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Chapter 1

Introduction

Arboreal singularities were originally introduced by Nadler in [Nad17] as a class of combina-
torial singularities of Lagrangian skeleta of symplectic manifolds. Nadler provided explicit
models, described by connected non-cyclic graphs, i.e. trees, for these arboreal singularities.
Furthermore, it is shown in [Nad17] that certain sheaf theoretical invariants of symplectic man-
ifolds could be combinatorially computed from their Lagrangian skeleton if all singularities
were of arboreal type. In [Nad16], Nadler presented a method to deform any Lagrangian skele-
ton to a skeleton with arboreal singularities such that certain sheaf theoretical invariants are
preserved. The combinatorial structure of arboreal singularities, and how this could be used
to combinatorially compute sheaf theoretical invariants, was further investigated by Zorn in
[Zor18].

In [Sta18] Starston studied arboreal singularities in Weinstein manifolds, which are open ex-
act symplectic manifolds compatible with Morse theory. The central idea of Morse theory
is that (smooth) topological properties of a manifold can be investigated by looking at well-
behaving smooth functions, called Morse functions, and their gradient. In particular, the critical
points and gradient flow lines between those critical points of a single well-behaved function
reflect the properties of a manifold. A Weinstein manifold is an open exact symplectic mani-
fold equipped with a Morse function. The critical points and gradient flow lines of this Morse
function form a Lagrangian skeleton. Starkston showed that, under certain non-degeneracy
conditions that do not generally hold, the skeleton of Weinstein manifolds can be generically
perturbed to be arboreal.

Expanding on [Sta18] and [Eli17], where the arboreal models are decorated by signs, Álvarez-
Gavela, Eliashberg and Nadler introduced the class of signed arboreal singularities in [AEN22a].
Whereas the definition of arboreal singularities in [Nad17] only fixes the homeomorphism type
of the singularities, these signed arboreal singularities are determined up to ambient symplec-
tomorphism. In [AEN22a], models for signed arboreal singularities, which are described by
trees with a decoration of signs on certain edges, are presented.

In [AEN22b] it is shown that the Lagrangian skeleton of any Weinstein manifold that admits

1



CHAPTER 1. INTRODUCTION 2

a polarization, meaning its tangent bundle admits a global field of Lagrangian planes, can be
deformed to be arboreal. Furthermore, it is shown that such a Weinstein manifold can be
recovered from its arboreal skeleton.

This work aims to build a foundation for an arborealization program in smooth manifolds. The
main goals are: (i) to define arboreal singularities in smooth manifolds, (ii) to determine when
and how the smooth analogue of Weinstein manifolds, i.e. open smooth manifolds compatible
with Morse theory, can be perturbed to admit an arboreal skeleton, and (iii) when and how
such a smooth manifold can be recovered from its arboreal skeleton. The smooth structure is
less rigid and more malleable than the symplectic structure, often allowing for a more straight-
forward and transparent treatment of arboreal singularities in smooth manifolds compared to
arboreal singularities in symplectic manifolds.

This thesis is structured in the following way. In Chapter 2 and Chapter 3 we discuss some ba-
sic notions and central results of Morse theory. First, in Chapter 2 we focus on Morse functions.
We define these Morse functions and prove the Morse lemma, which states that Morse func-
tions have a ridged local structure around their critical points, and show that smooth maps are
generically Morse. Furthermore, we prove the fundamental theorems of Morse theory, which
show that the critical points of a Morse function on a manifold determine the topology of that
manifold. Then, in Chapter 3 we shift our focus to the dynamics described by the gradient of
Morse functions. We show that the flow lines between critical points of such a gradient system
give a cellular-like decomposition of a manifold. In general this decompostion is not truly cel-
lular, the closure of a cell is generally not obtained by adding lower index cells. However, this
is the case under a certain transversallity condition, which we dicuss. Furthermore, we intro-
duce X-convex manifolds, the smooth analogue of Weinstein manifolds, and define the skeleton
of a X-convex manifold.

These two chapters give a brief introduction of some of the key concepts and intuitions in
Morse theory, but touch only upon a minor part of the rich theory. In particular we do not
discuss how Morse theory gives rise to a chain complex, Morse homology or the h-cobordism
Theorem. Interested readers are referred to the wide range of books and articles on Morse
theory, such as the classic books [Mil63] on Morse Theory and [Mil65] on the h-cobordism
theorem by J.W. Milnor or [Bot88] for an historical overview of Morse theory up to the 1980s
by R. Bott. More contemporary treatments of Morse theory can be found, among many other
books on the subject, in [Mat02], [Nic11] and [ADE13].

In Chapter 4 we discuss conical singularities, which serve as a motivation for our definition of
arboreal singularities in smooth manifolds. Following [Lau92], we show that if the gradient
of a Morse function satisfies a certain tranversallity condition and admits specific local models
around its critical points, this gradient induced a stratification with conical singularities.

In Chapter 5 we define the class of arboreal singularities in smooth manifolds and give ex-
plicit local models. We show that to every arboreal singularity we can associate a tree with a
decoration of signs on its edges.

In Chapter 6 we show that every manifold that can be decomposed as a compact domain
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with an infinite cylindrical attached to its boundary, can be given the structure of an X-convex
manifold with an arboreal skeleton. We do this by taking a X-convex structure, which we show
exists using results from Morse theory, and inductively deforming the manifold. In general
the singularities of the resulting skeleton admits multiple representations by different trees, in
particular different decoration of signs on the edges can be chosen. However, we show that if
the manifold is orientable there is a canonical choice of decoration by signs.

In Chapter 7 we present a procedure to recover an X-convex manifold from its arboreal skele-
ton if both the manifold and its skeleton are orientable. In this procedure, the orientation plays
a similar role to the polarization in [AEN22b].

In Chapter 8 we discuss the directions further research might take.

Appendix A provides some background on symplectic, contact and Weinstein manifolds. In
Appendix B we discuss arboreal singularities in symplectic manifolds, in particular we focus
on the definitions and some of the key properties of arboreal singularities as defined in [Nad17]
and [AEN22a]. We compare the models construced in [Nad17] and the models constructed in
[AEN22a], and explicitly show that these constructions produce homeomorphic singularities.



Chapter 2

Morse Functions

The idea at the heart of Morse theory is that the topology of a manifold M can be determined
by studying smooth functions M → R. In particular, the topology of M can be described by
looking at the critical points and the gradient field of a single so-called Morse function f : M →
R

In this chapter we approach Morse theory as a "critical point theory" in the way originally de-
veloped by H.C.M. Morse in the 1920s. We focus on how critical points of Morse functions
correspond to points where the topology of the domain changes and how this change is de-
termined by the critical point. In the following chapter we will shift our focus and consider
Morse theory through the lens of dynamical systems, a point of view initiated by S. Smale in
the 1960s, by studying the gradients of Morse functions in more detail.

We will begin the chapter with an illustrative example in Section 2.1. In Section 2.2 we intro-
duce the notion of Morse functions, the main object of study within Morse theory, which are
functions satisfying a non-degeneracy conditions at their critical points. We formulate and
prove the Morse Lemma, which states that we have certain local models for Morse functions in
the neighbourhood of their critical points. Then we will discuss gradient vector fields of Morse
functions. These gradient vector fields will play a crucial role in Section 2.3, where we show
that the topology of a manifold can be determined by the critical points of a Morse function on
that manifold. In particular we show that any Morse function gives a handlebody decomposi-
tion of its domain. In Section 2.4 we discuss the limitations of Morse theory as a "cricital point
theory" and motivate the need to study the gradients of Morse functions.

This chapter is largely based on the first four sections of [Mil63].

2.1 Height function on the torus

The main philosophy of Morse theory is that the topology of a manifold M can be determined
from the critical points of a well-chosen smooth map f : M → R. We illustrate this with the
classic example of the "height" function on a 2-dimensional torus T. Let V be a plane tangent
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CHAPTER 2. MORSE FUNCTIONS 5

Figure 2.1: The torus T with the points p, q, r, s and the plane V indicated.

to T, as illustrated in Figure 2.1, and define f : T → R to be the distance from the V plane. We
write

Ta = {x ∈ T | f (x) ⩽ a}

for the sublevel set of a ∈ R. We make the following observations, as illustrated in Figure 2.2.

1. If a < f (p), then Ta is empty.

2. If f (p) < a < f (q), then Ta is homeomorphic to a 2-cell.

3. If f (q) < a < f (r), then Ta is homeomorphic to a cylinder.

4. If f (r) < a < f (s), then Ta is homeomorphic to a punctured torus having a circle as
boundary.

5. If f (s) < a, then Ta is the full torus.

We see that the topology of Ma changes as a passes through f (p), f (q), f (r) and f (s). From a
homotopy type point of view, the step 1 → 2 is given by attaching a 0-cell, since a 0-cell and a
2-cell are homotopic. The step 2 → 3 is, in terms of homotopy type, the attaching of a 1-cell.
The step 3 → 4 is also given by the attaching of a 1-cell. The final step 4 → 5 is given by
attaching a 2-cell.
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The points p, q, r, s ∈ T are critical points of f , if we choose any coordinate system (x, y) around
these points the derivatives ∂ f

∂x and ∂ f
∂y both vanish. Furthermore, as will be shown in the next

section, we can pick coordinates (x, y) around p such that f (x, y) = f (p) + x2 + y2, around q
such that f (x, y) = f (q)+ x2 − y2, around r such that f (x, y) = f (r)+ x2 − y2 and around s such
that f (x, y) = f (s) − x2 − y2. We remark that the number of terms with a minus signs in the
expression for f correspond to the dimension of the cell that is attached as a passes through
the corresponding critical value.

Figure 2.2: Placeholder figure.

2.2 Morse functions

To be able to define Morse functions, we first have to introduce some auxiliary notions.

Definition 2.1. Let M be a smooth manifold and f : M → R a smooth function. A point p ∈ M
is called a critical point of f if d fp : Tp M → Tf (p)R is zero, we denote the set of critical points of
f by Crit( f ).

The real number f (p) ∈ R is called a critical value of f . △

Note that p is a critical point if and only if, for arbitrary coordinates (x1, ..., xn) around p, we
have

∂ f
∂x1

(p) = ... =
∂ f
∂xn

(p) = 0.

Definition 2.2. If p is a critical point of f we define a bilinear functional H f : Tp M × tp M → R

of Tp M, called the Hessian at p, as

H f (v, w) = ṽp(w̃( f ))

where ṽ and w̃ are arbitrary extensions of tangent vectors v, w ∈ Tp M to vector fields. △

Lemma 2.3. The Hessian is symmetric and well-defined.

Proof. Begin by noting

H f (v, w) − H f (w, v) = ṽp(w̃( f )) − w̃p(ṽ( f )) = [ṽ, w̃]p( f ) = 0
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where [ṽ, w̃] is the Lie bracket of ṽ and w̃. Because p is a critical point of f all its directional
derivatives are zero. Therefore we have that [ṽ, w̃]p( f ) = 0, thus H f is symmetric.

Now, since ṽp = v and w̃p = w we see that

H f (v, w) = v(w̃( f )) = −H f (w, v) = w(ṽ( f ))

is independent of both the extension ṽ of v and the extension w̃ of w.

Definition 2.4. A critical point p ∈ M of f is called non-degenerate if the Hessian at p is non-
degenerate, i.e.

H f (v, w) = 0 for all w ∈ Tp M if and only if v = 0.

A smooth function f : M → R is called Morse if all the critical points of f are interior, i.e. lie
on M − ∂M, and are non-degenerate. A Morse function f : M → R is called exhaustive if for
every c ∈ R the sublevel set

{x ∈ M | f (x) ⩽ c}

is compact. △

Example 2.5. In Figure 2.3 we have given an example of a Morse function and three examples
of non-Morse functions. The function f (x, y) = x2 − y2 is Morse, it has a single critical point at
the origin that is non-degenerate. The function f (x, y) = x3 + y3 is not Morse, it has a single
critical point at the origin that is degenerate. The function f (x, y) = x2 is not Morse, the critical
points form the x-axis and are all degenerate. The function f (x, y) = x2y2 is not Morse, the
critical points form the x-axis and y-axis and are all degenerate. △

Note that if we choice local coordinates (x1, ..., xn), we can give an explicit representation of H f

with respect to the ∂
∂x1

|p, ..., ∂
∂xn

|p basis.

We write v = ∑
i

ai
∂

∂xi
|p w = ∑

j
bj

∂
∂xj

|p and take the extension w̃ = ∑
j

bj
∂

∂xj
of w. This yields

H f (v, w) = v(w̃( f ))(p) = v

(
∑

j
bj

∂ f
∂xj

)
= ∑

i,j
aibj

∂2 f
∂xi∂xj

(p).

Thus the representation of H f with respect to the ∂
∂x1

|p, ..., ∂
∂xn

|p basis is given by the matrix( ∂2 f
∂xi∂xj

(p)
)
.

The Hessian is non-degenarate if and only if the matrix representing the Hessian its respect to
the ∂

∂x1
|p, ..., ∂

∂xn
|p basis is non-singular.

Definition 2.6. The index of a bilinear functional H on a vector space V is the maximal dimen-
sion of a subspace of V on which H is negative definite.

The index of H f on Tp M will be called the index of f at p. △
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(a) f (x, y) = −x2 + y2 (b) f (x, y) = x3 + y3

(c) f (x, y) = x2 (d) f (x, y) = x2y2

Figure 2.3: One Morse function and three functions with degenerate critical points.

We now formulate the Morse Lemma, which will play a central and crucial role in the rest of
this thesis. Similar to how Taylor’s Theorem states that near a critical point a f is approximated
by a quadratic function, the Morse Lemma states that in an appropriate chart a Morse function
is precisely a quadratic function around its critical points.

Lemma 2.7 (Morse). Let p be a non-degenerate critical point for f : M → R. Then there is a
coordinate system (x1, ..., xn) on a neighbourhood U around p such that

f (x1, ..., xn) = f (p) − x2
1 − .... − x2

λ + x2
λ+1 + ... + x2

n
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on U. Furthermore, λ is the index of f at p.

Before we prove the Morse Lemma, we first show the following lemma.

Lemma 2.8. Let f be a smooth function on convex neighbourhood U of 0 in Rn with f (0) = 0. Then

f (x1, ..., xn) =
n

∑
i=1

xigi(x1, ..., xn)

fore some suitable smooth functions gi defined on U with gi(0) = ∂ f
∂xi

(0).

Proof. Using the fundamental theorem of calculus and the chain rule we get

f (x1, ..., xn) =
∫ 1

0

d f (tx1, ..., txn)
dt

dt =
∫ 1

0

n

∑
i=1

d f
dxi

(tx1, ..., txn) · xidt.

Thus we can set gi(x1, ..., xn) =
∫ 1

0

n
∑

i=1

d f
dxi

(tx1, ..., txn)dt giving the desired result.

We now prove the Morse Lemma.

Proof. We first show f is of the desired form.

Let U be a neighbourhood of p with local coordinates, we can assume that p = 0 and f (p) =
f (0) = 0. Using the previous Lemma we can write

f (x1, ..., xn) =
n

∑
j=1

xjgj(x1, ..., xn)

for (x1, ..., xn) in some neighbourhood of 0. Now, as 0 is a critical point

gj(0) =
∂ f
∂xj

(0) = 0

thus we can apply Lemma 2.8 to these gj to get

gj(x1, ..., xn) =
n

∑
i=1

xihij(x1, ..., xn)

for certain smooth functions hij. From this we obtain

f (x1, ..., xn) =
n

∑
i,j=1

xixjhij(x1, ..., xn).

If we write hij = 1
2 (hij + hji) then hij = hji and f = ∑ xixjhij, thus we assume without loss

of generality that hij = hji. Note that (hij(0)) is precisely Hessian matrix times 1/2, and thus
non-singular by assumption.
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We now proceed by induction. Assume there are coordinates (u1, ..., un) in a neighbourhood U
of 0 such that

f (u) = ±u2
1 ± ... ± u2

r−1 + ∑
i,j⩾r

uiujHij(u1, ..., un)

for some r and functions Hij such that (Hij(0)) is non-singular. We can apply a linear change
in the last n − r + 1 variables to assume that Hrr(0) ̸= 0, meaning that Hrr ̸= 0 on some open
neighbourhood U′ ⊂ U of 0.

We introduce new coordinates (v1, ..., vn), where vi = ui for i ̸= r and

vr(u) =
»
|Hrr(u)|[ur + ∑

i>r
ui Hir(u)/Hrr(u)].

Using the inverse function theorem we see that (v1, ..., vn) are coordinate functions in some
sufficiently small neighbourhood of 0.

Without loss of generality we assume Hrr > 0, then we get

v2
r = Hrr

Ç
ur + ∑

i>r
ui

Hir

Hrr

å2

= Hrru2
r + 2 ∑

i>r
urui Hir +

Å
∑
i>r

ui Hir

ã2

Hrr
.

Thus

f = ±u2
1 ± ... ± u2

r−1 + ∑
i,j⩾r

uiujHij(u1, ..., un)

= ±u2
1 ± ... ± u2

r−1 + u2
r Hrr + 2 ∑

i>r
urui Hir + ∑

i,j>r
uiujHij(u)

= ±v2
1 ± ... ± v2

r−1 + v2
r + ∑

i,j>r
uiuj›Hij(u)

for new functions›Hij satisfying the induction hypothesis.

Note that under the assumption Hrr < 0 we get almost the same result, with the difference
being that the sign of v2

r would be negative.

Using induction we conclude that f has the form

f (x1, ..., xn) = f (p) − x2
1 − .... − x2

λ + x2
λ+1 + ... + x2

n.

We will now show that λ is the index of f at p. Assume f is of the form f = f (p) − x2
1 − ... −
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x2
λ + x2

λ+1 + ... + x2
n, then the Hessian with respect to the basis ∂

∂xi
|p is given by

−2 0
. . .

−2
2

. . .
0 2


.

Thus there is a subspace of Tp M of dimension λ where H f is negative definite and a subspace
V of dimension n − λ where H f is positive definite. If there were a subspace of Tp M on which
H f were negative definite of dimension greater than λ, this subspace would have to intersect
V. Thus there can not be a subspace of dimension greater than λ on which H f is negative
definite. We conclude that λ is the index of f at p.

We will call the coordinates (x1, ..., xn) on the neighbourhood U around a non-degenerate crit-
ical point p on which f has the form

f (x1, ..., xn) = f (p) − x2
1 − .... − x2

λ + x2
λ+1 + ... + x2

n

the Morse coordinates on the Morse neighbourhood of p.

Note that every Morse neighbourhood of a non-degenerate critical point p has only one critical
point, namely the point p. Thus we have the following direct corollary of the Morse Lemma.

Corollary 2.9. Non-degenerate critical points are isolated.

Every manifold admits Morse functions, in fact we have the following well known theorem.

Theorem 2.10. Let M be a smooth manifold, then the Morse functions form an open dense subset of
C∞(M, R).

We give the most important steps of the proof, full details can be found in Section II.6 of
[GG74].

Proof. We denote

S = {σ = j1 f (p) ∈ J1(M, R) | rank(d f )p = 0}

and remark that p is a critical point of f : M → R if and only if j1 f (p) ∈ S.

We make the identification J1(M, R) ∼= TM × R, we work in local coordinates and assume
that M = Rn and p = 0. Now, locally, j1 f (x) = (x, d f (x), f (x)) and S = Rn × {0} × R, where
we have made the identification TRn ∼= Rn × Rn. We see that the critical point p of f is non-
degenerate if and only if

j1 f ⋔ S

at p. The assertion now follows directly from the Thom Transversality Theorem.
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2.3 Homotopy type in terms of critical points

Throughout this section we fix a smooth n-dimensional manifold M and a smooth function
f : M → R. We write

Ma = f−1((−∞, a]) = {p ∈ M| f (p) ⩽ a}

for the sublevel set.

As seen in Section 2.1 above, the topology of sublevel sets Ma changes when a passes through
a critical value. In this section we describe exactly how the topology changes, we will see that
passing through a critical value yields a change in topology that corresponds to a λ-handle
attachment, where λ is the index of the corresponding critical point. At the end of the section
we discuss the challenges of recovering the smooth type of the manifold from a Morse function.

We first show that the topology of Ma only changes when a passes through a critical point, and
that it remains stable as a varies over an interval containing only regular values.

Theorem 2.11. Let a < b and suppose that f−1([a, b]) is compact and contains no critical points of f .
Then the sublevel sets Ma and Mb are diffeomorphic.

Furthermore, Ma is a deformation retract of Mb, thus the inclusion Ma → Mb is a homotopy equiva-
lence.

Before we give the proof we formulate the following definition.

Definition 2.12. Let M be a smooth manifold equipped with a Riemannian metric g and let
f : M → R be smooth. The gradient of f with respect to the Riemannian metric g is the vector
field grad f ∈ X(M) given by

g(Y, grad f ) = Y( f ) = d f (Y)

for any vector field Y. △

We now proceed with the proof of Theorem 2.11.

Proof. We fix a vector field X that is gradient for f with respect to some Riemannian metric on
M and use the flow to push Mb down to Ma. We define ρ : M → R to be a smooth function
that is 1

X( f ) on f−1([a, b]) and 0 outside some compact neighbourhood of f−1([a, b]).

Now ρX is a vector field that vanishes outside a compact set, meaning it has global flow ψs and
this flow is a diffeomorphism for every s ∈ R. Let x ∈ M and consider the map s 7→ f ◦ ψs(x).
If ψs(x) ∈ f−1([a, b]), then

d
ds

f ◦ ψs(x) = ρX( f ) = 1,

thus f ◦ ψs(x) = f (x) + s. We see that ψb−a is a diffeomorphism mapping Mb to Ma.
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Figure 2.4: Using the flow to push Mb down to Ma.

The map rt : Mb → Ma defined as

rt(x) =

®
x if f (x) ⩽ a
ψt(a− f (x))(x) if a ⩽ f (x) ⩽ b

is a homotopy from r0 = id to r1 which is a retraction from Mb to Ma.

We conclude that Ma and Mb are diffeomorphic and that Ma is a deformation retract of Mb.

The following theorem states how Ma changes as a passes through a critical value.

Theorem 2.13. Let f : M → R be a smooth function, let p be a non-degenerate critical point of index
λ and set c = f (p). Suppose that for some sufficiently small ε > 0, f−1([c − ε, c + ε]) is compact and
contains no critical points other than p. Then the sublevel set Mc+ε is diffeomorphic to Mc−ε with a
λ-handle attached. In particular Mc+ε is homotopic to Mc−ε with a λ-cell attached.

We will not give a complete proof, but only give a sketch the most important steps. A full
proof can be found in Section I.3 of [Mil63].

Proof. Consider Morse coordinates (x, y) ∈ Rλ × Rn−λ in a neighbourhood U of p such that

f = c − ∥x∥2 + ∥y∥2

on U. Let ε > 0 such that both f−1([c − ε, c + ε]) and the ball of radius 2ε centred at the origin
are contained in U.
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Let χ : M → R be a smooth bump function compactly supported on some small neighbour-
hood of p. Then, for some small δ > 0, we can define F = f − δχ such that

• F(p) < c − ε,

• F−1((−∞, c + ε]) = Mc+ε,

• F and f have the same critical points with the same index.

Since F−1([c − ε, c + ε]) contains no critical points we can use Theorem 2.11 above to see that
F−1((−∞, c − ε]) is diffeomorphic to, and a deformation retract of, Mc+ε.

Now, F−1((−∞, c − ε]) is the union of Mc−ε, drawn in purple in in Figure 2.5, and a small
neighbourhood of p, drawn in green.

Figure 2.5: The handle attachment in the Morse neighbourhood.

We write

H = F−1((−∞, c − ε]) \ Mc−ε

for the closure of the neighbourhood of p that is attached. This H is a λ-handle with the core
C, drawn in orange, given by

C = {∥x∥2 ⩽ ε, y = 0} (2.1)

in the Morse coordinates.

We can construct a deformation retract from Mc−ε ∪ H to Mc−ε ∪ C as indicated in Figure 2.6.
Note that C is a λ-disc with radius ε that is attached along C ∩ Mc−ε = ∂C, thus C ∪ Mc−ε is
indeed Mc−ε with a λ-cell attached.

By inductively applying Theorem 2.13 we get the following theorem, the full details of the
proof can be found in Section 2.2 of [Nic11].
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Figure 2.6: Retracting the handle to its core.

Theorem 2.14. If M is compact and f : M → R is Morse, then M has a handlebody structure
determined by f , with one handle of index λi for every critical point pi of index λi.

In particular this yields the following corollary.

Corollary 2.15. If f : M → R is an exhaustive Morse function, then M is homotopy equivalent to a
CW-complex that has exactly one λ-cell for every critical point of f of index λ.

Remark 2.16. The handle decomposition of Theorem 2.14 is iterative, it is build up one han-
dle at the time using the previously produced handlebody. There is no combinatorial data
describing the construction all at once. One of the goals of this thesis is to address this issue
via arborealization, where we are able to give combinatorial data that encodes all handles at
once. △

2.4 Limitations to critical point theory

Theorem 2.11 tells us that any exhaustive Morse function on a smooth manifold M gives a
handlebody decomposition of M, where every critical point corresponds to a handle with the
same index. It is, however, important to stress the attaching maps are induced by the flow of
the gradient vector field, meaning the attaching of the handles is also determined by the be-
haviour of the gradient far away from critical points and dependent on the chosen Riemannian
metric. Thus the data of the critical points and their index of a Morse function is not enough
to recover M as a handlebody, since this amounts to only giving the index of every handle.

We illustrate this using the following well-known theorem due to Reeb, which can be shown
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to be a corollary of Theorem 2.11 and the Morse Lemma.

Theorem 2.17 (Reeb). If M is a compact n-manifold and f : M → R a Morse function on M with
exactly two critical points, then M is homeomorphic to a sphere.

Proof. The two critical points p, q ∈ M must be the minimum and maximum of f , we write
f (p) = a and f (q) = b, a < b. Using the Morse Lemma we must have that f−1([a, a + ε]) and
f−1([b − ε, b]) are both n-cells if ε > 0 is small enough. From Theorem 2.11 we know that Ma+ε

and Mb−ε are diffeomorphic, thus M is the union of two closed n-cells that are glued along
their common boundary under a diffeomorphism.

We conclude that M is homeomorphic to Sn.

However, this M is not necessarily diffeomorphic to the standard Sn. As famously shown by
Milnor in [Mil56], there are manifolds that are homeomorphic but not diffeomorphic to the
7-sphere S7. In his paper Milnor shows that the manifolds he produces are indeed homeomor-
phic to S7 by showing they are compact and constructing a Morse function that has exactly two
critical points on them. In fact, some exotic 7-spheres can be constructed by gluing two 7-discs
along their boundary via a diffeomorphism that "twists" the boundary, as shown by Milnor in
[Mil59].

In general only giving the data of the index of every handle is not even enough to determine the
topological type of the resulting handlebody. This can be illustrated by considering a handle
attachment to D4 along a knot K ∼= S1 ⊂ ∂D4 = S3 Such a handle attachment corresponds to a
so called Dehn surgery on its boundary S3 along K, the details of which can be found in Section
2.1 of [Nic11] and Section 9.G of [Rol76]. These Dehn surgeries can produce vastly different
manifolds, depending on the knot K and the framing of its normal bundle.

Any knot K ⊂ S3 bounds a smoothly embedded and orientable Riemann surface Σ ⊂ S3. The
interior pointing unit normal along K is a nowhere vanishing section of the normal bundle
νK, thus it gives a framing of the bundle which we call the canonical framing of the knot K.
Note that such a framing gives a diffeomorphism between the tubular neighbourhood T of the
knot and the solid torus S1 × D2. We call λ = S1 × {0} ⊂ S1 × D2 the longitude of K and the
boundary ∂D2 × {1} of a fiber of the normal disc bundle the meridian of K.

Any other framing on νK corresponds to a nowhere vanishing section of νK, and thus traces a
curve J on ∂T ∼= S1 × ∂D2. In H1(S1 × ∂D2, Z) we can write [J] as

[J] = [λ] + p[µ],

The integer p is called the framing coefficient.

The manifold obtained by attaching a handle to S3 along a knot K is completely determined
by K and the framing coefficient. For instance, attaching a handle along the trivial knot with
the canonical framing produces a 4-dimensional manifold with as boundary S2 × S1, while
attaching the handle along the trivial knot with framing coefficient 1 produces D4 again.
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Figure 2.7: Embeddings of the trivial knot into S3 with different framing coefficients, note that
the figure is necessarily inaccurate.

Another example is the attachment of a handle along the trefoil knot with framing coefficient
1, which produces the Poincaré homology sphere, which is a 3-manifold with the same homology
as the 3-sphere and fundamental group of order 120.

Figure 2.8: Embedding of the trefoil knot into S3, note that the figure is necessarily inaccurate.

Thus, in general, a manifold is not determined by the handles in its handlebody decomposi-
tion, the attaching maps have to be specified. These attaching maps are determined by the
gradient. Therefore we will shift our focus from Morse functions to Morse dynamics, i.e. the
dynamics of gradients of Morse functions, in the following chapter.



Chapter 3

Morse Dynamics

In this chapter we study the gradients of Morse functions and how the flow of these gradients
determine the manifold. In particular we discuss that, for a compact manifold M equipped
with a Riemannian metric and fixed Morse function f : M → R, the manifold can be decom-
posed into the stable manifolds of the flow of the gradient of f .

The stable manifolds give a stratification of M by cells, i.e. disjoint open discs of varying
dimensions. In this sense they resemble a cellular decomposition, as already remarked in 1949
by Thom in [Tho49]. However, the cells do not generally form a cell-complex in the usual
sense because the closure of a cell is generally not obtained by adding lower index cells. By
imposing a transversality condition on the flow and compatibility of the vector field with the
Morse models, the stratification becomes more well-behaved.

We begin Section 3.1 by defining gradient-like vector fields, which can be define without picking
a Riemannian metric, and the (un)stable sets of gradient-like vector fields. In Subsection 3.1.1
we take a short deviation and consider when and how the theory for compact manifolds can
be adapted to non-compact manifolds. In particular we see that a certain class of manifolds,
which we call finite type X-convex, are completely determined by a compact neighbourhood
of their stable manifolds. We conclude this chapter with Section 3.2, where we introduce the
Smale condition, which is a transversality condition on the stable and unstable manifolds. This
condition ensures that the closure of any cell is given by attaching lower dimensional cells. We
conclude with the definition of Morse vector fields, which are gradient-like vector fields that are
compatible with the Morse structure on Morse neighbourhoods. In the following chapter we
will show that the stable manifolds of Morse vector fields satisfying the Smale condition form
a cell-complex.

3.1 (Un)stable manifolds

We want to develop a theory that is not dependent on the chosen Riemannian metric. A fixed
Morse function f : M → R has many different gradients, corresponding to different choices

18
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of metric on M. It can be difficult to check whether a given vector field X is the gradient of f
with respect to any metric. Therefore we wish to formulate a necessary condition for X to be a
gradient that can be easily checked without knowing the Riemannian metric.

We observe that for any metric g on M have

• grad f ( f ) = g(grad f , grad f ) > 0 on M \ Crit( f ),

• grad = 0 on Crit( f ).

This motivates the following definition.

Definition 3.1. A vector field X ∈ X(M) is called gradient-like for a smooth map f : M → R if

• X( f ) > 0 on M \ Crit( f ),

• X = 0 on Crit( f ).

△

Note that if X is gradient-like for f : M → R, the function f must increase along any flow
which is not a fixed point and thus gradient-like dynamical systems can not have periodic
orbits. In particular, if M is compact and X is gradient-like, any point x ∈ M \ Crit( f ) lies on a
unique 1-dimensional manifold "starting" at a critical point p and "ending" at a critical point q.

We capture this behaviour in the following definition.

Definition 3.2. Let X be a gradient-like vector field for a smooth function f : M → R and let
p ∈ Crit( f ). The stable set of p is defined as

Stab(p) = {x ∈ M | lim
t→∞

φt(x) = p}

and the unstable set of p is defined as

Unstab(p) = {x ∈ M | lim
t→−∞

φt(x) = p}

where φt : M → M is the flow along X at time t. △

For any smooth vector field X ∈ X(M), at p ∈ M where X vanishes, the differential dpX splits
the tangent space Tp M as Tp M = E−

p ⊕ E+
p ⊕ E0

p, where E−/+/0 are generalized eigenspaces
of Tp M with −/+ /0 real part. A zero p of the vector field is called hyperbolic if E0

p = {0}, a
classic result from the study of dynamical systems, see for instance Section 5.10 of [Rob94], is
that the (un)stable sets of hyperbolic zeros are manifolds.

Theorem 3.3 (Stable Manifold Theorem). Let M be an n-dimensional manifold, let X ∈ X(M) be a
smooth vector field and let p ∈ M be a hyperbolic zero of X. Then the stable and unstable sets are the
unique smooth invariant manifolds tangent to respectively E−

p and E+
p .

Remark 3.4. Let M be an n-dimensional manifold, let X ∈ X(M) be a gradient vector field for a
Morse function f : M → R and let p ∈ Crit( f ) with index λ. Then the linearization DpX splits
the tangent space Tp M at a critical point p of M as Tp M = E−

p ⊕ E+
p , meaning the zeros of X
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are all hyperbolic. The stable manifold of p is diffeomorphic to the open disc Dλ, the unstable
manifold of p is diffeomorphic to the open disc Dn−λ. △

For a compact M with Morse function f : M → R the collection of stable manifolds {Stab(p)}p∈Crit( f )
gives a decomposition of M into disjoint cells, likewise the collection of unstable manifolds
{Unstab(p)}p∈Crit( f ) also gives a decomposition of M.

However, in general this decomposition does not have the structure of a cell-complex, since
the closure of cells is not necessarily obtained by adding lower dimensional cells. We see this
in the example of the height function on the 2-torus in Section 2.1, of which the gradient vector
field is drawn in Figure 3.1.

Figure 3.1: A gradient vector field for the Morse function on the 2-torus.

The closure of the 1-cell Stab(r) is given by adding the point q, which lies on the 1-cell Stab(q).
Thus the closure of a 1-cell is not obtained by adding 0-cells but instead by adding a subset of
a 1-cell, meaning the decomposition given by the stable manifolds is not a cell-complex.

3.1.1 Non-compact manifolds

As discussed above, a gradient vector field of a Morse function on a compact manifold M gives
a decomposition of M into its stable manifolds. If M is not compact, we do not always have
such a decomposition. Not every flow has to settle in a critical point, instead a flow can also
go off to infinity. Thus not every point has to be contained in a stable manifold.

However, under certain conditions a non-compact manifold equipped with a vector field can
be completely determined, up to diffeomorphism, by a neighbourhood of its stable manifolds.
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Definition 3.5. An n-dimensional manifold M is said to be X-convex for a complete vector field
X ∈ X(M) if there is an exhaustion by compact domains M = ∪∞

k=1Mk such that X is outwardly
transverse to the boundary of each Mk.

We call the pair (M, X) a convex structure. △

Note that closed manifolds equiped with a complete vector field X are X-convex.

Figure 3.2: This infinite cylinder is not X-convex, since there is no compact domain such that
the vector field is outwardly transverse to the boundary.

Figure 3.3: This infinite genus surface is X-convex.

Definition 3.6. The skeleton of an X-convex manifold M is defined as

Skel(M, X) = ∪∞
k=1 ∩t>0 φ−t(Mk)

where φt : M → M denotes the flow along X at time t, i.e. the skeleton is the attractor of the
backwards flow of X.

We say (M, X) is finite type if its skeleton is compact. △

The X-convex infinite genus surface indicated in Figure 3.3 is not finite type, there is no com-
pact domain containing all its critical points and thus its skeleton can not be compact.

The X-convex punctured torus as indicated in Figure 3.4 is finite type
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Figure 3.4: An X-convex and finite type surface with its skeleton indicated in red.

Remark 3.7. If X is the gradient of a Morse function f : M → R, the skeleton is the union of
all stable manifolds

Skel(M, X) =
⋃

p∈Crit( f )

Stab(p).

△

We always assume that that (M, X) is finite type. Note that, since (M, X) is finite type, there
is a compact domain W ⊂ M such that Skel(M, X) ⊂ W and X is outwardly transverse to the
boundary ∂W.

Definition 3.8. Let (M, X) be a finite type convex structure, we call any compact W ⊂ M such
that Skel(M, X) ⊂ W and X is outwardly transverse to the boundary ∂W a defining domain of
M. △

Informally, one could say that a defining domain W ⊂ M captures all of the interesting
(smooth) topology of M. We make this precise in the following way.

Lemma 3.9. Let (M, X) be a finite type convex structure and W ⊂ M a defining domain. Then M is
diffeomorphic to the convex manifold

M̂ := W ∪ (∂W × [0, ∞))

obtained by attaching a cylindrical end to ∂W and extending X as “X = esX|∂W .

Proof. We denote the flow along X at time t by φt, and define the map Φ : M̂ → M as the
identity on W and as

Φ(x, t) = φt(x)
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on ∂W × [0, ∞). Note that Φ is smooth, we show that Φ is a diffeomorphism.

First we show Φ is a bijection. Let p ∈ M, if p ∈ W then Φ(p) = p. If x ∈ M \ W, then the flow
through p must pass trough a unique point x ∈ ∂W at some time −t < 0 by the X-convexity
condition. Thus, there is a (x, t) ∈ ∂W × [0, ∞) such that Φ(x, t) = p. We see that Φ is surjective.
The injectivity of Φ follows directedly from the and the uniqueness of flow; if Φ(x) = p ∈ W
it must be that x = p by the X-convexity condition and if p /∈ W there must be a unique
(x, t) ∈ ∂W × [0, ∞) such that Φ(x, t) = p by the existence and uniqueness of flow.

Now we show that Φ is an immersion, note that Φ is the identity and thus an immersion on
W. For any t ⩾ 0, the map φt : ∂W → φt(∂W) is a diffeomorphism and ∂

∂t φt = X ⋔ ∂W. Thus
we see that Φ is indeed an immersion, we conclude that Φ is a bijection.

3.2 Smale vector fields

The following condition assures that the closure of each cell is given by adding lower dimen-
sional cell.

Definition 3.10. A gradient vector field X of a Morse function f : M → R is called Smale if for
every pair of critical points p, q ∈ Crit( f ) we have

Stab(p) ⋔ Unstab(q).

△

If M is a closed smooth n-dimensional manifold and X a Smale gradient vector field for a
Morse function f : M → R with an index λ critical point p, we know that the closure Stab(p)
of Stab(p) is obtained by adding the union of the stable manifolds of smaller index, see for in-
stance Section 3.2 of [ADE13]. Furthermore, as shown in Chapter 4 of [Nic11], the stratification
of M by the stable manifolds satisfies the Whitney conditions.

That the closure of every stable manifold is obtained by adding stable manifolds of lower index
can be understood in the following way. The transversality condition gives that, if Stab(p) ∩
Unstab(q) ̸= ∅, we have

dim(Stab(p) ∩ Unstab(q)) = dim(Stab(p)) + dim(Unstab(q)) − n.

If we write λp, λq for the index of p and q respectively, we get

dim(Stab(p) ∩ Unstab(q)) = λp + n − λq − n = λp − λq.

Now, if x ∈ Stab(p) ∩ Unstab(q), we must have that the entire integral curve through x must
be contained in Stab(p) ∩ Unstab(q). Thus if Stab(p) ∩ Unstab(q) ̸= ∅ we must have that
dim(Stab(p) ∩ Unstab(q)) ⩾ 1.

Therefore we see that if Stab(p) ∩ Unstab(q) ̸= ∅ we must have

λp ⩾ λ1 + 1.
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Note that the vector field as indicated in Figure 3.1 is not Smale, the intersection

Stab(r) ∩ Unstab(q)

is 1-dimensional and thus not transverse. In general, it is difficult to explicitly find a metric
such that a gradient is Smale.

However, as shown by Smale, see for instance Theorem A of [Sma61], gradient vector fields of
Morse functions are generically Smale. Indeed, a small perturbation yields the Smale vector
field indicated in Figure 3.5.

Figure 3.5: A Smale gradient vector field for the Morse function on the 2-torus.

Even though the stable manifolds of a Smale system give a well-behaving cell decomposition,
in the sense that the closure Stab(p) of a cell is given by attaching cells of lower dimension
and the stratification is Whitney, we can say little about the exact way the stable manifolds
of lower index attach to Stab(p) for general Smale gradients. In particular we de not have
specified local models around the singularities of the stratification. However, as we will show
in the following chapter, the local structure of Stab(p) is relatively simple if X is Smale and we
demand the following compatibility with the Morse model.

Definition 3.11. We say a smooth vector field X on M is Morse if it is gradient-like for a Morse
function f : M → R such that for every critical point there is a Morse neighbourhood on which
X corresponds to the gradient of f with respect to the canonical metric on Rn.

We say a smooth vector field X on M is Morse-Smale if it is Morse and Smale. △

Remark 3.12. Some texts use the term gradient-like to refer to our notion of a Morse vector field,
i.e. compatibility with the Morse model is imposed in the definition of gradient-like. We make
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the distinction between gradient-like and Morse vector fields because we later encounter a
wider range of gradient-like vector fields, which are compatible with different local models of
certain functions satisfying a more general non-degeneracy condition than the Morse condi-
tion. △

Note that there are Morse vector fields for every Morse function. One can construct a metric
on any manifold M by taking a locally finite cover by charts, pulling back the canonical metric
on every chart and gluing these together using a partition of unity. By including the Morse
neighbourhoods in this cover and taking an appropriate partition of unity we obtain a metric
on M such that the gradient of f is a Morse vector field.

The converse is also true for closed M, Theorem B of [Sma61] asserts that if X ∈ X(M) is Morse,
then there is a Morse function f : M → R and Riemannian metric g on M such that X is the
gradient of f with respect to g. Thus, being Morse is equivalent to being gradient of a Morse
function with respect to a certain Riemannian metric.

However, we opt to formulate the definition of Morse vector fields as gradient-like vector fields
compatible with the local model because we often work in a set-up where a smooth manifold
M (without specified metric) and vector field X ∈ X(M) are given but the Morse function is
not specified. Checking the global condition, i.e. checking if for a Morse function f there is any
metric such that X is the gradient of f with respect to the metric, is difficult. Comparatively
the gradient-like condition is easy to check.



Chapter 4

Submanifolds with Conical
Singularities

In this chapter will show, following F. Laudenbach in [Lau92], that the closures of stable man-
ifolds of a Morse-Smale vector field have a relatively simple conical structure.

Consider a closed smooth n-dimensional manifold M and let X ∈ X(M) be a Morse vector field
with associated Morse function f : M → R. Around any critical point p ∈ Crit( f ) we have a
Morse neighbourhood U with Morse coordinates (x, y) such that, on U, we have that

f (x, y) = f (p) − ∥x∥2 + ∥y∥2 ,

and X is the gradient of f with respect to the canonical metric on Rn. This situation is shown
in Figure 4.1. Then we can see that

Stab(p) ∩ U = {(x, 0) ∈ U} and Unstab(p) ∩ U = {(0, y) ∈ U}.

Furthermore, as can be seen in Figure 4.2, the vector field is radial in both the stable and
unstable manifold on U. In particular, X points inwards, i.e. towards the critical point, in the
stable manifold, and X points outwards in the unstable manifold.

This radial structure tells us that if the stable manifold Stab(q) of another critical point q inter-
sects the unstable manifold of p in its Morse neighbourhood, its closure Stab(q) is locally given
by taking the cone of the intersection Stab(q) ∩ ∂U to p. This is illustrated in Figure 4.3.

We begin this chapter by introducing the class of conical singularities and stratified spaces
whose singularities are all of the conical type, which we call submanifolds with conical singular-
ities. Some examples are given and certain important properties of submanifolds with conical
singularities are stated and proven. Then, in Section 4.2, we show that stable sets of Morse-
Smale vector fields indeed form submanifolds with conical singularities. We conclude this
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Figure 4.1: A Morse vector field on an appropriate Morse neighbourhood with Morse coordi-
nates (x, y), the stable manifold coincides with the x-axis and the unstable manifold coincides
with the y-axis.

chapter with Section 4.3, where we discuss the limitations of this description of stable mani-
folds as submanifolds with conical singularities if our goal is to recover the smooth type of a
manifold from (the neighbourhoods of) its critical points.

Throughout this chapter M is a closed smooth n-dimensional manifold and X ∈ X(M) is a
Morse-Smale vector field with associated Morse function f : M → R with distinct critical
values.

4.1 Submanifolds with conical singularities

Definition 4.1. Conical singularities in n-manifolds form the smallest class Conn
k of germs of

closed stratified subsets in n-dimensional smooth manifolds such that the following properties
are satisfied:

(i) (Base case) Conn
0 contains pt = R0 ⊂ Rn.

(ii) (Invariance) Conn
k is invariant with respect to diffeomorphisms.

(iii) (Stabilization) If Σ = (Σk, ..., Σ0) ⊂ N is in Conn
k with k < n, then the product D × Σ =

D × (Σk, ..., Σ0, ∅) is in Conn
k+1.
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(a) The radial vector field in the stable manifold. (b) The radial vector field in the unstable manifold.

Figure 4.2: A Morse vector field along to the stable and unstable manifold on the Morse neigh-
bourhood of a critical point.

Figure 4.3: The stable manifold Stab(q) is intersects Unstab(p), its closure is locally the cone of
its intersection with the boundary of the Morse neighbourhood.
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(iv) (Cones) If Σ′ = (Σ′
k−1, ..., Σ′

0) ⊂ Sn−1 is in Conn−1
k−1 , then

(D, cΣ′
k−1, ..., cΣ′

0) ⊂ Dn

is in Conn
k , here cΣ′

i denotes the cone on Σ′
i with respect to the linear structure of Dn.

△

Figure 4.4: Examples of conical singularities.

Definition 4.2. We say a stratified set Σ = (Σk, ..., Σ0) ⊂ M is a submanifold with conical singu-
larities (abridged: smcs) of dimension k if all of its singularities are conical singularities. △

Remark 4.3. A smcs of dimension k = 0 in M is a set of discrete points in M. A stratified set
Σ = (Σk, ..., Σ0) in M is a smcs of dimension k precisely if the following conditions are met:

(i) (Stability) For every p ∈ Σi \ Σi−1 there is a neighbourhood V of p diffeomorphic to a
product of discs Di × Dn−i and a smcs T = (Tk−i, ..., T0) such that

V ∩ Σ = Di × (Tk−i, ..., T0, ∅, ..., ∅).

(ii) (Cones) If p ∈ Σ0 there is an closed C1 n-ball B centred at p such that

Σ′ = Σ ∩ ∂B = Σ ∩ Sn−1 is a smcs of dimension k − 1 in Sn−1

and

(B, B ∩ Σk, ..., B ∩ Σ0) = (B, cΣ′
k, ..., cΣ′

1)

where cΣ′
i denotes the cone on Σ′

i with respect to the linear structure of the parametrized
ball B.

△

Example 4.4. Every manifold M with (possibly empty) boundary ∂M is a smcs

(M, ∂M, ∅, ..., ∅).

△
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Figure 4.5: A manifold with boundary.

Example 4.5. The stratification of Sn given by lower dimensional spheres S0 ⊂ S1 ⊂ ... ⊂ Sn is
a smcs. △

Figure 4.6: The stratification of S2 given by S0 ⊂ S1 ⊂ S2.

Nonexample 4.6. The infinite spiral

S =

ß
(t cos

Å
1
t

ã
, t sin

Å
1
t

ã
| t ∈ (0, 1])

™
∪ {0} ⊂ R2

is a stratified set (S, {0}) that does not satisfy the cone property at the origin in any chart There
is no ambient diffeomorphism from the neighbourhood of the origin to the closed half line in
R2 that is smooth in the origin.
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Figure 4.7: The infinite spiral.

It is a well-known fact the transverse intersection of two submanifolds is again a manifold.
Likewise the transverse intersection of a submanifold and an smcs is again an smcs, as formu-
lated in the following lemma.

Lemma 4.7. Let N be a n-dimensional manifold with a smcs Σ = (Σk, ..., Σ0) of dimension k. Suppose
S ⊂ N is a submanifold of codimension q that is transverse to Σ, then

(S ∩ Σk, ..., S ∩ Σq)

is a smscs of dimension k − q in S.

If S furthermore has a product neighbourhood Dq × S in N with S = {0} × S, there is a germ of
diffeomorphisms H : Dq × S → Dq × S along {0} × S commuting with the projection onto Dq such
that H(Σ) = Dq × (Σ ∩ S).

Proof. We begin by proving the first assertion. By transversality we immediately see that S ∩
Σi = ∅ if i < q.

Let p ∈ S ∩ Σl with l ⩾ q, by the stability property there is a chart U around p such that

U ∩ Σ = Dl × (Tk−l , ..., T0, ∅, ..., ∅) = Dq × Dl−q × T

where T is a smcs of dimension k − l in Dn−l , note that T0 = {p}. By transversality there is
a projection πU : Dq × Dn−q → Dn−q that induces a diffeomorphism φU : U ∩ S → Dn−q

such that in the corresponding chart on S we have S ∩ Σ = Dl−q × T. Thus S ∩ Σ is smcs of
dimension k − q in S.

We now assume S has a product neighbourhood Dq × S in N with S = {0} × S.
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Figure 4.8: The product neighbourhood Dq × S can locally be identified with Dq × Dl−q.

Locally we have projections

φ−1
U ◦ πU : Dq × Dn−q → U ∩ S

"along the stratification" mapping U ∩ Σ to S ∩ Σ.

Figure 4.9: The local projection along the stratification.

Note that every local projections φ−1
U ◦ πU is the identity on {0} × (S ∩ U). These local projec-

tions can be patched up to a global projection π′′ : V → S defined on small tube V around S
using a partition of unity.
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Furthermore, we have a projection π′ : V → Dq, given by the trivialization of the normal
bundle.

Now H = (π′, π′′) : V → Dq × S is a germ of diffeomorphisms of Dq × S along {0} × S and
H(Σ ∩ V) ⊂ Dq × (Σ ∩ S).

4.2 Stable manifolds as submanifolds with conical singularities

In this section we show that the closure of a stable manifold of a Morse-Smale system has the
structure of a smcs.

Theorem 4.8. Let X be a Morse-Smale vector field for f : M → R. If p is a critical point of index λ,
then (Stab(p), Stab(p) \ Stab(p)) is a smcs of dimension λ where Stab(p) \ Stab(p) is stratified by stable
manifolds of critical points of index strictly less than λ.

Proof. Let p be an index λ critical point of f . For a ∈ R define

Sa(p) = Stab(p) ∩ { f = a}.

Now, if a < f (p) such that [a, f (p)] does not contain any critical values besides f (p), Sa(p) is
a sphere. As a decreases Sa(p) remains a sphere until a coincides with a critical value of f at
some critical point q of index µ; for ε > 0, S f (q)−ε is no longer a smooth manifold. Recall that,
because X is Morse-Smale, we know µ < λ.

Let (x, y) ∈ Rµ × Rn−µ be Morse coordinates on a neighbourhood U of q such that on U

f (x, y) = f (q) − ∥x∥2 + ∥y∥2

and X is the gradient of f with respect to the Euclidean metric on U. We define the level sets

V− = { f = f (q) − ε}, V+ = { f = f (q) + ε}

and remark that V− ∼= Sµ−1 ×Dn−µ under the correspondence (u, θv) ↔ (u cosh θ, v sinh θ) and
V+

∼= Dµ × Sn−µ−1 under the correspondence (u, θv) ↔ (u sinh θ, v cosh θ). We write

S+ = Sµ−1 × {0} ⊂ V− and S− = {0} × Sn−µ−1 ⊂ V+.

Note that by the Smale condition Stab(q) ∩ { f = f (q) + ε} is transverse to the sphere S+.

We formulate the following lemma.

Lemma 4.9. Let Σ+ be a smcs of dimension k in V+ that is transverse to S+ with non-empty inter-
section. Define Σ− to be the closure in V− of the set of points V− which lie on a gradient line passing
through Σ+, then Σ− contains S− and is a smcs of dimension k.
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Proof. On U the flow lines of X are orthogonal trajectories of the surface −∥x∥2 + ∥y∥2 =
constant, thus the gradient lines passing through (x, y) can be parametrized as (tx, t−1y). There-
fore, if either x or y is zero the trajectory is a straight line segment trough (x, y) coming from
the origin, meaning that no points of S− lie on a gradient line passing through Σ+. If both x
and y are non-zero the trajectory passing through (x, y) is a hyperbola passing through some
point (u cosh θ, u sinh θ) ∈ V− and a corresponding point (u sinh θ, u cosh θ) ∈ V+.

Using polar coordinates (φ, ψ, r) ∈ Si−1 × Sn−i−1 × [0, 1] in V− ∼= Si−1 × Dn−1 and V+
∼= Di ×

Sn−i−1, we see the the identity map V+ \S+ → V− \S− gives the correspondence (u cosh θ, u sinh θ) ↔
(u sinh θ, u cosh θ).

Define K = Σ+ ∩ S+, which is a smcs as shown in Lemma 4.7. Note that S+ has a product
neighbourhood Dµ × S+ in V+ such that S+ = {0} × S+, thus by Lemma 4.7 there is a diffeo-
morphism H : Dµ × Sn−µ−1 → Dµ × Sn−µ−1 along {0} × S+ such that H(Σ+) = Dµ × K near
{0} × S+.

From the proof of Lemma 4.7 we know, using polar coordinates, that the diffeomorphism H
is of the form H(φ, ψ, r) = (φ, ψ(φ, ψ, r), r) with ψ(φ, ψ, 0) = ψ. Note that H could also be
considered as a map ‹H : Sµ−1 × Dn−µ → Sµ−1 × Dn−µ, which is also a diffeomorphism.

Now, we see that

H(Σ+ \ K) = {(φ, ψ, r)|φ ∈ Sµ−1, ψ(φ, ψ, r) ∈ K, r > 0},

and that in V−, ‹H(Σ− \ S−) is given by the same formula. Thus, by taking the closure, we see
that ‹H(Σ−) = Sµ−1 × cK.

We conclude that Σ− is a smcs containing S−.

Using this lemma we see Stab(q) ∩ { f = f (q) − ε} is a smcs with a new singular stratum. The
theorem now follows by recursion.

Remark 4.10. Theorem 4.8 implies that, if M is closed, the stable manifolds give the structure
of a CW-complex on M. If M is not closed but instead X-convex, the stable manifolds give the
structure of a CW-complex on the skeleton Skel(M, X). △

4.3 Limitations

Submanifolds with conical singularities have a high level of regularity and give rise to well-
behaving conical models around the singularities, nonetheless, they do have their limitations.
Conical models form a continuous family of models, with which we mean a small perturbation
of the model gives a new, non-isomorphic, model.
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Figure 4.10: Non-isomorphic conical models.

This is illustrated in Figure 4.10, there is no ambient diffeomorphisms between the two models,
since such a map could not be smooth in the point of the cone. Therefore the two conical
models are not equivalent.

This means that a small perturbation of the Morse-Smale vector field yields vastly different
models around every critical point.

To avoid this kind of behaviour we would like to have a discrete family of models, such that
a small perturbation yield the same model. Furthermore, our goal is to describe these models
combinatorically, allowing for a completely combinatorial description of the complex given by
stable manifolds.



Chapter 5

Arboreal Hypersurface Singularities in
Smooth Manifolds

In this chapter we define the class of arboreal hypersurface singularities, which are an adaptation
of the class of arboreal singularities as introduced by David Nadler in [Nad17]. Whereas the
original arboreal singularities are used to describe Legendrian and Lagrangian singularities
in symplectic and contact manifolds, our arboreal hypersurface singularities describe strati-
fied hypersurface singularities in smooth manifolds. Furthermore, we show that each class
of germs of arboreal hypersurface singularities is determined by discrete combinatorial data
given by a special signed rooted tree T = (T, ρ, ε), a non-cyclic connected graph T with a condition
on the degree of each vertex, a distinct root vertex ρ and signs ± on each edge.

In the next chapter we discuss how to perturb Morse-Smale systems such that the singularities
in their skeleta are arboreal hypersurface singularities. To do so, we "spread out" the critical
points into manifolds of critical points.

Figure 5.1: Spreading out the critical points.

If we do this in such a matter that the stable manifolds have codimension 1, they are locally
separating and we can locally choose an "up" and "down" direction. Recall that in the Morse

36
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Figure 5.2: Perturbations away from the critical points yield germ diffeomorphic singularities.

case we demanded that, in some specified coordinate system, the vector field is locally radial
in the unstable manifold. In the neighbourhood of the spread out critical points we want the
vector field to be vertical, i.e. normal to the stable manifold in some coordinate system around
the manifold of critical points. Then, close to the critical manifolds, there are coordinates such
that the trajectory through a point p in a unstable manifold is locally given as the straight half-
line starting at the natural projection of p to the critical manifold and passing through p. In
particular, a stable manifold S entering this coordinate neighbourhood of a critical manifold C
is locally given as the vertical cone of the intersection of S with the boundary of the neighbour-
hood.

Figure 5.3: Two neighbourhoods of critical manifolds in their unstable manifold. The critical
manifolds, indicated in red, have codimension 1. The vector fields, indicated in green, are
vertical. Stable manifolds enter the neighbourhood, indicated in orange, and are locally given
as a vertical cone, indicated in blue.

We begin this chapter with the definition of arboreal hypersurface singularities in Section 5.1.
Then, in Section 5.2, we produce explicit local models for the arboreal hypersurface singulari-



CHAPTER 5. ARBOREAL HYPERSURFACE SINGULARITIES IN SMOOTH
MANIFOLDS 38

ties where each model is associated to a special signed rooted tree. In Section 5.3 we prove the
Stability Theorem 5.11 and use it to show that each arboreal hypersurface singularity is germ
diffeomorphic to one of the models produced in Section 5.2. Furthermore, we show that this
Stability Theorem also holds parametrically. We conclude this chapter with Section 5.4, where
we generalize the definition of arboreal hypersurface singularities to allow for strata with
boundary. Furthermore, we produce and produce local models associated to special signed
rooted trees with certain extra combinatorial data for these generalized arboreal singularities.
We prove that a similar Stability Theorem holds for these generalized arboreal hypersurface singu-
larities and use this Stability Theorem to conclude that each generalized arboreal hypersurface
singularity is germ diffeomorphic to one of the produced models.

5.1 Arboreal hypersurface singularities

Before we can define arboreal hypersurface singularities we first need give a more formal def-
inition of the vertical cone operation. Let H ⊂ Rn × S0 and let π : Rn × S0 → Rn be the obvious
projection. Given a point p ∈ H we denote the straight half-line beginning at π(p) and passing
trough p by C(p) . The vertical cone C(H) ⊂ Rn+1 is the union ∪p∈HC(p).

Definition 5.1. Arboreal hypersurface singularities form the smallest class Arbhyp
n of germs of

closed stratified subsets in n + 1-dimensional smooth manifolds such that the following prop-
erties are satisfied:

(i) (Base case) Arbhyp
0 contains pt = R0 ⊂ R.

(ii) (Invariance) Arbhyp
n is invariant with respect to diffeomorphisms.

(iii) (Stabilization) If H ⊂ M is in Arbhyp
n , then the product H × R ⊂ M × R is in Arbhyp

n+1.

(iv) (Vertical cones) Let π : Rn × S0 → Rn be the obvious projection. If H1 ⊂ Rn × S0 is an
arboreal hypersurface singularity germ from Arbhyp

n−1 centred at z1 ∈ Rn × S0, the union
Rn ∪ C(H1) of the vertical cone with the zero-section forms an arboreal hypersurface
singularity germ from Arbhyp

n .

Furthermore, if H1, H2 ⊂ Rn × S0 are disjoint arboreal hypersurface singularity germs
from Arbhyp

n−1, such that H1 and H2 are centred at z1, z2 ∈ Rn × S0 with π(z1) = π(z2),
and the map π|H1∪H2 is self-transverse as a map of stratified spaces, then the union Rn ∪
C(H1) ∪ C(H2) of the vertical cones with Rn forms an arboreal hypersurface singularity
germ from Arbhyp

n .

△

Note that the condition that π|H1∪H2 is self-transverse as a map of stratified spaces is a natural
one if we want the models of arboreal hypersurface singularities to be stable, i.e. we want
the models to form a finite and discrete family. Transverse intersection is stable while non-
transverse intersection is unstable, thus allowing for non-transverse self-intersection would
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possibly lead to an infinite and continuous family of models.

Remark 5.2. Every arboreal hypersurface singularity admits a canonical stratification, since
every arboreal hypersurface singularity can be obtained through a series of stabilizations,
vertical cones and diffeomorphisms applied to the base case. This base case, R0 ⊂ R, is a
smooth manifold and thus has a canonical stratification. The stabilization H × R of a strati-
fied set H ⊂ M with stratification (Hn, ..., H0) admits a canonical stratification (Hn ×R, Hn−1 ×
R, ..., H0 × R, ∅). Similarly, because the transverse intersection of strata yields a manifold, the
vertical cone operation applied to stratified H1, H2 ⊂ M gives a set with a canonical stratifica-
tion. A diffeomorphism φ : (M, H) → (M′, H′) arboreal hypersurface singularity germs carries
a stratification of H to a stratification of H′. △

5.2 Arboreal hypersurface models

We now construct explicit local models for the arboreal hypersurface singularities, to do so we
first need to introduce some auxiliary notions.

5.2.1 Fully signed rooted trees

A graph G is a set of vertices V(G) and a set of edges E(G) such that E(G) is a subset of the set of
two-elements subsets of V(G). We denote the number of vertices of G by v(G).

Two vertices α, β ∈ V(G) are called adjacent if {α, β} ∈ E(G), a graph G is called connected if any
two vertices α, β ∈ V(G) can be linked by a walk, i.e. a sequence of edges {α, γ1}, {γ1, γ2}, ..., {γn, β} ∈
E(G).

A graph G is called acyclic if there are no non-empty walks in which all edges are distinct and
all vertices except for the first and last are distinct.

Definition 5.3. A tree T is a nonempty, finite, connected acyclic graph. The degree of a vertex α
of a tree T is the number of adjacent vertices, i.e. the number of edges incident on α.

A rooted tree T = (T, ρ) is a pair of a tree T and a distinguished vertex ρ ∈ V(T) called the root.
We denote the set of non-root vertices N(T) = V(T)− {ρ} and the number of non-root vertices
by n(T).

A fully signed rooted tree T = (T, ρ, ε) is a rooted tree (T, ρ) and a decoration ε of a sign ± on
each edge of T. △

In a tree T there is always a unique minimal path, meaning a nonrepeating sequence of edges,
connecting any two vertices. The vertices V(T) of a rooted tree have a natural poset structure
with unique minimum ρ and α ⩽ β if the unique minimal path between β and ρ contains α.
We call a vertex that is maximal with respect to this partial order a leaf.

We introduce the following variation on signed rooted trees.

Definition 5.4. A special signed rooted tree T = (T, ρ, ε) is a fully signed rooted tree satisfying
the following conditions.
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• The root ρ has degree at most two.

• Every non-root vertex has degree at most three.

• The edges between any vertex and its (at most two) predecessors do not have the same
sign.

△

Figure 5.4: Two special signed rooted trees.

Figure 5.5: Two signed rooted trees that are not special. The tree on the left has a root of degree
3, the tree on the right does not satisfy the condition on the signs.

5.2.2 Arboreal model T-hypersurfaces

Definition 5.5. Let S be a finite set, we write RS for the Euclidean space of S-tuples of real numbers.
△

Remark 5.6. For any finite set S we can fix a bijection S → {1, 2, ..., ∥S∥}, which induces an
isomorphism RS ∼= R∥S∥. We mostly consider S = V(T), if one wishes to fix a bijection V(T) →
{1, 2, ..., v(T} it is best to consider an order preserving bijection. △
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We now define our models for arboreal hypersurface singularities. These models are a signed
variation on Nadler’s construction of rectilinear arboreal hypersurfaces in [Nad17], similar to
Starkston’s signed construction in [Sta18].

Definition 5.7. Let T be a special signed rooted tree. Then the arboreal model T-hypersurface,
HT, associated to T, is the stratified subset of RV(T) given by the union HT =

⋃
α∈V(T)

Pα were

we define

Pα := {xα = 0, εβ,β′xβ > 0 for all β < α} ⊂ RV(T).

Here εβ,β′ denotes the sign of the edge {β, β′} between β and its unique neighbour β′ such that
β ⩽ β′ ⩽ α, i.e. the edge {β, β′} points towards α. △

Each stratum Pα has a co-orientation given by ∂xβ
. The geometric meaning of the signs of T is

that, if the vertices α ⩽ β share an edge, the sign εα,β = ±1 if and only if Pβ is on the ±-side of
Pα with respect of this co-orientation.

Remark 5.8. Different special signed rooted trees may yield germ diffeomorphic arboreal
model hypersurfaces, in particular two different choices of signs on the same underlying tree
give germ diffeomorphic arboreal model hypersurfaces.

Let T and T′ be two special signed rooted trees with the same underlying rooted tree, i.e.
T = (T, ρ, ε) and T′ = (T, ρ, ε′). We write εα,α̂ and ε′α,α̂ for the sign in respectively T and
T′ of the edge between a non-root vertex α and its unique predecessor. The map RV(T) →
RV(T), {xα} 7→ εα,α̂ε′α,α̂{xα} is a diffeomorphism of (RV(T), HT) to (RV(T), HT′).

These different trees associated to the same (up to ambient diffeomorphism) stratified spaces
correspond to different chosen co-orientations of the strata. In the next chapter we discus when
and how the strata can be equipped with a canonical co-orientation. △

5.3 Stability of arboreal hypersurface singularities

Definition 5.9. Let T be a special signed rooted tree with n = v(T) ⩽ m. A closed subset H ⊂
M of a smooth m-dimensional manifold M is called an arboreal hypersurface of type (T, m) at p if
the germ of (M, H) at p ∈ H is diffeomorphic to the germ of the pair (Rn × Rm−n, HT × Rm−n)
at the origin.

A closed subset H ⊂ M of a smooth m-dimensional manifold M is called an arboreal hypersur-
face if it is an arboreal hypersurface of type (T, m), for varying T, at every p ∈ H. △

The goal of this section is to show that the classes of Arbhyp
m correspond to arboreal hyper-

surfaces of type (T, m) for varying special signed rooted trees T with at most m vertices, as
formulated in the following theorem.

Theorem 5.10. Per dimension m, Definition 5.1 produces only finite many local models up to ambient
diffeomorphism. More specifically, every class in the collection Arbhyp

m can be assigned a special signed
rooted tree T with at most m vertices.
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Figure 5.6: Some examples of arboreal model T-hypersurfaces for different special signed
rooted trees.

Note that, as a result of Remark 5.8, the tree T assigned to a class in Arbhyp
m is generally not

unique. Any special signed rooted tree with the same underlying rooted tree but different
signs can also be assigned to this class.

To be able to prove Theorem 5.10 we first show the following Stability Theorem. This theorem
asserts that, under the conditions of Definition 5.1, the vertical cone of two arboreal hyper-
surface of respective type (T, m) and (T′, m) union Rm−1, is an arboreal hypersurface. This
theorem is the analogue of Theorem 3.5 in [AEN22a] for our smooth set-up and is proven
using the same technique.
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Theorem 5.11 (Stabilty Theorem). Let T be a special signed rooted tree, set m = v(T) and let
φ± : Rm → Rm × S0 be embeddings mapping 0 to (0,±1) ∈ Rm × S0 = Rm × {−1, 1}. We write
π : Rm × S0 → Rm for the obvious projection.

Write T+ and T− for the two special signed rooted trees obtained from T by deleting the root vertex and
restricting the signs, where the index ± of the trees corresponds to the sign of the edge between the root
ρ and incident vertex/vertices. We write H± = φ±(HT± × Rm−n±), where n± = v(T±), and define
H = H+ ∪ H−.

Suppose that H projects self-transversely under π. Then H = Rm × {0} ∪ C(H), where C(H) denotes
the vertical cone of H, is an arboreal hypersurface of type (T, m + 1) at the origin.

Figure 5.7: The strategy of the proof, we inductively normalize the pieces of H.

Note that one or both of the trees T+ and T− might be empty, which is the case if the root ρ of
T has degree one or zero.

Proof. We need to show that the germ of H at the origin is diffeomorphic to the germ of the
model (T, m + 1)-hypersurface singularity, we proceed by induction over the number of ver-
tices of T.

For the base case, assume T has a single vertex. Then T+ = T− = ∅, meaning that H = ∅
and thus H = Rm × {0}. Now, the germ of (Rm+1, Rm × {0}) is diffeomorphic to the germ of
(Rm+1, HT × Rm) = (Rm+1, {0} × Rm).

For the inductive step, assume T has n vertices and assume the assertion has been established
for all special signed rooted trees with n − 1 vertices. Consider a leaf β of T, without loss of
generality β ∈ V(T+). We denote the tree obtained from T+ by deleting β by T′

+ and the
tree obtained from T by deleting β by T′. We first "straighten", or normalize, the pieces of H
corresponding to the vertices of T′, such that they align with the arboreal model hypersurface.
Then we normalize the piece of H corresponding to β without moving the pieces that have
already been normalized.

Recall that per definition in RV(T+)

HT+ =
⋃

α∈V(T+)

Pα.
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By construction the germ of (Rm, H+) is diffeomorphic to the germ of (Rm, HT+ × Rm−n+) and
thus diffeomorphic to the germ of (Rm, (∪α∈V(T+)Pα) × Rm−n+). We write H+[α] for the piece
of H+ corresponding to Pα under this diffeomorphism.

Note that

HT+ = HT′
+
× R{β} ∪ Pβ.

Thus, if we define H′
+ := H+ \ H+[β], we see that H′

+ is an arboreal hypersurface of type
(T′

+, m) at the origin. Because v(T′) = n − 1, we have by induction that H′ := Rm × {0} ∪
C(H′

+ ∪ H−) is an arboreal hypersurface of type (T′, m). Therefore we may assume

H′ = HT′ × Rm−n+1.

We write H[α] = C(H+[α]) and remark that H = H′ ∪ C(H+[β]).

We now normalize C(H+[β]), to this end let Aβ = (Aβ, ρ, εβ) be the linear special signed rooted
subtree of T = (T, ρ, ε̂), with vertices V(Aβ) = {α ∈ V(T)|α ⩽ β} and restricted signs. We set
d = v(T) − v(Aβ) to be the number of complementary vertices.

We consider the (Aβ, m)-hypersurface K ⊂ H given by the union K = ∪α∈V(Aβ)H[α] of the
smooth pieces of H indexed by α ∈ V(Aβ). Note that for A′

β = Aβ ∩ T′ and K′ = K ∩H′ we
have

K′ = HA′
β
× Rm−n+1+d.

Now we only need to normalize the smooth piece H[β]. Observe that K is an arboreal (Aβ, m)-

Figure 5.8: First normalizing all but one smooth piece and then treating the complementary
directions as parameters.

hypersurface and thus there is a (germ of a) diffeomorphism Φ of the germ of (Rm,K) to the
germ of (Rm, HA′

β
× Rm−n+d). Meanwhile

K = K′ ∪K[β] = HA′
β
× Rm−n+1+d ∪K[β] and HAβ

= HA′
β
∪ Pβ.

Thus it must be that Φ maps K′ to itself (as a set, not necessarily pointwise), none of the smooth
parts of HA′

β
are homeomorphic and thus any smooth part of HA′

β
must be mapped to itself.

Therefore we can normalize H[β] while not moving K′. Using that H projects self-transversely
under π we can view the complementary directions Rm−n+1+d as parameters, so we can assure
H′ is also preserved.
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We have the following direct corollary.

Corollary 5.12. Every arboreal hypersurface of type (T, m) is an arboreal hypersurface singularity as
in Definition 5.1.

Proof. Fix m ⩾ 1, the claim follows by strong induction over the number of vertices v(T).

For v(T) = 1 we see that (Rm, {0} × Rm−1) is the m-fold stabilization of (R, pt).

Let 2 ⩽ n ⩽ m and assume all arboreal hypersurfaces of type (T, m) with v(T) < n are arboreal
hypersurface singularities as in Definition 5.1. We fix a special signed rooted tree T with v(T) =
n and write T± for the trees obtained from T by deleting the root vertex as in Theorem 5.11.

We embed HT+ × Rm−n+ into Rm × S0 as

H+ = HT+ × Rm−n+ × {1}

and we embed HT− × Rm−n− into Rm × S0 as

H− = Rm−n− × HT− × {−1}.

Now we see that

HT × Rm−n = Rm ∪ C(H+) ∪ C(H−)

meaning HT × Rm−n ⊂ Rm is in Arbhyp
m−1, thus the arboreal hypersurface of type (T, m) is an

arboreal hypersurface singularity as in Definition 5.1 by the vertical cone property.

We are now ready to prove Theorem 5.10.

Proof. We now prove that every class in Arbhyp
m can be assigned a special signed rooted tree T

with at most m vertices by induction over m.

By definition Arbhyp
0 has only a single local model, which is indeed germ diffeomorphic to

(R, H•) = (R, {0} × R), where • denotes the special signed rooted tree with one vertex.

Assume every class in Arbhyp
m−1 can be assigned a special signed rooted tree T with at most m− 1

vertices, so if H ⊂ M is in Arbhyp
m−1 then (M, H) is germ diffeomorphic to (Rm, HT × Rm−v(T)).

Any class in Arbhyp
m with m ⩾ 1 can be represented as either a stabilization H × R of some

H ⊂ M in Arbhyp
m−1 or the vertical cone of H1, H2 ⊂ Rm × S0 in Arbhyp

m−1.

In the former case the class in Arbhyp
m is represented by the same special signed rooted tree with

at most n − 1 vertices as H, since the germ diffeomorphism (H, M) → (Rm, HT × Rm−v(T)) can
be extended to a germ diffeomorphism

(M × R, H × R) → (Rm+1, HT × Rm+1−v(T)).
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In the latter case the class in Arbhyp
m is represented by the special signed rooted tree T formed

by joining the special signed rooted trees T1 and T2 representing H1 and H2 at a root. To see
that T has at most m vertices we assume that v(T) > m, meaning that m1 + m2 = v(T1) +
v(T2) ⩾ m. Then we can assume H1 = HT1 × Rm−m1 and H2 = HT1 × Rm−m2 , meaning the
strata containing the origin are {0} × Rm−1−m1 and {0} × Rm−1−m2 respectively. Thus it is
not possible for these strata to be projected transversely in Rm, which is a condition on the
projection in Definition 5.1, thus v(T) ⩽ n.

Now Theorem 5.11 asserts that Rm ∪ C(H1)∪ C(H2) is an arboreal hypersurface of type (T, m +
1) at the origin.

5.3.1 Parametric stability

In this section we show that the proof of Theorem 5.11 also holds parametrically, yielding the
following parametric stability Theorem.

Theorem 5.13. Let T be a special signed rooted tree, let m ⩾ v(T), let φ
y
± : Rm → Rm × S0 be families

of germs of embeddings mapping 0 to (0,±1) ∈ Rm × S0 = Rm ×{−1, 1} and let π : Rm × S0 → Rm

be the obvious projection.

Write T+ and T− for the two special signed rooted trees obtained from T by deleting the root vertex and
restricting the signs with the index ± of the trees corresponds to the sign of the edge between the root ρ
and incident vertex/vertices.

We write Hy
± = φ

y
±(HT± × Rm−n±) where n± = v(T±), define Hy = Hy

+ ∪ Hy
− and define Hy =

Rm × {0} ∪ C(Hy), where C(H) denotes the vertical cone of Hy.

Suppose that each Hy projects self-transversely under π.

Then there exists a family of (germs of) diffeomorphisms of the germ of (Rm,Hy) to the germ of (Rm ×
HT × Rm−v(T)).

Proof. As in the proof of Theorem 5.11 we proceed by induction.

For the base case assume T has a single vertex. Then T+ = T− = ∅, meaning that Hy = ∅
and thus Hy = Rm × {0}. The germ of (Rm+1, Rm × {0}) is diffeomorphic to the germ of
(Rm+1, HT × Rm) = (Rm+1, {0} × Rm).

For the inductive step, assume T has n vertices and assume the assertion has been established
for all special signed rooted trees with n − 1 vertices. As before we consider a leaf β of T, we
assume without loss of generality that β ∈ V(T+) and denote the tree obtained from T+ by
deleting β by T′

+ and the tree obtained from T by deleting β by T′.

We write Hy
+[α] for the smooth piece of H+ indexed by α and define H′y

+ = Hy
+ \ Hy

+[β]

By induction, H′y = Rm ×{0}∪ C(H′y
+ ∪ Hy

−) is an arboreal hypersurface of type (T′, m). There-
fore we may assume

H′y = HT′ × Rm−n+1.
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As before we consider Aβ = (Aβ, ρ, εβ) the linear special signed rooted subtree of T = (T, ρ, ε̂)
with vertices V(Aβ) = {α ∈ V(T)|α ⩽ β} and restricted signs. We set d = v(T) − v(Aβ) to be
the number of complementary vertices.

We look at he family of (Aβ, m)-hypersurface Ky ⊂ Hy given by the union Ky = ∪α∈V(Aβ)Hy[α]
of the smooth pieces of H indexed by α ∈ V(Aβ). For A′

β = Aβ ∩ T′ and K′y = Ky ∩H′y, we
have

K′y = HA′
β
× Rm−n+1+d.

We now normalize the smooth piece H[β].

Since Ky is a family of arboreal (Aβ, m)-hypersurface, there is a family of diffeomorphism Φy

of the germs of (Rm,Ky) to the germ of (Rm, HA′
β
× Rm−n+d). Meanwhile

Ky = K′y ∪Ky[β] = HA′
β
× Rm−n+1+d ∪K[β] and HAβ

= HA′
β
∪ Pβ.

Thus it must be that Φy maps K′y to itself (as a set, not necessarily pointwise) meaning we can
normalize Hy[β] while not moving K′y. Using that Hy projects self-transversely under π we
can view the complementary directions Rm−n+1+d as parameters so we can also assure H′y is
also preserved.

5.4 Generalized arboreal hypersurface singularities

We will need a mild generalization of arboreal hypersurface singularities, similar to the gen-
eralization from manifolds to manifolds with boundary, to allow for strata with boundary.
These kind of singularities occur when we allow the critical manifolds to have a boundary.
This generalization amounts to including one extra base case to Definition 5.1.

Figure 5.9: Two hypersurface singularities of strata involving boundary.

Definition 5.14. Generalized arboreal hypersurface singularities form the smallest class Arbgenhyp
n

of germs of closed stratified subsets in n + 1-dimensional smooth manifolds such that the fol-
lowing properties are satisfied:
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(i) (Base case) Arbgenhyp
0 contains pt = R0 ⊂ R and Arbgenhyp

1 contains {0} × [0, ∞) ⊂ R2.

(ii) (Invariance) Arbgenhyp
n is invariant with respect to diffeomorphisms.

(iii) (Stabilization) If H ⊂ M is in Arbgenhyp
n , then the product H ×R ⊂ M ×R is in Arbgenhyp

n+1 .

(iv) (Vertical cones) Let π : Rn × S0 → Rn be the obvious projection. If H1 ⊂ Rn × S0 is a
generalized arboreal hypersurface singularity germ from Arbgenhyp

n−1 centred at z1 ∈ Rn ×
S0, the union Rn ∪ C(H1) of the vertical cone with the zero-section forms a generalized
hypersurface singularity germ from Arbgenhyp

n .

Furthermore, if H1, H2 ⊂ Rn × S0 are disjoint generalized arboreal hypersurface singu-
larity germs from Arbgenhyp

n−1 , such that H1 and H2 are centred at z1, z2 ∈ Rn × S0 with
π(z1) = π(z2), and the map π|H1∪H2 is self-transverse as a map of stratified spaces, then
the union Rn ∪ C(H1) ∪ C(H2) of the vertical cones with Rn forms a generalized arboreal
hypersurface singularity germ from Arbgenhyp

n .

△

The rest of this section is dedicated to showing that every class in Arbgenhyp
n can be assigned a

special signed rooted tree with certain extra data.

Definition 5.15. A special signed leafy rooted tree (T, ℓε) is a special signed rooted tree T with a
collection ℓ of marked leaf vertices, each decorated with a sign ±. △

From a special signed leafy rooted tree (T, ℓε) we can construct a special signed rooted tree T+

by adding a vertex above each leaf α ∈ ℓ and giving each edge between a leaf and its added
vertex the sign corresponding to the leaf.

Using special signed leafy rooted trees we can define model generalized arboreal hypersur-
faces. These models are a signed variation on Nadler’s construction of generalized rectilinear
arboreal hypersurface in [Nad16], similar to the signed construction in [Sta18].

Definition 5.16. Let (T, ℓε) be a special signed leafy rooted tree, the generalized arboreal model
(T, ℓε)-hypersurface, H(T,ℓε), associated to (T, ℓε) is given by the union

H(T,ℓε) =
⋃

α∈V(T+)\ℓ
Pα ⊂ Rv(T+).

△

Example 5.17. The singularity shown at the left in Figure 5.9 is the generalized arboreal model
(T, ℓε)-hypersurface associated to the special signed leafy rooted tree with one vertex, which is
also a marked leaf which has been given a positive sign.

The righthand singularity depicted in Figure 5.9 is the generalized arboreal model hypersur-
face associated to the special signed leafy rooted tree with two vertices, {ρ, α}, with a positive
decoration on its one edge and α as marked leaf, decorated with a positive sign. △
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Using these models we can generalize Definition 5.9.

Definition 5.18. Let (T, ℓε) be a special leafy signed rooted tree with n = v(T+) ⩽ m. A
closed subset H ⊂ M of a smooth m-dimensional manifold M is called a generalized arboreal
hypersurface of type (T, ℓε, m) at p if the germ of (M, H) at p ∈ H is diffeomorphic to the germ of
the pair (Rn × Rm−n, H(T,ℓε) × Rm−n) at the origin.

A closed subset H ⊂ M of a smooth m-dimensional manifold M is called a generalized arboreal
hypersurface if it is a generalized arboreal hypersurface of type (T, ℓε, m), for varying (T, ℓε), at
every p ∈ H. △

Remark 5.19. We note that the base case pt = R0 ⊂ R in Arbgenhyp
0 is germ diffeomorphic to

(R, H(•,∅)), where • is the rooted tree with one vertex. Furthermore, {0} × [0, ∞) ⊂ R2 is germ
diffeomorphic to (R2, H(•,•)), where the root is taken as a leaf and given a positive sign. △

We have a Generalized Stability Theorem for generalized arboreal hypersurface.

Theorem 5.20 (Generalized Stability Theorem). Let (T, ℓε) be a special signed leafy rooted tree, set
m = v(T), let φ± : Rm → Rm × S0 be embeddings mapping 0 to (0,±1) ∈ Rm × S0 = Rm ×{−1, 1}
We write π : Rm × S0 → Rm for the obvious projection.

Write (T+, ℓ+) and (T−, ℓ−) for the two special signed leafy rooted trees obtained from (T, ℓε) by delet-
ing the root vertex and restricting the signs. We write H± = φ±(HT± × Rm−n±) where n± = v(T±)
and define H = H+ ∪ H−.

Suppose that H projects self-transversely under π. Then H = Rm × {0} ∪ C(H), where C(H) denotes
the vertical cone of H, is an arboreal hypersurface of type (T, ℓ, m + 1) at the origin.

Proof. The proof is very similar to the proof of Theorem 5.11, which is Theorem 5.20 for ℓ = ∅,
with some minor variations that we spell out.

We proceed by strong induction over the sum n of the number of vertices of (T, ℓ) and the
number leaves in ℓ, note that the base case is already established since a rooted tree with one
vertex has no leaves.

Assume that the assertion has been established for all special signed leafy rooted trees with
v(T) + |ℓ| < n . Let (T, ℓ) be a special signed leafy rooted tree with v(T) + |ℓ| = n, assume
ℓ ̸= ∅ since this case has already been covered by Theorem 5.11. Let β ∈ ℓ, without loss of
generality β ∈ V(T+). Similar to above we write (T′

+, ℓ′+) for the special signed leafy rooted
tree obtained from (T+, ℓ+) by removing β. We write T+

+ for the special signed rooted tree
obtained from (T+, ℓ+) by adding a vertex above the marked leaves and denote the vertex
added above β by β̂.

The germ of (Rm, H+) is diffeomorphic to the germ of (Rm, H(T+,ℓ+) ×Rm−n) and per definition

H(T+,ℓ+) = HT′
+
× R2 ∪ Pβ̂.

We write H+[β̂] for the smooth piece of H+ indexed by β̂ and see that H′
+ is a generalized

arboreal hypersurface of type (T+, ℓ+, m) at the origin. Thus, by induction, H′ = Rm × {0} ∪
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C(H′
+ ∪ H−) is a generalized arboreal hypersurface of type (T′

+, ℓ′+, m) and we may assume

H′ = H(T′
+,ℓ′+) × Rm−n+2.

We consider the linear special signed leafy rooted subtree (Aβ̂, ℓβ̂) and set d to be the number
of complementary vertices.

Now we have a (Aβ̂, ℓβ̂, m)-hypersurface given by the union K = ∪α∈V(Aβ̂)H[α] such that for
(A′

β̂
, ℓ′

β̂
) = (Aβ̂, ℓβ̂) ∩ (T′

+, ℓ′+) and K′ = K ∩H′ we have

K′ = H(A′
β̂
,ℓ′

β̂
) × Rm−n+2+d.

But K is an arboreal (Aβ̂, ℓβ̂, m)-hypersurface and thus there is a diffeomorphism Φ of the germ
of (Rm,K) to the germ of (Rm,= H(A′

β̂
,ℓ′

β̂
) × Rm−n+2+d). As before, this diffeomorphism must

leave K′ fixed. By viewing the complementary directions as parameters we can assure H′ is
also preserved.

Using the Generalized Stability Theorem we get the following theorem through induction over
v(T) + |ℓ| in the same manner as in the proof of Theorem 5.10. Remark 5.19 serves as the
induction steps.

Theorem 5.21. Per dimension m, Definition 5.14 produces only finite many local models up to ambient
diffeomorphism. More specifically, every class in the collection Arbgenhyp

m can be assigned a special signed
leafy rooted tree (T, ℓε) with v(T) + |ℓ| ⩽ m.

In the same way as for non-generalized arboreal hypersurface singularities, the proof of Theo-
rem 5.22 can also be done parametrically, yielding the following theorem.

Theorem 5.22. Let (T, ℓ) be a special signed leafy rooted tree, let m = v(T), let φ
y
± : Rm → Rm × S0

be families of germs of embeddings mapping 0 to (0,±1) ∈ Rm × S0 = Rm × {−1, 1} and let π :
Rm × S0 → Rm be the obvious projection.

Write (T+, ℓ+) and (T−, ℓ−) for the two special signed leafy rooted trees obtained from (T, ℓ) by deleting
the root vertex and restricting the signs. We write Hy

± = φ
y
±(HT± × Rm−n±) where n± = v(T±),

define Hy = Hy
+ ∪ Hy

− and Hy := Rm × {0} ∪ C(Hy).

Then there exists a family of (germs of) diffeomorphisms of the germ of (Rm,Hy) to the germ of (Rm ×
H(T,ℓ,m+1) × Rm−v(T)+|ℓ|).



Chapter 6

Producing Arboreal Skeleta

In this chapter we prove that any manifold M that can be decomposed as a compact domain
with an infinite cylindrical attached to its boundary, can be equipped with an X-convex struc-
ture such that its skeleton is an arboreal hypersurface. We do this by starting with an appropri-
ate Morse function on M and "spreading out" its critical points to manifolds of critical points.
This procedure increases the dimension of the stable manifolds, thus it can not produce a hy-
persurface skeleton if one of the bones has codimension 0. In particular this means that closed
manifolds do not admit arboreal skeleta.

In Section 6.1 we define Morse-Bott functions, which are smooth functions with a relaxed non-
degeneracy condition at their critical points, and Morse-Bott vector fields, which are gradient
vector fields of Morse-Bott functions that are compatible with their local structure around
critical points. Then, in Section 6.2 we discuss properties of finite type X-convex manifolds
with Morse-Bott vector fields. We explain how every manifold that can be decomposed as
a compact domain with an infinite cylindrical attached to its boundary, can be given a finite
type X-convex Morse-Bott structure such that all the stable manifolds have positive codimen-
sion. Section 6.3 is dedicated to proving that, if M is a manifold with a finite type X-convex
Morse-Bott structure whose skeleton has positive co-dimension, then M admits a finite type
X-convex Morse-Bott structure with an arboreal skeleton. We conclude this chapter with Sec-
tion 6.4, where we discuss how to make consistent choices for the signs on the edges of the
trees describing the arboreal singularities.

Throughout this chapter M is an n-dimensional manifold.

6.1 Morse-Bott vector fields

Recall that a Morse function f on M is a smooth map f : M → R whose Hessian is non-
degenerate at every critical point. A corollary of the Morse Lemma is that the critical points of
a Morse function must be isolated, while we want to be able to "spread out" the singularities
occurring at critical points. We slightly relax our notion of non-degeneracy to allow for smooth
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manifolds of critical points. The following notion on non-degeneracy is due to R. Bott, it is
slightly to restrictive for our purposes, but serves as a starting point for our even more general
definition.

Definition 6.1. A classic Morse-Bott function on M is a smooth map f : M → R such that each
connected component C of Crit( f ) is an embedded submanifold of M and the Hessian of f
defines a fiberwise non-degenerate pairing on the normal bundle of C. △

Remark 6.2. If we fix a Riemannian metric on M, the Hessian H f splits the tangent space
Tp M as E+

p ⊕ E0
p ⊕ E−

p into generalized eigenspaces with eigenvalues having positive, zero and
negative real part at any critical point p ∈ C ⊂ Crit( f ). The non-degeneracy condition on
the Hessian of f in the normal bundle of a connected component C ⊂ Crit( f ) is equivalent to
demanding that TC = E0|C. △

Example 6.3. Recall that the function f (x, y) = x2 is not Morse, since the critical points form
the x-axis and are all degenerate. It is, however, classic Morse-Bott.

The function f (x, y) = x2y2 is not classic Morse-Bott, the critical points form the x-axis and
y-axis and thus a connected component of Crit( f ) is not a smooth manifold. △

(a) f (x, y) = x2 (b) f (x, y) = x2y2

Figure 6.1: A classic Morse-Bott function and a function that is not classic Morse-Bott.

Just like Morse functions, classic Morse-Bott functions admit canonical local models around
critical points. This property is captured in the Morse-Bott Lemma, a proof of which can for
instance be found in [BH04].

Lemma 6.4 (Morse-Bott Lemma). Let f : M → R be a Morse-Bott function and let C ⊂ Crit( f ) be
a connected component of dimension d. Let p ∈ C, then there exists an open neighbourhood U of p and
a smooth chart φ : U → Rd × Rm−d, such that

• φ(p) = 0,
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• φ(U ∩ C) = {(x, y, z) ∈ Rk × Rn−d−k × Rd|x = y = 0},

• ( f ◦ φ−1)(x, y, z) = f (C) − ∥x∥2 + ∥y∥2

where k ⩽ n − d is the index of the Hessian at p, and f (C) is the common value of f on C.

A direct corollary of the Morse-Bott Lemma is that the index k of the Hessian is constant on the
connected component C ⊂ Crit( f ), we say C is a critical manifold of index k.

We generalize the definition of Morse-Bott to allow the critical manifolds to have boundary, but
do control the function close to the boundary of the critical manifolds such that it is compatible
with the local form of classic Morse-Bott functions.

Definition 6.5. A smooth function f : M → R is Morse-Bott if for each connected component
C of critical points of f we have the following non-degeneracy condition

• C is an embedded submanifold with (possibly empty) boundary in M,

• TC = E0|C.

Moreover, for any critical manifold C we demand the following local models.

• If p /∈ ∂C, there is an open neighbourhood U of p and a smooth chart φ : U → Rm with
φ(p) = 0 such that

φ(U ∩ C) = {(x, y, z) ∈ Rk × Rn−d−k × Rd|x = y = 0

and Ä
f ◦ φ−1

ä
(x, y, z) = f (C) − ∥x∥2 + ∥y∥2

with k ⩽ n − d.

• If p ∈ ∂C, there is an open neighbourhood U of p and a smooth chart φ : U → Rm with
φ(p) = 0 such that

φ(U ∩ C) = {(x, y, z) ∈ Rk × Rn−d−k × Rd|x = y = 0, z1 ⩽ 0

and Ä
f ◦ φ−1

ä
(x, y, z) = f (C) − ∥x∥2 + ∥y∥2 ± ρ(z1)z2

1

with ρ : R → [0, 1] a smooth bump function satisfying

– ρ = 0 on (−∞, 0],

– ρ = 1 on [ε, ∞) for some ε > 0,

– ρ < 0 and ρ′ > 0 on (0, ε) for the same ε.

In the same way as for Morse functions, we say (x, y, z) are the Morse-Bott coordinates on the
Morse-Bott neighbourhood U. △
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Remark 6.6. The space of allowed ρ is convex, thus the local model is well defined up to a
contractible choice. △

Note that the required local models only impose extra conditions on critical manifolds C with
∂C ̸= ∅, if C has no boundary the Morse-Bott Lemma shows that the non-degeneracy condi-
tion implies the existence of these local models.

As before, we consider vector fields compatible with these local models.

Definition 6.7. We say a smooth vector field X on M is Morse-Bott if it is gradient-like for a
Morse-Bott with boundary function f : M → R such that for every critical point there is a
Morse-Bott neighbourhood on which X corresponds to the gradient of f with respect to the
canonical metric on Rn △

Figure 6.2: A critical manifold of a Morse-Bott vector field with a repelling boundary point and
a critical manifold with an attracting boundary point.

Remark 6.8. From the local models we see that the stable and unstable set of a zero p of a
Morse-Bott vector field are the unique invariant manifolds that are tangent to respectively E−

p
and E+

p . △

6.2 Morse-Bott X-convex manifolds

Recall that a convex structure is a pair (M, X) of an n-dimensional manifold M and a complete
vector field X ∈ X(M) such that there is an exhaustion by compact domains M = ∪∞

k=1Mk

such that X is outwardly transverse to the boundary of each Mk. Furthermore, recall that the
skeleton of (M, X) is given by

Skel(M, X) = ∪∞
k=1 ∩t>0 φ−t(Mk)

Definition 6.9. A convex structure (M, X) is said to be Morse (resp. Morse-Smale/Morse-Bott) if
X is Morse (resp. Morse-Smale/Morse-Bott). △

Remark 6.10. The skeleton of a Morse-Bott convex structure is the union of the stable man-
ifolds of all the critical sets. We only consider finite type (M, X), i.e. (M, X) with compact
skeleton. The stable manifolds give a disjoint cover of the skeleton, thus every Morse-Bott
vector field considered has a finite number of critical manifolds. △
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The specific Morse-Bott function f : M → R associated to a Morse-Bott convex structure
(M, X) is not part of the data, we only require its existence. The function f can be considered
to be the primitive of X. In fact, there is never a unique associated Morse-Bott function; any
addition of a non-zero constant yields a new function that is again Morse-Bott.

It is, however, often convenient to pick a fixed associated Morse-Bott function for a Morse-Bott
vector field.

Definition 6.11. A Morse-Bott (resp. convex structure (abridged: MBc-structure) (M, X, f ) is a
Morse-Bott convex structure (M, X) with a choice of f : M → R associated to X. Likewise, a
Morse-Smale convex structure (M, X, f ) is a Morse-Smale convex structure (M, X) with a choice
of f : M → R associated to X. △

Definition 6.12. A homotopy of MBc-structures is a 1-parameter family (Xt, ft) of MBc-structures
such that there is an exhaustion by compact domains M = ∪∞

k=1Mk such that for each t, Xt is
outwardly transverse to the boundary of every Mk. If there is a homotopy of MBc-structures
between two MBc-structures (X0, f0) and (X1, f1), we call them MBc-homotopic. △

We use the following terminology of L. Starkston in [Sta18].

Definition 6.13. If C is a connected component of zeros of a Morse-Bott vector field X, we say
∆ = Stab(C) is a bone of the skeleton and C is the marrow of the bone.

We say a bone ∆1 has a joint H on ∆2 if H = ∆2 ∩ ∆2t.

The index of a bone is the dimension of the stable manifold of any point in the marrow, we
denote the index of δ by i(δ). △

We record the following properties of joints, which were proven for joints of symplectic arbo-
real skeleta in Lemma 3.10 of [Sta18].

Lemma 6.14. 1. If ∆1 has a non-empty joint on ∆2, then ∆2 can not have a non-empty joint on ∆1.

2. If ∆1 has a non-empty joint on ∆2, and ∆2 has index k > 0, then there is a bone ∆3 such that both
∆1 and ∆2 have non-empty joint on ∆3.

Proof. We write C1, C2 for the marrow of ∆1, ∆2 respectively. If ∆1 has a non-empty joint on ∆2,
it must be that the value of Morse-Bott function f on C1, f (C1), must be strictly greater than
f (C2). This proves the first assertion.

For the second assertion, consider a point p ∈ ∆1 ∩ ∆2. There must be a point q ∈ C2 whose
unstable manifold contains p. Because the index of ∆2 is greater than zero, the stable manifold
of q must also contain some point r ̸= p. This r must be in the unstable manifold of some zero
of the Morse-Bott vector field, which lies on the marrow of some bone ∆3. By the first assertion,
we know that ∆1 ̸= ∆3.

Now, there is a broken flow-line from ∆3 through ∆2 to ∆1, which by gluing has a nearby
unbroken flowline from ∆3 to ∆1.
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If a bone has codimension 1 we call it a hypersurface bone, if all bones in a skeleton are hyper-
surface bones we call the skeleton a hypersurface skeleton.

Our goal for the rest of this chapter is to find a procedure to homotope a given MBc-structure to
a MBc-structure with a hypersurface skeleton such that all its singularities are of (generalized)
arboreal type, we call this procedure arborealization.

We do this by spreading out the critical points, obtaining higher dimensional critical manifolds
and thus higher dimensional bones. This procedure can only increase the dimension of bones,
thus it can not produce a hypersurface skeleton if one of the bones has codimension 0.

Definition 6.15. A MBc-structure (X, f ) is called nice if every bone of the skeleton of (M, X) has
positive codimension. △

Note that closed manifolds can not admit a nice MBc-structure, a smooth map on a closed
manifold must obtain a maximum at some critical manifold C. Then we see from the local
models that the bone Stab(C) must have the same dimension of the manifold.

However, any manifold M that can be decomposed as a compact domain D with boundary
and an infinite cylindrical end ∂D × [0, ∞) attached to this boundary ∂D, i.e.

M = D
⋃

∂D×{0}
∂D × [0, ∞),

admits a nice Morse structure.

Lemma 6.16. Let M be a manifold with a compact domain with non-empty boundary D ⊂ M such
that M = D ∪∂D×{0} ∂D × [0, ∞), then M admits a nice Morse structure.

Proof. Theorem 8.1 from [Mil65] asserts that D can be equipped with a nice Morse function
f : M⊤R whose critical points are all interior. We extend this function as es f on the cylindrical
end.

The following theorem shows that it is sufficient to construct an arborealization procedure for
nice Morse-Smale convex structures, since every nice MBc-structure is MBc-homotopic to a
nice Morse-Smale convex structure.

Theorem 6.17. Any MBc-structure (X, f ) is MBc-homotopic to a Morse-Smale convex structure
(Y, g), in particular any nice MBc-structure is MBc-homotopic to a nice Morse-Smale convex struc-
ture.

We give a sketch of the proof, the details can be found in Section 5 of [BH08].

Proof. Let Ci, with i = 1, ..., k, be the connected components of critical points of f . For every i
let Ti be a small tubular neighbourhood around Ci such that Ti is covered by opens on which
X is gradient with respect to the canonical metric. Pick a positive Morse function fi on Ci and
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extend it to Ti by making fi constant in the direction normal to Ci. Let ρi be a smooth bump
function that is equal to 1 on Ci and compactly supported on Ti, we define

gt = f + tε

Ç
k

∑
i=1

ρi fi

å
.

For appropriate ρi and ε sufficiently small, gt is a Morse function for every t ∈ (0, 1] while
g0 = f . For every t ∈ [0, 1] we define Yt to be the gradient of gt, with respect to the canonical
metric, on T = ∪i=1,...,kTi and X outside T, by construction this gives a smooth vector field that
is gradient like for gt. Since the Smale condition is generic, each ρi can be chosen such that
(Y1, g1) is Morse-Smale.

The pair (Yt, gt) is a MBc-homotopy between (X, f ) and (Y, g) = (Y1, g1).

Remark 6.18. If λi is the index of Ci and p ∈ Ci is a critical point of fi of index λ f then p is a
critical point of index λi + λ f of g as produced by the lemma above. △

6.3 The arborealization procedure

This section is dedicated to proving the following theorem.

Theorem 6.19. Let (X, f ) be a nice Morse-Smale convex structure on M. Then there is a homotopy
(Xt, ft) of MBc-structures such that (X0, f0) = (X, f ) and (X1, f1) has an arboreal skeleton.

The proof consists of two steps: first we produce a MBc-homotopy from an arbitrary Morse-
Smale convex structure (X, f ) to a MBc-structure with a hypersurface skeleton by spreading
out the critical points to critical manifolds. Then we perturb this MBc-structure such that all
singularities are arboreal.

Figure 6.3: Spreading out the critical point of a Morse-Smale vector field to a critical manifold
of a Morse-Bott vector field.
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We do not want to thicken a critical point to a critical manifold in such a way that stable
manifolds of other critical points attach to the boundary of the critical manifold, i.e. we want
to avoid the situation where a bone ∆1 has a joint on the boundary of another bone ∆2. We
say that a skeleton has interior joints if for any pair of bones ∆1, ∆2 the (possible empty) joint
∆1 ∩ ∆2 is disjoint from the boundary ∂∆2.

The following lemma assures that we can move the stable manifolds "out of the way" before
we spread out the critical points to critical manifolds.

Lemma 6.20. Let (X, f ) be a nice Morse-Smale convex structure on M and let p be a critical point of
f of index k. Then there is a homotopy (Xt, ft) of nice Morse-Smale convex structures from (X, f ) =
(X0, f0) to (X1, f1) such that:

• There is a neighbourhood V of p on which we have coordinates (x, y) = (x1, ..., xk, y1, ..., yn−k)
centred at p such that f1(x, y) = f1(p) − ∥x∥2 + ∥y∥2 and Xt is the gradient of ft on V.

• The Morse-Smale convex structures (X, f ) and (Xt, ft) agree outside some neighbourhood U of p.

• For any other critical point x ̸= p of f , the intersection of V and the stable manifold of s is
contained in {y1 < 0}.

Figure 6.4: Moving the stable manifolds.

Proof. Let U be a Morse-Smale neighbourhood of p with associated coordinates (x, y) = (x1, ..., xk, y1, ..., yn−k)
centred at p such that f (x, y) = f (p) − ∥x∥2 + ∥y∥2 and X is the gradient of f on U.

Fix δ > 0 such that the ball centred at p with radius 2δ with respect to the standard Euclidean
metric associated to the coordinates (x, y) is contained in U, we denote this ball by B2δ. We write
S′

2δ := Unstab(p) ∩ S2δ for the intersection of the boundary S2δ of this ball with the unstable
manifold Unstab(p).

Note that on U we have Unstab(p) = {x1 = ... = xk = 0}, meaning the vector field X is
precisely the outward normal of S′

2δ. Therefore Unstab(p) and S2δ have transverse intersection,
thus their intersection is a manifold.
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Figure 6.5: The Morse neighbourhood of p.

The Smale condition now gives that for any critical point s of f we must have either

Unstab(p) ∩ Stab(s) = ∅ or dim(S′
2δ ∩ Stab(s)) < dim(S′

2δ).

This means that for any critical point s of f the intersection S′
2δ ∩ Stab(s) has measure zero in

S′
2δ. Since f has a finite number of critical points, the union

S =
⋃

s critical poin of f

S′
2δ ∩ Stab(s)

has measure zero in S′
2δ and thus its complement in S′

2δ is dense. Therefore it must be possible
to embed a small disc D into S′

2δ that does not intersect any stable manifold. We rotate our
coordinate axis in the y hyperplane such that the yn−k axis passes trough the centre of D.

Now, using generalized polar coordinates (r, θ1, ..., θn−k−1) on U′ = U ∩ Unstab(p), we can
parametrize S′

2δ as

y1 = 2δ sin θ1 sin θk2... sin θn−k−1

y1 = 2δ cos θ1 sin θk2... sin θn−k−1

...
yn−k = 2δ cos θn−k−1
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Figure 6.6: The embedded disc D, indicated in yellow, and the stable manifolds in that enter
Unstab(p), indicated in purple.

such that D is give by θn−1 ⩽ ε.

Let χ : [0, ∞) → [0, 1] be a smooth monotonically decreasing step function which is 1 on a
neighbourhood of [0, δ2] and vanishes on a neighbourhood of [4δ2, ∞). We define

Φt : [0, ∞) × [0, π]n−1 → [0, ∞) × [0, π]n−k−1, (r, θ1, ..., θn−1) 7→ (r, θ1, ..., Ht(r, θn−k−1))

where Ht : [0, ∞) × [0, π] → [0, π] is defined as

Ht(r, θ) =

{(
1 + tχ(r2)

(
π
2ε − 1

))
θ for 0 ⩽ θ ⩽ ε

(θ − π)
Ä

1 − tχ(r2)
Ä

π
2(ε−π) + 1

ää
+ π for ε ⩽ θ ⩽ π.

We remark that H0(r, θ) = θ, Ht(r, 0) = 0 and Ht(r, π) = π. Furthermore, for all r ⩾ 2δ we have
Ht(r, θ) = θ and for all r ⩽ δ we have H1(r, ε) = π

2 .

Note that for any t ∈ [0, 1] and r ∈ [0, ∞) the map Ht(r,−) : [0, π] → [0, π] is a diffeomorphism
leaving the boundary fixed, from which we see that Φt is a diffeomorphism that leaves the
boundary fixed for every t ∈ [0, 1]. Thus, using generalized polar coordinates, every Φt gives
a diffeomorphism Φt : B′

2δ → B′
2δ. By using generalized cylindrical coordinates on B2δ this

diffeomorphism can be extended to a diffeomorphism“Φt : B2δ → B2δ, (x, r, θ1, ..., θn−k−1) 7→ (x, r, θ1, ..., Ht(
»

r2 + ∥x∥2, θn−k−1)).
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This map leaves a neighbourhood of the boundary fixed, since χ vanishes on a neighbourhood
of [4δ2, ∞) and thus can be extended to a diffeomorphism Ψt : M → M that is the identity
outside of B2δ.

The homotopy of nice Morse-Smale (Xt, ft) is now given by pushing (X, f ) forward along Ψt.
Outside B2δ, and thus also outside U, we have constructed Ψt to be the identity. Therefore
(X, f ) and (Xt, ft) agree outside of U.

Figure 6.7: The resulting Morse-Smale convex structure (X1, f1).

Note that on Bδ

ft(x, y) = ( f ◦ Ψt)(x, y) = ft(p) − ∥x∥2 + ∥y∥2

and Xt is the gradient of ft with respect to the canonical metric.

To see that the intersection of Bδ and the stable manifold of any critical point s ̸= p is contained
in {yn−k < 0} we first remark that on U′ the vector field X is radial. Thus the integral curve
passing trough a point (0, 2δ, θ1, ..., θn−k−1) ∈ U′ is parametrized by {(r, θ1, ..., θn−k−1) | r ∈
(0, ∞]}. Now, let q = (0, 2δ, θ1, ..., θn−k−1) ∈ Stab(s) for some critical point s ̸= p. Note that
Ψ1(q) = q, thus from the existence and uniqueness of solutions to differential equations and
the definition of X1 as the pushforward of X along a diffeomorphism, we know the integral
curve of X passing through q must be taken to the integral curve of X1 passing through q.
In particular this means that the integral curve of X1 passing through q must pass through
Ψ1(0, δ, θ1, ..., θn−k−1) ∈ {yn−k < 0}, and by construction Ψ1(0, δ, θ1, ..., θn−k−1) ∈ {yn−k < 0}
since D ∩ Stab(s) = ∅.
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Since X1 is radial on Bδ we see that the intersection of Bδ and Stab(s) is contained in the {yn−k <
0} hypersurface.

The following lemma asserts that we can spread out the critical point into a critical manifold
such that its stable manifold had codimension 1.

Lemma 6.21. There is a homotopy (Xt, ft) of nice MBc-structures from the standard radial structure

(X, f ) =

Ç
−2

k
∑

i=1
xi∂xi + 2

n−k
∑

j=1
yj∂yj ,−∥x∥2 + ∥y∥2

å
on Rk × Rn−k with a single critical point of

index k < n at the origin to a nice MBc-structure (X1, f1) such that

• The critical manifold C = Crit( f1) is a n − k − 1-dimensional disc contained in

{(x, y, z) ∈ Rk × R × Rn−k−1| x = y = 0}

.

• The bone Stab(C) has codimension 1.

• The MBc-structure (X1, f1) agrees with the standard radial structure of index k outside some
neighbourhood U of C.

Proof. Let χ : [0, ∞) → [0, 1] be a smooth function such that for small fixed δ, ε > 0 with ε < δ

• χ = 1 on [0, δ + ε],

• χ = 0 on [2δ − ε, ∞),

• χ < 1 and χ′ < 0 on (δ + ε, 2δ − ε).

For t ∈ [0, 1] we define the family of functions

ψt : Rk × R × Rn−k−1 → Rk × R × Rn−k−1, p = (x, y, z) 7→
Å

x, y,
√

1 − tχ
Ä
∥p∥2

ä
z
ã

.

We define ft = ψ∗
t f = f ◦ ψt, i.e. the pullback of f by ψt. Explicitly, for p = (x, y, z) ∈

Rk × R × Rn−k−1,

ft(x, y, z) = −∥x∥2 + y2 +
[
1 − tχ

Ä
∥p∥2

ä ]
∥z∥2 .

The gradient of ft using the standard metric gives the family

Xt = 2

ñ
−

k

∑
i=1

xi∂xi + y∂y +
î
1 − tχ

(
∥p∥2 )ó n−k−1

∑
j=1

zj∂zj

− tχ′( |p|2 ) ∥z∥2
Ä k

∑
i=1

xi∂xi + y∂y +
n−k−1

∑
j=1

zj∂zj

äô
of vector fields.
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Now, Xt = 0 if and only if either p = 0 or t = χ
(
∥p∥2 ) = 1 and x = y = 0. We show this by

case distinction. If z = 0 we see Xt = 0 if and only if x = y = 0. If z ̸= 0 and Xt = 0 it must be
that

1 − tχ
(
∥p∥2 )− tχ′( ∥p∥2 ) ∥z∥2 = 0.

Note that −tχ
(
∥p∥2 ) ⩾ −1 and −tχ′( ∥p∥2 ) ∥z∥2 ⩾ 0, thus we must have

tχ
(
∥p∥2 ) = 1 and tχ′( ∥p∥2 ) ∥z∥2 = 0

for Xt = 0 to hold. We see that tχ
(
∥p∥2 ) = 1 if and only if t = χ

(
∥p∥2 ) = 1, which also

implies that tχ′( ∥p∥2 ) ∥z∥2 = 0. In this case Xt = 0 if and only if x = y = 0.

We observe that indeed (X0, f0) = (X, f ), that C = Crit( f1) is an n − k − 1-dimensional disc
contained in {x = y = 0}, that Stab(C) has codimension 1 and (X1, f1) agrees with the radial
structure when ∥p∥2 ⩾ 2δ.

We combine the above two lemmas to obtain the following corollary.

Corollary 6.22. Let (X, f ) be a nice Morse-Smale convex structure on M. Then there is a homotopy
(Xt, ft) of MBc-structures such that (X0, f0) = (X, f ) and (X1, f1) has a hypersurface skeleton with
interior joints.

Proof. The assertion follows by first inductively applying Lemma 6.20 on all critical points of
f . We then inductively apply Lemma 6.21 on a Morse neighbourhood of every point, in order
of increasing index.

We now show that a MBc-structure with such a hypersurface skeleton can be perturbed to a
MBc-structure with an arboreal skeleton

Lemma 6.23. Let (X, f ) be a MBc-structure on M with a hypersurface skeleton with interior joints,
then there is a generic perturbation ‹X of X such that (‹X, f ) is a MBc-structures with an arboreal
skeleton.

Note that this generic perturbation of X constitutes a MBc-homotopy.

Proof. On every Morse-Bott neighbourhood there is, using Morse-Bott coordinates (x, y, z), a
canonical projection (x, y, z) 7→ (x, 0, z). With a generic perturbation ‹X of X, away from the
critical manifolds and such that ‹X is still gradient-like for f , we can make all the hypersurfaces
in the skeleton project transversely under the projection (x, y, z) 7→ (x, 0, z).

Any s ∈ Skel(M, X) is contained in a unique bone ∆1 and lies in the closure of a (possibly
empty) collection of bones ∆2, ..., ∆m having a joint on ∆ containing s.

We show by strong induction over m, the number of bones whose closure contains s, that s
is an arboreal singularity. If m = 1 the point s does not lie on any joint, thus it is either a
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smooth point of the skeleton or lies on the boundary of ∆1. In the former case the skeleton is
a generalized arboreal hypersurface of type ((•, ∅), n) at s, in the latter case the skeleton is a
generalized arboreal hypersurface of type ((•, •), n) at s.

Now let m > 1 and suppose that for every point s′ ∈ Skel(M,‹X) that lies in the closure of less
than m bones, the skeleton has a generalized arboreal singularity at s′.

Note that, by assumption, s is an interior point of ∆1 if m > 1. Furthermore, we may assume
that s is a critical point, i.e. we may assume that s lies on the marrow C1 of ∆1, by the product
symmetry.

Using Morse-Bott coordinates (x, y, z) centred at s we consider the lifts s± := (0,±δ, 0) for
sufficiently small δ > 0. It must be that there is a subset

{∆i−1
, ..., ∆i−m−

} ⊂ {∆2, ..., ∆m}

of bones containing s− in their closure. Likewise there is a subset

{∆i+1
, ..., ∆i+m+

} ⊂ {∆2, ..., ∆m}

of bones having s+ in their closure. Note that these two subsets are disjoint and together
contain all ∆2, ..., ∆m.

Since m± ⩽ m − 1 < m, the inductive hypothesis yields that the skeleton has a (generalized)
arboreal singularity of type (T±, ℓ±) at the points s±. Now, by the vertical cone property of
arboreal singularities, we know the skeleton has a generalized arboreal singularity of type
(T, ℓ) at s. Here (T, ℓ) is the tree obtain by joining (T−, ℓ−) and (T+, ℓ+) at a root and decorating
the edges incident to the root with the signs corresponding to the lift.

These three lemmas prove Theorem 6.19, together with Theorem 6.17 we conclude that every
nice MBc-structure is MBc-homotopic to a MBc-structure with an arboreal skeleton.

6.4 Co-oriented arboreal skeleta

The signs on the vertices of the trees describing arboreal singularities correspond to "up" or
"down" in the Morse-Bott neighbourhood. But, in general the Morse-Bott neighbourhoods
do not have a canonical choice of up and down, since the bones of a skeleton do not have a
canonical co-orientation. Different (local) co-orientations of the bones yield different choices
of signs for the trees describing the singularities, as already discussed in Remark 5.8. Thus, if
no extra conditions are imposed on M and the skeleton, a skeleton can have many different
combinatorial descriptions.

However, if M and all bones of the skeleton are orientable, an orientation of M induces a co-
orientation of every bone. We call such a skeleton with an induced co-orientation of every
bone a co-oriented arboreal skeleton. A co-oriented arboreal skeleton has a unique combinatorial
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Figure 6.8: Different choices of local co-orientation lead to different combinatorial descriptions
of the same arboreal skeleton.

description that is compatible with the co-orientation of each bone. Note that the arborealiza-
tion procedure described in this chapter produces a skeleton with discs as bones, thus if M is
orientable the procedure can be used to obtain a co-oriented arboreal skeleton of M.
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Figure 6.9: Two spaces with diffeomorphic arboreal skeleta, but non-diffeomorphic co-oriented
skeleta.



Chapter 7

Thickening Arboreal Skeleta

We wish to be able to recover an X-convex manifold M, as defined in Definition 3.5, with an
arboreal skeleton from the combinatorial data of this skeleton. In this chapter we describe how
M can be recovered from its skeleton if this skeleton is co-oriented, i.e. M and all bones are
orientable as defined in Section 6.4. The orientability condition on M is necessary to produce
a thickening of the skeleton that is unique up to diffeomorphism. A given skeleton may have
multiple, non-equivalent, thickenings if we allow non-orientable thickenings, as illustrated in
Figure 7.1.

Figure 7.1: Arboreal skeleta can have multiple non-equivalent thickenings if we allow for non-
orientable thickenings.

We will recover M by thickening every bone ∆ as its trivial line bundle ∆ ×R; we give this line
bundle an MBc-structure such that ∆ is its skeleton. Then we inductively glue these line bun-
dles using the combinatorial data from the skeleton in such a way that we recover a manifold
with the same skeleton as M.

To be able to inductively build up the manifold we need to impose some extra conditions on
our skeleton, namely that the skeleton can also be inductively build up via a gluing construc-
tion. In particular, we do not allow for situations as pictured in Figure 7.3, where a bone of an

67
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Figure 7.2: Thickening the bones and gluing them using the data from the skeleton.

arboreal skeleton self-intersects. The arboreal skeleta obtained from the arborealization proce-
dure as described in the previous chapter satisfy these additional conditions.

Figure 7.3: An arboreal skeleton where a bone attaches to itself, our procedure will avoid this
type of complicated behaviour.

In Section 7.1, we will generalize the definition of X-convex manifolds and MBc-manifolds to
allow for manifolds with corners, as we will produce manifolds with corners as intermediate
steps during our inductive gluing procedure. This section is an adaptation of Section 2.3 of
[AEN22b] to our smooth set-up. Then, in Section 7.2, we will discuss how to glue X-convex
manifolds with corners in a way such that we can control what the skeleton of the resulting
manifold will be. The techniques developed in this section are the smooth set-up analogue of
the techniques developed for Weinstein manifolds with corners in Section 2.5 of [AEN22b]. In
Section 7.3 we give an invariant description of an arboreal skeleton, i.e. without needing an
ambient space, as we have defined arboreal skeleta as stratified hypersurfaces that are locally
given by arboreal models up to ambient diffeomorphism. This description is based on the
definition of arboreal spaces in Section 3.1 of [AEN22b]. The main result of the chapter is Section
7.4, where we give a thickening procedure for co-oriented arboreal skeleta and show that the
germ of this thickening at the skeleton is unique up to diffeomorphism.

7.1 Morse-Bott X-convex manifolds with corners

Let Rn
+ denote the subset of Rn where all of the coordinates are nonnegative, i.e.

Rn
+ = {(x1, ..., xn) ∈ Rn| x1 ⩾ 0, ..., xn ⩾ 0}.
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Definition 7.1. Let M be a topological n-dimensional manifold with boundary. A chart with
corners for M is a pair (U, φ) of an open set U ⊂ M and a diffeomorphism φ : U → ‹U, where‹U ⊂ Rn

+ is an open subset. Two charts with corners (U, φ), (V, ψ) are smoothly compatible
if the composition φ ◦ ψ−1 : ψ(U ∩ V) → φ(U ∩ V) admits a smooth extension in an open
neighbourhood of each point.

A smooth structure with corners on a topological manifold M with boundary is a maximal col-
lection of smoothly compatible chart with corners whose domain cover M. A topological man-
ifold with boundary together with a smooth structure with corners is called a smooth manifold
with corners.

The n-dimensional smooth manifold with corners M has a corner of order k ⩽ n at p ∈ M if
there is a neighbourhood of p in M diffeomorphic to a neighbourhood of the origin in [0, 1)k ×
Rn−k. We denote the set of order k corners of M by ∂k M. The interior in ∂k M of a connected
component P of ∂k M is called a boundary k-face, we call a boundary 1-face a boundary face. △

Figure 7.4: A manifold with corners.

We assume that every k-face P has an embedded collar neighbourhood P × I k ⊂ M, where I
denotes the germ of [0, 1) at 0. Near each point p ∈ ∂k M we have canonical collar coordinates
p = (x, t), where x ∈ ∂k M and t = (t1, ..., tk) ∈ Ik. In a neighbourhood of p the k-face ∂k M is
given by t1 = ... = tk = 0 and for all j ⩽ k the components of ∂j M whose closure contain p are
given by setting j of the t coordinates equal to zero. We assume these collars are compatible in
the sense that the remaining n− j coordinates ti parametrize the collar structure for ∂j M×In−j

near p.

Definition 7.2. Let M be a manifold with corners, W ⊂ M is an (embedded) submanifold with
corners if it is a manifold with corners and the inclusion W → M is a smooth embedding.

A submanifold with corners W ⊂ M has a vertical boundary ∂vW = ∂W ∩ M̊ and a horizontal
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boundary ∂hW = ∂W ∩ ∂M. △

Definition 7.3. An m-dimensional manifold with corners M is said to be X-convex for a com-
plete vector field X ∈ X(M), if there is a compact submanifold with corners W ⊂ M, called a
defining domain, such that the following properties hold.

• The vector field X is outwards transverse to the vertical boundary ∂vW and the union of
forward trajectories of X starting at ∂vW is equal to ∂vW ∪ (M \ W).

• Each k-face P of the horizontal boundary ∂hW is an X|P-convex manifold with corners
containing a defining domain N ⊂ P, called the nucleus of P. Furthermore, on the canon-
ical collar neighbourhood P × I k of P with coordinates (x, t) we have X(x,t) = (X|P)x.

If manifold with corners M is X-convex we say the pair (M, X) is X-convex with corners. △

Note that the defining domain is not part of the data, only its existence is required. An X-
convex manifold with corners can have many different defining domains. However, it will
often be convenient to consider a certain fixed defining domain. Recall Lemma 3.9, which
states that M can be recovered up to diffeomorphism from any defining domain W ⊂ M by
adding cylindrical ends.

Figure 7.5: An X-convex manifold with corners.

Definition 7.4. The skeleton Skel(M, X) of an X-convex manifold with corners with defining
domain W is given by

Skel(M, X) = ∩t>0φ−t(W)

where φt is the flow at time t along X. △
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Thus the skeleton is defined as the attractor of the negative flow as before for MBc-manifolds
without corners.

Remark 7.5. On the canonical collar neighbourhood of a k-face P of the horizontal boundary
∂hW with nucleus N ⊂ P, the skeleton of (M, X) is given by Skel(N, XN) × I k. △

Definition 7.6. An X-convex with corners (M, X) is said to be Morse-Bott if there is a smooth
function f : M → R such that

• X is Morse-Bott for f on the interior M̊ ⊂ M,

• X|P is Morse-Bott for f |P on every k-face P,

• using coordinates (x, t) on the collar neighbourhood P × I k we have f (x, t) = f |P(x).

As before, we call the pair (X, f ) the MBc-structure. △

We stress that the Morse-Bott function f is not part of the data of an MBc-manifold with cor-
ners, it is only required to exist, and there is no canonical choice of Morse-Bott function. It is,
however, often convenient to pick a Morse-Bott function on an MBc-manifold with corners.
We will denote an MBc-manifold with corners (M, X) with a specified choice of Morse-Bott
function f : M → R by the triple (M, X, f ).

Remark 7.7. Without loss of generality we may always assume that a defining domain W of
an MBc-manifold with corners (M, X, f ) is given by a sublevel set { f ⩽ a} such that ∂vW is a
regular level set { f = a} and no critical values of f are greater than a. △

In the same way as for MBc-manifolds without corners, we define the notion of homotopy and
isomorphism for MBc-manifolds with corners.

Definition 7.8. A homotopy of MBc-structures on a manifold with corners M is a 1-parameter
family (Xt, ft) of pairs of MBc-structures.

A diffeomorphism Φ : M → M′ between MBc-manifolds with corners (M, X) and (M′, X′) is
called a MBc-manifold with corners isomorphism if Φ∗X′ = X. △

7.2 MBc-buildings

In this section we describe how to build up an MBc-manifold by gluing together MBc-manifolds
with corners in such a way that we can control what the skeleton will be. Ultimately, the goal
is to start with an arboreal skeleton S and use this gluing procedure to inductively build up a
MBc-manifold with skeleton S.

First we describe how to modify an MBc-manifold with corners such that a boundary nucleus
on the horizontal boundary becomes an interior set. We call this procedure the horizontal-to-
vertical nucleus conversion; it is the smooth set-up analogue of the nucleus-to-hypersurface con-
version for Weinstein manifolds with corners as defined in Section 2.5.1 of [AEN22b]. Then
we will describe how to modify an MBc-manifold with corners such that a certain specified
defining domain embedded into the vertical boundary becomes a nucleus on the horizontal
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boundary. This we call the vertical-to-horizontal nucleus conversion; it is the smooth set-up ana-
logue hypersurface-to-nucleus conversion as defined in Section 2.5.3 of [AEN22b].

7.2.1 Conversion between horizontal and vertical nuclei

Horizontal-to-vertical nucleus conversion

Let (M, X, f ) be an MBc-manifold with corners and let P be a boundary face of M with nucleus
N ⊂ P. Let W ⊂ M be a defining domain for (M, X, f ), following Remark 7.7 we assume W is
a sublevel set { f ⩽ a}.

Figure 7.6: Horizontal-to-vertical nucleus conversion.

Consider the canonical collar neighbourhood U = P × I of P ⊂ M with coordinates (x, t). We
attach the half-infinite collar P × (−∞, 0] to P × I along their common intersection P × {0}
and write“U = U

⋃
P×{0}

P × (−∞, 0] and M̂ = M
⋃

P×{0}
P × (−∞, 0].

Recall that on U we have f (x, t) = f |P(x), we extend the coordinates (x, t) to “U and define
f̃ : M̂ → R to be the extension of f to M̂ given by f̃ = f on M and

f̃ (x, t) = f |P(x) + ρ(t)t2

on “U. Here ρ : R → [0, 1] is an appropriate monotone smooth bump function that is non-
negative on (−∞, 0) and 0 on [0, ∞).

We extend the vector field X ∈ X(M) to M̂ as the gradient of f̂ on P × (−∞, 0]

Recall from Definition 7.6 that, using the coordinates (x, t) on U, we have f (x, t) = f |P(x). Thus
we have that W ∩ U is given by { f |P ⩽ a}. Fix ε > 0 small, by attaching

{(x, t) ∈ P × (−∞, 0] | f̃ ⩽ a + ε}

to W along their common intersection, we obtain a defining domain “W for (M̂,“X, f̂ ). Thus we
see that M̂ is “X-convex with corners, moreover, by construction it is an MBc-manifold with
corners.
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Definition 7.9. The MBc-manifold with corners (M̂,“X) is called the horizontal-to-vertical nucleus
conversion of MBc-manifold with corners (M, X) and nucleus N. △

Note that the operation of horizontal-to-vertical nucleus conversion only depends on the con-
tractible choices of a collar neighbourhood and smoothing ρ, thus it produces an MBc-structure
unique up to MBc-homotopy.

Remark 7.10. There is a canonical lift “N of the nucleus N ⊂ P to the vertical boundary ∂v“W.
Explicitly, we can parametrize “N ⊂ ∂v“W as

{(x, t) | x ∈ N ρ2(t)t2 = ε}

in the bicollar neighbourhood of N. △

Remark 7.11. By construction Skel(M̂,“X) = Skel(M, X). △

Vertical-to-horizontal nucleus conversion

Let (M, X, f ) be an n-dimensional MBc-manifold with corners with defining domain W, we
assume W is a sublevel set { f ⩽ a} of f such that ∂vW is a regular level set { f = a}. Let (A, Y, g)
be an (n − 1)-dimensional MBc-manifold with corners with defining domain B = {g ⩽ b}, we
will modify (M, X, f ) to obtain an MBc-manifold whose horizontal boundary has a face with
nucleus B. From Lemma 3.9 we know this boundary face with nucleus B is diffeomorphic to
A.

Fix ε > 0 small, we define

Bε := {g ⩽ b + ε} ⊂ A,

which we can consider to be the space obtained from B by attaching small cylindrical ends to
∂vB.

Consider an embedding φ : B ↪→ ∂vW that extends to an embedding Φ : Bε ↪→ ∂vW.

Let Bε × I be the collar neighbourhood of Bε in W and consider the manifold with corners W
obtained by the gluing

W = W
⋃

Bε×{0}
Bε × [−1, 0].

We extend the coordinates (x, t) on Bε × I to Bε × I ∪Bε×{0} Bε × [−1, 0] and extend f |W to W
as

f (x, t) = (1 − χ(s)) f (x, t) + χ(s)g(x).

Here χ : [−1, 1) → [0, 1] is a smooth monotone bump function that is 1 on [−1,−1/2] and 0 on
[0, 1).
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Figure 7.7: Vertical-to-horizontal nucleus conversion.

Figure 7.8: Smoothening the construction.

Now we smoothen this construction by replacing Bε × [−1, 0] with

{(x, t) ∈ A × [−1, 0] | g(x) ⩽ b + (1 − χ(t)/2)ε}.

From this smoothened W we can obtain an MBc-manifold by attaching a cylindrical end

M = W
⋃

∂vW

∂vW × [0, ∞),

extending f to M as es f (here s denotes the cylindrical coordinate), and extending X|W to M as
the gradient of f outside W. Note that W is a defining domain for M and Bε/2 is a boundary
face of the horizontal boundary ∂hW with nucleus B.

Definition 7.12. The MBc-manifold with corners (M, X) is called the vertical-to-horizontal nu-
cleus conversion of the MBc-manifold with corners (M, X) and nucleus B along φ. △

Note that the vertical-to-horizontal nucleus conversion depends only on φ and the contractible
choices of collar neighbourhoods and smoothing function χ, thus the result of the vertical-to-
horizontal nucleus conversion along φ is unique up to MBc-manifold with corners homotopy.
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Remark 7.13. By construction we have that Skel(M, X) is the union of Skel(M, X) and the sat-
uration of the skeleton Skel(A, Y) ⊂ B ⊂ ∂hW by the backwards flow, i.e.

Skel(M, X) = Skel(M, X)
⋃

∪t⩾0φ−tSkel(A, Y)

where φt denotes the flow along X at time t.

Thus, under the transversality conditions as specified in Definition 5.1, the skeleton of M is
arboreal if the skeleton of M is a smooth manifold and the skeleton of A is arboreal. △

Lemma 7.14. Let (M, X) be the vertical-to-horizontal nucleus conversion of the n-dimensional MBc-
manifold (M, X) with nucleus B ⊂ A along φ : B → W, where W is a defining domain of M and B
is a defining domain of an (n − 1)-dimensional MBc-manifold (A, Y). Let the skeleton of M be smooth
and the skeleton of A be arboreal, and assume the projection

π : W → Skel(M, X)

given by the backward flow of X restricts to a self-transverse map π|Skel(A,Y) of stratified spaces. Then
Skel(M, X) is arboreal.

Proof. This follows directly from the vertical cone property of arboreal hypersurface singular-
ities as given in Definition 5.1.

7.2.2 Gluing

We distinguish two different types of gluing of MBc-manifolds with corners. The first is hor-
izontal gluing, where two MBc-manifolds with corners are glued along horizontal boundary
faces with isomorphic nuclei. The second type of gluing is vertical gluing, where a horizontal
boundary face of one MBc-manifold with corners is glued into the vertical boundary of another
MBc-manifold with corners. This section is an adaptation of Section 2.6 of [AEN22b].

Horizontal gluing

Let (M, X), (M′, X′) be two MBc-manifolds with corners, let P0, ..., Pl be non-adjacent boundary
faces of M and P′

0, ..., P′
l be non-adjacent boundary faces of M′. Denote by Nj and N′

j the nuclei
of Pj and P′

j and suppose that for each 1 ⩽ j ⩽ l there is an isomorphism ψj : Nj → N′
j of

MBc-manifolds with corners.

Lemma 7.15. We can extend each ψj to an MBc-manifold with corners isomorphism Ψj : Pj → P′
j .

Proof. By definition Pj is the union of Nj and all the forward trajectories of X starting at ∂vNj,
meaning that if x ∈ Pj either x ∈ Nj or there is a unique pair y ∈ ∂vNj and t ∈ (0, ∞) such that
x = φt(y), where φt denotes the flow along X at time t. Likewise P′

j is the union of N′
j and all

the forward trajectories of X′ starting at ∂vN′
j , for every x′ ∈ P′

j either x′ ∈ N′
j or x′ = φ′t(y′)
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for some y′ ∈ ∂vN′
j and t ∈ (0, ∞). We extend Ψj to Pj as mapping x = φt(y) to φ′t(ψj(y)). By

construction

Ψ∗
j X′ = X.

Figure 7.9: Horizontal gluing.

Definition 7.16. The horizontal gluing of (M, X) and (M′, X′) along {ψj}j is the MBc-manifold
(M ∪ M′, X ∪ X′) where we identify Pj ∼ P′

j via Ψj. △

Remark 7.17. The skeleton of the horizontal gluing of M and M′ is the union of the skeleta of
M and M′,

Skel(M ∪ M′, X ∪ X′) = Skel(M, X) ∪ Skel(M′, X′),

where the skeleta are glued along {ψj}j restricted to the skeleta of Nj. △

Vertical Gluing

Definition 7.18. Consider a pair of n-dimensional MBc-manifold with corners (M, X) and
(M′, X′) with defining domains W and W ′ respectively.

Let (A, Y) be an (n − 1)-dimensional MBc-manifold with corners with defining domain B, sup-
pose we have an embedding B ↪→ ∂vW that extends to an embedding Bε ↪→ ∂vW, with Bε

as above. Let N be a nucleus of a horizontal boundary face of W ′ and let φ : N → A be an
MBc-manifold with corners isomorphism.

Then the vertical gluing of (M, X) and (M′, X′) along φ is the composition of the vertical-to-
horizontal nucleus conversion of (M, X) with nucleus φ : B ↪→ ∂vW as in Definition 7.12 and
the horizontal gluing along φ as in Definition 7.2.2. △

Note that the resulting MBc-manifold with corners is unique up to isomorphism and the skele-
ton of the vertical gluing is the union

Skel(M, X) ∪ Skel(M, X)

where (M, X) denotes the vertical-to-horizontal nucleus conversion of (M, X) given by B ↪→
∂vW.
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Figure 7.10: Vertical gluing.

7.2.3 MBc-buildings

MBc-buildings are the iterated vertical gluing of MBc-manifolds with corners, they are the
smooth set-up analogue of Wc-buildings as defined in Section 2.7 of [AEN22b].

Definition 7.19. Let (M1, X1), ..., (Mk, Xk) be MBc-manifolds with corners with defining do-
mains W1, ..., Wk. We inductively define a k-level MBc-building

(Mk
φk−1−−→ Mk−1

φk−2−−→ ...
φ1−→ M1).

A 1-level MBc-building is (M1, X1), suppose the k − 1-level MBc-building

Q = (Mk−1
φk−2−−→ ...

φ1−→ M1)

is defined.

Consider a collection of nuclei {Ni}i of boundary faces {Pi}i of Q. Write N = ∪iNi and let
φk−1 : N ↪→ ∂vWk be an embedding that extends to an embedding Nε ↪→ ∂vWk.

Then the k-level MBc-building

(Mk
φk−1−−→ Mk−1

φk−2−−→ ...
φ1−→ M1) = Mk

φk−1−−→ Q

is defined as the vertical gluing of Q to Mk along φk−1. △

7.3 Arboreal Spaces

Recall that we assigned a generalized arboreal model hypersurface H(T,ℓ) ⊂ Rn(T) to every
special signed leafy rooted tree (T, ℓ). Whether a stratified hypersurface H ⊂ M is arboreal is
dependent on the way H lies in M, for every p ∈ H the germ of (M, H) at p must be diffeo-
morphic to the germ of some (Rm, H(T,ℓ) × Rm−n) at the origin. Thus we can not yet talk about
an arboreal space without its ambient space, which we want to be able to do to recover the
smooth type of an MBc manifold from the combinatorial data of its skeleton.

For c ⩾ 0 and m ⩾ n(T) + c we set d = m − n(T) − c and define

H(T, ℓ, m, c) := H(T,ℓ) × Rd × Rc
⩾0 ⊂ Rm−c × Rc

⩾0.
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Figure 7.11: An MBc-building.

We denote by O(T, m, c) the structure sheaf of functions restricted from smooth functions on
Rm−c × Rc

⩾0 by the inclusion H(T, ℓ, m, c) ↪→ Rm−c × Rc
⩾0.

Definition 7.20. An m-dimensional arboreal space with corners (A,O) is a locally ringed compact
Hausdorff space locally modelled on

(H(T, ℓ, m, c),O(T, ℓ, m, c))

for varying special signed leafy rooted trees (T, ℓ) and c ⩽ m − n(T).

If (A,O) is locally modelled on (H(T, ℓ, m, c),O(T, ℓ, m, c)) for varying special signed leafy
rooted trees (T, ℓ) and c ⩽ 1, we call (A,O) simply an arboreal space with boundary. If (A,O)
is locally modelled on (H(T, ℓ, m, 0),O(T, ℓ, m, 0)) for varying special signed leafy rooted trees
(T, ℓ), we call (A,O) an arboreal space. △

Note that the boundary of an arboreal space with boundary is again an arboreal space (without
boundary).

Remark 7.21. Recall that the model generalized arboreal hypersurface of the special signed
leafy rooted tree (T, ℓ) is a union of disjoint pieces, H(T,ℓ) =

⋃
α∈V(T)\ℓ Pα, meaning we also

have the disjoint smooth hypersurfaces

H(T, ℓ, m, c)α := Pα × Rd × Rc
⩾0.

Thus an arboreal space with boundary A is the union A = ∪j Aj of disjoint smooth pieces
Aj, which are maximal connected subsets that restrict to a smooth piece H(T, ℓ, m, c)α in every
model. Furthermore, since A is compact, A must be the union of a finite collection of smooth
pieces (possibly with boundary). △

7.4 Thickening co-oriented arboreal skeleta

Consider an arboreal space A.
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Figure 7.12: One arboreal space and two arboreal spaces with boundary

Definition 7.22. An orientable arboreal space is an arboreal space whose smooth pieces are all
orientable. △

Remark 7.23. The smooth pieces of the skeleta of the MBc-manifolds obtained from the arbo-
realization procedure as described in Chapter 6 are discs. Thus the arborealization procedure
produces skeleta which are orientable arboreal spaces. △

As explained in Remark 7.21, the arboreal space A can be written as the disjoint union A =
∪j Aj of smooth pieces. Equivalently, A is the union A = ∪jAj of closed smooth manifolds with
corners such that each point of A lies in the interior of precisely one Aj, where the interior is
taken with respect to the subspace topology in A.

Definition 7.24. An arboreal n-building is an orientable arboreal n-space with corners, A, whose
closed smooth manifold with corners pieces can be ordered A1, ..., Al such that:

• each A<j = ∪i<jAi is an arboreal space with boundary;

• A<j+1 is obtained from A<j by gluing a collection Sj = ∪iS
j
i of boundary components

Sj
i ⊂ ∂A<j to Aj along a map ψj : Sj → Aj.

We call the pieces Aj, that are closed smooth manifolds with corners, the building blocks. △

Remark 7.25. By construction the boundary of each A<j is an arboreal (n − 1)-building with
the building blocks given by the boundaries ∂Ai. △

Note that the arborealization procedure described in Chapter 6 produces an arboreal skeleton
that has the structure of an arboreal building.

The blocks of an arboreal building admit a thickening to MBc-manifolds as trivial line bundles,
these thickenings form the building blocks of an MBc-building that produces M.

Definition 7.26. Let A = ∪1⩽j⩽lAj be an arboreal n-building, the canonical MBc-thickening of a
block Aj is the n-dimensional MBc-manifold with corners

M(Aj) = Aj × R

with the Morse-Bott vector field X = 2t∂t, the gradient of the Morse-Bott function f : A×R →
R, (x, t) 7→ t2. A defining domain is given by W(Aj) = Aj × [−1, 1], which has vertical
boundary ∂vW(Aj) = Aj × S0.
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We give M(Aj) the product orientation induced by the orientation of Aj and the canonical
orientation of R. △

The rest of this chapter will be devoted to proving the following theorem, which is the main
result of this chapter.

Theorem 7.27. Let A = ∪1⩽j⩽kAj be an arboreal building, then there is a thickening of A to an
orientable n-dimensional MBc-manifold with corners (M, X) that has A as its skeleton such that ∂A ⊂
∂M.

Furthermore, the germ at A of such a thickening is unique up to diffeomorphism leaving A pointwise
fixed.

(a) A thickening we do not allow, since it is not
orientable. (b) The orientable thickening.

We first show the following lemma.

Lemma 7.28. Let (M, X) be an MBc-manifold thickening of A = ∪1⩽j⩽kAj, then the germ of M at A
has the structure of a k-level MBc-building.

Proof. We proceed by induction over the number k of building blocks of A.

Let k = 1, then (M, X) is per definition a 1-level MBc-building.

Let k > 1 and assume the assertion has been established for k − 1. We take a small tubular
neighbourhood N of Ak such that N ⋔ A and Skel(M, X) ∩ N retracts to Ak, as indicated
in Figure 7.14. Note that this tubular neighbourhood is the trivial line bundle over Ak, thus
it is diffeomorphic to the canonical thickening of Ak. Under the identification of N and the
canonical thickening M(Ak), we have

Skel(M, X) ∩ N = Ak ∪ C(N ∩ A),

where C(N ∩ A) is the vertical cone of N ∩ A, i.e. the saturation of N ∩ A under the backward
flow of the Morse-Bott vector field on M(Ak).

This tubular neighbourhood N "splits" the germ of M at A into a piece contained in N, which
we denote Mk, and a piece whose skeleton is isomorphic to A<k, which we denote M<k. The
germ of M is obtained through a horizontal gluing of Mk and M<k along i : N ∩ A ↪→ N. Note
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Figure 7.14: Splitting the germ of M at A to obtain an MBc-building.

that Mk is the vertical-to-horizontal nucleus conversion of the canonical thickening of Ak and
nucleus N ∩ A along i : N ∩ A ↪→ N. Thus, equivalently, the germ of M is obtained through a
vertical gluing of M<k to the canonical thickening of Ak along i : N ∩ A ↪→ N.

By out induction hypothesis, the germ of M<k at A<k is a (k − 1)-level MBc-building. We
conclude that, per Definition 7.19, the germ of M at A is a k-level MBc-building.

We now prove Theorem 7.27.

Proof. We proceed by induction over the number k of building blocks of A. For k = 1 the
canonical MBc-thickening of the single block is an MBc-manifold thickening. Any orientable
MBc-manifold thickening of A = A1 is an orientable line bundle over A1, and since A1 is an
orientable, connected, closed manifold with corners it admits only one orientable line bundle
up to diffeomorphism, being the trivial line bundle. So any MBc-manifold thickening of A =
A1 is diffeomorphic to the canonical MBc-thickening of A1.

Let k > 1, assume the assertions have been established for all orientable arboreal buildings
with k − 1 blocks and let A be an arboreal building with k blocks. By definition, A<k is an
arboreal building with k − 1 blocks, meaning it has an MBc-manifold thickening M(A<k) with
defining domain W(A<k) such that the germ of M(A<k) at A<k is unique up to diffeomorphism
leaving A<k fixed. Recall that by the definition of arboreal n-buildings, A<k+1 is obtained from
A<k by gluing a collection Sk = ∪iSk

i of boundary components Sk
i ⊂ ∂A<k to Ak along a

map ψk : Sk → Ak. We write Pk
i for the boundary face of the horizontal boundary ∂hW(A<k)

containing Sk
i and denote Pk = ∪iPk

i .

We formulate the following lemma.

Lemma 7.29. The gluing map ψk : Sk → Ak can be extended to an orientation preserving embedding
(or, equivalently, an orientation preserving injective immersion since we consider germs) Ψk of the
germ of ∂A<k at Sk into Ak that leaves Sk pointwise fixed. The map Ψk can be canonically lifted to an
orientation preserving embedding Ψ̃k of the germ of ∂A<k at Sk into Ak × S0.
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Furthermore, the space of orientation preserving embeddings of the germ of ∂A<k at Sk into Ak leaving
Sk pointwise fixed is contractible, meaning the embedding Ψk is unique up to isotopy.

Proof. As stated in Remark 7.25, the boundary of A<k is an arboreal building with k − 1 blocks.
This means that Sk is an arboreal space with an orientable thickening T, and the germ of T at
Sk is unique up to diffeomorphism. Any neighbourhood of ψk(Sk) in Ak constitutes an oriented
thickening of ψk(Sk). Because ψk is an embedding and the germ of any thickening of Sk at Sk is
unique up to diffeomorphism, we see that the germ of T at Sk is diffeomorphic to the germ of
Ak at ψk(Sk). Thus, the gluing map ψk : Sk → Ak can be extended to an orientation preserving
embedding of the germ of ∂A<k at Sk into Ak

The existence of the lift follows from the definition of arboreal singularities and how a special
signed leafy rooted tree determines an arboreal model.

To put it more precisely, every point x ∈ Sk has a neighbourhood U ⊂ Sk, a collar neighbour-
hood U × I ⊂ A<k and a neighbourhood V ⊂ A<k+1, such that U ⊂ U × I ⊂ V. Now, V is
modelled on (H(T, ℓ, m, c),O(T, ℓ, m, c)), and U ×I ⊂ V corresponds to one of the at most two
subtrees obtained from T by deleting the root vertex. The sign of the edge between the root of
T and the root of the subtree corresponding to U × I ⊂ V gives the lift of ψk(x); if the sign is
positive Ψk(x) = ψk(x) × {1} and if the sign is negative Ψk(x) = ψk(x) × {−1}.

Let Ψ′
k be another orientation preserving embedding of the germ of ∂A<k at Sk into Ak × S0

leaving Sk pointwise fixed. Fix a Riemannian metric on Ak × S0. For all x ∈ ∂A<k sufficiently
close to Sk we must have that Ψk(x) and Ψ′

k(x) are in a geodesically convex neighbourhood.
Following these geodesics gives an isotop0y Ht between H0 = Ψk and H1 = Ψ′

k that leaves Sk

pointwise fixed. Consider a point p ∈ Sk, we denote the maximal connected smooth piece of
Sk containing p by S. By assumption Ψk|Sk = Ψ′

k|Sk = Ht|Sk for all t ∈ [0, 1]. Thus we see that

d(Ψk)p|TpS = d(Ψ′
k)p|TpS = d(Ht)p|TpS

for all t ∈ [0, 1]. We decompose Tp M as Tp M = TpS ⊕ νpS, where νS is the normal bundle of S.
Note that S is a hypersurface and thus νpS is 1-dimensional, we pick a basis vector of νpS and
denote it by v. Since both Ψk and Ψ′

k are orientation preserving and their differentials restricted
to the tangent bundle of S agree, it must be that d(Ψk)pv and d(Ψ′

k)pv lie on the same side of the
hypersurface TpS.

Therefore any convex combination of d(Ψk)pv and d(Ψ′
k)pv must lie on the same side of the

hypersurface TΨk(p)Ψk(S) = TΨ′
k(p)Ψ′

k(S), from which we see that d(Ht)pv always lies on the
same side of the hypersurface TΨk(p)Ψk(S). Thus the determinant of d(Ht)p never changes sign,
in particular, this means the determinant of d(Ht)p never vanishes. Thus Ht is an isotopy of
injective immersions close to Sk.

We remark that this construction of the isotopy can be done with any number of parameters,
from which we conclude that the space orientation preserving embeddings leaving Sk point-
wise fixed is contractible.
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Figure 7.15: The homotopy between the νS component of the differentials dΨk and dΨ′
k.

We now obtain a an MBc-manifold thickening M(A<k+1) of A through a vertical gluing of
M(A<k+1) to M(Ak) via Ψ̃k.

Let M be another MBc-manifold thickening of A. We split the germ of M at A, as in Lemma
7.28, into Mk and M<k such that the germ of M is obtained through a vertical gluing of M<k
to the canonical thickening of Ak. By our induction hypothesis, the germ of M<k at A<k is
unique up to diffeomorphism. By Lemma 7.29 the space of admissible vertical gluing maps
is contractible, thus the germ at A of the result of the vertical gluing of M<k to Mk must be
diffeomorphic to the germ at A of the thickening M(A<k+1) produced described above.

Remark 7.30. The construction of the thickening as an MBc-building is inductive, but in con-
trast to the handlebody given by a Morse function as discussed in Chapter 2 all the data of this
building is given at once by the skeleton. △



Chapter 8

Outlook

In this chapter we discuss some open questions that further research might aim to answer.

One question is how the results of Chapter 7 can be generalized to non-orientable manifolds
and skeleta with non-orientable smooth pieces. To be able to do this, more data should be
provided with the arboreal skeleton. One expects this data to amount to giving a collection of
Čech-cocycles.

Another question is how the arborealization program can be used to compute invariants of
manifolds. Following the backwards flow gives a retraction of an X-convex manifold to its
skeleton, thus the manifold and its skeleton have the same homotopy type. Therefore it should
be straightforward to recover homotopy invariants from the skeleton. Since it is possible to
recover an orientable manifold from its co-oriented arboreal skeleton, one would expect that
all smooth invariants of the manifolds can be computed from its skeleton.

Furthermore, one wonders under which conditions a cobordism between two manifolds can
be recovered from the intersection of the skeleton of the cobordism with its boundary. To be
able to recover the cobordism, more data should be provided. For instance, in the situation
as drawn in Figure 8.1, it should be indicated that all the points on the intersection with the
boundary are connected via the skeleton. The question is what extra data should be given and
how this data can be presented.

Another question is how different skeleta of the same manifold can be related and how this
could be used to develop a homotopy theory. Can the results of Chapter 6 and Chapter 7 be
generalized to a 1-parametric set-up, and how do the phenomena of 1-parameter families of
functions, such as birth-death pairs and handle slides, translate to the arboreal setting?
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Figure 8.1: A cobordism with an arboreal skeleton and its intersection with the boundary.



Appendix A

Symplectic Geometry, Contact
Geometry and Weinstein Manifolds

In this chapter we give the definition and some examples of symplectic, contact and Weinstein
manifolds, and record some notions and results from the study of these manifolds crucial for
our understanding of arboreal Lagrangian and Legendrian singularities. This chapter offers
only a minimal introduction to the vast field of study of symplectic and contact geometry,
discussing only what is needed to be able to define Weinstein manifolds and arboreal singu-
larities.

In Section A.1 we define symplectic vector spaces. Then, in Section A.2, we discuss symplectic
manifolds, which are manifolds with a symplectic structure on their tangent bundle. We give
examples and formulate the well-known Darboux’s Theorem for symplectic manifolds. In Sec-
tion A.3 we discuss the closely related notion of contact manifolds. We give examples, explain
the connection between symplectic and contact manifolds and formulate Darboux’s Theorem
for contact manifold. We conclude with the definition of Weistein manifolds, which are sym-
plectic manifolds compatible with Morse theory, in Section A.4.

The first two sections are based on Chapters 2 and 3 of [MS17] and Chapters 1, 2 and 3 of
[Sil01]. The third section is based on Chapter 1 and 2 [Han08] and the fourth section is based
on Chapter 11 of [CE12].

A.1 Symplectic vector spaces

Definition A.1. A symplectic vector space is a pair (V, ω) of a finite dimensional real vector space
V with a bilinear form ω : V × V → R such that

• The form ω is skew-symmetric, i.e.

ω(v, w) = −ω(w, v)
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for all v, w ∈ V.

• The form ω is non-degenerate, i.e.

ker ω = {v ∈ V | ω(v, w) = 0 for all w ∈ V}

is trivial.

△

A skew-symmetric version of the Gram-Schmidt process yields the following theorem.

Theorem A.2. Let (V, ω) be a symplectic vector space. Then there is a basis e1, ..., en, f1, ..., fn of V
such that

ω(ei, ej) = ω( fi, f j) = 0 for all i and j

ω(ei, f j) = δij for all i and j.

We call such a basis e1, ..., en, f1, ..., fn of V a symplectic basis.

Note that a direct corollary of this theorem is that every symplectic vector space is even di-
mensional.

Definition A.3. Let (V, ω), (V ′, ω′) be symplectic vector spaces. A linear map φ : V → V ′ is
called symplectic if φ∗ω′ = ω. A linear symplectic bijection is called a linear symplectomorphism.

△

Definition A.4. Let (V, ω) be a symplectic vector space. The symplectic complement of a linear
subspace W ⊂ V is defined as the subspace

Wω = {v ∈ V | ω(v, w) = 0 for all w ∈ W}.

A subspace W ⊂ V is called

• isotropic if W ⊂ Wω;

• coisotropic if Wω ⊂ W;

• symplectic if W ∩ Wω = {0};

• Lagrangian if W = Wω.

△

Remark A.5. From Theorem A.2 we see that an isotropic subspace W ⊂ V of a 2n-dimensional
symplectic vector space has at most dimension n, a Lagrangian subspace is an isotropic sub-
space of maximal dimension. △
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A.2 Symplectic manifolds

Definition A.6. Let M be a manifold. A 2-form ω ∈ Ω2(M) is say to be symplectic if ω is closed,
i.e. dω = 0, and ωp : Tp M × Tp M → R is symplectic for all p ∈ M.

A symplectic manifold is a pair (M, ω) of a manifold M equipped with a symplectic form ω.

A symplectic submanifold of M is a submanifold S ⊂ M such that ω|S is a symplectic form on S.

An isotropic submanifold of M is a submanifold on which the symplectic form restricts to zero.
A closed subset of a symplectic manifold is called an isotropic subset if it is stratified by isotropic
submanifolds. If an isotropic submanifold has maximal dimension, i.e. half the dimension of
the ambient symplectic manifold, we say it is a Lagrangian submanifold. △

Example A.7. Let M = R2n with coordinates x1, ..., xn, p1, ..., pn. The form

ω0 =
n

∑
i=1

dxi ∧ dpi

is a symplectic form on M. This form is called the standard form on R2n. △

Example A.8. Let M be an n-dimensional manifold and consider its cotangent bundle T∗M.
Let U be a coordinate neighbourhood for M with coordinates x1, ..., xn and associated coordi-
nate neighbourhood T∗U with coordinates x1, ..., xn, ξ1, ..., ξn for T∗M. Then

ω =
n

∑
i=1

dxi ∧ dξi

is a symplectic form on T∗M. △

Using the symplectic basis of the tangent space from Theorem A.2 at every point p ∈ M, we
get the following result.

Proposition A.9. Let M be an 2n-dimensional manifold, a 2-form ω ∈ Ω2(M) is symplectic if and
only if ωn ̸= 0, i.e. ω is a volume form.

Proof. First let ω ∈ Ω2(M) be symplectic. For any p ∈ M we have a symplectic basis as in
Theorem A.2. Now, using the notation of Theorem A.2, we see that ωp(e1, ..., en, f1, ..., fn) ̸= 0.

Now let ω ∈ Ω2(M) be a 2-form such that ωn is a volume form and assume ω is not symplectic.
Then there must be a p ∈ M such that ωp is not symplectic, thus there must be a 0 ̸= v ∈ Tp M
such that ω(v, w) = 0 for all w ∈ Tp M. Now, we see that for all λ ∈ R it must hold that
ω(λv, w) = 0 for all w ∈ Tp M. Therefore the linear subspace < v > must be contained in the
kernel of ω. From this we directedly see that it must be that ωn

p = 0, which is in contradiction
with the assumption that ω is a volume form.

We conclude that ω ∈ Ω2(M) is symplectic if and only if ωn ̸= 0.
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Definition A.10. Let (M, ω), (M′, ω′) be 2n-dimensional symplectic manifolds. A diffeomor-
phism φ : M → M′ is called a symplectomorphism if φ∗ω′ = ω. △

A central result in symplectic geometry is Darboux’s Theorem, which states that any 2n-
dimensional symplectic manifold is locally symplectomorphic to (R2n, ω0).

Theorem A.11 (Darboux). Let (M, ω) be a symplectic manifold of dimension 2n. Then every p ∈ M
has a coordinate neighbourhood U with a coordinate map φ : U → U′ ⊂ R2n such that φ∗ω0 = ω.

As a result of Darboux’s Theorem all symplectic manifolds of the same dimension are locally
equivalent. In particular, the only local invariant of symplectic manifolds up to symplectomor-
phism is the dimension of the manifold.

A.3 Contact manifolds

Definition A.12. A hyperplane field ξ on a manifold M is a codimension 1 subbundle of the
tangent bundle TM. △

We note that, locally, any hyperplane field ξ is the kernel of some 1-form α ∈ Ω1(M).

Definition A.13. Let M be an (2n + 1)-dimensional manifold, a hyperplane field ξ is said to be
maximally non-integrable if for every 1-form α such that ξ = ker α, we have

α ∧ (dα)n ̸= 0.

We call such a hyperplane field ξ a contact structure, we call a 1-form α such that ξ = ker α a
contact form. △

Remark A.14. Equivalently, one could say that a hyperplane field ξ ⊂ TM in the tangent
bundle of a (2n + 1)-dimensional manifold is maximally non-integrable if for very 1-form α
such that ξ = ker α, we have (dα)n|ξ ̸= 0. Following Proposition A.9 this implies that (ξp, dα|ξp )
is a symplectic vector space and that dα|ξ is a symplectic form on ξ. △

Example A.15. On R2n+1 with Cartesian coordinates (x1, y1, ..., xn+1, yn+1), the 1-form

α0 = dz +
n

∑
i=1

xidyi

is a contact form. The contact structure ξ = ker α0 is called the standard contact structure on
R2n+1. △

Example A.16. Let (x1, y1, ..., xn+1, yn+1) be Cartesian coordinates on R2n+n and consider the
unit sphere S2n+1 ⊂ R2n+2. Then the 1-form

α =
n+1

∑
i=1

xidyi − yidxi

is an contact form on S2n+1. The contact structure ξ = ker α is called the standard contact
structure on the unit sphere S2n+1. △
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Figure A.1: The contact structure ker(dz + xdy) ([Han08], p. 4)

Example A.17. Let M be an n-dimensional manifold. Note that the space J1M of 1-jets can be
canonically identified with T∗M × R. A point in J1M is a triple (x, p, z), where x ∈ M, p is a
linear form on Tx M and z ∈ R. Then the 1-form α = dz − ∑ pidxi is a contact form, we call

ξst := ker α

the standard contact structure on the 1-jet bundle. △

Definition A.18. Let (M, ξ) be an (2n + 1)-dimensional contact manifold. A submanifold L ⊂
M is called isotropic if TpL ⊂ ξp for all p ∈ L. A closed subset of M stratified by isotropic
submanifolds of M is called an isotropic subset of M.

If an isotropic submanifold L ⊂ M is of dimension n, we say L is a Legendrian submanifold. △

Remark A.19. Let L ⊂ M be an isotropic submanifold of an (2n + 1)-dimensional contact
manifold (M, ξ) and let α be the 1-form defining ξ.

Then α|L = 0, thus dα|L = 0, meaning that for every p ∈ L we have that TpL ⊂ ξp is an
isotropic subspace of the 2n-dimensional symplectic vector space (ξp, dα|ξp ). Thus a Legen-
drian submanifold is an isotropic submanifold of maximal dimension. △

Example A.20. Let M be an n-dimensional manifold, consider the space J1M = T∗M × R of
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1-jets with the standard contact structure. Any smooth map f : M → J1M defines a section

x 7→ j1 f (x) =
(
x, d f (x), f (x)

)
of the bundle J1M → M. Note that f is a embedding and f ∗(dz − pdx) = 0, from which we see
that j1(M) is a Legendrian submanifold of J1M. △

Lemma A.21. The germ at the origin of a isotropic submanifold L ⊂ T∗Rn of the cotangent bundle
with the standard Liouville structure λ = pdx admits a unique lift to an isotropic germ at the origin of
the 1-jet bundle J1Rn with the standard contact structure ξ = ker α where α = dz − pdx.

Proof. We write i : L → T∗Rn for the inclusion. Note that i∗λ is closed, meaning, locally, i∗λ is
exact.

Therefore, locally, there is a primitive f of i∗λ. Now, a lift to an isotropic germ is given by the
map (i, f ). Such a lift is unique up to a translation along the z-axis, thus there is a unique lift to
an isotropic germ at the origin.

Definition A.22. Let (M, ξ), (M′, ξ ′) be (2n + 1)-dimensional contact manifolds. A diffeomor-
phism φ : M → M′ is called a contactomorphism if d f (ξ) = ξ ′. △

Theorem A.23. Let (M, ξ) be an (2n + 1)-dimensional contact manifold with contact form α and let
p ∈ M be a point. Then p has a coordinate neighbourhood U with coordinates x1, ..., xn, y1, ..., yn, z
such that p = (0, ..., 0) and

α|U = dz +
n

∑
i=1

xidyi.

A.4 Weinstein manifolds

Definition A.24. Let (M, ω) be a 2n-dimensional symplectic manifold equipped with an exact
symplectic form ω. A Liouville form is a choice of primitive λ, i.e. λ is a 1-form such that
ω = dλ. The vector field Z that is ω-dual to λ, i.e. such that ιZω = λ, is called the Liouville field
of λ. △

Remark A.25. If Z is a Liouville vector field for a Liouville form λ, Cartan’s formula yields

LZω = ιZdω + dιZω = dλ = ω.

This means if Z integrates to a flow Zt : M → M, it satisfies (Zt)∗ω = etω. This means that
symplectic form expands as one flows along Z. Similarly

LZλ = ιZω + dιZλ = λ

meaning the flow of Z expands the Liouville form, i.e. (Zt)∗λ = etλ. △

Definition A.26. A Liouville domain is a compact exact symplectic manifold (M, λ) with bound-
ary such that the Liouville field Z is outwardly transverse to the boundary ∂M. △



APPENDIX A. SYMPLECTIC GEOMETRY, CONTACT GEOMETRY AND WEINSTEIN
MANIFOLDS 92

Note that

λ ∧ (dλ)n−1 = (ιZdλ) ∧ (dλ)n−1 =
1
n

ιZ(dλ)n =
1
n

ιZωn.

Thus positive transversality of Z at the boundary is equivalent to requiring λ∂M to be a contact
form such that the orientation defined on ∂M by the volume form λ ∧ (dλ)n−1

∂M coincides with
the orientation of ∂M as the boundary of M.

Definition A.27. The skeleton of a Liouville domain (M, λ) is the attractor of the negative flow
of the Liouville field, i.e. the subset

Skel(M, λ) =
⋂
t>0

Z−t(M) ⊂ M.

△

Note that the skeleton of a Liouville domain is a closed subset of a compact set and thus com-
pact.

Definition A.28. A Liouville manifold (M, λ) is an exact symplectic manifold M such that the

Liouville field Z is complete, i.e. has global flow, and there is an exhaustion M =
∞⋃

k=1
Mk

by compact domains with smooth boundaries along which the Liouville field Z is outwardly
transverse. △

Remark A.29. Any Liouville domain (M, λ) can be completed to a Liouville manifold (M̂, λ̂)
by attaching the forward trajectories of Z starting at ∂M. Explicitly,

M̂ = M
⋃

∂M∼∂M×{0}
(∂M × [0, ∞))

and λ is extended to M̂ as es(λ|∂M) on the attached cylinder. We will call a Liouville manifold
obtained by completing a Liouville domain a finite type Liouville manifold, the Liouville domain
giving the Liouville manifold is called defining. △

Definition A.30. The skeleton of a Liouville manifold (M, λ) is given by

Skel(M, λ) =
∞⋃

k=1

⋂
t>0

Z−t(Mk),

i.e. it is the attractor of the negative flow of the Liouville vector field. △

Lemma A.31. A Liouville manifold (M̂, λ̂) is of finite type if and only if its skeleton is compact.

Proof. Consider a finite type Liouville manifold (M̂, λ̂) with defining domain M. Since all
points in M̂ − M lie on the forward trajectory of Z starting at a point ∂M and the Liouville
field is outwardly transverse we see that Skel(M̂, λ̂) = Skel(M, λ). Thus the skeleton of a finite
type Liouville manifold is compact.
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Now consider a Liouville manifold (M̂, λ̂) with compact skeleton. Let k be sufficiently large
such that a neighbourhood of the skeleton of M̂ is contained in M̂k, we write Σ = ∂M̂k. The
forward flow of Z starting from Σ gives a diffeomorphism M − Int(M̂k) ≃ Σ × [0, ∞) because
for every point p ∈ M̂ the negative flow Z−t(p) gets arbitrarily close to the skeleton as t → ∞
and thus is contained in M̂k for sufficiently large t. Under this diffeomorphism we see that
the Liouville form λ = ιZω corresponds to etα where t ∈ R is the parameter of the flow and
α = λΣ.

The Weinstein condition amounts to the additional demand that the Liouville field is Morse-
Bott.

Definition A.32. A Weinstein domain (resp. Weinstein manifold) (M, λ, φ) is a Liouville do-
main(resp. Liouville manifold) (M, λ) with a Morse-Bott with boundary Liouville field Z. △

As shown in Section 2.2 of [Sta18], the skeleton of a Weinstein domain is an isotropic set.

Proposition A.33. Let M be a Weinstein domain with Liouville vector field Z. For any connected com-
ponent C of zeros of Z, the stable manifold Stab(C) is an isotropic submanifold (possibly with boundary).
Thus, the skeleton of a Weinstein domain is an isotropic subset.



Appendix B

Arboreal Lagrangian and Legendrian
Singularities in Symplectic and Contact
Manifolds

In this chapter we define the classes of arboreal Lagrangian singularities and arboreal Legendrian
singularities, which are stratified Lagrangian singularities in symplectic manifolds (resp. Leg-
endrian singularities in contact manifolds). Furthermore, we give local models for these singu-
larities and show that each class of germs of arboreal Lagrangian singularities (resp. arboreal
Legendrian singularities) is determined by discrete combinatorial data given by a non-cyclic
connected graph, i.e. a tree, with some extra combinatorial data.

We begin this chapter with the definition of arboreal Lagrangian and Legendrian singularities
in Section B.1 as originally formulated in [AEN22a]. Then, in Section B.2, we produce arboreal
models via a gluing construction as first defined by Nadler in Section 2.1 of [Nad17]. We can
associate such a gluing to every tree. This gluing construction fixes only the homeomorphism
type of the singularity, not the smooth, symplectic or contact type. In Section B.3 we give
another construction of arboreal models, following Section 2 of [AEN22a], where arboreal sin-
gularities are produced as positive conormal bundles of certain hypersurfaces. These models
are associated to trees with extra data on the vertices and edges, and the construction fixes the
diffeomorphism type of the model. These two constructions are equivalent, in the sense that
the singularities they produce are homeomorphic, as we show in Section B.4.

We will then, in Section B.5, discuss a Stability Theorem from Section 3 of [AEN22a] which
shows that each of the arboreal Lagrangian singularities is germ diffeomorphic to one of the
arboreal models. We conclude with Section B.6, where we generalize the arboreal models to
allow for strata with boundary. We prove that a similar Stability Theorem holds for these
generalized arboreal singularities.
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B.1 Arboreal Lagrangian and Legendrian singularities

Before we can define arboreal Lagrangian and Legendrian singularities we need to discuss
some auxiliary notions.

Recall from Lemma A.21 that the germ of an isotropic submanifold of T∗Rn at the origin lifts
to an isotropic germ at the origin of the 1-jet bundle J1Rn. As a corollary, the germ at the origin
of any simply-connected isotropic subset L ⊂ T∗Rn admits a unique lift to the germ at the
origin of an isotropic subset L̂ ⊂ J1Rn. We want an arboreal Lagrangian singularity in T∗Rn

to lift to an arboreal Legendrian singularity in J1Rn. We wish for our arboreal Lagrangian and
Legendrian singularities to be compatible with this lift.

Furthermore, we want to have a coning operation analogous to the vertical cone in the defini-
tion of arboreal hypersurface singularities. From Darboux’s Theorem we know that all contact
manifolds of the same dimension are locally contactomorphic, so we define this coning oper-
ation for a specific class of contact manifolds, namely unit spheres with the standard contact
structure. For an isotropic subset Λ ⊂ S∗Rn ∼= S2n−1 of the cosphere bundle we define its
Liouville cone C(Λ) ⊂ T∗Rn to be the closure of the trajectories of the Liouville vector field p ∂

∂p
going trough Λ. We note that this Liouville cone is isotropic.

We are now ready to define arboreal Lagrangian and Legendrian singularities, the following
definition is Definition 1.1 from [AEN22a].

Definition B.1. Arboreal Lagrangian (resp. Legendrian) singularities form the smallest class Arbsymp
n

(resp.Arbcont
n ) of germs of closed stratified isotropic subsets in 2n-dimensional symplectic (res0p.

(2n + 1)-dimensional contact) manifolds such that

1. (Invariance) Arbsymp
n is invariant with respect to symplectomorphisms and Arbcont

n is in-
variant with respect to contactomorphisms.

2. (Base case) Arbsymp
0 contains pr = R0 = T∗R0 = pt.

3. (Stabilizations) If L ⊂ (X, ω) is in Arbsymp
n , then the product L ×R ⊂ (X × T∗R, ω + dp ∧

dq) is in Arbsymp
n+1 .

4. (Legendrian lifts) If L ⊂ T∗Rn is in Arbsymp
n , then the Legendrian lift L̂ ⊂ J1Rn is in

Arbcont
n .

5. (Liouville cones) Let Λ1, ..., Λk ⊂ S∗Rn be a finite disjoint union of arboreal Legendrian
germs from Arbcont

n−1 centred at points z1, ..., zk ∈ S∗Rn. Let π : S∗Rn → Rn be the front
projection and suppose

• π(z1) = ... = π(zk);

• For any i and stratum Y ⊂ Λi, the restriction π|Y : Y → Rn is an embedding;

• For any distinct i1, ..., il , and any set of strata Yi1 ⊂ Λi1 , ..., Yil ⊂ Λil , the restriction
π|Yi1∪...∪Yil

is self-transverse.
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Then the union Rn ∪C(Λ1)∪ ...∪C(Λk) forms an arboreal Lagrangian germ from Arbsymp
n .

△

B.2 Gluing construction

We begin by giving the construction of arboreal singularities as originally introduced by Nadler
in [Nad17]. These arboreal singularities are constructed by gluing Euclidean spaces, this pro-
duces topological stratified spaces whose strata have no canonical smooth structure. Thus this
original construction yields homeomorphism classes of singularities, rather than symplecto-
morphism or contactomorphism classes.

Before we give the gluing construction of arboreal sinuglarities, we first recall some notions
from Chapter 5. A graph G is a set of vertices V(G) and a set of edges E(G) such that E(G) is a
subset of the set of two-elements subsets of V(G). Two vertices α, β ∈ V(G) are called adjacent
if {α, β} ∈ E(G), a vertex τ ∈ V(G) is caled a terminal vertex if it has a single adjacent vertex.
A graph G is called connected if any two vertices α, β ∈ V(G) can be linked by a walk, i.e. a
sequence of edges {α, γ1}, {γ1, γ2}, ..., {γn, β} ∈ E(G). A graph G is called acyclic if there are
no non-empty walks in which all edges are distinct and all vertices except for the first and last
are distinct. A tree T is a nonempty, finite, connected acyclic graph.

Figure B.1: A tree.

For any finite set S we write RS for the Euclidean space of S-tuples of real numbers, note that
RS ∼= R∥S∥. In particular, for a tree T, we introduce for each vertex α ∈ V(T) the Euclidean
space LT(α) ≃ RV(T)\{α} of tuples {xγ(α)}γ∈V(T)\{α} of real numbers.

Definition B.2. For an edge {α, β} ∈ E(T) we define the {α, β}-edge gluing as the quotient of
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the disjoint union of Euclidean spacesÄ
LT(α) ⨿LT(β)

ä
/ ∼

with {xγ(α)} ∼ {xγ(β)} whenever

xβ(α) = xα(β) ⩾ 0 and xγ(α) = xγ(β) for all γ ̸= α, β ∈ V(T).

△

Definition B.3. The arboreal singularity LT associated to a tree T is the quotient of the disjoint
union of Euclidean spaces

LT =
Ä

⨿
α∈V(T)

LT(α)
ä
/ ∼

where ∼ is the equivalence relation generated by the edge gluing for all edges {α, β} ∈ E(T).
△

Figure B.2: Some arboreal singularities obtained from the gluing construction with the associ-
ated trees.

The following Lemma explains how the Euclidean spaces LT(α) and LT(β) are glued in LT for
non-adjacent vertices α, β ∈ V(T).

Lemma B.4. Let α, β ∈ V(T) be two vertices and suppose the shortest path between them consists of k
edges with the successive adjacent vertices α = γ0, γ1, ..., γk = β.

Then, inside of LT, the Euclidean spaces LT(α) and LT(β) are glued under the identification {xγ(α)} ∼
{xγ(β)} whenever

xγi (α) = xγi−1(β) ⩾ 0 for all 1 ⩽ i ⩽ k
xγ(α) = xγ(β) for all γ ̸= γ0, ..., γk ∈ V(T).

Proof. Because T is acyclic only the edges on the shortest path between α and β play a role.

We proceed by induction over k, the number of edges in the shortest path between α and β.
Note that for k = 1 the statement of the Lemma is exactly the {α, β}-edge gluing.

Assume the statement holds for k − 1, meaning that LT(α) and LT(γk−1) are glued in LT by
making the identification {xγ(α)} ∼ {xγ(γk−1)} whenever

xγi (α) = xγi−1(γk−1) ⩾ 0 for all 1 ⩽ i ⩽ k − 1
xγ(α) = xγ(γk−1) for all γ ̸= γ0, ..., γk−1 ∈ V(T).
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Note that the {γk−1, β}-edge gluing makes the identification {xγ(γk−1)} ∼ {xγ(β)} whenever

xβ(γk−1) = xγk−1(β) ⩾ 0

xγ(γk−1) = xγ(β) for all γ ̸= γk−1, β ∈ V(T).

Thus we see that {xγ(α)} ∼ {xγ(β)} whenever

xγi (α) = xγi−1(β) ⩾ 0 for all 1 ⩽ i ⩽ k
xγ(α) = xγ(β) for all γ ̸= γ0, ..., γk ∈ V(T).

The following Lemma gives an alternative description of LT that will be useful when compar-
ing this gluing construction to the conormal construction in Section B.3.

Lemma B.5. Let T be a tree and suppose τ ∈ V(T) is a terminal vertex of T. Define the tree Tτ with
vertices V(T) \ {τ} and edges E(T) \ {τ, α}.

Then there is a canonical homeomorphism

LT ≃
Ä
LTτ × R{τ}

ä
⨿

LTτ (α)×{0}

Ä
LTτ (α) × R

{α}
⩽0

ä
Proof. Note that for any γ ∈ V(Tτ) we have

LT(γ) = RV(T)\{γ} = RV(Tτ)\{γ}∪{τ} = LTτ (γ) × R{τ}

and

LT(τ) = RV(T)\{τ} = LTτ (α) × R{α}.

Thus we see that

LT =

(
⨿

γ∈V(T)
LT(γ)

)
/ ∼

=

(
LT(τ) ⨿

γ∈V(Tτ)
LTτ (γ) × R{τ}

)
/ ∼

=
Ä
LTτ (α) × R{α} ⨿ LTτ × R{τ}

ä
/ ∼

where LTτ (α) × R{α} is attached to LTτ × R{τ} by the {τ, α}-edge gluing. This means that
LTτ (α) × R{α} gets attached along

LTτ (α) × R
{α}
⩾0 ⊂ LTτ (α) × R{α}

which can be less redundantly described as attaching

LTτ (α) × R
{α}
⩽0 ⊂ LTτ (α) × R{α}

along LTτ (α) × {0}.
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B.3 Conormal construction

We now give the construction of arboreal models as originally introduced in [AEN22a]. To
every signed rooted tree, which is a tree with certain extra data on vertices and edges, we will
associate a cooriented graphical hypersurface. The positive conormal, which we define below, of
these graphical hypersurfaces will be our arboreal singularities. As we will see, this construc-
tion yields stratified singularities with symplectic (resp. contact) structures on each strata. This
construction is motivated by the following notions.

Let T∗Rn denote the cotangent bundle with canonical 1-form pdx =
n
∑

i=1
pidxi where p =

(p1, ..., pn) are the dual coordinates to x = (x1, ..., xn). Let J1Rn = R × RT∗Rn denote the

1-jet bundle with contact form dx0 + pdx = dx0 +
n
∑

i=1
pidxi.

Given a function f : Rn → R with graph Γ f = {x0 = f (x)} ⊂ R × Rn we have the conormal
Lagrangian of the graph

LΓ f =
¶

x0 = f (x), pi = −p0
∂ f
∂xi

©
⊂ T∗Rn+1

and the conormal Legendrian of the graph

ΛΓ f =
¶

x0 = f (x), p0 = 1, pi = − ∂ f
∂xi

©
⊂ J1Rn.

B.3.1 Quadratic fronts

We first define the maps whose graphs we will consider.

Definition B.6. For i ⩾ 0 we define functions hi : Ri → R by the inductive formula

h0 = 0, hi = hi(x1, ..., xi) = x1 − hi−1(x2, ..., xi)2.

For 0 ⩽ j < i ⩽ n, set

hi,j = hi−j(xj+1, ..., xi).

△

Note that hi,0 = hi(x1, ..., xi) and hi,i−1 = h1(xi) = xi.

Example B.7. For small i we have

h1(x1) = x1, h2(x1, x2) = x1 − x2
2,

h3(x1, x2, x3) = x1 − (x2 − x2
3)2, h4(x1, x2, x3, x4) = x1 − (x1 − (x2 − x2

3)2)2.

△
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Definition B.8. For n ⩾ 0 and i = 0, ..., n we define the smooth graphical hypersurfaces

nΓi = {x0 = h2
i } ⊂ Rn+1

and the union

nΓ =
n⋃

i=0

nΓi.

△

(a) The hypersurfaces 1Γ0, in green, and 1Γ1, in
blue.

(b) The hypersurfaces 2Γ0, in green, 2Γ1, in red, and
2Γ2, in blue.

Figure B.3: Quadratic fronts, ([AEN22a], p. 5, p. 6).

Remark B.9. Note that we have the identities

nΓi =
i Γi × Rn−i for all i = 0, ..., n

nΓi ∩n Γ0 =n−1 Γi−1 for all i = 1, ..., n.

△

Given a function f : Rn → R we can equip the graphical hypersurface Γ f = {x0 = f (x)} ⊂
R × Rn with the a coorientation given by the conormal that is positive in the ∂x0 direction.
We call this coorientation the graphical coorientation, we equip every nΓi with the graphical
coorientation.

B.3.2 Conormal Lagrangians and Legendrians

We now look at the conormal Lagrangians and Legendrians of these quadratic fronts.

For i = 0, let nL0 = Rn ⊂ T∗Rn denote the zero-section. For i = 1, ..., n we denote the conormal
Lagrangian

nLi = Ln−1Γi−1
⊂ T∗Rn
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of the graph n−1Γi−1 ⊂ Rn and consider their union

nL =
n⋃

i=0

nLi.

Similarly, for i = 0, ..., n, introduce the conormal Legendrian

nΛi = ΛnΓi ⊂ J1Rn

of the graph nΓi ⊂ Rn+1 and consider their union

nΛ =
n⋃

i=0

nΛi.

Remark B.10. Observe that nLi ⊂ T∗Rn is given by the equations

x1 = h2
i,1,

n

∑
j=2

pjdxj = −
n

∑
j=2

p1
∂h2

i,1

∂xj
dxj = −p1dh2

i,1 = −p1dx1

Thus the Liouville form pdx vanishes on nLi ⊂ T∗Rn, meaning that T(nLi) ⊂ ker (dx0 + pdx).
Therefore the lift of nLi to J1Rn = R × T∗Rn zero primitive, i.e. {0} ×n Li is Legendrian. △

We have the following Lemma on compatibility between this lift and the conormal Legendrian.

Lemma B.11. The contactomorphism

S : J1Rn → J1Rn, (x0, x, p) 7→ (x0 − p2
1/4, x1 + p1/2, x2, ..., xn, p1, ..., pn)

takes the Legendrian nΛi isomorphically to the Legendrian {0} ×n Li and thus the union nΛ isomor-
phically to the union {0} ×n L.

Proof. We note that nΛi ⊂ J1Rn is defined by the equations

x0 = h2
i pdx = −dh2

i = −2hidhi = −2hi(dx1 − 2hi,1dhi,1)

and thus in particular p1 = −2hi and ∑n
j=2 pjdxj = 4hihi,1dhi,1 = −2p1hi,1dhi,1 and nLi ⊂ T∗Rn

is given by the equations

x1 = h2
i,1

n

∑
j=2

pjdxj = −p1dh2
i,1 = −2p1hi,1dhi,1.

We write (“x0, x̂, p̂) = S(x0, x, p) for (x0, x, p) ∈n Λi and see“x0 = x0 − p2
1/4 = ±(x0 − h2

i ) = 0 “x1 = x1 + p1/2 = x1 − hi = x1 − (x1 − h2
i,1) = h2

i,1.

Thus we conclude that nΛi is taken isomorphically to the Legendrian {0} ×n Li and thus the
union nΛ is taken isomorphically to the union {0} ×n L.
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B.3.3 Distinguished quadrants

To construct the arboreal models we need to specify distinguished quadrants of the nΓ and
introduce signs, the geometric meaning of which will become clear below.

For a list of signs ε = (ε1, ..., εn) we define the involution σε : Rn → Rn given by

σε(x1, ..., xn) = (ε1x1, ..., εnxn).

Define the signed domain quadrant nRε
i ⊂ Rn to be the closed subspace

nRε
i = {ε0ε1hi,0 ◦ σε ⩽ 0, ..., ε i−1ε ihi,i−1 ◦ σε ⩽ 0}.

Define the cooriented hypersurface nΓε
i ⊂ Rn+1 to be the restricted signed graph

nΓε
i = {x0 = ε0h2

i ◦ σε}|nRε
i

with the graphical coorientation. More explicitly nΓε
i is given by the equations

x0 = ε0h2
i ◦ σε, ε0ε1hi,0 ◦ σε ⩽ 0, ..., ε i−1ε ihi,i−1 ◦ σε ⩽ 0.

Define the union

nΓε =
n⋃

i=0

nΓε
i .

Remark B.12. Note that hi,i−1 = xi and thus ε i−1ε ihi,i−1 ◦ σε = xi, therefor every nΓε
i only

depends on the first i signs ε0, ..., ε i−1 but not on ε i. In particular the union nΓε is independent
of εn. △

Lemma B.13. Fix a list of signs ε = (ε0, ..., εn) and set ε′ = (ε1, ..., εn). The homeomorphism

s : ε0R⩾0 × Rn → ε0R⩾0 × Rn, (x0, x1, x2, ..., xn) 7→ (x0, x1 + ε0
√

ε0x0, x2, ..., xn)

gives an identification

s
(nΓε

i
)
= ε0R⩾0 ×n−1 Γε′

i−1

for every 0 < i ⩽ n.

Proof. Recall nΓε
i is defined by

x0 = ε0h2
i ◦ σε, ε0ε1hi,0 ◦ σε ⩽ 0, ..., ε i−1ε ihi,i−1 ◦ σε ⩽ 0.

and thus in particular

x0 = ε0h2
i ◦ σε, ε0ε1hi,0 ◦ σε = ε0ε1hi ◦ σε ⩽ 0.
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When ε0x0 ⩾ 0 and ε0ε1hi ◦ σε ⩽ 0 the equation x0 = ε0h2
i ◦ σε is equivalent to

√
ε0x0 =

−ε0ε1hi ◦ σε. This can be rewritten in the form

x1 + ε0
√

ε0x0 = ε1h2
i−1,1 ◦ σε′ .

Since εx0 = h2
i ◦ σε ⩾ 0 we see that s maps nΓε

i into ε0R⩾0 ×{x1 = ε1h2
i−1,1 ◦ σε′}. Now note that

the functions hi,1, ..., hi,i−1 cutting out nΓε
i are independent of the coordinates x0, x1 and thus

push forward to the same functions hi,1, ..., hi,i−1 that cut out

n−1Γε′
i−1 ⊂ {x1 = ε1h2

i−1,1 ◦ σε′}.

To see that s gives a cooriented identification note that the coorientations of nΓε
i and n−1Γε′

i−1 are
positive in respectively the ∂x0 and ∂x1 direction. The ∂x1 component of s∗∂x1 is in the positive
direction and thus s gives a cooriented identification.

The following corollary explains the geometric meaning of the signs ε.

Corollary B.14. Fix signs ε = (ε0, ..., εn). For i = 0, ..., n − 1, we have ε i = ±1 if and only if nΓi+1 is
on the ±-side of nΓi with respect to the graphical dx0-coorientation.

Moreover, for i = 1, ..., n − 1, we have ε i = ±1 if and only if nΓi+1 ∩n Γ0 is on the ±-side of nΓi ∩n Γ0
with respect to the graphical dx1-coorientation.

Proof. We proof the assertions by induction. For i = 0 we have nΓ0 = {x0 = 0} and nΓ1 =
{x0 = ε0(ε1x1)2 = ε0x2

1, ε0ε1(ε1x1) = ε0x1 ⩽ 0} and the first assertion holds.

For i > 0 both assertions follow immediately by inductively applying Lemma B.13.

We record the following direct corollary of Lemma B.13 that will prove useful in comparing
the different constructions of arboreal singularities.

Corollary B.15. The map s : ε0R⩾0 × Rn → ε0R⩾0 × Rn restricts to a homeomorphism

s|nΓε :n Γε ≃−→ {0} × Rn ∪ ε0R⩾0 ×n−1 Γε′ .

By recursively applying the map of Lemma B.13 we get homeomorphisms

nΓε
i ≃ Ri

⩾0 × {0} × Rn−i

nΓε ≃
n⋃

i=0

Ri
⩾0 × {0} × Rn−i.

Fix signs ε = (ε0, ., , , .εn−1). For i = 0 let nLε
0 = Rn ⊂ T∗Rn denote the zero-section. For

i = 1, ..., n we introduce the positive conormal bundle

nLε
i = ν+Rn

n−1Γε
i−1 ⊂ T∗Rn
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determined by the graphical orientation and define the union

nLε =
n⋃

i=0

nLε
i .

Note that nLε
i is Lagrangian.

Fix signs ε = (ε0, ., , , .εn) and for i = 0, ..., n define the Legendrian

nΛε
i ⊂ J1Rn

that is the lift of the front nΓε
i ⊂ Rn+1 and their union

nΛε =
n⋃

i=0

nΛε
i .

We have the following Lemma similar to Lemma B.11

Lemma B.16. Fix signs ε = (ε0, ..., εn) and set ε′ = (ε1, ..., εn). The contactomorphism

Sε0 : J1Rn → J1Rn, (x0, x, p) 7→ (x0 − ε0 p2
1/4, x1 + ε0 p1/2, x2, ..., xn, p1, ..., pn)

takes the Legendrian nΛε
i isomorphically to the Legendrian {0} × nLε′

i and thus the union nΛε isomor-
phically to the union {0} ×n Lε′ .

Proof. The assertion follows from the proof of Lemma B.11 with the extra conditions

ε0ε1hi,0 ◦ σε ⩽ 0, ..., ε i−1ε ihi,i−1 ◦ σε ⩽ 0.

Observe that if ε0ε1hi,0 ◦ σε ⩽ 0 and p1 = −2ε0ε1hi,0 ◦ σε, then p1 ⩾ 0, meaning that we indeed
map to the positive conormal. As in the proof of Lemma B.11 the remaining functions are
independent of x0 and x1. We conclude that Sε0 takes nΛε

i to {0} ×n Lε′
i .

B.3.4 Conormal arboreal models

Before we construct the models for arboreal singularities, we first fix some terminology. Recall
a rooted tree T = (T, ρ) is a pair of a tree T and a distinguished vertex ρ ∈ V(T) called the root.
We denote the set of edges of T by E(T ) = E(T) and introduce the set of non-root vertices
N(T ) = V(T ) \ {ρ}, we write n(T ) = |N(T )|.

Recall that the vertices V(T ) = V(T) of a rooted tree have a natural poset structure with unique
minimum ρ and α ⩽ β if the unique shortest path between β and ρ contains α. For every non-
root vertex α of T there is a unique parent vertex α̂ such that α̂ ⩽ α and there is no β ̸= α, α̂ ∈
V(T ) with α̂ ⩽ β ⩽ α. We call a non-root vertex α that is adjacent to exactly one vertex a leaf
and denote the set of all leaves by L(T).

Definition B.17. A signed rooted tree “T = (T, ρ, ε) is a rooted tree (T, ρ) such that each edge of T
not adjacent to the root ρ has a decoration of a sign ±1. △
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Figure B.4: A signed rooted tree.

Note that signed rooted trees are different from fully signed rooted trees, in the latter case all
edges have a sign while in the former case the edges adjecent to the root do not have a sign.

Given a signed rooted tree “T = (T, ρ, ε) we write V(“T ) = V(T) for the set of vertices, E(“T ) =
E(T) for the set of edges, N(“T ) = N(T ) = V(“T ) \ {ρ} for the set of non-root vertices and
v(“T ) =

∣∣∣V(“T )
∣∣∣ , n(“T ) =

∣∣∣N(“T )
∣∣∣.

We first produce conormal arboreal models for a subclass of signed rooted trees.

Conormal arboreal models for linear trees

Definition B.18. For n ⩾ 0, the signed rooted tree with vertices V(An) = {0, 1, ..., n}, edges
E(An) = {{i, i + 1}|i = 0, ..., n − 1} and root ρ = 0 is called the linear signed rooted n-tree. △

By definition, the sign a of a linear signed rooted n-tree is a length n− 1 list of signs (a{1,2}, ..., a{n−1,n}).
We set ε = (a{1,2}, ..., a{n−1,n}, 1), the length n list of signs obtained by padding a by adding a
single 1 at the end.

Definition B.19. Let An = (An, ρ, a) be a linear signed rooted tree and set ε = (a, 1).

1. The arboreal A0-front is the empty set HA0 = ∅ inside the point R0. For n ⩾ 1, the arboreal
An-front HAn is the cooriented hypersurface

HAn =n−1 Γε ⊂ Rn.

2. For n ⩾ 0, the arboreal An-Lagrangian LAn is the union of the zero-section and positive
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conormal

LAn = Rn ∪ ν+Rn HAn ⊂ T∗Rn.

3. For n ⩾ 0, the arboreal An-Legendrian, ΛAn , is the lift

ΛAn+1 = {0} × LAn .

△

Figure B.5: Two A2 fronts with positive and negative sign, ([AEN22a], p. 13)

We can also give a more invariant description of these arboreal models by viewing the ambient
space Rn as RN(An) where the ordering of the coordinates matches that of N(An).

We rename the smooth pieces of the An-front, indexing them by the non-root vertices

Hi =
n−1 Γε

i−1 ⊂ HAn , i ∈ N(An) = {1, ..., n}.

Then we can write the An-Lagrangian as the union of smooth pieces Li indexed by the vertices,
where L0 = Rn ⊂ LAn and

Li = ν+Rn Hi ⊂ LAn , i ∈ N(An) = {1, ..., n}.

Lastly, we can write the An-Legendrian as the union of smooth pieces Λi indexed by the ver-
tices

Λi = {0} × Li, i ∈ V(An) = {0, ..., n}.
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Figure B.6: Two A3 fronts with different choices of signs, ([AEN22a], p. 14)

Conormal arboreal models for general trees

We now construct conormal arboreal models for general trees, let “T = (T, ρ, ε) be a signed
rooted tree. To each leaf β ∈ L(T) we can associate the linear signed rooted tree Aβ = (Aβ, ρ, aβ)
where Aβ is the full subtree of T with vertices V(Aβ) = {α ⩽ β ∈ V(T)} and restricted sign
decoration aβ.

For each leaf β ∈ L(T) the inclusion N(Aβ) ⊂ N(“T ) induces a natural projection

πβ : RN(“T ) → RN(Aβ).

Definition B.20. Let “T = (T, ρ, ε) be a signed rooted tree.

1. The arboreal model “T -front is the singular hypersurface given by the union

H“T =
⋃

β∈L(“T )

π−1
β (HAβ

) ⊂ RN(“T )

where Aβ ⊂ RN(Aβ) is the arboreal Aβ-front.

2. The arboreal model “T -Lagrangian is the union to the zero-section and positive conormal

L“T = RN(“T ) ∪ ν+
RN(“T )

H“T ⊂ T∗RN(“T ).
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3. The arboreal model “T -Legendrian is the lift

Λ“T = {0} × L“T ⊂ J1RN(“T ).

△

Figure B.7: Two arboreal fronts for non-linear trees with different choices of signs, ([AEN22a],
p. 15)

Similar to our approach for the An+1 case, we can index the smooth pieces of the “T -front by
non-root vertices

Hα = π−1
β (HAβ

) ⊂ H“T , α ∈ N(“T )

where β ∈ L(“T ) is any leaf with α ⩽ β and HAβ
⊂ HAβ

is the corresponding smooth piece. No
that every Hα has a coorientation induced by the coorientation of HAβ

.

Likewise, we can index the smooth pieces of the “T -Lagrangian by vertices where Lρ = RN(“T ) ⊂
L“T and

Lα = ν+
RN(“T )

Hα ⊂ L“T , α ∈ N(“T )

and we can index the smooth pieces of the “T -Legendrian by vertices

Λα = {0} × Lα ⊂ Λ“T , α ∈ V(“T ).
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Remark B.21. Let “T be a signed rooted tree and let τ be a leaf of “T . Then we have identifica-
tions

H“T = H“T \{τ} × Rτ ∪ Hτ,

L“T = L“T \{τ} × Rτ ∪ Lτ,

Λ“T = Λ“T \{τ} × Rτ ∪ Λτ.

△

B.4 Comparing the gluing and conormal construction

We will now show that the arboreal model L“T Lagrangian corresponding to a signed rooted
tree “T = (T, ρ, ε) is homeomorphic to the arboreal singularity LT of T as defined in Section B.2.
We begin by showing this for linear trees.

Lemma B.22. For any linear signed rooted tree An = (An, ρ, a) there is a stratified homeomorphism

LAn ≃ LAn .

Proof. We use induction, first note LA0 = R0 and LA0 = R0 and thus LA0 ≃ LA0 . Now assume

LAn ≃ LAn

for some n ⩾ 1.

Directly from the definition we see

LAn+1 = Rn ∪ ν+Rn HAn+1 ⊂ T∗R

= Rn ∪ ν+Rn
n−1Γε

= Rn ∪ ν+Rn

Ç n−1⋃
i=0

n−1Γε
i

å
= Rn ∪ ν+Rn

Ç n−2⋃
i=0

n−1Γε
i

å⋃
ν+Rn

n−1Γε
n−1

We first take a closer look at the first two factors. Recall that for 0 ⩽ i < n we have

n−1Γε
i ≃ n−2Γε′

i × R,

where ε′ = (ε1, ..., εn), giving

Rn ∪ ν+Rn

Ç n−2⋃
i=0

n−1Γε
i

å
= LAn × R.
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We now consider the last factor. Up to homeomorphism the positive conormal ν+Rn H of a
hyperspace H ⊂ Rn is obtained by attaching a half line R⩾0 in the positive conormal direction
at every point. Note that the coorientation of n−1Γε

n−1 and any n−1Γε
i agree on their intersection,

which can be seen inductively by applying Lemma B.13.

Thus ν+Rn
n−1Γε

n−1 ⊂ LAn+1 can seen as attaching n−1Γε
n−1 ×R⩾0 to Rn ∪ ν+Rn

Ç
n−2⋃
i=0

n−1Γε
i

å
along

n−1Γε
n−1 × {0} ∪

Ç n−2⋃
i=0

n−1Γε
i ∩n−1 Γε

n−1

å
× R⩾0.

Recall, as stated in Corollary B.15, that we have the canonical identification

n−1Γε
i ≃ Ri

⩾0 × {0} × Rn−1−i.

Thus we have canonical identifications

n−1Γε
n−1 ≃ Rn−1

⩾0 × {0},
n−2⋃
i=0

n−1Γε
i ∩n−1 Γε

n−1 ≃
n−2⋃
i=0

Ri
⩾0 × {0} × Rn−2−i

⩾0 × {0}.

Now, note that

Rn−1
⩾0 × {0} × {0}

⋃Ç n−2⋃
i=0

Ri
⩾0 × {0} × Rn−2−i

⩾0 × {0} × R⩾0

å
is exactly the boundary of the positive quadrant

Qn := {(x0, ..., xn) ∈ Rn+1|xn−1 = 0, xi ⩾ 0 for all i ̸= n − 1}

in the xn−1 = 0 hyperplane of Rn+1. The gluing in of ν+Rn
n−1Γε

n−1 is precisely attaching the
interior of the positive quadrant to the boundary. Thus

LAn+1 ≃ Rn ∪ ν+Rn

Ç n−2⋃
i=0

n−1Γε
i

å
⨿
∂Qn

Qn.

Now note that the quadrant Qn admits the representation Qn ≃ ∂Qn × R⩾0 and that there is a
piecewise linear homeomorphism ∂Qn ≃ Rn−1. We conclude that

LAn+1 ≃ LAn × R ⨿
Rn−1×{0}

Rn−1 × R⩾0

which is the exact same representation as appears in Lemma B.5. We conclude that

LAn ≃ LAn . (B.1)
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Theorem B.23. For any signed rooted tree “T = (T, ρ, ε), there is a stratified homeomorphism

LT ≃ L“T .

Proof. We proceed by induction over the number n of non-root vertices. Note that the case of
n = 0 is a direct result of Lemma B.22 above.

Assume the statement holds for all signed rooted trees with n − 1 non-root vertices for some
n ⩾ 1. Let “T = (T, ρ, ε) be a signed rooted tree with n non-root vertices, we assume “T is not a
linear signed rooted tree, as this case is covered by Lemma B.22. Consider any leaf τ ∈ L(“T ),
denote its associated linear signed rooted tree Aτ ⊂ “T , and denote the signed rooted tree with
n − 1 non-root vertices obtained by deleting τ by “Tτ. Recall, from the discussion in Section B.3,

L“T = ∪
α∈V(“T )Lα

= RV(“T ) ∪
α∈N(“T ) ν+

RN(“T )
Hα

= L“Tτ
× R{τ} ∪ ν+

RN(“T )
Hτ

Now consider a vertex α /∈ Aτ and a leaf β ∈ L(“T ) with α ⩽ β. Note that N(Aβ) ∩ N(Aτ) =
∅, thus there is an inclusion N(Aβ) ⊂ N(“T ) \ N(Aτ) that induces a natural projection π̃β :

RN(“T )\N(Aτ) → RN(Aβ) which is a restriction of the projection πβ : RN(“T ) → RN(Aβ). Recall that
Hα = π−1

β (HAβ,α ), meaning that

Hα = π̃−1
β (HAβ,α ) × RN(Aτ)

From this we see that Hα and Hτ are not tangent along their intersection and thus must have
different conormals along their intersection. In contrast, for any γ ∈ Aτ we have that Hτ and
Hγ have the same conormal along their intersection as a result of the proof of Lemma B.22.

Thus ν+
RN(“T )

Hτ ⊂ L“T can be seen as attaching Hτ × R⩾0 to RV(“T ) ∪
α∈N(“Tτ) ν+

RN(“T )
Hα along

Hτ × {0} ∪

Ñ ⋃
γ∈V(Aτ\{τ})

(Hγ ∩ Hτ) × R⩾0

é
.

By the discussion above we can conclude that

L“T ≃ L“Tτ
× R ⨿

Rn−1×{0}
Rn−1 × R⩾0

and thus

LT ≃ L“T .
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B.5 Stability of the conormal construction

Now that we have constructed the models for arboreal fronts, Lagrangians and Legendrians,
we are ready to define arboreal fronts, Lagrangians and Legendrians.

Definition B.24. Arboreal fronts, Lagrangians and Legendrians are defined as follows.

1. A closed subset H ⊂ M of a (m + 1)-dimensional manifold M is called an arboreal front if
the germ of (M, H) at any point m ∈ M is diffeomorphic to the germ of (Rn ×Rm−n, H“T ×
Rm−n) at the origin, for a signed rooted tree “T with n = n(“T ) ⩽ m.

2. A closed subset L ⊂ X of a 2m-dimensional symplectic manifold (X, ω) is called an
arboreal Lagrangian if the germ of (X, L) at any point λ ∈ L is symplectomorphic to the
germ of the pair (T∗Rn × T∗Rm−n, L“T × Rm−n) at the origin, for a signed rooted tree “T
with n = n(“T ) ⩽ m.

3. A closed subset Λ ⊂ X of a (2m + 1)-dimensional contact manifold (Y, ξ) is called an
arboreal Legendrian if the germ of (Y, Λ) at any point λ ∈ L is contactomorphic to the
germ of the pair (J1(Rn × Rm−n = J1RnRn × T∗Rm−n, Λ“T × Rm−n) at the origin, for a
signed rooted tree “T with n = n(“T ) ⩽ m.

The pair (“T , m) is called the arboreal type of the germ of H, L or Λ. △

The goal of this section is to prove the following theorem.

Theorem B.25. To each class in Arbsymp
n we can assign a signed rooted tree “T = (T, ρ, ε) with at most

n + 1 vertices, thus Definition B.1 produces only finitely many local models up to ambient symplecto-
morphism per dimension n.

This theorem is a corollary of the following Stability Theorem, which is Theorem 3.5 from
[AEN22a]. Let t∗M denote the germ of T∗M along the zero-section M.

Theorem B.26. Let “T1, ..., “Tk be signed rooted trees with roots ρ1, ..., ρk. Fix m > n = ∑j n(“Tj) and
let φj : t∗Rm → J1Rm be germs of embeddings with disjoint images. Denote zj := φj(0), Λj =

φj(L“Tj
× Rm−n(“Tj)), j = 1, ..., k. Suppose that

1. π(zj) = 0 for all j = 1, ..., k;

2. the arboreal Legendrian Λ := ∪j=1Λj projects transversely under the front projection π :
J1Rm → R × Rm.

Then there is a signed rooted tree “T , obtained by joining all “Tj to a common root ρ along their roots ρj
and picking appropriate signs for the edges {ρj, α}, such that Rm ∪ C(Λ) is an arboreal Lagrangian of
type (“T , m). Here C denotes the Liouville cone. Equivalently, there is a diffeomorphism ψ between the
germ of H“T × Rm−n(“T ) and the germ of the front π(Λ).

We can now prove Theorem B.25.
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Proof. The assertion follows by induction over dimension n. By definition Arbsymp
0 has only a

single local model that is represented by the signed rooted tree consisting of only one vertex.

Now assume the assertion has been established for n − 1 ⩾ 0. Any class in Arbsymp
n with n ⩾ 1

can be represented as either a stabilization L × R of some L in Arbsymp
n−1 or the Liouville cone of

appropriate Λ1, ..., Λk from Arbcont
n−1.

In the first case the class in Arbsymp
n is represented by the same signed rooted tree as L, which

has less than n − 1 by the induction assumption.

In the second case the class is represented by a signed rooted tree “T formed by joining the trees“Tj with root ρj assigned to the Legendrians Λj at a common root ρ.

From the transversality condition on the projection we know “T has at most n vertices.

B.6 Generalized arboreal models

To allow for interactions between strata when some strata have boundary, one needs a mild
generalization of our arboreal models. Nadler introduced these generalized arboreal singularities
in [Nad16], we expand on the definition in [Nad16] by adding signs to the construction in
a fashion inspired by the construction by Starkston in [Sta18]. Every generalized arboreal
singularity can be assigned a signed rooted tree with some extra data.

Definition B.27. A signed leafy rooted tree (“T , ℓ) is a signed rooted tree “T with a collection ℓ of
marked leaf vertices. △

From a signed leafy rooted tree (“T , ℓ) we can construct a signed rooted tree “T + by adding a
vertex above each leaf τ ∈ ℓ and giving each edge between a leaf τ ∈ ℓ and its added vertex
the sign of the unique edge incident on τ.

Recall that we could index the smooth pieces of the arboreal model “T + front, Lagrangian and
Legendrian by the vertices of “T +.

Definition B.28. Let (“T , ℓ) be a signed leafy rooted tree.

1. The generalized arboreal model (“T , ℓ)-front is the multi-cooriented hypersurface

H(“T ,ℓ) =
⋃

α∈N(“T +)\ℓ

Hα ⊂ H“T + ⊂ RN(“T +)

where Hα is the smooth piece of H“T + indexed by α.

2. The generalized arboreal model (“T , ℓ)-Lagrangian is the union

L(“T ,ℓ) =
⋃

α∈V(“T +)\ℓ

Lα ⊂ L“T + ⊂ T∗RN(“T +)

where Lα is the smooth piece of L“T + indexed by α.
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3. The generalized arboreal model (“T , ℓ)-Legendrian is the union

Λ(“T ,ℓ) =
⋃

α∈V(“T +)\ℓ

Λα ⊂ Λ“T + ⊂ J1RN(“T +)

where Λα is the smooth piece of Λ“T + indexed by α.

△

Figure B.8: A generalized arboreal singularity.

The following description of generalized arboreal models will prove useful.

Lemma B.29. Let (“T , ℓ) be a signed leafy rooted tree, denote the signed rooted tree obtained by deleting
all leaves in ℓ from “T by “T − and denote the set of vertices added above the leaves ℓ by ℓ+. Then we have
canonical identities

H(“T ,ℓ) = H“T + \ H“T × R|ℓ| ∪ H“T − × R2|ℓ|,

L(“T ,ℓ) = L“T + \ L“T × R|ℓ| ∪ L“T − × R2|ℓ|.

Proof. Note that

H(“T ,ℓ) = H“T + \
⋃
τ∈ℓ

Hτ,

L(“T ,ℓ) = L“T + \
⋃
τ∈ℓ

Hτ.

By Remark B.21 we know that for any τ ∈ ℓ+

H“T + = H“T +\{τ} × Rτ ∪ Hτ,

L“T + = L“T +\{τ} × Rτ ∪ Lτ.
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From this we get

H“T + = H“T × R|ℓ| ∪τ∈ℓ+ Hτ,

L“T + = L“T × R|ℓ| ∪τ∈ℓ+ Lτ.

Meaning that

H“T + \ H“T × R|ℓ| = ∪τ∈ℓ+ Hτ,

L“T + \ L“T × R|ℓ| = ∪τ∈ℓ+ Lτ.

Similarly we get

H“T = H“T − × R|ℓ| ∪τ∈ℓ Hτ,

L“T = L“T − × R|ℓ| ∪τ∈ℓ Lτ.

Meaning that

H“T + \ H“T × R|ℓ| ∪ H“T − × R2|ℓ| = H“T + \
⋃
τ∈ℓ

Hτ,

L“T + \ L“T × R|ℓ| ∪ L“T − × R2|ℓ| = L“T + \
⋃
τ∈ℓ

Hτ.

Definition B.30. We can now define generalized arboreal singularities.

1. A closed subset H ⊂ M of a (m + 1)-dimensional manifold M is called a generalized
arboreal front if the germ of (M, H) at any point m ∈ M is diffeomorphic to the germ
of (Rn × Rm−n, H(“T ,ℓ) × Rm−n) at the origin, for a signed leafy rooted tree (“T , ℓ) with

n = n(“T ) + |ℓ| ⩽ m.

2. A closed subset L ⊂ X of a 2m-dimensional symplectic manifold (X, ω) is called a gen-
eralized arboreal Lagrangian if the germ of (X, L) at any point λ ∈ L is symplectomorphic
to the germ of the pair (T∗Rn × T∗Rm−n, L(“T ,ℓ) × Rm−n) at the origin, for a signed leafy

rooted tree (“T , ℓ) with n = n(“T ) + |ℓ| ⩽ m.

3. A closed subset Λ ⊂ X of a (2m + 1)-dimensional contact manifold (Y, ξ) is called a
generalized arboreal Legendrian if the germ of (Y, Λ) at any point λ ∈ L is contactomorphic
to the germ of the pair (J1(Rn × Rm−n = J1RnRn × T∗Rm−n, Λ(“T ,ℓ) × Rm−n) at the origin,

for a signed leafy rooted tree (“T , ℓ) with n = n(“T ) + |ℓ| ⩽ m.

The triple (“T , ℓ, m) is called the generalized arboreal type of the germ of H, L or Λ. △

Using the Stability Theorem B.26 we can show the following Stability Theorem for generalized
arboreal Lagrangians.
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Theorem B.31. For j = 1, ..., k, let (“Tj, ℓj) be signed leafy rooted trees with roots ρj. Fix m > n =

∑j n(“Tj) +
∣∣ℓj
∣∣ and let φj : t∗Rm → J1Rm be germs of embeddings with disjoint images.

Denote zj := φj(0), Λj = φj(L(“Tj,ℓj)
× Rm−n(“Tj)−|ℓ|), j = 1, ..., k. Suppose that

1. π(zj) = 0 for all j = 1, ..., k;

2. the arboreal Legendrian Λ := ∪k
j=1Λj projects transversely under the front projection π :

J1Rm → R × Rm.

Then there is a signed leafy rooted tree (“T , ℓ), obtained by joining all (“Tj, ℓj) to a common root ρ along
their roots ρj and picking appropriate signs for the edges {ρj, α}, such that Rm ∪ C(Λy) is a generalized
arboreal Lagrangian of type (“T , ℓ, m). Here C denotes the Liouville cone. Equivalently, there is a
diffeomorphism ψ between the germ of H(“T ,ℓ) × Rm−n(“T )−|ℓ| and the germ of the front π(Λ).

Proof. The assertion follows from applying Theorem B.26 to different signed rooted trees ob-
tained from the signed leafy rooted tree (“T , ℓ).

Let “T −
j denote the signed rooted tree obtained from “Tj by deleting the marked leaves ℓj and

let “T +
j denote signed rooted tree obtained by adding a vertex above each leaf τ ∈ ℓj as defined

above. We write

Λj,− = φj(L“T −
j
× Rm−n(“T −)), Λ− = ∪k

j=0Λj,−,

Λj,0 = φj(L“Tj
× Rm−n(“T )), Λ0 = ∪k

j=0Λj,0

Λj,+ = φj(L“T +
j
× Rm−n(“T +)), Λ+ = ∪k

j=0Λj,+.

Then, using Theorem B.26 we know there are families of diffeomorphisms ψ−/0/+ between the
germ of H“T −/0/+ and the germ of the front π(Λ−/0/+).

Now, by Lemma B.29 we know

L(“Tj,ℓj)
= L“T +

j
\ L“T 0

j
× R|ℓ| ∪ L“T −

j
× R|2ℓ|

and since φj is an embedding

Λj = Λj,+ \ Λj,0 ∪ Λj,−

and since all φj have disjoint images

Λ = Λ+ \ Λ0 ∪ Λ−.

Meanwhile

H(“T ,ℓ) = H“T + \ H“T 0 × R|ℓ| ∪ H“T − × R2|ℓ|.
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Thus the diffeomorphisms ψ−/0/+ between the germ of H“T −/0/+ and the germ of the front
π(Λ−/0/+) give a diffeomorphism between the germ of H(“T ,ℓ) and the germ of the front π(Λ).
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