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Abstract 
Pesticides play an important role in modern-day agriculture by protecting produce from pests 

and diseases. Nonetheless, exposure to these biological agents poses a significant public health 

concern, highlighting the necessity for exposure assessments. In recent years, spatial simulation 

models have emerged as an effective approach to estimate the extent and distribution of 

pesticide drift due to their ability to consider a range of factors, such as wind directions. Here, 

the typical approach is to derive this type of information from meteorological stations closest 

to the pesticide application area, introducing considerable inaccuracies. In order to provide a 

more robust and versatile alternative, this study aimed to examine spatial interpolation methods 

that may improve pesticide exposure estimates using wind field records from the Netherlands 

in 2017. In doing so, five spatial interpolation models were adopted to estimate wind directions 

at unobserved sites, namely naïve interpolation, nearest neighbour, inverse distance weighting, 

universal kriging and random forest. Performance of these models was evaluated using an out-

of-sample circular root-mean-squared error (CRMSE) that was obtained through spatial 𝑘-fold 

cross validation. A sensitivity analysis examined the influence of varying observations on the 

performance of each model. Results showed distinct visual patterns that aligned with previous 

studies. Nonetheless, limited variability in hourly wind field measures resulted in a relatively 

similar performance across the employed models. All in all, the inverse distance weighting 

demonstrated the lowest out-of-sample error for interpolating wind directions. This finding 

suggested that the adoption of this model in pesticide drift simulations provides a more valid 

representation of wind fields at the application areas compared to the approach often employed. 

In turn, this may improve the accuracy of pesticide exposure estimates obtained from these 

simulations.  
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1. Introduction 
Pesticides play an important role in modern agriculture [1, 2]. As productivity enhancers, these 

biological agents are considered to help protect produce from pests and diseases [3–5]. Despite 

their notable advantages, exposure to pesticides poses a significant public health concern with 

negative health effects ranging from acute toxicity [6, 7] to neurodegenerative diseases [8–10]. 

As a result, assessments of exposure are critical to identify areas of high risk and informing 

decisions aimed at mitigating the adverse health effects of these chemical components.   

 

In recent years, spatial simulation models have emerged as an effective approach to estimate 

the extent and distribution of pesticides [2, 11–15]. Among the various alternatives available, 

gaussian plume models are widely adopted due to their ability to incorporate a range of factors 

that might influence exposure to pesticides in ambient air, including wind directions [2, 13, 

14]. Here, the common approach is to derive this type of information from meteorological 

stations closest to the pesticide application area [13]. However, this method may inaccurately 

represent the wind direction at the site of interest, resulting in an under- or overestimation of 

exposure. 

 

To enhance these measures, several studies have incorporated wind direction parameters in 

their models, obtained from sensors mounted directly on the pesticide sprayer [2, 15]. Apart 

from this approach being considered practical in nature, it remains deficient in capturing the 

temporal and spatial variability inherent in wind directions. As a result, some studies proposed 

spatial interpolation of wind directions as a more versatile means of improving estimates of 

exposure [16, 17].  

 

Spatial interpolation being applied to climatic observations has gained considerable attention 

in literature [18, 19]. These techniques aim to estimate variable values at unknown locations 

based on available samples obtained from climatic stations [20]. In this context, deterministic 

and geostatistical approaches are the predominant frameworks used [21–28]. Nonetheless, 

these methods also induce considerable interpolation error and may encounter challenges in 

adoption [29]. More recently, studies combined statistical learning with spatial interpolation 

[18, 30–32]. Despite the fact that these methods often outperform the more classical 

frameworks, literature is generally limited to wind speed or power rather than the direction of 

the field [32]. In contrast, approaches based on circular statistics focused more on interpolating 

wind directions by considering the periodic nature of the data [33–35]. In doing so, these 

studies provided more realistic interpolation results [36]. Nonetheless, empirical results in 

literature that adopted spatial interpolation of wind directions are limited, specifically in studies 

that employed gaussian plume models to simulate the drift of pesticides. 

 

Therefore, this study aims to examine spatial interpolation methods that may improve pesticide 

exposure estimates using wind direction records from the Netherlands in 2017. In doing so, the 

study contributes to existing literature in two ways. First, it compares and evaluates methods 

suitable to interpolate wind directions. Second, the study examines the adoption of a robust and 

versatile alternative to incorporate wind directions in simulation models by accounting for the 

spatial variability of this climatic factor.  
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The study is structured in four parts. Section 2 defines the gaussian plume model and their 

application in simulating drift of pesticides. Moreover, the section examines relevant literature 

on spatial interpolation methods suitable for estimating wind directions at unsampled locations. 

Section 3 elaborates on the area under study, introduces the data and provides an outline of the 

methodology employed. The results are presented and discussed in Section 4. Lastly, Section 

5 concludes the study by summarising the key findings and future work.   
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2. Literature Review 
2.1  Pesticide Spray Drift  
Pesticide spray drift refers to the airborne movement of spray droplets and particles towards 

sites other than the intended application areas [37]. Despite the fact that pesticide spraying 

systems are designed to provide optimal deposition of pesticides on the targeted crops to help 

protect produce from pests and diseases, a significant amount of these chemical components 

drifts to non-targeted areas during application [38, 39]. The resulting exposure poses a notable 

public health concern with negative health effects ranging from acute toxicity [6, 7] to 

neurodegenerative diseases [8–10]. Hence, several studies aimed to identify factors that play 

an important role in the drift of these biological agents, such as the spray system design [40–

43], meteorological conditions at the site of interest [44–46] and crop characteristics [47, 48].  

 

First, the size of droplets discharged from spray systems is recognised as an important element 

affecting drift [49]. Here, fine droplets tend to be airborne for prolonged periods of time, 

increasing their potential to be transported by wind [50, 51]. In contrast, more sizable droplets 

tend to retain their initial velocity, making these aerosols more likely to be deposited on the 

intended sites [51]. Despite this general agreement in literature, threshold values of droplet 

sizes highly susceptible to drift vary. Most studies found that aerosols with diameters less than 

100 μm exhibit a tendency to drift [52, 53], while others proposed a broader range of 50 to 200 

μm [42, 43]. All in all, the effect of droplet sizes in pesticide drift underscores the significance 

of spray system design, as the setup influences the granularity of aerosols released. 

 

Second, meteorological conditions at the application site are considered to significantly impact 

pesticide spray drift. Here, wind speed and direction are important determinants along with the 

atmospheric stability [46]. Various studies found that greater wind velocities result in increased 

drift distances as they facilitate the movement of more chemical components towards non-

targeted areas during application [45, 49, 54]. Furthermore, it was observed that wind fields 

influence drift by determining the trajectory of droplets, affecting the deposition of aerosols. 

In line with these findings, some studies demonstrated that spray droplets tend to exhibit a drift 

pattern along the mean wind direction under stable atmospheric conditions while dispersion 

becomes more extensive in unstable ones [44, 55]. The influence of atmospheric stability was 

found to be more substantial at greater downwind distances [44].  

 

Lastly, spray retention is considered to be dependent on foliage density of crops, as several 

studies found that pesticide drift is inversely related to canopy density [47, 48]. However, 

another study also argued that dense foliage of grapefruit and orange trees actually increased 

spray drift due to the deflection over the top of this produce [56]. This underlines the complex 

and variable nature of this interaction, suggesting that the effect may not be uniformly across 

all types of crops.  

 

2.2  Spatial Simulation Models to Estimate Pesticide Exposure 
In recent years, spatial simulation models have emerged as an effective approach to estimate 

the extent and distribution of pesticide drift and the associated exposure [2, 11–15]. Apart from 

enhancing the understanding of drift phenomena, simulation models are also considered to 

complement more resource intensive field experiments prone to uncontrollable meteorological 

conditions [49]. A review of literature revealed that these simulation models broadly fall into 

either empirical or mechanistic categories.  
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Empirical simulation models are based on field measurements and statistical relationships 

without considering the inherent physical basis of spray drift [57]. In this context, regression 

models are widely adopted to estimate the association between input variables and the 

movement of pesticides [58–62]. For instance, based on a multiple regression procedure Smith 

et al. [62], concluded that downwind distance was the most influential variable to estimate drift. 

Despite the fact that this empirical approach provides valuable insights with substantial data 

available, it may encounter challenges in capturing the underlying trend [61]. 

 

Mechanistic models aim to address the fundamental physical processes associated with 

pesticide drift [2, 57]. Here, a distinction might be made between studies that employed drop 

trajectory [63–67] or gaussian models [2, 13, 14, 68–70]. The first category aims to estimate 

the position and movement of each individual droplet under external forces. In doing so, 

stochastic measures of pesticides at various locations may be obtained [2]. On the other hand, 

a gaussian approach describes pesticide levels as a function of time and space originating from 

a singular point [71]. In this context, plume concentrations are modelled using a gaussian 

distribution in both the horizontal and vertical direction, as illustrated in Figure 1.  

 

 
Figure 1 Representation of pesticide dispersion from an isolated spray nozzle based on a gaussian plume model. 

Among the literature that explored pesticide drift and the associated exposure more extensive, 

most adopted a gaussian plume model to simulate the movement of pesticides released from 

aerial [68–70] or surface sprayers [2, 13, 14]. Although several studies have proven its 

limitations in exposure assessment due to its relative simplicity, the method is widely accepted 

and can be considered almost a standard approach. This broad adoption might be attributed to 

the ability of the model to consider a range of factors that have been found to influence drift of 

pesticides in ambient air, including meteorological parameters [2, 13, 14]. Here, the common 

approach is to derive these inputs from weather stations closest to the pesticide application area 

[13]. However, this may inaccurately represent conditions at the site of interest, resulting in an 

under- or overestimation of pesticide drift and the associated exposure.  

 

In response, some studies incorporated climatic parameters into their models, obtained from 

sensors mounted directly on the pesticide sprayer in an effort to enhance estimates [2, 15]. 

Nevertheless, this approach remains deficient in capturing the spatial and temporal variability 

inherent in particular meteorological parameters, such as wind direction. The reason for this is 

that these sensors primarily focus on local wind directions measured at time and location of 

pesticide application. Hence, some studies proposed spatial interpolation of this climatic 

condition as a more versatile means of improving measures of exposure [16, 17]. Nonetheless, 

empirical findings based on this approach are limited, specifically in studies that employed 

gaussian plume models to simulate drift of pesticides.  
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2.3 Methods to Interpolate Wind Directions  
Spatial interpolation techniques being applied to meteorological observations have received 

considerable attention in literature [18, 19]. In this context, spatial interpolation refers to the 

process of estimating variable values at unknown locations based on a collection of available 

samples [20]. Among the various approaches available, the prevailing ones mainly originate 

from either a deterministic or geostatistical framework. Deterministic techniques are solely 

based on the geometric properties of samples while geostatistical methods consider both 

geographical attributes as well as the spatial autocorrelation among target variables [72].   

 

Common deterministic models to interpolate wind measurements include inverse distance 

weighting [21–23] and nearest neighbour approaches [21, 24]. For instance, Swain et al. [23], 

aimed to interpolate ocean surface wind fields using inverse distance weighting. Although these 

types of models are widely adopted due to their relative simplicity, they also induce 

considerable interpolation error. Hence, some studies proposed geostatistical methods based on 

kriging in an effort to enhance estimates [25–27]. However, adopting these models for wind 

field interpolation may be challenging due to the requirement of defining variable distributions 

a priori and the inherent non-stationarity of this climatic condition [29].  

 

In recent years, the advancement in computational power and data availability has facilitated 

the emergence of studies combining statistical learning with spatial interpolation of wind 

observations. Here, artificial neural networks [30, 31] and random forests are widely adopted 

[18, 32]. The first category dates back to the 1950s and encompasses a collection of processing 

elements that receive inputs and deliver outputs based on predefined activation functions [73]. 

On the other hand, random forests were first proposed in 2001 and are based on the aggregation 

of individual decision trees that aim to produce a robust ensembled output [74]. In doing so, it 

was found that this approach provides spatial interpolation results that often outperform 

deterministic, geostatistical or other machine learning models [32]. Nevertheless, studies 

combining statistical learning with the interpolation of meteorological observations mostly 

focus on estimating wind speed or power rather than the direction of the field, highlighting an 

important area for further research.  

 

Another strand of literature that placed more emphasis on interpolating wind directions is the 

field of directional statistics. In this context, studies employed either a wrapped or embedded 

approach to address the periodic nature of data represented in degrees or radians [33–35]. The 

first method transforms the density of linear variables into circular ones by reprojecting their 

values while the embedded approach aims to estimate the angle between two linear variables 

[75]. In doing so, studies employing circular statistics mitigate the limitation of interpolation 

techniques based on the arithmetic mean of neighbouring observations, as these often lead to 

unrealistic outcomes for circular data [36].  

 

For instance, these classical methods may interpolate the wind direction as 170 degrees based 

on known values from stations measuring 320 and 20 degrees, respectively. Nonetheless, an 

appropriate interpolation would correspond to 350 degrees, considering the directional nature 

of the data. Notably, this limitation becomes particular evident for wind directions originating 

from the north. Highlighting the fact that depending on the distribution of wind fields, methods 

based on the arithmetic mean may still provide valid results.  
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3. Methods 
3.1  Study Area 
The geographical scope of this study was concentrated on the Netherlands. The country is 

situated in the North-Western part of Europe and is home to almost 17.9 million inhabitants 

[76], occupying a space of 41,541 km2 [77]. This makes it one of the most densely populated 

areas in the European Union (429.5 inhabitants/km2) [78]. Surrounding the large urban areas, 

the vast majority of land is used for agriculture [77]. Here, Dutch farmers have progressive 

pesticide application programs in place that aim to enhance crop yields [79]. In turn, exposure 

to these biological agents may give rise to significant public health concerns, especially in such 

a densely populated country. Hence, accurate exposure assessments are critical to identify areas 

of high risk and to inform decisions aimed at mitigating the adverse health effects associated 

with these chemical components.  

 

3.2  Data Extraction 
In this study, a total of 403,392 meteorological observations were obtained from the Royal 

Netherlands Meteorological Institute (KNMI), the Dutch national weather service [80]. In this 

context, data included hourly wind directions (in degrees) measured by 47 climatic stations 

spread across the Netherlands in 2017, as illustrated in Figure 2. Meteorologists from the 

institution validated and corrected each record [81], exempting this study from further data 

verification. Finally, administrative boundaries of the country were obtained from the Central 

Bureau of Statistics (CBS) [82]. This facilitated the creation of regular grids covering the area 

of interest, leading to a surface suitable for interpolating wind fields.   

 
Figure 2 Distribution of hourly wind direction origins across the Netherlands in 2017. 

3.3  Data Preparation and Enrichment 
In an effort to supplement and ensure consistency of the extracted information, data preparation 

and enhancement procedures were performed, as illustrated in Figure 3. Here, the location of 

each meteorological station was obtained and transformed into a single coordinate reference 

system suitable for the Netherlands, i.e. EPSG 28992. Both stations and climatic records were 

combined into a single dataset to ease further analysis. Inspection of this information revealed 

some inconsistencies, including missing values and outliers. To address and resolve these types 

of records, exclusion criteria were in place.  

 

First, observations with partial or complete absence of wind field measurement during 2017 

were excluded from the analysis. This was done to ensure consistent data coverage across the 

study area for the interpolation models. Moreover, sensor failures were the primary source of 

absence, indicating that records were missing completely at random [83]. As a result, inferences 

obtained from the remaining data were still considered valid [84].  
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Second, exclusion criteria were in place for measurements representing calm (value of 0) or 

highly changeable (value of 880) wind conditions, as specified by KNMI [80]. The main 

rationale behind this exclusion was that these conditions were not considered significant or 

accurate contributors to simulate pesticide drift given the setup of the gaussian plume model, 

i.e. exposures are estimated based on the assumption that sources of drift are upwind [13], 

making it challenging to simulate dispersion in stagnant or unstable wind conditions.  

 

In turn, this allowed the analysis to solely focus on interpolating wind directions that were 

considered to be influential and appropriate for simulating pesticide drift. In doing so, the 

exclusion procedures resulted in 382,521 records that were available for interpolation. Finally, 

administrative boundaries were used to obtain regular grids covering the area of interest, 

leading to a surface suitable to interpolate wind fields at a resolution of 1 km. The adoption of 

this spatial scale provided a balance between capturing relative fine-grain variations in wind 

fields while maintaining computational efficiency [85].  

 

 
Figure 3 Schematic overview of the methodological procedures. 

3.4  Spatial Interpolation 
3.4.1 Spatial Interpolation Methods 

Based on the examined literature, five spatial interpolation models to estimate wind fields at 

unknown locations were employed, namely naïve interpolation, nearest neighbours, inverse 

distance weighting, universal kriging and random forest. In this context, the primary objective 

was to obtain models capable to accurately predict wind directions at unobserved sites based 

on available samples, as presented in Figure 4. In doing so, the spatial interpolation problem 

considered by each of the models could be represented as a linear combination or average of 

neighbouring observations, as depicted in Equation 1 [36]. Here, 𝑧̂(𝑥) represents the estimation 

of the target variable at location 𝑥, being influenced by coefficients 𝜆𝑖(𝑥) that determine the 

weighting of the observed values 𝑧(𝑥𝑖). 

 

𝑧̂(𝑥)  =   ∑ 𝜆𝑖(𝑥)𝑧(𝑥𝑖)

𝑁

𝑖=1

 

 

First, a naïve interpolation approach was employed to serve as a baseline for interpolating wind 

fields. This model provided an estimation of the target variable 𝑧̂(𝑥) by assigning all the weight 

𝜆𝑖(𝑥) to the mode of the observed values 𝑧(𝑥𝑖). In doing so, the naïve method provided a point 

of reference in absolute sense, enabling the comparison and evaluation of alternative spatial 

interpolation approaches. In essence, any model demonstrating inferior performance compared 

to the naïve method could be deemed as an underperforming spatial interpolator for wind fields. 

 

 

(1) 
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Figure 4 Overview of meteorological stations considered in the study. 

Second, a nearest neighbour method was employed to represent the common approach of 

incorporating wind direction records in pesticide drift simulations. This type of model provided 

an estimation of the target variable 𝑧̂(𝑥) by assigning all the weight 𝜆𝑖(𝑥) to the observed value 

𝑧(𝑥𝑖) that was nearest to the site of the unobserved point based on some distance function 𝑑 

[86]. Given the relative limited study area, the curvature of the earth was not considered to 

significantly affect this metric. Therefore, the Euclidean flat-surface distance was adopted to 

measure the proximity between locations with and without wind direction records.  

 

Third, inverse distance weighting was adopted to further refine the spatial interpolation of wind 

directions. This type of model is based on the principle that the influence λi(x) of available 

samples z(xi) on the unmeasured locations ẑ(x) is inversely related to the distance between 

these points, as reflected in the distance decay function p [86]. To determine the optimal value 

of this power function, grid search hyperparameter tuning was performed. Moreover, the 

selection of records in this model are often limited to k-nearest neighbours or a subset of 

records within a specified radius of point x [25–27]. Nonetheless, these approaches may 

introduce bias into the interpolation due to local variations being inaccurately accounted for, 

i.e. some areas are more densely clustered than others, which may result in an under -or 

overestimation of local characteristics [87]. Hence, all observations N were used in this study.   

 

Fourth, universal kriging was employed to enhance interpolations of wind fields by considering 

the spatial dependence between observations. The main rationale behind the adoption of this 

model was that it allowed to account for the non-stationarity present in the data, i.e. wind 

mostly originated from the South-West [80, 88]. In this context, estimates of the target variable 

𝑧̂(𝑥) were based on weights 𝜆𝑖(𝑥) obtained by combining coordinate pairs of each observed 

point 𝑧(𝑥𝑖) with a model representing the spatial autocorrelation; the semi-variogram [86]. 

Most often the selection of the theoretical semi-variogram model is based on a visual inspection 

of the empirical one [88]. In order to automate the fitting procedure, the Gauss-Newton 

algorithm was adopted [88, 89]. This approach provides an initial estimate of the theoretical 

semi-variogram after which it iteratively converges towards an optimal model that aims to 

capture the spatial dependence present in the data [89]. 
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Fifth, random forests were adopted to capitalise on the spatial autocorrelation present in wind 

field measurements using a different approach. In this study, the influence λ𝑖(𝑥) of available 

samples z(𝑥𝑖) on the unobserved locations 𝑧̂(𝑥) was determined by constructing multiple 

decision trees that were based on a random subset of the data, allowing for the aggregation of 

individual tree predictions [74]. In standard applications of the random forest algorithm, spatial 

dependence is not implicitly considered [90]. Given the fact that this autocorrelation may carry 

information about wind directions at unobserved locations, additional covariates were included 

in the model. These encompassed coordinate pairs of each site, records from the n nearest 

observed locations and the distances from these observed points to the unobserved sites k.  

 

The primary parameters that influenced wind field interpolations included the number of trees 

B, the number of features considered at each node split m, the minimum node size 𝑁𝑚𝑖𝑛 and 

the number of nearest observed locations n [18, 32, 90]. To determine the optimal values of 

these parameters, grid search hyperparameter tuning was performed for the number of trees B 

and the number of nearest observed locations n due to their considerable influence on model 

performance. As proposed by Hastie et al. [91], optimal parameters for m and 𝑁𝑚𝑖𝑛 adopted 

corresponded to the square root of the number of variables p and 1, respectively.  

 

Lastly, the main justifications for the adoption of the five distinct models stemmed from their 

wide usage across topical literature and their suitability for interpolating wind fields given the 

characteristics of the data, i.e. wind directions mostly originated from the South-West. Since 

the adopted models, that are mostly based on the arithmetic mean, exhibit a tendency to provide 

unrealistic estimates mainly for wind fields originating from the north, the adoption of these 

methods could still provide valid results for the majority of interpolations.  

 

3.4.2 Validation of Spatial Interpolation Methods 

To compare and evaluate the wind direction interpolation methods proposed, the root-mean-

squared error (RMSE) was initially used. The main rationale behind this adoption originated 

from its prevalent usage across topical literature and relative ease of interpretation [29]. This 

evaluation metric is based on the difference between measured and predicted values, as 

depicted in Equation 2. Here, 𝑝𝑖 denotes the prediction of some observed value 𝑜𝑖 for N 

measurements. 

RMSE = √
1

𝑁
∑(𝑝𝑖 − 𝑜𝑖)

2

𝑁

𝑖=1

 

 

Although this metric provided an estimate of model performance, direct subtraction may lead 

to inaccurate evaluations due to the directional nature of the data [36]. To address this issue, an 

adjusted circular root-mean-squared error (CRMSE) was employed, as presented in Equation 

3. In this context, 𝐶𝑖 denotes the circular difference between the prediction 𝑝𝑖 of some observed 

value 𝑜𝑖, as stated in Equation 4. 

CRMSE = √
1

𝑁
∑(𝐶𝑖)2

𝑁

𝑖=1

 

 

𝐶𝑖 = |𝑝𝑖 − 𝑜𝑖|,  If |𝑝𝑖 − 𝑜𝑖| ≤ 180∘;  360∘ − |𝑝𝑖 − 𝑜𝑖|,  Otherwise 

 

(2) 

(3) 

(4) 
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Furthermore, spatial k-fold cross validation was used to obtain the out-of-sample circular root-

mean-squared error of each spatial interpolation model. This was done to limit variabilities in 

the evaluation metric, providing a more stable and robust assessment of each interpolator. In 

doing so, climatic stations with their associated wind field measurements were partitioned into 

ten disjoint folds by applying K-means clustering on the spatial coordinates, as proposed by 

Pohjankukka et al. [92]. Each fold was sequentially left out to examine the model performance 

while records from the remaining stations N –  𝑘 were used for model training. Hence, this 

allowed to account for spatial dependencies present in the data, reducing the possibility of data 

leakage between folds used for evaluation and training [92]. In turn, the approach provided a 

set of hyperparameters, obtained from a single randomly selected hour, that were used for the 

comparison and evaluation of models, as outlined in Table 1. 

 
Table 1 Overview of adopted spatial interpolation models, associated hyperparameters and cross validation parameters. 

Spatial Interpolation Model Model Hyperparameters Cross Validation Parameters 

Naïve Interpolation -  𝐾  =  10, 𝐾-means 

Nearest Neighbour 𝑁𝑚𝑎𝑥 = 1 K  =  10, K-means 

Inverse Distance Weighting p  =  3.441, N = N K  =  10, K-means 

Universal Kriging -  K  =  10, K-means 

Random Forest B  =  150, m = √𝑝 , 𝑁𝑚𝑖𝑛 = 1, n  =  3 K  =  10, K-means 

 

3.4.3 Sensitivity Analysis 

A sensitivity analysis was conducted to facilitate a reliable comparison and evaluation of the 

five spatial interpolation models adopted. This analysis encompassed wind direction records 

that were obtained from a collection of hours across 2017. Here, a simple random selection was 

performed, aiming to represent the characteristics of the entire dataset. In turn, this allowed to 

examine the influence of varying observations on the performance of each model. Estimation 

of the appropriate number of random selections was done using Slovin Formula due to its 

widespread adoption across literature [93]. In this context, n denotes the sample as a function 

of the finite population N and the margin of error e, as stated in Equation 5.   

 

n =
𝑁

1 + 𝑁𝑒2
 

 

To enhance the reliability and validity of the findings while ensuring computational feasibility, 

the value of e corresponded to 0.05. This resulted in a total of 383 random selections n that 

were obtained from a finite population N of 8760, i.e. 365 days times 24 hours. Subsequently, 

spatial k-fold cross validation was employed to evaluate the performance of the interpolators 

on each of the 383 random selections.  

 

Lastly, the statistical programming language R (version 4.3.1) was used throughout this study. 

Specifically, data extraction and enrichment procedures were performed by employing the httr 

[94], jsonlite [95], tidyverse [96] and sf packages [97, 98]. Interpolations of wind fields were 

estimated using the gstat [99, 100] and meteo [101, 102] packages while ggplot2 [103] and 

tmap [104] were used for visualisation purposes. Finally, an overview of scripts and data used 

in this study may be found on: github.com/thomasnib/Improving-Pesticide-Exposure.  

 

(5) 
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4. Results and Discussion 
The results showed that the employed spatial interpolation methods applied to wind direction 

records produced distinct patterns, as illustrated in Figure 5. In this context, a visual comparison 

of interpolations on a randomly selected hour revealed that the inverse distance weighting and 

universal kriging approaches resulted in a continuous surface while the nearest neighbour 

approach provided abrupt transitions across space. Interpolations obtained from the random 

forest model exhibited an intermediate behaviour, capturing both the more gradual and abrupt 

variations that were present in the wind field measurements. Conversely, the naïve approach 

provided a singular estimate across the study area, disregarding the spatial variations present. 

 

Interpolation patterns produced by the employed models align with findings from previous 

studies. First, results of the naïve method underline the simplicity of this approach that involves 

assigning the mode of the observed locations to the unobserved ones. Second, interpolations of 

the nearest neighbour model highlight the polygon interpretation of this method, as described 

by Isaaks and Srivastava [28]. This explains the abrupt transitions of wind field interpolations 

across the study area. Second, estimates derived from the inverse distance weighting exhibited 

the isolated and concentric circular effects often associated with this type of model while 

universal kriging provided a slightly more gradual surface [105]. Finally, interpolations 

obtained by random forest revealed linear boundaries along the coordinate axes. Others found 

similar patterns, suggesting that the inclusion of covariates representing northing and easting 

coordinates may result in this phenomenon [18, 105].  
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Furthermore, the sensitivity analysis revealed that the employed spatial interpolation methods 

performed relatively similar, as presented in Figure 6. In this regard, all models outperformed 

the baseline wind field interpolations of the naïve approach. Notably, universal kriging and 

inverse distance weighting exhibited superior performance compared to the nearest neighbour 

approach that is commonly used in pesticide dispersion simulations. In contrast, the random 

forest algorithm was found to perform slightly worse compared to the other interpolators, only 

outperforming the naïve method. Nonetheless, all models showed considerable variation in the 

out-of-sample error across the 383 randomly selected hours, underlining the challenges and 

complexities associated with interpolating wind direction records.  

 

The inverse distance weighting and universal kriging methods demonstrated the lowest out-of-

sample circular root-mean-squared errors across the proposed models with median error values 

corresponding to 15.214 (MAD = 9.396) and 16.225 (MAD = 11.097) degrees, respectively. 

Moreover, interpolations of the nearest neighbour model provided a median performance error 

of 18.432 (MAD = 10.925) degrees, making it a slightly more accurate method compared to 

the random forest algorithm that revealed a median out-of-sample error value of 18.458 (MAD 

= 11.427) degrees. Furthermore, all models outperformed the naïve approach that exhibited a 

median error value of 21.376 (MAD = 13.317) degrees. Overall, these results suggest a relative 

similar performance across the models. Nonetheless, substantial variation in the error metric 

was observed, as indicated by the wide spread of the boxplots in Figure 6.  

 

A possible explanation for the superior performance of the inverse distance weighting and 

universal kriging methods may be related to the positive spatial autocorrelation present in wind 

fields across the study area. In this context, these distance-based algorithms have a competitive 

advantage, as was demonstrated by Ford and Quiring [106]. Interestingly, the inclusion of 

spatial covariates in the random forest algorithm, aiming to address the spatial dependence, 

revealed limited performance improvements compared to the nearest neighbour model that is 

typically used to include wind directions in pesticide drift simulations. This may be related to 

the restricted number of observations available at each randomly selected hour, as it was found 

that the algorithm generally achieves better performance with more substantial datasets [107].  

However, the algorithm still outperformed the baseline interpolations of the naïve approach, 

underscoring its potential as a promising alternative for estimating wind fields at unobserved 

sites. Lastly, the convergence in performance across the models might be explained by the level 

of variability in wind directions, suggesting that the spatial structure may have played an 

important role [101, 108], i.e. less distinct wind patterns produce more similar model results.   

Figure 5 Spatial interpolations of wind directions based on the naïve interpolation (A), nearest neighbour (B), inverse 

distance weighting (C), universal kriging (D) and random forest (E) approaches at 12:00:00 on May 4th, 2017. 
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Figure 6 Mean out-of-sample circular root-mean-squared error of the proposed spatial interpolation models across 383 

randomly selected hours. 

Finally, limitations of this study were three-fold. First, external validation of each model was 

not performed, making it challenging to generalise the comparison and evaluation. Second, the 

temporal dimension of wind field observations was not considered, despite its demonstrated 

influence on interpolation accuracy [18, 100, 106]. Lastly, circular statistical models, aiming 

to address the directional nature of wind fields were not included in the evaluation due to their 

neglectable contribution to improved interpolation accuracy given the characteristics of the 

data. Nonetheless, it may be important to acknowledge that the inclusion of these types of 

models could have potentially revealed different results.  
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5. Conclusion 
This study aimed to examine spatial interpolation models that may improve pesticide exposure 

estimates using wind direction records from the Netherlands in 2017. In doing so, five spatial 

interpolation approaches were adopted, namely naïve interpolation, nearest neighbour, inverse 

distance weighting, universal kriging and random forest. In this context, data included hourly 

wind field measures obtained from the Dutch national weather service. Furthermore, spatial 𝑘-

fold cross validation was used to examine the circular root-mean-squared error of each model 

across a collection of randomly selected hours.  

 

The results revealed that the adopted spatial interpolation approaches applied to wind direction 

records produced distinct visual patterns. Nonetheless, the performance among the five models 

was relatively similar. The main theoretical explanation for this finding was the limited variety 

observed in hourly wind field measures. Moreover, inverse distance weighting demonstrated 

the lowest median out-of-sample error for interpolating wind directions among the five distinct 

models. This may suggest that the adoption of this method in pesticide drift simulations might 

provide a more valid representation of wind directions at the application areas compared to the 

nearest neighbour approach that is often employed. In turn, this may improve the accuracy of 

pesticide exposure estimates obtained from these simulations.  

 

Future research may focus on enhancing the generalisability of the comparison and evaluation 

by performing an external validation on each of the proposed models. Moreover, future studies 

might consider examining the effect of incorporating inverse distance weighting wind direction 

interpolations in pesticide dispersion simulations. In doing so, this might provide empirical 

evidence regarding the efficacy of combining this interpolation method with a drift simulation 

model in an effort to improve pesticide exposure estimates.  
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