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Abstract

Social networks play a pivotal role in connecting individuals and fostering inter-

actions in various domains. They serve as platforms for communication, infor-

mation sharing, and community building. Predicting the nature of relationships,

specifically negative ties, within social networks has garnered significant atten-

tion due to its potential impact on user experiences and network dynamics. This

study focuses on the prediction of negative ties in social networks, specifically

in the context of the labeled Wikipedia Requests for Adminship online social

network. Three distinct models are employed to accomplish this task. Firstly,

a Light Gradient Boosting Model (LGBM) utilizes graph topology attributes to

make predictions. The LGBM leverages the structural characteristics of the net-

work, such as node centrality and connectivity, to identify negative ties.

Secondly, a DistilBert language model is employed to process text data be-

tween users and their corresponding vote labels. The DistilBert model captures

the semantic information embedded within the textual interactions, allowing

for a more nuanced understanding of user sentiments and intentions. Finally,

a Stacking Ensemble Model is employed to combine the predictions from the

LGBM and DistilBert models. The Stacking Ensemble Model aggregates the

predictions of the base models and employs a meta-learner to make the final

predictions. Performance evaluation measures, including accuracy, precision,

recall, F1-score, and elements of the confusion matrix, are used to assess the

models’ predictive capabilities. Presently, all models exhibit strong performance

in detecting positive and negative signed links within the network. Notably,

the DistilBert and Stacking Ensemble models consistently demonstrate superior

performance across all classes. Future research should focus on addressing class

distribution issues, incorporating diverse data, and exploring ensemble tech-

niques to further enhance the predictive capabilities of these models.



Contents

1 Introduction 4

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Objective and research question . . . . . . . . . . . . . . . . . . . . 6

2 Data 7

2.1 Description of the data . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Preparation of the data . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Methods 10

3.1 Graph Topology Model . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Degree Distribution . . . . . . . . . . . . . . . . . . . . . . 10

3.1.2 Local Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.3 Clustering Coefficient . . . . . . . . . . . . . . . . . . . . . 13

3.1.4 Adjacency matrix and structural balance theory . . . . . . 13

3.1.5 Status theory . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.6 LGBM classifier . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 DistilBert Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Stacking Ensemble Model . . . . . . . . . . . . . . . . . . . . . . . 18

4 Results 20

4.1 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Overview of the results . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Appendix A 26

Appendix B 27

Appendix C 28

Appendix D 29

2



CONTENTS CONTENTS

Appendix E 30

Bibliography 33

3



1. Introduction

The focus of numerous social network studies has been on positive relational ties

such as friendship or trust among individuals. However, the dark side of human

interaction, where negative connections represent different forms of interper-

sonal conflict, intolerance or even abuse (Harrigan et al., 2020) is equally im-

portant and the extent to which positive and negative social network structure

differs remain unclear. Given the serious problems associated with conflictual

relationships, it remains without saying that conflictual interconnections rou-

tinely characterize social interaction (Maoz et al., 2007). Negative interactions

can have a significant impact, since they can lead to the formation of cliques and

communities that are less likely to interact with another, such as toxic communi-

ties with members actively engaging in bullying or harassment (Kaur & Singh,

2016).

1.1 Background

In many real-world social systems, relations between nodes can be represented

as signed networks with positive and negative links. Online social networks

such as Youtube, TikTok and Twitter are becoming popular among large num-

ber of people, as a source of forming virtual communities online. These com-

munities are developed by creating profiles and maintaining personal contacts

of each user through social interactions.

Heider in the 1940s studied the perception and attitude of individuals and

introduced structural balance theory, which is an important social theory for

signed networks. Cartwright and Harary (1956) further developed the theory

and introduced the notion of balanced signed graph to characterize forbidden

patterns in social networks. Signed network analysis has attracted much at-

tention from multiple disciplines such as social psychology, physics and com-

puter science and has evolved considerably from both data and problem-centric
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1.1 Background

perspectives. Signed networks observed in the physical world are often small

but dense and clean. As a consequence, most early research about signed net-

works had mainly focused on developing theories to explain social phenomena

in signed networks (Heider, 1946), (Cartwright & Harary, 1956).

Balance theory is naturally defined for undirected networks, whereas status

theory (Guha et al., 2004; Leskovec et al., 2010a) is relevant for directed net-

works. Social status can be represented in a variety of ways, and it represents

the prestige of nodes. In its most basic form, status theory suggests that user-

node ui has a higher status than uj if there is a positive link from uj to ui or a

negative link from ui to uj.

Sign prediction in social networks aims to forecast the positive or negative

nature of relationships between users. It has implications for understanding so-

cial dynamics, information diffusion, and network analysis.The study by Leskovec

et al., 2010b investigates signed networks in social media. They analyze the

prevalence of positive and negative edges, studying the characteristics of signed

edges, and examining the relationship between structural properties and the

presence of positive or negative relationships. Their findings provide valuable

insights into the dynamics of signed networks in online social platforms.

People’s evaluations of one another are prevalent in all kinds of discourse,

public and private, across ages, genders, cultures and social classes (Dunbar,

2004). Such opinions matter for establishing reputations and reinforcing social

bonds. Research on signed social networks suggest that how one person will

evaluate or link with another can often be predicted from the network they are

embedded in. Linguistic sentiment analysis on the other hand suggests that one

could leverage textual features to predict the valence of evaluative texts describ-

ing people. In some settings, textual data is sparse but the network structure is

largely observed. In others, text is abundant but the network is partly or un-

reliably recorded. In either case, separate sentiment or signed-network models

will miss or misread these signals. West et al., 2014 develop a graphical model

that synthesizes network and linguistic information to make more and better

predictions about both. Moving forward, this integrated approach holds great

promise for uncovering deeper insights and enhancing prediction accuracy in
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Introduction

various domains where evaluations and social connections play a pivotal role.

1.2 Objective and research question

In the current work we study the social network structure of the Wikipedia Ad-

min Requests network defined by votes for Wikipedia Adminship candidates,

and particularly the task of predicting the negative ties of the network. Our main

goal is to create a general classifier that combines attributes from the graphical

properties of the network and linguistic information through text reviews that

adminship candidates exchange with each other. Therefore, the main research

question is “can we predict the negative ties in the Wikipedia Requests for Ad-

min network utilizing part of or all available attributes?”
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2. Data

2.1 Description of the data

For a Wikipedia editor to become an administrator, a request for adminship

(RfA) must be submitted, either by the candidate or by another community

member. Afterward, any Wikipedia member may cast a supporting, neutral, or

opposing vote. This induces a directed, signed network where nodes represent

Wikipedia members and edges represent votes. The dataset we work on con-

tains all votes since the adoption of the RfA process in 2003 through May 2013.

There is also a rich textual component in RfAs in the form of comments from

users to candidates. Further information for the data along with downloadable

files can be found in the official Stanford Network Analysis Project (SNAP) web-

site: https://snap.stanford.edu/data/wiki-RfA.html.

Our analysis begins via exploring network-level metrics. Initially, we iden-

tify the number of users in the network and the number of edges-votes. We also

explore the distribution of positive, negative and neutral signed edges. Due to

the fact that some users ran for election several times throughout the available

time period, we point out that the same voter/votee pair may contribute several

votes, resulting in multiple edges between two users.

Metrics
Nodes-users 11381
Edges-votes 198275
Negative Edges 39080

(19.70%)
Positive Edges 138247

(69.72%)
Neutral Edges 11676

(5.88%)

Table 2.1: Characteristics of the WikiRFA network. The percentages under each
edge sign class represent the proportion of the corresponding signed edges com-
pared to the total number of edges.
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Data

Figure 2.1: Random WikiRFA subgraph. Green, red and orange directed lines rep-
resent positive, negative and neutral votes respectively between users.

2.2 Preparation of the data

In order to prepare our dataset for further analysis we first account for dupli-

cate pair values that come from users who ran for Adminship several times as

mentioned in paragraph 2.1.1. Specifically, we keep the data entries that were

marked with the most recent date, thus avoiding having multiple edges with the

same direction for many pair of nodes. We also make sure to remove any miss-

ing votes from the dataset. The cleaned version of the network has the following

characteristics:

Metrics
Nodes 11381
Edges 189003
Negative Edges 38412

(20.32%)
Positive Edges 139362

(73.73%)
Neutral Edges 11229

(5.94%)

Table 2.2: Characteristics of the cleaned WikiRFA network. The percentages under
each edge sign class represent the proportion of the corresponding signed edges
compared to the total number of edges.
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2.2 Preparation of the data

Snowball sampling

When dealing with large networks, it can be computationally expensive to per-

form operations on the entire graph. For example, calculating the cubed adja-

cency matrix A3 of a network of n nodes would require O(n3) operations if a

naive matrix multiplication algorithm is employed, or at best O(n2.3728596) if the

recent breakthrough algorithm of Alman and Williams, 2020 is used.

Snowball sampling (Goodman, 1961) is a suitable technique used to sample

a subgraph of a large network very similar to the BFS sampling method. The

algorithm can be summarized in the following steps:

Step Description

1 Select a small number of seed nodes as the seed set
2 Collect the neighbors of each seed node
3 Add the neighbors to the subgraph and mark them as visited
4 Consider the neighbors of the newly added nodes and expand
5 Repeat steps 3 and 4 until the desired depth/number of layers

Table 2.3: Algorithmic steps of snowball sampling.

If we assume an average degree of d for the nodes of the initial graph and a

desired depth of k, the time complexity of the Snowball sampling algorithm is

O(dk). In contrast to random walks algorithms, the method manages to collect a

representative number of nodes and edges that reflect the topology of the initial

graph. However, we point out that the method may suffer from limitations such

as bias towards highly connected regions and potentially miss isolated or low-

degree nodes (Kurant et al., 2011).

We apply the Snowball sampling algorithm in the WikiRfa dataset with a

random seed set of 10 nodes and the depth size set to 10. Comparing Table

2.2 with Table 4.3 we can to some extent conclude that the snowball sampling

subgraph is representative of the initial graph as it maintains approximately the

same proportion of positive, negative and neutral links.
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3. Methods

3.1 Graph Topology Model

Link prediction is the problem of predicting the existence of a link between

two nodes in a network (Liben-Nowell & Kleinberg, 2007). One of the types of

traditional link prediction methods is heuristic methods and the first classifier

we construct utilizes graph topology features based on heuristics and network

topology features. The following are the ones we exploited.

3.1.1 Degree Distribution

In graph theory, the degree of a node is the number of edges that are incident

to the node (Heider, 1946). In a directed signed network the degree of a node

is decomposed in two parts: the in-degree and out-degree. The in-degree of a

node is the number of incoming edges it has, and the out-degree the number of

outgoing edges from that node. Analyzing the in and out degree of a network

provides valuable information about how nodes receive and initiate connections

with other nodes respectively.

According to Tang et al., 2014, the distributions of incoming and outgoing

positive links for users usually follow heavy-tailed distributions, where a few

users with large degrees are observed, while most users have small degrees. In

a signed network, positive links are denser than negative links, with the nega-

tive links also having a heavy-tailed degree distribution where a few users have

a large number of negative links, while most users have a few negative links.

There seems to be an agreement between the previous statements and the in and

out degree distributions of the processed WikiRFA subgraph network, even for

the neutral class edges, judging by the histogram of in and out degrees depicted

in Figure 3.1.

Nodes with higher positive indegree tend to exhibit a multitude of positive
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3.1 Graph Topology Model

relationships, thereby indicating a higher likelihood of positive edges. On the

contrary, nodes with higher negative indegree often possess a substantial num-

ber of negative relationships, thus indicating a higher likelihood of negative

edges. All these degree metrics can serve as useful predictors for discerning

the sign edges.

Figure 3.1: Log-log plots of In-Degree and Out-Degree Distribution of the Snowball
subgraph.

3.1.2 Local Heuristics

Jaccard score measures the proportion of common neighbors two nodes have,

meaning the proportion of neighbors two nodes (x, y) share as a measurement

of their likelihood of having a link:

fjaccard(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)| ,

where Γ(x) is the neighborhood of node x, which means the set of nodes that are

connected with x (Bass et al., 2013).

Also famous is the preferential attachment heuristic (Barabási & Albert, 1999),

which uses the product of node degrees to measure the link likelihood. The basic

assumption is that node x is more likely to connect to y if y has a high degree:
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fpa(x, y) = |Γ(x)| · |Γ(y)|.

Resource allocation (RA) (Zhou et al., 2009) favors low-degree common neigh-

bors using an aggressive down-weighting factor:

fRA(x, y) = ∑
z∈Γ(x)∩Γ(y)

1
|Γ(z)| .

In many network setups, connections to people who are themselves influ-

ential will lend a person more influence than connections with less influential

individuals. This effect can be quantified by the eigenvector centrality score

denoted by ECu for vertex u. We provide the formula below, where αu,v = 1 if

vertex u is linked to vertex v and αu,v = 0 otherwise:

ECu =
1
λ ∑

v∈V
αu,vECv.

If we define x = (x1, x2, . . . ) to be the vector of centralities and assuming that

we wish the centralities to be non-negative, it can be shown that λ is the largest

eigenvalue of the adjacency matrix and x the corresponding eigenvector (New-

man, 2018).

We also utilize the Page Rank (Page et al., 1999) algorithm which computes a

ranking of the nodes in the graph based on the structure of the incoming links. In

the Page Rank algorithm the importance of a node is higher if it is connected to

other important nodes and a weight gets assigned. We can then identify negative

and positive hubs and predict the edges of other nodes.
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3.1 Graph Topology Model

3.1.3 Clustering Coefficient

In graph theory clustering coefficient quantifies the degree to which nodes in a

graph tend to cluster together. In social networks, nodes tend to create highly

knit groups characterized by a relatively high density of ties (Watts & Strogatz,

1998). In our model we use the local clustering coefficient of a node, as it quanti-

fies how close its neighbors are to forming a clique and thus potentially forming

more positive or negative connections. The local clustering coefficient for a node

is given by the proportion of the number of links between the vertices within the

node’s neighborhood, divided by the number of links that could possibly exist

between them. For a directed graph with edges eij from the set E, Ni depicting

the neighborhood of a node ui and ki the number of neighbors of vertex ui, the

formula for the local clustering coefficient is as follows:

Ci =
|{ejk : uj, uk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
.

3.1.4 Adjacency matrix and structural balance theory

Structural balance theory is a generalization of Heider’s social balance theory

developed by Cartwright and Harary, 1956. The theory rests on the premise

that certain configurations of positive and negative edges between individuals

are socially more plausible than others. For example in the simple case of three

individuals a, b, and c the left two configurations in figure 3.2 are more likely

than the right two.

Figure 3.2: Balanced and Imbalanced Triangles (Chiang et al., 2011)

Triangles as the ones depicted in figure 3.2, are considered unbalanced if
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they have an odd number of negative edges. A more intuitive reasoning from

sociology is that “a friend of a friend is a friend" and “an enemy of an enemy

is a friend". There is a connection between powers of the adjacency matrix A of

a graph and the number of balanced or unbalanced cycles of length k, both for

the directed and undirected case. Focusing on triangles (i.e. cycles of length 3),

the (i, i) entry in the matrix A3 represents the number of unbalanced triangles

from node i and back to node i. Along with elements of the A3 matrix, we utilize

the number of unbalanced cycles of length 4 via the elements of the A4 matrix

and these are the predictors we choose to implement structural balance theory

(Chiang et al., 2011). Calculating even higher-order powers of the adjacency

matrix would require a lot of computational resources so we limit our approach

to the calculation of the two previous matrices.

3.1.5 Status theory

Status theory explores the ways in which individuals and groups establish and

maintain their social positions within a given society. Max Weber in his sem-

inal work “The Theory of Social and Economic Organization” (Weber et al.,

1948), examined the multidimensional nature of status, emphasizing its inter-

play with class and power in shaping social stratification. According to the work

of Leskovec et al., 2010a, a positive directed link indicates that the creator of the

link views the recipient as having higher status; and a negative directed link in-

dicates that the recipient is viewed as having a lower status. In our study, we

consider as a metric of status the positive in-degree of a node where nodes with

more positive incoming edges have a higher status than those with less. Also the

negative in-degree of nodes captures nodes that are “less-respected" inside the

network. Both positive and negative in-degree of nodes are used as predictors

in our graph model.

3.1.6 LGBM classifier

The Gradient Boosting Decision Tree (GBDT) is a widely used-machine learn-

ing algorithm that can achieve state of the art performances in many machine

learning tasks such as multi-class classification (Li, 2012) and learning to rank

14



3.1 Graph Topology Model

(Burges, 2010). In our multi-class classification problem, we use the Light Gra-

dient Boosting Model (LGBM) by Ke et al., 2017, which is proven to speed up the

training process of conventional GBDTs by up to over 20 times while achieving

almost the same accuracy. GBDT is an ensemble model of decision trees, which

are trained in sequence. In each iteration the GBDT learns the decision trees

by fitting the negative gradients also known as the residual errors. The most

time-consuming part in learning a decision tree is to find the best split points. A

schematic figure of the process is provided below.

Figure 3.3: GBDT schema (Source: https://medium.com/swlh/
gradient-boosting-trees-for-classification-a-beginners-guide-596b594a14ea)

In each iteration and for every feature, traditional engineering optimizations

need to scan all the data instances to estimate the information gain of all possible

split points, which is very time consuming. The LGBM algorithm manages to

exclude a significant proportion of data instances with small gradients, and only

use the rest to estimate the information gain using two novel techniques called

Gradient-based One-Side Sampling and Exclusive Feature Bundling. Most decision

tree learning algorithms grow trees by level (depth)-wise, whereas LGBM grows

trees leaf-wise (best-first) based on the leaf with max delta loss (i.e. gradient) to

grow. Leaf-wise algorithms tend to achieve lower loss than the level-wise algo-

rithms. However, leaf-wise may cause over-fitting if the training dataset is too

small, thus LGBM includes a max_depth parameter to limit tree growth (Figure

3.4, https://lightgbm.readthedocs.io/en/latest/Features.html#references).
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Figure 3.4: Level-wise tree growth based learning vs LGBM leaf-wise tree growth
learning.

3.2 DistilBert Model

An important data attribute that we cannot exploit in our graph topology model

is the textual reviews between users. The last four years have seen the rise

of large-scale pre-trained language models such as GPT-3 and BERT becom-

ing a basic tool in many Natural Language Processing tasks (Devlin, 2018). In

our problem, we want to utilize such a model to implement text classification

based on the labeled positive negative or neutral sentiment each review has in

our dataset. For the matter at hand, we deploy the DistilBert Model which is

a smaller general-purpose language representation model of the BERT model,

with outstanding performances on a wide range of tasks like its larger counter-

parts (Sanh et al., 2019).

BERT which stands for Bidirectional Encoder Representations from Trans-

formers is a language representation model that is designed to pre-train bidirec-

tional representations from unlabeled text by jointly conditioning on both left

and right context in all layers. This results in the pre-trained BERT model that

can be fine-tuned with just one additional output-layer to create state of the art

models for a wide range of tasks, such as question answering and language in-

ference, without complex task-specifc architecture modifications (Devlin, 2018).

There are two steps in BERTs framework namely pre-training and fine-tuning.

During pre-training the model is trained on unlabeled data over different pre-

training tasks. For fine-tuning, the model is first initialized with the pre-trained

parameters, and all of the parameters are fine-tuned using labeled data from

the downstream tasks (e.g. question-answering task, text classification). BERT’s

model architecture is a multi-layer bidirectional Transformer encoder and its

analysis is beyond the scope of our work. We refer the reader to Vaswani et al.,

16



3.2 DistilBert Model

2017 for the original implementation and further technical details.

Figure 3.5: Architecture of BERTbase: 12 Transformer Blocks and 12 Attention
Heads (i.e.the size of a Transformer Block), and a Hidden Size of 768 mathematical
layers located between input and output that assign weights (to words) to produce
a desired result.

The BERTBASE model has 110 million total parameters (Figure 3.5, https:

//huggingface.co/blog/bert-101) and scaling these types of models computa-

tional requirements has raised several environmental concerns (Schwartz et al.,

2019; Strubell et al., 2020). The DistilBert model leverages knowledge distilla-

tion during pre-training phase and manages to retain 97% of BERTs language

understanding capabilities while being 60% faster and 40% smaller. Knowledge

distillation is a compression technique in which a compact model the “student”

is trained to reproduce the behaviour of a larger model the “teacher” (Bucila

et al. 2006, Hinton et al. 2015). A classification model is generally trained to

predict an instance class by maximizing the estimated probability of gold labels.

The DistilBert is trained with a distillation loss over the soft target probabilities

(i.e. class probabilities in the output) of the BERT model. In the formula bellow

ti (resp. si) is a probability estimated by the teacher (resp. student):
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Lce = ∑
i

ti · log(si).

Following Hinton et al., 2015, the training loss is a linear combination of

the distillation loss and the masked language modelling loss. Overall, DistilBert

has about half the total number of parameters of BERT base and retains 95%

of BERT’s performances in language understanding.

Figure 3.6: Knowledge distillation schema, https://pub.towardsai.net/
a-gentle-introduction-to-knowledge-distillation-6240bf8eb8ea

3.3 Stacking Ensemble Model

Inspired from West et al., 2014 work, the last method we deploy is a stacking

ensemble classifier modified to our needs and computational capabilities. An

ensemble of classifiers combines the decision of individual classifiers in order

to classify new instances. A main reason why one might want to deploy an

ensemble of classifiers is that it may produce better results in case the training

data cannot produce informative knowledge in order to select a single classifier

(Dietterich, 2000). In our problem we have both textual and network topology

data to work with and that is our motivation to try a joint model and specifically

a Stacking Classifier. Stacking or Stacked generalization approach is based on the
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3.3 Stacking Ensemble Model

production of a strong high-level learner with high generalized performance

and to obtain this, a set of different classifiers are combined (Wolpert, 1992).

In order to deploy our stacking ensemble classifier we follow the steps bel-

low: First, we keep 10000 data entries from the total of 119256 from the Snowball

sampled sub-data frame, to use as our final test set for all three models. Then,

we split the remaining data to training set and test set and train the DistilBert

and the LGBM classifiers on the training set. Following this, we make predic-

tions from both models on the testing set and store the predicted values from the

two models along with the actual values. Finally, we train the stacking ensem-

ble model using a Random Forest classifier which takes as input the predicted

values of the separate models on the test set and the actual values of the test set

as the dependent variable. We note that normally cross-validation techniques

or bootstrap sampling methods (Alexandropoulos et al., 2019) are used for the

final step of the ensemble learner training, but due to limited computational re-

sources, this was not possible to implement. Finally, we get predictions from all

three methods for the final test set we created initially and compare their per-

formance. We point out that the final test set was constructed so that it contains

the same proportion of observations from each class as the snowball sampled

graph, resulting in a representative data set.
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4. Results

4.1 Model training

Initially, the LGBM and DistilBert models were fitted on a training set that was

sampled without replacement using 90% of the observations in our snowball-

sampled dataset. We stored the remaining observations as a test set, making sure

to keep the same class imbalance through data stratification in both sets. The

LGBM model was fine-tuned for the learning rate, number of estimators, number of

leaves parameters using a Grid-Search algorithm (Belete & Huchaiah, 2021) that

returned values 0.05, 500, and 50 respectively.

For the DistilBert language model, a basic text preprocessing was conducted

to remove sentence terms that were inside double quotation marks because most

of them expressed a rather obvious sentiment making the text classification triv-

ial for any classifier. The language model was compiled with sparse categorical

cross entropy loss function, an Adam optimizer, and a learning rate of 0.00005.

DistilBerts training was restricted to 3 epochs, as the model overfits the training

data quite fast after numerous experimentation attempts. A callback parameter

was set in model compiling so that the best-performing weights are returned

after fitting the model. Plots of model loss and accuracy training can be found

in table 4.3 (Appendix A). As mentioned in paragraph 3.3, the Stacking Ensem-

ble model is fitted using the predictions made by LGBM and DistilBert models

on the test set as an input to a Random Forest Classifier with the number of

estimators (i.e trees) equal to 100. The three models are evaluated on the fi-

nal test set containing 10000 observations with the same class imbalance as the

initial snowball sampled dataset. Source code that reproduces plots and out-

puts of methods can be found through this link: https://github.com/SofoRep/

ADS-Thesis-Project. Code is shared under MIT licence.
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4.2 Results

To evaluate model performance, we studied the elements of the confusion ma-

trix for each model and calculated Precision, Recall, F1-score and Accuracy met-

rics. More information about the metrics can be found on Appendices B and C.

Starting with the confusion matrices bellow (Figure 4.1), rows represent the ac-

tual values of each class and columns the predicted values respectively. We can

divide the diagonal elements with the row (or column) sum of the correspond-

ing matrix entries to get the Recall (resp. Precision) of each class. For example,

the Recall of the LGBM model of the negative class is 1376
1376+229+306 = 0.72 and

Precision for that class is 1376
1376+205+792 = 0.58.

Figure 4.1: Confusion Matrices of all models.

We also provide the models accuracy where DistilBert and Stacking Ensem-

ble models outperform the LGBM model with almost identical scores:
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Model Accuracy
LGBM 0.7865

DistilBert 0.9068
Stacking Ensemble model 0.8945

Table 4.1: Model Accuracy

In table 4.2 we present summarized Precision, Recall and F1-scores for all the

models and classes. The same results in the form of barplots can be found in

Appendix 4.4. In terms of Precision of the positive class, DistilBert and Stacking

Ensemble classifiers have the highest and identical score (0.95). For Precision of

the neutral class, Distilbert model scores the highest (0.67) followed by LGBM

and Stacking Ensemble model, and for the negative class Stacking Ensemble

model has the highest score (0.80) followed by DistilBert and LGBM classifiers.

Similarly, DistilBert and Stacking Ensemble model have the highest and iden-

tical Recall score of 0.97 for the Positive class. For the neutral Class Stacking

ensemble model has the highest Recall score (0.51) and for the negative class

DistilBert (0.84).

Model Precision
Positive Neutral Negative

LGBM 0.92 0.23 0.58
DistilBert 0.95 0.67 0.79

Stacking Ensemble 0.95 0.48 0.80

Model Recall
Positive Neutral Negative

LGBM 0.84 0.31 0.72
DistilBert 0.97 0.38 0.84

Stacking Ensemble 0.97 0.51 0.73

Model F1-score
Positive Neutral Negative

LGBM 0.88 0.27 0.64
DistilBert 0.96 0.49 0.81

Stacking Ensemble 0.96 0.49 0.77

Table 4.2: Precision, Recall and F1-scores for all models.

Last but not least, DistilBert and Stacking Ensemble models outperform the

LGBM model in terms of F1 score with identical values for positive and neu-

tral class (0.96 and 0.49 respectively ). The model with the highest F1-score for

the negative class is DistilBert (0.81). An additional famous performance met-

ric called Area Under the Curve (Bradley, 1997) that comes to terms with these

statements is presented in Figure 4.5 (Appendix C).
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Topology Model Feature Importance

LGBM topology model utilizes a variety of graph attribute features that we can

rank after we fit the model to the training set, and examine their contribution

to the algorithm’s performance. We calculate feature importance based on the

"split" method of the LGBM model, which measures the number of times a fea-

ture is used to split the data across all the trees in the ensemble (Scornet, 2020).

Features with higher importance values have contributed more to the reduc-

tion in impurity during the tree-building process. They have been more fre-

quently used for splitting the data and have had a greater impact on the model’s

decision-making.

Figure 4.2: LGBM feature importance. Attributes with higher scores are considered
more important.

Looking at the feature importance values of figure 4.2 we observe that the

clustering coefficient attribute of starting nodes of each edge (clustering_1) has

the highest importance value of 6086. This could mean that the community that

the voter belongs to plays a significant role in the attitude expressed to the other

user. On the other hand, the total out-degree (degree_out2) of the target-user

(i.e. end of each edge) has an importance value of 3305, suggesting it has a

relatively lower impact on the model’s predictions compared to clustering_-

1. Notably so, status theory which is implemented through the positive and

negative incoming edges of a node, seems to affect mostly the target nodes-users

as their importance is higher than the starting nodes-users. Structural balance

theory which is implemented through the elements of the third (cubed_adj_-
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element) and fourth (adj4_element) power of the adjacency matrix A, is also

significant with corresponding values 4279 and 4278. Similar conclusions can be

made for the rest of the graph attributes.

4.3 Overview of the results

Overall, Precision, Recall and F1 score metrics are much higher for the positive

and negative classes in all three models. This can indicate that it is easier for the

models to distinguish the positive and negative signed links between two users

in the WikiRfa social network. To answer our research question, the model that

efficiently manages to identify most of the negative ties in the WikiRfa network

is the DistilBert Model, followed by the Stacking Ensemble model and LGBM.

This statement is based on all used evaluation metrics and specifically Recall

of the Negative Class which expresses the proportion of negative edges that

models managed to find out of all true negative links. What is more, DistilBert

and Stacking Ensemble models seem to perform the best on all edge sign classes

predictions with very similar scores on all used performance metrics.

Discussion

All models struggle to correctly identify neutral signed edges compared to pos-

itive and negative signed links in the network. However, working with such an

imbalanced dataset, where approximately only 7% of the observations belong to

the neutral and 30% to the negative class, justifies to a degree their weakness. It

would be interesting for future work to augment the data with more observa-

tions of the neutral and negative classes and utilize a method to add “neutral”

and “negative” sentiment text along with each new edge accordingly. Balancing

the dataset might lead to better results primarily in the neutral sign class.

Stacking Ensemble model performs better than the LGBM model in all calcu-

lated performance metrics, with very similar results as the DistilBert. Stacking

classifiers in general try to combine the strengths and weaknesses of “weaker”

learners in order to increase the overall performance (Alexandropoulos et al.,

2019). In our case however, DistilBert model outperforms the LGBM model

in all aspects, and in the Stacking classifiers effort to combine the strengths of
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two different worlds ( Gradient Boosting Classifier and a Transformer Language

Model), more weight is given to DistilBert model. Further research could make

the LGBM model competitive against a Language model such as DistilBert and

therefore lead to an improved Stacking classifier.

4.4 Conclusion

In this study, three separate models were utilized in order the predict the edge

signs of the labeled Wikipedia Requests for Adminship online social network.

Initially, a representative subgraph was sampled using the Snowball graph sam-

pling technique that made the calculations feasible considering the project’s

timeframe. The first model, a Light Gradient Boosting Model, was assembled

with graph topology attributes solely and fine-tuned to an extent with a Cross-

Validation Grid Search Algorithm. Next, the text data-reviews between users

along with the corresponding vote labels were fed as input to a DistilBert lan-

guage model. Finally, an effort was made to combine the LGBM and the Distil-

Bert models through a Stacking Ensemble Model to make better predictions.

The performance of the models was assessed using accuracy, precision, re-

call, F1-score, and elements of the confusion matrix on the final test set. Overall,

all models performed well in detecting the positive and negative signed links of

the network with high scores in almost all metrics. Characteristically, accuracy

was above 78% for all models and the F1-scores for positive and negative were

above 80% for the DistilBert and Stacking Ensemble Model. In the end, the Dis-

tilBert and Stacking Ensemble models proved to be the most consistent within

all classes.

There are several improvements that could increase model performance, such

as a better class distribution of the available data and incorporating data of dif-

ferent study areas, especially for the graph topology model. Moreover, a similar

Ensemble approach may lead to better results combined with a well-balanced

dataset. Further research can look into the application of these enhancements

and possibly contribute to even more outstanding predictions.
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Metrics
Nodes 3452
Edges 119256
Negative Edges 22804

(19.12%)
Positive Edges 89225

(74.81%)
Neutral Edges 7227

(6.06%)

Table 4.3: Characteristics of the Snowball sampled subgraph of the WikiRFA net-
work.

Figure 4.3: Distilbert accuracy and loss history during training.
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Confusion matrix

The confusion matrix is a cross table that records the number of occurrences

between two raters, the true classification and the predicted classification. The

classes are listed in the same order in the rows as in the columns, therefore the

correctly classified elements are located on the main diagonal from top left to

bottom right and they correspond to the number of times the two raters agree

(Grandini et al., 2020).

Accuracy

Accuracy is a metric that generally describes how the model performs across

all classes. It is meaningful to use this metric when all classes are of equal im-

portance. Formally, accuracy is calculated as the ratio between the number of

correct predictions to the total number of predictions (Grandini et al., 2020). In

the accuracy formula provided below, tp and tn represent the true positive and

true negative elements which are the elements correctly classified by the model

and they are on the main diagonal of the confusion matrix. f p (respectively f n)

are the elements that have been labeled as positive (negative) by the model but

are actually negative (respectively positive):

Accuracy =
tp + tn

tp + tn + f p + f n
.

Accuracy tends to hide strong classification errors for classes with a few units,

and thus, it is not possible to identify the classes where the model is working

worse. Accuracy is a reliable performance metric if the testing dataset is quite

balanced, meaning that the classes are almost the same size.
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Precision

Precision is the fraction of True Positive elements divided by the total number

of positively predicted units (column sum of the predicted positives in the con-

fusion matrix). Precision can also be calculated for each class where tpk are the

correctly classified units for the class, whereas f pk are the wrongly classified

elements on the corresponding column class of the confusion matrix:

Precision =
tp

tp + f p
, Precisionk =

tpk
tpk + f pk

.

Recall

Recall is the fraction of True Positive elements divided by the total number of

positively classified units (row sum of the actual positives in the confusion ma-

trix). The Recall measures the model’s predictive accuracy for the positive class

and intuitively measures the ability of the model to find all the Positive units

in the dataset. Extending recall in each individual class ( f nk are the wrongly

classified elements on the row class of the confusion matrix) leads to the second

provided formula:

Recall =
tp

tp + f n
, Recallk =

tpk
tpk + f nk

.

F1 score

The F1 score is a weighted average between Precision and Recall, with F1 score

reaching its best value at 1 and worst score at 0. F1-score is also extended to each

individual class as shown below:

F1_score =
2 · Precision · Recall
Precision + Recall

, F1_scorek =
2 · Precisionk · Recallk
Precisionk + Recallk

.
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Figure 4.4: Barplots of Precision, Recall and F1-score metrics of models for all
classes.
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Figure 4.5: ROC curves for all models and classes.

The Receiver Operating Characteristic (ROC) curve is a good way of visu-

alizing a classifier’s performance in order to select a suitable operating point,

or decision threshold (Bradley, 1997). The Curve is created by calculating True

Positive ( tp
tp+ f n ) and False Positive Ratio ( f p

tn+ f p ) for every possible classification

threshold. The Area Under the ROC Curve, (AUC) represents the degree or

separability. It tells how much the model is capable of distinguishing between

classes. Higher the AUC value for each class, the better the model at predicting

the class.
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