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Summary 
While the expanding electric vehicle (EV) fleet shows great environmental advantages, it also 
creates an increase in electricity demand that is causing pressures on the electricity grid. The 
concept of controlled charging, i.e. coordinating the moment and capacity of EV charging, has 
the potential to reduce or mitigate these pressures, especially when charging is constraint to 
the physical and technical boundaries of the electricity grid. This concept is known as grid-
aware charging. While there are several studies that focus on applying controlled charging for 
grid provision, the literature is lacking a study that focusses on stimulating these grid-charging 
services. This study aims to fill this gap with the following research question: 
 
How can the adoption of grid-aware charging strategies be stimulated in the Netherlands? 
 
To answer this research question, desk research is performed to identify typical Dutch driving 
profiles, Linear Programming models are proposed that coordinate charging based on price, 
using on hourly electricity prices, to minimize charging costs, a quantitative analysis is 
performed to identify the influence of the driving behavior on these profiles and costs, and 
nine expert interviews are conducted to identify concrete roles and tasks for involved 
stakeholders to stimulate grid-aware charging.  
 
The results show that charging costs reductions for a delayed, smart, and V2G strategy are 
37%, 62%, and 137%, respectively. All three controlled charging profiles show significant peak 
reductions in electricity extraction in the evening, and charge during hours where the 
electricity prices are lower, i.e. night, morning, and afternoon. The V2G strategy discharges 
the battery during the evening. It was observed that mileage has a linear effect on the 
absolute charging costs but does not strongly influence average charging costs. Furthermore, 
the height and volatility of electricity prices influence both charging costs and discharging 
profits. The expert interviews show that for a successful scale up of grid-aware charging, 
market parties should function as aggregator, coordinating the charging for consumers. 
Governments should focus on stimulating the market, creating market boundaries, and 
creating consumers awareness on the advantages of grid-aware charging. Furthermore, 
transparent collaboration based between the market, DSO, and government is crucial for the 
effective stimulation of grid-aware charging in the Netherlands.  
 
The proposed LP model contributes to the body of literature that simulates charging behavior 
based on a minimization of costs. Further research could focus on the environmental benefits 
of the proposed charging profiles by the increased consumption of renewable electricity. 
 
  



1. Introduction 
The consequences of global greenhouse gas emissions become more and more visible in daily 
life, which stresses the need for the reduction of CO2 emissions across all sectors. The 
electrification of all sectors can contribute to this reduction, since electricity can be generated 
carbon-free (Sugiyama, 2012). An example is the electrification of the transportation sector, 
which still largely depends on fossil fuels and accounts for 23% of global emissions (IEA, 
2022b). The largest contributor within this sector is road transport, and a transition towards 
electric vehicles (EVs) proposes great potential to reduce the sectors’ emissions (Chen et al., 
2015). The rapid growing stock of EVs shows that this transition is already moving fast (IEA, 
2022a).  
 
While the expanding EV fleet shows promise for environmental targets, it also created 
challenges due to the increased electricity demand required to charge these vehicles. If this 
charging happens uncontrolled, i.e. charging at full capacity the moment an EV is connected 
to the grid, charging usually occurs at hours that already have demand peaks, which leads to 
increased pressure on the power grid and transmission lines (García-Villalobos et al., 2014; 
Staudt et al., 2018). This pressure can result in increased peak loads, net congestion, power 
loss, reduced load factor, harmonic distortion, and other undesired effects (Sadeghian et al., 
2022; Verhoog et al., 2020). To prevent these negative grid impacts, large and expensive 
power grid reinforcements are required (Rizvi et al., 2018; Ucer et al., 2018).  
 
Controlled charging strategies, such as delayed charging, smart charging, and Vehicle-to-Grid 
(V2G), offer the possibility to reduce these negative impacts by coordinating the moment and 
power of charging (Crozier et al., 2020). Delayed charging refers to shifting the charging 
moment to off-peak hours, reducing the increase of demand peaks (Nour et al., 2019). Smart 
charging refers to a more coordinated charging strategy, where charging is optimized to 
achieve a certain goal, e.g. to mitigate congestion (Fachrizal & Munkhammar, 2020; 
Sadeghian et al., 2022). Lastly, V2G allows a bidirectional power flow between the EV’s 
battery and the grid, increasing the load flexibility by allowing the EV to operate as a 
distributed energy source (Eid et al., 2016; Tan et al., 2016). These strategies allow the EV 
batteries to be used for several grid-services, such as ancillary services, integration of 
renewable energy sources (RES), or reducing charging costs. 
 
The objectives or goals of these different controlled charging strategies can be divided into 
two main categories: to maximize the benefit of the EV driver, or to provide grid support 
(Cardona et al., 2018). The first category coordinates the charging to minimize the charging 
costs, while respecting the user’s preferences and driving behavior (Delmonte et al., 2020). 
While this might be desirable from the user’s point of view, it can also create higher peak 
demands and local congestion when a high number of EVs start charging simultaneously due 
to e.g. low electricity prices (Islam et al., 2021). The second category coordinates the charging 
to minimize negative grid impacts and provide flexibility to the grid when required, which 
leads to better grid performance, but generally also results in lower financial benefits for the 
EV driver (Prakash et al., 2022). 
 
The rapid growing EV stock combined with the increasing grid pressure calls for an increase 
in adoption of controlled charging strategies, especially strategies that consider the technical 
and physical boundaries of the electricity grid. Such a strategy is also referred to as grid-aware 



charging (Fahmy et al., 2020). Since this strategy does not focus on maximizing consumers’ 
benefits, consumer acceptance is expected to be relatively low (Delmonte et al., 2020). To 
increase this acceptance, the consumers that adopt these strategies can be compensated 
financially, as this is argued to be one of the most important drivers in the adoption of 
controlled charging strategies (Ghotge et al., 2022; van Heuveln et al., 2021).  
 
To determine how consumers can be compensated, it is relevant to know what the maximum 
financial benefits of implementing a controlled charging strategy are. There is a large body of 
literature that focusses on the coordination of charging to provide grid flexibility. Recent 
literature focused on the financial benefits of applying a V2G strategy to provide ancillary 
services (Amamra & Marco, 2019; Huda et al., 2020; Sarabi et al., 2016). Other studies focused 
on optimizing the integration of RES into the electricity grid (Shang et al., 2020; Taljegard et 
al., 2019) or minimizing system losses (Singh & Tiwari, 2020). These studies, however, 
identified charging strategies that did not focus primarily on reducing charging costs, but 
rather on multiple objectives, and therefore do not quantify a minimization of charging costs, 
but rather a reduction. 
 
Only a few studies focused on this minimization; Datta et al. (2019) studied the reduction in 
charging costs if an EV is combined with a home energy management system. However, they 
only quantified charging costs for a Vehicle-to-Home (V2H) strategy, neglecting delayed 
charging, smart charging, and V2G strategies. Fan & Chen (2019) compared charging costs of 
a delayed charging and a V2G strategy. While they do make a comparison between the 
strategies, they use four electricity tariffs and simulate only one charging session, which 
provides very limited information for the financial potential for a longer period and does not 
include hour-based electricity prices. in this study. Similarly, Jian et al. (2018) show charging 
cost reductions when charging is coordinated based on Shanghai electricity tariffs, but do not 
use hour-based prices and only use a limited time scope, therefore providing no insight in 
annual cost reductions. López et al. (2015) quantify charging costs based on hour-based 
electricity prices for a smart charging and a V2G strategy for multiple EVs in a particular 
system. While they include the hour-based prices, they only simulate one charging sessions, 
and therefore do not provide insight in annual charging costs. Lastly, all the above mentioned 
studies do not include the influence of driving behavior on the charging costs, while driving is 
the EVs’ primary function. 
 
What the literature is largely lacking, are studies that simulate controlled charging profiles 
that focus solely on minimizing the EV’s charging costs, while charging is coordinated based 
on hour-based electricity prices. Additionally, there are no studies found that includes the 
influence of driving behavior on the controlled charging costs, therefore neglecting the 
influence of the EVs primary function. Furthermore, none of the above studies quantifies 
charging costs for one entire year, but rather focus on one charging session. Lastly, none of 
the abovementioned studies provide any insights in how the simulated charging profile and 
quantified costs can contribute to stimulate the adoption of controlled charging strategies.   
 
This study aims to fill this gap by simulating charging profiles that aim to minimize charging 
costs, based on hour-based electricity prices. To do so, the Netherlands is used as a case study. 
This has two reasons; first, the Netherlands is a European frontrunner in EV penetration, as 
well as in their charging infrastructure (ANWB, 2023). Secondly, as the Netherlands currently 



experiences increasing grid pressure, there is a great urge for an increase in grid-aware 
charging throughout the country (Netbeheer Nederland, 2023).  
 
This study aims to identify how grid-aware charging can be stimulated in the Netherlands. It 
does so by identifying five driving profiles that represent typical Dutch EV drivers. The 
charging behavior of these five driving profiles is simulated by Linear Programming (LP) 
technique, that aims to minimize the charging costs based on hour-based electricity prices. 
Four LP models are created in this research, one for each of the following charging strategies: 
uncontrolled charging (functioning as a reference case), delayed charging, smart charging, 
and V2G. These models will result in a charging profile and charging costs for all driving 
profiles and charging strategies. These results are aggregated to form the charging profile and 
costs of the average Dutch EV driver per charging strategy. Hereafter, this research focusses 
on the influence of the driving behavior on this profile and the costs. Lastly, to identify how 
these results can result in an increase in adoption of grid-aware charging in the Netherlands, 
nine expert interviews are conducted with multiple stakeholders. This translates into the 
following main research question: 
 
How can the adoption of grid-aware charging strategies be stimulated in the Netherlands? 
 
To answer this research question, the following sub questions are composed: 
 

1. What are driving profiles for typical Dutch electric vehicle drivers? 
2. What are the charging profiles and charging costs for electric vehicles in the 

Netherlands? 
3. How do the driving profiles influence the charging profile and charging costs of electric 

vehicles in the Netherlands? 
4. What factors can influence the consumer adoption of grid-aware charging in the 

Netherlands? 
 
The time scope of this study is 2030. This is chosen because while the implementation of 
delayed and smart charging strategies might be in a relatively advanced stadium, the V2G 
strategy is still not widely commercially available (Ghotge et al., 2022). The scope is set to 
2030, to obtain results that are closer to the time of implementation of V2G.  
 
Lastly, the study focusses on private charging points, as the adoption of controlled charging 
strategies pose a large challenge here. While currently 67% of the EV drivers has a private 
charging point (Rijksdienst voor Ondernemend Nederland, 2022). While this is expected to 
reduce to approximately 40% by 2050, it is still a large share of the total charging points, 
stressing the urge to stimulate controlled charging strategies here (Refa et al., 2021). 
 
  



2. Theoretical background 
In this section, the theoretical background of this research is discussed. The section starts with 
a brief literature review on controlled charging, then EV trends in the Netherlands are 
discussed. Furthermore, this section elaborates on controlled charging in the Netherlands, 
and ends with a section on electricity pricing.   
 
2.1. Brief literature review 
Controlled charging refers to coordinating the EV’s charging moment and power. This is 
usually done by communication between the power grid and the EV, where the power grid 
gives out signals to increase, decrease, or postpone charging, which can be done for several 
reasons (Tan et al., 2016). This section elaborates on the technical requirements of the 
different charging strategies, the services they can provide, possible system architectures, 
and challenges. 
 
2.1.1 Technical requirements 
To control the power flow from grid to vehicle, an active controller of the power flow and a 
simple communication system is required (Habib et al., 2015). Both components are rather 
simple and bring limited additional costs. A V2G strategy, however, requires more extensive 
software and hardware. This includes a more extensive communication system, a 
bidirectional charger, and hardware in the EV to make it ‘V2G ready’ (Sharifi et al., 2019; 
Yilmaz & Krein, 2013). Most new EVs in the Netherlands will be V2G-ready by 2030 (Refa et 
al., 2021).  
 
2.1.2 System architecture 
The architecture of a controlled charging system can be either centralized or decentralized. 
In a centralized architecture, an aggregator is responsible for charging and discharging a 
certain number of EVs (Ravi & Aziz, 2022). Aggregators are usually profit-oriented parties that 
operate between the power system and EV drivers to coordinate charging to improve power 
grid flexibility (Sadeghian et al., 2022). An example of such a structure is shown in Figure 1. 
Aggregators aim to maximize their profit by charging at lower demand hours, and 
participating on e.g. frequency markets, while considering driver’s preferences. A challenge 
they face is the large amount of data they need to process and optimize (Ravi & Aziz, 2022). 
 
In a decentralized architecture, a local system is responsible for managing the charging and 
discharging of one of more EVs. It consists of smaller and simpler communication systems, 
but also has lower revenue due to limited available services (Ravi & Aziz, 2022). Typical 
systems are the combinations of one of more EVs and a building, neighborhood, or one 
household (Tan et al., 2016). 
 



 
Figure 1: Architecture example of a centralized controlled charging system. From Ravi & Aziz (2022). 

2.1.3 Grid-support services 
The flexibility that the controlled charging services offer can be used for several services that 
provide grid support. Delayed and smart charging can be used for load only services, which 
means that it can only increase or decrease its load, and not provide active power support 
(Yilmaz & Krein, 2013). A V2G strategy does allow active power support due to the 
bidirectional power flow, which increases the available potential services it can offer (Ravi & 
Aziz, 2022). This section discusses these services for the controlled charging strategies. 
 
Frequency support 
Frequency regulation is required when demand and supply are out of balance, and therefore 
cause a frequency deviation (Yilmaz & Krein, 2013). This regulation is provided on three levels: 
primary, secondary, and tertiary regulation, which differ on response time and function. EVs 
are mainly suitable for providing primary and secondary support (Liu et al., 2019; Mu et al., 
2013; Wang & Chen, 2019). 
 
Voltage regulation 
To balance supply and demand for reactive power, voltage regulation is required (Sharifi et 
al., 2019). The battery charger is used to select a proper phase angle, which helps to 
compensate capacitive and inductive reactive power (Habib et al., 2015). This service is only 
available for V2G technology, as it requires the controlling of the switching of the AC/DC 
converter (Choi & Sarlioglu, 2018; Hu et al., 2022).  
 
Load flexibility 
Load flexibility refers to flexibility on the demand side to obtain a more desired load shape. 
Controlled charging can offer solutions in load shifting by delaying the moment of charging 
until after peak hours, while only V2G can provide more active support with peak shaving and 
load leveling (Tan et al., 2016). Load flexibility can be coordinated by a price incentive, 
availability of RES, or available grid capacity (Jian et al., 2018; López et al., 2013). 



Spinning reserve 
Spinning reserve are backup generators that can be activated immediately to provide grid 
support during e.g. sudden frequency drops or power outages (Rebours & Kirschen, 2005). It 
requires relatively low total available energy, but a quick response time, which is ideal for EV 
batteries (Ravi & Aziz, 2022). All controlled charging strategies can be effectively used for 
spinning reserve (Pavić et al., 2015; Sortomme, 2012; Yilmaz & Krein, 2013). 
 
Congestion mitigation 
Grid congestion occurs when high electricity demand or supply causes grid components to 
overload (Verhoog et al., 2020). Grid congestion can be solved by upgrading grid 
infrastructure or by increasing demand or supply locally to compensate for the high supply or 
demand (Ravi & Aziz, 2022). The flexible character of EV batteries combined with a controlled 
charging strategy is suitable for mitigation congestion (Deb et al., 2018; Staudt et al., 2018). 
 
Integration of renewable energy sources 
The integration of the intermittent RES in the remains a challenge (Ravi & Aziz, 2022). 
Coordinating charging based on RES generation can increase the grid’s efficiency as well as 
the RES utilization share, especially for solar PV and wind generation (Fachrizal & 
Munkhammar, 2020; Pilpola & Lund, 2019; Raoofat et al., 2018; Tarroja & Hittinger, 2021).  
 
2.1.4 Challenges 
While the implementation of controlled charging strategies can have several advantages for 
the grid, it also faces some challenges that hinder adoption. The main challenges are social 
barriers, high investment costs, energy loss, and battery degradation (Tan et al., 2016; Yilmaz 
& Krein, 2013). The social barriers are mainly focused on the availability of battery capacity at 
any given time, which is a barrier for all controlled charging strategies. The other challenges 
are mainly for the V2G strategy, as this strategy is associated with higher investment costs, 
energy loss due to the charging and discharging efficiency, and the increased degradation of 
the EV’s battery due to the increased number of charging and discharging cycles (Han et al., 
2019; Shariff et al., 2019).  
 
2.1.5 Controlled charging simulations 
Several studies in the literature included EV driving behavior, where most studies used a 
stochastic driving pattern in their analysis. Nour et al. (2019) and Singh & Tiwari (2020) 
chooses a charging start time by using a gaussian distribution. Schuller et al. (2015) based 
their driving behavior on 1000 real German driving profiles from 2008 for one week. Sachan 
et al. (2020) focused on parking behavior based on real data from a Danish travel survey. All 
these studies use aggregated or stochastic methods to determine the starting moment of one 
charging sessions, or one week of charging. However, none of the above studies focuses on 
the influence of the driving behavior on the charging profile or costs. 
 
There are several studies that used a LP or Mixed-Integer Linear Programming (MILP) 
approach to simulate charging behavior based on an objective. Richardson et al. (2012) 
proposed a LP to maximize charging output to several EVs, while remaining within limits of 
the local grid. Franco et al. (2015) showed that a MILP model can coordinate EV charging 
within an unbalanced electricity grid. Schuller et al. (2015) proposed a MILP model that 
doubles the consumption of variable RES. Fan & Chen (2019) showed with a MILP model that 



charging costs can be reduced with smart charging, and a profit can be made with a V2G 
strategy. These studies show that LP is a good technique to simulate EV charging profiles. 
 
Fan & Chen (2019) simulated charging profiles when charging was coordinated based on 
electricity price. The profiles are shown in Figure 2. What can be observed, is that the delayed 
charging profile shifts the charging load to the late evening and night hours, when off-peak 
pricing starts. The V2G strategy discharges the remaining electricity of the battery first, before 
recharging during the night. The costs were $0.97 and $-1.14 for the delayed charging and 
V2G strategy, respectively. 
 

 
Figure 2: Charging profiles of a delayed charging strategy (left) and a V2G strategy (right). From Fan & Chen (2019) 

López et al. (2015) proposed a charging strategy that aims to maximize EV drivers benefits by 
relying on demand side management strategies. In respond to hourly prices, the smart 
charging and V2G strategy shift the peak load from the evening to the night, shown in Figure 
3. The results show a cost reduction of 55% and 58% for a smart charging and V2G strategy, 
respectively. While the figure shows the charging profile of one EV, the cost reduction 
represents the average reductions of several EVs, explaining the mismatch.   
 

 
Figure 3: Charging profile of an uncontrolled, controlled, and V2G strategy. The controlled strategy is comparable to the 
smart charging strategy in this study. From López et al. (2015) 

 
Jian et al. (2018) simulated charging profiles based on Shanghai charging behavior, while 
charging with a smart charging strategy, coordinated based on electricity price. The charging 
profile is shown in Figure 4 and shows a clear shift of the demand peak from the evening to 
the night. They observed a cost reduction of 65% with respect to the random charging 
strategy. 



 
Figure 4: Charging profile of an uncontrolled and a smart charging strategy. The dotted and full line indicate different EV 
growth scenarios. From Jian et al. (2018) 

 
2.2 Electric vehicle charging trends in the Netherlands 
It is expected that in 2030, there will be over 2 million EVs in the Netherlands (Refa et al., 
2021). This increase from approximately 330 thousand EVs in 2022, shows that the Dutch EV 
fleet is growing fast (ANWB, 2023). Currently, most EV drivers have a private charging point: 
approximately 67% (Rijksdienst voor Ondernemend Nederland, 2022). As the diversity of EV 
drivers increases, the number of EV drivers with a private parking place will decrease, which 
will result in an expected decrease of private charging points to 41% (Refa et al., 2021). 
Nevertheless, this share is still larger compared to public and workplace charging, which are 
both expected to account for approximately 30% of the Dutch charging points. 
 
The standard charging capacity of a private charging point is 11 kW (ElaadNL, 2023). This is 
allowed by the typical grid connection of Dutch households, which is a 3-phase 25A 
connection that results in a maximum capacity of 17.3 kW (Zweistra et al., 2020). However, 
the low voltage grid was built for a maximum capacity of 4 kW per household, with a 
maximum average household peak capacity of approximately 1 kW, and the standard 
charging capacity strongly exceeds this. The influence of the large charging capacities on the 
low voltage grid can be observed in Figure 5. When charging is uncontrolled, the maximum 
grid capacity is exceeded every day. The expectation that this will be the case for half of the 
Dutch neighborhoods in 2030 emphasizes the urge for a large uptake of controlled charging 
in the Netherlands (Rijksdienst voor Ondernemend Nederland, 2022).  
 



 
Figure 5: Simulation of an electricity demand profile of a Dutch neighborhood with 250 households with 100 EVs, for one 
week. The blue graph indicates the electricity demand of the households without the EVs, the green graph indicates the 
electricity demand of the EVs, the yellow dotted line indicates 70% of the total grid capacity, and the red line indicates the 
maximum grid capacity. From Refa et al. (2021). 

The average Dutch EV driver starts charging its battery when the State-of-Charge (SoC) is 
around 30%, and they charge it up to approximately 90% (Rijksdienst voor Ondernemend 
Nederland, 2022). More than 60% of Dutch EV drivers follow a fixed charging pattern, where 
charging mainly starts and stops at the same time. Figure 6 shows the start and end times of 
Dutch EV drivers. The starting peaks at 9 PM and 11 PM can be explained by the start of the 
off-peak electricity tariffs in Noord-Brabant and Limburg, and the rest of the Netherlands, 
respectively. Most EV drivers leave their EV connected to the grid until they leave home again 
the next day. Furthermore, what can be observed is that Dutch EV drivers leave their EV 
connected until the morning after a charging event. 
 

 
Figure 6: Start time and end time of Dutch chargers, per hour of the day. The blue bars indicate the start times, and the green 
bars indicate the end times. From Rijksdienst voor Ondernemend Nederland (2022) 

 



This fixed pattern can also be observed in Figure 7, which represents a quantification of the 
charging power demand of 100 EVs for private charging points (ElaadNL, 2023). What can be 
observed, is that charging power slowly increases from 9 AM to 4 PM, whereafter the charging 
power increases more rapidly. There are two peaks, at 9 PM and at 11 PM, which can be 
explained by the peak in starting times from figure 6. The charging gradually reduces and is 
close to zero at 6 AM. 
 

 
Figure 7: Simulation of charging power demand of 100 EVs on private charging points. The green bars indicate the 95th 
percentile, the blue line the average demand, and the green line the maximum demand. From ElaadNL (2023) 

 
2.3 Controlled charging in the Netherlands 
While more than 40% of Dutch charging infrastructure possesses some form of controlled 
charging functionality, only 5% of the charging sessions in the Netherlands happens controlled 
(ElaadNL, 2023; Nationale Agenda Laadinfrastructuur, 2022). To increase this, the National 
Agenda Charging Infrastructure (NAL), a policy program that connects TSOs, DSOs, 
governments, and market parties, have set clear ambitions to increase the number of grid-
aware controlled charging sessions to 60% by 2025 (Nationale Agenda Laadinfrastructuur, 
2022). In their action plan Smart Charging for Everyone (SLVI), they established five activities 
to stimulate grid-aware charging. These activities are listed below, whereafter a brief 
description is provided. 
 

1. Ensuring and enhancing attractiveness of controlled charging availability 
a. By market concessions and permits 
b. By agreements with employers’ organizations 
c. Forming a leading coalition of providers 
d. Development of a certification mark 

2. Stimulating adoption of controlled charging infrastructure 
3. Enabling grid-aware charging 
4. Inspiring consumers to embrace smart charging 

a. Creation of an up-to-date information base 
b. Educate and inspire  
c. Support during the purchasing process 

5. Knowledge development 
 



The first activity focuses on shaping the market and increasing the availability of grid-aware 
charging services. This activity focuses on availability of grid-aware charging for public and 
workplace charging, and on stimulating the market. The certification mark will function as a 
quality label on the provided controlled charging services. The second activity focuses on 
financially stimulating the adoption of controlled charging infrastructure, since they argue 
that the price of smart charging infrastructure can form an adoption barrier for consumers. 
The condition of a potential subsidy is that the consumer charges grid-aware, using a service 
with a certification mark. The third activity focuses on formulating a charging profile that 
indicates the maximum available capacity at any moment. The fourth activity aims to create 
consumer awareness on grid-aware charging, and convincing and supporting consumers in 
the entire process of the adoption of grid-aware charging services. The fifth activity aims to 
stimulate knowledge development on several topics. 
 
2.4 Electricity pricing 
There are several electricity markets, which mainly differ on timespan before the moment of 
delivery. There is the Forward and Futures Market, where electricity exchanges for longer 
periods of time are made. Another market is the Day-Ahead Market (DAM), which is an 
auction-style market where electricity is bought and sold for every hour of the following day. 
Lastly, there are Intraday Markets. Buyers and sellers can adjust their demand or supply and 
make power exchanges for periods of 15 minutes or longer, which must be completed at least 
5 minutes before delivery. This section elaborates on how DAM prices are determined, and 
how this price will change in the future.  
 
Every day when the electricity market opens and producers of electricity enter their price-
volume bid for every hour of the next day (Nord Pool, 2020). The price of these bids equals 
the marginal costs of production for the specified volume. The bids are placed in a so-called 
merit order, where all bids get lined up based on price, as shown in Figure 8. Buyers also place 
their volume bids, and when the market closes at noon, the electricity price for that hour is 
determined by the electricity costs of the generator that is required to meet total demand 
(Cludius et al., 2014; TenneT, n.d.).  
 

 
Figure 8: Example of a German merit order curve, from Cludius et al. (2014). 



Since marginal costs are mainly determined by fuel costs and CO2 prices, RES have marginal 
costs close to zero. The increased integration of these RES causes the merit order to shift to 
the right, also referred to as the merit order effect (MOE), resulting in lower overall electricity 
prices (Figueiredo & Silva, 2019). This effect is the strongest in hours when demand is lower, 
and/or when RES supply is highest, e.g. during sunny or windy days, but during periods of high 
demand and low RES generation, conventional power plants will mainly determine the 
electricity price (Benhmad & Percebois, 2018). This results in a more volatile electricity 
market, with large price differences within a day or between days, especially with the 
expected increase of RES in the future. 
 
  



3. Methodology 
To answer the main research question, this research uses a mixed methods approach. The 
first research question is answered using qualitative desk research, the second research 
question is answered by the creation of four quantitative charging behavior models, the third 
research approach is answer by a quantitative driving profile analysis, and the last research 
question is answered by conducting qualitative expert interviews. The methods, the 
(sub)results, and the interrelations are shown in Figure 9. This section discusses these 
methods per sub question in more detail. 
 

 
Figure 9: Schematic overview of the research methods 

 
3.1 Driving profiles 
EV charging behavior is largely influenced by the driving behavior. Therefore, to simulate 
charging profiles, this study first identifies driving behavior of typical Dutch EV drivers. This 
driving behavior is translated into five driving profiles. This section elaborates on the 
identification and composition of these driving profiles.  
 
3.1.1 Identification of driving profiles 
According to Central Bureau of Statistics (CBS), Dutch EV drivers can best be divided into five 
categories, mainly based on age and phase of life (CBS, 2017). These categories differ in 
driving intensity, but also include other factors such as goal of driving activities. The categories 
are described below. 

- Age 18 to 30, or ‘young adults’: people in this group are finishing their education or 
recently started a full-time job. They are moving out of their parent’s house and might 
start a new family. They travel mostly by public transport and do not own a car. 



- Age 30 to 50, or ‘rush hour generation’: people in this group are employed, focused 
on their career, and usually have a family with children which need to be picked up 
and dropped off at school, social, and sports activities.  

- Age 50 to 65, or ‘semi-retirees’: people in this group are still employed, but they are 
working towards their retirement. They start working less, and their children are 
usually moved out already. 

- Age 65 to 75, or ‘recent retirees’: people in this group are almost, or recently retired. 
The car is not used for commuting anymore, and the trips are shorter and less 
frequent. 

- Age 75+, or ‘elderly’. At age 75, people must be re-examined to use their drivers’ 
license and drive significantly less. 

 
The driving profiles used in this study are largely based on these profiles but are modified 
slightly for two reasons. First, as CBS argues, most people in the group aged 18 to 30 do not 
own a vehicle but instead use public transport to travel. It was deemed not relevant to include 
that part of the group in this study. Second, what is lacking in the categories is a group that 
uses their vehicle more occasionally, e.g. only for groceries or picking up children for school, 
instead of a more regular driving schedule, e.g. a driver that uses its EV to go to work daily. 
The driving profiles in this study are defined below. 
 

- Young Professional (YP): people in this group are typically aged 25 to 35, are 
employed, but do not yet have kids.  

- Working Parent (WP): people in this group are typically aged 30 to 50, are employed, 
and have a family with children that need to be picked up and dropped off at school, 
social, and sports activities. 

- Semi-retiree (SR): people in this group are typically aged 50 to 65, are employed, but 
work less since they are approaching their retirement age. Their children are moved 
out already, or at an age where they do not have to be picked up and dropped off 
regularly. 

- Retiree (R): people in this group are typically aged 65 to 80 and are in their retirement. 
They have more spare time during the day and are still capable to drive. 

- Occasional Driver (OD): people in this group do not have a typical age or typical driving 
schedule.  

 
The following section elaborates on how the driving behavior per profile is determined. 
 
3.1.2 Mileage of the driving profiles 
In this section, the process of determining the main characteristics of the driving profiles is 
shown. First, the time scope for a driving profile was determined. This scope is set for one 
week, meaning that the driving profile is repeated throughout the simulation of one year. 
While this is not an accurate presentation of an annual driving pattern, it is deemed a good 
approximation given the general weekly stability of driving patterns (Schuller et al., 2015). 
Holidays and weekly deviations in driving behavior are therefore neglected in this study. 
 
Then, the mileage per driving profile was determined. The annual mileage differs significantly 
between the driving profiles, to allow the identification of the influence of the annual mileage 
on the charging costs. Figure 10 shows the annual mileage per CBS (2017) category per capita 



in the Netherlands. Since the data is rather outdated, the absolute mileages are not used in 
this study. However, it is assumed that the ratios between the categories have remained 
approximately the same.  
 

 
Figure 10: Different annual mileages of the CBS driving profiles per Dutch capita. From CBS (2017). 

As these five profiles represent typical Dutch EV drivers, the average mileage of these profiles 
should equal the mileage of the average Dutch EV driver. However, car ownership is not 
equally distributed amongst age groups in the Netherlands. The mileage is therefore 
determined by the weighted average, as shown in equation 3.1, where X indicates the driving 
profile, and 𝜆! the contribution of the driving profile to the average. Table 1 shows the 
distribution of car ownership amongst age groups in the Netherlands. Due to the mismatches 
in age groups between the driving profiles and CBS (2021), the ownership share of the 75+ 
group is divided between the SR and R profiles, and the aged 18 to 25 group is allocated to 
the OD profile.  
 

(3.1).			𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑚𝑖𝑙𝑒𝑎𝑔𝑒	 = 1𝑚𝑖𝑙𝑒𝑎𝑔𝑒! ∗ 𝜆!

"

!#$

 

 
Table 1: Contribution of the driving profiles to average Dutch EV driver. The age groups and their share in car ownership in 
the Netherlands is obtained from CBS (2021). 

Driving profile Age group Share in car 
ownership  

Contribution to 
combined profile (𝝀𝑿) 

YP 25 to 35 14.6% 14.6% 
WP 35 to 45 & 45 to 55 15.9% + 20.7% 36.6% 
SR 55 to 65 & 0.5 * 75+ 19.8% + 5%  24.8% 
R 65 to 75 & 0.5 * 75+ 15.8% + 4.5% 20.3% 
OD 18 to 25 3.7% 3.7% 

 
The mileage was determined by providing the driving profiles with some context, which 
relates to real driving behavior. Each driving profile got allocated several activities where 



Dutch people travel to by car, shown in Table 2. The average distance to these activities is 
provided by CBS (2021). The mileage per driving profile was determined, and by trial and error 
activities were added and removed to reach the mileage of the average Dutch EV driver, which 
is estimated at 16890 km/year in 2030 (ElaadNL, 2023). 
 
Table 2: Activities where Dutch people drive to and the average distance when travelled to by car, both obtained from CBS 
(2021). Last five columns show the frequency the activities occur in the driving profiles. 

Activity Distance [km] YP WP SR R OD 
To and from work 22.81 8 8 6 0 2 
Business trips 30.28 1 2 2 0 0 
Service and care 12.21 0 2 3 2 1 
Shopping and groceries 6.75 2 3 2 3 2 
Education 26.27 0 0 0 0 2 
Visiting 23.91 1 2 1 4 1 
Spare time activities (sports, 
hobbies, etc) 

17.07 1 3 2 3 1 

Touring, hiking 23.83 0 0 1 1 0 
Other 11.72 1 1 1 1 1 

 
These mileages are shown in Figure 11. What can be observed, is that each profile differs 
significantly in mileage, and the average mileage approximates the mileage for the average 
Dutch EV driver. Furthermore, the differences between the driving profiles resembles the 
differences of the CBS profiles in Figure 10, except for the difference between the WP and SR 
profiles. This difference is introduced to include more variety between the driving profiles. 
The next section elaborates on the composition of the driving profiles. 
 

 
Figure 11: Annual mileage of the different driving profiles, and the weighted average mileage 

 



3.1.3 Composition of the driving profiles 
This study aims to identify what the influence of driving behavior is on the charging profile 
and costs. Due to the limited availability on weekly, monthly, or annual driving schedules of 
the typical Dutch EV drivers, the composition of the activities is done anecdotal, i.e. based on 
a brief story rather than on comprehensive data. The placement of the activities in the weekly 
driving schedules is done arbitrarily. This section provides the composition of one driving 
profile, the YP profile, to provide some insights in this process. The composition of the other 
profiles can be found in appendix A. 
 
Young Professionals (YP) 
The YP is typically aged 25 to 35 and is in the beginning of its career. The YP has no kids, or 
kids that are too young to encounter in any activities out of the house. The YP commutes to 
work 4 days a week, leaving home early, and returning late in the afternoon or beginning of 
the evening. The YP does shopping/groceries twice a week, has one business meeting and one 
unspecified meeting in the evening. The YP barely uses the EV in the weekend, except for one 
spare time activity and one visitation. The YP profile is shown in Figure 12. 
 

 
Figure 12: The Young Professional driving profile. The white squares indicate that the EV is parked at home and the grey 
squares that the EV is driving or parked elsewhere. 

3.2 Charging behavior model 
The second part of this research focusses on simulating charging profiles and quantifying 
charging costs for the different charging strategies. Figure 13 schematically shows the inputs 
and outputs of the charging behavior model. This section discusses the inputs of the model, 
the model design, and how the outputs are translated into one charging profile and cost per 
charging strategy. 
 



 
Figure 13: Schematic overview of the inputs and outputs of the charging behavior model 

 
3.2.1 Inputs 
The input of the model consists of three main components: the hour-based electricity prices, 
the parameters, variable bounds and system limits, and the driving profiles. This section 
discusses these inputs in more detail. 
 
3.2.1.1 Hour-based electricity prices 
The simulation coordinates charging based on the hour-based electricity prices. These prices 
are provided by The Netherlands Environmental Assessment Agency (PBL) and are a part of 
their Climate and Energy Exploration (KEV), a study that calculates and estimates the effects 
of Dutch national policies on the climate. The prices are the result of the COMPETES model, 
which simulates DAM electricity prices based on several inputs (PBL, n.d.). There are three 
scenarios provided by PBL: a low, mid, and high price scenario. This research uses the mid 
scenario. Furthermore, the assumption is made that electricity can be bought and sold for the 
hour-based prices, which therefore excludes taxes.  
 
The distribution of electricity prices per hour of the day is shown in Figure 14. What can be 
observed, is that during the night, the electricity price is relatively low, especially at 5 and 6 
AM. During the start of the morning, the prices increase, and at the end of the morning they 
start declining again. At noon, general electricity prices are the lowest. During the afternoon, 
the prices increase again, with a peak at 6 and 7 PM, after which they slowly decreasing again.  
 



 
Figure 14: Distribution of the predicted hour-based electricity prices for 2030 per hour of the day, provided by PBL. The cross 
inside the box indicates the average electricity price, and the bar inside the box indicates the median electricity price. 

Figure 15 shows a heatmap of the distribution of the average electricity price per hour 
throughout one week. What can be observed here, is that on Monday to Friday evenings, the 
electricity prices are the highest, mainly between 5 and 9 PM. Furthermore, there is a small 
morning peak around 8 AM. Electricity is on weekdays the cheapest during the nights, and 
during the afternoons. During the weekend the electricity prices are overall lower, especially 
on during the morning and afternoon. 
 

 
Figure 15: Heatmap indicating the distribution of the predicted average hour-based electricity prices for 2030 throughout the 
week, provided by PBL. Higher prices are indicated by deeper red colors. 



3.2.1.2 Input parameters 
In this section, the parameters that are used in the charging behavior model are discussed. 
Table 3 gives an overview of these parameters. Below, a description of the parameters is 
provided, together with how the value is obtained. 
 
Table 3: Input parameters used in the charging behavior models. 

Notation Parameter Unit Value 
𝑬𝒃𝒂𝒕𝒕𝒆𝒓𝒚 Battery capacity kWh 72.2 

𝒆𝒄𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏 Specific electricity consumption kWh/km 0.2 
𝑬𝑴𝑨𝑿,𝒇𝒓𝒐𝒎	𝒈𝒓𝒊𝒅 Maximum charging capacity from grid kWh 11 
𝑬𝑴𝑨𝑿,𝒊𝒏𝒕𝒐	𝒈𝒓𝒊𝒅 Maximum discharging capacity into 

grid 
kWh 8.9 

𝜼𝒄𝒉𝒂𝒓𝒈𝒆 Charging efficiency % 90 
𝜼𝒅𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆 Discharging efficiency % 90 
𝑺𝒐𝑪𝑴𝑰𝑵 Minimum State-of-Charge  % 30 
𝑺𝒐𝑪𝑴𝑨𝑿 Maximum State-of-Charge % 90 

𝑺𝒐𝑪𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 Threshold State-of-Charge % 50 
𝑺𝒐𝑪𝒔𝒕𝒂𝒓𝒕 Starting State-of-Charge % 90 

𝒄𝒅𝒆𝒈𝒓𝒂𝒅𝒂𝒕𝒊𝒐𝒏 Battery degradation costs €/kWhdischarged  0.0201 
 
Battery capacity  
The total capacity of the EVs battery, expressed in kWh. The value used in this study is the 
weighted average battery capacity of the 10 most sold EVs in The Netherlands in 2022 
(Autoweek, 2023; EV-database, n.d.). This weighted average is calculated by equation 3.2, 
where the i represents the type of EV. 
 

(3.2).			𝐸?@AABCD =
∑ 𝐸𝑉𝑠	𝑠𝑜𝑙𝑑E ∗ 𝐸?@AABCD,E$F
E#$

∑ 𝐸𝑉𝑠	𝑠𝑜𝑙𝑑E$F
E#$ 	

 

 
Specific electricity consumption 
The amount of electricity that the EV consumes while driving, expressed in kWh/km. The 
current accepted average electricity consumption is 0.2 kWh/km (ElaadNL, 2023). 
 
Maximum charging capacity 
The maximum amount of electricity that the charger can extract from the grid during one 
hour, expressed in kWh. For private charging, 11 kWh is the standard in the Netherlands 
(ElaadNL, 2023; Refa et al., 2021). 
 
Maximum discharging capacity 
The maximum amount of electricity that the charger can inject into the grid during one hour, 
expressed in kWh. This value is set at 8.9 kWh (Schram et al., 2020), which equals the 
maximum charging capacity minus the charging losses for charging and discharging. 
 
Charging efficiency  
The combined efficiency of the charger and battery pack, that causes a loss in electricity from 
the grid to the EV (Datta et al., 2019). The efficiency is assumed linear and therefore not 



dependent on charging power. A typical EV charging efficiency is 90% (Crozier et al., 2020; 
Datta et al., 2019; Sachan et al., 2020). 
 
Discharging efficiency 
Identical to the charging efficiency, but only in the reverse direction, i.e. EV to grid. A typical 
EV discharging efficiency is 90% (Datta et al., 2019).  
 
Minimum State-of-Charge and maximum State-of-Charge  
Bounds set on the SoC of the EV’s battery that aim to extent the batteries lifetime, expressed 
in percentages of total battery capacity. The battery’s lifetime increases significantly if the 
SoC remains between 20% and 90% of the total battery capacity (Amamra & Marco, 2019; 
Beyazıt et al., 2022; Fan & Chen, 2019).  
 
Threshold State-of-Charge 
The threshold value at which the EV will start to charge in the reference simulation, expressed 
as percentage of total battery capacity. According to Delmonte et al. (2020), most people 
charge their EV when it is still above 40% SoC, while (Deb et al., 2018) argue that this value is 
around 55%. The used value here is 50%. 
 
Starting State-of-Charge 
The SoC at the beginning of the simulation, expressed in percentage of total battery capacity. 
The SoC at the start of the simulation is assumed to be 90%.   
 
Battery degradation costs 
Irreversible chemical reactions in the battery that occur due to the charging and discharging 
cause the total available battery capacity to decrease (Tan et al., 2016). The total battery costs 
are divided by the reduced available capacity to express this in monetary terms, in 
€/𝑘𝑊ℎGEHIJ@CKBG.  
 
The costs are determined by equation 3.3 (Beyazıt et al., 2022), where 𝐶LMEA	represents the 
costs of the battery pack per kWh,	𝐶N@?OC  the cost of labor, 𝑆𝑉 the salvage value, 𝑁IDINB the 
number of cycles the battery can run before the capacity drops below an acceptable level, 
and 𝐷𝑜𝐷 the maximum depth of discharge, which is the inverse of 𝑆𝑜𝐶PQR.𝐶LMEA	& 
𝐶N@?OC 	are	€127	and	€156	(Beyazıt	et	al. , 2022), respectively, 𝑆𝑉 is 60% of the capital costs 
of the battery (Kolawole & Al-Anbagi, 2019), and 𝑁IDINB 	equals	3221 cycles at 80% DoD (Han 
et al., 2019). This comes down to 0.0201	€/𝑘𝑊ℎGEHIJ@CKBG  
 

(3.3).			𝑐GBKC@G@AEOM =
𝐶LMEA	 ∗ 𝐸?@AABCD + 𝐶N@?OC − 𝑆𝑉

𝑁IDINB ∗ 𝐸?@AABCD ∗ 𝐷𝑜𝐷
 

 
3.2.1.3 Driving profiles 
The driving profiles provide the input for the driving behavior in the charging behavior model. 
For every timestep, the model determines whether the EV is driving, parked at home, or 
parked elsewhere. When the EV is driving, the model determines the activity and the 
corresponding distance, as provided in Table 2. The distance in km is multiplied with 
𝑒IOMHLSTAEOM to obtain the consumed electricity required for the driving activity. This is shown 



in equation 3.4, where 𝐸IOMHLSBG  represents the electricity consumed due to the driving 
activity, and 𝑑@IAEUEAD	represents the distance for this driving activity.  
 

(3.4).			𝐸IOMHLSBG = 𝑑@IAEUEAD ∗ 𝑒IOMHLSTAEOM 
3.2.2 Model design 
This study includes the creation of four models, each describing a different charging strategy. 
These models are made in Excel, and the simulation is performed by OpenSolver. In this 
section, the design of these models is discussed. The equations and variables mentioned in 
this section are based on the controlled charging simulations of Richardson et al. (2012), 
Franco et al. (2015), Schuller et al. (2015), López et al. (2015), Fan & Chen (2019), Jian et al. 
(2018), and Datta et al. (2019), and modified where required to fit the model. This section 
starts with the general model design, whereafter the four models are discussed separately. 
 
3.2.2.1 General model design 
Each simulation aims to identify the charging profile of one EV for one year, according to one 
charging strategy, including the driving behavior as described in one driving profile. The 
timestep in all models is one hour, which is denoted from here on with index i.  
 
Table 4 gives an overview of the variables that are used to present and describe the model. It 
should be noted that 𝐸GEHIJ@CKB,E  and 𝐸EMAO	KCEG,E  are only applicable for the V2G strategy, as 
this is the only model that allows electricity to flow out of the EV’s battery.  
 
Table 4: Variables used in the charging behavior models. 

Notation Variable Unit Variable description  
𝑺𝒐𝑪𝒊 State-of-Charge kWh The amount of energy that is available in the 

battery at timestep i. 
𝑬𝒄𝒉𝒂𝒓𝒈𝒆,𝒊 Charged electricity kWh The amount of electricity that is charged into 

the battery at timestep i.  
𝑬𝒅𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆,𝒊 Discharged 

electricity 
kWh The electricity that is discharged from the 

battery at timestep i.  
𝑬𝒇𝒓𝒐𝒎	𝒈𝒓𝒊𝒅,𝒊 Extracted electricity kWh The electricity that is extracted from the grid 

at timestep i. 
𝑬𝒊𝒏𝒕𝒐	𝒈𝒓𝒊𝒅,𝒊 Injected electricity kWh The electricity that is injected into the grid at 

timestep i. 
 
Each simulation starts with the same starting conditions, where 𝑆𝑜𝐶F = 𝑆𝑜𝐶HA@CA. Hereafter, 
for every timestep, the simulation calculates the SoC by using equation 3.5, where 𝐸IOMHLSBG,E  
represents the consumed electricity due to a driving activity. It should be noted that the last 
term is only applicable to the V2G simulation, since this is the only simulation that can 
discharge electricity into the grid. 
 	

(3.5).			𝑆𝑜𝐶E = 𝑆𝑜𝐶EV$ − 𝐸IOMHLSBG,E + 𝐸IJ@CKB,E − 𝐸GEHIJ@CKB,E  
 
The following section elaborates on the characteristics of the four models separately.  
 



3.2.2.2 Reference charging strategy 
The reference charging strategy represents an EV that is charged uncontrolled, i.e. it is 
charged at full capacity the moment the EV is connected to the grid. The EV starts charging 
when it arrives at home and the SoC is below the 𝑆𝑜𝐶AJCBHJONG. From this moment, the EV 
charges at full capacity until either the SoC reaches 𝑆𝑜𝐶PW!, or the EV is disconnected from 
the grid for a driving activity. When the SoC reaches 𝑆𝑜𝐶PW!, the EV stays connected to the 
grid until the next driving activity. This is important for the delayed charging simulation, as 
this model can only charge after a charging activity in the reference charging simulation. This 
is discussed in more detail in the next section. 
 
3.2.2.3 Delayed charging strategy 
The delayed charging simulation aims to minimize charging costs by postponing the charging 
moment towards hours with lower electricity prices. This means that the EV is only allowed 
to charge during the timesteps in which the EV was connected to the grid in the reference 
charging simulation. To illustrate, when the EV arrives at home at 7 PM with an SoC of 40%,  
It starts to charge in the reference charging simulation. It disconnects the next morning at 8 
AM for a driving activity. The delayed charging strategy is therefore allowed to charge 
between 7 PM and 8 AM on this day. 
 
To coordinate the based on a minimization of charging costs, a LP is formulated. The objective 
function F(x) is shown in equation 3.6, where 𝑃E  represents the electricity price at timestep i. 

(3.6).			𝐹(𝑥) = 𝑚𝑖𝑛. 1 𝐸XCOS	KCEG,E ∗ 𝑃E

YZ[F

E#$

 

 
This minimization of charging costs is obtained by finding the optimal value for the decision 
variables:  

𝐸XCOS	KCEG,E  
 
To constrain the simulation to the allowed charging moments. The binary variable 𝛼GBN@DBG,E  
is introduced. This variable has a value of 1 for the timesteps when there was a grid 
connection in the reference simulation, and 0 when there was no connection, as shown in 
equation 3.7. The electricity that is charged into the EV can be calculated by equation 3.8. 
 

(3.7).			𝛼GBN@DBG,E = g1, 𝑔𝑟𝑖𝑑	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛	𝑖𝑛	𝑟𝑒𝑓𝑒𝑟𝑒𝑐𝑒	𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
0, 𝑒𝑙𝑠𝑒  

 
(3.8).			𝐸IJ@CKB,E = 𝐸XCOS	KCEG,E ∗ 𝜂IJ@CKB ∗ 𝛼GBN@DBG,E 	 

 
The decision variables are bounded by zero and the maximum charging capacity, as shown in 
equation 3.9. 
 

(3.9).			0 ≤ 𝐸XCOS	KCEG,E ≤ 𝐸PW!,XCOS	KCEG  
 
Lastly, there are two constraints that bound the simulation, which are shown in equation 3.10 
and 3.11. Equation 3.10 ensures that the SoC always stays within the boundaries that 
minimize the increased degradation of the battery.  



 
(3.10).			𝑆𝑜𝐶PQR ≤ 𝑆𝑜𝐶\ ≤ 𝑆𝑜𝐶PW! 

 
Equation 3.11 was implemented in this model to increase the realism of charging behavior. 
The 𝑆𝑂𝐶XLNN,E  equals 𝑆𝑜𝐶PW! at the timestep when, in the reference charging simulation, the 
EV leaves the house with an SoC equal to 𝑆𝑜𝐶PW!, and equals 0 otherwise. These constraints 
the delayed charging simulation to have a fully charged battery at certain moments, rather 
than optimizing the charging behavior based purely on the driving profile. Without this 
constraint, the simulation will sometimes charge the EV just enough to satisfy the daily driving 
activities. As EV drivers usually do not know their exact daily mileage in advance, and 
therefore to have a more realistic model, this constraint was introduced. 
 

(3.11).			𝑆𝑜𝐶E ≥ 𝑆𝑂𝐶XLNN,E  
 
3.2.2.4 Smart charging strategy 
The smart charging simulation coordinates charging based on a minimization of costs, while 
assuming the EV is always connected to the grid when it is parked at home. This increases the 
flexibility in choosing the charging moment compared to the delayed charging simulation.  
 
This constraint is denoted in the binary variable 𝛼HS@CA,E, which has a value of 1 for the 
timesteps when there was a grid connection in the reference simulation, and 0 when there 
was no connection, as shown in equation 3.12. 
 

(3.12).			𝛼HS@CA,E = g1, 𝑝𝑎𝑟𝑘𝑒𝑑	𝑎𝑡	ℎ𝑜𝑚𝑒
0, 𝑒𝑙𝑠𝑒  

 
The objective function, decision variables, variable bounds, and constraints are identical as in 
the delayed charging strategy. These elements can therefore be found in section 3.2.2.3 in 
equation 3.6 to 3.11, where 𝛼HS@CA,E  replaces 𝛼GBN@DBG,E. 
 
3.2.2.5 Vehicle-to-Grid strategy 
The V2G strategy aims to minimize charging costs by not only charging the EV at the timesteps 
with the lowest energy prices, but also by discharging the EV to generate revenue. The EV is 
assumed to be connected to the grid whenever it is parked at home. 
 
To coordinate charging according to the V2G strategy, again, a LP is formulated. Again, the 
objective function aims to minimize charging costs, and is shown in equation 3.13. This 
function now includes the revenue generated by the injection of electricity back into the grid, 
as well as the costs of the increased battery degradation.  
 

(3.13).			𝐹(𝑥) = 	𝑚𝑖𝑛. -(𝐸!"#$	&"'(,' ∗ 𝑃'

*+,-

'./

− 𝐸'01#	&"'(,' ∗ 𝑃' + 𝐸('2345"&6,' ∗ 	𝑐(6&"5(51'#0) 

 
The charging profile is obtained by finding the optimal values for the decision variables: 
 

𝐸!"#$	&"'(,' 		and		𝐸'01#	&"'(,'  



 
Since the battery is only allowed to charge and discharge when the EV is connected to the 
grid, the charged and discharged electricity are calculated by equation 3.14 and 3.15, and 
𝛼]^_,E  by equation 3.16.  
 

(3.14).			𝐸IJ@CKB,E = 𝐸XCOS	KCEG,E ∗ 𝜂IJ@CKB ∗ 𝛼]^_,E 	 
 

(3.15).			𝐸GEHIJ@CKB,E =
𝐸XCOS	KCEG,E
𝜂GEHIJ@CKB

∗ 𝛼]^_,E  

 

(3.16).			𝛼]^_,E = g1, 𝑝𝑎𝑟𝑘𝑒𝑑	𝑎𝑡	ℎ𝑜𝑚𝑒
0, 𝑒𝑙𝑠𝑒  

 
The decision variables are bounded by zero, and the maximum charging and discharging 
capacities, as is shown in 3.17 and 3.18. 
 

(3.17).			0 ≤ 𝐸XCOS	KCEG,E ≤	𝐸PW!,XCOS	KCEG 	 
 

(3.18).			0 ≤ 𝐸EMAO	KCEG,E ≤	𝐸PW!,EMAO	KCEG  
 
Lastly, there are two constraints that bound the simulation, shown in equation 3.19 and 3.20. 
As these constraints are identical to equation 3.8 and 3.9, more details on these constraints 
can be found in section 3.3.2.3. 
 

(3.19).			𝑆𝑜𝐶PQR ≤ 𝑆𝑜𝐶\ ≤ 𝑆𝑜𝐶PW! 
 

(3.20).			𝑆𝑜𝐶E ≥ 𝑆𝑂𝐶XLNN,E  
  
It should be noted that the EV is not allowed to charge and discharge simultaneously. 
However, the charging and discharging efficiencies cause this to be unprofitable, since the 
electricity price for extraction and injection are identical. An additional constraint was 
therefore not required. 
 
3.3.3 Combined profile 
The charging profile of the five driving profiles are aggregated into the combined (CMB) 
profile, which represents the charging profile of the average Dutch EV driver. This is done by 
equation 3.22, where 𝐸XCOS	KCEG,E`Pa  indicates the electricity extraction for the combined profile 
at timestep i, 𝐸XCOS	KCEG,E!  indicates the amount of electricity that is extracted from the grid at 
timestep i for driving profile X, 𝜆! indicates the contribution to the combined profile for 
driving profile X as shown in Table 1.  

(3.22).					𝐸XCOS	KCEG,E`Pa =	1𝐸XCOS	KCEG,E! ∗ 𝜆!

"

!#$

 

3.3 Driving profile analysis 
In this section, the methods of the driving profile analysis are discussed. This analysis focused 
on the influence of the driving profiles on the charging profile and costs. This is done by 
comparing the charging profiles and costs of the separate driving profiles, not the combined 



profile. Differences in these results are explained by differences in the driving profiles. The 
differences between the profiles that this analysis focused on are the annual mileage and the 
hours that the EV is parked at home, which are shown in Table 5. 
 
Table 5: Mileage and time the EV is not parked at home, per driving profile. 

Characteristic  Unit YP WP SR R OD 
Annual mileage [km] 14506 20720 17740 11808 9182 
Time not parked at home [h] 49 56 49 19 28 

 
3.4 Sensitivity and uncertainty analysis 
In this section, the sensitivity and uncertainty analyses are discussed. The sensitivity analysis 
focused on the influence of the electricity prices on the results, and the uncertainty analysis 
focused on the influence of the anecdotal composition of the driving profiles on the results.  
 
3.4.1 Sensitivity analysis 
As mentioned in section 3.2.1.1, PBL has provided three scenarios for the electricity prices: a 
low, mid, and high scenario. In the sensitivity analysis, the influence of the electricity scenarios 
on the charging profile and costs are determined. The simulations are therefore also run with 
the low and high electricity price scenarios, to identify what the influence of the electricity 
price is. The rest of this section elaborates on the differences between the low, mid, and high 
electricity price scenario. 
 

 
Figure 16: Median electricity price distribution of the three electricity scenarios from PBL throughout the day. 

 
Figure 16 shows the median electricity price per hour of the day for the three price scenarios. 
The median is used here, since the median is less sensitive to outliers and therefore shows a 
good representation of distribution of the electricity prices. What can be observed here, is 
that the three scenarios have a similar flow in the graph throughout the day; prices start in 
the night at a medium height, they are at a lowest in the beginning of the afternoon, rise in 
the late afternoon, to reach their peak in the evening. The main difference between the three 
scenarios in the drop in the afternoon in the high price scenario compared to the other 



scenarios. The electricity prices are relatively lower in the afternoon, and this price drops 
takes several hours longer than in the other price scenarios. 
 
The heatmaps indicating the distribution of the average electricity prices throughout the 
week are provided in Appendix B. These heatmaps show a similar distribution of the electricity 
prices throughout the week. The absolute values for the electricity prices do differ 
significantly, however. 
 
3.4.2 Uncertainty analysis 
The uncertainty analysis aims to identify the influence of the assumptions made in the 
composition of the driving profiles. To analyze the influence of these assumptions, the 
composition of one driving profile was radically changed twice, to form two new driving 
profiles. these new driving profiles have an identical mileage and number of hours parked at 
home but differ in the moment they drive and are parked elsewhere. These profiles do not 
represent a typical Dutch driving profile but are rather used as an extreme opposite to the 
regular driving profile identify what the differences in charging profile and costs are. 
 
As most driving profiles have rather similar driving behavior, i.e. drive mostly during the 
morning, afternoon, and a little during the evening, it was expected that this analysis would 
create similar results for all profiles. Therefore, it was deemed appropriate to do this analysis 
only on one driving profile. The YP profile is chosen due to the average mileage compared to 
the other profiles, and since it includes several hours weekly where it is parked elsewhere, 
which is not included in the R and OD profiles. The two new driving profiles are shown in 
Appendix C. 
 
3.5 Expert interviews 
The charging profiles and costs for the different charging strategies, as well as the influence 
of the driving profiles do not provide any guidance of how it can be implemented in practice 
to stimulate the adoption of grid-aware charging behavior. To establish how this adoption can 
be stimulated, it is important to understand the current market mechanisms, the 
stakeholders, their interests and expectations, and emerging future trends. 
 
To create a better understanding of this, nine expert interviews were conducted. The experts 
were chosen based on their area of expertise and their relationship towards controlled 
charging. The experts can be divided into four groups: DSOs (D), market parties (M), policy 
experts (P), and process facilitators (F). This divergent mix allows the understanding of market 
mechanisms and stakeholders from multiple perspective, which reduces stakeholder biases 
and therefore increases the validity of the results from the expert interviews. An overview of 
the interviewees, their expert code, and their relationship with controlled charging is 
provided in Table 6. 
 
The nine experts are selected via the network of the Dutch Association of Renewable Energy 
(NVDE). The interviews are conducted using a semi-structured approach, and all interviews 
followed a similar structure. Since the interviewees all had different knowledge levels and a 
different area of expertise, the discussed topics initiated many follow-up questions, which led 
to new insights and ideas. All interviewees gave consent for the interview to be used in this 
study, and the results of the interviews are anonymized. The interviews were conducted in 



Dutch, by preference of the interviewees. A general interview guide is provided in Appendix 
E.  
 
Table 6: Overview of interviewees and their relation to controlled charging, per expert code. 

Expert code Relation with controlled charging 
D.1 Project manager Smart Charging at a knowledge institution funded by DSOs, 

focusing on formulating and analyzing Smart Charging concepts and pilots 
D.2 Representative at a DSO 
M.1 Product owner Smart Charging at a company that produces and supplies 

energy  
M.2 Representative at a company that produces and supplies energy and energy 

efficient technologies and solutions 
M.3 Business developer smart energy systems at a company that produces and 

supplies energy and energy efficient technologies and solutions 
P.1 Policy developer at a Dutch ministry in the field of Smart Charging and V2G  
P.2 Policy expert and former member of the Dutch House of Representatives 
F.1 Member of an organization that connects DSOs, the government, and market 

parties to identify ambitions and actions required to ensure a smooth and safe 
integration of EVs into the electricity grid 

F.2 Facilitator that guided and formulated smart charging concepts with DSOs, 
the government, and market parties 

 
 
 
  



4. Results 
In this section, the results of the research are discussed. The section starts with the results of 
the charging behavior models, whereafter the influence of the driving profiles on these results 
are analyzed. The section continues with the sensitivity and uncertainty analyses and ends 
with the results of the expert interviews. For readability reasons, some sections discuss the 
results V2G strategy separate from the other results, as this includes a different type of 
results. 
 
4.1 Simulation results 
The results of the charging simulations are shown in Table 7. What can be observed, is that 
all controlled charging simulations show cost reductions compared to the reference scenario. 
There are significant differences in reduction between the strategies. The results show that 
the V2G simulation shows the largest cost reductions, followed by the smart charging 
simulation, and then the delayed charging simulation. The rest of this section discusses the 
charging profiles and costs per charging simulation. 
 
Table 7: Charging costs of the four simulations, per charging strategy 

Result Unit Reference Delayed Smart V2G 
Annual charging costs [€] 319.0 202.3 121.4 -117.3 
Reduction in annual 
charging costs 

[%] - 37% 62% 137% 

Average charging costs [€/100 km] 1.89 1.20 0.72 -0.70 
Average charging costs 
reduction 

[€/100 km] - 0.69 1.17 2.59 

 
4.1.1 Reference charging strategy 
The reference simulations show annual charging costs of €319.0, and an average charging 
costs of € 1.89 per 100 km. These relatively high costs can be explained by the charging profile, 
shown in Figure 17. What can be observed, is that most of the electricity is extracted during 
hours where the electricity prices are relatively high, i.e. during the late afternoon and 
evening. There is only a little charging during the hours where electricity prices are relatively 
lower. 
 



 
Figure 17: Charging profile of the reference simulation (left-hand axis) together with the median electricity price (right-hand 
axis) 

 
What comparing the charging profile of the reference simulation with Figure 7, it can be 
observed that the same evening peak occurs in both profiles. The main differences are two 
charging peaks in the ElaadNL (2023) profile at 9 and 11 PM. These two peaks are caused by 
the increase in charging sessions at 9 and 11 PM, observed in Figure 6. As these peaks 
represent EV drivers that start charging at off-peak hours, rather than when they arrive at 
home, this can be considered a form of delayed charging. Since the reference strategy 
represents no form of controlled charging, these peaks are excluded, and the charging profile 
of ElaadNL is expected to resemble the profile of the reference simulation. 
 
4.1.2 Delayed charging strategy 
The delayed charging simulation show annual charging costs of €202.3, which is reduction of 
37% compared to the reference simulation. The reduction in costs can be explained by the 
charging profile of the delayed charging simulation, as shown in Figure 18. What can be 
observed, is that the large charging peak in the evening is significantly reduced and shifted 
towards the night and morning. The peak in electricity extraction in the night is around 5 AM, 
simultaneously with a small dip in electricity prices, which shows that the model is charging 
at moments when the prices are most favorable, thus explaining the charging cost reductions. 
 



 
Figure 18: Charging profile of the delayed charging and reference simulation (left-hand axis) together with the median 
electricity price (right-hand axis) 

 
What is remarkable here, is that there is still some charging during the evening, where the 
electricity prices are relatively high. This can be explained by Figure D.1 in appendix D, which 
shows the distribution of the electricity extraction throughout the week. What can be 
observed here, is most evening charging is done on Sunday. When looking at Figure 15, it can 
be observed that Sunday evening has relatively low electricity prices compared to Monday 
night. The simulation sometimes charges at Sunday evening rather than Monday night due to 
lower electricity prices. The model succeeds postponing the charging moment to later hours, 
which validates the model. 
 
4.1.3 Smart charging strategy 
The smart charging simulation show annual charging costs of €121.4, which is a reduction of 
62%, compared to the reference simulation. This reduction in costs can be explained by the 
charging profile of the smart charging simulation, shown in Figure 19. What can be observed, 
is that there is almost no charging activity in the evening. Instead, the charging activity is 
shifted towards the night, morning, and afternoon, where the electricity prices are relatively 
low. There is a charging peak at noon, where prices are usually at a lowest. The main 
differences of this profile and the delayed charging profile is that the smart charging 
simulation has no more charging activity during the evening and less during the night, but 
instead charges significantly more during the morning and afternoon. This explains the 
additional cost reductions compared to the delayed charging simulation. 
 



 
Figure 19: Charging profile of the smart charging and reference simulation (left-hand axis) together with the median 
electricity price (right-hand axis) 

 
The same is observed in Figure D.1 in appendix D. The electricity extraction throughout the 
week shows a distributed pattern, where charging is centered at moments with low electricity 
prices. The EV mainly charges during the weekends and recharges during the middle of the 
week, preferably on Wednesday night, when prices are lower compared to surrounding 
weekdays. This shows that the simulation succeeds in finding the cheapest hours to charge 
the EV, which validates the model. 
 
4.1.4 V2G strategy 
The V2G simulation show net charging costs of - €117.3, which is a reduction of 137%, 
compared to the reference simulation. This means that the V2G simulation can make profits, 
while satisfying the driving behavior. Table 8 shows a breakdown of the charging costs, as well 
as the annual electricity interaction between the EV and grid. What can be observed, is that 
the discharging profits exceed the charging costs by almost €200. However, the net charging 
costs are increased by the battery degradation costs of €79.4. This is a share of approximately 
16.5% of the total discharging profits, which shows that the costs of battery degradation 
significantly reduce the discharging profits. 
 
What can also be observed, is that the electricity extraction from the grid is more than 9 MWh, 
which is almost 250% of the electricity required to satisfy the driving profile. Almost 4.4 MWh 
of this electricity is injected back into the grid; to put this into context, this is approximately 
the same as the average annual electricity consumption of a Dutch five person household 
(Nibud, 2023). The charging efficiencies cause an electricity loss of more than 1 MWh. 
 
 
 
 
 
 



 
Table 8: Breakdown of the charging cost and electricity interaction with the grid of the V2G simulation. 

Result Unit V2G 
Annual charging costs [€] 283.5 
Annual discharging profits [€] 480.2 
Annual battery degradation costs [€] 79.4 
Annual net charging costs [€] -117.3 
Total electricity extracted [kWh] 9138 
Total electricity used for driving [kWh] 3732 
Total electricity injected into grid [kWh] 4392 
Total electricity lost  [kWh] 1014 

 
Figure 20 shows the charging and discharging profiles of the V2G strategy. Most electricity is 
extracted in the night, morning, and afternoon, with peaks at 5 AM and at noon. The EV is 
usually discharged in the evening, with a peak at 7 PM, when electricity prices are high. This 
shows that the model succeeds in charging when electricity prices are low, and discharging 
when the prices are high, while satisfying the driving profile, which validates the model. 
 

 
Figure 20: Charging and discharging profile of the V2G simulation (left-hand axis) together with the median electricity price 
(right-hand axis) 

 
The same charging and discharging behavior is also shown in Figure D.1 in appendix D. The EV 
charges mostly during the night on weekdays and discharges the battery in the evening. This 
is financially viable, since it can recharge during night, when electricity prices are low again. It 
can be observed that most electricity is discharged on Friday evening, since electricity prices 
are generally high at that moment. Furthermore, similar as in the smart charging strategy, 
due to the low prices in the weekend, there is a lot of charging activity there. Discharging 
activity in the weekend focusses mainly on Saturday. Since the prices of Sunday evening and 
Monday night are rather similar, it is not financially viable to discharge and charge the EV 
during these times. 



 
4.2 Driving profile analysis 
In this section, the results of the driving profile analysis are discussed. This section is divided 
in two; the first part contains the reference, delayed, and smart charging strategy, and the 
second part the V2G strategy. The heatmaps indicating the distribution of the electricity 
extraction throughout the week, together with a visualization of the SoC throughout the 
simulation are shown in appendix E. 
 
4.2.1 Reference, delayed, and smart charging strategy 
The annual charging costs of the three simulations are shown per driving profile in Figure 21, 
together with the annual mileage. What can be observed, is that the charging costs differ 
significantly between the profiles. It can be observed that for each charging simulation, it 
holds that a higher mileage leads to higher annual charging costs. This can be explained by 
the increased costs due to the increase in required electricity for driving activities. 
 

 
Figure 21: Annual charging costs of the five driving profiles for the reference, delayed charging, and smart charging 
simulations (left-hand axis). The labels indicate the cost reduction compared to the reference simulation, and the black dot 
indicates the annual mileage (right-hand axis) 

 
What is remarkable here, is the significant higher cost reductions of the OD for both the 
delayed and smart charging simulations, which are also observed for the smart charging 
simulation in the R profile. This can be explained by the mileage of these profiles. Since the 
mileage of these profiles allow the EV to only be charged once a week, the simulation charges 
only during the hours when the electricity prices are at a weekly minimum, explaining the 
large cost reductions. Furthermore, both profiles are parked more often at home compared 
to the other profiles, especially during the afternoon on weekdays, which increases the 
flexibility to charge at hours where electricity prices are low. 
 



 
Figure 22: Average charging costs of the five driving profiles for the reference, delayed charging, and smart charging 
simulations (left-hand axis). The black dot indicates the annual mileage (right-hand axis). 

Figure 22 shows the average charging costs for the charging simulations, per driving profile. 
What can be observed, is that for all profiles except the OD profile, the delayed charging 
simulation shows relatively equal average charging costs. This shows that the average 
charging costs are not (strongly) influenced by the annual mileage. Furthermore, the smart 
charging simulations show relatively equal average charging costs for the YP, WP, and SR 
profile, which differ from the results of the R and OD profile. The largest difference between 
these profiles is the time that the EV is parked at home. This suggests that the average 
charging costs of the smart charging strategy are influenced by the time that the is parked at 
home.  
 
In Appendix E, the distribution of the SoC throughout the simulation for all driving profiles 
and charging strategies is shown. What can be observed, is that the SoC for the smart charging 
simulation is more often on a higher level compared to the delayed charging and reference 
simulations. Between the reference and the delayed charging simulations, the SoC in the 
latter simulation seems to have a less favorable SoC distribution, but the differences are small. 
Furthermore, it can be observed that the driving profiles with a higher mileage seem to have 
a less favorable distribution compared to the lower mileage profiles. This is explained by the 
increased distance travelled and the less time parked at home, which increases the SoC 
reduction and decreases the time to charge it, respectively.  
  
4.2.2 V2G strategy 
The annual charging costs of the V2G simulation are shown per driving profile in Figure 23, 
together with the annual mileage. What can be observed here, is that a higher mileage leads 
to higher net charging costs. Since there is more electricity required for driving, there is less 
available battery capacity to discharge the EV and generate a profit when the EV returns to 
home. Furthermore, what is remarkable here, is that the R profile has more discharging profits 
compared to the OD profile, while having a lower mileage. This can be explained by the time 
the EV is parked at home. Since the EV is parked at home more often in the R profile, the 
simulation has more time to buy and sell electricity to generate profit. This shows that the 
time the EV is parked at home influences the net charging costs for the V2G strategy. 



 

 
Figure 23: Breakdown of the annual net charging costs of the five driving profiles for the V2G simulation (left-hand axis). The 
black dot indicates the annual mileage (right-hand axis). 

Figure 24 shows the annual and the average charging cost as function of the annual mileage 
for the V2G simulations. What can be observed here, is that while it is not a perfect fit, the 
results do suggest a negative linear correlation between annual charging costs and mileage 
for the V2G simulation. Furthermore, the results suggest a negative exponential correlation 
between the average charging costs and the annual mileage. The exact role of the time that 
the EV is parked at home cannot be distinguished here. 
 

 
Figure 24: Graph indicating the relation between average charging costs and annual mileage of the V2G simulation. 

 
In Appendix E, the distribution graphs of the SoC of the different driving profiles and charging 
strategies are shown. What can be observed, is that the SoC is more often at a lower level for 
the V2G simulation compared to the other simulations, for all driving profiles. The ability to 



discharge the EV has a negative effect on the SoC, resulting in a SoC that is more often less 
charged. Furthermore. between the profiles with the different mileages, there does not seem 
to be a significant difference in distribution of the SoC. 
 
4.3 Sensitivity and uncertainty analyses 
In this section, the results of the sensitivity and uncertainty analysis are discussed. The section 
starts with the sensitivity analysis and ends with the uncertainty analysis.  
 
4.3.1 Sensitivity analysis 
Table 9 shows the results of the sensitivity analysis for the reference, delayed, and smart 
charging strategy. What can be observed, is that while the different electricity price scenarios 
show different absolute charging costs, the relative reductions between the electricity price 
scenarios are the same for both controlled charging simulations. This shows that higher 
electricity prices result in higher absolute cost reductions, but not in higher relative cost 
reductions for the delayed and smart charging simulations. 
 
Table 9: Results of the sensitivity analysis for the reference, delayed, and smart charging simulations. 

 
Figure 25 shows the charging profiles of the sensitivity analysis. What can be observed, is that 
the charging profiles are almost identical, regardless of the electricity price scenario. This 
shows that the electricity price scenarios do not influence the charging profile for the delayed 
and smart charging simulations. 
 

 Results  Strategy High Mid Low 
Annual charging costs 
  
  

[€] Reference 401.0 319.0 221.3 
Delayed 257.9 202.3 141.0 
Smart 152.1 121.4 85.5 

Average charging costs  
  
  

[€/100km] Reference 2.38 1.895 1.31 
Delayed 1.53 1.201 0.84 
Smart 0.90 0.721 0.51 

Reduction in charging 
costs 
  

[%] Delayed -36% -37% -36% 
Smart -62% -62% -61% 



 
Figure 25: Charging profile of the sensitivity analysis of the delayed and smart charging simulation for the different 
electricity price scenarios from PBL 

 
Table 10 shows the results of the sensitivity analysis of the V2G simulation. What can be 
observed here, is that in the high electricity price scenario, the charging costs are lower 
compared to the low electricity price scenario. This can be explained by two factors. First, a 
relative increase in electricity prices cause an increase in both the charging costs and 
discharging profits. This relative increase causes an unequal absolute increase between 
electricity price at charging and discharging moments, as the charging price is generally lower 
than the discharging price. This causes the absolute discharging profits to increase more than 
the absolute charging costs, therefore decreasing the charging costs. 
 
The other reason is the increase in discharged electricity for the high scenario compared to 
the mid and low scenario. This increase is caused by two effects: the battery degradation 
costs, and relative differences in intraday electricity prices. First, the battery degradation 
costs are fixed per kWh of discharged electricity. The simulation considers these costs when 
it decides whether it is financially viable to charge and discharge the EV’s battery. Since these 
costs are fixed, they are relatively larger when electricity prices are lower, and therefore result 
in less financially viable moments to charge and discharge the EV. Second, an increase in 
relative differences in intraday electricity prices can result in more financially viable moments 
to charge and discharge the EV. As the high scenario has higher relative intraday differences, 
mainly due to the longer afternoon price decrease, there is more electricity extracted and 
injected.  
 
Table 10: Results of the sensitivity analysis for the V2G simulation. 

 
 
 
 
 
 
 

Result Unit High Mid Low 
Annual charging costs  [€] -185.80 -117.3 -48.90 
Reduction in charging 
costs  

[%] 146% 137% 122% 

Total electricity injected 
in the grid 

[kWh] 4965 4392 3949 



Figure 26 shows the charging profiles of the sensitivity analysis for the V2G strategy. What 
can be observed, is that while all scenarios have a similar flow of the graph, the high scenario 
generally extracts and injects more electricity compared to the mid and low scenario. This 
indicates that an increase in electricity price does influence the charging profile of the V2G 
simulation. 
 

 
Figure 26: Charging and discharging profile of the sensitivity analysis of the V2G  simulation for the different electricity price 
scenarios from PBL 

 
4.3.2 Uncertainty analysis 
The results of the uncertainty analysis for the reference, delayed, and smart charging 
simulations are shown in Figure 27. What can be observed here, is that the UNC1 has the 
lowest charging costs of all three simulations, while the UNC2 and the YP profile have similar 
costs. This shows that when the EV is intensively used during the weekend, and less on 
weekdays, the charging costs are lower. 
 
Furthermore, what can be observed, is that while there are significant differences in charging 
costs between the reference and delayed charging simulations, the smart charging simulation 
has relatively equal costs for all three driving profiles. This shows that the assumptions made 
in the composition of the driving profiles do influence the results of the reference and delayed 
charging simulation, while the results of the smart charging simulations are not strongly 
influenced by the assumptions. 
 



 
Figure 27: Results of the uncertainty analysis 

 
The results of the uncertainty analysis of the V2G simulation are shown in Table 11. What can 
be observed here, is that the net charging costs are the lowest for the YP profile. This can be 
explained by Figure E.1, E.11, and E.13 in appendix E. The main difference between the YP 
profile and the uncertainty profiles is that the YP can charge during weekends, where 
electricity has the lowest price, and discharge during weekday evenings, when it has the 
highest price. The combination of these moments shows the largest reductions in charging 
costs.  
 
Table 11: Results of the uncertainty analysis for the V2G simulation 

Result Unit YP UNC1 UNC2 
Annual charging costs [€] -142.8 -112.1 -94.6 

Reduction in charging costs [%] 155% 120% 141% 

Total electricity injected in the 
grid 

[kWh] 5636 4654 4610 

 
It can therefore be argued that the assumptions made in the composition of the driving 
profiles influence the V2G charging and discharging behavior. It shows that the driving profile 
that drives on weekdays during the morning and afternoon and is parked at home a lot during 
the weekends is able to reduce charging costs the most. 
 
4.4 Factors stimulating grid-aware charging 
The goal of the interviews was to identify the key stakeholders, their interests, their 
interrelations, and their role in the stimulation of grid-aware charging. This is presented in a 
schematic overview in Figure 28. What can be observed here, is that there is a collaboration 
required between the government, DSO, and the market, to effectively stimulate the 
consumer adoption of grid-aware charging. An effective functioning of this collaboration 
requires goodwill, mutual trust, and transparency from all involved stakeholders. The rest of 
this section provides a more detailed explanation of the individual roles, and the importance 
of the collaboration. 
 



 
Figure 28: Schematic overview of involved stakeholders, their roles, and their relation to each other and to the consumer. 

 
4.4.1 Key messages 
The first important outcome of the interviews is that it is difficult to mandate certain charging 
behavior at private charging points. Current household connections allow consumers to 
extract up to 17.3 kW of power at any given time. The implementation of new tariff structures 
can limit the electricity extraction of households, but these new tariffs are still in legislative 
process and not expected to be implemented in the next couple of years (P.1; P.2). It is 
therefore important to persuade consumers into engaging in controlled charging (F.2). 
 
Aggregator 
The main driver for consumers to engage in any controlled charging strategy is a financial 
compensation. The results of this study show great cost reduction for different type of EV 
drivers, but the adoption of controlled charging is still lacking. One of the main barriers is lack 
of interest, combined with complexity. As M.3 mentioned: 
 
“Consumers are not interested in optimizing their charging behavior themselves, to safe 100 
euro per year. They are not reluctant to engage, but someone needs to facilitate this for them, 
to reduce the complexity and effort, in exchange for a fixed reduction in costs.” 
 
Market parties are considered a good fit for the role of aggregator here, since they are 
consumer-oriented and therefore have experience with fulfilling consumer preferences. 
Furthermore, both D.2 and F.2 mentioned that as market parties have the knowledge and 
capabilities to effectively scale up technologies, they could prove crucial in the scale up of 
grid-aware charging. A proposed aggregator structure by F.1 is an energy supplier that 
operates between DSO and end-user and minimizes charging costs within the boundaries 
provided by both the DSO and consumer.  
 
Providing grid-aware charging strategies instead of a strategy that aims to maximize financial 
benefits is in the interest of the market here. As the grid capacity is used more efficiently, 
there is more capacity available for the market to grow, i.e. to increase the EV penetration. 
To create and optimize these grid-aware charging strategies, they require transparent 



information sharing of the DSOs on the available grid capacity, possible moments of 
congestion, and moments of abundant capacity. 
 
Market stimulation 
However, the current limited availability of such services show that the market is 
underdeveloped. The market needs to be stimulated to create momentum. Three factors are 
mentioned to stimulate the market, which should be developed in close collaboration with all 
stakeholders, to ensure an effective implementation. The three factors are mentioned below, 
whereafter they are discussed in more detail.  
 

5. Standardization of prerequisites 
6. Ensuring interoperability 
7. Creation of a certification mark.  

 
The prerequisites of controlled charging include smart charging infrastructure, such as smart 
charging points and communication systems. The availability of these systems is essential for 
the increase of controlled charging adoption, while the placement of ‘dumb’ charging 
infrastructure would hinder this adoption. Therefore, all new placed infrastructure should be 
‘smart charging ready’. As the increase in costs for the smart infrastructure is likely to be 
compensated by the reduction in charging costs within several years, subsidies are not 
necessary here. To quote P.2: 
 
“Providing subsidies for a proven technology is pointless, and a waste of money. If the 
technology is proven, and there is a healthy business case, the market will step in.” 
 
The importance of interoperability is stated by F.1, M.1, M.2, and M.3. Hardware, software, 
communication systems; all equipment should be able to communicate with each other. This 
creates an open, fair, and competitive market, which increases the incentive to innovate. M.3 
clearly states the wish to put this in European legislation, and have European wide standards 
for technology, to increase the number of potential clients for market parties.  
 
Lastly, the creation of a certification mark could enhance this interoperability. This mark could 
be used to indicate that a particular charging service lives up to certain standards, or it could 
be used to indicate that infrastructure contains certain communication services or 
technology. Besides increasing the operability, it could also be a useful tool to provide clear 
technology standards for producers and service provides, and it could provide product 
assurances to customers, which are all important for the uptake in grid-aware charging. 
 
Creation of market boundaries 
This new and emerging market should also have clear boundaries, to protect the market 
parties, DSOs, and the consumers. It is important to clearly state everyone’s responsibilities 
here and what happens when parties disagree on certain matters. It is important that all 
stakeholders are actively involved in this process. Furthermore, it is important to understand 
that when boundaries are too strict, it can hinder innovation in the market, but when they 
are too loose, it can lead to unnecessary grid reinforcements or uneven distribution of 
expenses and costs. 
 



Creation of consumer awareness 
Another important barrier that was discussed in the interviews, was a general lack of 
awareness on controlled charging, how it works, its advantages, and its disadvantages. 
Consumers need to be informed and they need to have a trustworthy place to go to with any 
questions. Nationwide awareness campaigns could stress the urge and the benefits of 
controlled charging and take away uncertainties and complexity (D.1; F.1; F.2). To quote M.1: 
 
“The willingness to adopt increases significantly, when controlled charging is attached to a 
goal that appeals to consumers.” 
 
Furthermore, consumers require an easily accessible online information base where they can 
turn to with any questions. This should be a governmental website, or something equally 
trustworthy for consumers, such as the Royal Dutch Touring Club (ANWB) (P.1; F.1). It is 
important to design the awareness campaigns and information base with all stakeholders 
involved, including consumers. Furthermore, the communication should be clear and easy. 
 
Facilitate and sustain stakeholder collaboration 
As can be observed, there are a lot of areas where interests of the stakeholders intersect. To 
ensure a smooth and effective scale up of controlled charging, it is essential that there is 
active collaboration between stakeholders, based on trust, transparency, and goodwill. The 
government needs to play a facilitating role, where it guides conversations and acts as 
decision maker when interests are not aligned. It is argued that while this might lead to 
difficult decisions, it is important to act and decide fast to maintain momentum (P.1; P.2; D.1; 
D.2). 
 
This scale up is new for everyone, and there are a lot of lessons to be learned and mistakes to 
be made. It is important that there are regular feedback moments with all stakeholders, 
where choices and processes are evaluated, and adapted where required. Questions like: are 
the set market boundaries still working for all stakeholders, is everyone still participating as 
agreed upon, is the stimulation working, are there new opportunities emerging, how do we 
react? It will be a complicated process, and since all stakeholders have significant benefits 
from it, a good functioning collaboration is essential. 
 
Vehicle-to-Grid 
One final key message that emerged from the interviews, was on V2G. It was identified that 
injecting electricity back into the grid is too complex for now. While the technology might be 
available, not enough EVs and charging points are V2G ready and there are many legislative 
and administrative barriers that hinder the adoption of V2G strategies. Most interviewees 
doubt the coordinated discharging of EVs to provide grid support, but rather foresee a more 
decentralized role, where the electricity is mostly used to supply electricity to the EVs own 
household, or in the neighborhood. All interviewees argue that the scale up of delayed and 
smart charging will provide many practical lessons that can be applied in the scale up of V2G. 
To quote D.1: 
 
“V2G is complex and requires much more collaboration and communication between 
stakeholders. Let’s wait and see what we can learn while scaling up smart charging. When 
smart charging has become the standard, we will see how much flexibility we still require to 



balance the grid. Then we can with certainty estimate its potential and its role in our power 
system.”  
 
4.4.2 Roles and actions 
Table 12 summarizes the roles and specific action points that emerged from the expert 
interviews. As can be observed, all roles and action points require active contribution of 
multiple stakeholders to ensure a successful scale up. 
 
Table 12: Stakeholder roles and actions that stimulate grid-aware charging. 

Stakeholder role Action Lead 
stakeholder 

Involved 
stakeholders 

Aggregator  Creation of attractive variety of 
controlled charging services 

Market DSO, 
government 

Creation of market 
boundaries 

Creation of clear market 
boundaries 

Government Market, DSO 

Creating consumer 
awareness 

Awareness campaigns, 
creation of trustworthy 
information base 

Government Market, DSO 

Market stimulation Standardization of 
prerequisites, ensuring 
interoperability, creation of 
certification mark 

Government Market, DSO 

Facilitation of 
stakeholder 
collaboration 

Facilitate and sustain 
stakeholder collaboration, 
create feedback loops on scale 
up process 

Government Market, DSO 

Provide clear and 
transparent 
information on grid 
capacities 

Supporting the market in 
optimizing grid-aware charging 
strategies 

DSO Market  

  



5. Conclusion 
In this section, the main research question is answered. This research was divided into four 
parts: the driving profiles, the charging costs and profiles, the influence of the driving profiles, 
and the factors than can stimulate the adoption of grid-aware charging. The main research 
question is repeated below: 
 
How can the adoption of grid-aware charging strategies be stimulated in the Netherlands? 
 
The first part of the research has identified driving profiles for typical Dutch EV drivers. Dutch 
drivers can be divided into five categories, which are a young professional, working parent, 
semi-retiree, retiree, and occasional driver. These profiles differ in age, phase of life, 
demographics, and on driving behavior. 
 
The second part of the research resulted in the charging costs and profiles for the three 
different controlled charging strategies. What was observed, is that when charging is 
coordinated to minimize charging costs, that a delayed charging strategy shows a 37% cost 
reduction, a smart charging strategy shows a 62% cost reduction. Evening charging peaks are 
largely reduced, and charging is shifted to the night, morning, and afternoon. Furthermore, it 
was shown that higher electricity prices lead to higher absolute charging costs, but that it did 
not strongly affect the relative cost reductions or the charging profiles.  
 
The V2G strategy showed charging during the night, morning, and afternoon, and the battery 
was discharged during the evening. This resulted in a 137% cost reduction compared to the 
reference strategy, therefore generating a profit. A total of 4.4 MWh of electricity was 
injected back into the grid. Furthermore, an increase in electricity prices and price volatility 
lead to lower charging costs due to increased discharging profits. Lower electricity prices will, 
on the contrary, result in higher charging costs when charging with the V2G strategy.  
 
The third part of the research focused on the influence of the driving behavior on the charging 
costs. What was observed, is that for the delayed and smart charging strategy, there is a linear 
correlation between annual charging costs and annual mileage. However, the average 
charging costs are not strongly influenced by the annual mileage. When an EV is parked at 
home more often, the average charging costs can be reduced. Additionally, it was observed 
that the moment of driving does influence the charging costs for the delayed charging 
strategy but has less effect on the charging costs of the smart charging strategy. 
 
The net charging costs for a V2G strategy are more strongly influenced by mileage. The 
discharging profits increase when the mileage decreases. These profits also increase when 
the EV is parked at home more often. Furthermore, the average charging costs showed a 
negative exponential relation with the annual mileage for the V2G strategy. Lastly, it was also 
observed that the moment of driving influences the charging costs for the delayed charging 
and V2G strategy, but not for the smart charging strategy. 
 
The fourth part of the research aimed to identify the stakeholders and their roles in the 
stimulation of grid-aware charging. What was observed, is that since grid-aware charging 
cannot be mandated for private charging points, consumers need to be convinced. The 
market seems designated to take on the role of aggregator here, facilitating the grid-aware 



charging for the consumers, while compensating them financially. The results of this research 
show significant cost reductions for the charging strategies, what seems enough for a market 
party to build a business case on. The government should take on a directive role and focus 
on stimulating the market by standardizing prerequisites for controlled charging, ensuring 
interoperability, preferably Europe-wide, and create a certification mark. Furthermore, they 
should shape market boundaries and create consumer awareness by awareness campaigns 
and an information base. To succeed in the upscaling of grid-aware charging, a close 
collaboration between the stakeholders that is based on mutual trust and transparency is 
crucial for the success of the stimulation of grid-aware charging in the Netherlands. 
 
Lastly, this research has shown that while V2G holds the largest potential in cost reduction, 
and can provide more extensive services to the grid, there are several administrative and 
legislative barriers that hinder the upscaling of V2G. What was observed, is that it is more 
likely that V2G will take on a more decentralized role in the electricity system, where the 
discharged electricity is used at a consumers’ household, or in the neighborhood, instead of 
the electricity being injected into the grid. 
  



6. Discussion 
In this section, the methodological considerations, theoretical embedding, and implications 
and recommendations that emerged from this research are discussed. 
 
6.1 Methodological considerations 
This section discusses the considerations of the research methods. One point of consideration 
is the composition of the driving profiles. The idea behind the composition of the driving 
profiles was to simulate a charging profile and quantify the costs that could be generalized 
for the typical Dutch EV drivers described in the different profiles, e.g. “a typical working 
parent can reduce €130 in charging costs when charging with a delayed strategy”. However, 
the driving profiles contain assumptions and biases due to the anecdotal part in the 
composition. A stochastic composition process could have reduced these assumptions and 
biases. However, there was not enough data available of driving behavior of these typical 
Dutch drivers to create an academically valid method to compose five different driving 
profiles. Main conclusions on cost reductions are therefore not drawn from the individual 
driving profiles, but from the combined profile, which showed valid charging behavior, as 
discussed in section 4.1.1.  
 
A second methodological consideration was the selection of software used to create the 
model. While excel is more user friendly, and the researcher had more experience with Excel, 
a programming language with higher computational power would have significantly reduced 
the time required to run simulations. This would have given the possibility to perform more 
analyses on the data, to acquire a better understanding of the results. 
 
A third methodological consideration was the use of the hour-based electricity price 
predictions from PBL. It was deemed relevant to include the 2030 prices, since the 
technologies discussed in this study are not widely applied at this moment, while it is more 
likely that they will be in 2030. However, what became evident in the past several years, is 
that electricity prices can very quickly change drastically, e.g. the Russian invasion in Ukraine 
has caused large increases in electricity prices. The use of predicted electricity prices 
therefore will always add a certain level of uncertainty. The absolute charging costs for the 
different strategies should therefore be considered as a cost indication, while the relative cost 
reductions are shown to be less prone to change due to electricity price changes. 
 
Another methodological that is relevant to mention consideration was the exclusion of taxes 
on electricity. Due to this exclusion, the electricity price used to determine the charging costs 
and discharging profits, does not represent the actual costs or profits for an EV driver. 
However, with the exclusion of taxes, the results are more generalizable. Taxes differ between 
the type of user, the amount of electricity that is extracted annually, and it differs between 
nations. This study presents the generic cost reductions, based on the hour-based electricity 
prices, which can be used for any type of user that simply adds its own taxes. 
 
6.2 Theoretical embedding 
The results of this study are aligned with quantifications of charging costs of previous studies. 
Jian et al. (2018) show a cost reduction of 65% when using a smart charging strategy, which 
is comparable to the 62% reduction shown in this study. López et al. (2015) show cost 



reductions of 55% for a controlled charging strategy, and 59% for a V2G strategy. While the 
55% is comparable to the 62% reduction in this study, the V2G shows a different result. 
However, Fan & Chen (2019) show much higher V2G cost reductions, as this strategy reduces 
charging costs from $0.97 to -$1.14, thus generating profit, which is more in line with the 
results of this study. While Tarroja & Hittinger (2021) do not quantify charging costs, they do 
argue that the V2G strategy can significantly increase the economic benefits compared to 
delayed and smart charging strategies.  
 
The simulated charging profiles also show similarities to the existing literature. As discussed 
in section 4.1.1, the reference charging profile shows similarities with the average Dutch 
charging profiles for private charging from ElaadNL (2023), shown in Figure 7. Furthermore, 
the delayed charging model shows a similar profile as simulated by Jian et al (2018), where 
charging peaks are shifted to the night. This profile is shown in Figure 4. Fan & Chen (2019) 
simulated V2G profile shows charging in the night, and discharging in the evening, shown in 
Figure 2, which comparable to the simulated profile from this study. This shows that while 
the cost reductions might not be identical to cost reductions found in other studies, the 
charging profiles show the same charging behavior for the different charging strategies. 
 
Since the literature is lacking studies that focus on the influence of driving behavior on 
controlled charging cost reductions and profiles, a comparison with current literature was not 
possible. To the best of the authors knowledge, this study is the first study that made a start 
to identify what factors in driving behavior influence the controlled charging profile and costs.  
 
Lastly, the results from the expert interviews showed some similarities with the action points 
from the SLVI action plan (Nationale Agenda Laadinfrastructuur, 2022). The identified 
similarities are the stimulation of the prerequisites, the development of a certification mark, 
the creation of consumer awareness, creation of market boundaries, and a close collaboration 
between all involved stakeholders. The results of this research contribute to this action plan 
by quantifying potential financial benefits of controlled charging and placing more focus on 
private charging points.  
 
The factors stimulating grid-aware charging deviate from the SLVI action plan by highlighting 
the role of market parties as aggregator, as there are crucial in the upscaling of grid-aware 
charging for private charging points. Furthermore, there is more attention on the importance 
of interoperability in this study, to create a larger incentive for the market to innovate. Lastly, 
the SLVI action plan aims to financially stimulate smart charging infrastructure, while this 
study argues that the increased costs for this infrastructure is quickly compensated by the 
charging cost reductions.  
 
6.3 Implications and recommendations 
The current tariffs and structures for household connections make it difficult to mandate grid-
aware charging for private charging points. Consumers therefore must be convinced to adopt 
a grid-aware charging strategy. Consumers are not reluctant here; they want to engage in 
grid-aware charging, but they need someone to facilitate this for them, and require a financial 
compensation. Market parties should fulfill the role of facilitator, or aggregator, and operate 
between consumers and DSOs to provide the flexibility that the grid requires, while optimizing 



the charging to reduce charging costs. The potential revenue that can be generated per EV is 
quantified by this research.  
 
The smart charging simulation shows a reduction in costs of 62%. What should be noted, is 
that this simulation can see the electricity prices of the coming days and can therefore decide 
whether to charge or not. However, DAM prices are only available for the current and 
following day. The model therefore has a ‘perfect’ foresight ability, and the charging behavior 
is therefore ‘too optimized’ in some regard. However, it should be noted that if an aggregator 
coordinates the charging and makes accurate electricity price predictions based on e.g. 
weather forecasts, the actual cost reductions will resemble the cost reductions found in this 
study. 
 
Furthermore, the V2G simulations show that the average Dutch EV driver can satisfy its annual 
mileage of more than 16000 km, while also injecting 4.4 MWh back into the grid. While there 
were some serious doubts on the administrative, technical, and jurisdictional feasibility of 
discharging the EV into the grid, this research did highlight the decentralized potential of V2G. 
If this electricity was not injected into the grid, but rather used in a household, this amount 
of electricity could satisfy an average five person household in the Netherlands. While this 
does not mean that household demand and the available supply from the EV match, it does 
show that a V2G strategy shows potential to significantly reduce grid-dependency of 
households. 
 
Additionally, the electricity market mechanisms are based on balancing supply and demand. 
The increase in flexibility of demand could influence the electricity pricing mechanisms. When 
the demand is shifted from the hours with a high electricity price, to hours with a low 
electricity price, the difference in price between these hours will reduce, therefore changing 
the results of the simulations. Further studies could investigate what the effect of this 
increased flexibility is on future electricity prices, and what the influence of this effect would 
be on the charging profile and costs. 
 
The simulated charging profiles have shown that charging is concentrated at hours where 
electricity prices are low. As these prices tend to be low when there is a high penetration of 
renewable electricity in the grid, it could mean that this charging strategy causes a large 
increase in RES consumption. Further research could investigate what the increase in RES 
consumption due to the simulated charging profiles, and how this is translated in terms of 
environmental benefits. 
 
 
  



References 
 

Amamra, S. A., & Marco, J. (2019). Vehicle-to-Grid Aggregator to Support Power Grid and Reduce 
Electric Vehicle Charging Cost. IEEE Access, 7, 178528–178538. 
https://doi.org/10.1109/ACCESS.2019.2958664 

ANWB. (2023). Elektrisch Rijden Monitor 2022. 
https://www.anwb.nl/belangenbehartiging/duurzaam/elektrisch-rijden-monitor-2022 

Autoweek. (2023). De populairste elektrische auto’s in Nederland. 
https://www.autoweek.nl/autonieuws/artikel/de-populairste-elektrische-autos-in-
nederland/ 

Benhmad, F., & Percebois, J. (2018). Photovoltaic and wind power feed-in impact on electricity 
prices: The case of Germany. Energy Policy, 119, 317–326. 
https://doi.org/10.1016/j.enpol.2018.04.042 

Beyazıt, M. A., Taşcıkaraoğlu, A., & Catalão, J. P. S. (2022). Cost optimization of a microgrid 
considering vehicle-to-grid technology and demand response. Sustainable Energy, Grids and 
Networks, 32. https://doi.org/10.1016/j.segan.2022.100924 

Cardona, J. E., López, J. C., & Rider, M. J. (2018). Decentralized electric vehicles charging 
coordination using only local voltage magnitude measurements. Electric Power Systems 
Research, 161, 139–151. https://doi.org/10.1016/j.epsr.2018.04.003 

CBS. (2017). Nederlanders en hun auto. https://www.cbs.nl/nl-
nl/achtergrond/2017/08/nederlanders-en-hun-auto 

CBS. (2021). Onderweg in Nederland 2020. 
Chen, F., Taylor, N., & Kringos, N. (2015). Electrification of roads: Opportunities and challenges. 

Applied Energy, 150, 109–119. https://doi.org/10.1016/j.apenergy.2015.03.067 
Choi, W., & Sarlioglu, B. (2018). Shunt-Series-Switched Multi-Functional GridConnected Inverter for 

Voltage Regulation in Vehicleto-Grid Application. 
Cludius, J., Hermann, H., Matthes, F. C., & Graichen, V. (2014). The merit order effect of wind and 

photovoltaic electricity generation in Germany 2008-2016 estimation and distributional 
implications. Energy Economics, 44, 302–313. https://doi.org/10.1016/j.eneco.2014.04.020 

Crozier, C., Morstyn, T., & Mcculloch, M. (2020). The Opportunity for Smart Charging to Mitigate 
the Impact of Electric Vehicles on Transmission and Distribution Systems. Applied Energy. 

Datta, U., Saiprasad, N., Kalam, A., Shi, J., & Zayegh, A. (2019). A price-regulated electric vehicle 
charge-discharge strategy for G2V, V2H, and V2G. International Journal of Energy Research, 
43(2), 1032–1042. https://doi.org/10.1002/er.4330 

Deb, S., Harsh, P., Sahoo, J. P., & Goswami, A. K. (2018). Charging Coordination of Plug-In Electric 
Vehicle for Congestion Management in Distribution System. International Journal of Emerging 
Electric Power Systems, 19(5). https://doi.org/10.1515/ijeeps-2018-0050 

Delmonte, E., Kinnear, N., Jenkins, B., & Skippon, S. (2020). What do consumers think of smart 
charging? Perceptions among actual and potential plug-in electric vehicle adopters in the 
United Kingdom. Energy Research and Social Science, 60. 
https://doi.org/10.1016/j.erss.2019.101318 

Eid, C., Codani, P., Perez, Y., Reneses, J., & Hakvoort, R. (2016). Managing electric flexibility from 
Distributed Energy Resources: A review of incentives for market design. In Renewable and 
Sustainable Energy Reviews (Vol. 64, pp. 237–247). Elsevier Ltd. 
https://doi.org/10.1016/j.rser.2016.06.008 

ElaadNL. (2023). Rapport Outlook Laadprofielen. https://elaad.nl/onderzoek-naar-laadprofielen-
geeft-inzicht-in-belasting-stroomnet-door-laden-elektrische-autos-en-effect-van-slim-laden/ 



EV-database. (n.d.). Useable battery capacity of full electric vehicles. Retrieved May 31, 2023, from 
https://ev-database.org/cheatsheet/useable-battery-capacity-electric-car 

Fachrizal, R., & Munkhammar, J. (2020). Improved photovoltaic self-consumption in residential 
buildings with distributed and centralized smart charging of electric vehicles. Energies, 13(5). 
https://doi.org/10.3390/en13051153 

Fahmy, S., Gupta, R., & Paolone, M. (2020). Grid-aware distributed control of electric vehicle 
charging stations in active distribution grids. Electric Power Systems Research, 189. 
https://doi.org/10.1016/j.epsr.2020.106697 

Fan, J., & Chen, Z. (2019). Cost-Benefit Analysis of Optimal Charging Strategy for Electric Vehicle 
with V2G. IEEE Power & Energy Society. 

Figueiredo, N. C., & Silva, P. P. da. (2019). The “Merit-order effect” of wind and solar power: 
Volatility and determinants. Renewable and Sustainable Energy Reviews, 102, 54–62. 
https://doi.org/10.1016/j.rser.2018.11.042 

Franco, J. F., Rider, M. J., & Romero, R. (2015). A Mixed-Integer Linear Programming Model for the 
Electric Vehicle Charging Coordination Problem in Unbalanced Electrical Distribution Systems. 
IEEE Transactions on Smart Grid, 6(5), 2200–2210. 
https://doi.org/10.1109/TSG.2015.2394489 

García-Villalobos, J., Zamora, I., San Martín, J. I., Asensio, F. J., & Aperribay, V. (2014). Plug-in 
electric vehicles in electric distribution networks: A review of smart charging approaches. In 
Renewable and Sustainable Energy Reviews (Vol. 38, pp. 717–731). Elsevier Ltd. 
https://doi.org/10.1016/j.rser.2014.07.040 

Ghotge, R., Nijssen, K. P., Annema, J. A., & Lukszo, Z. (2022). Use before You Choose: What Do EV 
Drivers Think about V2G after Experiencing It? Energies, 15(13). 
https://doi.org/10.3390/en15134907 

Habib, S., Kamran, M., & Rashid, U. (2015). Impact analysis of vehicle-to-grid technology and 
charging strategies of electric vehicles on distribution networks - A review. In Journal of Power 
Sources (Vol. 277, pp. 205–214). Elsevier B.V. 
https://doi.org/10.1016/j.jpowsour.2014.12.020 

Han, X., Lu, L., Zheng, Y., Feng, X., Li, Z., Li, J., & Ouyang, M. (2019). A review on the key issues of 
the lithium ion battery degradation among the whole life cycle. In eTransportation (Vol. 1). 
Elsevier B.V. https://doi.org/10.1016/j.etran.2019.100005 

Hu, J., Ye, C., Ding, Y., Tang, J., & Liu, S. (2022). A Distributed MPC to Exploit Reactive Power V2G 
for Real-Time Voltage Regulation in Distribution Networks. IEEE Transactions on Smart Grid, 
13(1), 576–588. https://doi.org/10.1109/TSG.2021.3109453 

Huda, M., Tokimatsu, K., & Aziz, M. (2020). Techno economic analysis of vehicle to grid (V2G) 
integration as distributed energy resources in Indonesia power system. Energies, 13(5). 
https://doi.org/10.3390/en13051162 

IEA. (2022a). Global EV Outlook 2022 Securing supplies for an electric future. www.iea.org/t&c/ 
IEA. (2022b, March). Global energy-related CO2 emissions by sector – Charts – Data & Statistics. . 

https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-
sector 

Islam, F. R., Lallu, A., Mamun, K. A., Prakash, K., & Roy, N. K. (2021). Power Quality Improvement 
of Distribution Network Using BESS and Capacitor Bank. Journal of Modern Power Systems 
and Clean Energy, 9(3), 625–632. https://doi.org/10.35833/MPCE.2019.000304 

Jian, L., Yongqiang, Z., & Hyoungmi, K. (2018). The potential and economics of EV smart charging: 
A case study in Shanghai. Energy Policy, 119, 206–214. 
https://doi.org/10.1016/j.enpol.2018.04.037 



Kolawole, O., & Al-Anbagi, I. (2019). Electric vehicles battery wear cost optimization for frequency 
regulation support. IEEE Access, 7, 130388–130398. 
https://doi.org/10.1109/ACCESS.2019.2930233 

Liu, H., Huang, K., Wang, N., Qi, J., Wu, Q., Ma, S., & Li, C. (2019). Optimal dispatch for participation 
of electric vehicles in frequency regulation based on area control error and area regulation 
requirement. Applied Energy, 240, 46–55. https://doi.org/10.1016/j.apenergy.2019.02.044 

López, M. A., De La Torre, S., Martín, S., & Aguado, J. A. (2015). Demand-side management in smart 
grid operation considering electric vehicles load shifting and vehicle-to-grid support. 
International Journal of Electrical Power and Energy Systems, 64, 689–698. 
https://doi.org/10.1016/j.ijepes.2014.07.065 

López, M. A., Martín, S., Aguado, J. A., & De La Torre, S. (2013). V2G strategies for congestion 
management in microgrids with high penetration of electric vehicles. Electric Power Systems 
Research, 104, 28–34. https://doi.org/10.1016/j.epsr.2013.06.005 

Mu, Y., Wu, J., Ekanayake, J., Jenkins, N., & Jia, H. (2013). Primary frequency response from electric 
vehicles in the Great Britain power system. IEEE Transactions on Smart Grid, 4(2), 1142–1150. 
https://doi.org/10.1109/TSG.2012.2220867 

Nationale Agenda Laadinfrastructuur. (2022). Slim laden voor iedereen 2022-2025. 
Netbeheer Nederland. (2023, February). Capaciteitskaart elektriciteitsnet. 

https://capaciteitskaart.netbeheernederland.nl/ 
Nibud. (2023). Kosten van energie en water. 

https://www.nibud.nl/onderwerpen/uitgaven/kosten-energie-water/ 
Nord Pool. (2020). Day-ahead market. https://www.nordpoolgroup.com/en/the-power-

market/Day-ahead-
market/#:~:text=In%20the%20day%2Dahead%20market,transmission%20system%20operat
ors%20into%20consideration. 

Nour, M., Said, S. M., Ali, A., & Farkas, C. (2019). Smart Charging of Electric Vehicles According to 
Electricity Price. International Conference on Innovative Trends in Computer Engineering, 
432–437. 

Pavić, I., Capuder, T., & Kuzle, I. (2015). Value of flexible electric vehicles in providing spinning 
reserve services. Applied Energy, 157, 60–74. 
https://doi.org/10.1016/j.apenergy.2015.07.070 

PBL. (n.d.). NEV - rekensysteem - COMPETES. Retrieved June 20, 2023, from 
https://www.pbl.nl/modellen/kev-rekensysteem-
competes#:~:text=COMPETES%20is%20een%20model%20van,geeft%20resultaten%20op%2
0uur%20basis. 

Pilpola, S., & Lund, P. D. (2019). Different flexibility options for better system integration of wind 
power. Energy Strategy Reviews, 26. https://doi.org/10.1016/j.esr.2019.100368 

Prakash, K., Ali, M., Siddique, M. N. I., Karmaker, A. K., Macana, C. A., Dong, D., & Pota, H. R. (2022). 
Bi-level planning and scheduling of electric vehicle charging stations for peak shaving and 
congestion management in low voltage distribution networks. Computers and Electrical 
Engineering, 102. https://doi.org/10.1016/j.compeleceng.2022.108235 

Raoofat, M., Saad, M., Lefebvre, S., Asber, D., Mehrjedri, H., & Lenoir, L. (2018). Wind power 
smoothing using demand response of electric vehicles. International Journal of Electrical 
Power and Energy Systems, 99, 164–174. https://doi.org/10.1016/j.ijepes.2017.12.017 

Ravi, S. S., & Aziz, M. (2022). Utilization of Electric Vehicles for Vehicle-to-Grid Services: Progress 
and Perspectives. In Energies (Vol. 15, Issue 2). MDPI. https://doi.org/10.3390/en15020589 

Rebours, Y., & Kirschen, D. (2005). What is spinning reserve? 



Refa, N., Hammer, D., & Rookhuijzen, J. van. (2021). Elektrisch rijden in stroomversnelling. 
https://elaad.nl/wp-
content/uploads/2022/05/2021Q3_Elaad_Outlook_Personenautos_2050.pdf 

Richardson, P., Flynn, D., & Keane, A. (2012). Optimal charging of electric vehicles in low-voltage 
distribution systems. IEEE Transactions on Power Systems, 27(1), 268–279. 
https://doi.org/10.1109/TPWRS.2011.2158247 

Rijksdienst voor Ondernemend Nederland. (2022). Nationaal Laadonderzoek 2022. 
Rizvi, S. A. A., Xin, A., Masood, A., Iqbal, S., Jan, M. U., & Rehman, H. (2018, December 19). Electric 

Vehicles and their Impacts on Integration into Power Grid: A Review. 2nd IEEE Conference on 
Energy Internet and Energy System Integration, EI2 2018 - Proceedings. 
https://doi.org/10.1109/EI2.2018.8582069 

Sachan, S., Deb, S., & Singh, S. N. (2020). Different charging infrastructures along with smart 
charging strategies for electric vehicles. Sustainable Cities and Society, 60. 
https://doi.org/10.1016/j.scs.2020.102238 

Sadeghian, O., Oshnoei, A., Mohammadi-ivatloo, B., Vahidinasab, V., & Anvari-Moghaddam, A. 
(2022). A comprehensive review on electric vehicles smart charging: Solutions, strategies, 
technologies, and challenges. In Journal of Energy Storage (Vol. 54). Elsevier Ltd. 
https://doi.org/10.1016/j.est.2022.105241 

Sarabi, S., Davigny, A., Courtecuisse, V., Riffonneau, Y., & Robyns, B. (2016). Potential of vehicle-
to-grid ancillary services considering the uncertainties in plug-in electric vehicle availability 
and service/localization limitations in distribution grids. Applied Energy, 171, 523–540. 
https://doi.org/10.1016/j.apenergy.2016.03.064 

Schram, W., Brinkel, N., Smink, G., Van Wijk, T., & Van Sark, W. (2020, September 1). Empirical 
evaluation of V2G round-trip efficiency. SEST 2020 - 3rd International Conference on Smart 
Energy Systems and Technologies. https://doi.org/10.1109/SEST48500.2020.9203459 

Schuller, A., Flath, C. M., & Gottwalt, S. (2015). Quantifying load flexibility of electric vehicles for 
renewable energy integration. Applied Energy, 151, 335–344. 
https://doi.org/10.1016/j.apenergy.2015.04.004 

Shang, Y., Liu, M., Shao, Z., & Jian, L. (2020). Internet of smart charging points with photovoltaic 
Integration: A high-efficiency scheme enabling optimal dispatching between electric vehicles 
and power grids. Applied Energy, 278. https://doi.org/10.1016/j.apenergy.2020.115640 

Shariff, S. M., Iqbal, D., Saad Alam, M., & Ahmad, F. (2019). A State of the Art Review of Electric 
Vehicle to Grid (V2G) technology. IOP Conference Series: Materials Science and Engineering, 
561(1). https://doi.org/10.1088/1757-899X/561/1/012103 

Sharifi, P., Banerjee, A., & Feizollahi, M. J. (2019). Leveraging Owners’ Flexibility in Smart 
Charge/Discharge Scheduling of Electric Vehicles to Support Renewable Energy Integration. 
http://arxiv.org/abs/1907.07722 

Singh, J., & Tiwari, R. (2020). Cost Benefit Analysis for V2G Implementation of Electric Vehicles in 
Distribution System. IEEE Transactions on Industry Applications, 56(5), 5963–5973. 
https://doi.org/10.1109/TIA.2020.2986185 

Sortomme, E. (2012). Combined bidding of regulation and spinning reserves for unidirectional 
Vehicle-to-Grid. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), 1–7. 
https://doi.org/10.1109/ISGT.2012.6175771 

Staudt, P., Schmidt, M., Gärttner, J., & Weinhardt, C. (2018). A decentralized approach towards 
resolving transmission grid congestion in Germany using vehicle-to-grid technology. Applied 
Energy, 230, 1435–1446. https://doi.org/10.1016/j.apenergy.2018.09.045 



Sugiyama, M. (2012). Climate change mitigation and electrification. Energy Policy, 44, 464–468. 
https://doi.org/10.1016/j.enpol.2012.01.028 

Taljegard, M., Göransson, L., Odenberger, M., & Johnsson, F. (2019). Impacts of electric vehicles 
on the electricity generation portfolio – A Scandinavian-German case study. Applied Energy, 
235, 1637–1650. https://doi.org/10.1016/j.apenergy.2018.10.133 

Tan, K. M., Ramachandaramurthy, V. K., & Yong, J. Y. (2016). Integration of electric vehicles in smart 
grid: A review on vehicle to grid technologies and optimization techniques. In Renewable and 
Sustainable Energy Reviews (Vol. 53, pp. 720–732). Elsevier Ltd. 
https://doi.org/10.1016/j.rser.2015.09.012 

Tarroja, B., & Hittinger, E. (2021). The value of consumer acceptance of controlled electric vehicle 
charging in a decarbonizing grid: The case of California. Energy, 229. 
https://doi.org/10.1016/j.energy.2021.120691 

TenneT. (n.d.). Market types. Retrieved May 23, 2023, from https://www.tennet.eu/market-types 
Ucer, E., Kisacikoglu, M. C., & Cafer Gurbuz, A. (2018). Learning EV Integration Impact on a Low 

Voltage Distribution Grid; Learning EV Integration Impact on a Low Voltage Distribution Grid. 
In 2018 IEEE Power & Energy Society General Meeting (PESGM). 

van Heuveln, K., Ghotge, R., Annema, J. A., van Bergen, E., van Wee, B., & Pesch, U. (2021). Factors 
influencing consumer acceptance of vehicle-to-grid by electric vehicle drivers in the 
Netherlands. Travel Behaviour and Society, 24, 34–45. 
https://doi.org/10.1016/j.tbs.2020.12.008 

Verhoog, M., Brinkel, N., & Alskaif, T. (2020, September 1). Congestion management in LV grids 
using static and dynamic EV smart charging. SEST 2020 - 3rd International Conference on 
Smart Energy Systems and Technologies. https://doi.org/10.1109/SEST48500.2020.9203191 

Wang, L., & Chen, B. (2019). Dual-level consensus-based frequency regulation using vehicle-to-grid 
service. Electric Power Systems Research, 167, 261–276. 
https://doi.org/10.1016/j.epsr.2018.10.022 

Yilmaz, M., & Krein, P. T. (2013). Review of the impact of vehicle-to-grid technologies on 
distribution systems and utility interfaces. In IEEE Transactions on Power Electronics (Vol. 28, 
Issue 12, pp. 5673–5689). https://doi.org/10.1109/TPEL.2012.2227500 

Zweistra, M., Janssen, S., & Geerts, F. (2020). Large scale smart charging of electric vehicles in 
practice. Energies, 13(2). https://doi.org/10.3390/en13020298 
  



Appendix A. Driving profiles 
 
Young Professionals (YP) 
The YP is typically aged 25 to 35 and is in the beginning of its career. The YP has no kids, or 
kids that are too young to encounter in any activities out of the house. The YP commutes to 
work 4 days a week, from Monday to Thursday, leaving home between 7 and 9 AM, while 
returning 9 hours later. The YP does shopping/groceries on Monday and Friday, has an 
unspecified meeting on Wednesday, and a business meeting on Thursday. During the 
weekends, the EV is barely used, only for one spare time activity on Saturday and a visit on 
Sunday. This is schematically shown in Figure XX. 
 

 
Figure A. 1: The Young Professional driving profile. The white squares indicate that the EV is parked at home and the grey 
squares that the EV is driving or parked elsewhere. 

 
Working Parent (WP) 
The WP is typically aged 30 to 50 and is in the middle of its career. The WP started a family, 
and the kids are at an age where they need to be picked up and dropped off at school, social, 
or sports activities. The WP commutes to work four days a week and has two weekly business 
trips. It drives to three spare time activities, which are for the WP himself, or for its kids. 
Groceries are done three times per week, and the EV is used for two weekly services, two 
visitations, and one spare time activity. This driving profile is shown in Figure XX. 
 



 
Figure A. 2: The Working Parent driving profile. The white squares indicate that the EV is parked at home and the grey 
squares that the EV is driving or parked elsewhere. 

 
Semi-Retirees (SR) 
The SR is typically aged 50 to 65, is still employed, but works reduced hours as the SR is 
approaching the retirement age. The SR works less, and its kids are moved out of the house, 
or at an age where they do not require to be picked up or dropped off anymore. The SR 
commutes to work three times a week, and still does two business trips weekly. It provides 
service/takes care of close ones, has several spare time activities, and uses the EV for 
shopping/groceries, visiting friends, a weekly day trip during the weekend, and one undefined 
activity. This driving profile is shown in figure XX. 
 



 
Figure A. 3: The Semi-Retiree driving profile. The white squares indicate that the EV is parked at home and the grey squares 
that the EV is driving or parked elsewhere. 

 
Retirees (R) 
This group consist of people that are aged 65-80 and have started their retirement. They do 
not have to commute to work anymore, and therefore drive less regular. They visit friends 
and family more often, have more spare time activities, take care for close ones, go on a 
weekly hiking/touring trip, and have one unidentified activity. Their travel behavior occurs 
mainly during the day. 
 



 
Figure A. 4: The Retiree driving profile. The white squares indicate that the EV is parked at home and the grey squares that 
the EV is driving or parked elsewhere. 

 
Occasional Drivers (OD) 
This group consists of people that do not have a regular weekly driving schedule. Example of 
people in this group are stay-at-home parents, students, people that work during the evening, 
or people aged 80+. They make smaller trips typically once or twice a day to do groceries, 
spare time activities or to pick someone up, and sometimes they use it for larger trips with 
friends or family. They drive during less regular times and include more evening and weekend 
trips. This profile does not represent a specific group, but rather functions as a diversification 
profile in this study. The activities chosen are therefore not specifically representative for the 
group members. This driving profile is shown in figure XX. 
  



 
Figure A. 5: The Occasional Driver driving profile. The white squares indicate that the EV is parked at home and the grey 
squares that the EV is driving or parked elsewhere. 

 
 
 
  



Appendix B. Sensitivity analysis 
 

 
Figure B. 1: Heatmap indicating the distribution of the low electricity price scenario from PBL. Higher prices are indicated by 
deeper red colors. 

 

 
Figure B. 2: Heatmap indicating the distribution of the high electricity price scenario from PBL. Higher prices are indicated 
by deeper red colors. 

  



Appendix C. Uncertainty analysis 
Figure XX and Figure XX show the driving profiles for the uncertainty analysis. which are from 
here on referred to as UNC1 and UNC2. The UNC1 profile concentrates its activities from 
Friday to Sunday during the morning, afternoon, and evening. This is a large alteration in 
driving behavior compared to the YP profile, where the driving activities are concentrated on 
Monday to Thursday morning, afternoon, and evening. The UNC2 profile concentrates its 
driving activities in the evening and early night during weekdays. This profile also includes one 
evening where a lot of activities are concentrated, to increase the diversity between the 
uncertainty profiles and the YP profile. 
 

 
Figure C. 1: The first Uncertainty  driving profile. The white squares indicate that the EV is parked at home and the grey 
squares that the EV is driving or parked elsewhere. 

 



 
Figure C. 2: The second Uncertainty driving profile. The white squares indicate that the EV is parked at home and the grey 
squares that the EV is driving or parked elsewhere. 

  



Appendix D. Weekly charging profiles: combined profile 
 

 
Figure D. 1: Heatmaps indicating the weekly distribution of annual extracted electricity of the reference, delayed charging, 
smart charging and V2G strategy of the combined profile. 

  



Appendix E. Weekly charging profiles: five driving profiles 
E.1 Young Professional 

 
Figure E. 1: Heatmaps indicating the weekly distribution of the annual extracted electricity of the reference, delayed 
charging, and smart charging strategy (left-hand side) and the distribution of the SoC throughout the entire simulation 
(right-hand side). From top to bottom: reference, delayed charging, and smart charging simulation. Figure shows the results 
of the Young Professional simulation. 

  



 
Figure E. 2: Heatmaps indicating the weekly distribution of the annual extracted electricity of the V2G strategy (left-hand 
side) and the distribution of the SoC throughout the entire simulation (right-hand side). Figure shows the results of the 
Young Professional simulation. 

  



E.2 Working Parent 

 
Figure E. 3: Heatmaps indicating the weekly distribution of the annual extracted electricity of the reference, delayed 
charging, and smart charging strategy (left-hand side) and the distribution of the SoC throughout the entire simulation 
(right-hand side). From top to bottom: reference, delayed charging, and smart charging simulation. Figure shows the results 
of the Working Parent simulation. 

  



 
Figure E. 4: Heatmaps indicating the weekly distribution of charged electricity of the V2G strategy (left-hand side) and the 
distribution of the SoC throughout the entire simulation (right-hand side). Figure shows the results of the Working Parent 
simulation. 

  



E.3 Semi-Retiree 

 
Figure E. 5: Heatmaps indicating the weekly distribution of the annual extracted electricity of the reference, delayed 
charging, and smart charging strategy (left-hand side) and the distribution of the SoC throughout the entire simulation 
(right-hand side). From top to bottom: reference, delayed charging, and smart charging simulation. Figure shows the results 
of the Semi-Retiree simulation. 

  



 
Figure E. 6: Heatmaps indicating the weekly distribution of the annual extracted electricity of the V2G strategy (left-hand 
side) and the distribution of the SoC throughout the entire simulation (right-hand side). Figure shows the results of the 
Semi-Retiree simulation. 

  



E.4 Retiree 

 
Figure E. 7: Heatmaps indicating the weekly distribution of the annual extracted electricity of the reference, delayed 
charging, and smart charging strategy (left-hand side) and the distribution of the SoC throughout the entire simulation 
(right-hand side). From top to bottom: reference, delayed charging, and smart charging simulation. Figure shows the results 
of the Retiree simulation. 

  



 
Figure E. 8: Heatmaps indicating the weekly distribution of the annual extracted electricity of the V2G strategy (left-hand 
side) and the distribution of the SoC throughout the entire simulation (right-hand side). Figure shows the results of the 
Retiree simulation 

  



E.5 Occasional Driver 

 
Figure E. 9: Heatmaps indicating the weekly distribution of the annual extracted electricity of the reference, delayed 
charging, and smart charging strategy (left-hand side) and the distribution of the SoC throughout the entire simulation 
(right-hand side). From top to bottom: reference, delayed charging, and smart charging simulation. Figure shows the results 
of the Occasional Driver simulation. 

  



 
Figure E. 10: Heatmaps indicating the weekly distribution of the annual extracted electricity of the V2G strategy (left-hand 
side) and the distribution of the SoC throughout the entire simulation (right-hand side). Figure shows the results of the 
Occasional Driver simulation. 

  



E.6 Uncertainty 1 

 
Figure E. 11: Heatmaps indicating the weekly distribution of the annual extracted electricity of the reference, delayed 
charging, and smart charging strategy (left-hand side) and the distribution of the SoC throughout the entire simulation 
(right-hand side). From top to bottom: reference, delayed charging, and smart charging simulation. Figure shows the results 
of the first Uncertainty simulation. 

  



 
Figure E. 12: Heatmaps indicating the weekly distribution of the annual extracted electricity of the V2G strategy (left-hand 
side) and the distribution of the SoC throughout the entire simulation (right-hand side). Figure shows the results of the first 
uncertainty simulation. 

  



E.7 Uncertainty 2 

 
Figure E. 13: Heatmaps indicating the weekly distribution of the annual extracted electricity of the reference, delayed 
charging, and smart charging strategy (left-hand side) and the distribution of the SoC throughout the entire simulation 
(right-hand side). From top to bottom: reference, delayed charging, and smart charging simulation. Figure shows the results 
of the second uncertainty simulation. 

  



 
Figure E. 14: Heatmaps indicating the weekly distribution of the annual extracted electricity of the V2G strategy (left-hand 
side) and the distribution of the SoC throughout the entire simulation (right-hand side). Figure shows the results of the 
second uncertainty simulation. 

 
  



Appendix F.  
 
Interview guide for the identification of factors that stimulate grid aware charging. The 
interviews start with an introduction of this research, the focus of and system boundaries (i.e. 
the Netherlands, private charging), and a short discussion on the results. What does the 
interviewee think of the results? Are they higher/lower than expected? Then, each interview 
starts with a general question: 
 
Can you explain in simple words what controlled charging is, and what the most important 
advantages of controlled charging are? How does grid-aware charging fit in here? 
 
From here on, the interview usually followed a natural flow, where more in-depth questions 
were asked when interesting topics were discussed, leading to new and undiscovered topics. 
When a discussion on a certain topic ended, one of the following questions was used to restart 
the conversation.  
 

- Wat is your vision on the role of the government for the implementation of 
controlled charging? 

- What are according to you the most important factors that stimulate grid-aware 
charging? 

- What are the most important barriers for the adoption of grid-aware charging? 
- How can these barriers be reduced? 
- How can the relevant stakeholders collaborate to increase grid-aware charging 

adoption? 
- Which stakeholders need to be involved in the creation of policy on grid-aware 

charging? 
- How can policy makers deal with uncertainties and risks during the development of 

policy for new technologies, such as controlled charging? 
- How can policy makers include future developments and innovations in their policy? 
- How can the results of this study contribute to simulation of grid-aware charging? 
- What role do the different stakeholders have in stimulating knowledge development 

on grid-aware charging? 
- What role do you specifically see for V2G in the near future? And later? 

 


