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Abstract 

Active learning (AL) aided systematic review pipelines are a promising tool for optimising 

and speeding up the performance of systematic reviews. In this paper, we present an 

architecture design with multiprocessing computational strategy for ASReview Makita 

workflow generator (Teijema, Van de Schoot et al., 2023) using Kubernetes software for the 

purposes of deployment with cloud technologies. The main goal of this study is to contribute 

to the following research in the study field of AL-assisted systematic review simulations by 

focusing on the parallel and distributed computing techniques. We provide an in detail 

technical explanation of the proposed cloud architecture and its usage manual. In addition to 

that, we conducted 1140 simulations studies investigating computational time required for 

ARFI Makita template using various number of CPUs and RAM settings. Our analysis 

demonstrates the degree to which ARFI Template can be accelerated with multiprocessing 

computing usage. The parallel computation strategy and the architecture design which were 

developed in the present paper can contribute to future research with more optimal simulation 

time and, at the same time, ensure the safe completion of the needed processes. 
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1. Introduction 

Scholars, scientists, journalists, and other types of researchers conduct systematic reviews, 

summarise various specific fields of knowledge – whether scientific or not – and extract 

overviews of relevant topics. While conducting a traditional systematic review implies 

marking pieces of text as relevant or irrelevant “by hand”, the process of paper labeling can 

be dramatically optimised with the usage of different machine learning (ML) instruments – 

especially pipelines based on active learning (Van de Schoot et al., 2021). 

In recent decades the research in the active learning (AL) field produced a lot of interest for 

various types of scientists, who study AL as a self-contained approach towards systematic 

reviews (Teijema, Seuren et al., 2023). In order to answer the questions posited by this new 

field of study, many computationally and data intensive simulations, software and statistical 

tests are required. 

The computational intensity of these tasks may be influenced by the complexity of used 

machine learning (ML) tools. For example, some ML algorithms, such as neural networks 

(NN), by default could take 100-fold more time than simpler models (Teijema, Hofstee et al. 

2023, p.8). Other ML models, for instance SVM, might have a square-increase in the training 

time, which depends on the number of input records (Ambert et al., 2013, p.12). 

What is more, there might be another reason for this computational intensity. Running 

simulations multiple times to vary and test every component of the pipeline (e.g., feature 

extractor, sampling technique, ML model) becomes crucial to answer AL related research 

questions. For instance, it could imply an examination of the impact of different training 

datasets (Ferdinands et al. 2020), tests of ML models (Teijema, Hofstee et al. 2023), or 

evaluation of multiple datasets (Harmsen et al. 2021). Hence, the required number of needed 

computations exponentially increases as the components are varied, and it might reach more 

than 20 thousand simulations, as for example in the research of Teijema (2023). 

One of contemporary AL packages, designed to ease such cases, provides a simulation 

template generator ASReview Makita (Make it Automatic), which can compose all the code 

that is necessary to execute hundreds or thousands of simulations (Teijema, Van de Schoot et 

al., 2023). Nonetheless, the current workflows generated by Makita pursue the sequential 

strategy of computations, so the simulation commands are executed one after another. If a lot 

of simulations are needed, this approach might result in unnecessarily vast timeframes due to 

queuing time, which can burden the research workflow. 
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However, such tasks require a large number of computations not because of intensive, but 

because of extensive computational complexity. Their ‘heaviness’ is caused not by 

algorithmically demanding tasks (i.e., in NN models), but rather by the high number of 

simpler ones. In other research fields, where a significant number of simulations is also 

employed for analysis, scholars adopt a parallel computing approach when the simulations 

are independent of one another – for example in physics (Neudorfer et al., 2012) or statistics 

(Lee & Kim, 2015). 

In this study, we propose similar multiprocessing solution for AL aided systematic review 

simulations, which divides the large and complex set of simulations into several independent 

parts and optimises the computation time. 

The current paper starts with a literature overview of parallel computing, containerisation and 

orchestration technologies, followed by a technical explanation of the proposed cloud 

architecture and a guideline for data scientists regarding the multiprocessing of Makita 

templates. Then, we present the results of a simulation study investigating computational time 

required for ARFI template using various numbers of CPUs and memory settings. The study 

ends with a discussion describing the limitations of the presented study and its potential 

development in the future research. 

2. Research objectives 

The main goal of this study is to contribute to the field of simulation studies investigating the 

performance of active learning (AL) aided systematic reviewing by focusing on the parallel 

and distributed computing techniques with usage of cloud environment and resources. By 

implementing such techniques, it is possible to considerably optimise computational time, 

making the research more efficient and less burdensome. For these purposes the research 

objective has been divided into two sub-questions: research goal (RG) and research question 

(RQ). 

RG. How to optimise the simulations of AL pipeline with usage of modern parallel and high-

performance computing techniques? 

RQ. Can the usage of parallel computing on a cloud platform optimise the simulation time of 

an AL pipeline? 
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3. Literature review 

3.1. Parallel and Distributed Computing 

If some parts of the computational task (e.g. calculation, algorithm, or a combination of such) 

are performed simultaneously, such type of solutions is called parallel computing (or 

distributed computing, or multiprocessing) (Gottlieb & Almsi, 1989). The parallel computing 

is usually conflated with concurrent computing, but they are distinct although not mutually 

exclusive concepts. While the former advances the task performance by breaking it down into 

multiple similar and independent tasks, the latter approach also implements the “divide and 

conquer” principle. However, the tasks in concurrent computing are co-dependent and 

address different issues (Grossman & Anderson, 2012). 

Nonetheless, both are utilised in modern computing methods. Their gain of popularity in 

computer architecture paradigms happens because they increase the performance of the 

processors, and thus reducing the heat production and power consumption (Asanovic et al. 

2006). 

3.2. Containerisation technology 

Using a powerful local computer might be more recourse demanding than running 

simulations on cloud services for several times. For that reason, executing large processes on 

cloud might be a better option. To make the application scalable to the optimal number of 

instances, an approach called container-based virtualisation (containerisation) could be 

utilised. This technique involves packaging the application with all other technologies 

required for its functionality, making it compatible with any hardware environment 

(Scheepers, 2014). 

The core principle of container technologies lies in enabling the processes and their resources 

to be isolated without any hardware emulation and specific hardware requirements 

(Scheepers, 2014, p.2). Another advantage of containerisation is that it makes software 

lightweight and portable by using its abstraction – a container image. It contains the 

information about necessary settings, code to install package dependencies, etc. (Kurtzer, 

Sochat, Bauer, 2017). Today there are multitude of open-source pieces of software developed 

for containerisation (i.e., Linux containers, Podman, Docker).  

Containerised applications make it is possible to parallelise the simulations following the 

principle depicted on the Figure 1, which was inspired by the approach of Tesliuk et al. 
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(2019). Figure 1 shows an atomic example of two containerised instances parallelisation, that 

can be adjusted to a number of available CPU cores. Assigning one container with an 

instance of an AL software to one CPU unit enables the isolation of the inner processes from 

other CPUs. Further, we refer to a CPU or a CPU assigned to a container as CPU/Container. 

In contrast to a sequential strategy of Makita generated workflow, the presented approach 

takes the queue of the necessary commands and creates a pool out of them. From that pool of 

“Input commands” we send them to various CPUs/Containers and execute them in parallel 

and simultaneously, thereby saving time. It is noteworthy that CPUs/Containers are not 

receiving a new command until they finish the previous one and put the output into an 

allocated file place, so there are as many queues as the number of CPUs/Containers. 

Figure 1 

The architecture of parallelising the AL-aided systematic review input simulation commands 

between two instances of CPU (or CPU attached to a Docker container) and allocating them 

to the files of commands’ output  

 

Note: After the Container/CPU finishes a simulation, it takes new command from the pool of input commands. Both left and 

right Containers/CPUs have their own queue, which is denoted by the numbers (e.g., 1 or 2). While the Files 1 & 2 are the 

output files of two already completed simulations, the Files 3 & 4 correspond to output of two simulations, which are in 

progress. File N is a set of files that are going to be created from upcoming commands. 
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For example, if we have the simulation study containing three simulation commands: 

simulation with parameters x and y (A), simulation with parameters x and z (B), simulation 

with parameters y and z (C), those are our input commands. When the execution is started, 

command A passes to the left CPU/Container (See Figure 1), and command B passes to the 

right CPU/Container. In the meantime, command C waits until the left CPU/Container 

provides the output of the command A to the File 1 and starts its execution only after the 

previous one is fully completed. 

3.3. Orchestration System 

While the traditional multiprocessing in algorithms utilise CPU kernel for allocating and 

scheduling tasks, the performance of the same functionality over containers requires special 

orchestration technologies. They were initially developed in large IT companies that have 

been implementing scalable highload services like Amazon, IBM, or Google. There are 

multiple available instruments of orchestration systems (i.e. Terraform, Ansible, Kubernetes). 

Orchestration systems such as Kubernetes are a subset of system administration which can be 

distinguished by the possibility of automated configuring, coordinating, and managing of 

computer systems and software (Erl, 2005). 

Orchestrating approach enables easy integration of diverse software in a unified computing 

platform and allows to manage and to scale containerised software in large computing 

infrastructures. In combination with container technologies, such management systems can 

ensure security of the parallel processes, their isolation from each other, and secure and 

simplified networking (Khan, 2017). This makes parallelisation on the level of containers 

safer than parallelisation on the level of CPUs themselves, for traditional computer kernel 

management is burdened by denial-of-service cases and paging out of processes (Kerrisk, 

2012). Containers can guarantee an isolation of processes and troubleshooting functionality in 

the overload scenarios. 

4. Orchestration System of ASReview and Types of Kubernetes 

Nodes  

For RG’s purposes this study presents cloud architecture based on ASReview implemented in 

Siqueira & Romanov (2023). This architectural design was devoted to applying parallel 

computation strategy to ASReview Makita templates (Teijema, Van de Schoot et al., 2023). 

This section is dedicated to explain and describe each of these components separately. The 
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overall workflow diagram of the ASReview cloud architecture is presented on Figure 2. It 

presents a summary of the Kubernetes cluster and configuration of Kubernetes Nodes – a 

native abstractions in the Kubernetes architecture which can consist of either one of more 

application containers. Nodes may be two types (Jobs or Services), and the difference is in 

their persistence time. 

Figure 2 

Diagram of the ASReview parallelisation design for cloud Kubernetes cluster implementation 

that describes the setup manual steps and the way two Docker components (Worker and 

Tasker) communicate using a ‘tasker.sh’ and ‘worker.sh’ bash scripts with addition of 

RabbitMQ Message broker  

 

Note: There are 4 types of components (RabbitMQ, Volume, Worker, Tasker), and there can be only one Tasker, Volume, 

RabbitMQ, whereas the Worker components can be multiplied as long as there is enough CPUs. Constituting a Kubernetes 

cluster, Tasker initiates the process using a given data and the tasker.sh, which distributes the Makita generated commands 

over the Workers. In response, after the simulation is completed, Worker stores the result in the Volume component and 

sends the message that is ready for a new simulation to Tasker component. The diagram was designed in Siqueira & 

Romanov (2023). 

4.1.Message broker 

To orchestrate all other components RabbitMQ software is used as a message broker. 

RabbitMQ implements the Advanced Message Queuing Protocol (AMQP) and supports 
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various messaging patterns, such as request/reply, and what is more important for parallel 

processing – work queues (RabbitMQ). Message broker persists as a Service abstraction, 

meaning it is running until the user manually deletes it or it meets a deletion condition. 

RabbitMQ solves the distribution of jobs (simulations commands in our case) among Worker 

nodes and prevents Workers from receiving a new job before the previous is solved by 

messaging about their completion. RabbitMQ utilises exchanges to route messages to 

working queues, and the Tasker node is subscribed to receive messages to ‘know’ when to 

send the next task. 

4.2.Volume Node 

The main and only functionality this component has to store the results and to send them to 

the user on demand. It persists as a Service abstraction. 

4.3.Tasker Node 

This component consists of several Makita scripts dockerised in one image and performs as a 

job Kubernetes abstraction, meaning it disappears after the given Makita commands are fully 

executed.  

First, it copies the provided datasets and runs specified Makita template, which is split into 

three parts: the part of directories definition, the part of simulations commands, and the part 

of metrics computation. While the two latter are parallelised one after another to ensure that 

metrics can be computed based on the completed simulations, the former part cannot be 

parallelised as it creates the directories’ structure, which must be executed sequentially. 

After the directories are created, the Tasker node distributes the commands among Worker 

nodes via RabbitMQ – first, from the simulations part and, second, from the metrics part. 

4.4. Worker Node 

In comparison to the previous component, the Worker nodes are implemented as Kubernetes 

services. They are responsible for implementing the Makita templates’ commands sent from 

the Tasker, and to store the results in the Volume node. In order to make it possible, each 

Worker Node, and thus container inside, has the list of packages and dependencies that 

ASReview application needs. Moreover, the Worker is responsible for sending messages 

back to Tasker, so it is aware when to send new commands. 
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4.5.Where to start 

The presented architecture was provided with explicit documentation and the manual, which 

is also mentioned on Figure 2. The manual describes the steps necessary to run large number 

of simulations on SURF cloud environment. However, it can be implemented in other cloud 

and local environments. 

This implementation and the manual have been made publicly available at the GitHub 

repository https://github.com/abelsiqueira/asreview-cloud, where all used scripts and 

documentation are covered under the Apache License Version 2.0 (Siqueira & Romanov, 

2023). 

5. Methodology 

5.1. Set-up 

Initially, the cloud infrastructure was developed and tested locally on several machines 

(Macbook M1 chip and Dell XPS 2018) using both Windows and MacOS operating systems 

for proof runs.  

Then, we implemented our main time measurements using cloud environment with Linux 

Ubuntu OS. For cloud infrastructure provider we have been using SURF Cloud — 

noncommercial cloud infrastructure benefiting Dutch academic researchers and stakeholders 

(SURF). In Table 1, the specific details of the used software on cloud can be found.
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Table 1 

Software utilised during the study 

Software Name and version 

Operating Systems 
Windows (version 11), MacOS (version 13.2.1), Linux Ubuntu 

(version 20.04) 

CPU and RAM 16 cores - 64 GB RAM 

Cloud host SURF Cloud3 

Container software Docker (version 24.0.0)4 

Orchestration software Kuberenretes, Minikube (version: 1.30.1)5 

Active learning software ASReview (version 1.2)6 

Template generator 

for AL simulations 
Makita (version 0.6.3)7 

Message broker RabbitMQ (version 3.12.0)8 

Parallelisation Package GNU parallel (version 20230522)9 

Regarding the used AL tools, default ASReview simulation settings were utilised that consist 

of Naïve Bayes as a classifier model, TF-IDF as a feature extractor, ‘MaxQuery’ as a query 

strategy, and dynamic resampling as a balance strategy (ASReview LAB developers, 2023, 

Van de Schoot, 2020). With regard to Docker, Minikube Kubernetes and RabbitMQ, they 

were selected for the purposes of this study, since they are most-widely used, which makes 

the whole architecture more reproducible for following implementation. 

5.2. Analytical strategy 

The parallel computations might be implemented on various levels: bit-parallelism, 

instruction level, data level and tasks parallelism. Our multiprocessing strategy was focused 

on parallelising ASReview simulations on the task level, by using many container instances 

of the ASReview application and running separate tasks on them. 

We conducted multiple time measurements of ARFI Makita template simulations using 

different limits for all allocated memory for Minikube Kubernetes implementation, different 

number of central power unit (CPU) cores, and different volumes of allocated RAM per CPU. 

 
3 SURF cloud, https://www.surf.nl 
4 Docker, https://www.docker.com 
5 Kubernetes Project, https://kubernetes.io/ 
6 ASReview LAB developers. (2023). ASReview LAB - A tool for AI-assisted systematic reviews (v1.3a0). 

Zenodo. https://doi.org/10.5281/zenodo.7993446 
7 Teijema, J., Van de Schoot, R., Ferdinands, G., Lombaers, P., & De Bruin, J. (2023). ASReview Makita: a 

workflow generator for simulation studies using the command line interface of ASReview LAB (v0.6.3). 

Zenodo. https://doi.org/10.5281/zenodo.7838272 
8 RabbitMQ, https://www.rabbitmq.com 
9 Tange, O. (2011). Gnu parallel-the command-line power tool.; login: The USENIX Magazine, 36 (1): 42–47. 

https://www.docker.com/
https://kubernetes.io/
https://doi.org/10.5281/zenodo.7838272
https://www.rabbitmq.com/
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First, the default Kubernetes limit of RAM was 2GB for the whole implementation, then it 

was increased to 60 GB. Regarding CPU, the number of cores was varied between 1 and 14 

with increment of 2 cores each test. Furthermore, we varied the memory allocated to each 

Worker container — one set of runs with 1024 megabytes of RAM per CPU and 2048 

megabytes of RAM per CPU. 

In addition to that, we used GNU parallel (Tange, 2011) package and implemented 

parallelised simulations on the same CPUs of SURF cloud machine, but without Docker and 

Kubernetes. In the current study we will refer to this implementation as ‘bare metal’. 

It is important to note that Kubernetes utilised additional CPUs by default for Tasker and for 

RabbitMQ one per each, and, thus, the run of Kubernetes cannot be compared to the ‘bare 

metal’ at the level of 16 CPUs; nonetheless, we included the measurements for ‘bare metal’ 

in order to show the maximum speed up capacity available with a given settings. 

Thereby time measurements with CPUs number from 1 to 16 were implemented in four 

rounds and compared to a benchmark sequential ARFI run time of 387 seconds: 

• Kubernetes with a default limit of RAM 

• Kubernetes with 1024 megabytes of RAM per Worker 

• Kubernetes with 2048 megabytes of RAM per Worker 

• ‘Bare metal’ using GNU package. 

5.3. Metrics 

To evaluate the performance of multiprocessing strategies, time for computation, speedup 

ratio and parallel efficiency metrics were calculated per each run. 

Time for computation: T denotes the time (in seconds) taken by a given simulation run from 

its start to finish. 

Speedup ratio: 𝑆𝑝 =
𝑇1

𝑇𝑝
, where T1 denotes the time for sequential computation of the whole set 

of simulations on one CPU (default run), and Tp is the time for computation of the whole set 

of simulations with parallelisation using p number of CPU cores (Eager, Zahorjan & 

Lazowska, 1989). Speedup ratio indicates how many times a given multiprocessed program 

run is faster than a sequential run. For example, if the serial process is run in T1 = 10 seconds, 

and the same but parallelised process is run in 5 seconds, thus, the speedup ratio is 2. 
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Parallel efficiency: 𝐸 =
𝑆𝑝

𝑝
, where 𝑆𝑝  denotes the speedup for a certain number of cores, and 

p is the number of cores (Prasad et al. 2015, pp. 81- 82). This metric provides the information 

about the percentage of speedup each CPU core provides. If E < 1, speedup is called 

sublinear, if E ≈ 1, speedup is called linear, if E > 1, speedup is called superlinear. 

5.4. Dataset 

To conduct the time measurement, one dataset was taken from the Synergy datasets 

collection – a free and open-source dataset on study selection in systematic reviews, 

comprising 169,288 academic works from 26 systematic reviews (De Bruin et al. 2023). The 

dataset collection was published with an open CC0 1.0 Universal Licence. In our work we 

used PTSD dataset (Van De Schoot et al., 2017). It is a collection of 4,544 abstracts of 

studies related to post-traumatic stress disorder (PTSD) trajectories. It contains information 

on the title, authors, abstract, keywords, and record’s status of relevance. This status indicates 

whether the study met the criteria for being included in systematic review. The overall 

inclusion rate (38 records, 8% of the whole data) and the ARFI template with 38 relevant 

records results in 1102 simulations overall with addition of 38 simulations of the benchmark 

(1140 in total). If we run ARFI per each combination of CPUs number with GNU (8 × 38) it 

is 304 simulations, and three times for Kubernetes with ARFI per each combination of CPUs 

number (7 ×  38 ×  3) is 798 simulations (38 + 304 + 798 = 1140) . 

Moreover, the dataset of van de Schoot is used as a benchmark dataset in the ASReveiw 

software, meaning that it is more familiar to its current users, and it might be a feasible 

demonstration of the possibilities of cloud environment and architecture for them. This makes 

a good demonstration for the purpose of the current study in the available time frame. 

6. Results 

6.1. Performance Analysis and Limitations of the Default Kubernetes 

Settings 

During the initial time measurements of 266 simulations with Kubernetes, it was found that 

after using more than 4 CPUs and reaching the performance of 273 seconds the 

computational time (T) ceases to decrease. With accordance to Figure 3, T stays between 275 

and 298 seconds. That was caused by default setting of Minikube Kubernetes, which limits 

the RAM memory for all Worker containers to 2 GB, and the usage of more than 4 Worker 
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nodes with 1024 megabytes of RAM conflicted with these limitations. Although the default 

settings have imposed some limits, the usage of such amount of memory already gave almost 

a two-fold speedup from 483 seconds (non-parallelised default ARFI depicted by the red bar) 

to a minimum 273 seconds in the first round of tests. Because those Minikube limits do not 

provide the information about the accelerating capacity of the architecture, speedup ratio and 

parallel efficiency were not computed for this round. 

 

Figure 3 

Multiprocessing timings (in seconds) for 38 parallel simulations 

distributed over various CPUs numbers (from 1 to 14 CPUs) for 

one round of runs and a benchmark timing.  

Figure 4 

Multiprocessing timings (in seconds) for 38 parallel 

simulation studies distributed over various CPUs numbers 

(from 1 to 16 CPUs) for 3 rounds of runs and a benchmark 

timing 

  

Note: Each bar is time of running a set of 38 simulations. 

Kubernetes needs CPU per Tasker and RabbitMQ components, 

hence there is no Kubernetes 16 CPUs results (See Appendix A). 

There are 304 simulations in total on this plot. 

Note: Each bar is time of running a set of 38 simulations. 

Kubernetes needs CPU per Tasker and RabbitMQ 

components, hence there is no Kubernetes 16 CPUs results 

(See Appendix A). There are 874 simulations in total on 

this plot. 

6.2.Comparison of Parallel Computing Strategies 

After adjusting the settings limits and allocating more RAM to each CPU, the results 

indicated a decrease in overall computational time as well as per each CPU number (see 

Figure 4). Whereas with only one CPU the default ARFI run (387 seconds) was faster than 

‘bare metal’ (411 seconds) and both second (506 seconds) and third (500 seconds) 

Kubernetes runs, with the step to 2 CPUs the latter three had T of 203, 265 and 262 seconds, 

respectively, and outperformed all first Kubernetes runs from Figure 3 (273-483 seconds) and 

the default ARFI run. 

Comparing Kubernetes runs with different RAM allocation per Worker, the third round of 

simulations with 2048 megabytes of allocated RAM per Worker had a different outcome than 
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with 1024 megabytes: it was faster (the mean difference is approximately 3.11 seconds), but 

still slower than the “bare metal” simulations. 

What is more, all implementations apart from the first Kubernetes round show a more drastic 

speedup in the steps between smaller number of CPUs than with 12, 14 or 16 CPUs, thereby 

forming a plateau in terms of time optimisation with the higher numbers of CPUs (see Figure 

5). For example, for GNU implementation there are similar timings of 46 seconds when 14 

and 16 CPUs are used, resulting in the same speedup. At the same time the speedup between 

12 and 14 CPUs for both Kubernetes was 5.16 and 5.22 times and 6.14 and 6.14 times, 

respectively, which is faster than benchmark ARFI run. 

Figure 5 

Speedup ratios for 38 parallel simulation studies distributed over 

various CPUs numbers (from 1 to 16 CPUs) for 3 rounds of runs 

Figure 6 

Parallel Efficiency for 38 parallel simulation studies 

distributed over various CPUs numbers (from 1 to 16 CPUs) 

for 3 rounds of runs 

  

Note: On the x-axis, there are numbers of CPU cores, and on the y-axis, 

there are ratios of the benchmark run to the 3 rounds of runs, 

respectively. Also, Kubernetes needs CPU per Tasker and RabbitMQ 

components, hence there is no Kubernetes 16 CPUs results (See 

Appendix B), and the simulations with 1 CPU were not included 

because they do not have parallelising aspect. Each bar is time of 

running a set of 38 simulations. There are 570 simulations on this 

plot in total. 

Note: On the x-axis, there is number of CPU cores, and on the y-

axis, there is a percentage of speedup (efficiency) each core has in 

the 3 rounds of runs. Also, Kubernetes needs CPU per Tasker and 

RabbitMQ components, hence there is no Kubernetes 16 CPUs 

results (See Appendix C), and the simulations with 1 CPU 

were not included because they do not have parallelising 

aspect. Each bar is time of running a set of 38 simulations. 

There are 570 simulations on this plot in total. 

In contrast, the initial step from 2 to 4 CPUs produced a larger speedup: for GNU – from 1.9 

to 3.36 times, for Kubernetes with 1024 megabytes – from 1.46 to 3.45 times, for Kubernetes 

with 2048 megabytes – from 1.47 to 2.58 times (See Figure 5). 

6.3. Speedup Patterns and Efficiency 

It is noteworthy that already in the 2 CPU run the GNU parallelisation solution achieved 

95.3% parallel efficiency, allocating each core with maximum observed efficiency (see 
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Figure 6 and Appendix C). In comparison, Kubernetes showed only 73.8% efficiency in 

similar CPU configurations. Throughout the whole study Kubernetes indicated a lower level 

of parallel optimisation than GNU, except for the case of one run with 4 CPUs and 1024 of 

RAM, when it was faster and more efficient by 2%. 

With more than 12 cores, in both cases Kubernetes exhibited less than 50% efficiency (see 

Figure 6 and Appendix C), indicating diminishing returns in terms of performance 

improvement, while GNU had 52% of parallel efficiency per core only in the last 16 CPUs 

run. 

The overall efficiency and speed of all rounds of simulations showed a notable decline, 

accelerating fewer times than the number of CPUs, constituting a sublinear manner of 

speedup. For instance, the most optimal and efficient simulation run improved by 1.903 times 

with 2CPUs in contrast to the serial ARFI run, which was the closest run to a linear speedup 

(2 times faster with 2 CPUs). Nevertheless, it was discovered that all parallel computing 

strategies implemented in this study perform faster than a default sequential ARFI run (387 

seconds) (see Figures 3 & 4). 

7. Discussion 

We presented an architecture design with multiprocessing computational strategy for 

ASReview Makita (Make It Automatic) templates (Teijema, Van de Schoot et al., 2023) 

which help running the simulations studies mimicking the screening process of an active 

learning (AL) aided systematic review. The provided solution can be conducted on both local 

and virtual machines. The number of Kubernetes Workers is only limited to the availability 

of CPU and has less queuing computational limits than classical sequential strategies, which 

suits the necessities of processing numerous systematic review simulations mentioned in the 

research goal (RG). 

Moreover, we demonstrated the degree to which Makita ARFI template can be accelerated 

with multiprocessing usage. In comparison to serial processing benchmark, all four rounds of 

paralleled runs of ARFI were executed faster just using more than one CPU. With suggested 

parallel computation technique developed with Kubernetes architecture design (Kubernetes), 

future research can benefit with more optimal simulation time and, at the same time, ensure 

the safe completion of the needed processes. 
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7.1. Comparing Kubernetes’ and ‘Bare metal’ GNU’s accelerations 

In previous studies, which have also implemented orchestration solutions for computationally 

intensive tasks (Tesliuk et al., 2019), Kubernetes was compared to a parallelisation without 

usage of containers and orchestration (‘bare metal’). This “bare metal” implementation 

addresses the evaluation of parallelisation raised in research question (RQ).  

However, initial expectations based on Tesliuk et al. (2019), where Kubernetes demonstrated 

faster and more efficient performance, were not met during this study. The overperformance 

of Kubernetes over GNU was observed only with 4 cores with 1024 megabytes of RAM per 

Worker, suggesting that this specific configuration may be optimal for Kubernetes with the 

given settings and dataset. Nevertheless, it still shows an opposite outcome compared to 

results of Tesliuk et al. (2019, p. 70), and it is noteworthy that this optimal configuration may 

not be generalisable to other datasets or scenarios. 

There are several differences in the set-ups of our analysis and their work, which potentially 

might have produced such outcome: the study used GPU, not CPU, the data was not textual 

but particles’ images, and there was no Message broker software (Tesliuk et al., 2019, pp. 67-

68). In this study we suppose that the presence of RabbitMQ within the ASReview 

Kubernetes setup has affected its overall performance, preventing it from outperforming the 

“bare metal” solution, as difference in GPU and data types would have affected processing 

time regardless of containerisation or ‘bare’ CPU exploitation. 

Although the parallelisation with GNU package outperformed Minikube Kubernetes, except 

for one specific test, both address RQ with possibility of making situations of AL usage 

faster and more optimal. Despite “bare metal” solution provided higher speedup and parallel 

efficiency, it should be noted that it lacks the degree of security and process isolation 

possessed by containers (Khan, 2017, p. 44). In more data-intensive cases, for which the 

cloud architecture was designed, parallelising on default CPUs may compromise process 

security and introduce troubleshooting challenges, such as process page-out (Kerrisk, 2012). 

Thus, both the Kubernetes architecture or GNU parallel package may be used for 

optimisation of ASReview Makita, thereby constituting a trade-off between the degree of 

optimisation and the security of data-processing. 
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7.2. Limitations 

The dataset we analysed possesses its own specific and idiosyncratic textual features, and this 

influences the computational time and number of cores with the best efficiency. In other 

words, the provided results may lack generalisation; however, the time measurements and 

experimental runs demonstrate the potential behind parallelising simulation runs in Makita 

template. 

The conducted experiments methodologically are not suitable for drawing causal conclusions 

about the efficiency of the presented strategy, but rather present observational and descriptive 

results. Cloud and multiprocessing technologies should not be perceived as a ‘silver bullet’ 

solution for acceleration of ASReview simulations, because the performance of pipeline 

simulations varies dramatically depending on the choice of dataset (Teijema, 2023). 

7.3. Further research 

High variability of AL performance with dependance on data brings new challenges and 

questions about parallel simulations of systematic reviews. The datasets’ characteristics are 

different not only in size and proportion of relevant records, but also in the semantics of the 

covered topics, syntax, vocabulary, and morphology of the datasets’ language (Kroft, 2022). 

Continuing the current research, it is noteworthy to focus on the extensions in terms of data in 

the similar and other settings of Makita templates. 

Moreover, many of the feature extractors and classifiers, that are utilised in AL pipelines, 

support parallelisation by design. Whereas random forest can be parallelised (Chen et al., 

2016), but does not take a lot of time, most of neural networks (NN) architectures tend to 

have the longest learning time frames (Teijema, Hofstee et al, 2023, p.8). Expanding on the 

parallelisation aspect, it should be noted that NN are specifically suitable to be parallelised on 

(graphical power units) GPUs (Keckler et al., 2011). The parallelisation on GPUs can bring 

about significant benefits, particularly in feature extraction or classification timeframes with 

NN architectures.  

Furthermore, exploring GPU parallelisation could offer valuable insights into parallelising at 

lower bit-levels. Since the simulation conducted at the task level resulted in a sublinear 

speedup, it would be interesting to investigate whether a different level of parallelisation can 

provide greater efficiency. 
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7.4. Impact on the field 

Moving on to the impact on the field, the results obtained from this analysis can contribute to 

the research process of following studies in the field of assisted systematic review pipelines: 

first, as a software for optimal simulations, second, as a basis for following studies of 

multiprocessing effects on simulations’ speedup. 

While the direct impact on non-datascience users of AL might be limited, except for the 

progress in the software development, there might be indirect effects that ought to be 

considered. Employing more efficient parallel computing techniques leads to a relative 

reduction in energy consumption, which aligns with the emergence of the 'green' cloud 

computing paradigm in recent decades (Kumar & Buyya, 2012). Advocating for a more 

efficient and potentially environment-friendly solution not only benefits users but also has a 

broader effect on the public at large. 

Overall, the usage of parallelisation techniques in the simulation of AL pipelines has the 

potential to greatly enhance computational efficiency. While parallelising simulations without 

using additional technologies turns out to be the fastest implementation, the pursue of the 

containerised software strategy ensures safely isolated processes and computing, and, at the 

same time, saves considerable amount of time. By balancing between the safe computation 

and optimisation further research in the AL-aided systematic review can advance with the 

software design presented in this study. 
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8. Open Science Statements: Data, Code Availability and 

Generative AI usage 

This study did not deal with personal information in any way. For this study, we used data, 

which was published under of Apache 2.0 license (Van De Schoot et al. 2017).  

This study has been made publicly available at https://github.com/zoneout215/asreview-

makita-multiprocessing, where all used scripts and generated data have been made freely 

available under the MIT licence. Please note that the GitHub repository is maintained and 

updated by the author, and it may contain more recent versions or enhancements of the code 

used in this study. 

Throughout the work on this study, generative AI tools, including OpenAI's ChatGPT and 

Copilot development environment extension, were used. These were supplementary aids, and 

all final interpretations and content decisions were the sole responsibility of the author. 
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Appendix 
Appendix A 

Time for computation measurements 

Number of 

cores 
K8s_test1 K8s_test2 K8s_test3 bare_metal 

1 483 506 500 411 

2 275 265 262 203 

4 273 112 150 115 

6 280 113 111 86 

8 279 88 89 68 

10 283 77 76 59 

12 278 75 74 57 

14 298 63 63 46 

16 0 0 0 46 

Appendix B 

Speedup ratio measurements 
 

Number of 

cores 
speedup_test1 speedup_test2 speedup_test3 speedup_metal 

2 1.460377 1.460377 1.477099 1.906404 

4 3.455357 3.455357 2.580000 3.365217 

6 3.424779 3.424779 3.486486 4.500000 

8 4.397727 4.397727 4.348315 5.691176 

10 5.025974 5.025974 5.092105 6.559322 

12 5.160000 5.160000 5.229730 6.789474 

14 6.142857 6.142857 6.142857 8.413043 

16 0 0 0 8.413043 

Appendix C 

Parallel efficiency measurements 

 
Number of 

cores 
efficiecy_test1 efficiecy_test2 efficiecy_test3 efficiecy_metal 

2 0.730189 0.730189 0.738550 0.953202 

4 0.863839 0.863839 0.645000 0.841304 

6 0.570796 0.570796 0.581081 0.750000 

8 0.549716 0.549716 0.543539 0.711397 

10 0.502597 0.502597 0.509211 0.655932 

12 0.430000 0.430000 0.435811 0.565789 

14 0.438776 0.438776 0.438776 0.600932 

16 0 0 0 0.525815 
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