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Abstract

This study investigates which features are informative in predicting non-response for certain target

variables in the context of European behavioral- and social-pattern data and how a multiverse

approach can guide the process of identifying these predictors, with the long-term goal of building

an archive of essential predictors. This will help researchers to design their studies in such a

way that the missing at random mechanism can be assumed safely, ensuring valid use of advanced

imputation techniques. Within the context of this study, a consensus on the types of variables that

are informative can be discerned. That is, the results suggest the importance of variables related

to employment, education level, domicile, and household and partner information. Limitations

remain in accounting for the researcher degrees of freedom and the missing data in the observed

variables, indicating the relevance of conducting similar, additional analyses to get a more robust

collection of essential predictors. Nevertheless, this study provides an initial set of important

predictors in the context of social science-related data and shows that multiverse analysis can

adequately guide the process of identifying predictors of non-response by enabling flexibility in

the construction and deployment of a set of models, rendering it easy to implement in di↵erent

domains.

Keywords: Multiverse analysis, item non-response, identifying predictors, binary classification
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Chapter 1

Introduction

The past decade, emerging big data practices have had an increasing influence on day-to-day life

and and the sciences studying this day-to-day life (Bormida, 2021). This influence is likely to

continue to grow over the upcoming years, not just in the societal context, but also in for instance

medicine and law (Bormida, 2021). According to some, big data will change the world for the

better. However, more and more researchers are warning for the (potential) downsides of big

data, such as a lack of ethical and legal standards or the low quality of data leading to incorrect

knowledge (Weinhardt, 2020; Inside BigData, 2020; Montvilas, 2022).

According to Peng et al. among others, low-quality data can be caused by missing values

(Peng et al., 2022). Missing values – as the term indicates – regards incomplete information in

the sense that (meaningful) values are unobserved or hidden and thus not present in a data set

(Graham, 2012). A multitude of methods exist to deal with missingness (non-response) in data

sets, like deleting incomplete observations (listwise deletion) or imputing them with a constant or

a predicted value. These methods are however limited in their abilities and can only be validly

used under the right circumstances (Peng et al., 2022; Graham, 2012; Van Buuren, 2018). That

is, they can lead to problematic inference procedures where invalid conclusions are drawn from

the analysis of the data when erroneous assumptions are made about the underlying missingness

mechanism (Van Buuren, 2018).

A central assumption for modern missing data imputation techniques regards the type of

missing data mechanism underlying the data: missing at random (MAR) (Van Buuren, 2018).

That is, the missingness – that is in itself not random – is (su�ciently) accounted for by the

observed information of the predictor variables present in the data set (Van Buuren, 2018; Graham,

2012; Peng et al., 2022). So, to satisfy this assumption one should include all variables that

correlate with the missingness of the ‘target’ variable. However, determining which variables are

informative regarding missingness of the target variable is currently mostly based on educated

guessing, thus lacking valuable guidance.

This study therefore focuses on providing a starting point of such guidance by attempting to

determine essential predictors of missingness in a data set regarding European behavioral- and

social-pattern data. Ideally, combining this study with other studies, this will result in an archive

of essential predictors so that social science researchers – and possibly researchers of other fields

– can design their studies in such a way that MAR is (su�ciently) guaranteed and that advanced

imputation techniques can be used validly.

More specifically, in this study, a multiverse analysis approach is taken, where several models

are used to individually predict the missingness of a single target feature, and doing this for a

multitude of targets. That is, for each target, the best model is sought by (automatic) hyper-

parameter tuning and cross-validation, after which for the best model the feature importances are

Estimating Response Models 1



CHAPTER 1. INTRODUCTION

calculated. Moreover, to make the resulting feature importances more generalizable and signific-

ant, this process is applied to not one, but three di↵erent types of models, namely Support Vector

Machines (SVMs), Random Forests (RFs), and Multilayer Perceptrons (MLPs). This allows for

comparison of the feature importances – either strengthening or nuancing the importance of the

respective features. As such, the central research question of this study is defined as follows:

What are important predictors of non-response in the context of European behavioral- and

social-pattern data, and how can this analysis contribute to the creation of an archive of essential

predictors?

First, underlying concepts and theory will be discussed in Chapter 2, after which the used

data and methods will be described. This is followed by a description and discussion of the main

results in Chapter 5 and 6. Lastly, after describing an ethical assessment of the study using the

Fundamental Rights and Algorithms Impact Assessment (FRAIA) guidelines in Chapter 7, in

Chapter 8, the main gains and limitations of this study will be discussed.

2 Estimating Response Models



Chapter 2

Theoretical Framework

2.1 Related work in predicting non-response

Even though item non-response is something that exists in most questionnaire-related studies,

there are few studies that attempt to define what variables may be informative regarding such

missingness. One study that uses this as main objective is the recent work by Kern, where

a longitudinal framework for predicting non-response in panel studies is proposed (Kern et al.,

2023). A more deductive approach is taken in Bulut et al. (2020), where the impact of several

predefined features, such as types of bullying and grade level, on non-response in a self-reported

bullying questionnaire has been analyzed. Similarly, most – of the already scarce – studies that

aim to define predictors of missingness take a similar deductive approach, where one or a few

variables are chosen to be assessed based on a set of assumptions or theory (Lipps and Monsch,

2022; Alexander, 2017; Lee et al., 2017; Kutschar and Weichbold, 2019). However, similar to the

approach taken in this study and in Kern et al. (2023), there are some studies that take a more

inductive approach, where first a number of analyses or observations is conducted, patterns are

extracted and only then assumptions are made and conclusions are drawn (Elliott et al., 2005;

Mignogna et al., 2022; Blumenberg et al., 2018). Most of these studies found, like Elliott et al.

(2005), take place in the context of health sciences, which can be informative to the social sciences

but at the same time highlights the gap still present in the latter context.

2.2 Core concepts

2.2.1 Missingness mechanisms

In general, three types of missingness or non-response mechanisms are distinguished (Rubin, 1976;

James et al., 2013; Graham, 2012). These are missing completely at random (MCAR), missing

at random (MAR), and missing not at random (MNAR). These mechanisms determine the type

of missing data, which is organized into the same three main categories (James et al., 2013;

Van Buuren, 2018; Graham, 2012). That is, the type of missingness of the data specifies the

mechanism that generates this missingness. MCAR, which is in the statistical sense an unrealistic

assumption, means that the missingness probability is the same for all causes, so the causes of

missing data are unrelated to the data used during analysis (i.e. the observed data). This is

unrealistic, because in practice, there is always some (group of) variable(s) that explains the

missingness pattern as a whole or in part (James et al., 2013; Peng et al., 2022; Graham, 2012).

MAR, on the other hand, is a more realistic assumption, which states that the probability of being

missing is the same within groups defined by the observed data (James et al., 2013; Van Buuren,
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2018; Graham, 2012). This would for example be the case when individuals from the Netherlands

would be less likely to completely fill in a questionnaire about their grocery shopping behavior

compared to individuals from Belgium, as the missingness relates to the country of the individual

and not the grocery shopping behavior – given that the country feature is fully observed. Lastly,

the MNAR assumption is used when the missingness is systematically related to events or factors

that have not been measured (i.e. the unobserved data) (James et al., 2013; Van Buuren, 2018;

Graham, 2012).

In practice, this categorization should however be taken somewhat loosely and is instead best

interpreted as a spectrum rather than a hard distinction. That is, because – even though MCAR

can be ruled out as soon as there is any association between the measured data and the missingness

– MNAR and MAR cannot be distinguished from each other as the supposed predictor data

are by definition unavailable, making it impossible to test the imperative assumptions (Little,

1988; Enders, 2022; Goldberg et al., 2021; Graham, 2012). Graham (2012) specifically argues

that MNAR and MAR are a continuum and that both mechanisms in the pure sense are merely

theoretical concepts that do not exist in practice. That is, a cause of missingness is neither purely

MNAR nor purely MAR. By definition, the missingness mechanism is context-dependent, based

on the requirements and applications of the data, meaning that the missingness mechanism is

characterized by both the data and the applied analysis.

For validly using the MCAR assumption it needs to be shown that the probability of the

data being missing is completely unrelated to any other observed variable and to its own miss-

ingness, which can be done by testing the group characteristics for equality among the complete

cases and the cases with missingness (Little, 1988; Enders, 2022; Goldberg et al., 2021; Graham,

2012; Collins et al., 2001). MAR can be identified by checking the correlations between missing

values and complete variables in the data, where (high) correlation indicates a MAR assump-

tion. However, related to what is stated by Graham, exact minimal correlation requirements are

context-dependent. With MNAR, observed features do not provide any significant explanation of

the missingness pattern, which may be due to the values of the target feature correlating with the

missing values (e.g. respondents with an age over 65 do not report their age) or the missing values

being caused by an unobserved feature (e.g. a scale wearing out over time).

MNAR can be transformed into MAR by including auxiliary or proxy variables. These are

variables that help estimating incomplete data as they relate to the missingness probability of

the incomplete variable, but do not take part in the main analysis (Collins et al., 2001). Proxy

variables can be measured relatively easily and thereby replace a variable that cannot or di�cultly

be measured. For example, historical environmental conditions can be explained by the width of

the rings in trees. Here, tree ring width is the proxy variable to replace the historical environmental

condition variable with.

2.2.2 Imputation methods and their limitations

Since collecting all data, which is often considered the ‘golden road,’ is practically infeasible and

generally unethical, methods have been developed to deal with missing values in data sets. Some

methods remove incomplete observations from the data set, such as listwise deletion (complete

case analysis) or pairwise deletion (available case analysis). Other methods deal with missing
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values by imputing them with estimated values to produce a complete data set.

There are several di↵erent types of imputation, which can be roughly distinguished into two

main categories: single and multiple imputation. Single imputation regards replacing the miss-

ing value once. Multiple imputation on the contrary regards imputing the missing data with

di↵erent values, often in a principled way comparing di↵erent plausible values, thus performing

the imputation for a data set multiple times (Dong and Peng, 2013). Some well-known single

imputation methods are mean or mode imputation, (stochastic) regression imputation, Last or

Baseline Observation Carried Forward (LOCF/BOCF), and the indicator method. A popular

multiple imputation technique is Multiple Imputation by Chained Equations (MICE) which is

also known as Fully Conditional Specification (FCS). Moreover, there are also principled non-

imputation methods like Full Information Maximum Likelihood (FIML) which originated from

the field of structural equation modeling (Dong and Peng, 2013).

With listwise deletion, observations with one or more missing values are removed from the data

set. This procedure is unbiased under MCAR, but biased under MAR and MNAR and contains

the risk that too large a part of the data is removed, especially when dealing with high-dimensional

data (Van Buuren, 2018). With pairwise deletion, summary statistics of the observed data are

used in the analysis, which provides consistent estimates of the mean, correlations and covariances

under MCAR. However, this procedure also su↵ers from bias under MAR and MNAR and ad-

ditionally requires strong assumptions regarding the distribution of and relationships within the

data (Van Buuren, 2018). Mean or mode imputation is severely limited and should in principle not

be used, as it is not only biased under the MAR and MNAR mechanisms but can also be biased

under MCAR, which can lead to significant distortions of the distribution and underestimation

of the variance (Van Buuren, 2018). Regression imputation, which replaces missing values by a

prediction of the value, on the other hand, provides unbiased estimates of the weights (not the

mean) under MAR and MNAR in certain specific cases, but su↵ers from underestimation of the

prediction error, uncertainty and variability of imputations (Van Buuren, 2018). Stochastic regres-

sion imputation, by adding noise to the prediction process, mitigates most of the shortcomings of

regular regression imputation, but incorrectly treats the imputed data as real data (Van Buuren,

2018). LOCF and BOCF, which impute the last seen or baseline value, respectively, can be biased

under all three mechanisms and have the additional limitation that they are only suitable for

specific cases of longitudinal data (Van Buuren, 2018).

The MICE procedure works by replacing missing values with initial imputations in the first

iteration, after which these imputed values are used to (re-)estimate the values for the missing

elements in subsequent iterations (Van Buuren, 2018). This is done by a regression function. So,

after the first round of imputations, in each subsequent iteration, each feature is consecutively

assigned being the target and its imputed values are removed again once per iteration, and are

estimated by the remaining complete variables. The previous imputation for the current target

is then updated by the newly estimated value. This continues for each feature for a predefined

number of iterations or until other predefined stopping criteria are met (Van Buuren, 2018).

In regression-based imputation methods like single or multiple stochastic regression, auxiliary

variables are included in the imputation model, therewith providing the imputation algorithm with

additional information on the missingness. This helps estimating the imputed values with more

precision and less bias (Van Buuren, 2018). With likelihood-based methods like Full Information

Estimating Response Models 5
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Maximum Likelihood (FIML), proxy variables are included through the covariance matrix in the

model estimation, for which several methods exist. Collins et al. (2001) describe multiple general

requirements for adding proxy variables to likelihood-based models: 1) the auxiliary variables

should be directly correlated with the measured predictor variables, 2) they should also be directly

correlated with the error of the outcome variable, and 3) the proxy variables should also be

correlated with each other.

So, to ascertain state-of-the-art imputation methods can be used in a valid and unbiased way,

it is vital to ensure the data are following the missing at random mechanism su�ciently.

2.2.3 Binary classification

Binary classification is a task that belongs to the field of supervised machine learning and at-

tempts to categorize observations into one of two possible categories. Supervised machine learning

describes a class of methods where the data used to train the model has observations and cor-

responding outcomes (i.e. the category to which a particular observation belongs to). There are

several commonly used methods for binary classification that are suitable for di↵erent domains

and data characteristics within the area of binary classification.

Naive Bayes is often considered the most basic binary classification model one could implement

because it assumes the presence of one feature being uncorrelated to the presence of the other

features (Witten et al., 2016). It makes classifications based on the log-prior (i.e. the (log)

probability of picking a particular target value when random sampling) and log-likelihood of

an observed value (Witten et al., 2016). So, prediction = logprior +
Pn

i=1 loglikelihood(Xi). If

the predicted value is around 0, the model is uncertain, while a value with a higher magnitude

represents one of two classes (e.g. 10 for fruits and -10 for vegetables). Its main advantages are

that it is a relatively fast method, it works well with categorical input variables, and is generally

better than other methods while using less training data – given that the features are independent

(Witten et al., 2016). However, this feature independence assumption rarely holds in practice,

rendering the method unsuitable for most real-world data sets (Witten et al., 2016). Moreover, it

su↵ers from the zero frequency problem, which can be defined as the inability to make predictions

about categories that are not present during training (Gupta, 2020).

Another relatively easy to implement method is logistic regression. Herein, a sigmoid function

is used to map the predicted values from the linear equation into a range between 0 and 1. Using

the objective of minimizing the cost function, so the prediction error, logistic regression attempts

to find the model that best separates the observations into the two classes. It is in general more

e�cient to train and provides outputs that are easier to interpret compared to some of the other

methods (Witten et al., 2016). Moreover, it does not make assumptions about class distributions

across the feature space and has generally good performance on simple, (nearly) linearly separable

data sets, implying low risk of overfitting. This risk, however, increases when dealing with high-

dimensional data sets, but can to some extent be mitigated by adding some form of regularization

(Witten et al., 2016). Another shortcoming is the tight space in which logistic regression provides

good classifications. That is, the classes must be close to being linearly separable, but neither

exactly linearly separable, nor too far from it (Witten et al., 2016).

The Support Vector Machine (SVM) method is designed for handling relatively small data
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sets. It works especially well on small and complex data sets (Witten et al., 2016). This is due to

its objective to find the hyperplane that bests separates the observations into the two classes in an

N -dimensional space, where N equals the number of features. To handle non-linearity in the data,

a kernel is used to transform the data into this higher dimensional feature space. A well-known

kernel is the radial basis function, which is based on the similarity between two points in terms

of Euclidean distance. Besides being able to handle complexity in small data sets relatively well,

another advantage of SVMs is that they require low memory compared to other approaches, due

to using merely a portion of the training data (Witten et al., 2016). The main disadvantages are

however the long training period, therewith being impractical for large data sets, its inability to

accurately handle overlapping classes, and poor performance when the number of features is larger

than the training sample size (Witten et al., 2016).

K-Nearest Neighbors (K-NN) is yet another method. It works by proximity and majority (or

plurality) voting, which means that a data point is assigned the class label of the most frequently

occurring class label of its neighbors. The main di↵erence between this method and the previously

described ones is that it is non-parametric, meaning that it does not assume a probability model

regarding the outcome. Moreover, there is no training step involved and it is memory-based, so it

immediately adapts when being presented with new data. Compared to the other methods, which

require two or more hyperparameters to be set, with K-NN only one hyperparameter needs to be

predefined, after which the rest aligns automatically (Witten et al., 2016). However, it is relatively

slow, can su↵er from the curse of dimensionality, requires homogeneous features, so with the same

scale, is sensitive to outliers and does not perform well when data are imbalanced.

The Random Forest (RF) ensemble method is considered a superior method for binary clas-

sification. It combines multiple decision trees to determine the final classification (Witten et al.,

2016). A single decision tree classifier works by maximizing the split-quality of subsetting the

data, measured for example by Gini impurity (Witten et al., 2016). In other words, a decision tree

works like a flow chart where simple yes-no questions (e.g. “is it sunny?”) are answered to determ-

ine the final classification (Witten et al., 2016). In a Random Forest, these individual outcomes

are then combined and the most frequently occurring class is identified as the final result (Witten

et al., 2016). To ensure low correlation between decision trees and therewith minimize bias, a

random subset of features – sampled by bootstrapping – is used for the individual trees, which is

also known as feature randomness (Witten et al., 2016). Random Forest is robust to noise and

outliers, has generally good performance and is suitable for large data sets due to the possibility

to parallelize the training process (Witten et al., 2016). However, hyperparameter tuning should

be performed with caution as the number and depth of trees are highly influential on the risk of

overfitting and the duration of the training process. Its main disadvantages are that it is more

black-box than for example a single decision tree and it requires relatively high memory usage.

The final method discussed here is the Multi-Layer Perceptron (MLP), which is a type of

Neural Network. An MLP consists of a fully-connected input and output layer with one or more

hidden layers in between. Input data is propagated forward through the layers by calculating the

dot product of the input and the weights between the layers and then utilizing some activation

function, most commonly the Rectified Linear Unit (ReLU) or a sigmoid function. Then, at the

output layer, the resulting values will be either used for further improving the network during

training or for making a final decision during testing. Its main limitations are that the extent
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to which the independent feature is a↵ected by the dependent (target) feature is unknown, that

computations are not interpretable and time consuming, and that the functioning of the model

depends on the quality of training (Witten et al., 2016; Akkaya, 2019). However, it has several

benefits that can outweigh these limitations: it can be applied to complex, non-linear problems,

it works well with large data due to the ability of quickly making predictions once the model is

trained, and is robust to smaller data sets (Witten et al., 2016; Akkaya, 2019).

These standard methods are often adapted using di↵erent techniques, mitigating or nuancing

some of the limitations of a particular approach. For example, bagging can be applied to ensure

methods designed for small data sets can deal with larger sets as well (Breiman, 1999, 1996). For

instance, standard Support Vector Machines can be transformed to an ensemble by bagging (with

bootstrapping, i.e. drawn with replacement) or pasting (without bootstrapping). This creates

an ensemble of classifiers for subsets of data, therewith reducing the variance of the estimator

(Scikit-Learn Developers, 2023b; Breiman, 1999, 1996). Alternatively, boosting uses the idea of

combining a collection of weak learners (e.g. decision trees), so classifiers that merely slightly

correlates with the true classification, into one strong learner after a defined number of learning

iterations (Zhang and Ma, 2012; Zhou, 2012). Here, the advantage is in using weights to direct

later learners to the mistakes of previous learners, therewith minimizing bias and variance, similar

to the aim of the bagging approach (Zhang and Ma, 2012; Zhou, 2012). The main di↵erence

between bagging and boosting approaches is that the former runs the classifiers in parallel, while

the latter requires sequentiality in the learning process to ensure the classifiers learn from each

other (Zhang and Ma, 2012; Zhou, 2012).

Table 2.1: Classification evaluation type ratios

Name Ratio Also known as

True positive rate TP
TP+FN sensitivity, recall, hit rate

True negative rate TN
TN+FP specificity, selectivity

Positive predictive value TP
TP+FP precision

Negative predictive value TN
TN+FN –

False negative rate FN
FN+TP miss rate

False positive rate FP
FP+TN fall-out

False discovery rate FP
FP+TP –

False omission rate FN
FN+TN –

Threat score TP
TP+FN+FP critical success index (CSI)

Accuracy TP+TN
TP+TN+FP+FN –

Balanced accuracy
TP

TP+FN + TN
TN+FP

2 –

F1-score
2·TP

2·TP+FP+FN harmonic mean of precision and sensitivity

sources: (Ting, 2011; Tharwat, 2021)
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Evaluating model performance

Figure 2.1: Illustration of the
di↵erent outcome types and
ratios in a confusion matrix

The classification performance of these binary classifiers can be

evaluated in di↵erent ways. Most of these metrics are based on

some ratio of values in the so-called confusion matrix, which con-

tains the number of truly positive (TP), truly negative (TN),

falsely positive (FP, type I errors) and falsely negative (FN, type

II errors) predicted outcomes given the observations. Here, pos-

itive and negative refer to the two categories, which are usually

assigned 1 and 0, respectively.

The basic ratios that are indicated in Figure 2.1 are true pos-

itive rate (or sensitivity or recall), positive predictive value (preci-

sion), negative predictive value, and false positive rate. The spe-

cific calculations of these and other ratios can be found in Table

2.1. Depending on the domain, there may be a preference for certain ratios, as the goals and type

of data used usually di↵er across domains. For example, in medicine sensitivity and specificity are

common, while in informatics precision and recall are preferred (Wikipedia, 2023). A metric that

is not commonly used, yet possibly one of the best metrics for assessing a classifier’s overall per-

formance is the Matthews correlation coe�cient (MCC) (Chicco and Jurman, 2020, 2023). This

metric is one of few that provides an unbiased representation of the performance, due to taking

into account the performance on all four parts of the confusion matrix:

MCC =
TN · TP� FP · FNp

(TN + FN) · (FP + TP) · (TN + FP) · (FN + TP)
(2.1)

While the F1 score can also be a suitable metric, especially when more emphasis is put on the

class labeled as positive, MCC may be overall more desirable, because it allows for a more balanced

assessment of the classifiers, which is especially desirable if the cost of having low precision and

recall is unknown (Chicco and Jurman, 2020, 2023).

Cross-validation and methods to avoid overfitting

Overfitting is an important cause of mediocre or bad performance of supervised models on unseen

data. It regards the idea of a model learning the seen (training) data too closely, leading to high

performance in the training phase but low performance when testing the model on new (test) data

due to the learning of general patterns being compromised by also learning the noise present in

the seen data (Witten et al., 2016).

There are multiple ways to minimize (the risk of) overfitting. One method is dimensionality

reduction or feature selection, which is described in more detail in Section 2.2.3. Another, relatively

easy to implement method is early stopping (or pruning in tree-like models), which – as the name

indicates – regards prematurely ending the training process before overfitting starts to occur

(Witten et al., 2016). Early stopping is a procedure that is often already present as one of the

hyperparameters in the model. In addition, regularization hyperparameters are often present in

machine learning models, which constrain the parameter estimates, therewith penalizing redundant

complexity in a model (Witten et al., 2016).
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A data-splitting strategy to estimate the tuning parameters is taken by cross-validation, where

the data are split into some collection of subsets, depending on the type of cross-validation (Witten

et al., 2016). The most general form is K-fold cross-validation, where the data is split into k folds.

The model is then trained on k � 1 folds in each iteration, which totals k iterations (see Figure

2.2). That is, each fold is used for testing (validation) exactly once within the cross-validation

process (Witten et al., 2016). Since the data are di↵erent in each iteration, the estimates of the

validation error are more robust, providing information on how to tune the models away from

overfitting (Witten et al., 2016). Before applying K-fold cross-validation, usually a portion of

the data is temporarily removed to function as a leave-out test set to ensure part of the data

remains completely unseen. Regarding the data used during the cross-validation, when k equals

the number of observations, it is called leave-one-out cross-validation. Moreover, when k is equal

to two it is named a train-validation-test split, where ‘test’ refers to the left-out test set (Witten

et al., 2016). The latter is the simplest version, but comes with the limitation that it is relatively

prone to high variance in cases where the data set is small (Witten et al., 2016). Conversely,

leave-one-out cross-validation is most suitable for small data sets as it retains most of the training

data. For example, if a data set consists of only twelve observations, the leave-one-out approach

retains eleven observations for training, while three-fold cross-validation keeps only eight. K-

fold cross-validation, however, is preferred over the leave-one-out approach as a large data set

will have su�cient training samples when there are fewer folds than the number of observations.

Moreover, without adjustments to avoid training the model N times (where N equals the number

of observations), leave-one-out cross-validation becomes infeasible for large data sets in terms of

the time it takes to run the procedure (Witten et al., 2016). For example, for a data set with 100

000 observations and a model that takes about two seconds to be trained using the leave-one-out

split, it would take 200 000 seconds, which is just under 56 hours.

Using a similar idea, the risk of overfitting can also be reduced by turning the model into

an ensemble so that additional randomness is added to the model, therewith mixing up the

data and averaging the outcomes, leading to more stability in the results (Witten et al., 2016).

Figure 2.2: Example of a K-fold cross-
validation procedure with five folds

Moreover, it is common practice to apply several of

these methods simultaneously to further decrease

the risk that the model fits the observed data too

closely (Witten et al., 2016).

The importance of scaling and encoding

Many supervised machine learning models are in-

fluenced by the variations in magnitude and range

of the values in the data (Fitkov-Norris et al., 2012;

Singh and Singh, 2020; Lanigan et al., 2023). Hav-

ing targets with largely di↵ering ranges of values

can therefore corrupt the classification process due

to larger values being assigned higher importance by the classifier, which introduces bias towards

the variables with larger values in the model (Fitkov-Norris et al., 2012; Singh and Singh, 2020;

Lanigan et al., 2023). Moreover, encoding is often required as most models are unable to deal with

class data, or – when these classes are converted to numbers – the numbers are misinterpreted as
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ordinal values instead of categorical ones (Fitkov-Norris et al., 2012). Therefore, scaling or encod-

ing the data is a vital step that needs to be considered during the data preprocessing stage. In

short, feature scaling refers to the transformation of features so that all the values in the data have

a similar range and magnitude (Fitkov-Norris et al., 2012; Singh and Singh, 2020). Normalization

is a scaling technique where the values are shifted in such a way that they lie in a fixed range of

0 and 1, and is also known as min-max scaling.

Another possibility is to standardize the data (Fitkov-Norris et al., 2012; Singh and Singh,

2020). This is also referred to as z-score normalization and rescales the data to a Gaussian

distribution, so with a mean of 0 and a variance of 1. Moreover, there are several adaptations

of the standard z-score normalization, which have been developed to better mitigate unwanted

influence of outliers in the data (Brownlee, 2020). Of these two types of scaling, there is no definite

superior technique: their suitability depends on the context and application of the machine learning

model and the data. More specifically, z-score normalization is usually applied when the focus

is on comparison of similarities based on distance. Normalization, on the other hand, is often

preferred in the context of computer vision for normalizing pixel intensities and when using neural

networks, as these algorithms typically require zero-to-one scaled data (Brownlee, 2020).

Scaling is only applicable to non-categorical data (Brownlee, 2020). However, when dealing

with questionnaire data for example, features are often categorical even though they may be

represented with a number. This number is nonetheless meaningless, as a category represented

with number 10 is not twice as much as the category represented with number 5. So, to mitigate

any unwanted influences when using such data for training machine learning models, a di↵erent

approach should be taken. A well-known procedure is one-hot encoding, which unfolds each feature

into (almost) as many features as there are categories, assigning a 1 to the observations where

the specific category is present and 0 to all others. In other words, the features are encoded into

dummy variables.

However, this becomes infeasible when dealing with large data sets containing many features

with many categories due to the inherent sparsity of the matrix that is created with one-hot

encoding, eventually leading to the curse of dimensionality problem. As such, an alternative is to

target or mean encode the categorical features (Fitkov-Norris et al., 2012). That is, each category

of a feature is replaced by a quantification of the e↵ect it may have on the target variable (Fitkov-

Norris et al., 2012). For a binary classifier, the standard approach is to calculate what is also

known as the posterior probability in Bayesian statistics:

P(y = 1 | x = ci) =
county=1, x=ci

countx=ci

(2.2)

where y represents the target variable, x represent the categorical feature, and ci indicates the i-th

category. As shown in Equation 2.2, the probability of the target being equal to 1 given category

i equals the number of times the target is 1 given this category, divided by the total number of

times the category occurs in the observations for the respective feature.

This however introduces the problem of target leakage, meaning that the model is being presen-

ted information it should actually predict (Micci-Barreca, 2001; Fitkov-Norris et al., 2012). So,

information of the target is now present in the observed feature(s). Nevertheless, target leakage

can relatively easily be mitigated by adding prior smoothing to the standard encoding procedure
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(Micci-Barreca, 2001). This is generally done by using the mean of all categories, instead of the

mean from one category only:

encoding = ↵ · P(y = 1 | x = ci) + (1� ↵) · P(y = 1) (2.3)

where ↵ is the smoothing factor, often defined by the following sigmoid function:

↵ = 1
1+exp (�n�k

f )
(2.4)

where n is the number of observations, k determines the proportion of the data for which the

estimate based on the sample is completely trusted, and f controls the transition rate between

prior and posterior probability (Micci-Barreca, 2001).

So, when su�ciently mitigating target leakage, target encoding is a suitable alternative to the

classical one-hot encoding which becomes infeasible with large data sets, as it keeps information on

the predictability of the target given a particular category. Target encoding can also be extended

to the multiclass case, as is described by Micci-Barecca (2001), but since this study focuses on

binary classification only, this will not be discussed in detail.

Multicollinearity and feature selection

Figure 2.3: Example of a correlation heat
map to visualize (multi)collinearity

Another commonly influential factor that should be

considered when training classification models is mul-

ticollinearity. Multicollinearity refers to situations

where two or more explanatory variables closely relate

to each other instead of being independent, the lat-

ter of which is the standard assumption. These close

relations are also referred to as correlation or collin-

earity. The ‘multi’ part of the concept refers to the

multitude of explanatory variables being collinear. For

binary classification models, a serious consequence of

multicollinearity is that it significantly decreases inter-

pretability of the model (Maśıs, 2021; Lundberg and

Lee, 2017). Even though this is not necessarily prob-

lematic for the classifier’s prediction capability, for ex-

ample extracting its feature importances becomes an

unreliable procedure (Maśıs, 2021; Lundberg and Lee, 2017). That is, because the importance of

collinear features either gets divided across these features, for instance when using a decision tree,

or becomes zero when using a permutation approach due to the equivalent split (Maśıs, 2021). In

any case, the calculated feature importance will deviate significantly from the actual importance.

So, to avoid problems with model interpretability in a later stage of the classification process,

it is vital to apply an appropriate form of feature selection, where as much unique information as

possible is retained without ‘duplicating’ it. Usually, this is done after cleaning and scaling the

data, but before training a classifier (Witten et al., 2016). These types of feature selection are

also referred to as filter methods because of their independence to the machine learning model.
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However before utilizing any feature selection, determining whether (multi)collinearity is present

in the data can be beneficial. Multicollinearity can be detected by plotting a (Pearson) correlation

matrix, where high positive and high negative values are considered collinear, while values around

zero are considered independent. Usually, for better readability, these correlation matrices are

visualized in the form of a correlation heat map, an example of which is shown in Figure 2.3.

Here, larger squares indicate a higher correlation value, while the colors indicate not only the size

but also the direction of this correlation: large, positive correlations are dark red, while large,

negative correlations are dark blue. Another option, which is frequently used in regression ana-

lysis, is to calculate the Variance Inflation Factor (VIF) or tolerance, which is the inverse of VIF

(James et al., 2013). Tolerance is defined as follows: 1�R
2
i , where R

2
i represents the unadjusted

determination coe�cient when regressing the i-th independent variable on all other independent

variables (Faraway, 2002). Besides not being directly relevant for classification tasks, calculating

VIF on high-dimensional data becomes problematic due to the long time it takes to iteratively

calculate all factors on the data (Faraway, 2002). Hence, more standard approaches like the afore-

mentioned correlation matrix are often considered more suitable in the context of classification.

Figure 2.4: Example of a dendrogram
to visualize (hierarchical) clusters of
similar features in the data

One method is to apply some clustering algorithm

to extract similar features from the data and use a

single feature per cluster for training and testing the

model. One clustering approach that can be used to

perform dimensionality reduction is hierarchical cluster-

ing with Spearman rank-order correlations (Scikit-Learn

Developers, 2023a). This type of correlation represents

the dependence between the rankings of two variables,

or in other words, how well the relationship between two

variables can be described using a monotonic function,

regardless of the type – linear or non-linear – of rela-

tionship (Myers and Well, 2003). Hierarchical clustering

focuses on constructing a dendrogram, which is a tree-

like structure explaining the relationships between the features in the data, as can be seen in Figure

2.4. In this example, a threshold of 1.1 is considered, which results in three clusters of features,

indicated by the three di↵erent, colored rectangles. After calculating the Spearman correlation

and constructing the dendrogram, a threshold should be defined to determine the clusters used

for feature selection (Scikit-Learn Developers, 2023a). This threshold is generally determined by

a manual, visual inspection of the dendrogram, as herein the number of clusters can be easily

distinguished. If a small number of features is desired, a higher threshold value is more suitable

and vice versa. After determining the threshold, for each resulting cluster, one feature is selected

and added to the final data set.

Besides strengthening interpretability and reducing the risk of overfitting, applying feature

selection or dimensionality reduction is also beneficial for improving computational complexity

and training time (Witten et al., 2016). For example, the training time complexity of a Random

Forest is O(n · log(n) · d · k) with n the number of observations, d the dimensionality (number

of features), and k the number of decision trees (Witten et al., 2016). Then, ceteris paribus, a

twice as large dimensionality (d) would lead to a doubling of the training time complexity. While
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this may not seem significant for smaller data sets, such increases in time complexity become

problematic when dealing with large data sets (Witten et al., 2016).

Automatic hyperparameter optimization

Machine learning models usually contain a myriad of tunable parameters, often referred to as

hyperparameters, which determine a model’s characteristics and therewith influence performance

and complexity. For instance, an essential hyperparameter in Random Forests is the maximum

allowed depth of a single tree within the ensemble. Since the number of possible values for each

hyperparameter in a model is generally immeasurable, it is infeasible to manually try and find

the best set of values for the hyperparameters. This is due to the machine learning model, when

considering it as a function, being black-box because the algebraic form is unknown (Lipton, 2016).

As such, automatic hyperparameter optimization algorithms have been developed.

Two types of methods are Bayesian Optimization (BO) and Swarm Optimization (SO). The

former is a constrained, sequential optimization approach that solves the problem of finding the

optimal set of parameters by building a probability model of the objective function to select

and evaluate the hyperparameter values in the true objective function (Mockus, 1989). Swarm

optimization algorithms, on the other hand, are based on the collective behavior of decentralized

systems in nature, applied in an artificial context. For example, Particle Swarm Optimization

(PSO) simulates social behavior of birds in a flock. Tani and Veelken (2022) compare PSO with

BO in a machine learning context and find that both perform well, but that PSO is more suitable

for larger data sets, while BO is superior for smaller data sets (Tani and Veelken, 2022). Moreover,

PSO does not have any significant computational overhead, while this is the case for BO, rendering

the swarm algorithm even more suitable for large data sets.

Another SO algorithm is the Artificial Bee Colony (ABC) algorithm, which is based on the

foraging behavior of honey bees. ABC is a swarm- or population-based meta-heuristic algorithm

developed by Karaboga and Basturk (2007). It has essentially four components: 1) the food

sources (representing solutions), 2) employed bees (representing agents searching randomly), 3)

onlooker bees (representing the selection of being the best solution with greater probability), and

4) scout bees (representing replacement of abandoned food sources, i.e. local minima). The

algorithm uses an initial candidate solution that is then iteratively optimized by going through

the di↵erent phases, namely initialization, employed bee exploration, onlooking, and scouting. In

general, ABC is more e↵ective compared to BO and PSO (Li et al., 2012; Karaboga and Akay,

2009). Like PSO, it remains e�cient on large data sets while barely compromising performance

(Karaboga and Basturk, 2007; Li et al., 2012). In Zhu et al. (2017), ABC has been applied to

SVM and compared with the more classical Least Squares (LS)-SVM combination. Here, it is

shown that both optimizations provide nearly the same results. Moreover, in recent years, the

standard ABC algorithm, like many other optimization algorithms, has been improved by for

instance allowing multiple dimensions being updated in an iteration (Alizadegan et al., 2013).

Such improvements are desirable, because the standard ABC algorithm focuses on exploration

capacity over exploitation capacity, which may lead to slower convergence speed and sub-optimal

solution accuracy (Wang et al., 2022; Karaboga and Akay, 2009).

14 Estimating Response Models



CHAPTER 2. THEORETICAL FRAMEWORK 2.2. CORE CONCEPTS

2.2.4 Model explainability

With increasing complexity of machine learning models, there is also an increasing need to develop

methods that explain how these models determine their outputs. This has led to the development of

the research field of Explainable Artificial Intelligence (XAI), which focuses on transforming black-

box models into so-called white-box models, increasing their transparency and understandability

among other things (Turek, 2023). Within this field, many di↵erent methods have been developed

for a variety of applications, like image detection. However, the methods discussed in this section

are described in the context of tabular data classification only, as this is the focus of the current

study.

One approach is to calculate the permutation feature importance, which is based on the de-

crease in a model score when a single feature value is randomly shu✏ed, thereby breaking the

relationship between the feature and the target (Scikit-Learn Developers, 2023a). So, the larger

the decrease in the model performance score, the more important the feature. However, this pro-

cedure is extremely sensitive to (multi)collinearity, leading to an overestimation of the importance

of correlated predictors (Nicodemus et al., 2010; Archer and Kimes, 2008; Strobl et al., 2007).

Consequently, several alternatives have been proposed, such as permute-and-relearn and dropped

variable importance (Mentch and Hooker, 2016; Lei et al., 2016). However, other studies show

that the limitations of the classic permutation importance procedure persist in these alternatives

(Hooker et al., 2019; Vorotyntsev, 2020).

A better alternative for extracting feature importance, according to Hooker et al. (2019), may

be calculating the Shapley values, given that this procedure is undertaken carefully to avoid the

same extrapolation bias present in permutation importance. For instance, Shapley values are

unable to handle one-hot encoded data and highly correlated features (Amoukou et al., 2021).

The calculation of Shapley values is based on game theory: it quantifies the contribution of each

‘player’ (i.e. each feature using a single observation) to the ‘game’ (i.e. a single prediction made by

the model) (Lundberg and Lee, 2017). Since each possible combination of features is considered to

determine the importance of a particular feature, this set of combinations to be considered can be

defined as a power set. That is, a power set of a set C is the set of all subsets of C, including the

empty set ? and the original set C itself. More specifically, the SHAP formula, which is Shapley

applied in the machine learning context, uses weighted marginal contributions of the features to

determine the final feature importance of a particular feature:

SHAPc(x) =
P

Cc2C

✓
|C| ·

 
N

|C|

!◆�1

·
�
PredictionC(x)� PredictionC\c(x)

�
(2.5)

with c the feature, Cc a subset of the original set C, N the total number of features, and

Prediction(x) a single prediction (Lundberg and Lee, 2017).

The first part of Equation 2.5 represents the weighting of the marginal contributions, which

are represented in the second part of the equation. As indicated here, the marginal distribution

is defined by the di↵erence of two predictions where one prediction has one additional feature,

ceteris paribus.

The main drawback of this exact procedure is however computationally intractable as, given

N features and k samples, the time complexity is O(k · N · 2N ). As such, applications of SHAP
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in a machine learning context are usually approximations instead of exact calculations (Lundberg

and Lee, 2017; Lundberg, 2018).

While extracting feature importance is one of the most popular approaches to making a machine

learning model more explainable, there are other options. One of these options is the class map,

which is a state-of-the-art visualization tool that provides information on how a classifier has made

its decisions. More specifically, the class map gives insights in erroneous predictions in relation

to the di�culty of an observation, thus when a model is uncertain (Raymaekers et al., 2020).

By using a combination of explainable AI and machine learning tools, individual limitations can

be mitigated and artificial models can be made more explainable, interpretable and transparent

(Turek, 2023).
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Chapter 3

Methods

3.1 The methodological framework

Figure 3.1: The adapted SEMMA
framework used in this study

This study uses an adaptation of the SEMMA framework,

which is one of the popular methodological frameworks used

for data mining. SEMMA stands for the five phases embed-

ded in this methodology: Sample, Explore, Modify, Model,

and Assess (Plotnikova et al., 2020). The first stage regards

determining the data to be used for analysis. Next, in the ex-

plore stage, a preliminary analysis on the data is conducted to

examine the characteristics, interdependencies, and possible

issues of the data. This is also often referred to as exploratory

data analysis. The results from this stage are then used to

clean the data accordingly during themodification stage, after

which the data are proceeded to the modeling stage. Here,

data mining techniques are applied to the data to acquire the

desired type of outcome from the data, like binary classific-

ation of the observations. Lastly, in the assess stage, model

evaluation takes place using test data.

This framework is however not applied one-to-one, be-

cause it does not take into account the iterative nature of

data-scientific research. As such, this standard methodology

is adapted slightly to better fit the characteristics of this study

and provide more accurate guidance. More specifically, feedback loops from the exploration stage

to the sampling stage and from the assessment stage to the modification and modeling stages

are added and a feedforward pathway is added from the exploration to the modeling stage. This

is illustrated in Figure 3.1. The first feedback pathway is added to allow changing which data

are used for analysis, as exploratory analysis commonly exposes shortcomings in the data used,

rendering it unsuitable for certain research goals. The second feedback pathway – from assess-

ment back to modification and modeling – allows for making changes in the data modification and

modeling procedure based on the findings from testing the models with the given modified data.

For example, these findings might indicate errors in a data scaling procedure in the modification

stage or show shortcomings in the used model. The feedforward pathway supports the use of in-

formation gathered in the exploratory analysis phase to develop suitable models for the data. For

instance, if the data are imbalanced, one may choose to use an ensemble method (e.g. Random

Forest) instead of a single sampling method (e.g. Decision Tree), as the former is shown to be
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more robust to imbalances in the data.

The results are then primarily used to analyze the importance of the observed features for

predicting a given target. Next to this, to provide a more complete and in-depth analysis given

that this study mainly functions as a basis for further research, the results are also used to

investigate the potential link between feature importance, model performance, and missingness of

the observed and target variables.
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3.2 Processing pipeline

In this study, the process starts by preprocessing the original ESS08 data set to make it suitable

for classification of the missingness. This procedure is split into two parts, one part of which

takes place before the actual processing pipeline of the classification models (see Figure 3.2). The

other part takes place inside this pipeline due to the multiverse nature of the study. That is, as

described in more detail in Section 4.2, first a general cleaning is applied to the original data,

where the missing value codes are converted to actual missing values, the time-related features are

wrangled, and features with a constant value and those with more than 70% missing values are

removed. The 70% threshold is chosen by a combination of a qualitative and quantitative analysis

of the features’ missingness and a feature’s potential importance.

After this pre-pipeline processing, indicated by the dark blue boxes in Figure 3.2, the targets

are defined. This can be seen as the start of the actual processing pipeline, where each target

definition represents a di↵erent data set, in accordance with the multiverse approach taken. For

each of these data sets, the set is first pushed through a second round of data cleaning, where the

observed data are scaled and encoded based on the nature of the variable, and the values of the

target feature are binarized into missing (0) and non-missing (1). For the categorical variables,

target or mean encoding as described in Section 2.2.3 is applied, while for the few numerical

features standard scaling is implemented. The main reasons for using target encoding instead of

one-hot encoding or feature collapsing are that one-hot encoding feeds the curse of dimensionality

problem in these data sets – due to the large number of features – and that feature collapsing

is undesirable in the context of multiverse analysis – having the goal to minimize reasearcher

degrees of freedom – and from an ethical point of view, due to the added subjectivity when only

using a self-defined share of the most frequent or most important categories while simplifying the

remainder to one residual category.

After this, to mitigate the curse of dimensionality problem and more importantly, to remove

any multicollinearity that may bias the classification models and feature importance calculations,

feature selection is applied by using hierarchical clustering (with a threshold of 1.0) in combination

with Spearman’s correlation as described in more detail in Section 2.2.3. Then, three-fold cross-

validation is performed to balance computational expenses and acquiring more stable estimates

of the validation error. Here, the data are first randomly, non-stratified, split into 33% test data

and 67% training data, after which stratified K-fold cross-validation is performed on the training

data. Here, stratification is used to ensure each fold is representative of all strata in the data,

therewith mitigating potential bias in the case of imbalanced data (Refaeilzadeh et al., 2009). In

each fold, the best model, measured by the Matthews correlation coe�cient, among a range of

models is searched for by the Artificial Bee Colony algorithm. After doing this three times, i.e.

for three folds, among the three best models, the overall best model is extracted and used for final

testing on the left-out test set. Lastly, the feature importances from the overall best model are

calculated by applying SHAP (see Section 2.2.4). For the Random Forest classifier, this is done

by the tree explainer using the complete data. However, for the Multi-Layer Perceptron and the

Support Vector Machine classifiers, a kernel explainer is required, rendering it impossible to use

the full data set due to time constraints. Hence, a subset of the data is used. For the Multi-Layer

Perceptrons, a random sample from the training set with 500 observations is used to train the
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kernel explainer and 300 randomly drawn observations from the test set are used to determine the

feature importance. These quantities are based on time-wise feasibility as this procedure has to be

run for each of the sets in the collection of data sets. Similarly, for the Support Vector Machines

randomly drawn samples of size 75 and 35, respectively, have been used for the kernel explainer.

The latter sample sizes likely limit generalizability of the findings, but it is infeasible to increase

these sizes due to the long time it takes to run the SHAP kernel explainer on the Support Vector

Machine models. The pseudocode of the three-fold cross-validation and the adapted version of the

ABC algorithm can be found in Algorithms 1 and 2.

Throughout the processing pipeline, important findings are stored for later use. This regards

information on the clusters defined in the feature selection procedure, performance metrics of and

information on the best models of each fold and the best model overall, the best models themselves,

and the feature importances. More specifically, the performance metrics stored are Matthews

correlation coe�cient, F1 score, ROC score, balanced accuracy, and accuracy. Moreover, class

maps are made to get more insight into the uncertainty and di�culty of observations when it comes

to the classification process, as described in more detail in Section 2.2.4. First, the observations

are assigned a color based on the class predicted by the model. Next, the probability of an

observation belonging to the opposite class (PAC) and the localized farness (LF) are calculated.

This is done by extracting the fitted model probabilities for each of the two classes.1 The local

farness is computed by defining the nearest neighbors using the kernel density tree, which is a K-

NN algorithm designed for fast conversion regarding N -point problems, with Euclidean distance

as metric and using the Epanechnikov kernel weighting function to weigh the local distances and

calculate the corresponding class probability (P(i 2 gi)) (Epanechnikov, 1969). Then, the localized

farness is calculated as 1.0� P(i 2 gi). Lastly, for the purpose of visualizing the class maps later

on, in the dashboard (see Appendix B), for each model, the class, PAC, LF, color, model, and

class performance are stored for each observation. The (Python) implementation for the binary

class version of the class maps can be found in Appendix D. Regarding the feature importance,

the results are stored in both a raw format, where only the subset of features for each target is

present, and a wrangled version, where the cluster information is used for de-clustering to ensure

all features are present. Here, features within the same cluster are assigned the same importance

as they are similar in pattern and therewith have more or less the same explanation of missingness

of the target.

This information is used to compare the results of the di↵erent models to provide an initial

set of (potential) predictors and to gain insight into how this multiverse analysis can contribute

to the identification and archiving of important predictors of non-response.

Table 3.1: Hyperparameter configurations of the SVM models

Hyperparameter Min value Max value Pre-set value

C 0 1 –

� 0 1 –

Number estimators – – 20

Max samples – – 0.05

1
This can be extended to the multiclass case as well.
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Table 3.2: Hyperparameter configurations of the RF models

Hyperparameter Min value Max value

Number estimators 1 500

Max number features 1 number features - 1

Max depth 2 50

Min samples for split 2 10

Min samples for leaf 2 10

3.2.1 Specifications of the models and the ABC algorithm

The Random Forest classifier has several hyperparameters. In this study, a subset of the most im-

portant hyperparameters to tune is defined, namely 1) the number of estimators, 2) the maximum

number of features, 3) the maximum depth for each tree, 4) the minimum number of samples

needed for a split, and 5) the minimum number of samples needed for a leaf (a single node). The

parameter space for each hyperparameter within which the ABC algorithm searches for the best

model, for the Random Forests and the other two classes of models, can be found in Tables 3.1,

3.2, and 3.3. The tables provide the ranges for the automatically tuned hyperparameters and the

pre-set value for hyperparameters that are neither searched for by the ABC algorithm nor use the

default value. These ranges are as wide as possible along with taking into account plausible ranges,

therewith balancing the time needed to run the algorithm and acquiring a well-performing model.

Moreover, for hyperparameters that are not in the 0-to-1 scale, the values are scaled to be between

0 and 1 when used as input to the ABC algorithm because it leads to improved performance of the

searching process. The output values are then unscaled to their original value and plugged into the

model for training.

Figure 3.3: Plot of the model loss of a pre-
liminary MLP model (classifying occf14b)
during the construction process, used to
determine a suitable combination of batch
size and number of epochs

This is also done for the number of units (i.e.

the sizes of the hidden layers) hyperparameter in

the Multi-Layer Perceptrons. Other hyperparamet-

ers tuned by the ABC algorithm with respect to the

Multi-Layer Perceptrons are the dropout rate, the

learning rate, the exponential decay rate for first

moment vector estimates, and the exponential decay

rate for second moment vector estimates. Moreover,

the activation function is set to the sigmoid function

and the optimizer is set to Adam, one of the go-to

stochastic gradient-based optimizers commonly used

for classification, especially for large data sets. The

number of hidden layers is set to four, the batch size

is set to 2048, and the number of epochs is set to

150. These are determined by manually examining

di↵erent sets of values which have been chosen based on the characteristics of the data and the

objective: there are around 20 000 samples used for training the model, so a relatively large batch

size is possibly most suitable and the objective is binary classification, indicating relatively shal-
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Table 3.3: Hyperparameter configurations of the MLP models

Hyperparameter Min value Max value Pre-set value

Hidden layer sizes 20, 10, 5, 3 200, 100, 50, 25 –

L2 regularization 0.00001 0.01 –

Initial learning rate 0.0001 0.01 –

�1 0.6 0.999 –

�2 0.6 0.999 –

Activation function – – sigmoid

Optimizer – – Adam

Batch size – – 2048

Epochs – – 150

low networks should already be able to solve it. Moreover, a suitable number of epochs – given

a certain batch size and number of hidden layers – has been determined by plotting the number

of epochs versus the loss and analyze at what point the performance starts to plateau. In Figure

3.3, it can be seen that – given a batch size of 2048 and four hidden layers – the loss plateaus at

approximately 150 epochs. Additionally, early stopping is turned on, which leads to 10% of the

data being used for validation within the training process.

Lastly, for the Support Vector Machines, the hyperparameters tuned by the ABC algorithm

are the only two influential hyperparameters: the regularization parameter C and the radial basis

function kernel coe�cient �. As described in Section 2.2.3, here, bagging in the form of pasting is

applied to minimize bias and overfitting in the model. Moreover, the number of base estimators

is set to 20 and the maximum number of samples is set to 0.05 (i.e. 5% of the observations),

where all features can be used for training a base estimator. These values are based on a manual

trial-and-error procedure, again to balance performance and the time it takes to run the models.

For the ABC algorithm, a hive size (i.e. the number of bees) and the maximum number of

iterations is set to 50. This is also determined using a manual trial-and-error process, where

likewise the focus has been on acquiring the best possible performance without getting infeasible

run times.
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Algorithm 1: K-fold cross-validation with the Artificial Bee Colony algorithm

Input: k (number of folds), X (the observed data), y (the target data), maxiterations

(maximum number of iterations), hive (number of bees), dim (number of
parameters to search), l (lower bounds parameter space), u (upper bounds
parameter space)

Output: vimportance (feature importances)
1 Xtrain ⇢ X, Xtest ⇢ X ^Xtest \Xtrain = ; s.t. Xtest [Xtrain = X

2 ytrain ⇢ y s.t. XXtrain,i = yytrain,i , ytest ⇢ y ^ ytest \ ytrain = ; s.t. ytest [ ytrain = y

3 c = 0, m = 0
4 for c = 0 to c = k � 1 do
5 Xtrainc ⇢stratified Xtrain, Xtestc ⇢stratified Xtest

6 ytrainc ⇢stratified ytrain s.t. XXtrainc,i
= yytrainc,i

, ytestc ⇢stratified ytest

7 parsc = ArtificialBeeColony(hive, maxiterations, l, u)

8 for m = 0 to m = k � 1 do
9 for c = 0 to c = k � 1 do

10 train and validate model m with parsm on Xtrainc , ytrainc , Xtestc and ytestc

11 for m = 0 to m = k � 1 do
12 train and test model m with parsm on Xtrain, Xtest, ytrain, ytest
13 vimportance,m = |SHAP(model m,Xtrain, Xtest, ytrain, ytest)|
14 return vimportance

3.3 Visualization methods

One of the di�culties that comes with multiverse analyses is how to best present the many results

and insights that are produced by the analyses. To communicate the collection of results in a

clear way while retaining as much detail as possible, the results are presented in an interactive

dashboard.2 This dashboard consists of di↵erent graphs and plots suitable for the results at hand,

following the principles described by Munzner (2014) and others (see Section B.1 for a summary

of the main principles). Moreover, guidance on how to use the dashboard and how to interpret the

results is provided in the form of textual descriptions. For completeness, the main results are also

provided in a (sortable) tabular format, for easy exploration and browsing. The dashboard is coded

using Plotly and Dash components, combined with HTML markup language.3 This combination

allows the desired level of flexibility in designing a custom dashboard, given the large collection of

results. Before coding the dashboard, first a sketch is made to pre-visualize desired visualizations,

their possible interactions and encodings. This allows verifying and justifying di↵erent designs

without spending too much valuable time on the coding part (Munzner, 2014; Ware, 2014). The

final sketch can be found in Appendix A.1.

Next to the dashboard, where possible, results are aggregated to summarize the overall findings.

Similar to the approach taken with the dashboard, these aggregated results are visualized if this

enhances comprehension of the findings and corresponding interpretation. Again, the decisions

behind the choices made in terms of design and type of visualization are mainly based on Munzner

(2014).

2
The dashboard can be accessed here: http://multiverseanalysisvisualizer.pythonanywhere.com/.

3
The code for building this dashboard, along with all other code made for this project can be found here:

https://github.com/Lieve2/ADSthesis_multiverse_analysis.git (Göbbels, 2023).
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Algorithm 2: Pseudocode of the adapted Artificial Bee Colony algorithm

Input: maxiterations (maximum number of iterations), hive (number of bees), dim
(number of parameters to search), l (lower bounds parameter space), u (upper
bounds parameter space)

Output: solution (best set of values for hyperparameters)
1 m = 0, h = 0, dim = 3, trialmax = 0.6 · hive · dim
2 for h = 0 to h = (hive+ hive mod 2)� 1 do
3 colonyi = beeh

4 solution{i i = 1, ..., hive s.t. l  solutioni  u // D-dim initial solution vector

5 fitnessi = 1�MCCi, fitnessbest = fitnessi // initialize fitness

6 l = 0 // set cycle number to 0

7 beesemployed = colony0,hive/2, beesonlooker = colonyhive/2,hive // classic 50/50 split

8 for s = 0 to s = maxiterations � 1 do
9 for beeemployed in beesemployed do

10 d = randomly selected dimension // produce new solution

11 vi,d = mutation on d-th dimension of beeemployed and randomly selected other bee
s.t. l  vi,d  u

12 if dim > 2 then
// adaptation from original:

// update 3 dimensions each iteration

13 d2 = randomly selected second dim, d3 = randomly selected third dim
14 vi,d2 = mutation on d2-th dim of beeemployed and randomly selected other bee

s.t. l  vi,d2  u

15 vi,d3 = mutation on d3-th dim of beeemployed and randomly selected other bee
s.t. l  vi,d3  u

16 fitnessi,beeemployed = 1�MCCbeeemployedj
// fit model on current solution

17 pi = 0.9·fitnessi/max(fitness) + 0.1 // calculate solution probabilities

18 for beeonlooker in beesonlooker do
19 solutionnew = solutioni where i = max(p) // select new solution based on pi

// produce new solution

20 vi,d = mutation on d-th dim of beeonlooker and randomly selected other bee s.t. l 
vi,d  u

21 if dim > 2 then
// adaptation from original

22 d2 = randomly selected second dim, d3 = randomly selected third dim
23 vi,d2 = mutation on d2-th dim of beeonlooker and randomly selected other bee

s.t. l  vi,d2  u

24 vi,d3 = mutation on d3-th dim of beeonlooker and randomly selected other bee
s.t. l  vi,d3  u

25 if fitnessi,beeonlooker > fitnesscolonyi then
26 fitnessi,beeonlooker = 1�MCCbeeonlookerj

// update fitness if best so far

27 t = 0 // reset trials counter

28 else
29 t = t+ 1

30 if tbee > trialmax then
31 vbee =solutioni where i = max(p) // abandon solution exceeding trial limit

32 if fitnessbee > fitnessi then
33 fitnessbest = fitnessbee // store current best

34 solution = solutionbee
35 s = s+ 1

36 return solution

Estimating Response Models 25



Chapter 4

Data

4.1 The European Social Survey 2016

The European Social Survey (ESS) is an academically motivated, international survey across a

multitude of European countries, where face-to-face interviews are conducted every two years using

newly selected, cross-sectional samples. The goal of this survey is to measure di↵erent kinds of

behavioral and social patterns across European nations (European Social Survey, 2023a).

The main objectives of ESS are assembling, interpreting and publicizing accurate data on the

social conditions in European countries, providing access to these data in a timely and free manner,

and continuously improving methods and analysis for quantitative social measurement. All of

the data are collected on a national level by Computer-Assisted Personal Interviewing (CAPI)

interviews, which are then aggregated. During the data collection, each country is required to

provide case-level information on fieldwork progress (i.e. the most up-to-date data set available)

on a weekly basis to allow fast response to potential problems that may be occurring. After

the data collection period, the final data sets, including meta- and paradata (contact forms), are

collected and finalized by the ESS Core Scientific Team (European Social Survey, 2023b).

The ESS 2016 version is the eighth execution of this project and covers 23 di↵erent countries

(ESS Round 8: European Social Survey Round 8, 2016). The focus of the face-to-face questionnaire

is on questions regarding the topics of politics and trust, attitudes toward sexual and ethnic

minorities, social behavior, religion, background, energy supplies and climate (change), social

benefits (e.g. pension or child care) and employment, attitudes toward the European Union, and

education (European Social Survey, 2023c).

4.2 Exploratory analysis and pre-processing

In total there are 535 variables and nearly 45 thousand observations present in the original data

set. Most of these variables are categorical, representing classes of attitudes towards social queries

or groups to which the respondents belong. For example, one variable contains information on

how much control the respondent has on how their daily work is organized, on a scale from zero

(no influence) to ten (complete control). Besides categorical variables, there are 13 numerical

variables, including time spent on the internet in minutes and the duration of the interview in

minutes.

After converting missing value codes to missing values in a python-readable format, follow-

ing the descriptions in the accompanying codebook, the average amount of missing data is 53.5%.

Moreover, of the 535 variables there are in total 50 variables that have no missingness at all. As can

be seen in Figure 4.1, variables that contain missing values generally have either a low proportion of
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missingness or an extremely high one. Since too high proportions of missingness render the variable

uninformative regarding the task of classification, even though the focus of this study is on the miss-

ingness within variables, it is decided to remove all variables that have more than 70% missing val-

ues. Moreover, there are several variables that have one constant value, which is likewise uninform-

ative. After removing the variables with high missingness and with constant values, 277 variables

remain.

Figure 4.1: Count plot of the miss-
ingness distributions in the original
data, excluding complete variables

Next, additional cleaning is done with respect to the

variables related to interview duration. Here, missing dur-

ations are imputed by calculating the duration from the

start- and end-of-interview time variables where possible.

For a few observations this has been impossible, so that

for these cases random imputation is used to impute the

missing duration. This means that, from the list of pos-

sible durations, for each observation a duration value is

chosen at random and imputed into the data. After this

imputation, only the interview duration variable is kept

in the data and the start- and end-of-interview time vari-

ables are removed since the information is already present

in the duration variable. However, the variables regarding the start and end day, month,

and year are kept as these might carry information about the missingness of certain vari-

ables. For example, in early May 2016 Italy legalized same-sex civil unions, which may have

led to respondents in Italy being more open to answering such questions compared to be-

fore early May (Squires, 2016). This pre-pipeline processing leads to a total of 273 fea-

tures being used in the remainder of the processing pipeline, as illustrated in Figure 3.2.

Figure 4.2: Correlation heat map of the original
data

The first step of the in-process pre-

processing phase (the lightblue, second lane in

Figure 3.2) is to define the targets, which is

done by extracting all features that have more

than 5% missing, corresponding to 74 features.

Each target feature then represents a di↵er-

ent data set and will lead to a di↵erent model

used for the classification. Next, for each data

set, the observed variables are encoded, im-

puted and scaled, and the values of the target

are converted into missing (0) and non-missing

(1). For the numerical variables, missing values

are imputed by random imputation and scaled

using z-score normalization. For the categor-

ical variables, missing values are assigned as

a new class and encoded using the target en-

coding approach as explained in Section 2.2.3.

Moreover, to minimize multicollinearity in the

data and reduce the dimensionality of the data, hierarchical clustering with distance linkage is ap-
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plied. For this, Spearman rank order correlation is calculated on the data, after which a distance

matrix is constructed and the hierarchical clustering with Ward’s method is conducted. Then, of

each cluster, only the first feature is kept and used for the classification task. This is necessary,

because there indeed exists multicollinearity in the data, as can be seen in Figure 4.2.1 This fig-

ure shows highly correlated features in dark orange (high positive correlation) or dark blue (high

negative correlation), indicating (multi)collinearity.

1
Note that in this heat map, the names of the features are left out due to legibility issues that would occur

otherwise. However, a similar heat map is present in the dashboard, where the feature names are visible, to allow

for more detailed analysis of the (multi)collinearity.
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Chapter 5

Results

An overview of the most important results for each target can be found in Appendix E, where the

results are summarized in a tabular format. Moreover, the meanings of the feature abbreviations

and the proportion of missingness for each feature can be found in Appendices G and H, respect-

ively. To allow assessing how overlap in missingness between the predictors and the target may be

of influence to the results, in Appendix I, a list with the average and maximum overlap regarding

each target is provided. The key findings from this collection of results will be described in the

following sections.

Table 5.1: Average performance RF, SVM, and MLP models

Metric RF SVM MLP

Accuracy 0.943 0.921 0.937

Balanced accuracy 0.823 0.784 0.799

ROC score 0.823 0.784 0.799

F1 score 0.955 0.934 0.951

Matthews coe�cient 0.713 0.624 0.641

5.1 Model performance

As described in Chapter 3, the performance of each model is measured using several metrics:

accuracy, balanced accuracy, ROC score, F1 score, and Matthews correlation, with a focus on the

Matthews correlation due to its unbiased representation of performance. Assessing and comparing

model performance allows for a more complete interpretation of (the validity of) the feature

importance later on.

Overall, the Random Forest models perform best, with an average Matthews correlation coef-

ficient of 0.71. This is followed by the Multi-Layer Perceptrons, which have an average Matthews

correlation coe�cient of 0.64, and the Support Vector Machines, with an average coe�cient of

0.62. An overview of the average performance for all of the metrics for each group of models can

be found in Table E.1.

Looking at the performance for each of the 74 models in Figures 5.2, 5.3, and 5.4, it can be

seen that for the Random Forests, 24 models have a performance that is lower than the defined

threshold (0.7) for which a model is considered having decent performance. In other words, 50 out

of the 74 models (68%) in the Random Forest class have decent performance. For the Multi-Layer

Perceptron class, there are 45 models (61%) with decent performance and for the Support Vector

Machine class there are merely 29 models (39%) performing good enough. Moreover, it can be

seen that all three classes of models have a similar pattern, indicating that they generally perform

poorly on the same targets. However, where the Multi-Layer Perceptrons and the Support Vector
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Machines sometimes have a Matthews correlation coe�cient of exactly zero, implying a random

prediction, Random Forest models never have a Matthews coe�cient that is greatly lower than 0.2.

For the Support Vector Machine class, this occurs for three targets: bnlwinc (Attitude towards

“social benefits should only be for people with the lowest incomes”), lbenent (Attitude towards

“many with very low incomes get less benefit than legally entitled to”), and occf14b (Occupation of

father of respondent when respondent was 14). Furthermore, for the Multi-Layer Perceptrons, this

occurs for 13 di↵erent data sets, including bnlwinc and lbenent, but not occf14b. For the targets

where the Multi-Layer Perceptrons have a Matthews coe�cient of zero, the average percentage

missing values is 9.3 and none of the targets have more than 19% missing values, representing a

highly imbalanced data set. Similarly, the three targets where the Support Vector Machines have

a coe�cient of zero, have an average missingness of 10.6%, never surpassing 14.5% missing values.

Looking at the class maps for the models predicting the target bnlwinc, it can be seen that when

predicting class 0 (missing), all of the observations are relatively di�cult, with a localized farness

ranging between the 50% quantile and the 95% quantile (see Figure 5.5). This is not the case

for the observations belonging to class 1 (non-missing), that all have relatively high proximity to

each other. Here, the models are able to relatively accurately predict the true class 1 observations.

However, similar to what is indicated by the Matthews correlation coe�cient, the class maps show

that the Multi-Layer Perceptron and Support Vector Machine assign all observations to be of class

1 and the Multi-Layer Perceptron does so with equal probability for all observations (i.e. they

all have a 75% chance of belonging to class 1, indicating random assignment of a class instead of

actually predicting the class given the observed information).

The average overlap between the missing values in the target and those in a predictor are

between 0.5% and 4.4%, with the highest percentage overlap a predictor has with its target being

56.3%. Moreover, there are merely five occurrences of a predictor having 40% or more overlap with

its target, while each of these five targets has a proportion of missingness ranging between 56%

and 67%. One of the targets with relatively low overlap (2.9% on average) is rlgdnm. This target

– where 41% of the values are missing – is accurately classified by the models (see Figure 5.7).

Figure 5.1: Proportions of missing values for
the 29 well-classified targets

Regarding the models with good performance,

there is a set of 29 common targets for which the

models all perform well. The missingness pro-

portions of these targets range from nearly 60%

to just under 7%, as can be seen in Figure 5.1.

One of the targets that is accurately predicted

by all three models (0.97-0.99 Matthews correl-

ation coe�cient) is what religion or denomination

the respondent has ever belonged to, if any (i.e.

rlgblge). Here, the class maps for class 0 show

that all three models have some observations that

they are uncertain about (close to the midpoint

line), while occasionally observations are wrongly

assigned to class 1 with high certainty (probability

close to 1), as can be seen in Figure 5.6. For the Random Forest, these are merely the more di�-

cult observations, while the other two models also misclassify simple observations. However, most
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observations are located in the bottom, indicating a correct prediction with high certainty (prob-

ability close to 0), even for some of the more di�cult observations (i.e. those that lie more to the

right). Moreover, for the Random Forest model, a clear cluster with uncertain observations can be

distinguished and, compared to the Support Vector Machine and Multi-Layer Perceptron, it has

relatively few incorrect predictions with high certainty. Looking at class 1, both the Multi-Layer

Perceptron and the Random Forest have hardly any incorrect predictions with high certainty,

while the Support Vector Machine does. Additionally, the Multi-Layer Perceptron correctly pre-

dicts most, both easy and di�cult, predictions with extremely high certainty. Both the Random

Forest and the Multi-Layer Perceptron only misclassify relatively di�cult observations, but this

is not the case for the Support Vector Machine. Similar to the class-0 maps, here too, most

observations are located at the bottom, indicating correct predictions with high certainty.

Table 5.2: Table of the five most informative features on average for each model type when all 74
targets are considered, ranked in descending order

RF SVM MLP

Rank
Feature

(SHAP value, % missing)

Feature

(SHAP value, % missing)

Feature

(SHAP value, % missing)

1
region

(0.038, 0%)

dvrcdeva

(0.034, 0.6%)

eiscedf

(0.041, 10.1%)

2
regunit

(0.038, 0%)

yrbrn2

(0.034, 23.0%)

dvrcdeva

(0.040, 0.6%)

3
psppsgva

(0.037, 2.2%)

rshpsts

(0.033, 41.7%)

yrbrn2

(0.039, 23.0%)

4
rfgbfml

(0.037, 6.7%)

eisced

(0.029, 0.3%)

wkhtotp

(0.038, 67.3%)

5
pdwrk

(0.035, 0%)

domicil

(0.029, 0.1%)

uemplap

(0.038, 0%)

5.2 Feature importance

Similar to creating an overview of the performance of each model by averaging the results across

all models, this is also done for the feature importance. When taking into account all targets

and the de-clustered features (see Chapter 3), the three overall most important features for the

Random Forests are region (region of the respondent), regunit (regional unit of the respondent),

and psppsgva (attitude towards “the political system allows people to have a say in what the

government does”). For the Support Vector Machines, these are dvrcdeva (whether ever divorced),

yrbrn2 (birth year of second person in household), and rshpsts (relationship status). Similarly,

for the Multi-Layer Perceptrons, the dvrcdeva and yrbrn2 features are in second and third place,

respectively, but the on average most importance feature is eiscedf (highest level of education of

father in ES-ISCED scale). All of these features have SHAP values around 0.05, indicating that

they – on average – change the prediction by approximately 0.05 compared to using a baseline

value of the respective feature. An overview of the five most important features for each model

can be found in Table 5.2.
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Figure 5.2: Performance in Matthews correlation coe�cient and F1 score for the 74 Random
Forest models

Figure 5.3: Performance in Matthews correlation coe�cient and F1 score for the 74 Support Vector
Machine models

Figure 5.4: Performance in Matthews correlation coe�cient and F1 score for the 74 Multi-Layer
Perceptron models
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Figure 5.5: Class maps of the bnlwinc target

Figure 5.6: Class maps of the rlgblge target

For the class-0 maps (left), blue is wrongly assigned to class 1 with a certainty defined by the value on

the y-axis. The closer to the 0.5 line, the higher the uncertainty. The di�culty of an observation is

indicated by the location on the x-axis, where further to the right indicates higher di�culty. Similarly,

for the class-1 maps, orange-colored plots are wrongly assigned to class 0, a y-value of 0.5 indicates high

uncertainty and a large value on the x-axis indicates high di�culty.
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Figure 5.7: Class maps of the rlgdnm target

As indicated in Section 5.1, however, not all models perform well, and this may corrupt SHAP

calculations. So, the average has also been calculated on the subset of targets with good per-

formance for all three models. Here, the five most important features are identical, albeit in a

di↵erent order, for all three models: yrbrn2, pdwrk (whether respondent has done paid work in 7

days before the interview), dvcdeva, eduyrs (years of fulltime education completed), and icpart2

(whether the respondent lives with husband, wife or partner, in interviewer code). The average

SHAP values for the features of this subset of classifications are slightly higher, ranging from 0.043

to 0.065. An overview of the top five important features and the corresponding SHAP values can

be found in Table 5.3.

Using again the bnlwinc target as example for assessing the feature importance of poorly per-

forming models, the results show that neither the Support Vector Machine nor the Multi-Layer

Perceptron have any features that are important to their classification decisions. More specifically,

the feature with the highest SHAP value for the Support Vector Machine is netustm (time spent us-

ing the internet on a typical day) with an importance of 0.003 and for the Multi-Layer Perceptron,

all features have an importance of exactly zero, which coincides with the previously described cor-

responding class maps. That is, since the Multi-Layer Perceptron classifies all observations to class

1 with equal probability, there is no distinction between classifications of the individual observa-

tions. For the Support Vector Machine, however, there is still some variation in the probabilities

of belonging to a certain class, indicating that some information from the observed variables is

used to distinguish between individual observations. Conversely, for the Random Forest, there

are two visibly important features: psppsgva and gndr (gender of the respondent). These features
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Table 5.3: Table of the five most informative features on average for each model type when only
good (Matthews coe�cient � 0.7) models are considered, ranked in descending order

RF SVM MLP

Rank
Feature

(SHAP value, % missing)
Feature

(SHAP value, % missing)
Feature

(SHAP value, % missing)

1
pdwrk

(0.049, 0%)
pdwrk

(0.059, 0%)
eiscedf

(0.068, 10.1%)

2
eiscedf

(0.048, 10.1%)
yrbrn2

(0.058, 23.0%)
dvrcdeva

(0.065, 0.6%)

3
eisced

(0.047, 0.3%)
dvrcdeva

(0.053, 0.6%)
yrbrn2

(0.065, 23.0%)

4
domicil

(0.047, 0.1%)
eduyrs

(0.047, 1.0%)
wkhtotp

(0.063, 67.3%)

5
icpart2

(0.045, 0.4%)
icpart2

(0.043, 0.4%)
uemplap

(0.062, 0%)

have a SHAP value of 0.036 and 0.023, respectively.

Looking at the feature importance of a well-classified target, rlgblge, all three models assign high

importance to the observed feature dscrrce (whether or not respondent’s group is discriminated in

terms of color or race), which has a SHAP value ranging between 0.442 and 0.475, indicating that

this feature changes the prediction by nearly 0.5 compared to using the baseline value. Moreover,

this observed feature has no missing values, meaning that, for certain, the true values are important

to the classifications of the models. Similarly, the feature psppsgva (SHAP value of 0.247), which

is the second-most important feature for the Random Forest model, has a low missingness rate

of 2.15%. The other models do not have any other visibly important features for classifying

the missingness of the target regarding what religion or denomination the respondent has ever

belonged to.
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Discussion

6.1 Discussion of the results

The results regarding the model performances show that the Random Forest class of models

performs best overall, with a Matthews coe�cient of 0.71. This is the only class of models that,

on average, meets the 0.7 threshold for which a model is considered decent enough, as the Support

Vector Machine and the Multi-Layer Perceptron have a Matthews coe�cient of 0.62 and 0.64,

respectively. Moreover, assessing whether or not the ‘decent performance’ threshold is met for

each specific target, it turns out that 50 out of the 74 models meet this threshold for the Random

Forests, while the Multi-Layer Perceptrons and Support Vector Machines are only decent in 45 and

29 cases, respectively. While this confirms the theory stating that Random Forests are especially

suitable for binary classification, these results also indicate the apparent di�culty of predicting

item non-response.

To further investigate this apparent di�culty regarding predicting the missingness of a share

of the set of investigated targets, class maps have been constructed, and results to analyze the

potential link between model performance, proportion and overlap of missingness of the targets and

the observed variables have been gathered and described in Chapter 5. For the models that have

a Matthews correlation coe�cient that is equal to exactly zero, the observations have only been

assigned to one class, which indicates random behavior rather than evident use of the information

from the observations. This may be due to essential information regarding the missingness of the

target being unobserved, rendering the MAR assumption – which is by definition assumed during

the classification process – implausible. This relates to a second potential cause indicated by the

results: fading of the associations due to the categorical imputation. That is, by introducing

unobserved values in the form of an additional class, for features with a large proportion of

missingness, this additional class and thus the missingness, may diminish the overall association

between the missingness of the target and the respective feature, leading to lower predictive ability

of the observed values in this feature.

For most of the models, the class maps for class 0 show that the observations are relatively

hard and the models are uncertain about most of the observations, which at least partly explains

the low Matthews coe�cients for misclassified targets. However, comparing this to the class 1

maps, the observations are generally considered easy, and the models are uncertain about a much

smaller proportion of the observations. This is especially the case when the data are imbalanced

towards class 1 (i.e. when the proportion of class 1 is much higher than class 0), such as for the

target rlgdnm, where 41% of the observations is class 0 and 59% class 1, which class maps show no

erroneous and generally confident classifications for class 1, but some misclassifications regarding

class 0. However, the inverse does not seem to hold entirely. When the proportion of class 0 is
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higher than class 1, some uncertainty for a proportion of the observations remains and the class-0

observations are still seen as di�cult. This is for example the case for the target rlgblge, which

has 60% class-0 observations and 40% class-1. Here, the proportion of uncertain classifications is

larger for class 0 than for class 1 and the class-0 observations seem to have an overall higher level of

di�culty. On average, the predictors of rlgdnm have 1.9% overlap in missing values with the target,

with the maximum overlap in missingness between a predictor and the target being 24.3%. On the

other hand, the average overlap of missing values with rlgblge is 2.9%, with a maximum overlap of

33.0%. So, the remaining uncertainty may be due to the predictors having more missing data for

observations when the outcome is also missing compared to observed cases. However, since there

are merely four targets that have more class-0 than class-1 outcomes and because the maximum

percentage missing of the targets is 59%, this cannot be stated with certainty and should be

investigated further.

Interestingly, when looking at the table in Appendix E, many of the targets with bad classific-

ation regard attitude-related questions, especially regarding social benefits and income, education,

and the European Union, rather than fact-related questions – these are often classified well. This

may be because it can be more di�cult to collect su�cient information about emotions, state of

mind, and other subjective and personal aspects of the respondent.

For most of the models with bad performance, there are no features that have SHAP values

above 0.05, indicating that the observed information is not profoundly influential to the classific-

ations made. When considering only the well-performing models, the most informative features

regard employment, education level, domicile, and household and partner information.1

So, these results are promising in the sense that they provide an initial set of possibly informat-

ive predictors concerning targets related to the topics of politics and trust, attitudes toward sexual

and ethnic minorities, social behavior, religion, background, energy supplies and climate (change),

social benefits (e.g. pension or child care) and employment, attitudes toward the European Union,

and education.

6.2 Remaining limitations

While the aforementioned results are promising, some limitations of the study remain. One limita-

tion is that using SHAP for determining the feature importances, while a popular approach, is not

perfect. That is, it is highly sensitive with respect to (multi)collinearity and, for the non-tree-based

models, uses approximations on a subset of data rather than calculations on the entire provided

data set. While the former is taken care of by applying a clustering approach as feature selection,

the latter is still likely to influence the results. Interestingly, however, the feature importances of

the di↵erent model classes still often coincide in terms of ranking. So, this could be considered a

minor limitation. Nonetheless, for future reseach it can be useful to implement multiple ways to

extract feature importance and compare these results. This will further increase generalizability

of the findings, which will benefit the gathering of important predictors across di↵erent contexts

1
Within the thesis project group, similar studies have been conducted concerning di↵erent data sets. Interesting

to note is that the study by Albert Banke (2023) also indicates that features carrying spatial or location information

are important in predicting missingness for certain social science-related targets. This not only demonstrates the

potential importance of including such features, but at a more general level, also illustrates the long-term purpose

of these studies: to combine findings of di↵erent studies for determining the importance of certain features.
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and domains.

Another limitation remains in the type of imputation used to complete the predictor variables

before the modeling takes place. In this study, simple but limited imputation has been applied by

adding an additional class to account for missing values in the categorical predictors and random

imputation has been applied to the numeric predictors. However, this likely biases the estimated

classifiers and could therefore fade the true associations between predictor and target. As such, for

future research it should be taken into account that the choice of imputation method influences

the acquired results. Thus, it may be desirable to apply a variety of imputation methods and

compare the results to achieve a more robust collection of (potential) predictors of missingness.

A third limitation is that, even though a multiverse approach is taken, some researcher degrees

of freedom are not (su�ciently) accounted for, which limits generalizability of the findings. That

is, besides only using one data set, each model is only run on a single seed, so the results may di↵er

when using di↵erent seeds. Moreover, while as many of the important hyperparameters are tuned

automatically by the Artificial Bee Colony algorithm, this is not done for all hyperparameters

and not on the entirety of the possible parameter space. Additionally, the hyperparameters of the

ABC algorithm are set manually, which may lead to finding better models when being initialized

di↵erently, even though each decision is made taking into account existing theory and aims to

balance the performance-time trade-o↵, as described in Chapters 3 and 7. Similarly, the choice of

di↵erent models could also lead to di↵erent results. While the latter described researcher degrees

of freedom are harder to account for, further research could for instance focus on applying similar

multiverse procedures as the one proposed in this study to di↵erent but related data sets (to verify

the feature importances) or use di↵erent seeds (to verify model performance and feature import-

ances). It is especially vital that the feature(s) (types) suggested to be important in the ESS08

data set are verified with other, related data sets before an archive can be constructed, because

the importance lies not in the applicability on a single data set, but on general (multi)domain

applicability, so that new, non-existing data sets can be constructed where the MAR mechanism

can be safely assumed. This also mitigates the current limitation, that MAR can not always be

safely assumed in the ESS08 data, by including di↵erent information and possibly combining the

(important) features of the data used in this study with related data to obtain a more exhaustive

set of features.

A more general limitation of the multiverse approach is that it limits going into detail with

respect to the analysis of the results due to the large collection of results. So, results are mostly

described in a more aggregated or summarized format, which may lead to interesting target-

specific patterns being missed, even though the results of the 74 data sets have been studied in

as much detail as possible given the available time. Nevertheless, while this can be considered a

limitation, at the same time it meets the purposes of this study, which is to provide an initial set of

(potentially) essential predictors for a range of target variables and to show how multiverse analysis

can contribute to the creation of an archive of essential predictors. By enabling constructing a

collection of models in a flexible and streamlined way due to the possibility of using di↵erent types

of models on a sequence of data sets, the multiverse approach turns out to be an overall suitable

method for guiding the process of identifying predictors of non-response.
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6.3 Moving forward

Since the results indicate possible bias due to the type of imputation methods used, as a first

subsequent analysis, the random forest pipeline is adjusted to use multiple imputation and is

run for a subset of 64 targets from the total of 74 targets. This provides a first idea of how the

choice of imputation method can influence the process of identifying predictors of non-response in a

multiverse analysis context. More specifically, instead of adding an additional class and performing

random imputation, MICE with Bayesian ridge regression (the default in the used package),

three imputation rounds and most frequent as initial imputation strategy, is implemented. The

results, which can be found in Appendix F, show an average Matthews correlation coe�cient of

0.97. Moreover, all models have good performance as the lowest Matthews coe�cient is 0.90,

which is for the model with the target wkhtot. Here, the most important features over the 64

classification models regard again employment (jbspv, estsz ), education (eisced), household and

partner information (gndr2, agea, gndr, maritalb). However, the prime important feature is stated

to be stfedu, which carries information on how satisfied the respondent is with the educational

system in their country. So, where the models with single imputation seem to be unable to extract

informative patterns from the features carrying subjective information, such as attitudes or beliefs,

the models using multiple imputation, on the contrary, appear to be able to do so. Similar to the

models using the data imputed with the simple imputation methods, the (ten) most important

features of Random Forest models using multiple imputed data have low missingness: 4.7%, on

average. Thus, the idea of imputations fading the actual associations between potential predictor

and target still remains a possibility and should be investigated further.

Accordingly, while the type of features considered informative for predicting missingness does

not seem to di↵er much between the (Random Forest) classifications done with the single and

the multiple imputation approach – even though the specific variables often di↵er – this basic

postliminary analysis demonstrates the relevance of conducting multiple, comparable studies to

acquire the level of robustness in the results that is needed for the successful construction of an

archive of essential predictors of non-response.
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Ethical considerations and

implications

Ethics in data science projects, like this study, regards among other things a correct use of data

and models, and transparency regarding used methods and acquired results. With more advanced

machine learning models being deployed every day, the importance of taking into account ethics

during data science-related projects becomes increasingly clear (Mittelstadt et al., 2016; Mantelero,

2022). As such, during each stage of this study, from gathering the data to assessing the di↵erent

models, the ethical aspects have been taken into consideration and appropriate action has been

taken where applicable. In the following, the di↵erent ethical aspects considered in this study

are described, following roughly the structure of the Fundamental Rights and Algorithms Impact

Assessment (FRAIA) (Gerards et al., 2022).

7.1 Stage 1: Why?

This first stage regards validating the use of an algorithm by defining the objectives of the study

and why an algorithm is necessary. For this study, the aim is to work towards the creation of an

archive of essential predictors of missingness in a wide range of data sets to guide researchers in

the design of their studies. An algorithm is desirable, if not required, to perform the embedded

task of classification in determining which predictors are essential in a given data set. Moreover,

the predetermined approach – the multiverse analysis – requires analysis of a large body of data,

rendering it a complex and multi-step process, for which the use of algorithms is the more desirable

and e�cient choice.

7.2 Stage 2: What?

The second stage regards assessing the algorithm and its input, that is, the data. While the over-

arching class of algorithms has already been defined by the task at hand, there remains a wide

range of algorithms or models still available. More specifically, the implemented prediction models

are all binary classification models. From this class of models, the Support Vector Machine, Ran-

dom Forest, and Multi-layer Perceptron have been chosen, because they have di↵erent deficiencies

and levels of complexity, allowing for an interesting comparison as one aspect of the multiverse

approach. However, a major drawback is that all three methods are considered black-box models,

meaning that their inherent calculations and decision-making is incomprehensible for humans and

thus ethical aspects like transparency and explainability are corrupted. To counteract this, be-
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sides calculating feature importances which is required given the objective of the study, class maps

have been added to further enhance explainability and transparency of these black-box models.

As explained in more detail in Section 2.2.4, this provides information on both the uncertainty

of the model for each separate observation in the data and relates this to the di�culty of that

observation. This allows gaining insight into with what certainty misclassifications are made and

on what type(s) of observations. Moreover, to minimize biased results due to class imbalances,

the Matthews correlation coe�cient has been used as main performance metric, but at the same

time, multiple other, more common metrics have been provided. This is to ensure the results are

comprehensive for researchers and students from di↵erent fields that are used to di↵erent metrics

and to provide an exhaustive picture of the model performances in a more general sense. As

explained in Sections 2.2.3 and 3.2, the Matthews correlation coe�cient is one of few metrics that

provides an unbiased indication of model performance, taking into account performance on all

four classes of the confusion matrix and thus also unbalanced classification targets.

Regarding the ethical aspects surrounding the data, it has been decided to use open-source,

anonymous data to avoid any potential issues regarding privacy and security. Moreover, the

methodology used by ESS explicitly aims to minimize non-response bias by enhancing balanced

response rates across groups and interviewer e↵ects by researching how interviewer behavior can

a↵ect measurement and representation of the target population and continuously improve the

surveying upon these results (European Social Survey (ESS), 2023a). Nonetheless, since the data

collected only spans the European population, it is likely there is some extent of (geographical)

bias present in the data, which should be taken into account when interpreting the results provided

by this study. That is, for instance, features that are considered essential for predicting a certain

(group of) target(s) may not at all be essential for continents other than Europe, and vice versa,

due to di↵erences in cultures, ways of living, and social rules and norms. Moreover, bias may also

be introduced in the translation process when combining the di↵erent national data sets into one

European data set. That is, in each participating country the questions and responses are (mostly)

asked in the national language and translated to English, which may introduce subjectivity in the

meaning of a question or response by the translator. However, it is unlikely this translation

introduces large levels of bias, because most questions require an answer given based on a certain

scale and the few open questions all regard quantitative answers, like the time spent on the internet

in minutes. Moreover, ESS is aware of this potential bias and therefore conducts ongoing research

on the best ways to provide translations with minimal bias (European Social Survey (ESS), 2023b).

7.3 Stage 3: How?

This stage regards what is done with the results, including what decisions are based on them. As

indicated before, the results are meant to give an indication of what features can be important in

predicting missingness patterns in a range of data sets with the aim to ensure researchers design

their studies in a correct way so that applying state-of-the-art imputation techniques for missing

data handling provides unbiased imputations. The main potential e↵ect of the algorithm is thus

higher data quality in social science-related studies (and possibly beyond). Moreover, the long-

term aim is to validate these findings with other, similar studies conducted on di↵erent data sets

to provide more robust results regarding feature importance.
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Additionally, to adhere to open-source principles and open communication about the function-

ing of the algorithm, the entire project code is made available. This allows researchers, students,

and other interested individuals to assess the code and decide how to use the findings of this

study for themselves. With similar reasoning, the dashboard has been constructed with a focus

on explainability, interpretability, and transparency of the results and minimizing di�culties in

legibility for individuals su↵ering from color blindness.

7.4 Stage 4: Fundamental rights

The fourth and last stage of the FRAIA road map regards the assessment of safeguarding funda-

mental rights. Since 1) there are no personal data used, 2) the data are collected in an ethical

way, according to the European Social Survey, 3) lack of model explainability and transparency

is restored as much as possible by including additional methods that provide information on the

reasoning of the classification models, 4) a dashboard is constructed to provide explainable, in-

terpretable, and transparent results for a wide range of potential users, and 5) all code is freely

accessible, the algorithm, and this study in a more general sense, are unlikely to have a direct and

significant influence on fundamental rights.
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Conclusion

This study has investigated which variables are predictive of missingness in certain target variables

in the context of European behavioral and social pattern-data and how this multiverse approach

can contribute to the long-term goal of building an archive of universally informative predictors

of missingness to ensure researchers from the social sciences and beyond can design their studies

in such a way that MAR can be assumed safely and advanced imputation techniques can be

used validly. To do so, a multiverse analysis approach is taken to predict the missingness in a

multitude of targets from the ESS08 data set and extract the most informative features with

respect to this missingness. More specifically, for each target the best model for each type of

model – Random Forest, Support Vector Machine, and Multi-Layer Perceptron – is sought by the

automatic Artificial Bee Colony tuning algorithm and cross-validation, and the feature importance

is calculated using SHAP. With an average Matthews correlation coe�cient of 0.71, the Random

Forest models perform best, but all three classes provide approximately similar results with respect

to the feature importance. Even though these classification models do not always perform well,

a consensus on the types of variables that are informative for a set of targets – which regard the

topics of politics and trust, attitudes toward sexual and ethnic minorities, social behavior, religion,

background, energy supplies and climate (change), social benefits (e.g. pension or child care) and

employment, attitudes toward the European Union, and education – can thus be distinguished from

the results. More specifically, the results suggest the importance of including variables concerning

employment, education level, domicile, and household and partner information, especially when

dealing with more fact-related variables.

Though limitations remain in accounting for the researcher degrees of freedom and the missing

data in the observed variables, this study provides an initial set of important predictors in the

context of social science-related data and shows that multiverse analysis can adequately guide the

process of identifying predictors of non-response by enabling constructing a collection of models

in a flexible but streamlined way, due to the possibility of using di↵erent types of models on a

sequence of data sets. This can benefit the successful construction of an archive of informative

predictors, due to multiverse pipelines, like the one proposed in this study, being easily adaptable

to di↵erent contexts and purposes, allowing researchers from di↵erent fields to contribute to the

construction of this archive.
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S. Maśıs. Interpretable Machine Learning with Python. Packt Publishing, page 737, 2021. URL

https://www.oreilly.com/library/view/interpretable-machine-learning/9781800203

907/. 12

L. Mentch and G. Hooker. Quantifying Uncertainty in Random Forests via Confidence Intervals

and Hypothesis Tests. Journal of Machine Learning Research, 17:1–41, 2016. 15

D. Micci-Barreca. A Preprocessing Scheme for High-Cardinality Categorical Attributes in Clas-

sification and Prediction Problems. ACM Special Interest Group on Knowledge Discovery in

Data Explorations Newletter, 3(1):27–32, 2001. doi: https://doi.org/10.1145/507533.507538.

URL https://doi-org.proxy.library.uu.nl/10.1145/507533.507538. 11, 12

G. Mignogna, C. E. Carey, R. Wedow, N. Baya, M. Cordioli, N. Pirastu, R. Bellocco, M. G.

Nivard, B. M. Neale, R. K. Walters, and E. Ingelsson. Patterns of item nonresponse behavior

to survey questionnaires are systematic and have a genetic basis, 2022. 3

B. D. Mittelstadt, P. Allo, M. Taddeo, S. Wachter, and L. Floridi. The ethics of algorithms:

Mapping the debate. Big Data and Society, 3(2):1–21, 2016. ISSN 20539517. doi: 10.1177/20

53951716679679. 40

J. Mockus. Bayesian Approach to Global Optimization. Springer Netherlands, Dordrecht, 1 edition,

1989. ISBN 978-94-009-0909-0. URL https://link.springer.com/book/10.1007/978-94-0

09-0909-0. 14

T. Montvilas. How To Approach Data Governance To Avoid Poor Data Quality, 2022. URL

https://www.forbes.com/sites/forbesbusinessdevelopmentcouncil/2022/01/07/how-t

o-approach-data-governance-to-avoid-poor-data-quality/?sh=5113712411a2. 1

T. Munzner. Visualization Analysis and Design. Taylor & Francis Group, 2014. ISBN 978-1-4665-

0891-0. 24, 52, 54

J. L. Myers and A. D. Well. Research Design and Statistical Analysis. 2003. 13

K. K. Nicodemus, J. D. Malley, C. Strobl, and A. Ziegler. The behaviour of random forest

permutation-based variable importance measures under predictor correlation. BMC Bioinform-

atics, 11(1):1–13, 2 2010. ISSN 14712105. doi: 10.1186/1471-2105-11-110/FIGURES/6. URL

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-110.

15

J. Peng, J. Hahn, and K.-W. Huang. Handling Missing Values in Information Systems Research:

A Review of Methods and Assumptions. Information Systems Research, 34(1), 3 2022. ISSN

1047-7047. doi: 10.1287/ISRE.2022.1104. URL http://pubsonline.informs.orghttp:

//www.informs.org:Theonlineappendicesareavailableathttps://doi.org/10.1287/is

re.2022.1104. 1, 3

48 Estimating Response Models

https://www.oreilly.com/library/view/interpretable-machine-learning/9781800203907/
https://www.oreilly.com/library/view/interpretable-machine-learning/9781800203907/
https://doi-org.proxy.library.uu.nl/10.1145/507533.507538
https://link.springer.com/book/10.1007/978-94-009-0909-0
https://link.springer.com/book/10.1007/978-94-009-0909-0
https://www.forbes.com/sites/forbesbusinessdevelopmentcouncil/2022/01/07/how-to-approach-data-governance-to-avoid-poor-data-quality/?sh=5113712411a2
https://www.forbes.com/sites/forbesbusinessdevelopmentcouncil/2022/01/07/how-to-approach-data-governance-to-avoid-poor-data-quality/?sh=5113712411a2
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-110
http://pubsonline.informs.orghttp://www.informs.org:Theonlineappendicesareavailableathttps://doi.org/10.1287/isre.2022.1104.
http://pubsonline.informs.orghttp://www.informs.org:Theonlineappendicesareavailableathttps://doi.org/10.1287/isre.2022.1104.
http://pubsonline.informs.orghttp://www.informs.org:Theonlineappendicesareavailableathttps://doi.org/10.1287/isre.2022.1104.


BIBLIOGRAPHY BIBLIOGRAPHY

V. Plotnikova, M. Dumas, and F. Milani. Adaptations of data mining methodologies: A systematic

literature review. PeerJ Computer Science, 6:1–43, 2020. ISSN 23765992. doi: 10.7717/PEER

J-CS.267/SUPP-2. URL /pmc/articles/PMC7924527//pmc/articles/PMC7924527/?repor

t=abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924527/. 17

J. Raymaekers, P. J. Rousseeuw, and M. Hubert. Class maps for visualizing classification results.

Technometrics, 64(2):151–165, 7 2020. doi: 10.1080/00401706.2021.1927849. URL http:

//arxiv.org/abs/2007.14495http://dx.doi.org/10.1080/00401706.2021.1927849. 16

P. Refaeilzadeh, L. Tang, and H. Liu. Cross-Validation. Encyclopedia of Database Systems, pages

532–538, 2009. doi: 10.1007/978-0-387-39940-9{\ }565. URL https://link.springer.com/

referenceworkentry/10.1007/978-0-387-39940-9_565. 20

D. B. Rubin. Inference and Missing Data. Biometrika, 63(3):581–592, 12 1976. ISSN 0006-3444.

doi: 10.1093/BIOMET/63.3.581. URL https://dash.harvard.edu/handle/1/3408223. 3

Scikit-Learn Developers. Permutation Importance with Multicollinear or Correlated Features,

2023a. URL https://scikit-learn.org/stable/auto_examples/inspection/plot_permut

ation_importance_multicollinear.html. 13, 15

Scikit-Learn Developers. sklearn.ensemble.BaggingClassifier, 2023b. URL https://scikit-lea

rn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html. 8

T. Shin. The 10 Best Data Visualizations of 2021, 10 2021. URL https://towardsdatascience

.com/the-10-best-data-visualizations-of-2021-fec4c5cf6cdb. 53

D. Singh and B. Singh. Investigating the impact of data normalization on classification perform-

ance. Applied Soft Computing, 97:105524, 12 2020. ISSN 1568-4946. doi: 10.1016/J.ASOC.201

9.105524. 10, 11

N. Squires. Italian parliament gives gay unions the green light, 5 2016. URL https://www.tele

graph.co.uk/news/2016/05/11/italian-parliament-gives-gay-marriages-the-green-l

ight/. 27

C. Strobl, A. L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random forest variable importance

measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1):1–21, 1 2007. ISSN

14712105. doi: 10.1186/1471-2105-8-25/FIGURES/11. URL https://bmcbioinformatics.

biomedcentral.com/articles/10.1186/1471-2105-8-25. 15

L. Tani and C. Veelken. Comparison of Bayesian and particle swarm algorithms for hyperparameter

optimisation in machine learning applications in high energy physics, 1 2022. URL https:

//arxiv.org/abs/2201.06809v1. 14

A. Tharwat. Classification Assessment Methods. Applied Computing and Informatics, 17(1):

168–192, 2021. doi: 10.1016/jaci2018.08.003. 8

K. M. Ting. Encyclopedia of machine learning. Springer, 2011. ISBN 978-0-387-30164-8. doi:

10.1007/978-0-387-30164-8. 8

Estimating Response Models 49

http://arxiv.org/abs/2007.14495%20http://dx.doi.org/10.1080/00401706.2021.1927849
http://arxiv.org/abs/2007.14495%20http://dx.doi.org/10.1080/00401706.2021.1927849
https://link.springer.com/referenceworkentry/10.1007/978-0-387-39940-9_565
https://link.springer.com/referenceworkentry/10.1007/978-0-387-39940-9_565
https://dash.harvard.edu/handle/1/3408223
https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance_multicollinear.html
https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance_multicollinear.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
https://towardsdatascience.com/the-10-best-data-visualizations-of-2021-fec4c5cf6cdb
https://towardsdatascience.com/the-10-best-data-visualizations-of-2021-fec4c5cf6cdb
https://www.telegraph.co.uk/news/2016/05/11/italian-parliament-gives-gay-marriages-the-green-light/
https://www.telegraph.co.uk/news/2016/05/11/italian-parliament-gives-gay-marriages-the-green-light/
https://www.telegraph.co.uk/news/2016/05/11/italian-parliament-gives-gay-marriages-the-green-light/
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-25
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-8-25
https://arxiv.org/abs/2201.06809v1
https://arxiv.org/abs/2201.06809v1


BIBLIOGRAPHY BIBLIOGRAPHY

M. Turek. Explainable Artificial Intelligence (XAI), 2023. URL https://www.darpa.mil/prog

ram/explainable-artificial-intelligence. 15, 16

S. Van Buuren. Flexible imputation of missing data. Routledge, 2 edition, 2018. ISBN

9780429492259. URL https://stefvanbuuren.name/fimd/. 1, 3, 4, 5

D. Vorotyntsev. Stop Permuting Features, 7 2020. URL https://towardsdatascience.com/s

top-permuting-features-c1412e31b63f. 15

C. Wang, P. Shang, and P. Shen. An improved artificial bee colony algorithm based on Bayesian

estimation. Complex and Intelligent Systems, 8(6):4971–4991, 12 2022. ISSN 21986053. doi:

10.1007/S40747-022-00746-1/TABLES/16. URL https://link.springer.com/article/10

.1007/s40747-022-00746-1. 14

C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann Publishers, San

Francisco, 2 edition, 2014. ISBN 1558608192. URL https://www.researchgate.net/publica

tion/224285723_Information_Visualization_Perception_for_Design_Second_Edition.

24

M. Weinhardt. Ethical Issues in the Use of Big Data for Social Research. Historical Social Research,

45(3):342–368, 2020. doi: 10.12759/hsr.45.2020.3.342-368. URL https://www.researchgate

.net/publication/342851817_Ethical_Issues_in_the_Use_of_Big_Data_for_Social_Re

search. 1

Wikipedia. Evaluation of Binary Classifiers, 2023. URL https://en.wikipedia.org/wiki/Eval

uation_of_binary_classifiers. 9

I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal. Data Mining: Practical Machine Learning Tools

and Techniques. Elsevier Inc., 11 2016. ISBN 9780128042915. doi: 10.1016/c2009-0-19715-5.

6, 7, 8, 9, 10, 12, 13, 14

C. Zhang and Y. Ma. Ensemble Machine Learning: Methods and Applications. Springer New York,

NY, 1 edition, 2012. ISBN 978-1-4419-9326-7. doi: https://doi.org/10.1007/978-1-4419-9326-7.

URL https://link.springer.com/book/10.1007/978-1-4419-9326-7#bibliographic-i

nformation. 8

Z. H. Zhou. Ensemble methods: Foundations and algorithms. CRC Press, 1 edition, 6 2012. ISBN

9781439830055. doi: 10.1201/B12207/ENSEMBLE-METHODS-ZHI-HUA-ZHOU. URL

https://www.taylorfrancis.com/books/mono/10.1201/b12207/ensemble-methods-zhi-h

ua-zhou. 8

M. Zhu, A. Hahn, Y. Q. Wen, and A. Bolles. Comparison and optimization of the parameter

identification technique for estimating ship response models. In 2017 3rd IEEE International

Conference on Control Science and Systems Engineering, ICCSSE 2017, pages 743–750. In-

stitute of Electrical and Electronics Engineers Inc., 10 2017. ISBN 9781538604847. doi:

10.1109/CCSSE.2017.8088033. 14

50 Estimating Response Models

https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://stefvanbuuren.name/fimd/
https://towardsdatascience.com/stop-permuting-features-c1412e31b63f
https://towardsdatascience.com/stop-permuting-features-c1412e31b63f
https://link.springer.com/article/10.1007/s40747-022-00746-1
https://link.springer.com/article/10.1007/s40747-022-00746-1
https://www.researchgate.net/publication/224285723_Information_Visualization_Perception_for_Design_Second_Edition
https://www.researchgate.net/publication/224285723_Information_Visualization_Perception_for_Design_Second_Edition
https://www.researchgate.net/publication/342851817_Ethical_Issues_in_the_Use_of_Big_Data_for_Social_Research
https://www.researchgate.net/publication/342851817_Ethical_Issues_in_the_Use_of_Big_Data_for_Social_Research
https://www.researchgate.net/publication/342851817_Ethical_Issues_in_the_Use_of_Big_Data_for_Social_Research
https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers
https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers
https://www.taylorfrancis.com/books/mono/10.1201/b12207/ensemble-methods-zhi-hua-zhou
https://www.taylorfrancis.com/books/mono/10.1201/b12207/ensemble-methods-zhi-hua-zhou


Appendix A

Dashboard sketch

Figure A.1: Final sketch of the dashboard, made in the pre-visualization phase
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Appendix B

Supplementary information

regarding the dashboard

B.1 Best practices of visualization

Visualization is the art of making the unseen visible, as numbers in itself do not usually tell the

whole story and require interpretation. As such, Munzner describes the concept of visualization

as follows: “[c]omputer-based visualization systems provide visual representations of datasets de-

signed to help people carry out tasks more e↵ectively” (Munzner, 2014). Then, data visualization

is not just making ‘pretty pictures’, it is about making insightful pictures. Consequently, there

are di↵erent considerations that need to be made regarding trade-o↵s and applicability of tools

in visualization design and validation of designs, and the limitations of computers, humans and

displays (Munzner, 2014). Munzner distinguishes three main goals of visualization: exploration

(everything is unknown), verification (hypotheses are present), and communication (everything

is known). These goals influence the suitability of particular visualization practices and should

therefore be clear when entering the process of visualization design (Munzner, 2014).

To provide some guidance on designing valid visual encodings, Munzner (2014) describes eight

rules of thumb. The first rule is to use three-dimensional visualizations as sparingly as possible

due to humans perceiving the world more closely to two-dimensional instead of three-dimensional,

increasing the risk of severe misperception caused by line-of-sight ambiguity and perspective dis-

tortion. Similarly, the second rule is to only use two-dimensional visualizations when justified, so

when understanding the topological aspect is essential. The third rule is to minimize cognitive

load as human perception easily su↵ers from change blindness – the inability to notice (drastic)

changes if one’s attention is directed elsewhere. The fourth rule regards the trade-o↵ between

resolution, defined as the number of available pixels divided by the display area, and immersion,

which refers to the feeling of presence. That is, immersion comes at the cost of resolution. The

next rule regards yet another trade-o↵: showing an overview versus providing details. Here, it

is argued that one should first provide an overview and add zooming, filtering and details on

demand. Related to this is the rule stating that successful interaction design requires a good

match between latencies (response time) of the low-interaction mechanism, the visual feedback

mechanism, the system update time and the operational load, which will lead to the possibility

of exploring a larger information space compared to a static image. In other words, here one

should think about desirable maximum durations an interactive process can take so that human

attention is maintained and the visualization continues to be insightful. The last two rules regard

the more formal aspects: color and layout. According to Munzner, even in black-and-white the
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most crucial aspects must be legible. Moreover, it is argued that one should focus on function first

before beautifying the visualization, as e↵ectiveness is more crucial than attractiveness. Here, a

ranking of di↵erent channels depending on the type of attribute being visualized is provided. For

ordered attributes, position on a common scale, followed by one one an unaligned scale and length

respectively, are most e↵ective. For categorical attributes, these are spatial region, followed by

color hue and motion.

Lastly, related to Munzner’s ‘black-and-white’ rule and the advice to favor e↵ectiveness over

attractiveness, it is vital to determine a suitable color palette by taking into account color theory

and limitations in vision in the case of colorblindness. Even though red-green colorblindness is

most common, there are several other types of color blindness that cause di↵erent colors to be

rendered indistinguishable. To guide choosing the right color palette, simulation software has been

developed, to visualize how the chosen colors are perceived by the respective types of colorblind-

ness. One such simulator is the jsColorblindSimulator, which allows simulating protanopia (red

blindness), protanomaly (red weakness), deuteranopia (green blindness), deuteranomaly (green

weakness), tritanopia (blue blindness), tritanomaly (blue weakness), achromatopsia (complete

color blindness), and achromatomaly (complete color weakness) . As a general rule, it is advised

to not combine contrasting and closely related colors, like red and green, or grey and blue, but

finding suitable color combinations usually remains an act of trial and error.

Keeping in mind these rules of thumb will lead to clean and clear visualizations. For example,

Shin (2021) describes ten excellent visualizations made in 2021, in which Munzner’s rules of thumb

are embedded even though these are not explicitly mentioned (Shin, 2021) . These visualizations,

among other things, do not use color unnecesarily and minimize the data-to-ink ratio, keep the

information density in the visualizations low, and only use the three-dimensional space when

justified, for example for visualizing the earth’s submarine cable network.

B.2 From sketch to fully-functioning dashboard

After the pre-visualization process and after gathering all of the desired results, as explained in

more detail in Chapters 3 and 5, the envisioned dashboard has been coded to a deployable, inter-

active visualization tool.1 In the final dashboard, e↵ort is put into providing essential information

in an exhaustive and transparent way, without compromising clarity, for a wide audience, ranging

from beginning data science students to established researchers. In the following sections, the

di↵erent aspects of the dashboard will be explained in more detail to give insight in the di↵erent

decisions made and the reasoning behind these decisions.

B.2.1 Arranging tabular data

In this section, the di↵erent plots and graphs used in the dashboard and the reasoning behind

them will be explained. These choices all relate to the di↵erent possibilities of arranging tabular

data, which is the format in which all of the results are stored. The first two plots shown are

variations of each other: a horizontal bar plot and the standard (vertical) bar plot. This type of

plots is ideal for the tasks of looking up and comparing values of one quantitative value attribute,

1
The dashboard can be accessed here: http://multiverseanalysisvisualizer.pythonanywhere.com/.
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like feature importance and model performance – given that the performance metrics operate on

the same scale (Munzner, 2014). For visualizing the feature importance, it is decided to use a

horizontal bar plot instead of the standard version used for the model performance, because of

the large number of features (keys) present. By transposing the bar plot and adding an option to

vertically scroll through the barplot, clarity and legibility are maximized and comparison between

the feature importances of the di↵erent models and between di↵erent features is possible.

Immediately below the bar plots visualizing feature importance and model performance, a

visualization of the six di↵erent class maps is presented. These are scatter plots that show the

uncertainty of the model for each observation in relation to the di�culty of the observation. Scatter

plots are most suitable here as the goal is to find some form of trends – that is, for instance, if the

model is uncertain about its predictions of di�cult observations or if it is wrong, but certain, about

simple observations – regarding two quantitative variables, namely the model’s probability of an

observation belonging to an alternative class (model uncertainty) and localized farness (di�culty

of the observation) (Munzner, 2014). There is one scatter plot for each prediction class, so two

class maps per model as the task is binary classification. To allow for easier comprehension, in

each plot two helper lines are added to indicate the 99% quantile distance from the class (i.e.

extremely di�cult observations) and the midpoint of class uncertainty (i.e. the area where the

model is most uncertain).

The last graph present in the dashboard is a correlation heat map, to allow assessing the

existence of multicollinearity for the di↵erent data sets used during the processing and of the

original (cleaned) data. This is beneficial for visualizing the large quantity of data in a compact

space, providing a clear overview despite the relatively high information density due to the large

number of features (Munzner, 2014). This type of graph uses two categorical key attributes (the

features) and one quantitative value (the correlation) as input. The features are presented on the

two axes while the correlation is visualized by color encoding the value with a continuous color

scale (Munzner, 2014).

Besides graphs, several tables are added in the Results tab, that can be found in the top

left of the dashboard. Adding these tables ad a higher degree of exhaustiveness and possibilities

for analysis in the dashboard. Moreover, one may be looking for particular values, which can

sometimes be easier to find in (sortable) tables, like the ones included. More specifically, there

are tables with the feature importance and model performance results for each model, providing

a total of six tables.

B.2.2 Interacting with the dashboard

The dashboard does not merely provide static graphs, but allows modifying the views to particular

needs, further enhancing a high level of both clarity and detail and mitigating the fallacy illustrated

by Anscombe’s Quartet: a single summary is often an oversimplification that does not show the

true structure of the data (Munzner, 2014). The first option for interaction is a dropdown menu,

including search bar, to define a particular target (i.e. model and data set) to the views or choose

to view the average over all models. The latter option is also the default setting. This dropdown

menu is linked to all four plots to ensure cohesion of the di↵erent results. The dropdown format

only allows choosing one particular key at a time, which is in this case desirable as otherwise the
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legibility and clarity of the bar plots would be compromised, or at least significantly more complex,

and visualizations of the class maps and correlation heat map would be rendered impossible.

The horizontal bar plot allows for two more customizations: choosing which model is used to

order the bars (from high to low) – this is the random forest by default – and choosing whether

to show the subset of the features used for classification for the chosen target or whether to show

all of the features, where features belonging to the same cluster are assigned the same importance

as explained in Chapter 3. In this case, the so-called radio-items interaction is preferred over the

dropdown, because even though there is still only one option at a time possible, there are now

only three (choosing model) and two (choosing subset versus all) options to choose from, instead

of the 75 possibilities when choosing a target. Where a dropdown collapses all options into a single

row if not interacting with it, a radio-items button keeps all options visible, which provides more

clarity on the di↵erent options to choose from.

Next, for the standard bar plot, a multi-select option is added to show or hide one or more

performance metrics. By default, all five calculated metrics are shown, but if one for example

wants to compare accuracy and balanced accuracy of the models with each other, one can unselect

the ROC, F1, and Matthews options.

Besides the graph-specific interactions,there is also a possibility to hover over the plots and

view results for that particular point. For the bar plots this means that the exact value for a

certain bar is shown. Similarly, for the class maps this mean the exact values uncertainty and

farness (di�culty) for a particular observation are shown and for the heat map the feature pair

and corresponding correlation value are presented.

B.2.3 Other features in the dashboard

Besides graphs and tables, there is also space dedicated to essential descriptions in a textual format,

with the aim to help users to comprehend the visualizations and interact with the dashboard to

acquire the views they desire. Moreover, since the features are presented in an abbreviated format,

their descriptions are too long to add to the visualizations, and because going through the codebook

each time is tedious and may even be impossible if the codebook is unavailable, a description of

the meaning of all of the features present in the data used for processing is added. Moreover,

this description is also linked to a radio-items interaction. That is, if a target is selected from

the dropdown menu, one can choose to either show the feature information or show the cluster

information of the chosen target. When the cluster information option is selected, the list of

selected targets is shown, together with non-selected features for each of the respective clusters.

Moreover, to organize the descriptions and avoid making the visualization page getting too

dense, three di↵erent tabs are included: Info, Interact, and Results. The first tab includes general

information on the dashboard and the study. The second tab contains the interaction options,

including descriptions to guide the user in how to use them, and the feature and cluster information.

Lastly, the third tab contains the six tables containing the same results shown in the plots, but in

a tabular format.
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Figure B.1: Simulation of viewing the standard
bar plot with protanopia

Figure B.2: Simulation of viewing the standard
bar plot with achromatopsia

A little bit of color theory

As described in Section B.1, hue (or color) is an important factor in the success or failure of a

visualization (dashboard). As such, in this section, the decisions made regarding hues, in combin-

ation with other encodings, are described. The background boxes of the visualizations are colored

alternately between white and a light-grey to clearly distinguish the di↵erent spaces dedicated

to each of the graphs and avoid accidental merging of the results when interpreting the graphs.

The color theme present in the graphs themselves is based on a trial-and-error process of choosing

colors that are distinguishable for all of the di↵erent types of color blindness while remaining as

aesthetically pleasing as possible. As indicated in Section B.1, the colorblindness assessment has

been done using the jsColorblindSimulator. Figures B.1 and B.2 show what the chosen color theme

looks like for the standard bar plot for protanopia – the most common form of color blindness –

and achromatopsia.
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Dashboard interaction view

Figure C.1: Image of the dashboard with the interaction tab open
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Code for the class maps

Listing D.1: Calculating uncertainty and localized farness for class maps

de f compPAC(model , X, y ) :

”””

: param model : s k l e a rn model f i t t e d to t r a i n i n g data .

model must have ” p r obab i l i t y=True” when i n i t i a l i z e d .

: param X: datase t f o r p r ed i c t i on , u sua l l y a held−out t e s t s e t

: param y : l a b e l s cor re spond ing to X; must be numpy array

: r e turn : P robab i l i t y o f A l t e rna t i v e C l a s s i f i c a t i o n (PAC) from the t ra in ed

c l a s s i f i e r

”””

# parameters

n = X. shape [ 0 ] # number o f data po in t s in X

PAC = np . array ( [ 0 . 0 ] ∗ n) # i n i t i a l i z e PAC array

nlab = len (np . unique (y ) ) # number o f c l a s s e s

# get f i t t e d model p r o b a b i l i t i e s

model probs = model . p r ed i c t p roba (X)

# case : two c l a s s e s

i f nlab == 2 :

a l t i n t = 1 − y # y w i l l take va lues 0 or 1

f o r i in range (n) :

PAC[ i ] = model probs [ i , a l t i n t [ i ] ]

r e turn PAC

def compLocalFarness (X, y , k , metr ic=’ euc l i d ean ’ ) :

”””

: param X: datase t f o r p r ed i c t i on , should be the same as what was used f o r

PAC

: param y : cor re spond ing l a b e l s o f X

: param k : number o f nea r e s t ne ighbors to con s id e r f o r l o c a l i z e d f a r n e s s

computation

: param metr ic : d i s t anc e metr ic f o r nea r e s t ne ighbor search .

: r e turn : l o c a l i z e d f a r n e s s computed from the data , independent o f

c l a s s i f i e r

”””

# f i nd nea r e s t ne ighbors with KD Tree

kdt = KDTree(X, metr ic=metr ic )

d i s t , ind = kdt . query (X, k=k) # get the nea r e s t ne ighbor d i s t an c e s and i n d i c e s

58 Estimating Response Models



APPENDIX D. CODE FOR THE CLASS MAPS

# array o f e p s i l o n i ( widths o f epanechnikov k e rn e l s )

e p i s l o n a r r = [ d i s t [ i ] [ ( k−1) ] f o r i in range ( l en ( d i s t ) ) ]

# epanechnikov ke rne l we ight ing func t i on

ep ke rne l = lambda x : (3/4) ∗(1 − ( x∗x ) ) ∗( i n t ( abs ( x ) <= 1) )

ke rne l wt = lambda ep , d : (1/ ep ) ∗ ep ke rne l ( x=(d/ep ) )

# compute l o c a l i z e d f a r n e s s

n = X. shape [ 0 ] # number o f rows in the data

l o c a l f a r n e s s = np . array ( [ 0 . 0 ] ∗ n) # i n i t i a l i z e l o c a l f a r n e s s

f o r i in range (n) :

l o c a l d i s t s = d i s t [ i ] # d i s t an c e s from point i to i t s ne ighbors

wts = [ ke rne l wt ( ep=ep i s l o n a r r [ i ] , d=l o c a l d i s t s [ i i ] ) f o r i i in range ( l en (

l o c a l d i s t s ) ) ]

wts = wts / sum(wts ) # weight the l o c a l d i s t an c e s . wts should sum to 1 .

c l a s s p r ob = sum(wts [ y [ ind [ i ] ] == y [ i ] ] ) # Pr ( i \ in g i )

l o c a l f a r n e s s [ i ] = 1 .0 − c l a s s p r ob # LF( i ) = 1 − Pr ( i \ in g i )

# round to 4 decimal p laces , f o r s imp l i c i t y

l o c a l f a r n e s s = np . abs (np . round ( l o c a l f a r n e s s , 4) )

re turn l o c a l f a r n e s s
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Overview results and qualitative

assessment

Table E.1: Overview results and qualitative assessment

Target Performance

(Matthews)

Important features

basinc

RF: 0.4301

SVM: 0.149

MLP: 0.0

RF: gndr , gndr2 2, agea (0.080),

pspwght, ipcrtiv, pweight (0.055)

SVM: –

MLP: –

bennent

RF: 0.221

SVM: 0.069

MLP: 0.0

RF: –

SVM: –

MLP: –

bnlwinc

RF: 0.170

SVM: 0.0

MLP: 0.0

RF: –

SVM: –

MLP: –

ccgdbd

RF: 0.721

SVM: 0.669

MLP: 0.704

RF: –

SVM: –

MLP: banhhap, dfincac, uemplwk, smdfslv (0.053)

ccrdprs

RF: 0.718

SVM: 0.659

MLP: 0.676

RF: –

SVM: –

MLP: –

chldhhe

RF: 0.907

SVM: 0.749

MLP: 0.860

RF: yrbrn2, icpart2, rshipa2, pdwrk, lvgptnea,

dvrcdeva, rshpsts, rshipa3 (0.397), iccohbt,

domicil, edulvlpb, uemplap, edctnp, eisced,

isco08p, edulvlb, eiscedf, dngdkp, wkhtotp,

eduyrs, iccohbt, emprelp, pdwrkp, marsts (0.105),

netusoft, anctry1, hswrkp, hincfel, hinctnta,

actrolga, dngref (0.056)

SVM: yrbrn2 (0.335), netusoft (0.051)

MLP: yrbrn2 (0.353), iccohbt (0.066),

netusoft (0.064)

1
Features are considered important when SHAP� 0.05

2
Italicized features refer to features not directly used in the the analysis but present in the same cluster as the

important feature during feature selection, hence having the same importance. For each target, these ‘clustered’

features are only indicated once per target, but the same clusters hold for each model as the subset selection is

done before the modeling phase is started
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Target Performance

(Matthews)

Important features

crpdwrk

RF: 0.834

SVM: 0.665

MLP: 0.804

RF: gndr3, wrkctra, estsz, jbspv, dsbld,

emplrel (0.142), netusoft, icpart1, hinctnta,

hincfel, hswrkp, anctry1, dngref, actrolga,

rshpsts (0.095), dngna, pdjobyr, yrbrn3 (0.092),

yrbrn3, rshipa2, dngnapp (0.069)

SVM: netusoft (0.211), netustm, uempli,

uempla (0.052), gndr3 (0.081)

MLP: netusoft (0.170), gndr3 (0.125),

wkdcorga, mbtru, wkhtot, tporgwk, iorgact,

wkhct, icwhct, nacer2, uemp3m, isco08, wrkac6m (0.066)

edulvlfb

RF: 1.0

SVM: 0.993

MLP: 1.0

RF: emprf14, eiscedm, occf14b (0.090)

SVM: emprf14 (0.202)

MLP: emprf14 (0.126)

edulvlmb

RF: 0.506

SVM: 0.361

MLP: 0.432

RF: –

SVM: –

MLP: edulvlfb, emprm14, emprf14 (0.058)

edulvlpb

RF: 0.827

SVM: 0.681

MLP: 0.803

RF: uemplap, eiscedf, wkhtotp (0.197),

maritalb, chldhm, uemplip (0.107),

yrbrn2, pdwrkp, rshpsts, dngdkp, isco08p,

emrelp, edulvlb, chldhhe, marsts, domicil,

edctnp, iccohbt, eisced, dvrcdeva, rshipa2 (0.068)

SVM: yrbrn2 (0.130), uemplap (0.112),

cntry, dweight (0.076), nwspol, edctn,

occm14b, atncrse (0.058)

MLP: uemplap (0.220), yrbrn2 (0.148)

eduunmp

RF: 0.286

SVM: 0.154

MLP: 0.0

RF: –

SVM: –

MLP: –

eiscedf

RF: 1.0

SVM: 0.993

MLP: 1.0

RF: emprf14, eiscedm, occf14b (0.089)

SVM: emprf14 (0.202)

MLP: emprf14 (0.126)

eiscedm

RF: 0.505

SVM: 0.361

MLP: 0.432

RF: –

SVM: –

MLP: edulvlfb, emprm14, emprf14 (0.058)

eiscedp

RF: 0.826

SVM: 0.681

MLP: 0.803

RF: uemplap, wkhtotp, eiscedf (0.204),

maritalb, chldhm, uemplip (0.099),

yrbrn2, marsts, eisced, emprelp, pdwrkp,

rshpsts, isco08p, iccohbt, edulvlb, dngdkp,

dvrcdeva, rshipa2, edctnp, domicil, chldhhe (0.067)

SVM: yrbrn2 (0.130), uemplap (0.112),

cntry, dweight (0.076), nwspol, edctn,

occm14b, atncrse (0.058)

MLP: uemplap (0.220), yrbrn2 (0.148)
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Target Performance

(Matthews)

Important features

elgbio

RF: 0.583

SVM: 0.568

MLP: 0.0

RF: –

SVM: wrdpimp (0.055)

MLP: –

elgcoal

RF: 0.709

SVM: 0.660

MLP: 0.674

RF: –

SVM: –

MLP: wrpwrct, wrdpimp, wrinspw,

wrntdis (0.055)

elghydr

RF: 0.713

SVM: 0.693

MLP: 0.702

RF: –

SVM: –

MLP: –

elgngas

RF: 0.698

SVM: 0.655

MLP: 0.669

RF: –

SVM: wrpwrct, wrdpimp, wrinspw (0.076)

MLP: –

elgnuc

RF: 0.651

SVM: 0.621

MLP: 0.652

RF: –

SVM: wrdpimp, wrntdis, wrdpfos (0.057)

MLP: –

emplrel

RF: 0.799

SVM: 0.598

MLP: 0.728

RF: –

SVM: iorgact, wrkac6m, mbtru, nacer2, uemp3m,

icwhct, wkhtot, isco08, wkhct, tporgwk (0.059)

MLP: iorgact (0.130)

emprelp

RF: 0.757

SVM: 0.633

MLP: 0.750

RF: dvrcdeva, edctnp, uemplap, iccohbt, dngdkp,

pdwrkp, isco08p, wkhtotp, eisced, marsts,

eiscedf, edulvlb, dvrcdeva, domicil, chldhhe,

edulvlpb (0.183), maritalb, chldhm (0.083),

netusoft, hswrkp, hincfel, dngref (0.076),

lvgptnea, eduyrs, pdwrk, icpart2 (0.067)

SVM: dvrcdeva (0.142), netusoft (0.115),

netustm, uempli, uempla (0.078),

lvgptnea, icpart2, eduyrs, pdwrk (0.062)

MLP: dvrcdeva (0.256), netusoft (0.128)

estsz

RF: 0.832

SVM: 0.811

MLP: 0.831

RF: –

SVM: iorgact, wrkac6m, wkhtot, nacer2, icwhct (0.082)

MLP: iorgact (0.092)

eudcnbf

RF: 0.807

SVM: 0.786

MLP: 0.800

RF: psppsgva, regunit, rfgbfml, region, ipcrtiv (0.658),

wrkprty, pray, imwbcnt, wrkorg (0.070)

SVM: psppsgva (0.184)

MLP: psppsgva (0.280)

euftf

RF: 0.394

SVM: 0.175

MLP: 0.0

RF: –

SVM: –

MLP: –

eusclbf

RF: 0.847

SVM: 0.825

MLP: 0.844

RF: psppsgva, ipcrtiv, rfgbfml, region, regunit (0.710)

SVM: psppsgva (0.189)

MLP: psppsgva (0.305)
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Target Performance

(Matthews)

Important features

gndr2

RF: 0.996

SVM: 0.971

MLP: 0.996

RF: yrbrn3, marsts, edulvlb, wkhtotp, emprelp,

isco08p, dngdkp, edctnp, edulvlpb, domicil,

chldhhe, eiscedf, dvrcdeva, eisced, iccohbt,

uemplap, rshpsts, pdwrkp (0.131),

rshipa3, lvgptnea, eduyrs, pdwrk, icpart2 (0.064)

SVM: yrbrn3 (0.284)

MLP: yrbrn3 (0.284)

gndr3

RF: 0.993

SVM: 0.973

MLP: 0.992

RF: yrbrn3, pdwrk, eduyrs, lvgptnea, icpart2 (0.502)

SVM: yrbrn3 (0.446)

MLP: yrbrn3 (0.491)

gvsrdcc

RF: 0.696

SVM: 0.660

MLP: 0.685

RF: –

SVM: –

MLP: inctx↵, dfincac, uemplwk, banhhap,

smdfslv (0.053)

hinctnta

RF: 0.272

SVM: 0.035

MLP: 0.0

RF: psppsgva, rfgbfml, psppsgva, regunit,

region (0.097)

SVM: –

MLP: –

iccohbt

RF: 0.838

SVM: 0.691

MLP: 0.814

RF: uemplap, wkhtotp, eiscedf (0.209), chldhm,

uemplip, chldhhe (0.113), yrbrn2, marsts,

emprelp, edulvlpb, rshipa2, domicil, eisced,

dngdkp, pdwrkp, edctnp, rshpsts, isco08p,

dvrcdeva, edulvlb, maritalb (0.068)

SVM: yrbrn2 (0.128), uemplap (0.106),

cntry, dweight (0.076), nwspol, edctn (0.055)

MLP: uemplap (0.227), yrbrn2 (0.148)

icomdnp

RF: 0.841

SVM: 0.697

MLP: 0.814

RF: uemplap, wkhtotp, eiscedf (0.220), maritalb,

chldhm, uemplip (0.112), yrbrn2, rshpsts,

domicil, edulvlpb, edctnp, dngdkp, emprelp,

edulvlb, marsts, pdwrkp, chldhhe, iccohbt,

rshipa2, eisced, dvrcdeva (0.053)

SVM: yrbrn2, (0.138), uemplap (0.108),

cntry, dweight (0.076), nwspol, edctn (0.056)

MLP: uemplap (0.221), yrbrn2 (0.155)

icppdwk

RF: 0.834

SVM: 0.694

MLP: 0.801

RF: uemplap, wkhtotp, eiscedf (0.223), maritalb,

chldhm, uemplip (0.123)

SVM: yrbrn2, rshpsts, domicil, edulvlpb, edctnp,

dngdkp, emprelp, edulvlb, marsts, pdwrkp,

chldhhe, iccohbt, rshipa2, eisced, dvrcdeva (0.131),

uemplap (0.107), cntry, dweight (0.077),

nwspol, edctn(0.056)

MLP: uemplap (0.201), yrbrn2 (0.165)
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Target Performance

(Matthews)

Important features

icwhct

RF: 0.960

SVM: 0.932

MLP: 0.960

RF: wkdcorga, mbtru, tporgwk, isco08, nacer2,

uemp3m, wkhct, wkhtot, iorgact, wrkac6m (0.063)

SVM: wkdcorga (0.084)

MLP: wkdcorga (0.155)

iorgact

RF: 0.914

SVM: 0.890

MLP: 0.914

RF: wkdcorga, mbtru, icwhct, wkhct, isco08,

wkhtot, tporgwk, wrkac6m, uemp3m, nacer2 (0.051)

SVM: wkdcorga (0.083)

MLP: wkdcorga (0.143)

isco08

RF: 0.898

SVM: 0.863

MLP: 898

RF: –

SVM: wkdcorga, iorgact, icwhct, tporgwk, wrkac6m,

mbtru, uemp3m (0.069)

MLP: wkdcorga (0.074), wkhct, wkhtot, nacer2 (0.057)

isco08p

RF: 0.746

SVM: 0.629

MLP: 0.732

RF: dvrcdeva, uemplap, dngdkp, emprelp, wkhtotp,

eiscedf, edulvlb, domicil, chldhhe, edulvlpb,

edctnp, pdwrkp, iccohbt, marsts, eisced (0.195),

netusoft, hincfel, dngref, hswrkp (0.084),

lvgptnea, pdwrk, icpart2, eduyrs (0.074),

maritalb, chldhm (0.073)

SVM: dvrcdeva (0.143), netusoft (0.116),

netustm, uempla, uempli (0.072), lvgptnea (0.063)

MLP: dvrcdeva (0.252), netusoft (0.123)

jbspv

RF: 0.955

SVM: 0.931

MLP: 0.954

RF: iorgact, nacer2, uemp3m, icwhct, wkhct,

tporgwk, wrkac6m, mbtru, wkhtot, isco08 (0.062)

SVM: iorgact (0.085)

MLP: iorgact (0.110)

lbenent

RF: 0.205

SVM: 0.0

MLP: 0.0

RF: wrkprty, imwbcnt, wrkorg (0.144),

psppsgva, regunit, region, rfgbfml (0.051)

SVM: –

MLP: –

lklmten

RF: 0.654

SVM: 0.595

MLP: 0.647

RF: –

SVM: –

MLP: lkredcc, gvsrdcc, inctx↵, ownrdcc,

sbsrnen (0.068)

lknemny

RF: 0.721

SVM: 0.718

MLP: 0.718

RF: psppsgva, regunit, region, rfgbfml (0.058)

SVM: psppsgva (0.098)

MLP: psppsgva (0.072)

lkredcc

RF: 0.712

SVM: 0.676

MLP: 0.683

RF: –

SVM: –

MLP: inctx↵, smdfslv, uemplwk, dfincac,

banhhap (0.059)

lrscale

RF: 0.345

SVM: 0.129

MLP: 0.326

RF: psppsgva, rfgbfml, regunit, region, dscrrce (0.072),

wrkprty, pray, imwbcnt, wrkorg (0.069)

SVM: –

MLP: psppsgva (0.058)
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Target Performance

(Matthews)

Important features

lvgptnea

RF: 0.961

SVM: 0.950

MLP: 0.960

RF: maritalb, edulvlb, eisced, domicil (0.853)

SVM: maritalb (0.276)

MLP: maritalb (0.162)

marsts

RF: 0.878

SVM: 0.577

MLP: 0.845

RF: chldhm, chldhhe (0.582), uemplap, wkhtotp,

eiscedf (0.087)

SVM: netusoft, anctry1, actrolga, hincfel, dngref,

pdjobyr, jbspv, hswrkp (0.104),

cntry, dweight (0.062), yrbrn2, iccohbt,

eisced, rshpsts, maritalb, domicil, edulvlpb,

edctnp, dngdkp, isco08p, emprelp, edulvlb,

pdwrkp, dvrcdeva, rshipa2 (0.060)

MLP: uemplap (0.191), chldhm (0.144),

yrbrn2 (0.134), netusoft (0.111)

nacer2

RF: 0.887

SVM: 0.854

MLP: 0.875

RF: –

SVM: wkdcorga, tporgwk, icwhct, wkhct,

wkhtot (0.082)

MLP: wkdcorga (0.138)

netustm

RF: 0.978

SVM: 0.957

MLP: 0.977

RF: actrolga, anctry1, hinctnta (0.261)

SVM: actrolga (0.417)

MLP: actrolga (0.436)

occf14b

RF: 0.359

SVM: 0.0

MLP: 0.307

RF: –

SVM: –

MLP: edulvlfb, emprm14, emprf14,

edulvlmb (0.069)

occm14b

RF: 0.394

SVM: 0.229

MLP: 0.373

RF: psppsgva, region, atncrse, regunit,

rfgbfml (0.122), netusoft, pdwrk, rshpsts,

actrolga, icpart1, hswrkp (0.069)

SVM: netusoft (0.087)

MLP: psppsgva (0.115), netusoft (0.079)

ownrdcc

RF: 0.645

SVM: 0.603

MLP: 0.651

RF: –

SVM: –

MLP: lkredcc, gvsrdcc, sbsrnen,

lklmten (0.062)

pdjobev

RF: 0.817

SVM: 0.658

MLP: 0.799

RF: gndr3, emplrel, dsbld, wrkctra,

estsz, jbspv (0.152), netusoft, icpart1,

hinctnta, actrolga, hincfel, hswrkp, anctry1,

rshpsts, dngref (0.105),

dngna, pdjobyr (0.081), yrbrn3, rshipa2,

dngnapp (0.054)

SVM: netusoft (0.215), gndr3 (0.079),

netustm, uempli, uempla (0.052)

MLP: netusoft (0.174), gndr3 (0.122),

wkdcorga, uemp3m, icwhct, wkhtot, wrkac6m,

mbtru, nacer2, tporgwk, wkhct, isco08 (0.072)
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Target Performance

(Matthews)

Important features

pdjobyr

RF: 0.779

SVM: 0.552

MLP: 0.750

RF: gndr3, emplrel, dsbld, wrkctra, estsz,

jbspv (0.134), dngna, pdjobyr, dngnapp (0.114),

netusoft, icpart1, hinctnta, actrolga, hincfel,

hswrkp, anctry1, rshpsts, dngref (0.077)

SVM: netusoft (0.201), netustm, uempli,

uempla (0.052)

MLP: netusoft (0.160), gndr3 (0.118),

wkdcorga, wkhtot, icwhct, wkhct, tporgwk,

uemp3m, mbtru, wrkac6m, nacer2, isco08 (0.087)

prtdgcl

RF: 0.363

SVM: 0.222

MLP: 0.352

RF: trstplc, trstun, trstep, trstplt, trstprt,

trstplc (0.072), pbldmn, stfedu, stfhlth (0.067)

SVM: netusoft, pdjobyr, hswrkp, hincfel, dngref,

rshpsts, pdwrk, icpart1 (0.077)

MLP: trstplc (0.084), pbldmn (0.072)

rfgbfml

RF: 0.770

SVM: 0.24

MLP: 0.768

RF: –

SVM: –

MLP: elghydr, elghydr, basinc, eusclbf (0.056)

rfgfrpc

RF: 0.623

SVM: 0.603

MLP: 0.613

RF: –

SVM: elghydr, slvuemp (0.130)

MLP: elghydr (0.054)

rlgblge

RF: 0.990

SVM: 0.971

MLP: 0.990

RF: dscrrce, dscretn, dsrlng, dscrntn, dscrrlg (0.442)

SVM: dscrrce (0.457)

MLP: dscrrce (0.475)

rlgdnm

RF: 0.991

SVM: 0.977

MLP: 0.991

RF: dscrrce, dscretn, dsrlng, dscrntn, dscrrlg (0.433)

SVM: dscrrce (0.460)

MLP: dscrrce (0.381)

rshipa2

RF: 0.999

SVM: 0.967

MLP: 0.998

RF: yrbrn2, lvgptnea, rshipa3 (0.112), icpart1, eduyrs,

pdwrk, dvrcdeva, icpart1 (0.057)

SVM: yrbrn2 (0.269)

MLP: yrbrn2 (0.341)

rshipa3

RF: 0.995

SVM: 0.974

MLP: 0.993

RF: yrbrn2, eduyrs, icpart1, dvrcdeva, pdwrk (0.504)

SVM: yrbrn2 (0.451)

MLP: yrbrn2 (0.492)

rshpsts

RF: 0.764

SVM: 0.595

MLP: 0.708

RF: maritalb, uemplip, chldhm (0.188), yrbrn2, icpart2,

dngdkp, edulvlb, eiscedf, uemplap, wkhtotp,

emprelp, isco08p, edctnp, marsts, eisced,

edulvlpb, domicil, lvgptnea, yrbrn2, chldhhe,

pdwrkp (0.119)

SVM: yrbrn2 (0.148), cntry, dweight (0.081)

MLP: yrbrn2 (0.249)

sbbsntx

RF: 0.527

SVM: 0.506

MLP: 0.0

RF: –

SVM: uentrjb, admub, bnlwinc (0.055)

MLP: –
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Target Performance

(Matthews)

Important features

tporgwk

RF: 0.927

SVM: 0.893

MLP: 0.926

RF: –

SVM: wkdcorga, wkhtot, icwhct, wkhct, nacer2 (0.084)

MLP: wkdcorga (0.101)

trstep

RF: 0.350

SVM: 0.256

MLP: 0.0

RF: psppsgva, regunit, gndr, region, rfgbfml,

agea, gndr2 (0.065)

SVM: –

MLP: –

trstun

RF: 0.337

SVM: 0.218

MLP: 0.318

RF: –

SVM: –

MLP: –

uemplwk

RF: 0.204

SVM: 0.040

MLP: 0.0

RF: –

SVM: –

MLP: –

vteurmmb

RF: 0.905

SVM: 0.895

MLP: 0.903

RF: psppsgva, regunit, region, rfgbfml, gndr3,

gndr2 (0.317)

SVM: psppsgva (0.333)

MLP: psppsgva (0.378)

wkdcorga

RF: 0.933

SVM: 0.911

MLP: 0.934

RF: iorgact, uemp3m, wkhct, icwhct, isco08,

tporgwk, wrkac6m, mbtru (0.069)

SVM: iorgact (0.085)

MLP: iorgact (0.155)

wkhct

RF: 0.652

SVM: 0.582

MLP: 0.0

RF: jbspv, wkdcorga, icwhct, tporgwk, wrkac6m,

mbtru, isco08, nacer2, iorgact, uemp3m,

wkhtot (0.090)

SVM: jbspv (0.161)

MLP: –

wkhtot

RF: 0.710

SVM: 0.694

MLP: 0.700

RF: jbspv, wkdcorga, icwhct, tporgwk, wrkac6m,

mbtru, isco08, nacer2, iorgact, uemp3m,

wkhtot (0.083)

SVM: jbspv (0.076)

MLP: jbspv (0.140)

wkhtotp

RF: 0.725

SVM: 0.610

MLP: 0.707

RF: lvgptnea, icpart2, eisced, chldhhe, domicil,

edulvlpb, edctnp, isco08p, emprelp, eiscedf,

eiscedp, pdwrkp, iccohbt, chldhm, dngrefp,

icppdwk (0.190), netusoft, hinctnta, cmsrvp,

dngoth (0.082), marsts, maritalb (0.078),

polint, rfgfrpc,

regunit, region (0.054)

SVM: lvgptnea (0.135), netusoft (0.111),

netustm, uempla, wrkac6m, tporgwk, edctn (0.071),

rshpsts, edulvlb, dvrcdeva, rshpsts, eduyrs (0.066)

MLP: lvgptnea (0.217), netusoft (0.106)
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Target Performance

(Matthews)

Important features

wrkac6m

RF: 0.971

SVM: 0.923

MLP: 971

RF: –

SVM: –

MLP: icwhct, tporgwk, wkhtot, nacer2,

uemp3m, isco08 (0.066), wkdcorga, mbtru,

iorgact, wkhct, isco08 (0.065)

wrkctra

RF: 0.968

SVM: 0.950

MLP: 0.967

RF: iorgact, isco08, tporgwk, wrkac6m, mbtru,

nacer2, uemp3m, wkhct, icwhct, wkhtot (0.164)

SVM: iorgact (0.322)

MLP: iorgact (0.193)

wrkprbf

RF: 0.202

SVM: 0.069

MLP: 0.0

RF: –

SVM: –

MLP: –

yrbrn2

RF: 0.967

SVM: 0.942

MLP: 0.967

RF: yrbrn3, wkhtotp, domicil, eiscedf, eisced,

emprelp, isco08p, rshipa3, dngdkp, edctnp,

dvrcdeva, edulvlb, edulvlpb, chldhhe, uemplap,

pdwrkp, marsts, iccohbt (0.119), icpart1,

icpart2, eduyrs, pdwrk, lvgptnea (0.072)

SVM: yrbrn3 (0.272)

MLP: yrbrn3 (0.317)

yrbrn3

RF: 0.980

SVM: 0.949

MLP: 0.978

RF: yrbrn2, pdwrk, icpart2, yrbrn2, icpart1,

eduyrs (0.546)

SVM: yrbrn2 (0.427)

MLP: yrbrn2 (0.475)
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Results of the postliminary

analysis

Figure F.1: Performance in Matthews correlation coe�cient and F1 score for the 64 Random
Forest models with multiple imputation

Table F.1: Average performance of the RF models with multiple imputation

Metric Average

Accuracy 0.989

Balanced accuracy 0.979

ROC score 0.979

F1 score 0.990

Matthews coe�cient 0.978

Table F.2: Table of the five most informative features on average for the Random Forests with
multiple imputed data for the subset of 64 targets, ranked in descending order

Rank Feature SHAP value % missing

1 stfedu 0.077 3.5%

2 eisced 0.067 0.3%

3 gndr2 0.065 21.8%

4 jbspv 0.063 8.4%

5 agea 0.061 0.3%

6 dscrntn 0.060 0.0%

7 estsz 0.054 11.1%

8 dscrrce 0.052 0.0%

9 gndr 0.051 0.0%

10 maritalb 0.050 2.0%
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Descriptions of the features

Table G.1: Feature abbreviations and their de-
scriptions

Feature Description

cntry Country

pspwght Post-stratification weight including design weight

anweight Analysis weight

nwspol Time spent consuming news about politics and current a↵airs

netusoft Frequency of internet use

netustm Time spent using the internet on a typical day

pplfair Attitude towards “most people try to take advantage of you vs. try to be fair”

psppsgva Attitude towards “the political system allows people to have a say in what the government

does”

trstplc Trust in the police

contplt Whether respondent has contacted a politician or government o�cial in the last 12 months

wrkprty Whether respondent has worked in a political party or action group in the last 12 months

stfeco How satisfied with the present state of the economy in the country

stfgov How satisfied with the national government

mnrgtjb Attitude towards “men should have more right to a job than women when jobs are scarce”

freehms Attitude towards “gays and lesbians are free to live life as they wish”

imsmetn Attitude towards allowing many immigrants of the same race or ethnic group as majority

imdfetn Attitude towards allowing many immigrants of di↵erent races or ethnic groups from the ma-

jority

inprdsc With how many people can intimate and personal matters be discussed with

aesfdrk Feeling of safety of walking alone in the local area after dark

health Subjective general health

hlthhmp How often hampered in daily activities by illness, disability, infirmity, or mental problem

rlgdnm Current religion or denomination

dscrrce Whether or not respondent’s group is discriminated in terms of color or race

dscrgnd Whether or not respondent’s group is discriminated in terms of gender

dscrref Whether or not respondent refuses to answer the questions about discrimination

dscrna Whether or not respondent has not given an answer to the questions about discrimination

ctzcntr Country of which respondent is a citizen

brncntr Country of birth

rfgfrpc Attitude towards “most refugee applicants are not in real fear of persecution in their own

countries”
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Feature Description

elgcoal Attitude towards how much electricity should be generated from coal in a particular country

elgngas Attitude towards how much electricity should be generated from natural gas in a particular

country

elgnuc Attitude towards how much electricity should be generated from nuclear power in a partic-

ular country

wrenexp How worried about energy being too expensive for many people

wrdpfos How worried about the country being too dependent on fossil fuels

clmthgt2 How much respondent has thought about climate change before the day of the interview

sbsrnen Whether or not respondent favors subsidizing renewable energy to reduce climate change

gvslvue Attitude towards “the standard of living for the unemployed is the responsibility of the gov-

ernment”

sbprvpv Attitude towards “social benefits and services prevent widespread poverty”

sbeqsoc Attitude towards “social benefits and services lead to a more equal society”

sblwcoa Attitude towards “social benefits and services make people less willing to care for one an-

other”

eduunmp Whether or not more money should be spent on education for the unemployed at the cost

of unemployment benefit

eudcnbf Attitude towards “more decisions made by the EU will lead to a higher level of benefits of

a particular country”

lknemny Likelihood of not having enough money for the household necessities in the next 12 months

gndr Gender of the respondent

gndr3 Gender of third person in the household

agea Calculated age of the respondent

dvrcdeva Whether or not the respondent has ever been divorced or a civil union dissolved

icpart2 Whether or not the respondent lives with husband, wife or partner (interviewer code)

edulvlb Highest level of education

uempli Whether or not one is unemployed and not actively looking for a job in the 7 days before

the interview

dsbld Whether or not one is permanently sick or disabled in the 7 days before the interview

hswrk Whether or not is doing housework, looking after children or other in the 7 days before the

interview

dngoth Whether or not is doing something other in the 7 days before the interview

dngref Whether or not respondent refuses to answer what done in the 7 days before the interview

dngdk Whether or not respondent does not know what done in the 7 days before the interview

dngna Whether or not no answer given for question what done in the 7 days before the interview

wrkctra Type of contract (duration)

wkdcorga How much influence respondent has on organizing their own daily work

edctnp Whether or not partner of respondent has followed an education in the 7 days before the

interview

edulvlfb Highest level of education of father of respondent

occf14b Occupation of father of respondent when respondent was 14

occm14b Occupation of mother of respondent when respondent was 14

imprich Attitude towards “it is important to be rich, and to have money and expensive things”

ipeqopt Attitude towards “it is important that people are treated equally and have equal opportun-

ities”
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Feature Description

impsafe Attitude towards “it is important to live in secure and safe surroundings”

ipudrst Attitude towards “it is important to understand di↵erent people”

inwmms Month of the start of the interview

inwyys Year of the start of the interview

trstun Trust in the United Nations

prtdgcl How close is respondent to a political party

stfdem How satisfied with the way democracy works in the country

imueclt Attitude towards “the cultural life of the country is enriched by immigrants”

rlgatnd Frequency of attending religious services apart from special occasions

rdcenr How often doing something to reduce energy use

wrinspw How worried that energy supply is interrupted by insu�cient power generated

uemplwk How many are unemployed and looking for work, of every 100 working age

gndr2 Gender of second person in the household

rshipa2 Relationship to respondent of second person in household

rshipa3 Relationship to respondent of third person in household

eisced Highest level of education in ES-ISCED scale

ipgdtim Attitude towards “it is important to have a good time”

stflife How satisfied with life as a whole

elgwind How much electricity in a particular country should be generated from wind power

smdfslv Attitude towards “for a fair society, di↵erences in standard of living should be small”

bennent Attitude towards “many manage to obtain benefits or services they are not entitled to”

yrbrn Birth year of respondent

edctn Whether or not is following education in the 7 days before the interview

uemplap Whether or not partner of respondent is unemployed and not actively looking for a job in

the 7 days before the interview

dsbldp Whether or not partner of respondent is permanently sick or disabled in the 7 days before

the interview

ipshabt Attitude towards “it is important to show abilities and be admired”

lklmten Attitude towards “it is likely that large numbers of people limit their energy use”

slvpens Attitude towards “the standard of living of pensioners is good”

lbenent Attitude towards “many with very low incomes get less benefit than legally entitled to”

maritalb Legal marital status, post coded

estsz Establishment size

impdi↵ Attitude towards “it is important to try new and di↵erent things in life”

inwdde Day of the month of the end of the interview

slvuemp Attitude towards “the standard of living of unemployed is good”

polintr How interested in politics

actrolga Whether or not respondent is able to take an active role in a political group

psppipla Attitude towards “the political system allows people to have an influence on politics”

cptppola Whether or not respondent is confident in their own ability to participate in politics

trstplt Trust in politicians

sclact Relative frequency of taking part in social activities compared to others of the same age

elghydr How much electricity in a particular country should be generated from hydroelectric power

wrntdis How worried about energy supply being interrupted by natural disasters or extreme weather
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Feature Description

ccnthum Attitude towards “climate change is caused by natural processes, human activity or both”

lkredcc Attitude towards “when large numbers of people limit their energy use, it is likely that cli-

mate change will reduce”

gvcldcr Attitude towards “child care services for working parents are the responsibility of the gov-

ernment”

wrkprbf Attitude towards “there should be benefits for parents to combine work and family, even if

this means higher taxes”

rshpsts Relationship with husband, wife or partner currently living with

ipadvnt Attitude towards “it is important to seek adventures and have an exciting life”

trstep Trust in the European Parliament

stfhlth Attitude towards “the current state of the health services in the country is good”

gvsrdcc Attitude towards “it is likely that governments in enough countries take action to reduce

climate change”

gvslvol Attitude towards “the standard of living for the old is the responsibility of the government”

imsclbn When should immigrants obtain rights to social benefits or services

ipfrule Attitude towards “it is important to do what is told and follow the rules”

ppltrst Attitude towards “most people can be trusted”

euftf Attitude towards “European unification can go further”

impcntr Attitude towards allowing immigrants from poorer countries outside Europe

atcherp How emotionally attached to Europe

ipmodst Attitude towards “it is important to be humble and modest and to not draw attention”

wrclmch How worried about climate change

uempla Whether or not respondent is unemployed and actively looking for a job in the 7 days before

the interview

emprf14 Employment status of father of respondent when respondent was 14

edulvlmb Highest level of education of mother of respondent

rlgblg Whether respondent belongs to a particular religion or denomination

wrdpimp How worried about the country being too dependent on energy imports

ipsuces Attitude towards “it is important to be successful and that people recognize achievements”

rfgbfml Attitude towards “granted refugees should be entitled to bring close family members”

ccrdprs To what extent does respondent feel personal responsibility to reduce climate change

elgsun How much electricity in a particular country should be generated from solar power

stfedu Attitude towards “the current state of education in the country is good”

crmvct Whether the respondent or a household member was a victim of burglary or assault in the

last 5 years

dscroth Whether or not respondent’s group is discriminated in terms of other grounds

gincdif Attitude towards “the government should reduce di↵erences in income levels”

eusclbf Against or in favor of an EU-wide social benefit scheme

lkuemp How likely is it for the respondent to be unemployed and looking for work in the next 12

months

trstprt Trust in political parties

atchctr How emotionally attached to the country

jbspv Whether respondent is responsible for supervising other employees

hmsfmlsh Attitude towards “ashamed if close family member is gay or lesbian”
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Feature Description

rlgblge Ever belonging to a particular religion or denomination

yrbrn3 Birth year of third person in household

cmsrv Whether or not partner of respondent is doing community or military service in 7 days before

interview

tporgwk Type of organization working or worked for

emprelp Employment relation of partner

icwhct Whether respondent has a set basic or contracted number of hours

cflsenr How confident respondent can use less energy than currently

sblazy Attitude towards “social benefits or services make people lazy”

iorgact How much influence respondent has on policy decisions about activities of an organization

banhhap Attitude towards “sale of the least energy e�cient household appliances should be banned

to reduce climate change

uentrjb Attitude towards “most unemployed people do not really try to find a job”

trstlgl Trust in the legal system

vteurmmb Whether respondent would vote for the country to remain a member of the EU or leave

impfree Attitude towards “it is important to make your own decisions and be free”

ccgdbd Attitude towards “climate change has a good impact across the world”

vote Whether or not respondent has voted in the last election

sgnptit Whether or not respondent has signed a petition in the last 12 months

lvgptnea Whether respondent has ever lived with a partner, without being married

edulvlpb Highest level of education partner

dngdkp Whether or not respondent does not know what partner has done in the 7 days before the

interview

pplhlp Attitude towards “most of the time people are helpful”

pray How often praying apart from at religious services

ene↵ap How likely is it for the respondent to buy the most energy e�cient home appliance

iphlppl Attitude towards “it is important to help people and care for others well-being”

bnlwinc Attitude towards “social benefits should only be for people with the lowest incomes”

domicil Domicile of respondent

wrpwrct How worried about power cuts

hincfel Feeling about income of household nowadays

elgbio How much electricity in a particular country should be generated from biomass energy

icpart1 Whether or not the respondent lives with husband, wife or partner (interviewer code)

dweight Design weight

pweight Population size weight

ipcrtiv Attitude towards “it is important to think of new ideas and be creative”

rtrdp Whether or not partner of respondent is retired in the 7 days before the interview

blgetmg Whether or not respondent belongs to a minority ethnic group in the country

region Region of the respondent

regunit Regional unit of the respondent

hincsrca Main source of household income

anctry1 First ancestry in European Standard Classification of Cultural and Ethnic Groups

trstprl Trust in the parliament of the country

lrscale Placement on left and right scale (political orientation)
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Feature Description

wrkorg Whether or not respondent has worked in another (not a political party or action group)

organization or association in the last 12 months

badge Whether respondent has worn or displayed a campaign badge or sticker in the last 12 months

pbldmn Whether or not respondent has taken part in a lawful public demonstration in the last 12

months

bctprd Whether or not respondent has boycotted certain products in the last 12 months

pstplonl Whether or not respondent has posted or shared anything about politics online in the last

12 months

clsprty Whether or not respondent feels closer to a particular party than all other parties (politics)

sclmeet How often socially meeting with friends, relatives or colleagues

icpart3 Whether or not the respondent lives with husband, wife or partner (interviewer code)

hmsacld Attitude towards “gay and lesbian couples have a right to adopt children”

imbgeco Attitude towards “immigration is good for the economy of the country”

imwbcnt Attitude towards “immigrants make the country a better place to live”

happy How happy is respondent

dscrdk Whether or not respondent does not know if group of respondent is discriminated

rtrd Whether or not respondent is retired in the 7 days before the interview

rlgdgr How religious is respondent

dscrgrp Whether or not respondent is a member of a group discriminated against in the country

dscrntn Whether or not respondent is discriminated in terms of nationality

dscrrlg Whether or not respondent is discriminated in terms of religion

dscrlng Whether or not respondent is discriminated in terms of language

dscretn Whether or not respondent is discriminated in terms of ethnic group

dscrage Whether or not respondent is discriminated in terms of age

facntr Whether or not the father of the respondent is born in the country

dscrsex Whether or not respondent is discriminated in terms of sexuality

dscrdsb Whether or not respondent is discriminated in terms of disability

icomdng How many activities doing by partner coded (interview code)

lnghom1 First most spoken language at home

mocntr Whether mother is born in the country

gvrfgap Attitude towards “the government should be generous in judging applications for refugee

status”

ownrdcc How likely is it for the respondent to limit own energy use to reduce climate change

inctx↵ Attitude towards “taxes on fossil fuels should be increased to reduce climate change”

wrtcfl How worried about energy supply being interrupted by technical failures

wrtratc How worried about energy supply being interrupted by terrorist attacks

clmchng Attitude towards “the climate of the world is changing”

dfincac Attitude towards “large di↵erences in income are acceptable to reward talents and e↵orts”

sbstrec Attitude towards “social benefits and services place a too great strain on the economy”

admub Administration of unemployment benefits questions

sbbsntx Attitude towards “social benefits and services cost businesses too much in taxes and charges”

hhmmb Number of people living regularly as a member of the household

crpdwk Whether or not respondent had control paid work in the 7 days before the interview

pdjobev Whether or not respondent ever had a paid job
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Feature Description

pdjobyr The last year of the paid job

chldhhe Whether or not respondent ever had children living in the household

iccohbt Whether or not respondent is cohabiting (interviewer code)

marsts Legal marital status

eiscedp highest level of education of partner in ES-ISCED scale

pdwrkp Whether or not partner of respondent did paid work in the 7 days before the interview

dngrefp Whether or not respondent refuses to answer what partner has done in the 7 days before the

interview

icppdwk Whether or not partner of respondent is in paid work (interviewer code)

isco08p Occupation of partner of respondent in ISCO08 code

yrbrn2 Year of birth of second person in household

icpdwrk Whether or not respondent is in paid work (interviewer code)

emplrel Employment relation

hinctnta Total net income of all sources of household

cmsrvp Whether or not respondent is in community or military service in 7 days before the interview

uemplip Whether or not partner is unemployed and not actively looking for a job in the 7 days before

interview

chldhm Whether or not children are living at home or not

eduyrs Years of fulltime education completed

pdwrk Whether or not respondent is doing paid work in 7 days before the interview

mbtru Whether or not respondent is or was a member of a trade union or similar organization

hswrkp Whether or not partner of respondent is doing housework, looking after children or other in

the 7 days before the interview

mnactic Main activity in the last 7 days of all respondents, post coded

dngothp Whether or not partner of respondent is doing something other in the 7 days before the

interview

dngnapp Whether or not question about what partner of respondent is doing in the 7 days before the

interview is not applicable

icomdnp Whether or not partner of respondent is doing more than one activity in 7 days before in-

terview (interviewer code)

dngnap Whether or not question about what respondent is doing in the 7 days before the interview

is not applicable

wkhtot Total hours normally worked per week in main job with overtime

nacer2 Industry type in NACE rev.2

isco08 Occupation of respondent in ISCO08 code

wkhct Total contracted hours per week in main job excluding overtime

wrkac6m Whether or not respondent has paid work in another country of at least 6 months in the

past 10 years

uemp3m Whether or not respondent was ever unemployed and seeking work for a period of more than

3 months

wkhtotp Hours normally worked in a week in main job with overtime, of partner

eiscedf Highest level of education of father in ES-ISCED

emprm14 Employment status of mother of respondent when respondent was 14

eiscedm Highest level of education of mother in ES-ISCED
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Feature Description

atncrse Whether or not respondent has improved knowledge or skills by a course, lecture or confer-

ence in the last 12 months

impenv Attitude towards “it is important to care for nature and the environment”

imptrad Attitude towards “it is important to follow traditions and customs”

iplylfr Attitude towards “it is important to be loyal to friends and devote to people that are close”

impfun Attitude towards “it is important to seek fun and things that give pleasure”

ipstrgv Attitude towards “it is important that the government is strong and ensures safety”

ipbhprp Attitude towards “it is important to behave properly”

inwdds Day of the month of the start of the interview

iprspot Attitude towards “it is important to get respect from others”

inwmme Month of the end of the interview

inwyye Year of the end of the interview

inwtm Interview length in minutes of main questionnaire

basinc Attitude towards “there should be a basic income scheme”

dscrnap Answered ‘not applicable’ to question discrimination to group of respondent
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Proportion of missingness for each

feature

column name, % missing

gndr12 99.988735%

rshipa12 99.988735%

yrbrn12 99.988735%

yrbrn11 99.979724%

rshipa11 99.977471%

gndr11 99.977471%

rlgdelt 99.941424%

yrbrn10 99.936918%

gndr10 99.925654%

rshipa10 99.923401%

rlgdehu 99.882849%

yrbrn9 99.867078%

gndr9 99.846802%

rshipa9 99.844549%

edupail2 99.806250%

rlgdeapl 99.788226%

yrbrn8 99.653052%

rlgdease 99.637281%

gndr8 99.628270%

rshipa8 99.619258%

rlgdeis 99.567441%

edufail2 99.515624%

rlgdeafi 99.504359%

rlgdebat 99.495348%

edumail2 99.484083%

rlgdeach 99.407484%

rlgdeno 99.382702%

rlgdegb 99.337644%

rlgdeie 99.258792%

rlgdebe 99.215987%

rlgdnis 99.069547%

rlgdeade 99.058283%

prtclesi 99.035754%

rlgdenl 99.006466%

column name, % missing

prtclbis 99.004213%

yrbrn7 98.997454%

gndr7 98.950143%

rshipa7 98.934373%

prtclgpl 98.909591%

prtclblt 98.875797%

rlgdnnl 98.754140%

rlgdnase 98.736116%

edlvpdis 98.691058%

prtclfhu 98.641494%

prtvtesi 98.535607%

prtvtbis 98.407191%

prtclept 98.337351%

edlvpdpt 98.332845%

prtclcit 98.328339%

prtvtfch 98.285534%

prtvtcpt 98.281028%

prtcldcz 98.231464%

prtclfee 98.208935%

rlgdnbe 98.195418%

rlgdnhu 98.186406%

prtclfch 98.170636%

rlgdnno 98.145854%

edlvpesi 98.112060%

edlvfdis 98.098542%

prtclcbe 98.082772%

edlvmdis 98.069255%

prtcldie 98.062496%

prtvtehu 98.044472%

prtclcat 98.042220%

edlvdis 98.028702%

prtcldru 98.008426%

prtclenl 98.003920%

edlvpdhu 97.992656%

column name, % missing

rlgdngb 97.938586%

rlgdnach 97.904792%

edupagb2 97.902539%

edagepgb 97.900286%

edupbgb1 97.893527%

prtclbse 97.893527%

prtvtbit 97.870998%

edlvpdch 97.839457%

clmthgt1 97.823687%

prtclefr 97.807917%

edlvpenl 97.794399%

rshpsgb 97.780882%

edlvpdse 97.744835%

edlvpdno 97.742582%

edlvpepl 97.740329%

prtcldil 97.717800%

eduppl2 97.715547%

prtvblt2 97.702030%

prtclbgb 97.697524%

marstfi 97.693018%

prtcldfi 97.693018%

prtvblt1 97.686259%

prtclbno 97.650213%

prtvtdpl 97.638948%

prtvblt3 97.636695%

prtvtcfr 97.614166%

rlgdnafi 97.602902%

prtclees 97.598396%

edlvpdfr 97.589384%

edlvpebe 97.548832%

edlvpdru 97.539820%

edlvpeat 97.494762%

prtvtdcz 97.442945%

edlvfdpt 97.415910%
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column name, % missing

prtvtbno 97.402393%

edlvpdee 97.397887%

prtvtfee 97.370852%

prtvtdru 97.357334%

marstgb 97.352829%

prtvtfnl 97.341564%

edlvpdfi 97.330299%

rshpsfi 97.328047%

edlvpdlt 97.298759%

edlvpfes 97.285241%

edlvmdpt 97.278482%

edlvfesi 97.197378%

edlvpdcz 97.188366%

prtvtbse 97.156825%

edlvdpt 97.145561%

prtvtcbe 97.143308%

edlvmesi 97.136549%

prtvtdes 97.134296%

edlvesi 97.062203%

yrbrn6 97.021650%

prtvtbgb 96.996868%

prtvtdfi 96.956316%

gndr6 96.940546%

rshipa6 96.904499%

edlvpdit 96.877464%

edlvfdse 96.868452%

edlvfdch 96.789601%

rlgdnbat 96.726519%

edlvmdse 96.719760%

edlvmdch 96.717507%

edlvfdhu 96.694978%

edlvpdie 96.694978%

edlvfenl 96.663437%

edagefgb 96.649920%

edlvfdno 96.627391%

prtclede 96.625138%

edlvmdno 96.584586%

edlvmdhu 96.577827%

rlgdnapl 96.575574%

edlvdch 96.575574%

edlvmenl 96.535022%

edlvdno 96.521504%

edlvdse 96.514745%

edlvfepl 96.512492%

rlgdnade 96.510239%

edagemgb 96.503481%

column name, % missing

edlvmepl 96.395341%

edlvdhu 96.375065%

edlvfebe 96.372812%

edupbil1 96.368306%

edufagb2 96.366053%

edufbgb1 96.348030%

edlvmebe 96.320995%

edlvenl 96.217361%

edumbgb1 96.194832%

edumagb2 96.194832%

edlvepl 96.194832%

edupl2 96.183567%

edlvfdfr 96.129497%

edlvebe 96.032622%

prtvtbat 96.019105%

edupade3 95.992070%

edupade2 95.987564%

edlvfdlt 95.983058%

edupbde1 95.978552%

prtvtcil 95.971794%

edlvfdee 95.962782%

prtvtbie 95.958276%

edlvmdfr 95.917724%

edlvfdfi 95.868160%

prtvede1 95.865907%

edlv↵es 95.856895%

rlgdnlt 95.838872%

prtvede2 95.814090%

vteumbgb 95.802825%

edlvmdfi 95.771284%

edlvmfes 95.744249%

edlvfeat 95.672156%

edlvdfi 95.667650%

edlvmdlt 95.649627%

edlvmdee 95.633857%

eduagb2 95.629351%

edubgb1 95.629351%

edagegb 95.624845%

edlvges 95.595557%

edlvfdru 95.573028%

edlvmeat 95.570775%

edlveat 95.478406%

edlvdee 95.453624%

rlgdnie 95.419830%

edlvdfr 95.340978%

edlvdlt 95.228333%

column name, % missing

edlvfdcz 95.165251%

edlvmdru 95.149481%

edufbil1 94.991777%

edlvmdcz 94.987271%

edlvdcz 94.888143%

edumbil1 94.692140%

edlvdru 94.525424%

edlvfdit 94.484872%

edlvmdit 94.421790%

edlvfdie 94.322662%

edlvmdie 94.291121%

edufade3 94.255075%

edubil1 94.250569%

edufbde1 94.246063%

eduail2 94.241557%

edlvdit 94.131165%

edumade3 94.090612%

edufade2 94.070336%

edumbde1 93.975714%

edumade2 93.865321%

mnactp 93.833780%

edlvdie 93.813504%

eduade3 93.606236%

eduade2 93.601730%

edubde1 93.594972%

intewde 93.574695%

yrbrn5 91.087481%

gndr5 90.925271%

rshipa5 90.873454%

cntbrthc 90.413860%

livecnta 89.965530%

rlgdnme 89.875414%

emplno 89.481154%

ctzshipc 89.071124%

mainact 86.469011%

mbrncntb 85.937324%

lnghom2 85.831437%

fbrncntb 85.358326%

vteubcmb 82.456575%

crpdwkp 77.542974%

ub50unp 77.466375%

ub50edu 77.024805%

ubspunp 76.903147%

ub50pay 76.894136%

ub20unp 76.785996%

ubspedu 76.562958%
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column name, % missing

ubunp 76.508888%

ubsppay 76.389483%

ub20edu 76.324149%

ub20pay 76.182216%

ubedu 75.965936%

ubpay 75.866808%

yrbrn4 75.103071%

gndr4 74.729087%

anctry2 74.720076%

rshipa4 74.638971%

njbspv 74.258229%

uemp5yr 72.050375%

uemp12m 72.045869%

wkhtotp 67.253926%

pdjobyr 66.156758%

isco08p 64.489603%

emprelp 63.719107%

rlgblge 59.817064%

yrbrn3 57.208192%

prtdgcl 57.043729%

pdjobev 56.744092%

gndr3 56.446707%

rshipa3 56.406155%

crpdwk 54.684930%

marsts 49.739789%

occm14b 42.758015%

edulvlpb 42.523712%

eiscedp 42.523712%

iccohbt 41.703652%

rshpsts 41.681123%

icomdnp 41.649582%

icppdwk 41.647329%

rlgdnm 41.147183%

chldhhe 35.147678%

vteurmmb 33.385901%

netustm 32.158064%

eudcnbf 28.438507%

eusclbf 26.584360%

yrbrn2 22.961678%

rshipa2 21.850992%

gndr2 21.758623%

wrkctra 19.746773%

wkhct 18.769009%

hinctnta 17.892626%

occf14b 15.457228%

wkhtot 14.407372%

column name, % missing

lrscale 13.075901%

rfgfrpc 11.706130%

lvgptnea 11.320882%

estsz 11.138396%

lbenent 10.469282%

eiscedf 10.066010%

edulvlfb 10.066010%

nacer2 10.007435%

isco08 9.597405%

iorgact 9.214410%

tporgwk 9.063465%

wkdcorga 8.752563%

basinc 8.549801%

lknemny 8.504742%

emplrel 8.398856%

jbspv 8.385338%

wrkac6m 8.252416%

euftf 8.135265%

icwhct 8.121747%

wrkprbf 7.927997%

trstep 7.801834%

trstun 7.792822%

sbbsntx 7.488679%

gvsrdcc 7.454885%

elgcoal 7.423345%

lkredcc 7.333228%

eduunmp 7.249870%

elgbio 7.128213%

ccgdbd 7.107937%

uemplwk 6.889405%

elgngas 6.824070%

rfgbfml 6.727195%

lklmten 6.706919%

edulvlmb 6.641584%

eiscedm 6.641584%

elgnuc 6.585261%

bennent 6.537950%

ownrdcc 6.157208%

bnlwinc 5.771960%

ccrdprs 5.542163%

elghydr 5.046523%

sbstrec 4.873048%

ccnthum 4.850519%

inctx↵ 4.474283%

imsclbn 4.469777%

elgwind 4.332350%

column name, % missing

wrdpfos 4.095794%

wrclmch 3.904296%

banhhap 3.802915%

emprf14 3.793904%

elgsun 3.746592%

hmsfmlsh 3.649717%

stfedu 3.534819%

imwbcnt 3.519048%

imbgeco 3.519048%

sblwcoa 3.483002%

sbeqsoc 3.363597%

stfdem 3.359092%

wrdpimp 3.277987%

hmsacld 3.266722%

impcntr 3.266722%

sbsrnen 3.163088%

imueclt 3.160835%

sbprvpv 3.018902%

lkuemp 2.944556%

gvrfgap 2.870210%

slvuemp 2.863451%

imdfetn 2.818393%

clmthgt2 2.757564%

freehms 2.710253%

clsprty 2.653930%

stfgov 2.615631%

imsmetn 2.593102%

inwtm 2.561561%

ene↵ap 2.502985%

clmchng 2.473697%

uentrjb 2.419627%

sblazy 2.322752%

ipfrule 2.300223%

ipstrgv 2.257418%

iprspot 2.257418%

cptppola 2.248406%

pray 2.198842%

emprm14 2.189830%

psppsgva 2.158290%

cflsenr 2.144772%

actrolga 2.106473%

ipsuces 2.090702%

ipshabt 2.018609%

stfeco 1.996080%

ipudrst 1.987068%

maritalb 1.978057%
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column name, % missing

ipbhprp 1.973551%

trstprl 1.966792%

dfincac 1.953275%

ipmodst 1.932998%

trstprt 1.926240%

sclact 1.926240%

trstlgl 1.912722%

ipcrtiv 1.908216%

psppipla 1.896952%

ipadvnt 1.890193%

impdi↵ 1.858652%

impfun 1.856399%

ipeqopt 1.847388%

ipgdtim 1.838376%

iphlppl 1.804582%

smdfslv 1.793318%

impfree 1.793318%

imprich 1.786559%

iplylfr 1.750513%

impenv 1.709960%

imptrad 1.698696%

impsafe 1.680672%

wrinspw 1.604073%

wrtratc 1.579291%

hincsrca 1.561268%

atcherp 1.550003%

gincdif 1.513957%

slvpens 1.484669%

trstplt 1.455381%

gvcldcr 1.448622%

wrtcfl 1.257125%

gvslvue 1.236849%

hincfel 1.180526%

nwspol 1.180526%

inprdsc 1.173767%

mnrgtjb 1.124203%

vote 1.054363%

wrntdis 1.040845%

wrpwrct 0.995787%

blgetmg 0.993534%

wrenexp 0.973258%

eduyrs 0.955235%

inwehh 0.925947%

inwemm 0.923694%

rlgdgr 0.907923%

aesfdrk 0.889900%

column name, % missing

rlgatnd 0.786266%

dscrgrp 0.770496%

trstplc 0.720932%

anctry1 0.718679%

rdcenr 0.716426%

stfhlth 0.714173%

pplfair 0.709667%

rlgblg 0.678126%

lnghom1 0.626310%

gvslvol 0.590263%

dvrcdeva 0.585757%

facntr 0.533940%

atchctr 0.529434%

atncrse 0.515917%

mbtru 0.500146%

uemp3m 0.491135%

happy 0.484376%

bctprd 0.482123%

sclmeet 0.470859%

sgnptit 0.423547%

stflife 0.421295%

icpart3 0.403271%

icpart2 0.398765%

icpart1 0.398765%

pplhlp 0.396512%

pstplonl 0.396512%

hlthhmp 0.392007%

crmvct 0.364972%

agea 0.349201%

yrbrn 0.349201%

pbldmn 0.304143%

mnactic 0.299637%

wrkorg 0.290626%

edulvlb 0.290626%

eisced 0.290626%

badge 0.283867%

hhmmb 0.279361%

contplt 0.274855%

ppltrst 0.259085%

wrkprty 0.252326%

mocntr 0.236556%

polintr 0.218532%

health 0.132922%

domicil 0.112646%

netusoft 0.110393%

inwshh 0.078852%

column name, % missing

inwsmm 0.076599%

inwdds 0.051817%

inwyys 0.049564%

inwmms 0.049564%

ctzcntr 0.047311%

admub 0.042805%

brncntr 0.038300%

icomdng 0.027035%

icpdwrk 0.024782%

chldhm 0.024782%

inwdde 0.022529%

inwmme 0.020276%

inwyye 0.020276%

gndr 0.020276%

region 0.002253%

name None

essround None

edition None

proddate None

idno None

cntry None

dweight None

pspwght None

pweight None

anweight None

dscrrce None

dscrntn None

dscrrlg None

dscrlng None

dscretn None

dscrage None

dscrgnd None

dscrsex None

dscrdsb None

dscroth None

dscrdk None

dscrref None

dscrnap None

dscrna None

pdwrk None

edctn None

uempla None

uempli None

dsbld None

rtrd None

cmsrv None
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column name, % missing

hswrk None

dngoth None

dngref None

dngdk None

dngna None

pdwrkp None

edctnp None

column name, % missing

uemplap None

uemplip None

dsbldp None

rtrdp None

cmsrvp None

hswrkp None

dngothp None

column name, % missing

dngnapp None

dngrefp None

dngdkp None

dngnap None

regunit None
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Appendix I

Proportion of overlap between the

target and predictors

column name, avg overlap, max overlap

wkhtotp 4.36% 41.66%

isco08 3.88% 43.14%

emprelp 3.73% 42.84%

rshipa3 3.59% 56.27%

gndr3 3.29% 56.33%

pdjobyr 3.05% 38.00%

prtdgcl 3.02% 33.79%

icomdnp 2.93% 27.94%

icppdwk 2.93% 27.94%

rshpsts 2.90% 27.94%

rlgblge 2.87% 32.96%

iccohbt 2.82% 27.95%

yrbrn3 2.81% 33.47%

occm14b 2.75% 28.53%

pdjobev 2.73% 31.78%

eiscedp 2.70% 28.38%

edulvlpb 2.70% 28.38%

crpdwk 2.28% 30.66%

netustm 2.19% 23.51%

eudcnbf 2.03% 15.31%

vteurmmb 2.03% 20.15%

marsts 2.03% 26.74%

rlgdnm 1.95% 24.28%

rshipa2 1.91% 21.85%

yrbrn2 1.72% 22.81%

eusclbf 1.70% 14.32%

gndr2 1.63% 21.72%

chldhhe 1.52% 22.34%

hinctnta 1.41% 11.51%

wkhct 1.35% 9.60%

lrscale 1.12% 8.55%

wkhtot 1.09% 8.23%

rfgfrpc 1.02% 7.38%

wrkctra 0.99% 10.12%

column name, avg overlap, max overlap

estsz 0.98% 9.27%

sbbsntx 0.92% 5.23%

euftf 0.91% 5.88%

gvsrdcc 0.91% 5.48%

wrkprbf 0.89% 5.48%

elgcoal 0.87% 5.49%

basinc 0.87% 6.00%

lkredcc 0.86% 5.61%

elgngas 0.86% 5.07%

eduunmp 0.83% 4.99%

elgbio 0.82% 5.25%

trstun 0.82% 5.40%

lklmten 0.81% 5.61%

ccgdbd 0.79% 4.98%

nacer2 0.78% 8.16%

isco08 0.77% 8.43%

occf14b 0.77% 9.32%

trstep 0.76% 5.50%

tporgwk 0.76% 8.15%

uemplwk 0.74% 4.96%

elgnuc 0.74% 5.15%

lbenent 0.73% 6.41%

iorgact 0.71% 8.67%

ownrdcc 0.71% 4.98%

bennent 0.70% 4.29%

wrkac6m 0.68% 8.02%

wkdcorga 0.66% 8.67%

eiscedm 0.65% 4.60%

edulvlmb 0.65% 4.60%

bnlwinc 0.65% 3.97%

rfgbfml 0.65% 4.19%

elghydr 0.64% 3.88%

jbspv 0.62% 8.16%

eiscedf 0.62% 5.66%
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APPENDIX I. OVERLAP IN MISSINGNESS

column name, avg overlap, max overlap

edulvlfb 0.62% 5.66%

emplrel 0.60% 8.09%

lknemny 0.58% 6.01%

icwhct 0.58% 7.98%

column name, avg overlap, max overlap

ccrdprs 0.58% 4.25%

lvgptnea 0.49% 6.02%
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