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Abstract 
Biodiversity is essential for ecological balance and ecosystem functioning. The National Database of 
Flora and Fauna (NDFF) is a valuable resource for understanding biodiversity, but it suffers from 
observer bias, resulting in data gaps and incomplete knowledge about species distribution. To address 
this issue, this study employs Species Distribution Modelling (SDM) for the Plebajus Argus in the 
Utrecht and Veluwe regions by combining existing species occurrence data with relevant 
environmental variables. A probable cause for observer bias in the NDFF are differences in accessibility 
and visitation rates across the study area. Therefore, an additional set of ‘observer bias variables’ that 
describe these factors were added and their efficacy assessed. By fixing these variables to a constant 
when predicting, all locations are treated as if they have equal accessibility and consequently a 
distribution free from observer bias is predicted. Results show that a Logistic Regression, Random 
Forest and KNN predict the distribution of the Plebajus Argus with an accuracy of around 92%. 
Particularly the Logistic Regression and Random Forest show sensible corrections for observer bias.  
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Introduction 
Biodiversity plays a crucial role in maintaining the ecological balance and functioning of ecosystems. 
The Netherlands, like many other regions, has experienced a decline in biodiversity over the past 
century. Biodiversity in the Netherlands lowered from well above 40% MSA (Mean Species Abundance) 
in 1900 to about 15% in 2000 (CBS, 2013). In comparison with Europe and the rest of the world this 
loss is notably more substantial. Efforts have been made in the last decade to slow down the loss of 
biodiversity by constructing new natural areas, and while these measures are promising, it is essential 
to have accurate information on the current state of biodiversity and the factors contributing to its 
preservation.  
 
The National Database of Flora and Fauna (NDFF) is a valuable resource that collects observations of 
species in the Netherlands and is often used to provide insights to policy makers on the status of 
biodiversity. The NDFF is an aggregate of multiple sources, including citizen science initiatives, 
professional record centers and expert observations. However, due to differences in accessibility and 
research focus, some areas of the Netherlands have received more attention from these sources and 
therefore have a higher density of recordings. This phenomenon is known as “observer bias” and can 
impact research particularly with presence-only data (Chauvier et al., 2021). This uneven 
documentation of occurrences across different locations leads to data gaps and incomplete knowledge 
about the distribution of species.  
 
To address the limitations imposed by observer bias, researchers and conservationists are employing 
species distribution modeling (SDM) where existing species occurrence from well documented regions 
are combined with relevant environmental variables such as climate, soil type and vegetation cover to 
estimate the occurrence of species to lesser documented regions. It has been shown that adding 
variables that try to account for observer bias, such as proximity to population clusters and roads, can 
improve the accuracy of a SDM (Warton et al., 2013). The underpinning idea in this approach is fixing 
these observer bias variables to a chosen value, rather than using the real observed values. With these 
fixed values, predictions can be made as if all locations had the same accessibility. An intuitive value is 
‘0’, where all locations are treated as if their accessibility was ‘perfect’.  
 
In collaboration with TAUW, a European consulting and engineering firm with a strong position in 
environmental consulting and sustainable development of the living environment, this thesis will focus 
on investigating the effectiveness of using a model-based approach to account for observer bias in 
combination with SDM to improve the insights that the NDFF offers on species distribution and 
therefore biodiversity. Specifically, the presence of the Plebejus Argus, commonly known as the 
‘heideblauwtje’ in Dutch, will be modeled in the area of Utrecht and the Veluwe. The ‘heideblauwtje’ 
is a butterfly species which is not heavily reliant on a specific host plant making it well suited for 
modeling based on environmental characteristics.  
 
In Chapter 2 the data and data preparation methods will be discussed, in Chapter 3 the methods of 
analysis will be discussed, Chapter 4 presents the results and analysis, in Chapter 5 and 6 the discussion 
and conclusion are found, respectively.  

  



Data 

Study Area Description 
Though the NDFF offers recordings for the whole of the Netherlands, only a small portion of the 
Netherlands will be included in the model. The model serves as a proof of concept and the study area 
can be extended when computational costs and time are not constrained. All datasets used in this 
study are publicly available for the whole of the Netherlands. The study area covers an area of 2000 
km2 around the municipalities Utrecht, Utrechtse Heuvelrug and Ede, and includes a broad range of 
environmental conditions such as urban areas, wetlands, waterbodies, agriculture and grasslands, 
forests, and heather. The wide range of environmental conditions ensure that many different habitat 
types are included in the study area. See Figure 3 for a map of the study area.  

Dutch National Database Flora and Fauna (NDFF)  
The NDFF is the data warehouse that collects observations of plant and animal species in the 
Netherlands. It is used to provide the target variable in this model. The NDFF has more than 1.5 million 
observations, of which 10.446 are observations of the Heideblauwtje in the study area. The 
observations in the NDFF are collected via citizen science projects, professional record centers and 
expert observations. All observations reported to the NDFF are automatically validated. This means 
that the observation is checked on species, count, date and locations. When complete a substantive 
test is conducted. For example: an observation of a butterfly in December while this species only flies 
in August is marked as unreliable. Around 10% of the incoming recordings are marked as unreliable 
and are then checked manually by a validation team that decides on its acceptance (ndff.nl). The 
records often follow some protocol such that observations are easily comparable, and that the origin 
of the record is traceable. The frequency of observations in the study area along with their protocol 
are found in Figure 1, it shows that most of the records are individual observations from different 
organizations.  

 
Figure 1 Frequency of observation per protocol: 101.00, 100.000 and 03.201 are protocols for opportunistic records 

from different organizations. Protocol 12.205 is a professional survey to monitor the quality of nature. (ndff.nl)  
  



According to Tisja Daggers, an ecologist at TAUW, records older than 10 years are not likely to be 
relevant for predicting the current distribution of a species. Since there are no records of species in 
the NDFF of 2023, only records between 2012 and the end of 2022 are included, resulting in 5338 
observations. However, it is worth noting that out of these 5338 observations, 403 were collected on 
an area larger than the resolution of the model and are therefore not included in the dataset for 
analysis. The remaining usable records are plotted in Figure 3. 
 
The data for this period and area are claimed to represent precise counts. However, Figure 2 illustrates 
the distribution derived from these counts. The unusual spikes at 10 or multiples of ten are likely the 
effect of the ‘round number bias’, whereby individuals tend to round their estimates towards 10 or 
multiples of 10. This shows that the claimed precision is not always true. The distribution shows that 
nearly half of the recorded instances correspond to a count of 1. The frequency of observations where 
more than one Heideblauwtje is observed quickly diminish with a higher number of observed 
butterflies.  
 

 
Figure 2 Distribution of observed count of the Heideblauwtje in the NDFF 



 
Figure 3 Locations of observations, marked by blue dots for the Heideblauwtje in the study area between 2012-2022. 



Environmental data  
The predictive variables in this model can be subdivided into two categories. First the environmental 
variables that try to describe a species habitat, and secondly variables that try to model the 
accessibility for individuals to account for observer bias in the NDFF.  
The concept of a species’ ecological niche provides the central theoretical basis for describing species-
environment relationships in SDM (Miller, 2010). A species’ niche, in context of an SDM, can best be 
described as an ‘n-dimensional hypervolume’ in environmental space in which a species can exist. This 
environmental space is constructed using the datasets in the following sections. The full list of data 
sources is added to reference section, while Appendix 1 presents the full list of features and cell count 
derived from the following datasets.  

Agrarisch Areaal Nederland 
The Agrarisch Areaal Nederland (AAN) dataset was obtained from PDOK (Public Services On the Map), 
and it provides spatial information on agricultural areas, permanent meadow, or the cultivation of 
perennial crops. The data were built using RGB remote sensing techniques.  

Basisregistratie Gewaspercelen 
The Basisregistratie Gewaspercelen dataset, sourced from PDOK contains geospatial information on 
crop fields in the Netherlands. The dataset is constructed using the previously mentioned Agrarisch 
Areaal Nederland, where the areas have been categorized in 29 types of crops. The user of the plots 
must declare yearly which crop they will cultivate. Each year a dataset is generated on the 15th of May. 
The features derived from this dataset can be found in Appendix 1 with the prefix ‘BRP_gewas_’.  

BRO Geomorfologische kaart 
The Geomorfologische kaart (GMM) dataset, obtained from PDOK is part of the Basisregistratie 
Ondergrond (BRO). It provides two categorical maps for this analysis: BRO_genese and BRO_landform. 
For both variables, the derived features and their cell count are found in Appendix 1 with prefix 
‘BRO_genese_’ and ‘BRO_landform_’. The BRO_genese is an aggregate of the BRO_landform, based 
on similarities in the processes that created the landforms.  

CBS Bestand Bodemgebruik 
CBS (Centraal bureau voor de Statistiek) is a well-known provider of statistics and data in the 
Netherlands. The data was sourced from PDOK. The ‘Bestand Bodemgebruik’ is a comprehensive land-
use dataset and includes detailed information in the Netherlands. The full list of features and cell count 
is found with prefix ‘cbs_landuse_’ in Appendix 1. 

Fysisch Geografische Regios 
The dataset Fysisch Geografische Regios was downloaded from PDOK and defines the physical 
geographical regions in the Netherlands. These regions are characterized by specific combinations of 
landforms, geology, climate and soil properties. The regions and their cell count are found in Appendix 
1.  

Nationale Parken 
The Nationale Parken dataset was sourced from PDOK and contains a binary map demarcating the 
borders of the 20 national parks in the Netherlands. These parks are often characterized by significant 
amounts of natural landscapes and biodiversity. National parks and protected areas are often 
established to conserve and protect important habitats for various species. As a result, these areas can 
serve as proxies or indicators for the presence of certain species. The dataset and the cell count can 
be found in Appendix 1.  

Natura2000 
The Natura2000 was obtained from PDOK and is a dataset containing the spatial information of a 
network of protected areas across Europe. The network consists of 160 areas that aim to conserve and 



protect Europe’s most valuable and threatened species and habitats. The Natura2000 areas are 
protected under the ‘Nature Conservancy Act’ and are defined by the European Birds Directive and 
Habitats Directive. These areas can therefore serve as proxies for the distribution of species. The cell 
count can be found in Appendix 1. 

SGM Ondergrondmodel 
The SGM soil map was at acquired at PDOK and contains detailed information on the soil type in the 
Netherlands. It describes the soil up to a depth of 1.2 meters, and is created at a scale of 1:50,000. It 
includes data on soil type and deposition method, soil formation, composition as well as the calcium 
content. It contains 96 categories which can be found with prefix ‘SGM_ondergrond_’ in Appendix 1 
along with their cell count.  

Satellite Images 
Using the planetary computer by Microsoft, satellite images of the study area were downloaded. The 
planetary computer provides images made by the Landsat satellites and are publicly available. A 
maximum cloud cover of 2% was used to minimize noise caused by moisture in clouds. The original 
resolution of the images is 30x30 meters. With the different bands, covering different parts of the light 
spectrum, a ‘normalized difference vegetation index’ (NDVI) image was constructed. The NDVI is a 
value between -1 and 1. Values close to -1 are likely to be water bodies, while values close to +1 are 
likely to be dense green leaves. Values of 0 are likely to be urban areas. The NDVI is therefore a good 
indicator for nature areas.  

Stiltegebieden 
The stiltegebieden dataset can be found at PDOK and provides geospatial information on areas where 
human activities cannot be louder that 40 dB. These areas can possibly be informative on species 
distributions as these quiet zones can be indicative for the absence of human activity, making it more 
suitable for certain species. The cell count can be found in Appendix 1. 

Corine Land Cover 
The Corine Land Cover dataset, version of 2018, sourced from the Copernicus website and is a widely 
used and comprehensive land cover classification system developed by the European Environment 
Agency (EEA). It provides detailed information about the different land cover types and their spatial 
distribution. After cleaning this dataset has 23 categories which can be found in Appendix 1 using prefix 
‘clc2018’. 

Wetlands 
The Wetlands dataset, sourced from PDOK, contains geospatial information on wet areas in the 
Netherlands. These wet areas include different water types such as marshes, fens, peat, lake areas and 
stagnant or flowing water bodies including artificial water bodies. A total cell count is found in 
Appendix 1.  
  



Observer bias variables 
Observer bias refers to the potential distortion or influence of human observers on the data they 
collect, which can introduce biases in species occurrence records. An excellent example of observer 
bias found in the NDFF is given in Figure 4. This figure illustrates that observations of the Heideblauwtje 
show a high proximity to roads and that accessibility to an area is a probable cause. To address this 
bias and enhance the accuracy of SDM, multiple features that describe the accessibility and visitation 
rate to an area are incorporated. These data source will be discussed in the following sections.  
 

 
Figure 4 Observations of the Heideblauwtje showing a significant proximity to a nearby road.  

(Base map from OpenStreetMap and OpenStreetMap Foundation (CC-BY-SA). © https://www.openstreemap.org and 
contributors.)  

Roads 
All highways, roads and hiking paths are queried from OpenStreetMap (OSM) resulting in a dataset of 
20533 road sections in the study area. Combined they sum to a total length of around 3100 km. This 
data has been used to derive two variables for our analysis: a variable containing the distance to the 
closest road section and a variable containing a density of roads per raster cell.  

Population 
Another source of data that could account for observer bias in occurrence records of the NDFF is 
population. A population distribution dataset was acquired PDOK. This dataset was used to include 3 
variables to our analysis: raw population distribution, a binary variable indicating population clusters 
above 1500 individuals per square kilometer, and a variable containing the distance to the closest 
population cluster.  
  



Data Acquisition and Data Preparation  
The preparation of data is a critical step in any data analysis or research project. In this section, we 
describe the operation undertaken to acquire and prepare the dataset for analysis. The original data 
includes both vector and raster formats and their contents and sources have been described in the 
‘Data’ section. The desired format for the analysis-ready dataset is a CSV (Comma Separated Values) 
file, where each row corresponds to a specific cell in the raster datasets and each column represents 
a feature extracted from a dataset. Additionally, two columns with ‘x’ and ‘y’ values have been added, 
corresponding to the coordinates of the center of the cell. The abundance values of the NDFF records, 
have been included for each year separately, as well as a total.   
When combining different datasets, it is essential that the raster cells of the different datasets are 
identical. To achieve this, a template raster is needed from which the resolution, coordinate reference 
system, cell origin and extent can be copied. In this study, we choose to project all data in the 
Amersfoort / RD new (EPSG:28992) coordinate reference system, the most used projection for Dutch 
datasets. The bounding box coordinates of the study area are found in Table 1. The resolution and cell 
origin were chosen to be copied from the reprojected CORINE Land Cover datasets (93x106 m), such 
that no resampling method was necessary for this dataset and thus no information was lost.  
 

  Coordinate 
North  Max 471634,8070 

Min 438840,1989 
East Max  193030,5756 

Min 130129,1596 
Table 1 The table provides the coordinates of the study area's extent, representing the boundaries of the analyzed 
region. Coordinates are given in EPSG:28992.  

Reprojecting  
The first step to make all data analysis-ready is reprojecting the datasets to the same CRS. Most 
datasets were obtained from a Dutch source and were already in the correct CRS (EPSG:28992). 
Reprojecting and clipping to extent were done with QGIS 3.28.1. The clipping operation was done using 
the coordinates from Table 1.  

Rasterizing 
Rasterizing vector data is necessary to be able to store the data as a CSV. The ‘Rasterize (vector to 
raster)’ tool by GDAL was used for this operation. This tool assigns each cell the value found at its 
center. Since the file format used for rasters (.tif) does not support categories, all datasets containing 
categories were separated and each category was rasterized to a binary map using zero’s and one’s to 
indicate the absence or presence of that category. These binary maps were than stacked such that, for 
example, the dataset ‘Basisregistratie Gewaspercelen’ with 29 categories was rasterized to a TIFF file 
with 29 bands, each band containing a binary map for a particular category. When rasterizing the 
observations from the NDFF, the same operation was used, however this time the sum of all 
observations in the cell extent was taken.  

Aligning 
Since all rasters are clipped to the same extent and then rasterized to the same resolution, it is 
expected that they have the same cell origin. However, after inspection, it seems that cell centers are 
very slightly misaligned. Using the QGIS tool ‘Align Rasters’ the cells have been aligned perfectly 
through resampling using a ‘Nearest Neighbour’ algorithm. A ‘Nearest Neighbor’ algorithm was chosen 
primarily because of its preservation of the original values, where other methods often use some 
averaging or interpolation. The ‘Nearest Neighbor’ algorithm selects the value of the closest pixel in 
the source raster when determining the value of a new pixel in the resampled raster. Given that the 
source and resampled raster cells are only very slightly misaligned, this ensures that the new 
resampled raster contains the original values in their corresponding positions.  



Combining data to CSV  
To obtain a CSV from a raster file, a python function has been written. It loops over every TIF file in a 
folder and stores each band as a column in a pandas dataframe where each row is a specific cell. The 
coordinates of the cell center are added as separate columns ‘x’ and ‘y’. In case of a categorical 
variable, when the number of bands is larger than 1, the columns with binary values are combined to 
a single categorical variable. When all datasets are converted to csv another python code combines 
these datasets to one final CSV. 
  



Methods  
The main objective of this thesis is to investigate the effectiveness of integrating a model-based 
approach to address observer bias in conjunction with SDM. Consequently, the aim is to enhance the 
quality of insights provided by the NDFF, and to demonstrate a framework for predicting the spatial 
distribution of a species, while correcting for observer bias. To accomplish this, the presence and 
absence of the ‘Heideblauwtje’ will be predicted using a variety of machine learning algorithms. The 
spatial distribution of the ‘Heideblauwtje’ will be modelled using environmental variables and 
complementary to these variables, several ‘observer bias variables’ will be added. These variables 
aim to describe the spatial variation in observer bias, following a similar approach as proposed by 
(Warton et al., 2013). To get a true distribution of the ‘Heideblauwtje’, where observation bias is 
corrected for, the observer bias variables can be set to a fixed value. An intuitive example is setting 
the variable ‘distance to paths’ to 0, such that the predictions can be interpreted as the areas where 
the ‘Heideblauwtje’ would be observed when these areas would be perfectly accessible by paths. In 
this study we will use the mean of the observed accessibility variables as the fixed value. This way, 
locations where the real accessibility is very high, for example in urban areas, get assigned a lower 
value than their true accessibility, while inaccessible locations get assigned a higher value. The 
underlying idea is that a ‘Heideblauwtje’ would have been observed in highly accessible areas if it 
occurred there, and that assigning a lower value would decrease the probability of a positive 
prediction. Likewise, assigning a higher value to lesser accessible locations would increase the 
probability of an observation of a ‘Heideblauwtje’, corresponding to the idea that an observation is 
more likely if an area is more accessible.  

Presence-only data 
Though the NDFF collects absence data, the target variable for this study only contains records of the 
presence of the ‘Heideblauwtje’. This leaves us with what is known as a One-Class Classification (OCC) 
problem. While there are various models that work with this type of data  (Khan & Madden, 2014), a 
common method in the field of SDM is to artificially generate absence records.  
To address this issue, we deploy an approach known as generating ‘pseudo-absences’, as described by 
(Barbet-Massin et al., 2012). Pseudo-absences are locations where there are no observations of the 
species and are handled as if they are true observed absences. In this project we created a balanced 
dataset by randomly selecting an equal number of pseudo-absences to match the number of presence 
records. To achieve this, locations where there are no presence records are randomly sampled in the 
study area. We will handle these randomly selected cells as if they were true absence records.  

One-Hot-Encoding 
Since many machine learning algorithms are not able to use categorical variables, all categorical 
variables have been one-hot-encoded. This creates a separate binary variable for each of the 
categories found in the original variable. To prevent perfect multicollinearity one of the encoded 
variables must be removed. The choice of which category to be removed does not impact the 
performance but does affect the interpretation of coefficients as the removed category acts as a 
baseline to which the other encoded variables are compared. Therefore, when a categorical variable 
contained a category in the likes of ‘Other’ or ‘No category’ it was chosen to be deleted.  With the 
variables that did not have such a category, the most common category was deleted.  

Standardization 
Although standardizing continuous variables does not affect the statistical inference, centering and 
scaling allows for easy comparison of the model coefficients and therefore feature importance. 
Furthermore, it can improve model stability and convergence. In this study all continuous variables 
were standardized using z-scaling. This process involves transforming each value by subtracting the 
mean and dividing by the standard deviation.  
 



Multicollinearity  
The general approach for data collection in this thesis is collecting everything that could possibly be 
informative for prediction of species occurrence, and then using the machine learning algorithms to 
find the most important features. Following this approach will yield datasets that contain the same 
information, i.e., variables that are correlated with each other. When using a model only for prediction, 
multicollinearity is not so much of a problem. When the objective is also inference, e.g., the analysis 
of a models’ coefficients and other trends, multicollinearity becomes a problem. When two variables 
are correlated it becomes difficult to determine the individual effect of each variable on the response 
variable as the predictors tend to change in unison. In an effort to reduce multicollinearity, some 
features have been deleted based on their Pearson correlation. For example: when predictors X1 and 
X2 are linearly correlated with a Pearson correlation larger than 0.65, one of these predictors is 
removed. The choice of which predictor to remove is based on its correlation with the target variable, 
where the predictor with smaller correlation is removed. The removed variables are found in Appendix 
5.  

Model selection and Parameter tuning 
The goal of our study is to predict an unbiased distribution of species. This can be done by modelling 
abundance, an actual number of ‘Heideblauwtjes’ at a location, or by occurrence where only the 
presence of absence of a ‘Heideblauwtje’ is predicted. Despite the potential for abundance modeling 
to provide valuable insights to ecologists and policymakers, the exploratory data analysis using 
regression models yielded very discouraging results. Either the environmental variables are not 
informative enough to predict a count, or the NDFF data contains too much noise to predict a reliable 
abundance. Therefore, our target variable will be binary: per cell in the study area, we will predict the 
presence or absence of the ‘Heideblauwtje’. The performance based on the test set will lead to the 
choice of final model. We will consider the following machine learning models: a Logistic Regression, 
Random Forest and K-Nearest Neighbors (KNN). The logistic regression is mainly added for its 
interpretability, while the other models are added for their possible predictive power. With the use of 
a grid search, the best parameters for each model are found by iteratively refining the grid guided by 
performance metrics. Table 2 shows the parameters used in grid search for each of the models and 
Appendix 2Appendix 3 and Appendix 4 show the different combination of the top 40 best combination 
of parameters. 
 

Model Parameters Best value  
Logistic Regression C 0.5 

Penalty L1 
Random Forest N_estimators 400 

Max_features Log2(total number of features) 
Max_depth 300 
Min_samples_split 4 
Bootstrap True 

KNN  N_neighbors  7 
Weights Distance 
Metric Manhattan 

Table 2 Parameters used in grid search. 

Variable importance  
For Logistic regression, variable or feature importance is easily extracted from the model. Since 
continuous variables have been standardized, the absolute value of the coefficient of each variable 
can be interpreted as its importance for the model. A random forest does not have coefficients and 
feature importance is based on the mean and standard deviation of the accumulated decrease in 
impurity per tree for each feature in a forest. KNN, a distance-based method, does not have 



coefficients or impurity and its feature importance is approximated using ‘permutation importance’. 
This approach approximates the importance of a variable by comparing the performance of an original 
model with a model where the values of the variable are randomly shuffled. For each of the features 
this was done 10 times to cancel out the chance that a feature has been shuffled to a state that 
happens to be contributing positively to the model.  

Spatial cross validation  
When working with spatial data it is known that using traditional Cross Validation (CV) will yield 
optimistically biased performance metrics. Normal CV randomly splits the data into ‘k’ folds using one 
of these folds for evaluation, while the other folds are used for training the model.  However, when 
handling spatial data, near values are more related than distant values, which is known as spatial 
autocorrelation. Because of this phenomenon, features are not randomly distributed over space, and 
can therefore also not be sampled randomly as a randomly sampled observation in the training set is 
correlated with a randomly sampled observation in the test set, when these observations are close to 
each other in geographical space. A solution to this problem is to use spatial cross validation (SCV), 
where folds are not generated by random sampling, but rather created as all records in a distinct area. 
This way, when predicting in the test fold, we are sure that the model has not ‘seen’ observations from 
this area and will thus create a true estimate of the predictive performance in areas outside of the 
training area. However, since this thesis focusses on filling the data gaps in the NDFF, i.e., there will be 
no predicting outside the training area, the data leakage from normal CV is not such a problem. It could 
even be beneficial as the model learning from the nearest areas around a data gap would help fill in 
the gap more accurately. Since the method of this thesis is generalizable to the whole of the 
Netherlands and the NDFF data is found everywhere in the Netherlands, predictions will always be 
somewhere near observations and thus can regular CV be used as model evaluation.  

  



Results and analysis 
This section will describe the performance, variable importance and mapped predictions twice for each 
of the models: once for the dataset without the observer bias variables and once for the dataset with 
observer bias variables.  

Model performance  
The performance of a model is often described by its accuracy, precision and recall. These metrics are 
often some ratio of the correct or incorrect predictions of the positive or negative class. A table 
containing all sorts of classifications is called a ‘confusion matrix’ of which an example is given below. 
 

 Predicted Condition 
Positive  Negative 

Actual 
Condition 

Positive True Positive (TP) False Negative (FN) 
Negative  False Positve (FP) True Negative (TN) 

Table 3 Confusion Matrix 
 
In context of this study, an analysis where pseudo-negatives were generated, we don’t know the actual 
condition of the ‘Negative’ class. For example, it could be that a location randomly sampled as negative 
actually contains the presence of a Heideblauwtje.  Therefore, all metrics involving the ‘False Positive’ 
or ‘True Negative’ have some uncertainty and need to be interpreted with some caution. The recall of 
the positive class, also called sensitivity or true positive rate, is defined as:  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

and does not involve the uncertainty that follows from a ‘False Positive’ or ‘True negative’.   
Furthermore, the use of random generated pseudo-absences introduces some uncertainty itself. It is 
very possible that one set of random pseudo-absences, by chance, is more in line with the presence 
data. This means that the pseudo-absences are not close to known observations, and thus not adding 
noise to the data. To quantify the effects of different sets of randomly generated pseudo-absences 50 
training sets were created, each with the same presence records, but with a different set of randomly 
sampled pseudo-absences. A training set consists of 1988 records, of which 996 are pseudo-absences. 
The test set contains 498 records. A model, using the same hyperparameters, was trained on each of 
these training sets and tested on a test set that did not change. The performance metrics found in 
Table 4, Table 5 andTable 6 are the mean over these 50 results, accompanied with the standard 
deviation. The hyperparameters used for these model runs were found using grid search with 5-fold 
cross validation on one of the training sets. To compare the performance of a model with and without 
the inclusion of observer bias variables this was all done twice, once for a dataset without observer 
bias variables and once with the observer bias variables.  
 

 Without observer bias variables With observer bias variables  
Mean Value  Standard 

Deviation 
Mean Value Standard 

deviation 
Precision 0.908354 0.012157 0.925922 0.010875 
Recall 0.910560 0.011285 0.928189 0.010155 
F1-score 0.908816 0.012200 0.926470 0.010933 
Accuracy 0.909197 0.012287 0.926787 0.010985 
Sensitivity 0.925991 0.003560 0.944053 0.006182 

Table 4 Performance metrics for Logistic Regression 
  



 Without observer bias variables With observer bias variables  
Mean Value  Standard 

Deviation 
Mean Value Standard 

deviation 
Precision 0.920525 0.010214 0.926321 0.009464 
Recall 0.922588 0.009542 0.928845 0.008817 
F1-score 0.921113 0.010173 0.926937 0.009549 
Accuracy 0.921486 0.010217 0.927229 0.009596 
Sensitivity 0.935066 0.006589 0.947137 2.242989e-16 

Table 5 Performance metrics for Random Forest. 
 

 Without observer bias variables With observer bias variables  
Mean Value  Standard 

Deviation 
Mean Value Standard 

deviation 
Precision 0.904717 0.011988 0.914786 0.010791 
Recall 0.907029 0.011483 0.917514 0.010557 
F1-score 0.905125 0.012174 0.915033 0.011376 
Accuracy 0.905502 0.012234 0.915301 0.011444 
Sensitivity 0.924317 0.012234 0.942555 0.008057 

Table 6 Performance metrics for KNN. 
 
All models performed better when observer bias variables are included. The largest gain in 
performance was by Logistic Regression with 1.5 percent point. The Random Forest gained the least 
when observer bias variables were added, but also showed the smallest standard deviation of all the 
models over the different training sets. The performance of the three models differs only slightly, the 
random forest performs best with an accuracy of 0.93. As mentioned in the ‘Methods’ section, model 
evaluation was done using normal CV. It is however worth mentioning that when using spatial CV 
where the study area is separated into six geographically distinct folds, the accuracy drops to around 
0.89.  

Variable importance 

Logistic Regression 
For Logistic Regression the importance of features has been approximated using two methods: the 
interpretation of model coefficients as feature importance (Figure 5) and the effect of variable 
permutation on accuracy (Figure 6). Figure 5 and Figure 6 include all features used, i.e., features not 
included in the figure were shrunken to zero due to the lasso penalty.  



 

 
 
The first thing to be noted is that the observer bias variables (blue) are relatively unimportant to the 
model. Almost all environmental variables (gray) have a larger coefficient. One advantageous aspect 
of interpreting coefficients as feature importance is that they not only provide information about the 
magnitude but also offer insights into the direction of the feature’s effect on the outcome. Looking at 
coefficient directions it is remarkable that the features ‘cbs_landuse_Dry natural area’ and 
‘cbs_landuse_Wet natural area’, seemingly two opposite types of environmental characteristics both 
contribute positively to the presence of a ‘Heideblauwtje’. Furthermore, the feature 
‘fysich_geografische_regios_Rivierengebied’ (areas that cover rivers), where environmental 
characteristics are expected to be somewhat similar to ‘cbs_Landuse_Wet natural Area’ have opposite 
signs. The observer bias variables ‘dist_to_path’ and ‘path_density’ have a negative and positive 
influence on the presence of the ‘Heideblauwtje’, respectively. This is as expected: an increase in 
distance to paths result in a decreased possibility that an individual made an observation of the 

Figure 5 Coefficients of the Logistic Regression. Highlighted in blue are the variables that model observer bias.   



‘Heideblauwtje’. Similarly, an increase in ‘path_density’ makes it more likely that an individual passing 
by makes an observation. The effect of the other two observer bias variables is a bit more difficult to 
interpret. An increase in ‘Population_raw’, the number of individuals living in the cell extent, would 
decrease the possibility of an observation of the ‘Heideblauwtje’, while an increase in 
‘dist_to_pop_cluster_above1500pkm2’ would increase the possibility of observing a ‘Heideblauwtje’. 
These variables were meant to complement the ‘dist_to_path’ and ‘path_density’ variables, expecting 
a similar impact on the likelihood of observation of the ‘Heideblauwtje’. That is, the idea that more 
accessible areas are more likely to have observations. This would mean that an increase in population 
and a decrease in the distance to population clusters would increase the likelihood of an observation. 
However, the unexpected “wrong” sign could be explained by the interplay between the distance to 
population clusters and the environmental characteristics of the area. While greater distances from 
urban areas tend to reduce the likelihood of an observation, since the area is less likely to be visited 
by an individual, areas further away from population clusters often possess more favorable 
environmental conditions. Consequently, although the ‘dist_to_pop_cluster_above1500pkm2’ 
variable suggests lower visitation rates, the environmental factors associated with greater distance 
could explain the unexpected sign. Likewise, the variable ‘population_raw’ was added following the 
idea that higher populated areas suggest higher visitation rates and would therefore increase the 
likelihood of an observation. However, the unsuitable environmental conditions that come with 
population areas cause a negative relation with respect to the occurrence of a ‘Heideblauwtje’.  
 

 
 

Figure 6 Feature importance for Logistic Regression, calculated using the permutation of variables. Highlighted in 
blue are the variables that model observer bias. Note that the x-axis is on a logarithmic scale.  



The permutation importance is defined as the decrease in model accuracy when a the values of single 
feature are randomly shuffled. A feature with large decrease in performance is deemed to be more 
important for the model. Compared to Figure 5, there is almost no change in order for the 5 most 
important features. However, the approach using permutation marks the ‘cbs_landuse_Dry natural 
area’ far more important than the other features. Furthermore, the observer bias variables have 
moved up the list of important variables.  

Random Forest 
The feature importance for Random Forest is approximated twice using permutation importance 
(Figure 8) and using the decrease in Gini impurity (Figure 7) when splitting based on a feature. Both 
methods show that the Random Forest model gives more importance to the observer bias variables 
compared to the Logistic Regression. Notably, the continuous variables seem to be more important 
than the binary categorical features.  

 
Figure 7 Feature importance for Random Forest with observer bias variables highlighted in blue. Approximated by 
decrease in Gini impurity of adding the variable. 
 
The feature importance approximation using permutation importance even shows that the 
‘path_density’ feature has the most influence on the accuracy of the model. Compared to the Logistic 
Regression the ‘cbs_landuse_Dry natural area’ is still important but has decreased from 0.15 in Figure 
6 to 0.0125 in Figure 8. 



 
Figure 8 Feature importance for Random Forest with observer variables highlighted in blue. Approximated using 
permutation of variables. 
  



K Nearest Neighbors 
For K-Nearest Neighbors the only method for approximating feature importance is by the permutation 
of variables Figure 9. Similar as to the Random Forest, the observer bias variables are deemed very 
important to the model, although the decrease in accuracy is now twice as large for the 
‘dist_to_pop_cluster_above1500pkm2’, ‘path_density’ and ‘dist_to_path’. The influence of 
‘population_raw’ stays roughly the same in terms of decrease in performance but becomes less import 
relatively to the other variables.  
 
 

  
Figure 9 Permutation importance for the KNN model. Highlighted in blue are the observer bias variables. 



Predictions  
The following section show the difference in spatial distribution between an observer bias corrected 
and an observer bias uncorrected version of the model. An uncorrected model means that the 
observer bias variables were included, but with their real values, while a corrected version means that 
the mean of the observer bias variables were passed to the model for all locations.  
 
Table 7 shows the actual amount of cells where the presence of the ‘Heideblauwtje’ is predicted by 
the uncorrected model and the corrected model, as well as the number of cells where an original NDFF 
observation was made.  
 

 Uncorrected presence count Corrected presence count  
Logistic Regression 22588 19890 
Random Forest  17614 19121 
KNN  21844 23343 
NDFF observations 1243 

Table 7 The number of cells where the presence of the 'Heideblauwtje' has been predicted with and without correction 
for observer bias. The number of cells where the ‘Heideblauwtje’ was present in the NDFF dataset has also been added.  
 
The number of predicted presences by the Logistic decreases by roughly 2000, while the number of 
presences of Random Forest and the KNN increase with roughly 2000. Figure 10 shows the distribution 
of the standardized observer bias variables. Of all cells in the study area roughly 70% has a lower 
‘path_density’ than the mean. Similarly, 62.8% of the cells have a lower distance to a population cluster 
than the mean. 63.4% of the cells have a lower distance to paths as the mean and 78.7% has a lower 
population than the mean. Thus, by passing the mean value, for most cells the ‘path_density’, distance 
to population clusters, the distance to paths and population will increase. If these variables influence 
the model as intended than an increase in ‘path_density’ and ‘population_raw’ would increase 
visitation rates and an increase in ‘dist_to_paths’ and ‘dist_to_pop_cluster_above1500pkm’ would 
decrease visitation rates. Consequently, we would expect an increase in predicted presence by 
observer bias correction. The unexpected sign for the coefficients ‘population_raw’ and 
‘dist_to_pop_cluster_above1500pkm2’ in Figure 5 possibly explains why the bias corrected count of 
presences has decreased for the Logistic Regression.  

 
Figure 10 Distributions of observer bias variables. The vertical line at 0 indicates the mean of the standardized features.  



Logistic Regression 
Figure 11 shows the predictions made by the Logistic Regression in the study area. The predictions 
follow roughly the natural areas in the study area and no substantial presence has been predicted in 
agricultural or urban areas. Figure 12 shows a more detailed version of a part of the study area where 
the paths dataset used to construct the observer bias variables have been plotted in black. Figure 12 
shows two examples of the effects by observer bias correction. The red area is the area where the 
correction of observer bias caused the model to change its prediction from presence to absence, while 
the blue areas show the locations where the model predicted absence before correction, and presence 
after correction of observer bias.  
 

 
Figure 11 Mapped predictions using Logistic Regression with observer bias variables. Areas in blue are additions by 
the observer bias correction, areas in red are removals by observer bias correction and gray areas are presence 
locations unaffected by bias correction. The rectangle is referring to Fout! Verwijzingsbron niet gevonden..  
 

 
Figure 12 Predictions of the Logistic Regression on a small part of the study area. Black lines mark the paths dataset 
used in this analysis.  

Figure 12 



Notably, the blue areas do not intersect with paths, while the red areas do intersect with paths. By 
fixing the observer bias variables to their mean, the observer bias variables at the red areas have been 
assigned a lower value compared to their real value. This caused the model to alter its prediction to 
absence instead of presence. This in line with expectations as the visitation rate at these locations is 
likely to be high, but there is no observation of a ‘Heideblauwtje’ in the NDFF. If a ‘Heideblauwtje’ is 
present it would have likely been observed. On the other hand, the blue areas are areas where no 
paths were present in the data. These areas got assigned a higher accessibility when making 
predictions with correction and therefore the model altered its prediction from absence to presence. 
This is also in line with expectations. The environmental characteristics are suitable enough for the 
presence of a ‘Heideblauwtje’, and it is likely that a ‘Heideblauwtje’ would be observed when the area 
is more accessible.  
  



Random Forest 
Figure 13 shows the predictions in the study area using a Random Forest algorithm. Areas that have 
been added by observer bias correction are in blue, while areas that are removed are red. Overall, the 
predictions follow a very similar pattern compared with the Logistic Regression. That is, most 
predictions are in natural areas, and not in urban or agricultural areas. Figure 14 shows the same 
zoomed in area as in Figure 12. The pattern in this part agrees on the presence with the Logistic 
Regression for the bottom half, but the Random Forest predicts presence for the upper half of the 
figure while the Logistic regression predicts absence. The interpretation for the bottom half follows 
the same reasoning as discussed in the previous section. It is however hard to explain why exactly the 
Random Forest predicts something different than the Logistic Regression. It could be that at this 
location the population has a lot of influence on the predictions. External validation would provide a 
lot of insight on this situation.  
 

 
Figure 13 Mapped predictions using Random Forest with observer bias variables. The rectangle refers to Figure 14. 
 

 
Figure 14 Predictions by the Random Forest on a small part of the study area.  

Figure 14 



KNN 
Lastly, the predictions by the KNN algorithm have been depicted in Figure 15. In comparison to the 
previous two algorithms, the KNN model exhibits a greater variance in its corrections. In general, the 
distribution of the ‘Heideblauwtje’ follows the natural regions of the study area, similar to the other 
models’ predictions. Once again, Figure 16 showcases a small part of the study area with the 
predictions made by the KNN. Whereas the upper part of this small area aligns more closely with the 
predictions made by the Random Forest, the lower part does not show any pattern similar to the 
previous algorithms. The added and removed areas do not seem to follow any specific pattern when 
examined in relation the paths.  
 

 
Figure 15 Mapped prediction by the KNN algorithm including observer bias variables. 
 

 
Figure 16 Predictions by the KNN algorithm on a small part of the study area. 
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Discussion  
The results show that the performance of all models improve when adding observer bias variables, but 
the Logistic Regression and Random Forest perform slightly better than the KNN. However, deciding 
which model performs best is not only decided by its accuracy. Although all the algorithms show a 
similar trend in predictions over the whole study area, the Logistic Regression and Random Forest 
show corrections that are very sensible. The corrections for observer bias by the KNN on the other, 
show a lot more variation spatially and when viewed in relation to the accessibility of that region it 
does not show any obvious patterns. It must be noted that KNN suffers greatly from high dimensional 
data, such as used in this analysis, and would likely improve greatly from some kind of feature 
selection. Due to l1 penalty on Logistic Regression and the random feature selection per split on a 
Random Forest, feature selection is less necessary for these models and is not expected to yield great 
improvements. When comparing the bias corrections made by the Logistic Regression and the Random 
Forest model, large areas are corrected similarly, but some areas get difference predictions. This can 
be the result of differences in relative influence of environmental and observer bias variables for the 
models. Logistic Regression and Random Forest also differ in how they handle non-linearity. Logistic 
Regression is a linear model and is only able to model the effects of a feature in linear terms. On the 
other hand, a Random Forest is a non-parametric model and an ensemble learning method that 
combines multiple decision trees. Each decision tree is built on a random subset of the data and each 
split is made on a random subset of the features. By aggregating the predictions from multiple trees, 
a Random Forest is able to model complex interactions and non-linear relationships. It is possible that 
there is interaction between features and that a Logistic Regression is not able to capture these 
interactions while a Random Forest is. Another cause for the differences between the models can be 
multicollinearity. As effect of the data acquisition approach in this study, it is likely that correlated 
datasets are used in this study. It has been shown that the polarity of coefficients in regression models 
can be changed when features are highly correlated (Kalnins, 2018). Feature importance methods can 
also suffer from the effects of multicollinearity. For example, if two features are highly correlated and 
one of them is removed to assess the decrease in performance, the information can be retrieved by 
the other feature, making the features seemingly less important. However, this is not such a problem 
when making predictions, but rather when trying to infer from the model. Moreover, correlations 
between observer bias variables and environmental variables are shown to be problematic. For 
example, the distance to population clusters was added with the underlying idea that a shorter 
distance to population clusters would increase visitation rates. However, a confounding mechanism is 
that the environmental characteristics improve when the distance to cities increases. A possible 
solution would be to train a separate model using observations of many different species with different 
habitat types and only with observer bias variables. Then use this model to predict an ‘observation 
likeliness’ for the study, which in turn can be added as predictor in a SDM.  The different habitat types 
in such an approach break the confounding mechanism between observer bias variables and 
environmental variables. This method assumes that observer bias is equal among different species.  
 
Another thread to the validity of the model is the mismatch between the point in time of an NDFF 
observation and the environmental characteristics at that time. This study includes observations from 
the NDFF up to 11 years ago, while for example the NDVI values are retrieved from satellite images in 
2022. An area that was used for agriculture ten years ago can in the meanwhile be covered by 
buildings. The corrections for observer bias seem to be greatly dependent on the ‘paths’ dataset. The 
dataset used in this study is gathered from OpenStreetMap, which is collaborative mapping product 
that is constructed by volunteers. The quality of this data is not guaranteed and can differ over time 
and space.  
 
Unfortunately, prediction of species abundance showed little promise. However, it is possible to gain 
more insight in predictions by mapping the log odds of a Logistic Regression or a ratio between trees 
that predicted presence and trees that predict absence instead of the outcome of a majority vote. 



When using a binary decision in a Logistic Regression, it is worth to investigate the effects of adjusting 
the threshold. Furthermore, the fixed value for observer bias variables used while predicting does not 
have to be the mean. It can be any value, and tweaking this value influences how strong the correction 
is.  Another sensible value would be the mean value of cells where an original NDFF observation was 
made. Ideally, the tweaking of these parameters is done using external validation such as professional 
surveys. A good place to do such a survey would be at ‘Kootwijkerzand’. This is a region where the 
Random Forest and Logistic Regression differ in their corrections for observer bias (Figure 12 and 
Figure 14) and absence or presence records at this location could provide valuable insights to model 
performance.  

Conclusion 
In this study, we set out to fill in the data gaps in the NDFF and investigate the efficacy of using a model-
based approach to mitigate observer bias. The performance of Logistic Regression, Random Forest and 
KNN were examined using randomly sampled locations as pseudo-absences. These models were 
assessed on a dataset containing 231 features that describe the environmental conditions. In an effort 
to account for observer bias, an additional 4 features were added that aim to capture the varying 
accessibility and visitation rates across the study area. The addition of these features was motivated 
by the recognition that these factors are likely causes for the inconsistency in documentation 
completeness in the NDFF. Results show that the different models performed very similar with an 
accuracy of around 0.92 and improved slightly by adding the observer bias variables (+/- 1.5%). When 
predicting the occurrence of the ‘Heideblauwtje’ over the entire study area, the observer bias variables 
were set to their mean value, such that predictions can be interpreted as if each location has equal 
accessibility. Examining the spatial distribution of the bias corrected areas show very sensible results, 
particularly for the Logistic Regression and Random Forest. Highly accessible regions without NDFF 
observations were excluded from the predicted presences, while inaccessible regions were added. 
Consequently, a distribution free from observer bias is predicted. Though these results are very 
promising, external validation is necessary to shed light onto the differences and accuracy between 
models. An excellent way of validation would be surveying ‘Kootwijkerzand’, as environmental 
conditions seem to be favorable for the presence of a ‘Heideblauwtje’ and the models substantially 
differ in their corrections in this region. Other future research includes investigating the effects of the 
fixed value used for observer bias variables while predicting, and adjustments to the threshold used to 
classify the predictions of the Logistic Regression. Finally, this study serves as a proof of concept and 
since only nationally covered datasets have been used, this approach can be extended to the whole of 
the Netherlands for any species in the NDFF.  
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Data sources  
Dataset  Reference 
Agrarisch Areaal Nederland https://www.pdok.nl/introductie/-

/article/agrarisch-areaal-nederland-aan 
Basisregistratie Gewaspercelen https://www.pdok.nl/introductie/-

/article/basisregistratie-gewaspercelen-brp- 
BRO Geomorfologische Kaart https://www.pdok.nl/-/wms-service-voor-bro-

geomorfologische-kaart 
CBS Bestand Bodemgebruik https://www.pdok.nl/introductie/-/article/cbs-

bestand-bodemgebruik 
Fysisch Geografische Regios https://www.pdok.nl/introductie/-

/article/fysisch-geografische-regio-s 
Nationale Parken https://www.pdok.nl/geo-services/-

/article/nationale-parken 
Natura2000 [https://www.pdok.nl/geo-services/-

/article/natura-2000 
SGM Ondergrondmodel https://www.pdok.nl/introductie/-/article/bro-

bodemkaart-sgm- 
Satellite images  Landsat-7 image courtesy of the U.S. Geological 

Survey 
Stiltegebieden https://www.pdok.nl/geo-services/-

/article/stiltegebieden 
Corine Land Cover https://land.copernicus.eu/pan-

european/corine-land-
cover/clc2018?tab=download 

Paths OpenStreetMap and OpenStreetMap Foundation 
(CC-BY-SA). © https://www.openstreemap.org 
and contributors 

Population  https://www.pdok.nl/geo-services/-/article/cbs-
bevolkingsspreiding-population-distribution- 

 

  



Appendix  
Feature  Count 

dist_to_paths - 
ndvi_2022 - 
path_density - 
population_raw - 
dist_to_pop_cluster_above1500pkm2 - 
AAN_1.0 7535 
BRP_gewas_Aardappelen, consumptie 66 
BRP_gewas_Appelen. Aangeplant lopende seizoen. 10 
BRP_gewas_Appelen. Aangeplant voorafgaande aan lopende seizoen. 37 
BRP_gewas_Bieten, voeder- 48 
BRP_gewas_Bos, blijvend, met herplantplicht 24 
BRP_gewas_Bos- en haagplanten, open grond, 18 
BRP_gewas_Gerst, zomer- 22 
BRP_gewas_Gladiool, bloembollen en - knollen 18 
BRP_gewas_Grasland, blijvend 3634 
BRP_gewas_Grasland, natuurlijk. Hoofdfunctie landbouw. 283 
BRP_gewas_Grasland, natuurlijk. Hoofdfunctie natuur. 57 
BRP_gewas_Grasland, tijdelijk 611 
BRP_gewas_Graszoden 10 
BRP_gewas_Kersen, zoet 30 
BRP_gewas_Laanbomen/parkbomen, onderstammen, open grond, 13 
BRP_gewas_Laanbomen/parkbomen, opzetters, open grond, 66 
BRP_gewas_Laanbomen/parkbomen, spillen, open grond, 34 
BRP_gewas_Maïs, snij- 811 
BRP_gewas_Natuurterreinen (incl. heide) 193 
BRP_gewas_Overig 40 
BRP_gewas_Peren. Aangeplant voorafgaande aan lopende seizoen. 125 
BRP_gewas_Rand, grenzend aan bouwland, hoofdzakelijk bestaand uit een ander gewas 
dan gras. (EA: beheer) 

83 

BRP_gewas_Rand, grenzend aan bouwland, hoofdzakelijk bestaand uit een ander gewas 
dan gras. (EA: onbeheerd) 

43 

BRP_gewas_Rogge (geen snijrogge) 22 
BRP_gewas_Sloot, grenzend aan beheerde akkerrand 11 
BRP_gewas_Tarwe, winter- 32 
BRP_gewas_Tarwe, zomer- 52 
BRP_gewas_Vaste planten, open grond, 22 
BRP_gewas_Vruchtbomen, overig, open grond, 26 
cbs_landuse_Allotment garden 275 
cbs_landuse_Building site 1758 
cbs_landuse_Cemetery 512 
cbs_landuse_Dry natural area 19057 
cbs_landuse_Holiday recreation 870 
cbs_landuse_Industrial area and offices 4716 



cbs_landuse_Other inland water 16014 
cbs_landuse_Park and public garden 4397 
cbs_landuse_Public institutions 1051 
cbs_landuse_Residential 13204 
cbs_landuse_Rijn & Maas 2309 
cbs_landuse_Socio-cultural facility 2032 
cbs_landuse_Sports ground (incl. car parks) 2597 
cbs_landuse_Water with recreational usage 1997 
cbs_landuse_Wet natural area 1430 
cbs_landuse_Woodland 57253 
clc2018_121 - Industrial or commercial units 6413 
clc2018_122 - Road and rail networks and associated land 1396 
clc2018_123 - Port areas 99 
clc2018_124 - Airports 639 
clc2018_131 - Mineral extraction sites 68 
clc2018_132 - Dump sites 124 
clc2018_133 - Construction sites 509 
clc2018_141 - Green urban areas 1409 
clc2018_142 - Sport and leisure facilities 3375 
clc2018_211 - Non-irrigated arable land 5238 
clc2018_222 - Fruit trees and berry plantations 837 
clc2018_242 - Complex cultivation patterns 20220 
clc2018_243 - Land principally occupied by agriculture with significant areas of natural 
vegetation 

7718 

clc2018_311 - Broad-leaved forest 3438 
clc2018_312 - Coniferous forest 29570 
clc2018_313 - Mixed forest 18686 
clc2018_321 - Natural grasslands 1332 
clc2018_322 - Moors and heathland 9803 
clc2018_324 - Transitional woodland-shrub 30 
clc2018_331 - Beaches - dunes - sands 972 
clc2018_411 - Inland marshes 2294 
clc2018_511 - Water courses 2612 
clc2018_512 - Water bodies 3353 
fysisch_geografische_regios_Laagveengebied 9179 
fysisch_geografische_regios_Rivierengebied 53612 
fysisch_geografische_regios_Zeekleigebied 1473 
nationale_parken_1.0 17908 
natura_2000_1.0 48974 
NOK_begrenzing_1.0 9248 
NOK_beheer_1.0 2525 
NOK_planologische_ehs_1.0 91481 
NOK_verwervinginrichting_1.0 4590 
SGM_ondergrond_Akkereerdgronden; grof zand 118 
SGM_ondergrond_Beekeerdgronden; leemarm en zwak lemig fijn zand 1343 



SGM_ondergrond_Beekeerdgronden; lemig fijn zand 11123 
SGM_ondergrond_Duinvaaggronden; grof zand 554 
SGM_ondergrond_Duinvaaggronden; leemarm en zwak lemig fijn zand 17338 
SGM_ondergrond_Gooreerdgronden; grof zand 86 
SGM_ondergrond_Gooreerdgronden; leemarm en zwak lemig fijn zand 4973 
SGM_ondergrond_Gooreerdgronden; lemig fijn zand 1236 
SGM_ondergrond_Haarpodzolgronden; grof zand 10829 
SGM_ondergrond_Haarpodzolgronden; leemarm en zwak lemig fijn zand 7668 
SGM_ondergrond_Hoge bruine enkeerdgronden; grof zand 416 
SGM_ondergrond_Hoge bruine enkeerdgronden; leemarm en zwak lemig fijn zand 123 
SGM_ondergrond_Hoge bruine enkeerdgronden; lemig fijn zand 859 
SGM_ondergrond_Hoge zwarte enkeerdgronden; grof zand 1145 
SGM_ondergrond_Hoge zwarte enkeerdgronden; leemarm en zwak lemig fijn zand 7894 
SGM_ondergrond_Hoge zwarte enkeerdgronden; lemig fijn zand 340 
SGM_ondergrond_Holtpodzolgronden; grof zand 17887 
SGM_ondergrond_Holtpodzolgronden; leemarm en zwak lemig fijn zand 4880 
SGM_ondergrond_Kalkarme drechtvaaggronden; zware klei, profielverloop 1 367 
SGM_ondergrond_Kalkarme leek-/woudeerdgronden; zavel, profielverloop 2 53 
SGM_ondergrond_Kalkarme nesvaaggronden; klei 55 
SGM_ondergrond_Kalkarme poldervaaggronden; klei, profielverloop 3, of 3 en 4, of 4 55 
SGM_ondergrond_Kalkhoudende nesvaaggronden; zavel en lichte klei 96 
SGM_ondergrond_Kalkhoudende ooivaaggronden; lichte zavel 674 
SGM_ondergrond_Kalkhoudende ooivaaggronden; zware zavel en lichte klei 5651 
SGM_ondergrond_Kalkhoudende poldervaaggronden; klei, profielverloop 2 198 
SGM_ondergrond_Kalkhoudende poldervaaggronden; lichte zavel, profielverloop 5 580 
SGM_ondergrond_Kalkhoudende poldervaaggronden; zavel en lichte klei, profielverloop 3, 
of 3 en 4, of 4 

966 

SGM_ondergrond_Kalkhoudende poldervaaggronden; zavel, profielverloop 2 2797 
SGM_ondergrond_Kalkhoudende poldervaaggronden; zware klei, profielverloop 5 109 
SGM_ondergrond_Kalkhoudende poldervaaggronden; zware zavel en lichte klei, 
profielverloop 5 

5715 

SGM_ondergrond_Kalkhoudende vlakvaaggronden; grof zand 132 
SGM_ondergrond_Kalkhoudende vlakvaaggronden; matig fijn zand 44 
SGM_ondergrond_Kalkloze drechtvaaggronden; profielverloop 1 4337 
SGM_ondergrond_Kalkloze nesvaaggronden; zavel en lichte klei 326 
SGM_ondergrond_Kalkloze nesvaaggronden; zware klei 349 
SGM_ondergrond_Kalkloze ooivaaggronden; lichte zavel 172 
SGM_ondergrond_Kalkloze ooivaaggronden; zware zavel en lichte klei 3242 
SGM_ondergrond_Kalkloze poldervaaggronden (bruine komgrond); zware klei, 
profielverloop 3, of 3 en 4, of 4 

932 

SGM_ondergrond_Kalkloze poldervaaggronden; zavel en lichte klei, profielverloop 2 864 
SGM_ondergrond_Kalkloze poldervaaggronden; zavel en lichte klei, profielverloop 3, of 3 
en 4 

5489 

SGM_ondergrond_Kalkloze poldervaaggronden; zware klei, profielverloop 2 91 
SGM_ondergrond_Kalkloze poldervaaggronden; zware klei, profielverloop 3, of 3 en 4 5929 
SGM_ondergrond_Kalkloze poldervaaggronden; zware klei, profielverloop 4 7670 



SGM_ondergrond_Kalkloze poldervaaggronden; zware zavel en lichte klei, profielverloop 4 387 
SGM_ondergrond_Kalkloze poldervaaggronden; zware zavel en lichte klei, profielverloop 5 1866 
SGM_ondergrond_Kamppodzolgronden; leemarm en zwak lemig fijn zand 601 
SGM_ondergrond_Kleiige beekdalgronden 48 
SGM_ondergrond_Koopveengronden op (meestal niet-gerijpte) zavel of klei, beginnend 
ondieper dan 1.2 m 

70 

SGM_ondergrond_Koopveengronden op veenmosveen 41 
SGM_ondergrond_Koopveengronden op zand, beginnend ondieper dan 1.2 m 852 
SGM_ondergrond_Koopveengronden op zeggeveen, rietzeggeveen of (mesotroof) 
broekveen 

90 

SGM_ondergrond_Laarpodzolgronden; leemarm en zwak lemig fijn zand 7452 
SGM_ondergrond_Laarpodzolgronden; lemig fijn zand 395 
SGM_ondergrond_Lage enkeerdgronden; leemarm en zwak lemig fijn zand 815 
SGM_ondergrond_Lage enkeerdgronden; lemig fijn zand 55 
SGM_ondergrond_Leek-/woudeerdgronden; klei, profielverloop 3, of 3 en 4, of 4 136 
SGM_ondergrond_Leek-/woudeerdgronden; zavel, profielverloop 3, of 3 en 4, of 4 140 
SGM_ondergrond_Leek-/woudeerdgronden; zavel, profielverloop 5, of 5 en 2, of 2 246 
SGM_ondergrond_Liedeerdgronden; klei, profielverloop 1 20 
SGM_ondergrond_Loopodzolgronden; grof zand 900 
SGM_ondergrond_Loopodzolgronden; leemarm en zwak lemig fijn zand 486 
SGM_ondergrond_Loopodzolgronden; lemig fijn zand 21 
SGM_ondergrond_Madeveengronden op zand met humuspodzol, beginnend ondieper dan 
1.2 m 

230 

SGM_ondergrond_Meerveengronden op zand met humuspodzol, beginnend ondieper dan 
1.2 m 

419 

SGM_ondergrond_Meerveengronden op zand zonder humuspodzol, beginnend ondieper 
dan 1.2 m 

251 

SGM_ondergrond_Meerveengronden op zeggeveen. rietzeggeveen of broekveen 36 
SGM_ondergrond_Moerige eerdgronden met een moerige bovengrond op zand 1178 
SGM_ondergrond_Moerige eerdgronden met een zanddek en een moerige tussenlaag op 
zand 

568 

SGM_ondergrond_Moerige eerdgronden met een zavel- of kleidek en een moerige 
tussenlaag op zand 

608 

SGM_ondergrond_Moerige podzolgronden met een humushoudend zanddek en een 
moerige tussenlaag 

1370 

SGM_ondergrond_Moerige podzolgronden met een moerige bovengrond 82 
SGM_ondergrond_Moerige podzolgronden met een zavel- of een kleidek en een moerige 
tussenlaag 

229 

SGM_ondergrond_Overslaggronden 86 
SGM_ondergrond_Petgaten 959 
SGM_ondergrond_Stuifzandgronden 624 
SGM_ondergrond_Tuineerdgronden; lichte zavel, profielverloop 5, of 5 en 2, of 2 54 
SGM_ondergrond_Tuineerdgronden; zware zavel en klei, profielverloop 5, of 5 en 2, of 2 48 
SGM_ondergrond_Veldpodzolgronden; grof zand 173 
SGM_ondergrond_Veldpodzolgronden; leemarm en zwak lemig fijn zand 12560 
SGM_ondergrond_Veldpodzolgronden; lemig fijn zand 235 
SGM_ondergrond_Venige beekdalgronden 423 



SGM_ondergrond_Vlakvaaggronden; grof zand 154 
SGM_ondergrond_Vlakvaaggronden; leemarm en zwak lemig fijn zand 3614 
SGM_ondergrond_Vlakvaaggronden; lemig fijn zand 2177 
SGM_ondergrond_Vlierveengronden op bagger, verslagen veen, gyttja of andere 
veensoorten 

113 

SGM_ondergrond_Vlierveengronden op zand met humuspodzol, beginnend ondieper dan 
1.2 m 

143 

SGM_ondergrond_Vlierveengronden op zand zonder humuspodzol, beginnend ondieper 
dan 1.2 m 

36 

SGM_ondergrond_Vlietveengronden 25 
SGM_ondergrond_Waardveengronden op bosveen (of eutroof broekveen) 648 
SGM_ondergrond_Waardveengronden op veenmosveen 125 
SGM_ondergrond_Waardveengronden op zand, beginnend ondieper dan 1.2 m 497 
SGM_ondergrond_Waardveengronden op zeggeveen, rietzeggeveen of (mesotroof) 
broekveen 

847 

SGM_ondergrond_Weideveengronden op zand, beginnend ondieper dan 1.2 m 280 
SGM_ondergrond_Weideveengronden op zeggeveen, rietzeggeveen of (mesotroof) 
broekveen 

155 

SGM_ondergrond_Zandige beekdalgronden 502 
stiltegebieden_1.0 10035 
bro_genese_Antropogeen 7770 
bro_genese_Denudatief 1073 
bro_genese_Eolisch 84893 
bro_genese_Glaciaal 34006 
bro_genese_Marien 445 
bro_genese_Periglaciaal 17950 
bro_landform_Beekdalbodem 226 
bro_landform_Complex van dekzandwelvingen 953 
bro_landform_Complex van gordeldekzandwelvingen 10157 
bro_landform_Daluitspoelingswaaier 2617 
bro_landform_Dalvormige laagte 4641 
bro_landform_Dekzandrug 18816 
bro_landform_Dekzandwelving 645 
bro_landform_Doorbraakwaaier 321 
bro_landform_Droogdal 6090 
bro_landform_Geulranddekzandrug 566 
bro_landform_Glooiing van hellingafspoelingen 1073 
bro_landform_Glooiing van sneeuwsmeltwaterafzettingen 3290 
bro_landform_Gordeldekzandglooiing 2217 
bro_landform_Gordeldekzandrug 717 
bro_landform_Gordeldekzandvlakte 1600 
bro_landform_Groeve 597 
bro_landform_Kronkelwaardgeul 474 
bro_landform_Kronkelwaardrug 620 
bro_landform_Kunstmatig gecreeerd relief voor recreatiedoeleinden zoals golfbanen 437 
bro_landform_Laagte ontstaan door afgraving 2028 



bro_landform_Landduin 1058 
bro_landform_Landduinen met bijbehorende vlakten en laagten 16757 
bro_landform_Meanderruggen en -geulen 2202 
bro_landform_Ondergraven stuwwalzijde 193 
bro_landform_Ontgonnen veenvlakte met petgaten 3120 
bro_landform_Overloop- of crevassegeul 187 
bro_landform_Plateau-achtige storthoop 1245 
bro_landform_Restgeul 1461 
bro_landform_Rivier- of beekbedding 237 
bro_landform_Rivierdalbodem 256 
bro_landform_Rivierkom- en oeverwalachtige vlakte 4026 
bro_landform_Rivierkomvlakte 11477 
bro_landform_Smeltwaterheuvel 127 
bro_landform_Smeltwaterwaaier 9145 
bro_landform_Storthopen met grind- 449 
bro_landform_Stroomrug of stroomgordel 14849 
bro_landform_Stroomrugglooiing 2864 
bro_landform_Stuifzandvlakte 2914 
bro_landform_Stuwwalglooiing 2770 
bro_landform_Stuwwalplateau 1910 
bro_landform_Terp (wierd) of hoogwatervluchtplaats 176 
bro_landform_Trechtervormig droogdal 1294 
bro_landform_Uitblazingskom 1091 
bro_landform_Veenrestvlakte 528 
bro_landform_Vlakte ontstaan door afgraving en/of egalisatie 2832 
bro_landform_Vlakte van rivierafzettingen 556 
bro_landform_Vlakte van smeltwaterafzettingen 1700 
bro_landform_Vlakte van ten dele verspoelde dekzanden of loss 27688 
bro_landform_Welvingen in rivierafzettingen 500 

Appendix 1 All 236 features and their cell count used in this study. The prefix, if present, corresponds to the source 
dataset. 
  



 
 

  

C max_iter penalty solver Mean accuracy Std. accuracy rank 
0,5 1000 l1 liblinear 0,90694404 0,00742352 1 
0,5 5000 l1 liblinear 0,90694404 0,00742352 1 
0,5 5000 l2 liblinear 0,90694404 0,006895347 3 
0,5 1000 l2 liblinear 0,90694404 0,006895347 3 
0,5 5000 l1 saga 0,906438996 0,006623447 5 
0,5 1000 l1 saga 0,906438996 0,006623447 5 

1 1000 l1 liblinear 0,906435199 0,005425983 7 
1 5000 l1 liblinear 0,906435199 0,005425983 7 
1 1000 l1 saga 0,90593142 0,005711901 9 
1 5000 l1 saga 0,90593142 0,005711901 9 
2 1000 l1 liblinear 0,905432705 0,010612158 11 
2 5000 l1 liblinear 0,905432705 0,010612158 11 
1 1000 l2 liblinear 0,905431439 0,007226765 13 
1 5000 l2 liblinear 0,905431439 0,007226765 13 
1 1000 l2 saga 0,904926395 0,006284735 15 
1 1000 l2 sag 0,904926395 0,006284735 15 
1 1000 l2 lbfgs 0,904926395 0,006284735 15 
1 5000 l2 lbfgs 0,904926395 0,006284735 15 
1 5000 l2 sag 0,904926395 0,006284735 15 
1 5000 l2 saga 0,904926395 0,006284735 15 
2 5000 l2 liblinear 0,904925129 0,007410227 21 
2 1000 l2 liblinear 0,904925129 0,007410227 21 

0,5 5000 l2 saga 0,904426414 0,006553993 23 
0,5 5000 l2 newton-cg 0,904426414 0,006553993 23 
0,5 5000 l2 sag 0,904426414 0,006553993 23 
0,5 1000 l2 sag 0,904426414 0,006553993 23 
0,5 1000 l2 saga 0,904426414 0,006553993 23 
0,5 5000 l2 lbfgs 0,904426414 0,006553993 23 
0,5 1000 l2 newton-cg 0,904426414 0,006553993 23 
0,5 1000 l2 lbfgs 0,904426414 0,006553993 23 

2 5000 l1 saga 0,904425148 0,010432902 31 
2 1000 l1 saga 0,904425148 0,010432902 31 
1 1000 l2 newton-cg 0,904423883 0,006779687 33 
1 5000 l2 newton-cg 0,904423883 0,006779687 33 
4 1000 l2 liblinear 0,904421351 0,009046498 35 
4 5000 l2 liblinear 0,904421351 0,009046498 35 
4 5000 l1 saga 0,903918839 0,012082706 37 
3 5000 l1 saga 0,903918839 0,012491151 37 
3 1000 l1 saga 0,903917573 0,012299455 39 
2 5000 l2 saga 0,90341506 0,008562786 40 

Appendix 2 Parameters and accuracy for the 40 best performing Logistic Regression models using 5-fold cross 
validation.  



max_depth max_features min_samples_split n_estimators Mean accuracy Std. accuracy rank  
300 log2 4 400 0,924542106 0,007997904 1 
300 log2 4 600 0,924537043 0,010623665 2 

None log2 4 400 0,924038328 0,010272904 3 
200 sqrt 4 600 0,924037062 0,009384304 4 

None log2 4 500 0,924035796 0,010045534 5 
200 log2 4 400 0,924035796 0,009662436 5 
200 log2 5 500 0,923534549 0,007459627 7 
200 log2 4 600 0,923532018 0,009564396 8 

None sqrt 4 600 0,923032037 0,007622336 9 
200 log2 5 400 0,923032037 0,008258375 9 

None log2 5 500 0,923032037 0,0076215 11 
None log2 5 600 0,923030771 0,007638363 12 

300 sqrt 4 500 0,923030771 0,01019063 12 
200 log2 4 500 0,923030771 0,009682365 12 
300 sqrt 4 600 0,922532056 0,007035605 15 

None log2 4 600 0,92253079 0,010010426 16 
300 sqrt 5 500 0,92253079 0,008362526 16 
300 sqrt 5 600 0,922529524 0,00790877 18 
300 log2 5 400 0,922528258 0,010034069 19 
300 log2 4 500 0,922528258 0,010157866 19 
300 log2 5 500 0,922028277 0,009434782 21 
300 sqrt 4 400 0,922027012 0,007999533 22 
200 log2 5 600 0,922027012 0,006805602 22 

None sqrt 4 400 0,922027012 0,010935488 24 
None sqrt 4 500 0,922027012 0,009037082 24 

200 sqrt 4 400 0,922023214 0,009749828 26 
200 sqrt 7 500 0,921525765 0,007038429 27 
200 sqrt 4 500 0,921524499 0,008364749 28 
300 log2 6 500 0,921524499 0,005883569 28 
300 log2 6 400 0,921524499 0,007572522 28 

None sqrt 5 400 0,921523233 0,008961616 31 
None sqrt 5 600 0,921523233 0,00977045 31 
None sqrt 6 600 0,921021987 0,006718498 33 
None sqrt 7 400 0,921020721 0,007616013 34 

200 sqrt 5 600 0,921020721 0,009397123 34 
200 sqrt 5 500 0,921020721 0,008843369 34 

None log2 5 400 0,921019455 0,007792954 37 
None sqrt 6 400 0,920519474 0,008534127 38 

300 sqrt 6 600 0,920518208 0,007610416 39 
None log2 6 500 0,920518208 0,007608742 39 

Appendix 3 Parameters and accuracy of the 40 best performing Random Forests using 5-fold cross validation. The 
number of candidates considered for the best split were "log2" and "sqrt," which corresponded to taking the 
logarithm base 2 and the square root of the total number of features, respectively. 
  



metric n_neighbors weights mean accuracy std. Accuracy rank 
manhattan 7 distance 0,919522043 0,009225753 1 
manhattan 6 distance 0,918518284 0,009558798 2 
minkowski 4 distance 0,918008177 0,007881441 3 
euclidean 4 distance 0,918008177 0,007881441 3 

manhattan 12 distance 0,917513259 0,011113841 5 
manhattan 8 distance 0,917510727 0,012005914 6 
manhattan 11 distance 0,917009481 0,011738827 7 
manhattan 13 distance 0,9165095 0,011325461 8 
manhattan 9 distance 0,916503171 0,010909878 9 
manhattan 5 distance 0,916501905 0,009295191 10 
manhattan 4 distance 0,916500639 0,00888903 11 
manhattan 10 distance 0,916000658 0,008890856 12 

euclidean 8 distance 0,915494348 0,01095484 13 
minkowski 8 distance 0,915494348 0,01095484 13 
euclidean 6 distance 0,914996899 0,013394301 15 

minkowski 6 distance 0,914996899 0,013394301 15 
manhattan 18 distance 0,913994405 0,012389645 17 
manhattan 14 distance 0,913994405 0,011323127 17 
minkowski 5 distance 0,913988076 0,012928104 19 
euclidean 5 distance 0,913988076 0,012928104 19 

manhattan 16 distance 0,913493158 0,01249998 21 
euclidean 12 distance 0,913485564 0,010088406 22 

minkowski 12 distance 0,913485564 0,010088406 22 
manhattan 3 distance 0,913476703 0,010533664 24 
manhattan 15 distance 0,91298938 0,01375345 25 
manhattan 4 uniform 0,912984317 0,007317544 26 
manhattan 19 distance 0,912486868 0,013644246 27 
manhattan 17 distance 0,912484336 0,013467935 28 

euclidean 7 distance 0,912478007 0,011805968 29 
minkowski 7 distance 0,912478007 0,011805968 29 
euclidean 4 uniform 0,91197676 0,00821917 31 

minkowski 4 uniform 0,91197676 0,00821917 31 
manhattan 2 distance 0,911975495 0,009233451 33 
minkowski 6 uniform 0,911476779 0,015891965 34 
euclidean 6 uniform 0,911476779 0,015891965 34 
euclidean 10 distance 0,911472982 0,012010862 36 

minkowski 10 distance 0,911472982 0,012010862 36 
euclidean 3 distance 0,911466653 0,009477419 38 

minkowski 3 distance 0,911466653 0,009477419 38 
manhattan 3 uniform 0,911466653 0,009477419 40 

Appendix 4 Parameters and accuracy of the 40 best performing KNN models using 5-fold cross validation. 
  



 
Dropped variables 
‘pop_clusters_above_1500pkm2_1.0’ 
‘clc2018_112 – Discontinuous urban fabric’ 
Wetlands_1.0 
Bro_landform_Ontgonnen veenvlakte 
Bro_genese_Fluvatiel 
Bro_landform Stuwwal 
Bro_landform Vlakte van getij-riviermondafzettingen 
Bro_genese_Organogeen 
Fysisch_geografische_regios_Hogere Zandgronden 

Appendix 5 Variables that were dropped because of high correlation with other features.  


