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Abstract

The Landsat satellite series provide geoscientist with over half a century with sensing

data. Differences in sensor properties on these satellites create variations between

sensing. A spectral alignment of the Landsat satellite series would be required to

properly conduct longitudinal research on the development of the earth’s surface.

In this thesis four different models, two ordinary least square regressions, a polynomial

regression and a single layer neural network regression, were compared in their

performance on the transformation of Landsat 8 and Landsat 5 on Landsat 7 in

a spatially and non-spatially dependent situation. Furthermore was tested if the

azimuth and elevation formed a meaningful contribution to the transformation

model. Here we show that in the transformation from Landsat 8 to Landsat 7

and Landsat 5 to Landsat 7 the single layer neural network regression, with the

addition of the azimuth and elevation, has the lowest root mean squared error on

spatially independent data. On spatially dependent data did the ordinary least

squares regression without the azimuth and elevation as predictors contain the

lowest root mean squared error. However, on local spatially dependent data did

the single layer neural network contain the lowest root mean squared error as well.

The difference in performance between a single neural network regression and

complex linear regressions could shows that even in its simplest form, the neural

network architecture forms a better fit for these transformations. Future research

could study the implementation of backwards compatibility models, assessing the

structural validity of the model and allowing more complex neural network regressions.



Contents

1 Introduction 3

2 Data 5

2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Data Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Method 11

3.1 Benchmark regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Polynomial regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Single Layer Neural Network Regression . . . . . . . . . . . . . . . . 12

4 Results 14

4.1 Spatially independent analysis . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Spatially dependent analysis . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Discussion and Conclusion 18

5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Bibliography 22

A Code 24

B Model results 25

B.1 Spatially independent analysis . . . . . . . . . . . . . . . . . . . . . . 25

B.2 Spatially dependent results . . . . . . . . . . . . . . . . . . . . . . . . 30

2



1. Introduction

The Landsat satellite series contains some of the longest temporal records of satellite

captured land-surface observations as of to date. Since its first launch in 1972,

eight different satellites of the series provide geoscientist with more than half a

century of detailed data about earth surface and its development (Landsat Mission,

2022). However, were the variations between Landsat 8 and 9 seem negligible

(Gross et al., 2022), can the same not be said about the differences between these

satellites and the earlier iterations of Landsat (Mancino et al., 2020; Roy et al., 2016).

Differences in the sensors and sensor quality (Flood, 2014), variations in sensor

specificity (Flood, 2014; Roy et al., 2016), differences in data processing (Roy et al.,

2016) and differing angles of reflectance caused by the satellite’s line of orbit (Li

et al., 2010; Roy et al., 2016) are possible causes for variations between sensing.

A spectral alignment of the Landsat satellite series would be required to properly

conduct longitudinal research on the development of the earths surface (Mancino

et al., 2020).

In 2016 Roy et al. performed such an alignment of Landsat 7 and Landsat

8. By using a simple regression model they translated 75 to 80 percent of the

variance from Landsat 7 to Landsat 8. However, if an identical model of Landsat

5 to 7 were to be created and chained to explain Landsat 8, the cumulative error

would create a translated loss of almost 50 percent of the variance. More complex

modelling or a model that translates multiple satellites could create a more accurate

transformation.

To create such a model, it must be assumed that the data from both satellites

convey the same information. Long temporal intervals could create inconsistencies

by means of cloud-cover (Mancino et al., 2020), build-up or the passing of seasons

(Roy et al., 2016). Furthermore, factors like the increase in CO2 fertilisation create

noticeable reflectance variations within spectral bands (Lim et al., 2004). These

variations can be indistinguishable from the small variations between satellites

(Huete et al., 2002), but should not be negated in the alignment process. Hence,

any alignment method should entail the lowest possible variation in its temporal

frame.
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Introduction

This assumption of low temporal variation requires overlap between the satellites

in order to estimate their variations. With the long commission of Landsat 5, do

three satellites, Landsat 5, 7 and 8, provide almost 40 years of spectral land-surface

data, while also containing periods of overlap (Landsat Mission, 2022). A (nested)

model that transforms both satellites to Landsat 8 could remove the cumulative

error and align most of the available Landsat data. Unfortunately, there is no data

published from the last six months of Landsat 5’s commission. These six months

were the only period of overlap between Landsat 5 and 8, making an accurate

estimation between these satellite impossible. A similar result could in this case

be obtained with a transformation from Landsat 5 and Landsat 8 to Landsat 7.

In previous research simple linear regression models were used to align the

Landsat satellites (Flood, 2014; Ke et al., 2015; Roy et al., 2016). However, in other

fields and applications more complex methods like polynomial regression (Storey

et al., 2014; Tommaselli et al., 2015) or neural networks (Isa et al., 2021) were used

to perform spectral sensor alignment. Furthermore, previous research has shown

that adding variables that explain differences in reflectance, like the azimuth and

elevation, could help in creating a more accurate alignment (Nagol et al., 2015;

Zhang et al., 2015).

This thesis compared different modelling methods to find the transformation

with the lowest root mean squared error from Landsat 5 and Landsat 8 to Landsat

7. It was important that in these models the structural validity is ensured (Wu et

al., 2014). So called ’black box models’ could base their transformation on other

properties of the data, that future data might not contain. This made complex

machine learning models not applicable for this study. The models used were an

ordinary least squares regression, a polynomial regression and a single layer neural

network regression. These models were compared on data with and without spatial

dependencies. First the data acquisition and pre-processing will be described, followed

by the model creation and their analysis, ending with the results and concluding

remarks.
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2. Data

2.1 Data Collection

In this thesis Google Earth Engine (Gorelick et al., 2017) was used to collect data

from the Landsat Collection 2 Tier 2 datasets (courtesy of the U.S. Geological Survey).

Six separate collections were conducted: two collections with random points in the

Southern Cone (Figure 2.1), two full sample collections in the Northern Southern

Cone and two full sample collections in parts of the Pacific North West. For each

data collection were the clouds removed using the quality band and was the near

infrared band saved. This was done with the assumption that the optimal model

would not differ across bands. The following section will describe the collection

method of each dataset.

The first dataset entailed the overlapping data from Landsat 7 and Landsat 8.

A random sample of 60,000 30 by 30 meter pixels was created in the Southern Cone

(Figure 2.2). For each Landsat 8 image of this area in the time frame of the 5th of

May 2015 until the 19th of June 2015 were the Landsat 7 images collected with an

overlap of one day or less. These images were reduced to one mean ’Landsat 7

value’. For each pixel with an Landsat 8 and Landsat 7 value, the azimuth and

elevation were saved.

The Landsat 5 to Landsat 7 sample was the second dataset. A random sample

of 200,000 30 by 30 meter pixels was created in the Southern Cone. This sample is

greater than the Landsat 8 to Landsat 7 sample because days with overlap between

Landsat 5 and 7 had a lot of cloud cover, reducing the overlapping pixels. For each

Landsat 5 image in this area in the time frame of the 1st of April 2000 until the 28th

of October 2000 were the Landsat 7 images collected with an overlap of six days

or less. This interval is larger than the Landsat 8 to Landsat 7 interval because

overlapping images were sparse. The Landsat 7 images were reduced to one mean

’Landsat 7 value’ and for each overlapping pixel were the azimuth and elevation

saved.

The third dataset was a full sample of the overlapping data between Landsat
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Data

Figure 2.1: Map of the Southern Cone (source: Berglee, 2012)

Figure 2.2: Area of interest with the sampled points
(Courtesy of Google Earth and the U.S. Geological Survey)
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2.2 Data Properties

8 and Landsat 7 in the Northern Southern Cone. For each Landsat 8 image on the

1st of April 2015 were the Landsat 7 images with an overlap of one day or less

collected. The Landsat 7 images were reduced to one mean ’Landsat 7 value’ and

for each overlapping pixel were the azimuth and elevation saved.

The fourth dataset followed the same process in the Pacific North West. The

data was collected on the 6th of April 2015 with one day of overlap.

The fifth dataset was a full sample of the overlapping data between Landsat 5

and Landsat 7 in the Northern Southern Cone. For each Landsat 5 image from the

11th of December 2003 until the 1st of January 2004 were the Landsat 7 images with

an overlap of six day or less collected and reduced to a mean Landsat 7 value. This

data collection is wider than the Landsat 8 to Landsat 7 data collection because of

a reduced amount of data due to cloud cover. Furthermore is overlapping data

between Landsat 7 and Landsat 5 sparse, making it hard to find a substantial,

diverse and overlapping area of interest. The azimuth and elevation of each pixel

were saved.

The sixth dataset was collected in the Pacific North West from the 3rd of October

2000 until the 17th of October 2000 with an overlap of six days. The data was

collected through the same process as the fifth dataset.

2.2 Data Properties

The Landsat 5 Thematic Mapper sensor is similar to the one used in Landsat 4. It

was a newly added sensor beside the multi spectral sensor that could also be found

in the first three Landsat satellites. The Thematic Mapper allowed sensing on a

spatial resolution of 30 by 30 meters (USGS and EROS Center, Accessed 2023). Due

to the unfortunate fail of Landsat 6, was the commission of Landsat 5 extended to

more than 20 years.

The Landsat 7 Enhanced Thematic Mapper plus (ETM+) has similar spectral

properties as the Thematic Mapper. Most differences come from the addition of

new bands and its band processing (USGS and EROS Center, Accessed 2023). The

ETM+ sensor forms the last sensor in the Thematic Mapper group.

The Landsat 8 Operational Land Imager (OLI) sensor has narrower spectral

bands and improved geometry, calibration and signal to noise characteristics compared

to the ETM+ sensor. Landsat 8 follows the same orbit as the decommissioned
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Landsat 5 (Roy et al., 2016). Figure 2.3 shows the differences in captured wavelengths

between the ETM+ and the OLI sensors.

Figure 2.3: Differences between the ETM+ and OLI sensors (Source: Flood, 2014)

2.3 Data Processing

The data was processed in Python. The first and second dataset were split in

intervals and the Landsat 8 and 5 data were plotted to the Landsat 7 data (Figure

2.4 and Figure 2.5). Intervals with no resemblance to a linear pattern were deleted

with the assumption that this data conveyed different information (for example

clouds that were not masked). Artificial outliers due to the data’s sensing nature in

the minimum and maximum values were deleted. The data were randomly split in

a train (80%) and test set.

The third, fourth, fifth and sixth dataset were plotted to see if the data resembled

a linear pattern (Figure 2.6). The wider the collection interval, the less linear the

data became. This could be due to inaccuracies in the cloud masking and inaccuracies

occurring during the collection interval. Artificial outliers due to the data’s sensing

nature in the minimum and maximum values were deleted. The data from the

Northern Southern Cone were used as training data and the data from the Pacific

North West was used as test data.
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2.3 Data Processing

Figure 2.4: The random point sample of Landsat 8 based on download interval, before
pre-processing, in thousands

Figure 2.5: The random point sample of Landsat 5 based on download interval, before
pre-processing, in thousands
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Data

Figure 2.6: The full sample of Landsat 8 and Landsat 5 plotted to Landsat 7, before
pre-processing
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3. Method

For all four transformations conducted in this thesis, four models were tested.

The first model is a benchmark ordinary least squares regression with only the

reflectance data. The second model was an ordinary least squares regression with

the reflectance data and the azimuth and elevation as predictors. The third model

was a polynomial model with the same variables and the last model was a single

layer neural network regression. Model calibration and comparison was assessed

through the root mean squared error (RMSE; Figure 3.1). The following chapter

will describe the modeling process of each of these models across the datasets.

√√√√ 1
n

n

∑
i=1

(
ŷi − yi

σi

)2

(3.1)

3.1 Benchmark regressions

Two benchmark regressions were created to test model performance. The first

benchmark regression was the same model used in Roy et al. (2016): a linear

regression regressing the reflectance data of one satellite on the other. This model

was created to compare the model performance of the other models used in this

study to the state of the art. The model was created using python and the OLS

function from the Statsmodels module (Seabold and Perktold, 2010).

The second benchmark regression was an ordinary least squares regression with

the azimuth and elevation as a predictor. This model was formed to assess if adding

these predictors would add substantial value to the regression model. This was

determined by the change in the RMSE and if this coincided with a decreasing

Akaike Information Criteria (AIC) to account for model complexity (James et al.,

2013). The model was fitted using the OLS function from the Statsmodels module

(Seabold and Perktold, 2010). Both models were trained on the train dataset and

evaluated on the test dataset.
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3.2 Polynomial regression

A polynomial regression is a variation of the linear regression model where the

linear function is replaced with an polynomial version (Figure 3.2). This allows the

model to account for non-linear relationships while still allowing an ordinary least

squares regression fit (James et al., 2013).

y = β0 + β1xi + β2x2
i + β3x3

i + . . . + βnxn
i + ε i (3.2)

Ridge regression was used to determine the ideal order of polynomials for each

transformation. Ridge regression is the process of step-wise adding variables to a

model and using an error metric to determine the best model fit (James et al., 2013).

The polynomial transformation function of Scikit-Learn (Pedregosa et al., 2011) was

used to create the polynomial structure. The regression model was created using

the OLS function from the Statsmodels module (Seabold and Perktold, 2010). For

each polynomial, a model was fitted on the train-dataset. The final model was the

model with the lowest RMSE on the test-dataset.

3.3 Single Layer Neural Network Regression

A single layer neural network regression contains one neuron activated by a linear

regression through the weights of the input variables. In other words is the independent

variable transformed through the weights to become the dependent variable. In

essence does this not differ from a conventional linear regression without an intercept.

However, where the ordinary least squares regression determines the predictor

values through the overall lowest error (James et al., 2013), does the single layer

neural network regression determine the predictors based on the lowest error value

for each tuple (Martín Abadi et al., 2015). This optimisation process is conducted

for each tuple of the dataset and re-iterated until the validation error converges.

The Tensorflow Keras Python modules (Martín Abadi et al., 2015) were used

to fit the single layer neural network regression. The model normalised the data

and split the data in a train (80%) an validation set for each iteration (epoch). The

optimum amount of epochs was determined by visualising the validation error and
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3.3 Single Layer Neural Network Regression

using the elbow method (James et al., 2013) to determine the epoch of convergence.

The model eventual performance was determined on the test dataset.

13



4. Results

Sixteen models were fitted. Figure 4.1 shows the results of the analysis. These

results are explained in the following chapter.

Figure 4.1: The Analysis Results

4.1 Spatially independent analysis

4.1.1 Landsat 8 to Landsat 7

The benchmark regression with only the reflectance data of Landsat 7 regressed

on Landsat 8 had a RMSE of 1802 with an AIC of 312600. The regression with the

added azimuth and elevation had a RMSE of 1659 with an AIC of 309000. This

lower error and lower AIC makes the second model a better model fit.

Ridge regression showed that 3 is the optimum amount of polynomials for this
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4.1 Spatially independent analysis

dataset (Figure 4.2). The RMSE of the polynomial model is 1633. The single layer

neural network had a RMSE of 1264 with an epoch of 500 (Figure 4.3).

Figure 4.2: Results Polynomial Regression

Figure 4.3: Results Single Layer Neural Network Regression

4.1.2 Landsat 5 to Landsat 7

The RMSE of the benchmark regression with only Landsat 7 regressed on Landsat

5 was 6348. The regression with the inclusion of the azimuth and elevation was

5344. The AIC of the second model was lower (131,200 compared to 129,000). This

makes the model with all the variables a better model fit.

Ridge regression showed that 6 polynomials forms the optimum structure for

this dataset (Figure 4.4). This results in a model with a RMSE of 4609. The single

layer neural network regression had a RMSE of 4058 on a epoch of 1500 (Figure 4.5).
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Results

Figure 4.4: Results Polynomial Regression

Figure 4.5: Results Single Layer Neural Network Regression

4.2 Spatially dependent analysis

4.2.1 Landsat 8 to Landsat 7

The benchmark regression with only the reflectance data from Landsat 8 and Landsat

7 had a RMSE of 2763. The regression with added azimuth and elevation had a

RMSE of 12752. The AIC of the first model was 199,700,000 the AIC of the second

model was 198,300,000 making the model with only the reflectance data a better

model fit.

Ridge regression showed that 0 polynomials fitted the test data best (Figure 4.6).

This model had a RMSE of 3940. The neural network model had a RMSE of 107,290

on 3 epochs, because the error immediately converged (Figure 4.6).
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4.2 Spatially dependent analysis

Figure 4.6: The best polynomial and epoch

4.2.2 Landsat 5 to Landsat 7

The RMSE on the benchmark regression with only the reflectance data regressing

Landsat 7 on Landsat 5 was 28,244. The RMSE on the model with the azimuth and

elevation was 79,996. The AIC on the first model was 53,500,000. The AIC on the

second model was 50,160,000. However, the clear difference in the error makes the

first model a better fit.

Ridge regression showed that 0 polynomials was optimum fit for this data

(Figure 4.7). The RMSE for the polynomial model was 10,580. The single layer

neural network regression had a RMSE of 584,799 with an epoch of 10 (Figure 4.7).

Figure 4.7: The best polynomial and epoch
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5. Discussion and Conclusion

5.1 Discussion

Model performance on the spatially dependent models could have been distorted

due to over-fitting. The spatially dependent models used the Northern Southern

Cone as training data. This small area of interest also has a small variation in

its azimuth and elevation. The model could create nonsensical results because it

is tested on an azimuth and elevation it has not seen before, because it is from

another hemisphere. This assumption of overfitting on the azimuth and elevation

is best shown in the second order polynomial model of the Landsat 5 to Landsat

7 transformation. This model is the only spatially depended model with a large,

integer predictor value (20.63) on the product of the azimuth and elevation. This

results in a large outlier in the error (Figure 4.7) when tested on spatial data from

another hemisphere.

The validation data used to train the neural network showed a RMSE of 870 on

the Landsat 8 to Landsat 7 transformation and a RMSE of 5073 on the Landsat 5 to

Landsat 7 transformation. These are also the lowest validation or train errors in the

spatially dependent models. This makes the neural network also better on ’local

spatially dependent data’.

Cloud cover had a big impact on the data availability in the spatially independent

models and the tidiness of the data collected. The spatially dependent model

showed that spatial dependency does not change the model performance in local

areas. Future research is needed to determine if the addition of the azimuth and

elevation would in this case have a strong influence on the model performance.

Furthermore, could future studies use spatially dependent data for the transformation

model to combat problems in cloud cover.

A model containing data from all over the world would allow for better a all

round application. However, gathering and processing this amount of data to

fit a good model would be computationally very heavy and time consuming. In

this case would it be more efficient to create smaller transformation models from
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5.2 Conclusion

different locations on earth.

Furthermore does the single layer neural network regression outperform complex

regression methods. This is also the case in less clean data, like the data used in the

models transforming Landsat 5 in to Landsat 7, were the data does not resemble

a linear pattern. The addition of an extra layer could be a very easy way to make

the neural network model even more accurate and account better for some non-

linear patterns. However, the addition of extra layers makes the model hard to

explain and compromises the structural validity. Future research in the creation of

recalibration models, for example a Landsat transformation specific version of the

SRM (Lee et al., 2019), would ensure the structural validity and allow for the usage

of more complex neural networks.

5.2 Conclusion

In this thesis four different models were compared in their performance on the

transformation of Landsat 8 and Landsat 5 on Landsat 7 in a spatially and non-

spatially dependent situation. Furthermore was tested if the azimuth and elevation

formed a meaningful contribution to the transformation model.

In the non-spatially dependent models does the single layer neural network

regression perform best. This model had a lower RMSE by a considerable margin

in the both transformations. The polynomial models were the second best fit. There

was a difference in the polynomial structure between Landsat 8 and Landsat 5.

Furthermore do the benchmark regressions show that the addition of the azimuth

and elevation creates a better model fit.

In the spatially dependent models does the benchmark regression with only the

Landsat reflectance data perform best. The polynomial models both had the best

fit with zero polynomials, effectively giving a mean value. The single layer neural

network regression had the highest RMSE on both satellites. However, on local

spatially depended data has the single layer neural network regression the lowest

RMSE.
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A. Code

For this thesis Google Earth Engine and Python were used. The following GitHub
link will have all the code files and results notebook. In the REAMDE are the links
to the Google Earth enigne code

https://github.com/JJkriskras/ADS_thesis_code
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B. Model results

A more detailed version of the results can be accessed in the notebook on GitHub
(see Appendix A)

B.1 Spatially independent analysis

B.1.1 benchmark regression L8 to L7 with only Landsat data

Dep. Variable: L7 R-squared (uncentered): 0.985
Model: OLS Adj. R-squared (uncentered): 0.985
Method: Least Squares F-statistic: 1.159e+06
Date: Fri, 28 Jul 2023 Prob (F-statistic): 0.00
Time: 17:50:01 Log-Likelihood: -1.5630e+05
No. Observations: 17558 AIC: 3.126e+05
Df Residuals: 17557 BIC: 3.126e+05
Df Model: 1
Covariance Type: nonrobust

coef std err t P> |t| [0.025 0.975]
L8 0.9668 0.001 1076.425 0.000 0.965 0.969

Omnibus: 8462.274 Durbin-Watson: 1.979
Prob(Omnibus): 0.000 Jarque-Bera (JB): 4203100.077
Skew: 0.975 Prob(JB): 0.00
Kurtosis: 78.772 Cond. No. 1.00

B.1.2 benchmark regression L8 to L7 with azimuth and elevation

Dep. Variable: L7 R-squared (uncentered): 0.988
Model: OLS Adj. R-squared (uncentered): 0.988
Method: Least Squares F-statistic: 4.751e+05
Date: Fri, 28 Jul 2023 Prob (F-statistic): 0.00
Time: 17:50:01 Log-Likelihood: -1.5450e+05
No. Observations: 17558 AIC: 3.090e+05
Df Residuals: 17555 BIC: 3.090e+05
Df Model: 3
Covariance Type: nonrobust

coef std err t P> |t| [0.025 0.975]
L8 0.7583 0.003 222.832 0.000 0.752 0.765
SA 71.2263 2.110 33.763 0.000 67.091 75.361
SE 26.5786 2.219 11.976 0.000 22.229 30.929

Omnibus: 15268.512 Durbin-Watson: 2.002
Prob(Omnibus): 0.000 Jarque-Bera (JB): 4947082.759
Skew: 3.314 Prob(JB): 0.00
Kurtosis: 84.965 Cond. No. 3.51e+03
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Model results

B.1.3 best polynomial regression L8 to L7

poly = 0, RMSE train = 3237.480984150923, RMSE test = 3331.4354458665084

poly = 1, RMSE train = 1600.9305804834112, RMSE test = 1657.9085971432862

poly = 2, RMSE train = 1563.5277874805377, RMSE test = 1636.344130424353

poly = 3, RMSE train = 1554.0037265496317, RMSE test = 1633.1000066800993

poly = 4, RMSE train = 1547.821140292814, RMSE test = 1637.1281387208548

poly = 5, RMSE train = 1547.36771455646, RMSE test = 1652.1908289678972

poly = 6, RMSE train = 1551.6946317611937, RMSE test = 1645.9695703221666

poly = 7, RMSE train = 1561.3355413176848, RMSE test = 1660.7800144719188

poly = 8, RMSE train = 1638.5621952590307, RMSE test = 1762.816762511343

poly = 9, RMSE train = 1841.6285096008864, RMSE test = 1877.9583481096445

poly = 10, RMSE train = 1972.5607309279496, RMSE test = 3148.721902945168

poly = 11, RMSE train = 2685.373428730538, RMSE test = 2499.5832890474685

poly = 12, RMSE train = 3695.5919585157535, RMSE test = 3372.4646471983174

poly = 13, RMSE train = 3740.3125318683065, RMSE test = 4980.696438519493

poly = 14, RMSE train = 3693.3305443966797, RMSE test = 9850.908343258436

poly = 15, RMSE train = 3001.23650867341, RMSE test = 9392.384681776468
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B.1 Spatially independent analysis

B.1.4 single layer neural network regression L8 to L7

Kernel results:

array([[2872.5686 ], [ -66.48658], [ 229.00797]])
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Model results

B.1.5 benchmark regression L5 to L7 with only Landsat data

Dep. Variable: L7 R-squared (uncentered): 0.874
Model: OLS Adj. R-squared (uncentered): 0.874
Method: Least Squares F-statistic: 4.492e+04
Date: Fri, 28 Jul 2023 Prob (F-statistic): 0.00
Time: 18:21:05 Log-Likelihood: -65591.
No. Observations: 6458 AIC: 1.312e+05
Df Residuals: 6457 BIC: 1.312e+05
Df Model: 1
Covariance Type: nonrobust

coef std err t P> |t| [0.025 0.975]
L5 0.8459 0.004 211.945 0.000 0.838 0.854

Omnibus: 1038.953 Durbin-Watson: 1.873
Prob(Omnibus): 0.000 Jarque-Bera (JB): 9444.846
Skew: -0.494 Prob(JB): 0.00
Kurtosis: 8.842 Cond. No. 1.00

B.1.6 benchmark regression L8 to L7 with azimuth and elevation

Dep. Variable: L7 R-squared (uncentered): 0.911
Model: OLS Adj. R-squared (uncentered): 0.911
Method: Least Squares F-statistic: 2.198e+04
Date: Fri, 28 Jul 2023 Prob (F-statistic): 0.00
Time: 18:21:05 Log-Likelihood: -64482.
No. Observations: 6458 AIC: 1.290e+05
Df Residuals: 6455 BIC: 1.290e+05
Df Model: 3
Covariance Type: nonrobust

coef std err t P> |t| [0.025 0.975]
L5 0.5419 0.008 65.510 0.000 0.526 0.558
SA 63.5509 16.629 3.822 0.000 30.953 96.149
SE 85.8864 19.698 4.360 0.000 47.271 124.502

Omnibus: 1989.302 Durbin-Watson: 1.994
Prob(Omnibus): 0.000 Jarque-Bera (JB): 13152.433
Skew: 1.308 Prob(JB): 0.00
Kurtosis: 9.483 Cond. No. 7.64e+03
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B.1 Spatially independent analysis

B.1.7 best polynomial regression L5 to L7

poly = 0, RMSE train = 6472.485985373205, RMSE test = 6476.321181115989

poly = 1, RMSE train = 5102.753696523195, RMSE test = 5166.521051078901

poly = 2, RMSE train = 4570.3049611139695, RMSE test = 4612.000178619161

poly = 3, RMSE train = 4206.309242114672, RMSE test = 4137.493351926059

poly = 4, RMSE train = 7458.176129714716, RMSE test = 7545.894383066135

poly = 5, RMSE train = 4466.963592013505, RMSE test = 4493.795302143866

poly = 6, RMSE train = 4117.612227068417, RMSE test = 4053.5183660590537

poly = 7, RMSE train = 4135.960342588092, RMSE test = 4111.187545786148

poly = 8, RMSE train = 4268.0712618432135, RMSE test = 5318.975807655074

poly = 9, RMSE train = 4345.930615677909, RMSE test = 4403.9876287140705

poly = 10, RMSE train = 4326.280910780393, RMSE test = 4501.967049811148

poly = 11, RMSE train = 4671.924767299623, RMSE test = 7819.978267875041

poly = 12, RMSE train = 4726.83510332011, RMSE test = 5435.319420807169

poly = 13, RMSE train = 5147.17565435278, RMSE test = 8619.660125911589

poly = 14, RMSE train = 4754.193130209675, RMSE test = 7454.457743950646

poly = 15, RMSE train = 4836.273218452313, RMSE test = 9352.037380962503

B.1.8 single layer neural network regression L5 to L7

Kernel results:

array([[ 4037.1533], [-1347.053 ],[ 1815.966 ]])
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Model results

B.2 Spatially dependent results

B.2.1 Benchmark regression with only Landsat data L8 to L7

Dep. Variable: L7 R-squared (uncentered): 0.993
Model: OLS Adj. R-squared (uncentered): 0.993
Method: Least Squares F-statistic: 1.764e+09
Date: Fri, 28 Jul 2023 Prob (F-statistic): 0.00
Time: 19:03:44 Log-Likelihood: -9.9848e+07
No. Observations: 11728517 AIC: 1.997e+08
Df Residuals: 11728516 BIC: 1.997e+08
Df Model: 1
Covariance Type: nonrobust

coef std err t P> |t| [0.025 0.975]
L8 0.9537 2.27e-05 4.2e+04 0.000 0.954 0.954

Omnibus: 1575425.208 Durbin-Watson: 0.127
Prob(Omnibus): 0.000 Jarque-Bera (JB): 9703226.575
Skew: -0.494 Prob(JB): 0.00
Kurtosis: 7.345 Cond. No. 1.00

B.2.2 Benchmark regression with azimuth and elevation data L8 to L7

Dep. Variable: L7 R-squared (uncentered): 0.994
Model: OLS Adj. R-squared (uncentered): 0.994
Method: Least Squares F-statistic: 6.609e+08
Date: Fri, 28 Jul 2023 Prob (F-statistic): 0.00
Time: 19:03:46 Log-Likelihood: -9.9166e+07
No. Observations: 11728517 AIC: 1.983e+08
Df Residuals: 11728514 BIC: 1.983e+08
Df Model: 3
Covariance Type: nonrobust

coef std err t P> |t| [0.025 0.975]
L8 0.7971 0.000 6029.355 0.000 0.797 0.797
SA 119.2030 0.256 465.966 0.000 118.702 119.704
SE -54.0901 0.277 -194.988 0.000 -54.634 -53.546

Omnibus: 1227493.940 Durbin-Watson: 0.104
Prob(Omnibus): 0.000 Jarque-Bera (JB): 7082481.204
Skew: -0.342 Prob(JB): 0.00
Kurtosis: 6.745 Cond. No. 1.75e+04
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B.2 Spatially dependent results

B.2.3 best polynomial regression L8 to L7

poly = 0, RMSE train = 2342.552811029791, RMSE test = 3939.5960603785575
poly = 1, RMSE train = 1134.9192748910957, RMSE test = 474687.19361656654
poly = 2, RMSE train = 1108.2462793100044, RMSE test = 48217086.92868242
poly = 3, RMSE train = 1106.7205788835881, RMSE test = 707345631.8799596

B.2.4 single layer neural network regression L8 to L7

Kernel results:

array([[2037.2625 ], [-172.52896], [ 8.32545]])
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Model results

B.2.5 Benchmark regression with azimuth and elevation data L5 to L7

Dep. Variable: L7 R-squared (uncentered): 0.871
Model: OLS Adj. R-squared (uncentered): 0.871
Method: Least Squares F-statistic: 1.684e+07
Date: Fri, 28 Jul 2023 Prob (F-statistic): 0.00
Time: 19:10:26 Log-Likelihood: -2.6748e+07
No. Observations: 2501170 AIC: 5.350e+07
Df Residuals: 2501169 BIC: 5.350e+07
Df Model: 1
Covariance Type: nonrobust

coef std err t P> |t| [0.025 0.975]
L5 0.7541 0.000 4103.088 0.000 0.754 0.754

Omnibus: 3476.917 Durbin-Watson: 0.017
Prob(Omnibus): 0.000 Jarque-Bera (JB): 3835.314
Skew: 0.055 Prob(JB): 0.00
Kurtosis: 3.157 Cond. No. 1.00

B.2.6 Benchmark regression with azimuth and elevation data L5 to L7

Dep. Variable: L7 R-squared: 0.132
Model: OLS Adj. R-squared: 0.132
Method: Least Squares F-statistic: 1.901e+05
Date: Fri, 28 Jul 2023 Prob (F-statistic): 0.00
Time: 19:10:27 Log-Likelihood: -2.5078e+07
No. Observations: 2501170 AIC: 5.016e+07
Df Residuals: 2501167 BIC: 5.016e+07
Df Model: 2
Covariance Type: nonrobust

coef std err t P> |t| [0.025 0.975]
L5 -0.0369 0.000 -117.477 0.000 -0.038 -0.036
SA 306.3343 0.212 1445.174 0.000 305.919 306.750
SE -1136.6851 1.877 -605.662 0.000 -1140.363 -1133.007

Omnibus: 432219.596 Durbin-Watson: 0.027
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1205545.479
Skew: 0.930 Prob(JB): 0.00
Kurtosis: 5.848 Cond. No. 2.00e+04

B.2.7 Best polynomial model L5 to L7

poly = 0, RMSE train = 5873.802242045138, RMSE test = 10579.748674604894
poly = 1, RMSE train = 5472.494897272348, RMSE test = 84408.315174281
poly = 2, RMSE train = 5227.759611448572, RMSE test = 9543521.339881321
poly = 3, RMSE train = 5204.106205045842, RMSE test = 54356.65510076382
poly = 4, RMSE train = 5201.477334748991, RMSE test = 106392.56186232778
poly = 5, RMSE train = 5201.417321617655, RMSE test = 132444.1627951805
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B.2 Spatially dependent results

B.2.8 Single Layer Neural Network L5 to L7

Kernel results:

array(array([[-335.43805],[1197.2877 ],[-813.3402 ]])
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