) to the initial overtwisted disc.

Proof. Recall from Section 5.2 that we constructed the Lutz twist using a vector field T ∈ D trans-
verse to the hypersurface. On H1 we denote this vector field by T1. On ∂(ψ∗

λ(ν(L))) we have
the vector field ψ

∗
λ(T1). On the bump function φλ we connect the vector field ψ

∗
λ(T1) to T1 in a

continuous way. Note that this is possible because Hλ is a hypersurface transverse to D. We denote
the resulting vector field by Tλ. See also Figure 6.8 below.

We use this Tλ to Lutz twist along Hλ and we denote the resulting distribution by Lλ(L−1(D)).
Note that the structure Lλ(L−1(D)) then matches up nicely at the edges, and that we automatically
have an isomorphism:

Φλ ∶ Lλ(L−1(D))∣∂(ψ∗
λ(ν(L))) → L1(L−1(D)),

from the overtwisted disc in Lλ(L−1(D)) along ∂(ψ∗
λ(ν(L))) to the initial overtwisted disc in

L1(L−1(D)) = D.

To prove that an extra copy of the overtwisted disc appears next to the overtwisted disc along
∂(ψ∗

λ(ν(L))), we first look at the following lemma.

Lemma 6.12. Let G be a Lie group,

σ ∶ G ×N → N, (g, x) ↦ g ⋅ x
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Figure 6.8: Illustration of vector fields transverse to the hypersurfaces H1 and Hλ used in the proof
of Lemma 6.11. Here T1 and ψ

∗
λ(T1) are indicated in blue. The vector field Tλ is formed by ψ

∗
λ(T1)

and the orange vectors which connect ψ
∗
λ(T1) to T1. We choose Tλ in such a way that it is a

smooth vector field tangent to the distribution and transverse to Hλ, which agrees with ψ
∗
λ(T1) on

∂(ψ∗
λ(ν(L))), and agrees with T1 on the small horizontal part in the top right corner. Note that one

could also in fact take Tλ to be vertical on the entire hypersurface Hλ, as Hλ itself is never vertical.

an action of G on the manifold N , and let D be a (2, 3, 5)−structure on the manifold N × (−ϵ, ϵ).
Suppose that D is preserved under the action

σ̃ ∶ G ×N × (−ϵ, ϵ) → N × (−ϵ, ϵ), (g, x, t) ↦ (g ⋅ x, t),

then L(D) is also preserved under σ̃.

Proof. Recall from the construction of the Lutz twist in Section 5.2 we use the model

D̄(p, t) = ⟨∂t, H̄p(t) = cos(t)Xp + sin(t)Yp + αt
2
Wp⟩,

with 0 < α < 1, coming from Lemma 5.5, to add the extra loop. Also recall from Lemma 5.4 that the
frame {X,Y, Z,W} is associated to (D,N), meaning that X ∈ D ∩ TN , Y ∈ E ∩ TN and Z ∈ FN .
If a Lie group action preserves D, these vector fields are preserved, and thus this local model is also
preserved. Meaning if we Lutz twist using this local model, the structure L(D) is also preserved
under the Lie group action.

Using this lemma we can prove that next to the overtwisted disc along ∂(ψ∗
λ(ν(L))), another (iso-

morphic) copy of the overtwisted disc exists.

Proposition 6.13. In the presence of one overtwisted disc with a given model (i.e. a given embed-
ding ∆ ∶ ∆OT → (M,D)), we can produce another one with the same model by homotopy, which
preserves the formal data. More specifically, in the setting of this section, next to the overtwisted
disc along ∂(ψ∗

λ(ν(L))), there exists another isomorphic copy along Hλ.

Proof. First of all, we note that the standard (2, 3, 5)−structure Dst can be given as the kernel of
three 1-forms:

Dst = ker(dy − tdx, dz − ydx, dw − t
2
dx).

This kernel is invariant under translations in the z− and w−direction, and thus by Lemma 6.12 the
structure L(Dst) is also invariant under translations in the z− and w−direction.

Recall from Section 6.1 that the transverse 3-manifold L was spanned by the directions ∂y, ∂z and

∂w. Therefore, the structure Lλ(L−1(D))∣∂(ψ∗
λ(ν(L))) is preserved when moving in the horizontal

part of Hλ at height λh along the ∂z and ∂w direction. From this follows that an isomorphic copy
of the overtwisted disc appears next to the overtwisted disc along ∂(ψ∗

λ(ν(L))).

By Lemma 6.11 we know that the overtwisted disc along ∂(ψ∗
λ(ν(L))) is isomorphic to the initial

overtwisted disc. Therefore, we have indeed shown that in the presence of one overtwisted disc with
a given model/embedding, we can produce another one with the same model by homotopy. We note
that the homotopy preserves the formal data, as it is a homotopy of genuine (2, 3, 5)−structures.
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Chapter 7

Reducing to the extension problem

In this chapter we will discuss several results and techniques which will help us to reduce the proof
of Theorem 0.4 to a simplified problem, namely an extension problem, as also discussed in the
introduction of this thesis. This means that after this chapter, we will only need to achieve the
(2, 3, 5)−condition in the top-simplices in order to prove Theorem 0.4. In the first subsection we
will discuss the setting of the problem we are trying to reduce. Thereafter, we will look at adapted
triangulations, which will help us achieve the (2, 3, 5)−condition in the codimension-1 skeleton in the
third section in a controlled manner. As a consequence of this result, we will prove the h−principle
for (2, 3, 5)−structures on open manifolds in the last section. Recall that this last result is also an
immediate consequence of Gromov, and the proof we present also uses similar techniques as in the
proof of Theorem 0.3.

7.1 Setup

Let M be a 5-dimensional closed manifold, and let

D ⊂ E ⊂ TM

be a formal overtwisted (2, 3, 5)−structure. We will from now on sometimes also just write D for
the formal (2, 3, 5)−structure, which implicitly comes with this flag and the isomorphisms from
Definition 2.10. Furthermore, we require that D contains an embedding ∆ of the overtwisted disc.
As a corollary of Theorem 0.4, we will also prove that the h-principle is relative in the domain.
Therefore, let U ⊂M be a closed submanifold such that:

• D∣U is (2, 3, 5),

• the manifold M\U is connected,

• ∆ is contained in M\U .

Lastly, in order to talk about angles and distances we fix a Riemannian metric on M .

The goal of this chapter is to homotope the formal (2, 3, 5)−structure D such that it becomes
genuinely (2, 3, 5) in the complement of some nice-looking open subsets of M . These subsets are
called shells, and on these we will ultimately perform the extension.

Definition 7.1. Let D ⊂ E ⊂ TM be a formal (2, 3, 5)−structure on M such that D = ⟨T,X⟩ for
two vector fields T and X on M . Let c > 0 be a given constant. We define a shell to be an open
subset V ⊂M such that

• D is (2, 3, 5) on a neighbourhood of the boundary,

• V is a flow box of T . Let ∂t denote the vector field T in the coordinates of V .

• The angle between D∣t=0 and D∣t=t0 is bounded (in absolute value) by c > 0, for every t0. The
same holds for E.
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Remark 7.2. Let us briefly clarify the third condition in the definition above. A shell is a flow box
of a vector field T , and thus we can express T as ∂t in V . This means that D = ⟨∂t, X⟩, and we can
view the vector field X as a map

X ∶ (−ϵ, ϵ) → S3, t↦ X(t).

The third condition in Definition 7.1 ensures that when we move in the t−coordinate from one side
to the other side of V , this map does not change that much. We will need this later on in the
extension part where we “fill up” the top-simplices with pieces of the overtwisted disc. ▶

The following statement will be the main result of this chapter:

Proposition 7.3. Let D ⊂ E ⊂ TM a formal overtwisted (2, 3, 5)-structure. Then there is a formal
overtwisted (2, 3, 5)-structure

D ⊂ E ⊂ TM

satisfying the following conditions:

(i) It is homotopic to the original formal data, relative to ∆ and U .

(ii) D is (2, 3, 5) in the complement of a finite collection of shells.

We can immediately carry out a first reduction of the problem, by applying Gromov (Theorem 0.3).
Namely, let B be a closed ball in M such that ∆ ⊂ B̊. We note that M\B is an open manifold.
We can therefore use Gromov to homotope the formal structure to a genuine (2, 3, 5)−structure on
M\B, relative to the boundary ∂B and relative to U . This allows us the rest of the proof to assume
that M = D5

, and that the formal (2, 3, 5)−structure is genuinely (2, 3, 5) near the boundary ∂D5
.

Since now M is orientable, we know by Proposition C.18 that D is also orientable. This allows
us to write D = ⟨T,X⟩ for vector fields T and X on M , which form a positively oriented basis
for D. In the next section we will therefore often write T ⊂ D ⊂ E for the flag of the formal
(2, 3, 5)−structure D. We note that this first reduction step preserves the formal data coming from
the formal (2, 3, 5)−structure, as it is an application of an h−principle.

7.2 Adapted triangulations

An important ingredient in the proof of the h-principle is a triangulation T of our manifold M ,
which is adapted to some particular distributions on M . Namely, we want the simplices to be small
enough such that these distributions are almost constant with respect to the affine coordinates of
the simplices. The definitions and lemmas which we will discuss in this section are very similar to,
and inspired by, the definitions and lemmas in Section 6.2.2. from [12]. In [12] the definitions and
results are focused on the parametric h-principle for Engel structures, but since the h-principle we
are trying to prove is not parametric, the definitions and statements here are simplified.

7.2.1 General position and adapted triangulations

We start with some definitions on simplices and triangulations.

Definition 7.4. Let M be a manifold of dimension m and ξ a smooth distribution of codimension
q on M . A top-simplex σ ⊂ M is in general position with respect to ξ if the linear projection
σ → Rm/ξp, for all p ∈M , maps each q-dimensional subsimplex of ∂σ to a non-degenerate simplex
of Rq ≅ Rm/ξp. We note that this linear projection is defined in the affine coordinates provided by
the simplex σ.

We say a triangulation T of M is in general position, if every top-simplex is in general position.

If T is a triangulation which is in general position with respect to a distribution ξ, then it follows that
every simplex of T is in fact transverse to ξ. Now let D be a formal (2, 3, 5)-structure, with a vector
field T ⊂ D tangent to D. Recall that a formal (2, 3, 5)-structure comes with a flag D ⊂ E ⊂ TM .
For our construction we want a triangulation with simplices transverse to these distributions, which
leads to the following definition.

Definition 7.5. A top-simplex σ ⊂ M is adapted to T ⊂ D ⊂ E if σ is in general position with
respect to the distributions T , D and E.

A triangulation T is adapted to T ⊂ D ⊂ E if
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• every top-simplex σ ∈ T is adapted to T ⊂ D ⊂ E,

• it is a triangulation of the pair (M,Op(U)), where Op(U) is a neighbourhood of U .

We then introduce some notation which will help us point out some useful properties of adapted
triangulations. Let σ be an adapted top-simplex. We write Tσ ⊂ Dσ ⊂ Eσ for the restrictions of the
spaces T ⊂ D ⊂ E to σ. Since σ is adapted, Tσ, Dσ and Eσ are transverse to the subsimplices of σ.
Therefore, given a codimension-1 subsimplex of σ, Tσ is nowhere tangent to it, Dσ intersects it in a
line field and Eσ intersects it in a plane field.

We then fix orientations of Tσ and Dσ, which allows us to define the following space:

σ− ∶= union of those faces where Tσ points into σ.

As stated above, Dσ cuts codimension-1 subsimplices in a line field, and thus we can also define the
following space:

H ∶= Tσ− ∩Dσ.

We note that H divides the boundary of σ− into two parts:

∂−σ− ∶= subspace of σ− where H points inwards

∂+σ− ∶= subspace of σ− where H points outwards.

Both these spaces are codimension-2 complexes and homeomorphic to closed balls.

Remark 7.6. In Figure 7.1 you can see an illustration of these spaces. Note that σ is here represented
as a 3-simplex, as a 5-simplex is hard to draw. A useful property of these adapted triangulations
becomes apparent in this figure. Namely, we note that the line field H, informally speaking, starts
at one side of the face and moves towards the other side of the face. Later on, in the extension part,
we will use the flow of this line field to move a piece of the overtwisted disc, along the bottom of the
simplex. ▶

Figure 7.1: Illustrations of the different subsets of σ as defined above [12, p. 36]. The vector field T
is given by the vertical direction, the bottom face represents σ− and the thickened line the subspace
∂−σ−. The lines on the bottom face represent the line field H which is tangent to D.

7.2.2 Existence of adapted triangulations

In this section we show that adapted triangulations actually exist, and also certain covers associated
to these triangulations.

Lemma 7.7. There exists

• a cover {Ui} of M\Op(U ∪∆) by balls that are flow boxes of T , and

• an adapted triangulation T ,

such that every top-simplex σ ∈ T is contained in some Ui.

60



Proof. By compactness of M we know that there is a finite covering of M\Op(U ∪ ∆) by flow
boxes of T . We can then fix a triangulation subordinate to this covering. We then apply to this
triangulation what is called Thurston’s jiggling. This is the carefully perturbing and subdividing of
the simplices using crystalline subdivision. Thurston’s jiggling yields a triangulation in which the
simplices are indeed in general position with respect to a certain distribution, and the argument can
be applied to all the distributions involved. See also [40] for the original argument by Thurston.

Definition 7.8. Let T = {σ} be an adapted triangulation. A covering {U(σ)}σ∈T of M\Op(U ∪∆)
is associated to T if:

(i) We have σ ⊂ ∪σ′
⊆σU(σ′) for every σ ∈ T .

(ii) Each U(σ) is a flow box of T . From this follows that we can divide the boundary of U(σ) into
two parts, the horizontal and vertical part:

∂
hU(σ) ∶= subspace of ∂U(σ) which is transverse to T ,

∂
vU(σ) ∶= subspace of ∂U(σ) which is tangent to T .

(iii) U(σ) and U(σ′) only intersect if σ
′
⊂ σ or σ ⊂ σ

′
. Furthermore, if σ

′
⊂ σ, then U(σ) intersects

∂U(σ′) in its vertical part.

Furthermore, if ∂t = T in an open U(σ), then we call U(σ)∣t=t0 the fibre of U(σ) at t = t0. We also
use the notation U(σ)t for the fibre of U(σ) at t.

In the following lemma we prove that given a certain adapted triangulation, one can actually con-
struct such an associated covering.

Lemma 7.9. Given an adapted triangulation T and a covering {Ui} as in Lemma 7.7, there exists
a covering {U(σ)}σ∈T of M\Op(U ∪∆) associated to it.

Proof. Every top-simplex σ ∈ T is contained in some flow box Ui of T . We use induction on the
dimension of σ to prove the result.

First, suppose dim(σ) = 0. We fix a neighbourhood U(σ) of σ which is a flow box of T . We fix
its length along the flow lines of T , but shrink the neighbourhood in all other directions. Since all
simplices are transverse to T , it follows that all incident 1-simplices will enter through ∂

vU(σ).

Suppose the statement holds for all simplices of dimension dim(σ) = n < dim(m). Now let dim(σ) =
n + 1. In order to construct the neighbourhood U(σ), we first slightly shrink the simplex σ, which
yields a simplex σ

′
, such that the boundary of σ

′
is still contained in ∪τ⊊σU(τ). Thereafter, we

thicken the slightly smaller simplex σ
′
to a neighbourhood U(σ) such that the thickening along T

is much greater than in the other directions. This will give the desired property that simplices
containing σ will enter U(σ) through ∂

vU(σ).

7.3 Achieving the (2, 3, 5)-condition in the codimension-1 skele-
ton

In this section we will show that we can homotope a formal (2, 3, 5)-structure such that it becomes
genuinely (2, 3, 5) in a neighbourhood of the codimension-1 skeleton. Since this neighbourhood
is open, we could achieve this by applying Gromov. However, when we use Gromov, we do not
know precisely what the resulting structure will look like. In this section, we will achieve the
(2, 3, 5)−condition around the codimension-1 skeleton in a controlled way. Namely, after we have
proven Proposition 7.3, we know quite well what the distribution looks like in the shells. This will
help us in Chapter 8, when we perform the extension. The results in this section are new and thus
this section is an original contribution of the thesis. Proposition 7.3 will follow as a corollary of
this result. The proofs in this section are very similar to the construction of the (2, 3, 5)−structure
on the mapping torus in Section 3.3. We first prove the following preparatory lemma of which the
statement and proof resemble the statement and proof of Lemma 3.7.

Lemma 7.10. Let T ⊂ D ⊂ E be a formal (2, 3, 5)−structure, and let T be an adapted triangulation
with {U(σ)}σ∈T an associated covering. Then there is a rank 3 distribution Ẽ such that
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• Ẽ and E agree on U ∪∆,

• Ẽ = ⟨T, X̃, Ỹ ⟩ for vector fields X̃ and Ỹ tangential to the fibres of U(σ),

• ξ̃t ∶= Ẽ ∩ (U(σ) ∩ {t}) is non-integrable for all t,

• D̃ ∶= ⟨∂t, X̃⟩ is formally homotopic to D.

Proof. Recall that T being an adapted triangulation also means that there is a subcomplex T∂ ⊂ T
which triangulates the boundary ∂Op(U ∪∆). Since D is already (2, 3, 5) on U and ∆, we are only
going to perform modifications on T \T∂ . This will ensure the first property in the statement. We
will be working inductively on the dimensions of the simplices σ ∈ T \T∂ .

First let σ be a 0−simplex, and let U(σ) be the corresponding neighbourhood coming from the
associated covering of T . Recall that U(σ) is a flow box of T , and we denote by ∂t the local
coordinate direction of this vector field. Note that we can parameterise t such that σ lies in the fibre
t = 0. We then pick a vector field X which lies in D and is tangential to the fibres, i.e. we have

D = ⟨∂t, X⟩.

We also pick a vector field Y ∈ E tangential to the fibres, and linearly independent of X, i.e. we
have

E = ⟨∂t, X, Y ⟩.
We note that on every fibre, we can view ξt ∶= ⟨Xt, Yt⟩, where Xt ∶= X∩U(σ)t and Yt ∶= Y ∩U(σ)t,
as a 2-distribution on a 4-manifold.

From the isomorphism D ∧ E/D ≅ TM/E we obtain the isomorphism

ξt ∧ ξt ≅ TM/ξt.

We then invoke Theorem 1.10 parametrically in t. From this we obtain a non-integrable distribu-
tion ξ̃t on U(σ)t, homotopic to ξt. This means that we can find vector fields X̃ and Ỹ such that
ξ̃t = ⟨X̃t, Ỹt⟩, where X̃t ∶= X̃ ∩ U(σ)t and Ỹt ∶= Ỹ ∩ U(σ)t. We then define the rank-3 distribution
Ẽ = ⟨∂t, X̃, Ỹ ⟩ on U(σ), which has the desired properties.

Now let σ be a 1-simplex and U(σ) the corresponding neighbourhood. Again, we have that U(σ) is
a flow box of T , and thus we can denote one of the coordinate directions by ∂t. We want to carry out
the same process as above to yield the desired distribution Ẽ . However, we should be careful about
overlapping neighbourhoods U(σ′) for σ

′
⊂ σ. Using the h−principle from Theorem 1.10 relatively

to these overlapping neighbourhoods, ensures that we do not alter the distributions we have already
constructed around the 0-simplices.

We can iterate this process until we have dealt with all the simplices. The resulting distribution Ẽ
has the desired properties. We note that D and D̃ are formally homotopic, as the main ingredient
we use in this proof is an h−principle (and thus the formal data is preserved).

Using this lemma we will now show that we can homotope the formal (2, 3, 5)−structure such that
it becomes genuinely (2, 3, 5) in a neighbourhood of the codimension-1 skeleton.

Lemma 7.11. Let T ⊂ D ⊂ E be a formal overtwisted (2, 3, 5)−structure. Let T be an adapted
triangulation with {U(σ)}σ∈T an associated covering. Then, there is a plane field D such that

(i) D is formally homotopic to D through plane fields containing T ,

(ii) D and D agree on U ∪∆

(iii) D is (2, 3, 5) in U(σ) for every σ ∈ T with dim(σ) < dim(M).

Proof. Just as in the previous lemma, we are only going to modify D on T \T∂ , and we will be
working on the dimension of the simplices σ ∈ T \T∂ .

From Lemma 7.10 we know that there exists a rank-3 distribution Ẽ with all the properties as listed
in the lemma. We now pick a vector field Z̃ ∈ ⟨[X̃, Ỹ ]⟩ tangential to the fibres of U(σ), which is
linearly independent of X̃ and Ỹ by construction, and we pick a vector field W̃ tangential to the
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fibres such that locally we have TM = ⟨∂t, X̃, Ỹ , Z̃, W̃ ⟩.

Now let σ be a 0-simplex, and let U(σ) be the corresponding neighbourhood coming from the asso-
ciated covering of T . Note that U(σ) is a flow box of T = ∂t, and assume that t ∈ (−δ, δ) for some
δ > 0. Now take a look at a function ρ ∶ (−δ, δ) → (−δ, δ) depicted in Figure 7.2.

Figure 7.2: Illustration of the function ρ ∶ (−δ, δ) → (−δ, δ) used in the proof of Lemma 7.11. Note
that in a neighbourhood around 0, ρ is almost constant.

We then look at the pull-back of the vector fields X̃, Ỹ , Z̃ and W̃ by ρ. We note that by do-
ing this, there is a neighbourhood around the simplex σ where the vector fields ρ

∗(X̃), ρ∗(Ỹ ),
ρ
∗(Z̃) and ρ

∗(W̃ ) depend very little on t. I.e. we can assume that the derivatives of the frame
{ρ∗(X̃t), ρ∗(Ỹt), ρ∗(Z̃t), ρ∗(W̃t)} with respect to t are arbitrarily small. Additionally, we note that
the dilation ρ preserves the formal data, i.e. D̃ is formally homotopic to ρ

∗(D̃).

Let ζ be the bump function from Figure 5.2, as constructed in Subsection 5.1.1. We then define the
vector field X by

Xt ∶= ((1 − ζ(t)) cos(t) + ζ(t))ρ∗(X̃t) + (1 − ζ(t)) sin(t)ρ∗(Ỹt) + (1 − ζ(t))t2ρ∗(W̃t).

We are going to show that D = ⟨∂t, X⟩ is (2, 3, 5) in a neighbourhood of σ. Therefore, we want to

take a closer look at the vector fields
˙
Xt,

¨
Xt and [Xt,

˙
Xt]. We will do this in the neighbourhood

around σ where the vector fields ρ
∗(X̃), ρ∗(Ỹ ), ρ∗(Z̃) and ρ∗(W̃ ) depend very little on t. Assuming

here that the derivatives {ρ∗(X̃t), ρ∗(Ỹt), ρ∗(Z̃t), ρ∗(W̃t)} with respect to t are arbitrarily small, and
thus ignoring these terms for now, we have the following:

˙
Xt = ((1 − cos(t)) ˙ζ(t) − (1 − ζ(t)) sin(t)) ρ∗(X̃t) + (− sin(t) ˙ζ(t) + (1 − ζ(t)) cos(t)) ρ∗(Ỹt)

+ (−t2 ˙ζ(t) + (1 − ζ(t)) 2t) ρ∗(W̃t)
¨
Xt = ((1 − cos(t))¨ζ(t) + 2 sin(t) ˙ζ(t) − (1 − ζ(t)) cos(t)) ρ∗(X̃t)

+ (− sin(t)¨ζ(t) − 2 cos(t) ˙ζ(t) − (1 − ζ(t)) sin(t)) ρ∗(Ỹt)

+ (−t2¨ζ(t) − 4t
˙
ζ(t) + 2(1 − ζ(t))) ρ∗(W̃t)

[Xt,
˙
Xt] = ((1 − ζ(t))2 + cos(t)ζ(t)(1 − ζ(t)) − sin(t) ˙ζ(t)) ρ∗([X̃t, Ỹt])+

(−t2ζ(t) ˙ζ(t) + (cos(t)2t + sin(t)t2)(1 − ζ(t))2 + (2tζ(t) − t
2 ˙
ζ(t))(1 − ζ(t))) ρ∗([X̃t, W̃t])

+ ((sin(t)2t − cos(t)t2)(1 − ζ(t))2) ρ∗([Ỹt, ρ∗W̃t]).
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By construction we have that close to 0, the bump function ζ is either 0 or of order t
2
, its derivative

is either 0 or of order t, and its second derivative is either 0 or of constant value between −2q and

2q. In the case where ζ = 0, the vector fields Xt,
˙
Xt,

¨
Xt and [Xt,

˙
Xt] are automatically linearly

independent. In the other case, we can look at the following approximations:

Xt = ((1 −O(t2))(1 +O(t2)) +O(t2)) ρ∗(X̃t) + (1 −O(t2))O(t)ρ∗(Ỹt) + (1 −O(t2))t2ρ∗(W̃t),
˙
Xt = (O(t2)O(t)) − (1 −O(t2))O(t)) ρ∗(X̃t) + (O(t)O(t) + (1 −O(t2)) (1 +O(t2))) ρ∗(Ỹt)

+ (−t2O(t) + (1 −O(t2)) 2t) ρ∗(W̃t)
¨
Xt = (O(t2) ⋅ ±2s + 2O(t)O(t) − (1 −O(t2)) (1 +O(t2))) ρ∗(X̃t)

+ (O(t) ⋅ ±2s − 2 (1 +O(t2))O(t) − (1 −O(t2))O(t)) ρ∗(Ỹt)
+ (−t2 ⋅ ±2s − 4tO(t) + 2(1 −O(t2))) ρ∗(W̃t)

[Xt,
˙
Xt] = ((1 −O(t2))2 + (1 +O(t2))O(t2)(1 −O(t2)) −O(t)O(t)) ρ∗([X̃t, Ỹt])+

(−t2O(t2)O(t) + ((1 +O(t2)) 2t +O(t)t2) (1 −O(t2))2 + (2tO(t2) − t
2O(t)) (1 −O(t2)))

⋅ ρ
∗ ([X̃t, W̃t]) + ((O(t)2t − (1 +O(t2)) t2)(1 −O(t2))2) ρ∗ ([Ỹt, W̃t]) .

From this follows that for t close to 0, and thus close to σ, the vector field Xt is close to the vector

field ρ
∗(X̃t), the vector field ˙

Xt is close to ρ
∗(Ỹt), the vector field ¨

Xt is close to −ρ∗(X̃t)+2ρ
∗(W̃t),

and the vector field [Xt,
˙
Xt] is close to ρ

∗([X̃t, Ỹt]). Therefore, D = ⟨∂t, X⟩ is indeed (2, 3, 5) in
a neighbourhood of σ. Since these vector fields are so close to each other, we note that D is also
formally homotopic to ρ

∗(D̃).

Now let σ be a 1-simplex and U(σ) the corresponding neighbourhood. Again, we have that U(σ) is
a flow box of T , and thus we can denote one of the coordinate directions by ∂t. We want to carry
out the same process as above to yield the desired plane field D. However, just like in the previous
lemma, we should be careful about overlapping neighbourhoods U(σ′) for σ

′
⊂ σ. We know from

Definition 7.8 that U(σ) intersects ∂U(σ′) in its vertical part, i.e. the part where T is tangent to
∂U(σ′). This means that along these fibres, we have already constructed the desired plane field D.
Using Lemma 5.4, we know we can homotope D along these fibres such that it has the form

⟨∂t, cos(t)Xp + sin(t)Yp + t
2
Zp⟩,

and we cut off away from σ
′
, with an appropriate bump function, to yield a smooth distribution.

We note that this is a C
0−small change, and thus this distribution is homotopic to the distribution

before. We can then construct Xt around σ in the same way as before, and interpolate between
the distribution at the 0-simplices. This constructs a distribution, which we will also denote by D,
which is (2, 3, 5) in a neighbourhood around σ.

We can iterate this process until we have dealt with all the simplices of positive codimension. The
resulting distribution D is then indeed (2, 3, 5) in a neighbourhood of the codimension-1 skeleton,
D = D on U ∪∆ and D is formally homotopic to D.

Remark 7.12. In the proof above, the idea is the following. We dilate the t−coordinate such that it
becomes very stretched out. This makes the family of non-integrable distributions ξ̃t more constant
in t. Therefore, the first and second derivatives of the frame {X̃t, Ỹt, Z̃t, W̃t} are made arbitrarily
small. We then turn in the X̃t and Ỹt direction and add a little W̃t for convexity, and we obtain
the (2, 3, 5)−condition. We note that this is very similar to the idea behind the mapping torus
construction in Section 3.3. There we did not explicitly carry out the dilation, but the idea was the
same. See also Remark 3.9(i). ▶

We are now ready to prove the main result of this chapter.

Proof of Proposition 7.3. From Lemma 7.7 we know that there exists an adapted triangulation, and
from Lemma 7.9 we know that there exists a covering associated to this triangulation. Then by
Lemma 7.11 there exists a formal (2, 3, 5)−structure D which is formally homotopic to D, relative
to ∆ and U , and which is genuinely (2, 3, 5) in a neighbourhood of the codimension-1 skeleton.
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What is left is to construct the shells. Let U(σ) be a neighbourhood from the associated covering of a
top-simplex σ. We know that U(σ) is a flow box of T , and by possibly shrinking this neighbourhood,
we have that D is (2, 3, 5) on the boundary. Furthermore, we want the angle that the distributions
D and E make with every fibre t = t0 to be bounded by a given constant c > 0. We can achieve
this by possibly dividing the constructed neighbourhood into several separate neighbourhoods. The
resulting neighbourhoods are shells. Since the manifold we are working on is closed and thus compact,
there are finitely many top-simplices, and thus finitely many shells. We conclude that D is (2, 3, 5)
in the complement of a finite collection of shells.

7.4 The h-principle for (2, 3, 5)−structures on open manifolds

In this section we will discuss an immediate consequence of Lemma 7.11. Namely, that the inclusion
of the space of (2, 3, 5)−structures into the space of formal (2, 3, 5)−structures on open manifolds,
induces a surjection on π0−level. See also Lemma 7.16. We have seen before in Section 2.3 that
the h−principle holds for (2, 3, 5)−structures on open manifolds, and Lemma 7.16 is also a corollary
of this result. However, in this section we will prove it using Lemma 7.11 and the fact that the
handle-dimension of an open manifold is strictly smaller than its dimension. This will also highlight
why in the closed manifold case we in fact still need to perform the extension. Let us first look at
the concept of handle-dimension.

Definition 7.13. Let M be a smooth manifold. Suppose there exists a simplicial complex K of
dimension n, with a deformation retract

(ψs)s∈[0,1] ∶M → K

onto K, such that ψs is a diffeomorphism for all s ≠ 1, but there is no simplicial complex K
′
of

dimension n − 1 with the same property, we say the handle-dimension of M is n.

Theorem 7.14. The handle-dimension of an open smooth manifold M , is smaller than its dimen-
sion.

Proof. We will give a brief sketch of the proof as it is quite technical. The idea is the following. Pick
a triangulation T of M . We then construct a graph φ ∶ G↪M with the following properties:

• φ does not intersect simplices of codimension greater of equal to 2,

• φ contains the barycenters of all top-simplices,

• φ(G) is a union of affine simplices connecting each barycenter to the boundary of some
codimension-1 face,

• G is a tree (a connected graph with no cycles).

This graph allows us to define an isotopy (ψt)t∈[0,1], using the isotopy extension theorem, such that
the image of ψ1 lies in the complement of the barycenters of the top-simplices.

Remark 7.15. The proof of Gromov’s h−principle, Theorem 0.3, is in fact also a consequence of this
theorem. Therefore, using this theorem to prove the h−principle for (2, 3, 5)−structures on open
manifolds, is in fact very similar to redoing the proof of Gromov applied to this specific case. ▶

Combining this theorem with Lemma 7.11, we can now (re)prove the following result.

Lemma 7.16. Let M be an open manifold. Then the following inclusion

Dist(2,3,5)(M) ↪ FDist(2,3,5)(M)

induces a surjection on π0−level.

Proof. Let D be a formal (2, 3, 5)−structure on an open manifold M . By Lemma 7.11 we know
that there exists a formal (2, 3, 5)−structure D which is homotopic to D, and which is (2, 3, 5)
along the codimension-1 skeleton. Since M is open, we know that the handle dimension is strictly
smaller than dim(M). From this follows that there exists a deformation retraction of M to a
neighbourhood which lies in the complement of the barycenters of the top-simplices. Let (ψs)s∈[0,1]
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denote this deformation retraction. Now let (ϕt)t∈[1,2] be an isotopy pushing the top-simplices minus
barycenter radially out towards their boundaries. We conclude that

(ϕ1 ◦ ψ1)∗(D)

is a (2, 3, 5)−structure on the whole ofM , which is homotopic to D by the homotopy (ψ∗
s (D))s∈[0,1].

Remark 7.17. The proof of Lemma 7.16 relies heavily on this deformation retraction described above.
Since the handle dimension of a closed manifold is not necessarily strictly smaller than its dimension,
we cannot invoke this trick. Therefore, we need to work a bit harder to prove the h-principle for
overtwisted (2, 3, 5)−structures on closed manifolds. Namely, we need to still obtain the (2, 3, 5)-
condition in the top-simplices. Recall from the introduction, that this is precisely what is called the
extension problem, and that we will use the overtwisted disc to achieve the (2, 3, 5)−condition on
the whole manifold. ▶
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Chapter 8

The extension

In this chapter we will prove the main result of this thesis. Let us repeat the statement.

Theorem 0.4. Let M be a closed 5-dimensional manifold. Then the inclusion

Dist
OT
(2,3,5)(M,∆) ↪ FDist

OT
(2,3,5)(M,∆),

is a weak homotopy equivalence.

We will do this by first proving that this inclusion induces a bijection on π0−level, i.e. the first
sections of this chapter will be devoted to proving the following theorem.

Theorem 8.1. Let M be a closed 5-dimensional manifold. Then the following map

ι∗ ∶ π0 (Dist
OT
(2,3,5)(M,∆)) → π0 (FDist

OT
(2,3,5)(M,∆)) ,

induced by the inclusion ι ∶ Dist
OT
(2,3,5)(M,∆) ↪ FDist

OT
(2,3,5)(M,∆), is a bijection.

In Chapter 7, we reduced the surjectivity part of this problem to the extension problem. I.e.
given a formal (2, 3, 5)−structure, we found a way to homotope it to a formal (2, 3, 5)−structure
which is (2, 3, 5) in the complement of a finite collection of shells. What is left is to obtain the
(2, 3, 5)−condition in these shells. We do so by first remodeling these neighbourhoods such that
they are easier to work with. Next, we will recall a result from Chapter 6, which will help us to
a move piece of the overtwisted disc towards a shell. Thereafter, we will show how we can use the
overtwisted disc to “fill up” the shell, and thereby obtain the (2, 3, 5)−condition. This finishes the
surjectivity part of the proof of Theorem 8.1. After that, we will prove that the map is also injective,
by using very similar techniques as we used for the surjectivity part. The last section of this chapter
focuses on proving that the inclusion is also an isomorphism on higher homotopy groups, which will
finish the proof of Theorem 0.4.

The material presented in this chapter has not been published before, and thus this is an original
contribution of the thesis. As a small remark, the proofs presented in this chapter are slightly less
detailed than the proofs we have seen before. We invite the reader to think about, and fill in these
details.

8.1 Set up

Let us quickly recap the setting we are working in and what we have achieved in Chapter 7. Let M
be a closed 5-dimensional manifold and let

D ⊂ E ⊂ TM

be a formal overtwisted (2, 3, 5)−structure with a vector field T ∈ D. Let ∆ be an embedding of
the overtwisted disc into (M,D), and let U ⊂M be a submanifold such that

• D∣U is (2, 3, 5),

• M\U is connected,
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• ∆ is contained in M\U .

In Chapter 7 we proved that there is a formal (2, 3, 5)−structure

D ⊂ E ⊂ TM

which satisfies the following conditions:

(i) It is homotopic to the original formal data through plane fields containing T , relative to ∆
and U .

(ii) D is (2, 3, 5) in the complement of a finite collection of shells.

For the surjectivity part of Theorem 8.1, what is left is to homotope D such that it becomes (2, 3, 5)
also in the shells. The proof of Proposition 7.3 uses a triangulation T adapted to T ⊂ D ⊂ E with
associated covering {U(σ)}σ∈T . We will continue to use this same triangulation and covering in this
chapter.

8.2 Remodelling the shells

In this section we explain how we want to remodel (or view) the shells, such that they are easier
to work with once we perform the extension. Recall from Section 7.1 that a shell is an open subset
V ⊂M such that

• D is (2, 3, 5) on a neighbourhood of the boundary,

• V is a flow box of T , so we can denote T = ∂t in V ,

• the angle between D∣t=0 and D∣t=t0 is bounded (in absolute value) by a given constant c > 0,
for every t0. The same holds for E .

We want the opens which we are going to perform the extension on, to have the following additional
properties:

(i) They are of (smooth) cubic form, meaning their boundaries have a (4-dimensional) bottom
and top face, connected by (4-dimensional) side faces in a smooth manner,

(ii) They are flow boxes of T , and the bottom and top face are transverse to T ,

(iii) On the bottom face there should be flow lines tangent to D going from one side face to the
opposite side face.

See also Figure 8.1 for an illustration of this. We can in fact easily construct these opens. Namely,
in Chapter 7 we constructed the distribution D by making it (2, 3, 5) in a neighbourhood of the
codimension-1 skeleton, and we chose the shells by looking at slightly smaller copies of the top-
simplices. Within this neighbourhood of the codimension-1 skeleton, we have enough freedom to
choose such a neighbourhood of cubic form, as described above. Note that the initial properties of
a shell are then still satisfied.

Furthermore, recall that the triangulation we are working with is adapted to the vector field T ,
meaning that the faces of a top-simplex are transverse to T . If we choose the faces of cube close
enough to the boundary of the top-simplex, this will mean that also the bottom and top face are
transverse to T . Lastly, recall from Remark 7.6, that if a triangulation is adapted to a distribution
D, then on the bottom of each top-simplex, there are flow lines tangent to D flowing from one side to
the other. See also Figure 7.1. This is a property which follows from the fact that the distributions
T and D are transverse to all simplices in T . Since we have not altered T , this is still the case.
So, again, choosing the cube close enough to the boundary of the top-simplex will yield the same
property, and thus property (iii).

In the rest of this chapter, we shall work with these opens, and refer to them as cubical shells.

68



Figure 8.1: Illustration of a shell in cubical form. Here the vector field T = ∂t is the vertical direction,
and the blue flow lines on the bottom are tangent to D.

8.3 Moving the overtwisted disc

As mentioned before, we want to use the overtwisted disc to fill up the cubical shells. This requires
that we find a way to move the overtwisted disc towards the shells. For this we recall the following
result from Chapter 6.

Corollary 6.6. Let (M,D) be a (2, 3, 5)−manifold and let

f0 ∶ L
3
↪M, f̃1 ∶ U ⊂ L↪M

be embeddings transverse to D, with U ≅ D3
and f0 loose. Then there exist maps

fs ∶ L↪M

transverse to D for all s ∈ [0, 1] with fs∣∂L = f0∣∂L and f1∣U = f̃1.

From Definition 6.7 we know that we define an overtwisted disc in a manifold as a Lutz twist added
along the boundary of the tubular neighbourhood of a transverse 3-manifold L, which is embedded
by a loose, transverse embedding. Corollary 6.6 tells us how to move this 3-manifold, and thus we
have a way to move the overtwisted disc to the cubical shells. See also Figure 8.2. We note that for
every shell, we only move a piece D3

⊂ L towards it.

Figure 8.2: Illustration of how we move a piece of the overtwisted disc towards a cubical shell, using
Proposition 6.6 to move the 3-manifold L. Recall that the Lutz twist is added along ν(L).
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8.4 Filling up the shells

We will obtain the (2, 3, 5)−condition in the cubical shells in two steps. First, we stretch out the
tubular neighbourhood ν(L) along the bottom of the cube. Secondly, we stretch out the Lutz twist
coming from the overtwisted disc all the way to the top of the cube. Doing so, we need to be
careful that the resulting distribution is still smooth and matches up nicely with the neighbourhood
of the boundary of the cube where the distribution is already (2, 3, 5). If we have achieved the
(2, 3, 5)−condition in the cubical shells, we can use this in the next section to show that we can
homotope a formal overtwisted (2, 3, 5)−structure, into a genuine overtwisted (2, 3, 5)−structure.

8.4.1 Moving along the bottom of the cube

We first take a look at the following lemma. It states that we can isotope transverse hypersurfaces,
through transverse hypersurfaces, using flows of transverse vector fields.

Lemma 8.2. Let D be a rank 2 distribution on a manifold M . Let N be a hypersurface which is
transverse to D. In particular, let X be a vector field tangent to D and transverse to N . Let φt
denote the flow of X. Then φt(N) is also transverse to X, and thus to D, for all time t.

Proof. Let q ∈ φt(N) such that φt(p) = q for p ∈ N . Since N is transverse to X, we know that

TpN ⊕Xp = TpM.

We then note that

Tq(φt(N))⊕Xq = (dpφt)(TpN)⊕ (X ◦ φt)q
= (dpφt)(TpN)⊕ (dpφt)(Xp)
= (dpφt)(TpN ⊕Xp)
= (dpφt)(TpM)
= TqM.

The last step is justified by the fact that φt is a diffeomorphism and thus dpφt ∶ TpM → TqM is a
bijection between tangent spaces. This shows that indeed φt(N) is transverse to X, and thus to D,
for all time t.

Recall that we can use Corollary 6.6 to move (piece of) the overtwisted disc towards a cubical shell.
We now want to use this idea of moving transverse hypersurfaces along flows of vector fields, to push
the boundary of the tubular neighbourhood ∂ν(L) along the bottom of the cubical shells. Recall
that on the bottom faces of the shells we have flow lines tangent to D. We will move part of ∂ν(L)
along these flow lines to obtain a neighbourhood of L which covers the whole bottom face. This idea
is written down formally in the next lemma. The idea of the proof is very similar to that of Lemma
8.2.

Lemma 8.3. Let B ⊂ M be a 4-dimensional submanifold which is isomorphic to the space [0, 1]4.
Let L be a 3-dimensional manifold which we can embed in B as [0, 1]3 × {0}, and let ν(L) denote
its normal bundle. Let D be a rank 2 distribution on M . Let X be a vector field tangent to D with
flow φt, for which there exists a map f ∶ [0, 1]3 × {0} → R such that

φf([0, 1]3 × {0}) = [0, 1]3 × {1}.

I.e. the flow lines of X on B, flow from one side to the other. See also Figure 8.3 for an illustration
of this setting. We can then use the flow of X to isotope the boundary ∂ν(L) in the direction of
[0, 1]3 × {1} such that the resulting neighbourhood around L covers all of B, and the boundary is
transverse to D. See Figure 8.4 for an illustration of this result.

Proof. Let N be a subset of ∂ν(L) which is a thickening of the intersection of ∂ν(L) with B. We
note that we can choose N such that N is transverse to X. See also Figure 8.5. Let Ñ be a slightly
smaller thickening inside N . We then construct the following function:

g ∶ N → R, p↦ χ(p)f(p),
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Figure 8.3: Illustration of the setting of Lemma 8.3.

Figure 8.4: Illustration of the result of Lemma 8.3.

where χ ∶ N → [0, 1] is a smooth bump function which is 1 on Ñ and 0 near the boundary of N ,
see also Figure 8.6. We can then define the map

φg ∶ N →M, p↦ φg(p)(p).

Note that φg is a diffeomorphism onto its image. We then want to show that φg(N) is still transverse
to the vector field X.

Let q ∈ φg(N) such that φg(p) = q for p ∈ N . Since N is transverse to X, we know that

TpN ⊕Xp = TpM.

We then note that

Tq(φg(N))⊕Xq = (dpφg)(TpN)⊕ (X ◦ φg)q
= (dpφg)(TpN)⊕ (dpφg)(Xp)
= (dpφg)(TpN ⊕Xp)
= (dpφg)(TpM)
= TqM.

Here in the last step, we use that dφg∣N is a bijection on tangent spaces. From this we can conclude
that φg(N) is still transverse to the vector field X. We note that (∂ν(L)−N)∪φg(N) is a smooth
hypersurface transverse to D, of which its inside is a neighbourhood of L which covers B.

Using the homotopy of the tubular neighbourhood ν(L) above, we can stretch out the piece of
overtwisted disc along the bottom face of the cubical shell. This is shown in the next lemma.

Lemma 8.4. Let M be a manifold and let D ⊂ E ⊂ TM be an overtwisted formal (2, 3, 5)−structure
on M . Let C be a cubical shell disjoint from the overtwisted disc, and let D be genuinely (2, 3, 5)
in a neighbourhood of the boundary ∂C. Suppose we have used Corollary 6.6 to move a piece of the
overtwisted disc towards C. Let D

′
denote this distribution. We can then homotope D

′
, such that the

resulting structure is overtwisted on the whole bottom face of the shell C. The resulting distribution
is formally homotopic to D

′
.
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Figure 8.5: Illustration of the proof of Lemma 8.3.

Figure 8.6: Illustration the bump function χ used in the proof of Lemma 8.3.

Proof. First of all, we can use Lemma 8.3 to push the boundary ∂ν(L) along the bottom face as also
portrayed in Figure 8.3 and 8.4. We do this carefully, such that ∂ν(L) stays in the neighbourhood
of ∂C where D

′
is (2, 3, 5). To obtain a distribution which is overtwisted along the bottom of the

shell, we stretch the Lutz twist along the bottom face as we push the boundary ∂ν(L). Note that
essentially, we are just reparameterising in the X−direction. The resulting distribution is formally
homotopic to D

′
, as this proof just uses homotopies of distributions which are genuinely (2, 3, 5).

8.4.2 Moving the overtwisted disc vertically

In the previous subsection we have shown how we can stretch out the overtwisted disc along the
bottom of the cubical shell. What is left, is to use this overtwisted disc to fill up the shell in the
vertical direction, i.e. from bottom to top. This is formulated in the following lemma.

Lemma 8.5. Let M be a manifold and let D ⊂ E ⊂ TM be an overtwisted formal (2, 3, 5)−structure
on M . Let C be a cubical shell disjoint from the overtwisted disc, and let D be genuinely (2, 3, 5)
in a neighbourhood of the boundary ∂C. Suppose we have used Corollary 6.6 to move a piece of the
overtwisted disc towards C, and we have used Lemma 8.4 to push the disc along the bottom of the
shell. Let D

′
denote this resulting distribution. Then there exists a constant c > 0 (as in Definition

7.1), such that we can homotope D
′
, using the overtwisted disc on the bottom, making it (2, 3, 5) on

whole of C. The resulting structure is formally homotopic to D
′
.

Proof. First of all, recall from the definition of a shell that the vertical direction is parameterised
by the t−coordinate, and that we have the following property. Given a constant c > 0, the angle
between D∣t=0 and D∣t=t0 is bounded (in absolute value) by c > 0, for every t0, and the same holds
for E . At the end of this proof, it will become clear how we should choose c.

Take a look at Figure 8.7, where we portray the side face of the shell C. Along the bottom, there is
an overtwisted disc, and in orange we have indicated the hypersurface along which the Lutz twist is
added. Since D is (2, 3, 5) in a neighbourhood of ∂C, we can find another hypersurface, indicated
in blue in Figure 8.7, along which one could Lutz twist. Note that the blue and orange hypersurface
overlap near the bottom. We then use Corollary 6.6 to move a piece of overtwisted disc towards C,
such that we also obtain a Lutz twist along blue. We place this Lutz twist in such a way that it
matches with the Lutz twist along orange at the overlapping areas.

Now take a look at Figure 8.8. We know that the vertical direction of a shell is parameterised by the
t−coordinate, and thus we can reparameterise t, such that the bottom of the shell is at level t = 0,
and the top at level t = 1. Figure 8.8 shows a homotopy, which brings the orange hypersurface up,
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Figure 8.7: Illustration of the side face of the shell C. In orange and blue we see two hypersurfaces
of tubular neighbourhoods around the boundary of the shell. Along these hypersurfaces, there are
Lutz twists, which we indicate by the small green twist.

such that the middle part is situated at t = 1
2
. Note that we construct this homotopy using similar

techniques as in Lemma 8.2. When performing this homotopy, we stretch out the Lutz twist along
orange such that it fills up the whole shell. Note that the resulting distribution is (2, 3, 5) in C, and
during this process, we have pushed some area which is not (2, 3, 5), above the shell. We denote the
resulting distribution by D0.

Figure 8.8: In this illustration we portray the homotopy of the orange hypersurface as used in the
proof of Lemma 8.5. The hypersurface is pushed to the level t = 1

2
, and during this process, the

Lutz twist is stretched and eventually fills the whole shell.

Now take a look at Figure 8.9. Here we see a very similar homotopy, where we push the blue hyper-
surface down to half way the shell (i.e. t = 1

2
). Again, when we perform this homotopy, we stretch

out the Lutz twist such that it fills the whole shell. Note that again, the resulting distribution is
(2, 3, 5) on C, but we have pushed some region where the distribution is not (2, 3, 5), below the shell.

To obtain the desired distribution, we interpolate from D0 to D1 in the t−coordinate, when moving
from the bottom to the top of the shell. We denote the resulting distribution by D

′
. So why is D

′

(2, 3, 5) on C (and a neighbourhood of C)? Recall that when moving from bottom to top in a shell,
in the direction of the t−coordinate, the distributions D and E do not change drastically. Namely,
this was bounded by a constant c. When we choose c small enough, the distribution at the bottom
and the top will look very similar. Therefore, the Lutz twist around orange and blue will also look
very alike. This means that the linear interpolation between D0 and D1 will not be that aggressive,
and thus the resulting structure will be (2, 3, 5). Also, note that by linearly interpolating from D0

to D1, the regions which were not (2, 3, 5) which we pushed out of C in the homotopies of Figures
8.8 and 8.9, are not present in the resulting distribution D

′
anymore.
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Figure 8.9: In this illustration we portray the homotopy of the blue hypersurface as used in the
proof of Lemma 8.5. The hypersurface is pushed down to the level t = 1

2
, and during this process,

the Lutz twist is stretched and eventually fills the whole shell.

We note that D is homotopic to D0, and by linear interpolation, it is homotopic to D
′
. Lastly, we

note that this homotopy is also a formal homotopy, as we chose the constant c > 0 small. Namely,
because of this, D and E change very little when moving from bottom to top, and also D0 and D1

differ only very little. Therefore, all the homotopies in this proof preserve the given formal data.

8.5 Proof of Theorem 8.1

We have now gathered all the ingredients in order to prove the surjectivity part of Theorem 8.1. In
this section we will combine all these results, also from previous chapters, to prove that the inclusion
indeed induces a surjection on path components. Thereafter, it turns out that we can use many
of those same techniques and results in order to prove the injectivity on π0-level. This finishes the
proof of Theorem 8.1.

8.5.1 Proof of π0-surjectivity

Theorem 8.6. Let M be a closed 5-dimensional manifold. Then the following map, induced by the
inclusion, is a surjection:

π0 (Dist
OT
(2,3,5)(M,∆)) → π0 (FDist

OT
(2,3,5)(M,∆)) .

Proof. Let D ⊂ E ⊂ TM be a formal overtwisted (2, 3, 5)−structure with embedding ∆ ∶ ∆OT ↪

(M,D), which is already (2, 3, 5) on a subset U ⊆ M . From Proposition 7.3 we know that there
exists a formal (2, 3, 5)−structure

D ⊂ E ⊂ TM

which is homotopic to the original formal data, relative to ∆ and U , and D is (2, 3, 5) in the com-
plement of a finite collection of shells.

From Proposition 6.13 we know that in the presence of an overtwisted disc, we can produce another
one with the same model, by homotopy, which respects the formal data. We still denote the resulting
structure, after carrying out this homotopy, by D ⊂ E ⊂ TM . We then pick one of the overtwisted
discs, and we focus on a single shell. As discussed in Section 8.2, we can view this shell as a cubical.
We then use Corollary 6.6 to move a piece of the overtwisted disc towards the cubical shell. This
corollary respects the formal data, as it is an h−principle. Thereafter, we use Lemma 8.4 to push
the overtwisted disc along the bottom face. Lastly, we use Lemma 8.5 to stretch out the overtwisted
disc in the vertical direction, and obtain a distribution with the (2, 3, 5)−condition in the whole shell.

From Proposition 7.3 we know that there are only finitely many shells, and thus we can choose
a constant c > 0, such that we can perform this homotopy on every shell. This procedure yields
a genuine overtwisted (2, 3, 5)−structure, which we will denote by D

′
⊂ E ′

⊂ TM , which contains
an (original) embedding ∆ ∶ ∆OT ↪ (M,D) of the overtwisted disc, is not altered on U (see also
Corollary 8.9), and is homotopic to the initial formal (2, 3, 5)−structure D ⊂ E ⊂ TM . We note
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that all the homotopies carried out in this proof respect the original formal data coming from the
formal (2, 3, 5)−structure D ⊂ E ⊂ TM , and thus this proves indeed that the map in the statement
is surjective.

8.5.2 Proof of π0−injectivity

In this subsection we will prove that the map in Theorem 8.1 is also injective. This finishes the
proof of this theorem, as we have already showed that it is surjective. As mentioned before, the
injectivity proof uses many of the same techniques and results as the surjectivity proof. However,
since we are working with a homotopy of formal (2, 3, 5)−structures which we want to turn into
genuine (2, 3, 5)−structures, we need to apply several of these results in a parametric setting. We
do not explicitly prove that these results also hold in a parametric setting, which is why the proof
below is given as a sketch.

Theorem 8.1. Let M be a closed 5-dimensional manifold. Then the following map

ι∗ ∶ π0 (Dist
OT
(2,3,5)(M,∆)) → π0 (FDist

OT
(2,3,5)(M,∆)) ,

induced by the inclusion ι ∶ Dist
OT
(2,3,5)(M,∆) ↪ FDist

OT
(2,3,5)(M,∆), is a bijection.

Sketch of proof. From Theorem 8.6 we know that the map in the statement is a surjection, so
what is left to show is that is it also an injection. Therefore, let D0 and D1 be two overtwisted
(2, 3, 5)−structures with a fixed embedding of the overtwisted disc ∆ ∶ ∆OT ↪ (M,D), that are

homotopic as formal overtwisted (2, 3, 5)− structures. Let (Ds)s∈[0,1] ⊂ FDist
OT
(2,3,5)(M,∆) denote

this homotopy.

Consider the 6-dimensional manifold M × [0, 1], where [0, 1] is parameterised by s. From Lemma
7.7 and 7.9, we know there exists an adapted triangulation together with an associated covering.
Using Thurston’s jiggling [40], we can ensure that this adapted triangulation is also transverse to
the fibresM×{s}. Shortly, it will become clear why we put this extra condition on the triangulation.

We note that the distributions Ds are all transverse to simplices of positive codimension. Therefore,
we can use the same techniques as in the proofs of Lemma 7.10, Lemma 7.11 and Proposition 7.3,
but in a parametric setting, to obtain a homotopy of distributions (Ds)s∈[0,1] with D0 = D0 and

D1 = D1, such that the Ds are (2, 3, 5) in the complement of a finite collection of shells. We can
do this relatively to s = 0, 1, as D0 and D1 are already genuinely (2, 3, 5). We note that in this
case, shells are open sets ofM×[0, 1], and thus 6-dimensional. We will refer to these shells as 6-shells.

What is left is to obtain the (2, 3, 5)−condition for the distributions on the fibres of the 6-shells. For
this we will need the overtwisted discs, but since we want to keep a copy of the initial embedding,
we need to replicate it. From Proposition 6.13 we know that in the presence of an overtwisted disc,
we can produce another one with the same model by homotopy. We carry out this process for all the
distributions Ds, parametrically in s, to yield a homotopy of distributions with each two copies (or
more if necessary) of the initial embedding ∆ ∶ ∆OT ↪ (M,D). We will still denote this homotopy

by (Ds)s∈[0,1].

We have constructed the triangulation in such a way that all the simplices are also transverse to the
fibres M × {s}. From this follows that the fibres of the 6-shells are either 0-simplices, or 5-shells.
See also Remark 8.7 for more comments on this. Now, as described in Section 8.2 we can view 5-
dimensional shells as cubical. Similarly, we view 6-shells as cubical, if each fibre over s is a 0-simplex
or a 5-dimensional cubical shell, in the sense of Section 8.2.

We then apply Corollary 6.6 in a parametric sense, i.e. we move a piece of the overtwisted disc
times a piece of the interval [0, 1] and attach it to a cubical 6-shell, by attaching it on every fibre
over s to the cubical 5-shells in the same way as in Figure 8.2, but smoothly with respect to s. We
then apply Lemma 8.4 to push the overtwisted disc along the bottom of every 5-dimensional shell,
which we again do in a smooth manner with respect to parameter s. Lastly, we apply Lemma 8.5,
parametrically in s, to stretch out the overtwisted disc in the vertical direction of every 5-shell, and
by this we obtain distributions on the fibres, which are (2, 3, 5) on the 5-shells.
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From Proposition 7.3 we know that there are only finitely many 6-shells, and thus we can carry out
this process finitely many times. This procedure yields a homotopy of (2, 3, 5)−structures, which we
will denote by (D′

s)s∈[0,1], with D′
0 = D0 and D

′
1 = D1, and which contain an (original) embedding

∆ ∶ ∆OT ↪ (M,D) of the overtwisted disc.

Remark 8.7. In the proof of Theorem 8.1 above, we triangulate the manifold M × [0, 1] such that
the simplices are also transverse to the fibres M × {s}. We do this such that on each fibre, a 6-
dimensional simplex either looks like a 0-simplex or a 5-simplex. This makes it easier to apply the
results we have already proven for 5-simplices, like Corollary 6.6, Lemma 8.4 and Lemma 8.5. In
the next section, we will prove that the inclusion

ι ∶ Dist
OT
(2,3,5)(M,∆) ↪ FDist

OT
(2,3,5)(M,∆),

also induces a bijection on higher homotopy groups. For this, we will need to look at Sn−families
of formal (2, 3, 5)−structures. We will then triangulate the manifold Sn ×M and require that the
simplices are also transverse to the fibres {x}×M , for x ∈ Sn. This is for precisely the same reason.
Then the cut of the top-simplices with the fibres {x} ×M will either look like 0- or 5-simplices,
which makes it easier to apply results we have already seen for 5-simplices. ▶

8.6 Higher homotopy groups

Recall that a weak homotopy equivalence means that a map induces an isomorphism on not just
path-components, but also on higher homotopy groups. Therefore, to prove Theorem 0.4, we need
still need to prove the theorem below. Just like the π0−injectivity part, the proof of this theorem
uses a lot of the same results and techniques that we used for the π0−surjectivity part. However,
now we need to adapt it to Sn−families of (formal) (2, 3, 5)−structures. The proof given below is
more of a sketch, to provide the idea of the proof, but the reader is welcome to fill in the technical
details.

Theorem 8.8. LetM be a closed 5-dimensional manifold. Let D0 be an element in Dist
OT
(2,3,5)(M,∆).

Then the following map,

ι∗ ∶ πn(Dist
OT
(2,3,5)(M,∆), D0) → πn(FDist

OT
(2,3,5)(M,∆), ι(D0))

induced by the inclusion ι ∶ Dist
OT
(2,3,5)(M,∆) ↪ FDist

OT
(2,3,5)(M,∆), is a bijection for all n ≥ 1.

Sketch of proof. First, we want to show that the map ι∗ is surjective. Let f ∶ Sn → FDist
OT
(2,3,5)(M,∆)

be a pointed map. We can also view this map as an Sn−family of formal (2, 3, 5)−structures
(Dx)x∈Sn . Let us give an outline of the proof. Note that the structure is very similar to the proof
of Theorem 8.1.

• First, we construct an adapted triangulation, which is also transverse to the fibres {x} ×M
for x ∈ Sn.

• Thereafter, we use the same techniques as in Proposition 7.3, but parametrically in x, to
obtain an Sn−family of formal (2, 3, 5)−structures (Dx)x∈Sn , where each Dx is (2, 3, 5) along
the codimension-1 skeleton.

• Hereafter, we move a region O×∆(∆OT ), where O is an open in Sn, towards every top-simplex.
We do this by applying Corollary 6.6, but then in a parametric setting.

• Lastly, we use this overtwisted region to fill up the top-simplex and obtain the (2, 3, 5)−condition.
We note that for every top-simplex, its cut with the fibre {x} ×M is transverse, and thus of
the form of a 5-simplex. Therefore, on every fibre, we can use Lemma 8.4 and Lemma 8.5
parametrically, to obtain the (2, 3, 5)−condition in the top-simplices. See also Remark 8.7

From this we obtain an Sn−family of (2, 3, 5)−structure (D′
x)x∈Sn which are homotopic to the orig-

inal family (Dx)x∈Sn we started with. This proves that the map ι∗ is surjective.

For the injectivity, let f0, f1 ∶ Sn → Dist
OT
(2,3,5)(M,∆) be two pointed maps, and let (hs)s∈[0,1] ∶

Sn → FDist
OT
(2,3,5)(M,∆) be homotopy with h0 = f0 and h1 = f1. We then want to construct

a homotopy (gs)s∈[0,1] ∶ Sn → Dist
OT
(2,3,5)(M,∆) with g0 = f0 and g1 = f1. Note that this boils
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down to homotoping a Sn × [0, 1]−family of formal (2, 3, 5)−structures (D(x,s))(x,s)∈Sn×[0,1] into a
Sn × [0, 1]−family of genuine (2, 3, 5)−structures, relative to 0 and 1. To construct this homotopy,
we use a very similar strategy as in the proof of Theorem 8.1. Let us again give an outline of the
proof.

• We first construct an adapted triangulation of Sn ×M × [0, 1], such that the simplices are
also transverse to the fibres {x} ×M × [0, 1] for x ∈ Sn, and to the fibres Sn ×M × {s} for
s ∈ [0, 1].

• We then use the same techniques as in Proposition 7.3, but parametrically in (x, s), to obtain
an Sn × [0, 1]−family of formal (2, 3, 5)−structures (D(x,s))(x,s)∈Sn×[0,1], where each D(x,s) is
(2, 3, 5) along the codimension-1 skeleton.

• Thereafter, we move a region O ×∆(∆OT ) × (a, b), for an open O ⊆ Sn and an open interval
(a, b) ⊂ [0, 1], towards every top-simplex. Again, we do this by applying Corollary 6.6, but
then in a parametric setting.

• Lastly, we use this overtwisted region to fill up the top-simplex, and obtain the (2, 3, 5)−condition.
Again, we note that for every top-simplex, its cut with a fibre {x} ×M × {s} is transverse,
and thus of the form of a 5-simplex. Therefore, on all those fibres, we can use Lemma 8.4
and Lemma 8.5, in a smooth manner with respect to the parameters x and s, to obtain the
(2, 3, 5)−condition in the top-simplices.

From this we obtain an Sn × [0, 1]−family of (2, 3, 5)−structures (D′
(x,s))(x,s)∈Sn×[0,1], which is ho-

motopic to the original family (D(x,s))(x,s)∈Sn×[0,1]. This proves that the map ι∗ is injective.

The main result of this thesis, Theorem 0.4, follows from Theorem 8.1 and Theorem 8.8. I.e. this
proves the h−principle for overtwisted (2, 3, 5)−structures on closed manifolds!

Recall, that we reduced the statement of Theorem 0.4 in Chapter 7 to an extension problem.
In fact, all the results we presented in Chapter 7 were relative to a region U , where the formal
(2, 3, 5)−structure was already (2, 3, 5). Moreover, the results and constructions in Chapter 6 and
Chapter 8, do not alter the distribution on this region U . Therefore, to conclude this final chapter,
and as a corollary of Theorem 0.4, we have the following result.

Corollary 8.9. Let M be a closed 5-manifold, and let U ⊆ M be a closed subset such that M\U
is connected. Suppose D ∈ FDist

OT
(2,3,5)(M,∆), with D∣U is (2, 3, 5) and ∆ is contained in M\U .

Then there exists a homotopy (Ds)s∈[0,1] ⊂ FDist
OT
(2,3,5)(M,∆) such that

• D0 = D,

• Ds = D on U ∪∆,

• D1 ∈ Dist
OT
(2,3,5)(M,∆).

Furthermore, let D0 and D1 be two elements in Dist
OT
(2,3,5)(M,∆), such that D0∣U and D1∣U are

(2, 3, 5), and let (Ds)s∈[0,1] be a homotopy in FDist
OT
(2,3,5)(M,∆) such that Ds∣U is also (2, 3, 5) for

every s ∈ [0, 1]. Then there exists a homotopy (D′
s)s∈[0,1] ⊂ Dist

OT
(2,3,5)(M,∆), such that

• D
′
0 = D0 and D

′
1 = D1,

• D
′
s = Ds on U ∪∆.

We note that this statement is a result on path-components, but that a similar result can be formu-
lated for the higher homotopy groups.
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Conclusion

In this thesis, we looked at a specific type of bracket-generating distributions, called (2, 3, 5)-
structures. The primary goal was to prove an h−principle on closed manifolds, for a particular
family of (2, 3, 5)−structures, which are called overtwisted. As mentioned in the introduction, prov-
ing an h−principle for a certain type of geometric structure, can tell us more about the existence
and topology of the space of such structures. Let us repeat the main result of the thesis.

Theorem 0.4. Let M be a closed 5-dimensional manifold. Then the inclusion

Dist
OT
(2,3,5)(M,∆) ↪ FDist

OT
(2,3,5)(M,∆),

is a weak homotopy equivalence.

This is a new result, and thus an original contribution of the thesis to the research field.

So how did we prove this theorem? The general idea for proving an h−principle for overtwisted
structures, as also seen in the contact [13] and Engel case [12], is that we define the overtwistedness
in such a way, that we have all the necessary ingredients for proving the h−principle. This is also the
approach we used in this thesis. We defined Lutz twisting in (2, 3, 5)−manifolds, using the contact
and Engel case as a source of inspiration. This allowed us to define the overtwisted disc, for which we
proved a self-replicating property. To establish the surjectivity on π0−level, we then reduced The-
orem 0.4 to an extension problem, i.e. we homotoped a formal overtwisted (2, 3, 5)−structure, to a
distribution which is already (2, 3, 5) in a neighbourhood of the codimension-1 skeleton. Hereafter,
we used the (extra copy of the) overtwisted disc, in order to “fill up” the top-simplices, and obtain the
(2, 3, 5)−condition on the whole manifold. We defined the overtwisted disc in such a way that it has
all the properties we need in order to perform this extension. Using many of the same techniques, we
were also able to prove the injectivity on π0−level, and the isomorphisms on higher homotopy groups.

Now, let us reflect on some limitations of this thesis. First of all, the proof of Theorem 0.4 uses a
statement we did not prove within the thesis, namely Conjecture 6.4. We did justify why we can
use it, but due to a lack of time, we did not provide a proof. Additionally, the proofs in Chapter 8
are less detailed than the proofs presented in the chapters before. Especially when we apply results
in a parametric setting, we do not always explicitly show how we do this. Both of these limitations
are due to time constraints, and we invite the reader to think about these details.

To conclude, we are going to discuss some open questions and ideas for potential further investigation,
which arise from the material presented in this thesis. These questions and ideas could be used as
inspiration for future research. Note that the limitations described above, form the first items in
the list below.

◦ First of all, as mentioned above, we did not prove Conjecture 6.4 in this thesis. This is a
statement on an h−principle for a special class of transverse embeddings, which we call loose.
A similar statement has been proven by Murphy in [35], for loose Legendrian embeddings in
contact manifolds. Similarly, one could explicitly define the definition of a loose transverse
embedding in a manifold endowed with a bracket-generating distribution, and prove that the
h−principle holds.

◦ Many of the results and proofs in this thesis are inspired by results and proofs in [12]. In this
paper, del Pino and Vogel proved the h−principle for overtwisted Engel structures on closed
manifolds, in a parametric setting. In this thesis we also stated a parametric h−principle, and
we proved, although at some points a bit more sketchily, the full weak homotopy equivalence.
One could try and use the more explicit proofs presented in [12] to also make some of the
proofs in this thesis, regarding parametricity, more detailed.
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◦ The next four items all entail possible generalisations of the results in this thesis. First of
all, (2, 3, 5)−structures were a natural choice of object to investigate after contact and Engel
structures, because of dimensional reasons. Therefore, the next object of interest could be
distributions with growth vector (2, 3, 5, 6), as these are maximally non-integrable distributions
of rank 2 on 6−manifolds. One can define what it means for (2, 3, 5, 6)−structures to be
overtwisted, and prove an h−principle for them on closed manifolds. However, one could also
try a more general approach, and define overtwisted maximally non-integrable distributions
of rank 2, on manifolds of arbitrary dimension! Many of the techniques used for the contact,
Engel and now the (2, 3, 5)−case, are very much related, and this makes it plausible that we
can indeed generalise to arbitrary maximally non-integrable distributions of rank 2.

◦ The previous generalisation will probably also make it easier, to possibly generalise the result
to arbitrary maximally non-integrable distributions (so not necessarily of rank 2). One would
have to think about what an overtwisted disc would look like in such a structure, and how we
would use it to achieve the h−principle. A first thing to investigate, is whether we can construct
a similar reduction argument as has been done for contact, Engel and (2, 3, 5)−structures.

◦ A different way of generalising to higher dimensional manifolds, is the following. Recall
that we can also define contact structures on higher odd-dimensional manifolds as maximally
non-integrable hypersurfaces. In [3] Borman, Eliashberg and Murphy establish a parametric
h−principle for overtwisted contact structures on manifolds of all dimensions. It would be
interesting to investigate how their approach is related to the approach we follow in this the-
sis, and to perhaps use this to generalize the methods used to prove Theorem 0.4 to higher
dimensional manifolds.

◦ For the last generalisation, note that in this thesis, we focused on distributions of rank 2
on 5-manifolds, which are everywhere maximally non-integrable. However, suppose we con-
sider distributions of rank 2 which are non-integrable, but not everywhere maximally non-
integrable? For example, suppose we look at overtwisted distributions which have growth
vector (2, 3, 5) almost everywhere, but which are (2, 3, 4, 5) along a hypersurface? Could we
also prove an h−principle on closed manifolds for those structures? And what about even
less regular behaviour? We note that when we allow very irregular behaviour, too far from
maximally non-integrable, then an h−principle would be immediate, as we have a lot more
flexibility. However, there are a lot of cases where an h−principle is not immediate, and thus
are definitely interesting to investigate.

◦ In this thesis, we have defined overtwisted (2, 3, 5)−structures as (2, 3, 5)−structures which
admit an embedding of an overtwisted disc. This is a quite formal definition. A question
which arises, is if there are more conceptual ways of thinking about and defining an overtwisted
disc. This could help us in finding more intuitive examples of overtwisted (2, 3, 5)−structures.
For contact structures, there are several equivalent criteria to decide whether a structure is
overtwisted. For example, the standard Legendrian unknot is loose, and also, there is an open
book compatible with the contact structure, which is negatively stabilised. See [5] for more
equivalent criteria. Can we find such equivalent criteria for overtwisted (2, 3, 5)−structures?

◦ In [9], Dave and Haller discuss the existence question for (2, 3, 5)−structures on orientable
manifolds. They obtain a complete answer in the open case, but not entirely for the closed
case. Thus, this is a first open question. Another question would be, what closed manifolds
admit an overtwisted (2, 3, 5)−structure? Using the h−principle proven in this thesis, we
can already reduce this question to investigating which manifolds admit a formal overtwisted
(2, 3, 5)−structure. For contact structures, we already know that there are some criteria that
obstruct overtwistedness. For example, an overtwisted contact manifold cannot be the bound-
ary of a symplectic manifold, which was proven by Gromov [26] and Eliashberg [14]. Can we
find similar criteria for overtwisted (2, 3, 5)−structures?

◦ Often, it is interesting to investigate whether there are any intuitive or physically motivated
examples of mathematical objects. In the introduction of this thesis we saw a physical exam-
ple of a (2, 3, 5)−structure. Namely, the motion of a ball rolling on a stationary ball without
twisting or slipping. This raises the question, are there any physical examples of overtwisted
(2, 3, 5)−structures? In the contact case, we do have a physical example. Namely, the velocity
field of an inviscid, incompressible fluid flow on a 3-dimensional Riemannian manifold, corre-
sponds to a contact 1-form. In [19], Ghrist and Komendarczyk show that the so called “energy
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minimizing flow” is not necessarily a tight contact structure, but can also be overtwisted. Is
there a similar example for overtwisted Engel or (2, 3, 5)−structures?

◦ Last, but certainly not least, whether the h−principle holds in general for (2, 3, 5)−structures
on closed manifolds, is of course still an open question. This will probably be a harder question
to answer compared to the ones posed above. Namely, also for Engel structures, this is still
one of the main open questions in the field.
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Appendix A

Moser’s trick

In this appendix we are going to prove two strong results regarding (contact) forms. The proofs of
both statements use a technique called Moser’s trick. The trick is named after J. Moser, a German-
American mathematician, who used the trick in 1965 to prove a statement on volume forms and
when they are conjugate by a diffeomorphism of M [34]. It turns out that the trick can be used to
prove many other results, of which we will discuss two in this appendix.

A.1 Gray Stability

In this section we will prove the well-known result of Gray’s stability [23]. From this statement
follows that any two contact structures which are homotopic to each other, in fact only differ by
a diffeomorphism of the manifold. This makes working with contact structures really flexible, as
invariants we define will remain unchanged when we homotope a contact structure. We first look at
two preparatory lemmas before we prove the result.

Lemma A.1. [18, p. 404-406] Let α be a differential k-form on a manifold M , and (ψt)t∈[0,1] an

isotopy of M . Define a vector field Xt on M by d
dt
ψt = Xt ◦ ψt (i.e. ψt is the flow of Xt). Then

d

dt
(ψ∗

t α) = ψ∗
t (LXt

α) .

Proof. The statement follows from observing that:

(i) the formula holds for functions,

d

dt
(ψ∗

t f) =
d

dt
(f ◦ ψt)

= df ◦
d

dt
ψt

= df ◦ (Xt ◦ ψt)
= ψ

∗
t (ιXt

df)
= ψ

∗
t (LXt

f) .

(ii) if it holds for differential forms α and β, then it also holds for α ∧ β,

d

dt
ψ
∗
t (α ∧ β) = d

dt
(ψ∗

t (α) ∧ ψ
∗
t (β))

=
d

dt
ψ
∗
t (α) ∧ ψ

∗
t (β) + ψ

∗
t (α) ∧

d

dt
ψ
∗
t (β)

= ψ
∗
t (LXt

α) ∧ ψ
∗
t (β) + ψ

∗
t (α) ∧ ψ

∗
t (LXt

β)
= ψ

∗
t (LXt

α ∧ β + α ∧ LXt
β)

= ψ
∗
t (LXt

(α ∧ β)).
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(iii) if it holds for α, then also for dα,

d

dt
(ψ∗

t dα) =
d

dt
(dψ∗

t α)

= d
d

dt
(ψ∗

t α)

= dψ
∗
t (LXt

α)
= ψ

∗
t (dLXt

α)
= ψ

∗
t (LXt

dα).

(iv) the algebra of differential forms is locally generated by functions and their differentials.

The next lemma is also proven in [18, p. 59-60], and we use the same structure of proof here.

Lemma A.2. Let (αt)t∈[0,1] be a smooth family of differential k-forms on a manifold M , and

(ψt)t∈[0,1] an isotopy of M . Define a vector field Xt on M by d
dt
ψt = Xt ◦ ψt (i.e. ψt is the flow of

Xt). Then
d

dt
(ψ∗

t αt) = ψ∗
t (

d

dt
αt + LXt

αt) .

Proof. We know from Lemma A.1 that for a time-independent k-form α we have

d

dt
(ψ∗

t α) = ψ∗
t (LXt

α) .

Using this, we see that

d

dt
(ψ∗

t αt) = lim
h→0

ψ
∗
t+hαt+h − ψ

∗
t αt

h

= lim
h→0

ψ
∗
t+hαt+h − ψ

∗
t+hαt + ψ

∗
t+hαt − ψ

∗
t αt

h

= lim
h→0

ψ
∗
t+h (

αt+h − αt
h

) + lim
h→0

ψ
∗
t+hαt − ψ

∗
t αt

h

= ψ
∗
t (

d

dt
αt) + ψ

∗
t (LXt

αt)

=
d

dt
(ψ∗

t αt) = ψ∗
t (

d

dt
αt + LXt

αt) .

The next theorem states the result of Gray’s stability. For the original proof we refer the reader to
[23]. The proof worked out below is based on the proof in [18, p. 60-61], and as mentioned before,
it uses Moser’s trick.

Theorem A.3 (Gray’s stability theorem). LetM be a closed manifold and let (αt)t∈[0,1] be a smooth
family of contact forms on M . There there is a smooth family (ψt)t∈[0,1] ⊂ Diff(M) and a smooth
family of non-vanishing functions (ft)t∈[0,1] on M such that

ψ0 = id and ψ
∗
t αt = ftα0.

In particular, if we set ξt ∶= ker(αt), then the ξt are diffeomorphic under ψt to ξ0.

Remark A.4. As stated before, we shall prove this result using Moser’s trick. The idea is the
following. We assume that ψt is the flow of a time-dependent vector field Xt. Then the result we are
trying to prove can be reformulated as a result concerning Xt. If this result can be proven, we can
then integrate Xt to find ψt. Note that we are working on a closed manifold, which is convenient,
because then the flow of Xt will be defined on the whole manifold. [18, p. 60] ▶
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Proof. We shall obtain ψt by finding the corresponding vector fields Xt such that

d

dt
ψt = Xt ◦ ψt, ψ0 = id.

We now differentiate both sides of the desired equation with respect to t, which gives us:

d

dt
(ψ∗

t αt) = ( d
dt
ft) ⋅ α0 = ( d

dt
ft) ⋅ (ft)−1ψ∗

t αt = gt ⋅ ψ
∗
t αt

where gt ∶= ( d
dt
ft) ⋅ (ft)−1.

Note that we are precisely in the setting of Lemma A.2. Therefore we have the identity

d

dt
(ψ∗

t αt) = ψ∗
t (

d

dt
αt + LXt

αt) .

Using this we get

ψ
∗
t (

d

dt
αt + LXt

αt) = gt ⋅ ψ
∗
t αt.

By removing ψ
∗
t on both sides of the equation we get

d

dt
αt + LXt

αt = (gt ◦ ψ−1
t ) ⋅ αt = ht ⋅ αt,

where ht ∶= gt ◦ ψ
−1
t . We thus want to find vector fields Xt such that the identity above holds.

Using the Cartan formula the desired equation becomes

d

dt
αt + dιXt

αt + ιXt
dαt = ht ⋅ αt.

If we choose Xt ∈ ξt = kerαt then the equation becomes

d

dt
αt + ιXt

dαt = ht ⋅ αt. (A.1)

Now let Rt be the Reeb vector field associated to αt (see also Remark A.5). Then Rt satisfies
Rt ∈ ker(αt) and αt(Rt) = 1. Plugging in Rt in equation A.1 gives us the following:

d

dt
α(Rt) = ht.

Now let Zt ∈ ξt = ker(αt), and let us plug in Zt into equation A.1, this gives us

d

dt
αt(Zt) + ιXt

dαt(Zt) = 0,

so
ιXt

dαt = −α̇t∣kerαt
.

Since dαt is non-degenerate, this determines Xt uniquely. Then we can find ψt by integrating Xt.
The functions ft are uniquely determined from ht and ψt with the initial value f0 = 1.

Remark A.5. In the proof of Theorem A.3 we use a vector field called the Reeb vector field. Given a
contact form α, the Reeb vector field is defined as the unique vector field Rα which has the properties

dα(Rα,−) ≡ 0, α(Rα) ≡ 1.

We note that the Reeb vector field is really connected to the contact form, and not to the contact
structure the form defines. Namely, two different contact forms which define the same structure,
may have very different Reeb vector fields. ▶
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A.2 Darboux’s theorem

In this section we will prove another important result on contact structures using Moser’s trick. In
the previous section we saw that contact structures are very flexible, as there are no local invariants.
Darboux’s theorem states that we can describe any contact structure on a manifold locally by the
same model, called the standard contact structure (see also Figure A.1).

Darboux’s theorem is quite useful when working with contact structures, as for any point in the
manifold, one can pick a neighbourhood with local coordinates (which is also called a Darboux ball)
such that the contact structure is of standard form. Let us formally state the result. The proof
below is based on the proof in [18, p. 67-68], and for the original proof we refer the reader to [8].

Figure A.1: The standard contact structure on R3
spanned by the vector fields ∂y and ∂x+ y∂z [42].

Theorem A.6 (Darboux’s theorem). Let α be a contact form on a manifold M of dimension 2n+1,
and let p ∈ M . Then there are coordinates x1, ..., xn, y1, ..., yn, z on a neighbourhood U ⊂ M of p
such that

α∣U = dz +
n

∑
j=1

xjdyj .

Proof. We pick a neighbourhood V of p such that V ≅ R2n+1
and p = 0. We then choose linear

coordinates x1, ..., xn, y1, ..., yn, z on R2n+1
such that on T0R

2n+1
we have that

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α(∂z) = 1,

ι∂zdα = 0,

∂xj
, ∂yj ∈ kerα(j = 1, ..., n),

dα = ∑n
j=1 dxj ∧ dyj .

You can find these local coordinates by applying the normal form theorem for skew-symmetric forms
on a vector space. Let α0 ∶= dz +∑n

j=1 xjdyj . Note that α0 is of the desired form. Let

αt ∶= (1 − t)α0 + tα

denote a homotopy between α0 and α. At 0 we have that

αt = (1 − t)(dz) + t(dz) = dz = α

and

dαt = (1 − t) (
n

∑
j=1

dxj ∧ dyj) + t(
n

∑
j=1

dxj ∧ dyj) =

n

∑
j=1

dxj ∧ dyj = dα.

Therefore, because α is a contact form, all the αt are also contact forms at 0. Since being a contact
form is an open condition, there is a small neighbourhood around 0 such that αt is a contact form
for t ∈ [0, 1].

We now want to use Moser’s trick to find an isotopy (ψt)t∈[0,1] of a neighbourhood of 0 such that

ψ
∗
t αt = α0. As before, Moser’s trick entails differentiating the desired equation with respect to t and

assuming ψt is the flow of a time-dependent vector field Xt. Doing the former we get

d

dt
ψ
∗
t αt = 0.
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Using Lemma A.2 we get

ψ
∗
t (

d

dt
αt + LXt

αt) = 0.

Using that ψt is a diffeomorphism and the Cartan formula, we get

d

dt
αt + LXt

αt =
d

dt
αt + dιXt

αt + ιXt
dαt = 0.

We now write Xt = HtRt + Yt where Rt is the Reeb vector field of αt, Yt ∈ ξt ∶= kerαt and Ht is a
function. Writing Xt in this way gives us the following,

d

dt
αt + d (αt (HtRt + Yt)) + (dαt) (HtRt + Yt) = 0,

d

dt
αt + dHt + dαt (Yt) = 0,

d

dt
αt + dHt + ιYt

dαt = 0.

We now use the same trick as in the proof of Theorem A.3. We plug a vector field into the equation
above, from which we obtain a different equation. Plugging in the Reeb vector field Rt gives us

d

dt
αt(Rt) + dHt(Rt) + ιYt

dαt(Rt) =
d

dt
αt(Rt) + dHt(Rt) = 0,

so

dHt(Rt) = −
d

dt
αt(Rt).

We can now find the function Ht in a small neighbourhood of the origin by integrating this equation.
Note that this neighbourhood must be small enough such that none of the Reeb vector fields Rt have
closed orbits, as otherwise integrating would give 0. As usual with finding functions by integration,
we can set that Ht(0) = 0. Furthermore, since αt = α at the origin, we have that d

dt
αt = 0 at the

origin. From this follows that dHt∣0 = 0.

Now that we have found the functions Ht, we can use the equation

d

dt
αt + dHt + ιYt

dαt = 0,

to find Yt. We have that

ιYt
dαt = −

d

dt
αt − dHt,

and since dαt is non-degenerate we can determine Yt uniquely from this, with Yt(0) = 0. Since we
set Xt = HtRt + Yt, we have now found the desired vector fields Xt. We note that Xt(0) = 0 for all
t, because Ht(0) = 0 and Yt(0) = 0.

We define ψt to be the local flow of Xt. This flow is not necessarily everywhere defined. However,
since Xt(0) = 0 for all t ∈ [0, 1], the flow is defined in the origin. Since the domain of definition of
a local flow on a manifold is always open, the domain of definition of ψt is open. Therefore, ψt is in
fact defined on a small neighbourhood of 0. And thus, we have found a neighbourhood U around p
with U ≅ R2n+1

and p = 0, such that
ψ
∗
1α∣U = α0.

This means that
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̃j ∶= xj ◦ ψ
−1
1 for j = 1, ..., n,

ỹj ∶= yj ◦ ψ
−1
1 for j = 1, ..., n,

z̃ ∶= z ◦ ψ−1
1

are the desired coordinates such that

α∣U = dz̃ +
n

∑
j=1

x̃jdỹj .
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Appendix B

Contact embeddings

In this appendix, we will be interested in certain embeddings into overtwisted contact manifolds. In
the first section we will define a formal analogue of a contact embedding, and see that any such object
in an overtwisted contact manifold, can be homotoped into a genuine contact embedding. Moreover,
in the second section, we will define the concept of a formal Legendrian, and similarly show that any
formal Legendrian in an overtwisted contact manifold can be homotoped into a genuine Legendrian.
These results highlight that the existence of an overtwisted disc may be very helpful for proving
h−principles for certain structures on contact manifolds.

B.1 Constructing contact embeddings

In this section, our goal will be to construct a genuine contact embedding on an overtwisted contact
manifold, using a formal analogue of such a map. This is a first step into the direction of proving an
h−principle for such embeddings. When proving this, the overtwistedness will be a key ingredient.
Let us first look at the definition of a contact embedding.

Definition B.1. Let (M, ξ) and (N, ξN) be contact manifolds. A map f ∶ (N, ξN) → (M, ξ) is
called a contact embedding if it is an embedding, and it pulls back the contact structure ξ to ξN ,
i.e. f

∗
ξ = ξN .

There is also a formal analogue of this definition, which is defined as follows.

Definition B.2. Let (M, ξ) and (N, ξN) be contact manifolds. We say (f ∶ N → M, (ξt)t∈[0,1])
is a formal contact embedding if f ∶ N → M is an embedding and (ξt)t∈[0,1] is a homotopy of

distributions such that ξ0 = f
∗
ξ and ξ1 = ξN .

The theorem below tells us that given a formal contact embedding we can use the formal data to
turn the embedding into a genuine contact embedding. The proof of the theorem below was first
written down by Borman, Eliashberg and Murphy in [3, Corollary 1.4], but the ideas used in the
proof were already thought of by Gromov much earlier.

Theorem B.3. Let (M, ξ) be an overtwisted contact manifold, and (N, ξN) a contact manifold
where N is compact with boundary. Furthermore, let (f ∶ (N, ξN) → (M, ξ), (ξt)t∈[0,1]) be a formal
contact embedding, such that f(N) is disjoint from an overtwisted disc inM . Then there is a contact
embedding

f̃ ∶ (Ñ , ξÑ) → (M, ξ)
where Ñ = N − (∂N × [0, δ]), for δ > 0 small, is a slightly smaller copy of N , and ξÑ = ξN ∣Ñ , with
f̃ homotopic to f∣Ñ .

Proof. We define the following distributions on M for t ∈ [0, 1]:

ξ̃t = {ξt on f(N)c

(f ⋅ χ(x))∗ξt on x ∈ f(N),

where χ ∶ M → [0, 1] is a bump function which is 0 on f(N)c and 1 on a slightly smaller open U
in f(N), see also Figure B.1. This gives us a homotopy of distributions (ξ̃t)t∈[0,1] on M . We note

that ξ̃0 = ξ and f
∗(ξ̃1) = ξN on U due to the cut-off function.
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Figure B.1: A schematic drawing of the bump function χ used in the proof of Theorem B.3.

In [11, p. 35-37] it is shown how we can deform the homotopy (ξ̃t)t∈[0,1] into a homotopy of genuine

contact structures on M , which we will still denote by (ξ̃t)t∈[0,1]. Recall that this process uses the

overtwistedness of M . On M × {1} we have that f
∗(ξ̃1∣U) = ξN ∣f−1(U), which is already contact.

We note that this process of making the homotopy contact, changes the contact structure ξ̃1∣U on a
small region near the boundary of U . However, there is still a slightly smaller copy of Ñ of U , and
thus of N , such that f

∗(ξ̃1∣f(Ñ)) = ξ1∣Ñ = ξN ∣Ñ .

Then by Gray’s stability (Theorem A.3) there exist diffeomorphisms (ψt ∶ M → M)t∈[0,1] with

ψ0 = id and ψ
∗
t (ξ̃0) = ξ̃t. We note that ψt ◦ f ∶ (Ñ , ξÑ) → (M, ξ) is an embedding and we see that

on Ñ we have

(ψ1 ◦ f)∗(ξ)∣Ñ = f
∗(ψ∗

1 (ξ̃0))∣Ñ = f
∗(ξ̃1)∣Ñ = f

∗((f ⋅ χ(x))∗ξ1)∣Ñ = f
∗(f∗(ξN))∣Ñ = ξN ∣Ñ .

We set f̃ ∶= ψ1 ◦ f and conclude that

f̃ ∶ (Ñ , ξÑ) → (M, ξ)

is a contact embedding with ξÑ = ξN ∣Ñ , which is homotopic to f by the homotopy of embeddings

(ψt ◦ f)t∈[0,1].

Remark B.4. By the tubular neighbourhood theorem we know that there exists a neighbourhood of
∂N which is of the form ∂N × [0, ϵ) for some ϵ > 0. Therefore, in the statement above, we can write
the slightly smaller copy Ñ of N as Ñ = N − (∂N × [0, δ]), for δ > 0 small. ▶

B.1.1 Corollary on convex boundary

In Theorem B.3 we have seen that we can homotope a formal contact embedding in an overtwisted
contact manifold, into a genuine contact embedding. However, there is one catch, we need to slightly
shrink the domain manifold N into a smaller copy Ñ , as the structure ξN has been altered along
the boundary during the proof. In this subsection, we shall discuss a particular setting where we
can avoid this technicality. For this, we first need to look at the following two definitions.

Definition B.5. Let (M, ξ) be a contact manifold, and let X be a vector field on M . Let φt denote
the flow of X. We say X is a contact vector field if for all t ∈ R, the flow φt is a contact
diffeomorphism, i.e. φt is a diffeomorphism such that

φ
∗
t ξ = ξ.

Definition B.6. Let (M, ξ) be a contact manifold. We say a hypersurface W ⊂ M is convex if
there exists a contact vector field X in (M, ξ), such that X ⋔W .

Requiring the boundary of the domain manifold N to be convex, will give us a more clean result as
a corollary of Theorem B.3.
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Corollary B.7. Let (M, ξ) be an overtwisted contact manifold, and (N, ξN) a compact contact
manifold with boundary, and ∂N convex. Furthermore, let (f ∶ (N, ξN) → (M, ξ), (ξt)t∈[0,1]) be a
formal contact embedding such that f(N) is disjoint from an overtwisted disc in M . Then there is
a contact embedding

g ∶ (N, ξN) → (M, ξ)
homotopic to f .

Proof. Since ∂N is convex, we know there exists a contact vector field X which is transverse to ∂N .
We can then use the flow φt of this vector field, to “push in” the contact structure. Namely, there
exists an s ∈ R such that φs(N) ⊂ Ñ , where Ñ is the space from Theorem B.3. Then

Φt ∶ (N, ξN) → (φt(N), ξN)

for t ∈ [0, s] is a homotopy of contact embeddings. From Theorem B.3 we also know there exists a
contact embedding

f̃ ∶ (φs(N), ξÑ) → (M, ξ).
Then

f̃ ◦ Φs ∶ (N, ξN) → (M, ξ)
is a contact embedding which is homotopic to f (by using the homotopy of embeddings Φt from
above, and the homotopy stated in the proof of Theorem B.3).

B.2 Constructing Legendrian knots

In this section we will look at formal Legendrian knots, and how we can homotope these into
genuine Legendrian knots. We will prove a statement on overtwisted contact manifolds which will
use Theorem B.3. Let us first define these objects.

Definition B.8. A formal Legendrian knot is a pair (g, (Gs)s∈[0,1]) where g ∶ S1 → (M, ξ) is a

a smooth knot, (M, ξ) an overtwisted contact structure and for every s ∈ [0, 1], Gs ∶ TS1 → TM is
a monomorphism which lifts g, i.e.

S1 M

TS1 TM

g

Gs

commutes, with G0 = dg and G1 ∶ TS1 → ξ.

To construct a genuine Legendrian out of such a structure, we will first need to take a look at the
following two preparatory lemmas.

Lemma B.9. Let E be an oriented vector bundle over S1. Then E is trivial.

Proof. Consider the map

f ∶ [0, 1] → S1, t↦ e
2πit

.

Then f
∗
E is a vector bundle over [0, 1]. Since [0, 1] is contractible we know that f

∗
E ≅ [0, 1]×Rn

where n = rank(E). By definition of the pull-back there exists a continuous bundle map F ∶ f∗E →

E, i.e. a continuous map F such that the following diagram commutes

[0, 1] × Rn E

[0, 1] S1
π[0,1]

F

πS1

f

and F is an isomorphism on the fibres. Therefore, we can construct a unique linear isomorphism
Af ∶ Rn → Rn, such that det(Af) > 0 and F (0, v) = F (1, Af(v)). From this follows that all vector

bundles over S1 are obtained from a trivial vector bundle over [0, 1] by identifying (0, v) ∼ (1, A(v))
for an A ∈ GL

+(n,R). Note that A ∈ GL
+(n,R), precisely because E is oriented, and thus A must
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be orientation preserving. We note that GL
+(n,R) has only one path-component, and thus there

exists a path At for t ∈ [0, 1] such that A0 = A
−1

and A1 = id. Then we see that

[0, 1] × Rn/ ∼id→ [0, 1] × Rn/ ∼A, (t, v) ↦ (t, At ◦A(v))

is a bundle isomorphism. Note that [0, 1]×Rn/ ∼id is just the trivial bundle. We can conclude that
indeed any orientable vector bundle over S1 is trivial.

Lemma B.10. There exists a retract from R2 × [0, 1] to

(R2
× {0, 1}) ∪ ({(0, 0)} × [0, 1]) .

Proof. We note that we can identify R2
with the space (−1, 1)2. Using this identification, we are

first going to construct a retract from A ∶= (−1, 1)2 × [0, 1] to

B ∶= ((−1, 1)2 × {0, 1}) ∪ ((−1, 1) × {0} × [0, 1]) .

We do this by viewing A as a subspace of R3
, and picking a point a above it, and a point b below it.

See also Figure B.2. Let A+ denote points (x1, x2, x3) ∈ A for which x2 ≥ 0, and A− those points
for which x2 ≤ 0. We then construct a retract

r1 ∶ A→ B

by sending a point x ∈ A+ to the first point of intersection of the line through x and a with the
subspace B ⊂ A, and by sending a point x ∈ A− to the first point of intersection of the line through
x and b with the subspace B ⊂ A. We note that this map is continuous, and well-defined on A+∩A−.
Furthermore, note that for y ∈ B, we have r1(y) = y, and thus we can conclude that r1 is indeed a
retract.

Figure B.2: Illustration of the retract r1 ∶ A→ B used in the proof of Lemma B.10.

Secondly, we are going to construct a retract from

C ∶= (−1, 1) × (0, 1)

to
D ∶= ((−1, 1) × {0, 1}) ∪ ({(0, 0)} × [0, 1]) .

We do this by viewing C as a subspace of R2
and picking a point c above it and a point d below

it. See also Figure B.3. Let C+ denote the points (x1, x2) ∈ C for which x1 ≥ 0 and C− denote the
points for which x1 ≤ 0. We then construct a retract

r2 ∶ C → D

by sending a point x ∈ C+ to the first point of intersection of the line through z and c with the
subspace D ⊂ C, and by sending a point x ∈ C− to the first point of intersection of the line through

89



Figure B.3: Illustration of the retract r2 ∶ C → D used in the proof of Lemma B.10.

x and d with the subspace D ⊂ C. We note that this map is continuous and well-defined on C+∩C−.
Furthermore, note that for y ∈ D we have r2(y) = y, and thus we can conclude that r2 is indeed a
retract.

Note that we can view D and C as subsets of B, as also indicated in Figure B.4. We can then
construct a retract from A to the space

E ∶= ((−1, 1)2 × {0, 1}) ∪ ({(0, 0)} × [0, 1])

using the retracts r1 and r2. Namely, we first apply r1 ∶ A→ B, and then apply the map

B → E, x↦ {r2(x) if x ∈ C

x else.

This is a continuous map for which r(x) = x if x ∈ E. Therefore, r is the desired retract.

Figure B.4: Illustration of the space D as a subset of the space B, which we use in the proof of
Lemma B.10.

Remark B.11. We note that the proof of Lemma B.10 can be generalised to produce a retract from
Rn × [0, 1] to (Rn × {0, 1}) ∪ (0 × [0, 1]). Namely, one can construct and compose similar retracts
as in the proof of Lemma B.10 to get the desired map. We will use this fact to prove the main result
of this section. ▶

We are now ready to prove that every formal Legendrian knot in an overtwisted contact manifold,
is in fact homotopic to a genuine Legendrian knot. We note that the statement below makes use of
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Theorem B.3, and that this theorem uses the overtwistedness of the contact structure. See also [35,
Theorem 1.2] for a proof by Murphy of this result.

Theorem B.12. Let (g, (Gs)s∈[0,1]) be a formal Legendrian knot in an overtwisted contact manifold
(M, ξ). Then g is homotopic to a Legendrian knot.

Proof. First of all, we isotope g such that it is disjoint from the overtwisted disc DOT ⊂M . We can
do this by for example picking a point in the DOT and pushing the knot out radially, see also Figure
B.5.

Figure B.5: Pushing the knot g radially out of the DOT ⊂M , as done in the proof of Theorem B.12.

We then define normal bundles
νs ∶= TM/Gs(TS1).

We note that ν0 is the normal bundle of g(S1) and that ν0 is homotopic to νs for every s ∈ [0, 1].
We denote this homotopy by ρs.

We have that
TM∣S1 = G1(TS1)⊕ ν1

and we know that G1 takes values in ξ. From this follows that ν1 is framed by ξ. Since each νs is
homotopic to ν1, each νs also receives a framing.

By Lemma B.9 we know that each νs is trivial, so νs ≅ S1 × R2
and Dνs ≅ S1 × D2

. We then look
at the bundles TDνs and we note that we have a splitting at S1,

TDνs∣1S ≅ TS1 ⊕ L0 ⊕ L1.

Here we define L0 to be the orthogonal complement of TS1 inside ξ, and L1 to be the orthogonal
complement of TS1 ⊕ L0.

We then look at the following contact manifolds

(Dνs, ξleg)

where ξleg is given by one of the following contact structures:

ξleg ∶= ker(dy + xdt) = ⟨∂t + x∂y, ∂x⟩,

or
ξleg = ker(cos(t)dx + sin(t)dy) = ⟨∂t, sin(t)∂x − cos(t)∂y⟩.

These two models are depicted in Figure B.6.

We note that in both models, S1 is tangent to ξleg. We note that these are the two possible models
for Legendrian knots, where in the first model ξleg is coorientable and in the second it is not.
Furthermore, we note that in the first model we have

TS1 = ⟨∂t + x∂y⟩, L0 = ⟨∂x⟩, L1 = ⟨∂y⟩,
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Figure B.6: Illustration of the two models for (Dνs(g), ξleg), used in the proof of Theorem B.12.

and in the second model

TS1 = ⟨∂t⟩, L0 = ⟨sin(t)∂x − cos(t)∂y⟩, L1 = ⟨cos(t)∂x + sin(t)∂y⟩.

We then define the following maps

Fs ∶ TDνs∣1S ≅ TS1 ⊕ L0 ⊕ L1 → TM∣1S
by Fs ∶= (Gs, ρs). Note that F0 = (dg, id), and F1 = (G1, ρ1) thus F1(ξleg) = ξ.

We then want to construct maps
Hs ∶ TDνs → TM

such that Hs∣S1 = Fs, H0 = id and H1(ξleg) = ξ. Note that this is a homotopy extension problem.
We see that

∪s∈[0,1]TDνs ≅ ∪s∈[0,1]T (S1 × D2)
≅ TS1 × TD2

× [0, 1]
≅ S1 × R × R2

× R2
× [0, 1].

We note that the homotopy extension problem comes down to showing that

(S1 × R × R2
× R2

× {0, 1}) ∪ (S1 × R × {(0, 0)} × {(0, 0)} × [0, 1])

is a retract of S1 × R × R2 × R2 × [0, 1]. This is equivalent to showing that

(R4
× {0, 1}) ∪ (0 × [0, 1])

is a retract of R4 × [0, 1]. This follows from Remark B.11.

We then define a formal contact embedding (f, (ξs)s∈[0,1]) by

f ∶ (N, ξN) → (M, ξM), where N ∶= S1 × D(L0 ⊕ L1) ≃ Dν0(g) and ξN = ξleg

together with the formal data
ξs ∶= Hs(ξleg).

We note that H0(ξleg) = ξleg and ξ1 = H1(ξleg) = ξM ∣Dν0(g).

We then apply Corollary B.7 and conclude that f is homotopic to a genuine contact embedding

f̃ ∶ (N, ξN) ↦ (M, ξ).

This means that f̃
∗
ξM = ξN = ξleg, and thus f̃∣S1 is a Legendrian knot which is homotopic to g.

Remark B.13. In the proof above we identify Dν0 as S1 ×D2
. Note that explicitly we are looking at

g(S1) ⊂ M , but we just identify it with a copy of S1. This is the reason why we want H0 = id and
why in the formal data for the formal contact embedding we have ξ1 = ξM ∣Dν0(g) = f

∗
ξM . ▶
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Appendix C

Orientations

In this appendix we shall discuss a property of smooth manifolds called orientation. Intuitively, an
orientation is a choice between two different ways in which objects can be situated with respect to
their surroundings. For 2-dimensional manifolds, choosing an orientation is the same as choosing
what should be a clockwise and what should be a counterclockwise rotation. Not all manifolds are
orientable! See also Figure C.1. Here we see that the sphere can be given an orientation, but the
Möbius band cannot. Namely, it is impossible to choose a consistent way of defining a clockwise
turning on the band, because as we move along the manifold this choice will be flipped.

Figure C.1: A sphere is orientable but a Möbius band is not [36, p. 378].

In this appendix we will first discuss some definitions and basic results regarding orientations. After
that, we will look at orientations in relation to contact, Engel and (2, 3, 5)−structures.

C.1 Definitions and basic results

This first section will be a brief introduction to orientations. First, we will look at orientations on
vector spaces. This will then allow us to also define this concept on manifolds, and thereafter on
vector bundles. Many of the statements in the next two subsections are sourced from [36], but at
times some of the proofs which were left out have been filled in (namely, the proofs of Lemma C.2
and Lemma C.7).

C.1.1 Orientations on vector spaces

The goal of this subsection is to define orientations on vector spaces. We first look at the following
definition.

Definition C.1. Let V be a vector space of dimension n ≥ 1, and let (v1, ..., vn) and (w1, ..., wn)
be ordered bases of V . Let (Bji ) denote the transition matrix, i.e.

vi = B
j
iwj .

We say (v1, ..., vn) and (w1, ..., wn) are consistently oriented if (Bji ) has positive determinant.

Lemma C.2. Let V be a vector space. Being consistently oriented is an equivalence relation of the
set of all ordered bases of V . Furthermore, there are exactly two equivalence classes.
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Proof. We note that this result is a consequence of properties of the determinant. Namely, re-
flexivity follows from the fact that the identity matrix has positive determinant. Furthermore,
symmetry follows from the fact that det(B−1) = 1

detB
, and lastly, transitivity follows from the fact

that det(B⋅A) = det(B)⋅det(A). Thus, being consistently oriented is indeed an equivalence relation.

Now let [ui], [vi] and [wi] be equivalence classes of ordered bases, and suppose that [ui] ≠ [vi]
and [ui] ≠ [wi]. Let

ui = A
j
ivj , ui = B

k
i wk and vj = C

k
j wk.

It must hold that det(Aji ) < 0 and det(Bki ) < 0, and we see that

ui = A
j
ivj = A

j
iC

k
j wk,

thus B
k
i = A

j
iC

k
j . From this must follow that det(Ckj ) > 0. Therefore, [vi] = [wi].

This result allows us to define the following concepts.

Definition C.3. Let V be a vector space of dimension n ≥ 1. We define an orientation on V to
be an equivalence class of ordered bases. If (v1, ..., vn) is an ordered basis, we write [v1, ..., vn] for
its equivalence class of consistently oriented bases, and −[v1, ..., vn] for its opposite orientation.

Let V a vector space with dim(V ) = n ≥ 1, together with a choice of orientation. Then we say V
is oriented. Any basis (v1, ..., vn) which is in the equivalence class of the orientation is said to be
positively oriented, and any basis which is not, is said to be negatively oriented.

For a vector space V with dim(V ) = 0, we define an orientation on V to be a choice between ±1.

Example C.4. Let (e1, ..., en) be the standard basis of Rn. We call the orientation [e1, ..., en] the
standard orientation on Rn. △

C.1.2 Orientations on manifolds

Now that we have defined orientations on vector fields, we can move on to manifolds.

Definition C.5. Let M be a smooth manifold. A choice of orientation on every tangent space of
M , is called a point wise orientation.

Observe that this definition is not very useful yet. Namely, note that the orientation could switch
to its opposite when moving through the manifold. We need to define conditions, such that nearby
tangent spaces carry the same orientation. This motivates the next definition.

Definition C.6. Let M be a smooth manifold of dimension n. Let (X1, ..., Xn) be a local frame
for TM on an open U ⊂ M . We say (X1, ..., Xn) is positively oriented if for all p ∈ U ,
(X1∣p, ..., Xn∣p) is a positively oriented basis for TpM . Analogously, we can define negatively
oriented local frames.

A point wise orientation of M is called continuous, if every p ∈ M is in a domain of an oriented
local frame. A continuous point wise orientation on M , is called an orientation on M .

We say M is orientable, if there exists an orientation we can define on it. Analogously, M is
non-orientable, if we cannot define an orientation on it.

Intuitively, it would be logical if connected components of manifolds have only two possible orienta-
tions. The following proposition proves this result.

Proposition C.7. Let M be a smooth, connected and orientable manifold. Then M has exactly two
possible orientations.

Proof. First of all, we note that if O is an orientation on M , then −O is also an orientation on M
different from O.

Now let O and Õ be two orientations on M . We use the notation Op for the orientation of TpM
induced by O. We then define the following set:

A ∶= {p ∈M∣Op = Õp}.
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We want to show that this set is open in M . Let p ∈ A. Then there exists a local frame (Xi) on an
open U ⊂M containing p, which is positively oriented with respect to O. Similarly, there is another
local frame (X̃i) on an open Ũ ⊂ M containing p, which is positively oriented with respect to Õ.
We can assume U to be connected, and by possibly reducing it to a smaller neighbourhood of p, we
can also assume that U ⊂ Ũ .

Since p ∈ A, we have that Op = Õp. Therefore, the transition matrix (Bji (p)) such that

Xi∣p = Bji (p)X̃j∣p,

has positive determinant. Furthermore, we note that the map

det
B

∶ U → R, q ↦ det(B(q))

is continuous, detB is nowhere vanishing and detB(p) > 0. From this follows that det(B)∣U > 0.
Therefore, U ⊂ A, and thus A is indeed open.

Using the exact same argumentation as above, one can also show that M − A is also open in M .
Since M is connected, it must follow that A =M or A = ∅. In the first case, we have that O = Õ.
In the second case we have that O and Õ are two distinct orientations with Op ≠ Õp for p ∈ M .

For any other orientation O we must have that Op = Op or Op = Õp for all p ∈M . Using the same

argumentation as above, it must follow that O = O or O = Õ. This proves that there are exactly
two possible orientations for M .

To conclude this subsection, we look at one more result which gives us a class of manifolds which
are always orientable.

Lemma C.8. Let M be a parallelizable smooth manifold. Then M is orientable.

Proof. SinceM is parallelizable, there exists a global smooth frame (Xi). We define a point wise ori-
entation onM by setting (Xi∣p) to be positively oriented. This point wise orientation is continuous,
as every p ∈M is in its domain.

Example C.9. From Lemma C.8 we can conclude that several manifolds are orientable. For exam-
ple, Rn, the n−torus Tn, S1, S3 and S7 are all parallelizable, and thus orientable. Furthermore, all
Lie groups are also parallelizable and thus orientable. We also know that products of parallelizable
manifolds are again parallelizable manifolds, and thus also orientable. △

C.1.3 Orientations on vector bundles

To conclude this section, we look at orientations on vector bundles. We shall see that these are
in fact a generalization of orientations on manifolds. First, we need to define the notion of an
orientation-preserving map [36, p. 383]:

Definition C.10. Let M and N be oriented smooth manifolds, and let F ∶ M → N be a local
diffeomorphism. We say F is orientation-preserving, if the isomorphism dpF maps positively
oriented bases of TpM to positively oriented bases of TF (p)N . We say F is orientation-reversing,
if dpF maps positively oriented bases of TpM to negatively oriented bases of TF (p)N .

We then define orientations on vector bundles.

Definition C.11. Let π ∶ E →M be a smooth vector bundle. An orientation on E is

(i) an orientation on each fibre Ep for p ∈M , such that,

(ii) for each point p ∈M , the local trivialisation

ϕU ∶ U × Rn → π
−1(U),

with p ∈ U , is fibrewise orientation-preserving, i.e.

ϕU(q,−) ∶ Rn → π
−1(U), t↦ ϕU(q, t)

is orientation-preserving for all q ∈ U .
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Here Rn is endowed with the standard orientation, as described in Example C.4 [32, p. 96].

This definition is in fact compatible with the definition of an orientation on a smooth manifold, as
we will see in the next lemma.

Lemma C.12. Let M be a smooth manifold. Then M is orientable if and only if TM is orientable.

Proof. We note that the second condition in Definition C.11 is equivalent to there being sections
s1, ..., sn ∶ U → π

−1(U) such that the basis (s1(q), ..., sn(q)) is positively oriented for each q ∈ U .
Since we are working with the tangent bundle, sections are vector fields. And thus, this conditions
is equivalent to a point wise orientation being continuous.

We will now prove a lemma which will be useful in the remaining sections of this appendix.

Lemma C.13. A vector bundle E is orientable if and only if its determinant bundle det(E) is
orientable.

Proof. Suppose det(E) is orientable. Let (φi) be a trivialisation of det(E) with cover (Ui) of M .
Let (ψj) be a trivialisation of E with cover (Vj) of M . We can assume that each Vj is connected.
Note that for every ψj , det(ψj) is a trivialisation of det(E) on Vj . We note that condition (ii) in
Definition C.11 is equivalent to the transition maps between trivialisations having positive determi-
nant. See also [36, p. 381-382].

Now let p ∈ Vj ∩ Ui. We can consider the transition map between det(ψj) and φi. Since det(E)
is oriented, the sign of the transition map between det(ψj) and φi, which we will denote by ρj , is
independent of the Ui such that p ∈ Ui. Therefore, the following map is well-defined:

Vj → {±1}, q ↦ sign(ρj).

Since Vj is connected, this map is constant on Vj . Then we can modify the map ψj if necessary, by
composing with a reflection, such that we may assume that the transition map is positive.

We will now show that these modified trivialisations (ψj) ensure that E is orientable. We note that
the transition map between ψj and ψk has positive determinant if and only if the transition map
between det(ψj) and det(ψk) is positive. Both ψj and ψk have positive transition maps with ψi for
any i such that p ∈ Ui. Therefore, their transition map must also be positive.

Conversely, assume that E is oriented. Again, let (ψj) be a trivialisation of E with cover (Vj) of M .
Then (det(ψj)) is a trivialisation of det(E) with cover (Vj) of M . The transition maps are positive,
as the transition maps of (ψj) have positive determinant.

C.2 Contact structures

Having defined orientations on vector spaces, manifolds and vector bundles, we now shift our focus
to distributions again. In this section we will focus on contact structures, and we will see that any
manifold which admits a (formal) contact structure, is in fact canonically oriented.

Lemma C.14. Let M be a 3-manifold which admits a formal contact structure ξ. Then M is
canonically oriented [11, p. 23].

Proof. Since ξ is a formal contact structure we have the following isomorphism

ξ ∧ ξ ≅ det(ξ) ≅ TM/ξ.

We see that
TM = ξ ⊕ TM/ξ,

and thus
det(TM) ≅ det(ξ)⊗ TM/ξ ≅ TM/ξ ⊗ TM/ξ.

We note that TM/ξ is a line bundle and it is known that the tensor product of a line bundle with
itself is in fact trivial. It then follows from Lemma C.13 that M is indeed naturally oriented.
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C.3 Engel structures

In this section we will discuss some results regarding (formal) Engel structures and orientability. The
results from this section are sourced from Chapter 2 in [41]. Recall that an Engel structure comes
with a flag W ⊂ D ⊂ E ⊂ TM , where W is the characteristic line field and E is an even-contact
structure. The first result we will discuss in this section has to do with even-contact structures.

Proposition C.15. Let E be an even-contact structure on a 4-dimensional manifold M . Then an
orientation of the characteristic line field W induces an orientation on M , and an orientation on
M induces an orientation on W.

Proof. Locally, we can look at a hypersurface N which is transverse to W. We note that TN ∩ E is
a contact structure, and thus by Lemma C.14, N is canonically oriented. Therefore, an orientation
of W yields an orientation on M , and also the other way around.

The next result shows that if a manifold admits an Engel structure, then the even-contact structure
has a canonical orientation.

Proposition C.16. Let (M,D) be an Engel manifold. Then the even-contact structure E = [D,D]
is naturally oriented.

Proof. Let X and Y be two vector fields such that locally D = ⟨X,Y ⟩ around p ∈ M . Then
[X(p), Y (p), [X,Y ](p)] is an orientation of E . Changing X or Y , or their signs, leaves this orien-
tation the same, so it is independent of the choice of X and Y .

Finally, we see that an oriented manifold with an oriented Engel structure is in fact parallelizable.

Proposition C.17. Let (M,D) be an Engel manifold with D and M oriented. Then TM ≅ R4
.

Proof. Recall that an Engel structure comes with a flag W ⊂ D ⊂ E ⊂ TM . We note that

TM = W ⊕
D

W ⊕
E
D

⊕
TM

E .

Using Proposition C.15 and Proposition C.16 and the fact that D and M are oriented, we note that
this is the sum of four oriented line bundles. Thus indeed TM ≅ R4

.

C.4 (2, 3, 5)−structures
To conclude this appendix, we will look at (2, 3, 5)−structures and orientations. The next result
shows that an orientation of a (2, 3, 5)−structure induces an orientation on the manifold and vice
versa.

Proposition C.18. Let M be a manifold which admits a (2, 3, 5)−structure D. Then M is ori-
entable if and only if D is orientable.

Proof. Recall that a formal (2, 3, 5)−structure comes with a flagD ⊂ E ⊂ TM , and the isomorphisms

D ∧D ≅ det(D) ≅ E/D and D ∧ E/D ≅ TM/E .

We note that TM/E ≅ D by the isomorphism induced by taking the tensor product with E/D. This
follows from the second isomorphism above. Using this, we get

TM ≅ D ⊕ E/D ⊕ TM/E ≅ D ⊕ det(D)⊕D.

Therefore,
det(TM) ≅ det(D)3 ≅ det(D).

From Lemma C.13 it now follows that indeed M is orientable if and only if D is orientable.
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