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Abstract

The Dutch National Police faces the challenge of efficiently processing and tran-

scribing a significant amount of audio data collected during investigations. To as-

sist detectives in their work, artificial intelligence (AI) models, such as Whisper,

an automatic speech recognition (ASR) model, are implemented into user-friendly

applications. However, Whisper lacks the ability to distinguish between speak-

ers, limiting its application in scenarios involving multiple speakers and overlap-

ping speech. This thesis explores the performance of speaker diarization pipelines

from PyAnnote and NeMo on the VoxConverse and NFI-FRITS datasets. Addi-

tionally, experiments are conducted to improve the performance of the pipelines

on both datasets by choosing appropriate hyperparameter settings. By incorpo-

rating a speaker diarization system alongside Whisper, the aim is to enhance the

robustness and comprehensiveness of an existing speech-to-text application. The

evaluation reveals promising results, with hyperparameter tuning and domain-

specific configurations significantly improving the Diarization Error Rate (DER)

for both datasets. PyAnnote benefits from adjusted segmentation and clustering

thresholds, as well as changes in the clustering method. NeMo’s clustering diarizer

outperforms the neural diarizer, and domain-specific configurations enhance per-

formance. In general, NeMo demonstrates superior performance on both datasets

in terms of Diarization Error Rate (DER) compared to PyAnnote. However, this im-

proved performance comes at the cost of increased computational requirements in

terms of speed and memory usage. By augmenting Whisper with speaker diariza-

tion, investigators can efficiently analyze transcribed text ascribed to individual

speakers, improving the accuracy and efficiency of audio data analysis. Further re-

search should focus on compiling an enlarged domain-specific dataset with varying

numbers of speakers to enable more specific hyperparameter tuning and achieve

better performance results. Additionally, optimizing resource usage for the supe-

rior NeMo model would enhance its speed and memory efficiency. Overall, this re-

search contributes to advancing speaker diarization methods alongside the Whis-

per ASR model. These advancements will lead to more effective speech analysis

tools for law enforcement and other fields relying on accurate and comprehensive

audio processing. The code is available at https://github.com/anouk1512/MSc_

WhisperSpeakerDiarization.git.

https://github.com/anouk1512/MSc_WhisperSpeakerDiarization.git
https://github.com/anouk1512/MSc_WhisperSpeakerDiarization.git
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1. Introduction

1.1 Motivation and context

The Dutch National Police collects a significant amount of audio during in-

vestigations. Listening to and transcribing audio messages manually is a

highly time-consuming task. As a result, only a partial transcription is usu-

ally carried out, leaving potentially crucial information untapped. The po-

lice department Team Rendement Operationele Informatie (TROI) implements

artificial intelligence models to expedite these kind of procedures and assist

detectives with their work. TROI’s data specialists develop user-friendly

applications to help investigators structure and analyze the vast amounts of

data they encounter daily.

TROI’s latest application incorporates the state-of-the-art speech-to-text

algorithm Whisper [1], enabling the automatic conversion of audio into

transcribed text. This advanced functionality empowers investigators to

efficiently search for specific keywords within audio messages and access

those particular segments directly. Consequently, investigators can save sig-

nificant time and effort by focusing only on the relevant information, rather

than having to listen to the entire audio content, which may or may not

contain relevant details.

Since the audio files collected by the police contain very sensitive data,

their application cannot run in the cloud, but must run locally. Therefore,

they have to develop their own system based on available open-source im-

plementations. The new transcription application is based on the open-

source model Whisper.

Whisper is an automatic speech recognition (ASR) model developed by

OpenAI [1]. Its primary objective is to convert spoken language into written

text, making it a valuable tool for various applications such as transcription

services, voice assistants, and more. Unlike traditional methods that rely
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Introduction

on high-quality transcriptions, Whisper is intentionally trained on lower-

quality transcriptions. This allowed access to a larger volume of data com-

pared to fully supervised experiments. As a result, Whisper benefits from

enhanced scalability and diversity in its training data [1].

Since Whisper is trained on data from many different domains and on 96

languages besides English, it approaches human-level accuracy and robust-

ness and generalizes well on new data [1]. Additionally, the system pro-

vides complete interpunction in its transcriptions, can automatically detect

languages and even accurately transcribes if speakers have a heavy accent.

Whisper processes audio roughly 1.5x times faster than real-time on a GPU,

so it would take around 6 hours to transcribe 9 hours of audio.

Although the observed transcription speed and performance of Whis-

per on police datasets are promising enough to launch the newly developed

application, there remains potential to further improve the current imple-

mentation. One limitation of this ASR model is its inability to distinguish

between speakers. Consequently, the transcription of a conversation will be

outputted as if uttered by one person.

Speaker diarization (SD) is distinguishing "who spoke when" in an au-

dio stream [2]. With the implementation of a speaker diarization system

alongside Whisper, the transcriptions can be ascribed to speakers, making

analysis within the speech-to-text application more robust and comprehen-

sive. Besides, speaker diarization can deliver interesting meta-data about

audio files, such as the amount of speakers, speaking time per speaker and

total speaking time per file. Implementing this would allow investigators to

do additional queries, for example filtering on recordings with more than X

speakers or selecting long monologues from a specific speaker.

The police encounters audio in various languages, with Dutch being

the most prevalent. Typically, speaker diarization models are evaluated

using English datasets. Another characteristic of the collected data is its

low-quality audio. While most datasets contain "staged" speech, the police

data consists of "real-life" audio fragments, with overlapping speech, mi-

crophones of poor quality and background noise. Consequently, the chosen

7
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Figure 1.1: Traditional speaker diarization system [3]

Figure 1.2: Structure of the Rich Transcription Time Marked (RTTM) format

speaker diarization model must meet additional criteria, such as demon-

strating strong performance on Dutch audio files and effectively handling

overlapping speech.

This thesis focuses on finding a suitable speaker diarization model, aim-

ing to improve and advance this aspect of speech analysis alongside Whis-

per. Therefore, the research question will be the following:

"How can the ASR model Whisper be augmented with a speaker di-

arization method that achieves a low Diarization Error Rate on Dutch

audio files containing overlapping speech and multiple speakers, while

maintaining reasonable speed in terms of Real-Time Factor?"

1.2 Background

There are some essential sub-tasks performed in traditional SD systems to

achieve the classification of speakers required for speaker diarization. These

independent steps are presented in Figure 1.1 and are still relevant for mod-

ern diarization methods [3].

The input of a SD system is usually a raw audio file. Front-end pro-

cessing steps are employed to eliminate any distortions from background

noise. Next, speech and non-speech parts are separated using Speech Ac-

tivity Detection (SAD). The portions of speech are then split into segments

and each segment is converted into a speaker embedding, which is a math-

ematical representation of sound, that captures important characteristics of

the audio. Similar segments are clustered together to distinguish between

speakers. Every cluster then corresponds to one unique speaker. As post-
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processing steps, these clustering results can be optimized in various ways.

The output is provided as Rich Transcription Time Marked (RTTM) format.

This is a text format with one line per speech turn, conforming to the struc-

ture displayed in Figure 1.2.

Raw audio files can be encoded in various formats. Among them, the

WAV format is the most commonly used for automatic speech recognition

and speaker diarization tasks. In the WAV format, audio files are stored

without compression, preserving both the quality and information, which

is crucial for accurate analysis of speaker-related tasks [4].

1.2.1 Evaluation metrics

Multiple evaluation metrics are employed to assess the performance of speaker

diarization systems. The Diarization Error Rate (DER) is the most com-

monly used in the evaluation of diarization methods, and also serves as

diarization metric for most speaker recognition challenges [5]. The input

for the DER per audio file is the reference annotation and the annotation

predicted by a model, both delivered in the aforementioned RTTM format.

As output, the DER computes the proportion of incorrectly assigned speech

time to the total speech time [3][6]. The DER is defined formally as follows:

DER(re f erence, prediction) =
(FA + MS + SC)

TST
(1.1)

The incorrectly assigned speech time is the sum of three different errors:

• False Alarm (FA): duration of non-speech incorrectly labeled as speech

• Missed Speech (MS): duration of speech incorrectly labeled as non-

speech

• Speaker Confusion (SC): duration of time in which wrong speaker la-

bel is assigned to a speaker

The denominator Total Speech Time (TST) refers to the sum of all speakers’

speech duration. The result of the DER is a value between 0 and 1, where

0 indicates perfect speaker diarization. Most implementations of DER sup-
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port using a collar to account for slight temporal deviations between pre-

dicted and reference annotations. This collar can be set to a positive number,

denoting the seconds at both the beginning and the end of a speaker turn

that are regarded as correctly predicted anyway. A common setting for the

collar is 0.25 seconds [3].

The second metric is Real-Time Factor (RTF), which evaluates the speed

of audio-processing methods [7]. It measures the ratio between the dura-

tion of an audio file and the time it takes for a particular method to process

that file. The formula for RTF is given in Equation 1.2, where d denotes the

duration of an audio file and f(d) is the execution time of a specific function

on that audio file. In our case, f(d) is the application of a speaker diarization

model onto an audio file.

RTF =
f (d)

d
(1.2)

The result will be a positive number. If the RTF equals 1, the computation is

done ’in real time’. A value higher or lower than 1 indicates slower or faster

processing, respectively.

As last metric, the memory usage of a model is monitored, in terms of

bytes allocated during execution. Together, these three metrics give a com-

plete comparison of speaker diarization models, aligning with the aspects

that are of interest to the police.

1.3 Related work

In this section, related literature is reviewed to explore recent improvements

in speaker diarization methods. This begins with the rise of deep learning

in the last decade, with more robust models that reach higher performance

[3]. First, optimizations to one or more of the subtasks, as outlined in Figure

1.1, were introduced to enhance the performance of diarization methods.

In the work of [8], the commonly used i-vector that creates speaker em-

beddings using factor analysis is replaced by d-vectors, which are speaker

representations obtained from a deep neural network. This neural network
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applies multiple non-linear transformations to convert an utterance into a

vector. When d-vectors are extended with a temporal pooling layer, they

can deal more accurately with segments of varying lengths and can capture

more details. These vectors are called extended vectors or x-vectors [9]. Oth-

ers substitute the way in which the clustering of utterances is done. Usually,

the clustering module uses some variation of hierarchical agglomerative clus-

tering (HAC). This unsupervised clustering module can be replaced by, for

example, an unbounded interleaved-state recurrent neural network [10]. This

is a trainable model that dynamically adapts while learning temporal data

from examples, in an online generative process. In [11], affinity propagation

clustering employs an iterative process to search for exemplars within the

neural speaker embeddings, aiming to find a representative point for each

cluster.

Besides individual optimization of modules, it is even more powerful

to jointly optimize (neural) building blocks [3]. These type of implementa-

tions are called end-to-end neural diarization (EEND) methods. In the work

of [12], the neural building blocks of the diarization process are jointly op-

timized through back-propagation. The goal is to optimize the parameters

of the entire system to achieve better performance and synergy between the

different components. This can done with every type of modules within a

pipeline [11].

This research aims to augment an automatic speech recognition (ASR)

model with a speaker diarization (SD) model. This can be achieved by com-

bining the outputs of the two models. It is beyond the scope of this section

to explain in detail how an ASR model like Whisper works; it is only impor-

tant how its output looks and how this can be combined with the output of

an SD model. This is displayed in Figure 1.3. The combination of the out-

puts of the two models results in the determination of "who spoke what" in

an audio stream.

A hot topic in recent research on ASR and SD systems is the combina-

tion of both systems into one complete system. Such an approach can be

found in [13][14]. The authors developed an end-to-end speaker-attributed au-
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Figure 1.3: Combination of ASR system and SD system outputs

tomatic speech recognition system, which recognizes overlapping speech and

can work with any number of speakers. Although their reported results are

quite promising, combined ASR and SD systems are beyond the scope of

this research, since the goal is finding a suitable speaker diarization method

for Whisper.

The audio files from the police dataset have some challenging charac-

teristics. Therefore, the speaker diarization method that is selected must

be able to deal with a flexible number of speakers which is unknown be-

forehand, some overlapping speech, recordings of poor quality and various

types of audio files. Additionally, considering the application’s offline na-

ture, it necessitates an open-source implementation that can run locally.

1.3.1 PyAnnote

Based on the aforementioned criteria for the speaker diarization technique

and the recent advances in jointly optimized pipelines, the open-source toolkit

that is described in [15] is a promising implementation alongside Whisper.

It is called pyannote.audio and it is built from neural end-to-end building

blocks. The hyperparameters of these blocks are jointly optimized to mini-

mize its DER. Combining the building blocks results in a complete speaker

diarization pipeline, which transforms audio from the waveform directly

into RTTM format speaker annotations, as displayed in Figure 1.4.

12
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Figure 1.4: PyAnnote speaker diarization pipeline [15]

As feature extraction module, PyAnnote uses the convolutional neural

network architecture SincNet [16]. It incorporates sinc functions to capture

different frequency components and thus discriminative speaker features

from raw audio files. All the detection modules (voice activity detection,

overlapped speech detection and speaker change detection) are performed

on short fixed-length sub-sequences using overlapping sliding windows.

This results in multiple prediction scores, which are averaged into a final

prediction score. For all three modules, there is a tunable threshold initiated.

At every time step t, the prediction score is compared to the predefined

threshold, resulting in a score of 1 when exceeding the threshold, and 0

otherwise. A score of 1 then denotes the detection of voice, speaker change

or overlapping speech.

Next, the speaker embeddings are constructed using the aforementioned

x-vectors. They serve as input for the clustering phase, which is based on co-

sine distance metrics, centroid linkage and hierarchical agglomerative clus-

tering. During the re-segmentation step, multiple epochs are executed to

enhance the accuracy of speech turn boundaries and speech labels, based on

the implementation in [11]. Eventually, after every building block is trained

independently, they are combined into a pipeline with optimized hyperpa-

rameters. It is trained, tuned and tested on different datasets, containing au-

dio from settings like meetings, broadcast news and 11 other conversational

domains. This makes the pipeline robust and generalizable, especially for

audio from similar settings [15]. The pipeline is ready-to-use, but can also

be adjusted using own data. This approach will be explored in this research.

The most recent version of pyannote.audio (2.1.1) has some improvements

to the original pipeline [17]. These include smaller overlapping windows,

separate diarization and embedding modules and even more options to ad-

13



Introduction

just parameters or fine-tune the speaker segmentation model itself. Multiple

winning implementations of speaker diarization challenges use an imple-

mentation that include pyannote.audio utilities [5] [17].

1.3.2 NeMo

NVIDIA also developed a speaker diarization pipeline, which is displayed

in Figure 1.5. It is part of the nemo toolkit, which provides conversational AI

models [18]. The goal of the pipeline is to create an overlap-aware speaker

diarization system that can handle a variable number of speakers. The pre-

trained modules used in the pipeline are briefly explained below.

Figure 1.5: NeMo speaker diarization pipeline1

The voice activity detection (VAD) module uses MarbleNet, which is a

convolutional neural network (CNN) that detects and classifies speech and

non-speech parts [19]. After VAD is performed, one can choose to only per-

form speaker diarization or combine it with automatic speech recognition.

The speech segments are subjected to the process of extracting speaker em-

beddings using TitaNet-L in order to proceed with speaker diarization [20].

The model of TitaNet-L is also based on a CNN, with a pooling layer that

is responsible for transforming variable-length speech segments into fixed-

length embeddings. The speaker embeddings can be clustered using either

a standalone clustering algorithm or a clustering algorithm combined with

a neural diarizer, called the Multi-Scale Diarization Decoder (MSDD) [21].

Both approaches use various segment lengths simultaneously, instead of

1https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/
asr/speaker_diarization/intro.html
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one fixed speaker segment length, to extract speaker characteristics. Then,

the results from multiple scales are combined, using a weighting per scale.

For the clustering diarizer, these weights are fixed, but for the neural di-

arizer model, the weight assigned to each scale is determined using a CNN.

This results in estimated speaker labels per speech segment.

The rest of this thesis is organized as follows. Chapter 2 gives a descrip-

tion of the datasets used for the experiments and the preprocessing steps

that are performed. Chapter 3 details the methods of all executed experi-

ments. In Chapter 4, the results of the experiments are reported. Chapter 5

gives an interpretation of the results and their implications. At last, Chapter

6 discusses possible limitations and presents recommendations for future

work.

15



2. Data

2.1 Description of the data

The police collect various audio files during investigations, which vary in

quality and language. For research purposes, they work with a dataset

set known as the Netherlands Forensic Institute’s Forensically Realistic In-

tercepted Telephone Speech database (NFI-FRITS) [22]. The dataset com-

prises recorded telephone conversations obtained from actual police investi-

gations. These conversations encompass speech in multiple languages, with

a majority of the audio being in Dutch. The dataset also includes recordings

in Moroccan Arabic, Berber, and Turkish. However, due to the sensitivity

of the data, direct access to this dataset is restricted. Experiments with the

dataset could only be executed on-site. Thus, for exploratory experiments,

an additional dataset is used.

The NFI-FRITS dataset consists of 4188 audio files of telephone conver-

sations between two speakers. The relative uniformity of these audio files

makes the dataset very domain-specific. During the composition of the

dataset, the files were anonimized, so for every fragment that contains sen-

sitive information, all audio values were set to zero. Next, they marked and

removed the background noise. Nevertheless, since the quality of speech

is not optimal at all times, the audio quality can be challenging. Only files

with a duration between 30 and 600 seconds were permitted. This results in

a dataset that comprises 165 hours of speech, with an average of 142 seconds

per file. For the experiments in this thesis, only a subset of the NFI-FRITS is

used, as discussed in Section 2.2.

The English open-source dataset VoxConverse is selected to conduct ex-

ploratory experiments [23]. This dataset complements the NFI-FRITS dataset

since the police collect more types of audio files than telephone conver-

sations between 2 speakers, not only limited to the languages in the NFI-

16



Data

Figure 2.1: Visual representation of overlapping speech and multiple speakers

Table 2.1: Characteristics of NFI-FRITS and VoxConverse test sets; entries with
3 values are reported as min/mean/max; "-" denotes unavailable statistics

# files # hours duration (s) # spks % overlap
NFI-FRITS 228 11 57/173/625 2 -

VoxConverse 232 44 26/676/1200 1/6.5/21 0/3.1/29.8

FRITS dataset. VoxConverse is widely used in diarization research, since

it is speaker-annotated and approaches real-life conditions of spontaneous

speech. The VoxConverse dataset is constructed from YouTube videos from

a variety of domains. The videos are selected using keywords like ‘panel

debate’ and ‘discussion’ to ensure the inclusion of videos where multiple

people are talking alternately or at the same time, which is suitable for the

speaker diarization task. The recordings contain a large number of speakers,

quick exchanges of speech and a lot of background noise. Figure 2.1 illus-

trates the visual representation of a segment from an audio file exhibiting

overlapping speech and the presence of multiple speakers.

2.2 Preparation of the data

The datasets described above could not be used as is for this research; in-

stead, subsets are selected. In the case of the NFI-FRITS, only a subset of

Dutch conversations with two speakers was available for research. Table 2.1

displays the other characteristics of this subset. It contains 228 audio files,

together around 11 hours of material. The files are 1 to 10 minutes long, and

every conversation only has 2 speakers. Information on overlapping speech

is not available. As mentioned before, the dataset could only be accessed in

a secured environment and therefore cannot be shared with other parties.

A subset from the VoxConverse dataset is utilized due to various con-

straints encountered during the research. These constraints include limited

17



Data

Figure 2.2: Histogram of number of speakers per file in VoxConverse test set

storage capacity, insufficient GPU resources, and time constraints that made

it impractical to use the entire dataset. The VoxConverse dataset is already

partitioned into randomly drawn subsets, and for the purpose of this re-

search, the test set is selected. It contains 44 hours of speech, distributed

amongst 232 audio files, which results in an average length of 11 minutes

per audio file. There is a diverse range in the number of speakers per file,

which is displayed in the histogram in Figure 2.2. It ranges from 1 speaker

to 21 speakers per file. This makes the VoxConverse subset a good addition

to the NFI-FRITS subset, which only contains two speakers per file. Further-

more, 3% of the speech in VoxConverse overlaps each other, with some files

exhibiting as much as 30% overlap. Both the audio files and the annotations

are accessed through GitHub.1 Eventually, another smaller subset is created

from the VoxConverse test set featuring a single speaker. This subset is used

for additional experiments, as will be described in Chapter 3.

No other preprocessing steps are performed, since both datasets are pro-

vided in suitable formats to facilitate the application of Whisper, PyAnnote

1https://github.com/joonson/voxconverse

18
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Figure 2.3: Example of a RTTM file containing annotations for a VoxConverse
audio file

and NeMo models. This is the WAV format for the audio files and annota-

tions in RTTM format. In Figure 2.3, an annotation file for one VoxConverse

audio file is depicted. Both format types are explained before in Section

1.2. Subsequently, it was simple to check diarization results between the

output of an audio file and the corresponding annotations file, since these

were stored with identical, unique file names and only a differing file exten-

sion. For example, an audio file from the VoxConverse dataset is stored as

’aepyx.wav’ and its corresponding annotation as ’aepyx.rttm’.

19



3. Method

The aim of this research is to investigate speaker diarization methods that

can enhance the Whisper automatic speech recognition model. This section

will describe the methods used to experiment with various speaker diariza-

tion algorithms. The chosen implementations must satisfy specific require-

ments set by the police in order to produce meaningful results. These re-

quirements include the following: the implementation should be written in

Python, designed to run locally, provided as an open-source solution, reg-

ularly or recently updated, and accompanied by a pretrained model. The

Python libraries pyannote.audio and NeMo that are discussed in Section 1.3

meet these requirements and are selected for experiments. In the exper-

iments described below, the speaker diarization implementations of both

libraries are compared and optimized using the VoxConverse and the NFI-

FRITS subsets. Eventually, the best performing models for both datasets are

evaluated for all performance metrics.

Each technique’s effectiveness is quantified using a collection of distinct

metrics. The accuracy is determined primarily using the Diarization Er-

ror Rate (DER), as introduced in Section 1.2.1, which is calculated utilizing

PyAnnote’s corresponding metric.1 The efficiency of the procedure, on the

other hand, is evaluated in terms of the Real-Time Factor (RTF), a measure

of implementation speed also expounded upon in the same chapter. The ex-

ecution time per method is tracked and this is divided by the file duration

to extract the RTF. Third, the memory usage per model is recorded using

the tracemalloc function. The memory is reported in absolute numbers of

peak usage in bytes, which refers to the largest amount of memory allocated

during execution.

For the experiments described below that concern hyperparameter tun-

1https://pyannote.github.io/pyannote-metrics/reference.html
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ing, only the DER is reported, since preliminary experiments showed that

different hyperparameter settings did not affect RTF or memory usage sig-

nificantly. For the final comparison of the optimized PyAnnote and NeMo

versions, the three metrics are used, to give a complete performance evalu-

ation.

3.1 Baseline comparison: PyAnnote and NeMo

In the first experiment, two basic implementations of PyAnnote and NeMo

are compared in terms of DER. For PyAnnote, this includes the pretrained

pipeline for speaker diarization.2 For NeMo, this is the clustering diarizer

pipeline.3

The PyAnnote pretrained pipeline is applied separately to each audio

file. This involves looping over every file in the dataset, executing the speaker

diarization pipeline, and calculating the DER between the predicted and

reference annotation. Since the NeMo implementation automatically calcu-

lates the DER with a collar of 0.25 seconds, this is also applied to the scoring

of the PyAnnote pipeline.

The NeMo implementation requires the input of a ’manifest’. For both

the audio files and the annotation files, a text file is created with the path to

every file on a new line. With these text files, a manifest file is created that

serves as the input for NeMo.4 Therefore, it doesn’t require looping over

every file separately. Inside the model, the DER of the whole subset is cal-

culated. A CSV file is generated for each dataset containing the respective

results for all audio files. When comparing the results between PyAnnote

and NeMo, the DER values of the PyAnnote files are averaged. Next, the

performance of the models on both datasets is evaluated by looking at the

DER. These values will serve as baseline measures when improving the im-

2https://huggingface.co/pyannote/speaker-diarization
3https://github.com/NVIDIA/NeMo/blob/main/tutorials/speaker_tasks/

Speaker_Diarization_Inference.ipynb
4https://github.com/NVIDIA/NeMo/blob/main/scripts/speaker_tasks/

pathfiles_to_diarize_manifest.py
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plementations.

The second and third experiment will focus on the improvement of both

the PyAnnote and the NeMo implementations, by tuning relevant hyperpa-

rameters.

3.2 Optimization of PyAnnote

Besides the pretrained pipeline of PyAnnote, it is also possible to adjust

the pipeline to your own data.5 To create the adjusted pipeline, the data

is collected into a database, with a train/development/evaluation split of

80/10/10 applied to it.6 For the first exploratory experiment, a 30% sub-

set of the VoxConverse dataset is used as training set, and accordingly a

development and evaluation set is added. Next, the following steps are per-

formed to fine-tune the pretrained models and optimize PyAnnote’s speaker

diarization pipeline [17]:

1. Fine-tune the speaker segmentation model

2. Optimize the hyperparameters

(a) Optimize the segmentation threshold

(b) Optimize the clustering threshold

3. Measure the performance of the adjusted pipeline

As reported in [17], these hyperparameters have the most influence on the

performance of the pipeline and are therefore most important to fine-tune.

[17] also reports on the results of the pipeline adjustment by training on

the VoxConverse dataset, which gives improved results. Preliminary re-

sults showed that training on a subset of VoxConverse did not improve the

performance of the speaker diarization pipeline, presumably because of the

small amount of training data. Since it is not allowed to perform training on

the NFI-FRITS data, due to the sensitivity of the data, the experiments pro-

5https://github.com/pyannote/pyannote-audio/blob/develop/tutorials/
adapting_pretrained_pipeline.ipynb

6https://github.com/pyannote/pyannote-database#configuration-file
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ceed without finetuning models on these datasets. Instead, they are used as

validation sets to compare the best hyperparameters.

3.2.1 Hyperparameter tuning

The hyperparameter tuning of the PyAnnote pipeline involves experiments

with different values of the segmentation threshold, clustering threshold

and clustering method. The segmentation threshold influences the sensitiv-

ity of the speaker activity detection. A lower segmentation threshold will

be more responsive to quick exchanges and overlapping speech, while a

higher threshold will be more robust to slight changes in the audio, like

background noise. The clustering threshold determines how similar speech

segments or clusters must be to be grouped together. A lower threshold

will result in smaller segment groups and, thus, more speakers being iden-

tified, while a higher threshold will lead to larger segment groups and, con-

sequently, fewer speakers. Since hierarchical agglomerative clustering com-

bines clusters that are similar, the linkage method serves as metric for simi-

larity between clusters. The "average" method uses the average distance be-

tween all the data point pairs, while "centroid" linkage uses the data point

per cluster that is most central to all other points to compare with other cen-

troids. Adjusting the linkage method results in different similarity scores.

In case of a large dataset, it is useful to fine-tune the segmentation model,

but since the NFI-FRITS dataset only contains 11 hours of speech, experi-

ments will focus on optimizing the hyperparameters. The variation of the

clustering method is added because former versions of PyAnnote used ’av-

erage’ linkage instead of ’centroid’ linkage, and this method is runner-up to

centroid in the experiments performed by Bredin [17].

The values that are experimented with are based on different values in

two different versions of PyAnnote, on the findings from the preliminary

experiments with training the pipeline and on the range of numbers that

are possible as input. These values are displayed in Table 3.1. This results

in the following hyperparameter values in the experiment:

• Segmentation threshold: [0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60]
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Table 3.1: Hyperparameters values

Segmentation
threshold

Clustering
threshold

Clustering
method

Pretrained pipeline
version 2.1.1

0.444 0.715 centroid

Pretrained pipeline
version < 2.1.1

0.444 0.582 average

Adjusted pipeline
on 30% VC

0.638 0.722 centroid

Possible values [0, 1] [0, 2] centroid, average,
complete, single,
Ward

• Clustering method: [average, centroid]

• Clustering threshold: [0.50, 0.55, 0.60, 0.65, 0.70, 0.75]

For every combination of values, a CSV file is created, denoting the DER

with the adjusted hyperparameters. All the files are compared to evaluate

the performance compared to the pretrained pipeline.

3.2.2 Passing a max_speaker argument

Additionally, there is the possibility of providing the lower and upper bounds

of the number of speakers to the pretrained pipeline. The value of min_-

speakers is set to 1. Based on the number of speakers reported in Section 2.2

and Figure 2.2, the values for max_speakers are adjusted to 1, 2, 5, 10, 15, or

20. When the value of max_speakers is reached, the model will stop search-

ing for more speakers. The goal is to check whether it is advantageous to

give PyAnnote an indication of the number of speakers and whether that

improves the performance compared to the pipeline without the number

of speakers declared. In addition to comparing the DER rates of different

max_speakers values to the normal pipeline, an exploration is conducted on

the impact of exceeding the max_speakers value on the DER when the num-

ber of speakers in an audio file increases.

The efficacy of the adjustments is assessed using a single speaker subset

from the VoxConverse dataset. This approach is adopted given the frequent

requirement of the police to process files involving only one speaker, like
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voice memo’s. The subset of audio files from VoxConverse featuring a single

speaker is used and the results for the various upper bounds on these files

are compared to the general results.

3.3 Optimization of NeMo

The third experiment aims to find a better performing implementation of

NeMo. The implementation of the diarizer described in the first experiment

can both be augmented and adjusted. The following modifications to the

diarizer parameters are premised on the hypothesis that these adjustments

would have the most significant impact on the performance.

3.3.1 Clustering diarizer: hyperparameter tuning

As possible values for the clustering parameter max_num_speakers, the same

values as for the PyAnnote optimization are used: [1, 2, 5, 10, 15, 20]. Again,

this parameter controls whether the model will keep searching for more

speakers or not. Unlike the PyAnnote pipeline argument, where the default

value is set to None, omitting the max_num_speakers argument defaults to a

value of 8 for max_num_speakers.

The configurations of the diarizer parameters can be adjusted by declar-

ing a different domain type. There are two possible domain types: the de-

fault telephonic, which is "suitable for telephone recordings involving 2~8

speakers in a session"7 or meeting, which is: "suitable for 3~5 speakers par-

ticipating in a meeting"8. The configurations differ accordingly in voice ac-

itivity detection and speaker embedding parameters. These parameters are

set to different values to extract the right information from the audio files.

Both configurations are applied to the datasets.

7https://github.com/NVIDIA/NeMo/blob/main/examples/speaker_tasks/
diarization/conf/inference/diar_infer_telephonic.yaml

8https://github.com/NVIDIA/NeMo/blob/main/examples/speaker_tasks/
diarization/conf/inference/diar_infer_meeting.yaml
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3.3.2 Neural diarizer: hyperparameter tuning

The clustering diarizer can be replaced by a neural diarizer9, since this can

lead to more accurate results. This is the MSDD model described in Section

1.3.2, which uses a CNN to combine speaker characteristics into speaker la-

bels. The neural diarizer is able to detect overlapping speech. The sigmoid

threshold is the parameter that influences how quickly overlapping speech

is detected. The default value is 0.70, and a lower threshold would mean

more detection of overlapping speech, while a higher threshold would de-

tect less. Therefore, the values that are experimented with are the following:

[0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95]. The results of the

various sigmoid threshold values are compared per dataset.

3.4 Best models comparison

In the final experiment, the top-performing models are compared to the

baseline models in terms of Diarization Error Rate. Then, a complete evalu-

ation is conducted, including the measurement of the Real-Time Factor and

memory usage for each model. Eventually, these analyses aim to address

the research question and provide meaningful insights on the performance

of the models on the specific datasets.

9https://github.com/NVIDIA/NeMo/blob/main/tutorials/speaker_tasks/
Speaker_Diarization_Inference.ipynb
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4. Results

This chapter presents the findings of the experiments detailed in Chapter

3. All the experiments are performed on the complete test sets described in

Section 2.2, unless explicitly noted. The results on both datasets are evalu-

ated together, since this gives a more complete overview of the performance

of the models in different domains. The evaluation metrics that are reported

are the average Diarization Error Rate (DER) per dataset for the model base-

lines and model optimizations, and the average DER, average Real-Time

Factor (RTF) and average memory usage for the final model comparisons.

In the tables, the lowest values and thus, the best performing configurations,

are marked in bold. Furthermore, the default values contain (=def) behind

its parameter value.

4.1 Results of the baseline comparison

In Figure 4.1, the average DER for PyAnnote and NeMo on both datasets

is displayed. The two models perform quite similarly on the VoxConverse

dataset, with a DER around 0.120. The DER of the NFI-FRITS dataset, on

the other hand, is very different for the two models. The PyAnnote baseline

model reaches a DER of almost 2.5 times higher than the NeMo baseline

model. The results of this experiment are used as baseline measures in the

upcoming sections, in order to evaluate possible optimizations.

Since the PyAnnote model is applied separately to every audio file, it is

possible to investigate the potential impact of the number of speakers on

the DER score of VoxConverse audio files. To explore this correlation, a

scatterplot is shown in Figure 4.2, revealing a positive slope of 0.004 for the

regression line.
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Figure 4.1: DER for the baseline models of PyAnnote and NeMo

Figure 4.2: Scatterplot of the number of speakers vs. DER per VoxConverse file

28



Results

4.2 Results of the optimization of PyAnnote

4.2.1 Hyperparameter tuning

The first optimization applied to the PyAnnote pipeline involves hyperpa-

rameter tuning within the pipeline itself. The outcomes of the hyperparam-

eter tuning process on the VoxConverse dataset are presented in Table 4.1.

The top 3 parameter settings, in terms of DER, are displayed on top, as well

as the worst 3 at the bottom. The default setting of the parameters is also

displayed as reference. By increasing the segmentation threshold to 0.60

and the clustering threshold to 0.75, and changing the clustering method,

the DER improves by 0.014 compared to the default settings. It is also re-

markable that the top 3 configurations all use "average" linkage as cluster-

ing method, while the default version and the bottom 3 all use "centroid"

linkage. The results of all 86 configurations can be found in Appendix A.

Table 4.1: Adjusted hyperparameter settings on VoxConverse. The top and
bottom 3 settings in terms of DER are displayed, as well as the hyperparame-
ters from the pretrained pipeline

Ranking Method Segmentation threshold Clustering threshold DER

1 average 0.60 0.75 0.111
2 average 0.60 0.70 0.112
3 average 0.50 0.70 0.113
... ... ... ... ...

23 (=def) centroid 0.444 0.715 0.125
... ... ... ... ...
84 centroid 0.50 0.50 0.434
85 centroid 0.45 0.50 0.434
86 centroid 0.30 0.50 0.443

Table 4.2 displays the same information for the NFI-FRITS dataset. Com-

pared to the results from VoxConverse, the tuning of these hyperparame-

ters achieves more DER improvement, since the difference between the de-

fault configuration and the best configuration is 0.09. This is achieved by

increasing the segmentation threshold, decreasing the clustering threshold

and changing the clustering method. Again, "average" linkage is the clus-

tering method for the top 3 configurations. The total table can be found in
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Appendix B.

Table 4.2: Adjusted hyperparameter settings on NFI-FRITS. The top and bot-
tom 3 configurations in terms of DER are displayed, as well as the hyperpa-
rameters from the pretrained pipeline

Ranking Method Segmentation threshold Clustering threshold DER

1 average 0.60 0.65 0.342
2 average 0.60 0.70 0.345
3 average 0.55 0.70 0.354
... ... ... ... ...

38 (=def) centroid 0.444 0.715 0.432
... ... ... ... ...
84 average 0.30 0.5 0.524
85 centroid 0.30 0.55 0.531
86 centroid 0.30 0.5 0.533

4.2.2 Passing a max_speaker argument

The other approach to improve the performance of PyAnnote, is passing

a min_speakers and max_speakers argument to the pretrained pipeline. With

the min_speakers set to 1, the values of max_speakers are adjusted. The results

are presented in Table 4.3. For the VoxConverse dataset, passing a max_-

speakers argument increases the average DER. The DER for NFI-FRITS is

decreasing when adding a max_speakers argument higher than 1; the lowest

DER is reached when setting max_speakers to 2.

Table 4.3: DER for PyAnnote pretrained pipeline with different max_speakers
values

DER

max_speakers VoxConverse NFI-FRITS

None (=def) 0.125 0.432
1 0.476 0.471
2 0.361 0.359
5 0.238 0.373

10 0.153 0.389
15 0.150 0.393
20 0.153 0.393

Inspecting the influence of setting a max_speakers parameter in the pre-

30



Results

trained pipeline involves comparing the average DER for files with fewer or

the same number of speakers as the parameter value with the average DER

for files with more speakers. Table 4.4 shows that the DER lies considerable

higher when the number of speakers exceeds the max_speakers value.

Table 4.4: DER of files with less speakers than max_speakers compared to DER
of files with more speakers than max_speakers in VoxConverse

DER for files with num_speakers
max_speakers ≤ max_speakers > max_speakers

1 0.025 0.507
2 0.096 0.427
5 0.131 0.317

10 0.136 0.243
15 0.147 0.279
20 0.152 0.326

As a last step, the influence of setting the max_speakers parameter on files

with only 1 speaker is evaluated. As Table 4.5 shows, the DER improves by

0.06 when setting the max_speakers to 1 instead of None. The other values

also improve the DER of the files with one speaker compared to not passing

a parameter.

Table 4.5: DER for single-speaker VoxConverse files with different max_speak-
ers values

max_speakers DER

None (=def) 0.084
1 0.025
2 0.052
5 0.069

10 0.069
15 0.069
20 0.069
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4.3 Results of the optimization of NeMo

4.3.1 Clustering diarizer: hyperparameter tuning

Multiple adjustments to the NeMo pipeline are implemented to enhance its

performance. Table 4.6 reports on the effect of passing different max_num_-

speakers values to the clustering diarizer. For the VoxConverse dataset, em-

ploying a value of 10 or higher yields a lower DER compared to not specify-

ing the max_num_speakers argument. The optimal performance, achieving a

DER of 0.105, is obtained when setting max_num_speakers to 20. Conversely,

the performance on NFI-FRITS dataset cannot be enhanced. When setting

the argument to 1 or 2, the DER deteriorates, and higher values produce a

DER equivalent to that obtained with the default setting of 8.

Table 4.6: DER for NeMo clustering diarizer with different max_num_speakers
values

max_num_speakers VoxConverse NFI-FRITS

1 0.502 0.469
2 0.340 0.189
5 0.185 0.184

8 (=def) 0.118 0.184
10 0.114 0.184
15 0.107 0.184
20 0.105 0.184

Next, different configuration files are passed to the clustering diarizer.

Table 4.7 shows that the "meeting" configuration performs better for Vox-

Converse, reaching a DER of 0.1, while NFI-FRITS’s performance remains

better when using the default setting "telephonic".

Table 4.7: DER for NeMo clustering diarizer with different domain types

Domain type VoxConverse NFI-FRITS

telephonic (=def) 0.118 0.184
meeting 0.100 0.195
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4.3.2 Neural diarizer: hyperparameter tuning

Lastly, the neural diarizer is introduced. The results for the different values

of the sigmoid threshold are presented in Table 4.8. For both datasets, an

improvement in DER is observed when the sigmoid threshold is increased.

For VoxConverse, there is only a slight decrease of 0.003 in DER, and no im-

provement compared to the default value of 0.70. The DER of the NFI-FRITS

dataset, on the other hand, decreases with 0.09 compared to the default set-

ting.

Table 4.8: DER for NeMo neural diarizer with different sigmoid thresholds

Sigmoid threshold VoxConverse NFI-FRITS

0.45 0.138 0.237
0.50 0.137 0.229
0.55 0.136 0.222
0.60 0.136 0.217
0.65 0.135 0.213

0.70 (=def) 0.135 0.209
0.75 0.135 0.205
0.80 0.135 0.203
0.85 0.135 0.201
0.90 0.135 0.200
0.95 0.135 0.200

4.4 Results of the best models comparison

After the different experiments with the optimization of PyAnnote and NeMo,

the best models are selected per dataset. The corresponding DER is dis-

played in Figure 4.3, compared to the baseline DER. Only the NeMo model

could not be improved on the NFI-FRITS dataset. The other models could be

improved slightly; the performance of PyAnnote on NFI-FRITS improved

significantly, with an 0.09 decrease in DER. Still, NeMo outperforms PyAn-

note on the NFI-FRITS dataset, as well as on the VoxConverse dataset.

At last, the Real-Time Factor and the memory usage of the models is

compared in Table 4.9. The values of the RTF show that PyAnnote’s pipeline

runs twice as fast as the clustering diarizer of NeMo on both datasets, and
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Figure 4.3: Results for the baseline models and best models of PyAnnote and
NeMo on both datasets

even five times faster than the neural diarizer. Furthermore, the memory

allocation of PyAnnote is significantly lower compared to that of NeMo.

Table 4.9: RTF and memory comparison for the best models of PyAnnote (pre-
trained pipeline) and NeMo (clustering or neural diarizer)

Dataset Model Method DER RTF Memory
peak

Vox
Converse

PyAnnote Pretrained
pipeline

0.111 0.010 116 MB

NeMo Clustering 0.100 0.020 798 MB
Neural 0.135 0.103 852 MB

NFI-FRITS

PyAnnote Pretrained
pipeline

0.342 0.011 20.6 MB

NeMo Clustering 0.184 0.023 191 MB
Neural 0.200 0.137 278 MB
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5. Conclusion

In this thesis, the performance of the speaker diarization pipelines from

PyAnnote and NeMo on the VoxConverse and NFI-FRITS test sets are ex-

plored. This chapter discusses the results presented in Chapter 4.

5.1 Baseline comparison

The evaluation begins with a comparative analysis of the two datasets, since

Figure 4.1 shows quite different DER scores per dataset. VoxConverse is

a dataset comprising YouTube fragments from the conversational domain,

like panel debates and discussions. It can be argued that these audio files

must meet a certain level of quality to be published online and offer value

to listeners. Furthermore, speakers in these audio files would make an ef-

fort to ensure their speech is intelligible. The NFI-FRITS dataset, on the

other hand, consists of intercepted telephone calls with speakers that are

unaware of being recorded, and consequently, do not pay attention to being

audible or articulating their speech. These dataset characteristics potentially

contribute to the observed variations in the results, as evidenced by the av-

erage DER of approximately 0.120 for VoxConverse and around 0.300 for

NFI-FRITS across both models.

Next, the performance of two baseline implementations of the models

is inspected. The results from Figure 4.1 indicate that both PyAnnote and

NeMo exhibit comparable performance on VoxConverse, while on the NFI-

FRITS dataset, NeMo demonstrates significantly superior performance in

terms of DER, compared to PyAnnote. This discrepancy in performance can

be attributed to the fact that PyAnnote is trained on less noisy data from

different domains, which may lead to difficulties in accurately processing

low-quality recordings such as the intercepted phone calls from the NFI-

FRITS dataset. Conversely, NeMo exhibits better robustness in handling
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noisy audio conditions.

Figure 4.2 depicts the relationship between number of speakers and DER

per VoxConverse audio file. The slope of the regression line indicates that

there is no correlation between the number of speakers and the DER per

file. Therefore, in the upcoming sections of the discussion, the possibility

that a higher number of speakers per audio file leads to a higher DER can

be dismissed.

5.2 Optimization of PyAnnote

5.2.1 Hyperparameter tuning

The process of tuning the hyperparameters of the pretrained PyAnnote pipeline

demonstrates superior performance compared to the default hyperparame-

ters. For the VoxConverse dataset, it requires the increase of both the seg-

mentation threshold and the clustering threshold, as well as the change

of the clustering method, to improve the DER. By raising the segmenta-

tion threshold, the system becomes more robust to slight changes. This

adjustment proves to be more advantageous for the VoxConverse dataset,

which exhibits a relatively low percentage of overlapping speech (around

3%) and contains quite some background noise that shouldn’t be detected

as speech. These are also characteristics that require a higher clustering

threshold, since segments that are detected as speech but are not speech,

should not be assigned to a new speaker label. At the same time, it can

be argued that the high number of speakers in the VoxConverse dataset

requires a lower clustering threshold, to make sure that every speaker is

detected. The second and third best hyperparameter setting from the exper-

iment displayed in Table 4.1 do exhibit a lower clustering value compared

to the default values.

The best parameter settings for the NFI-FRITS dataset are a higher seg-

mentation threshold, a lower clustering threshold and the "average" cluster-

ing method. The segmentation threshold is higher because there is possibly

not a lot of overlapping speech in the two-speaker telephone conversations.
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On the other hand, the dataset consists of low-quality audio, which would

actually require a lower segmentation threshold. Moreover, a lower cluster-

ing threshold is suitable for the NFI-FRITS dataset, given that the number

of speakers is always 2 and the limited presence of background noise. This

ensures the appropriate division of the low-quality audio between the two

speakers. Overall, tuning the hyperparameters for NFI-FRITS causes more

improvement in DER compared to the VoxConverse dataset. This can be

attributed to the specific characteristics of NFI-FRITS, which enables more

precise hyperparameter tuning.

For both datasets, the linkage method "average" outperforms the default

method "centroid". Apparantly, the speech segments in audio files exhibit

dissimilarity within speaker clusters. With average linkage, these segments

can still be grouped together, while centroid linkage performs better when

the speaker clusters are well-separated. Therefore, changing the clustering

method improves the DER for both datasets.

5.2.2 Passing a max_speaker argument

In the experiments conducted on PyAnnote, the investigation of setting

a max_speaker parameter has shown promise in improving the DER for a

domain-specific dataset like NFI-FRITS. Since the maximum number of speak-

ers influences the maximum number of clusters directly, passing this argu-

ment prevents the model from searching for more speakers. Therefore, the

best performance for NFI-FRITS with the max_speaker argument set to 2 is

expected, since this dataset only contains audio files with 2 speakers.

At the same time, the best performance for VoxConverse requires not

passing a max_speaker argument. This result is surprising, since it is as-

sumed that setting a limit for the number of speakers will be beneficial for all

audio files with up to 20 speakers. There is only one audio file that exceeds

the limit, containing 21 speakers, which can not account for the difference

of 0.028 in DER between the max_speaker = None and max_speaker = 20.

However, it should be noted that exceeding the max_speaker value results

in a significant increase in DER, as shown in Table 4.4. By specifying a max_-
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speaker argument, the model restricts its search for speakers to the provided

value. Consequently, every additional speaker in an audio file will con-

tribute to the Speaker Confusion component of the Diarization Error Rate,

as explained in Section 1.2.1.

The audio files from VoxConverse with solely one speaker also benefit-

ted from setting a max_speaker value. This indicates that, for a low number of

speakers, setting a boundary of some sort limits the model in the search for

speakers and improves its performance. Splitting audio files on the possible

number of speakers and applying the right max_speaker parameter accord-

ingly can decrease the DER of the total dataset even further.

5.3 Optimization of NeMo

5.3.1 Clustering diarizer: hyperparameter tuning

In the context of the optimization of the NeMo pipeline, some improve-

ments have been achieved, although they are minimal. The results of NeMo’s

max_num_speakers argument are displayed in Table 4.6 and it achieves quite

different results compared to the PyAnnote max_speaker argument. Since the

default setting is 8 instead of None, it is no surprise that a value of 20 reaches

the best DER for VoxConverse, considering the diverse range of number of

speakers in this dataset. For NFI-FRITS, it was expected that a max_num_-

speakers value of 2 would yield the best results. However, the values from 5

to 20 all surpass the DER of 0.189 generated by max_num_speakers = 2. Al-

though the effect of passing an argument is the same for NeMo as for PyAn-

note, i.e. restricting the number of clusters, it seems that the value for the

maximum number of speakers restricts the model more than for PyAnnote.

This explains the slightly better performance of higher max_num_speakers

values for NFI-FRITS.

Consistent with the expectations, utilizing the configurations from the

default domain type "telephonic" yields better performance for the intercepted

phone conversations in the NFI-FRITS dataset, while the "meeting" domain

type demonstrates superior results for the VoxConverse dataset. The most
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significant difference between the two configurations lies in the onset and

offset parameters of the voice activity detection module. In the telephonic

configuration, both values are set lower compared to the meeting configu-

ration, indicating a more inclusive detection of speech segments. Given the

presence of low-quality audio in the NFI-FRITS dataset, these lower onset

and offset values are necessary to capture speech correctly. On the other

hand, the VoxConverse dataset contains substantial background noise that

should not be labeled as speech. Therefore, the meeting configuration with

higher onset and offset values proves beneficial in this scenario.

5.3.2 Neural diarizer: hyperparameter tuning

The introduction of the neural diarizer could not improve the DER of both

the VoxConverse and the NFI-FRITS dataset compared to the clustering di-

arizer. Nevertheless, it is worth mentioning that increasing the sigmoid

threshold above the default value of 0.7 resulted in a higher DER for the

NFI-FRITS dataset. This indicates that with the default value, not all over-

lapping speech segments were labeled accordingly. Since the audio files are

telephone conversations with only 2 speakers, there is not a lot of overlap

expected. Therefore, the decrease in DER is minimal.

5.4 Comparison of the best models

In general, NeMo performs better than PyAnnote in terms of DER, but

worse when comparing the RTF and the memory usage. This trade-off can

be attributed to the multiscale approach that NeMo uses during the cluster-

ing process, as explained in Section 1.3.2. Using this approach, there is more

information to process and store during execution, which requires more re-

sources. At the same time, the results will be more accurate, resulting in a

lower DER. Compared to the clustering diarizer, the neural diarizer is even

more inefficient with running time and memory allocation. This can be as-

cribed to the initiation of the neural network and the additional storing of

information. This volume of memory allocation does not apply to PyAn-

note, resulting in its remarkably low memory usage. When examining the

39



Conclusion

complete pipelines, it becomes apparent that NeMo’s pipeline utilizes larger

models in contrast to PyAnnote, resulting in an increased memory usage.

5.5 Answering the research question

This thesis aimed to answer the following research question:

"How can the ASR model Whisper be augmented with a speaker di-

arization method that achieves a low Diarization Error Rate on Dutch

audio files containing overlapping speech and multiple speakers, while

maintaining reasonable speed in terms of Real-Time Factor?"

The results of the research presented in the previous sections demonstrate

that both PyAnnote and Nemo are suitable options as speaker diarization

method alongside Whisper, since their output of RTTM format annotations

can easily be merged with the Whisper output. Moreover, the choice be-

tween the two methods depends on the specific requirements and priori-

ties. If prioritizing a lower Diarization Error Rate, NeMo proves to be more

suitable. On the other hand, for those seeking a faster implementation with

lower memory usage, PyAnnote emerges as the optimal choice. NeMo can

be considered a preferable choice when hyperparameter tuning cannot or

is not desirable (e.g., when the type of data is unknown beforehand), as it

demonstrates strong performance out-of-the-box. The optimizations to the

pipelines as presented above can be applied simultaneously, with even more

specific values, or extended, to improve the performance of the pipelines

even further.
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6. Discussion

The experiments in this research provide meaningful insights and useful

results. Nevertheless, there are limitations associated with the research that

need to be addressed. Futhermore, this section provides suggestions for

future work.

6.1 Limitations

This research uses two datasets: a subset of the publicly available VoxCon-

verse dataset and a subset of the NFI-FRITS dataset, which has limited ac-

cess as a result of its sensitive nature. While the VoxConverse dataset serves

as a valuable addition to the domain-specific NFI-FRITS dataset, due to the

limited number of speakers in the latter, its suitability for representing po-

lice data is questionable. This uncertainty arises from the somewhat staged

nature of the audio content in VoxConverse, which does not fully capture

the characteristics of the data the police deal with. The NFI-FRITS dataset

can be considered representative of one subset of audio files encountered by

the police, but its duration is relatively short, spanning only 11 hours, and

containing only 2 speakers. Additionally, the police encounters languages

other than Dutch. Hence, it is questionable whether the results of this re-

search are also applicable to other languages. As a result, the generalizabil-

ity of the research findings is somewhat limited, and further experiments on

larger and more diverse audio corpora are necessary.

Furthermore, an important data limitation relates to ethical considera-

tions, as individuals in the NFI-FRITS dataset are unaware of their inclu-

sion. When expanding the dataset with audio that includes more real-life

police audio, careful consideration of the desirability and ethical implica-

tions is necessary to protect privacy and obtain consent of all individuals

involved. Additionally, it is important to note that the NFI-FRITS dataset
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is not openly accessible, restricting the reproducibility of the experiments

presented in this thesis to a wider audience.

A methodological limitation includes the calculation of the average Di-

arization Error Rate (DER). When averaging the DER of audio files, every

DER gets the same weight, independent of the length of the corresponding

audio file. It can be argued that for audio files with the same DER score

but different length, longer audio files should be considered more impor-

tant, since they contain more correctly assigned speech time compared to

the shorter audio file. This would result in the use of an weighted average

instead of a "normal" average.

At last, it is important to acknowledge that the monitoring of running

time and memory usage was conducted concurrently with other experi-

ments. Although the metrics were averaged over multiple experiment runs

with varying hyperparameters, they are not completely representative. More-

over, due to resource and time constraints, the experiments could not be

repeated multiple times with identical configurations. As a result, slight

variations in the DER may arise when replicating the experiments.

6.2 Future work

This thesis aimed to conduct experiments on a limited amount of data. Es-

pecially the NFI-FRITS subset, which is very domain-specific and useful as

test set for the police, is quite small in terms of hours of audio. For further

research, an enlarged domain-specific dataset should be compiled, varying

in the number of speakers and languages. This would enable the tuning of

the hyperparameters more specifically, yielding better performance results.

The choice to optimize specific parameters was driven by the anticipation

of achieving the most significant performance enhancement. However, it

should be noted that there are additional parameters that have the poten-

tial to contribute to performance improvement. In addition to fine-tuning

hyperparameters, there is potential benefit in combining multiple optimiza-

tions discussed in this research into a single optimization approach.
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Considering the superior performance of the NeMo model in terms of

DER, it can be valuable to focus on minimizing its resource usage. Explor-

ing strategies to eliminate unnecessary steps or reduce storage requirements

could significantly enhance its speed and optimize memory usage.

This thesis only focuses on the speaker diarization pipelines of PyAn-

note and NeMo, while there are more promising implementations available.

Therefore, future research can explore alternative methods.

A recommendation for the Dutch National Police would be to gain deeper

insights into the number of speakers in general and per audio file type.

This would facilitate further fine-tuning of the pipelines and the possibil-

ity of adapting a combination of models for domain-specific data. Given

the prevalence of single-speaker audio files in police data, it is worth inves-

tigating whether these files would specifically benefit from separate config-

urations.
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Appendix A

Table 7.1: PyAnnote with adjusted hyperparameters on NFI-FRITS. The 3 con-
figurations with the lowest DER are marked in green, the 3 highest are marked
in red and the default values are marked in yellow. A lower DER is better.

.

Begin of Table

Method Segmentation threshold Clustering threshold DER

average 0.30 0.50 0.524

average 0.30 0.55 0.487

average 0.30 0.60 0.438

average 0.30 0.65 0.417

average 0.30 0.70 0.423

average 0.30 0.75 0.437

average 0.35 0.50 0.499

average 0.35 0.55 0.455

average 0.35 0.60 0.415

average 0.35 0.65 0.394

average 0.35 0.70 0.394

average 0.35 0.75 0.418

average 0.40 0.50 0.485

average 0.40 0.55 0.441

average 0.40 0.60 0.399

average 0.40 0.65 0.375

average 0.40 0.70 0.377

average 0.40 0.75 0.396

average 0.45 0.50 0.471

average 0.45 0.55 0.421

average 0.45 0.60 0.386

average 0.45 0.65 0.369

average 0.45 0.70 0.362

average 0.45 0.75 0.386

average 0.50 0.50 0.461
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Continuation of Table 7.1

Method Segmentation threshold Clustering threshold DER

average 0.50 0.55 0.414

average 0.50 0.60 0.372

average 0.50 0.65 0.355

average 0.50 0.70 0.354

average 0.50 0.75 0.382

average 0.55 0.50 0.452

average 0.55 0.55 0.404

average 0.55 0.60 0.365

average 0.55 0.65 0.348

average 0.55 0.70 0.353

average 0.55 0.75 0.377

average 0.60 0.50 0.448

average 0.60 0.55 0.398

average 0.60 0.60 0.357

average 0.60 0.65 0.342

average 0.60 0.70 0.345

average 0.60 0.75 0.375

centroid 0.30 0.50 0.533

centroid 0.30 0.55 0.531

centroid 0.30 0.60 0.509

centroid 0.30 0.65 0.477

centroid 0.30 0.70 0.460

centroid 0.30 0.75 0.492

centroid 0.35 0.50 0.521

centroid 0.35 0.55 0.519

centroid 0.35 0.60 0.498

centroid 0.35 0.65 0.466

centroid 0.35 0.70 0.441

centroid 0.35 0.75 0.476

centroid 0.40 0.50 0.513

centroid 0.40 0.55 0.510

centroid 0.40 0.60 0.489

centroid 0.40 0.65 0.454
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Continuation of Table 7.1

Method Segmentation threshold Clustering threshold DER

centroid 0.40 0.70 0.431

centroid 0.40 0.75 0.464

centroid 0.444 0.715 0.432

centroid 0.45 0.50 0.506

centroid 0.45 0.55 0.502

centroid 0.45 0.60 0.481

centroid 0.45 0.65 0.446

centroid 0.45 0.70 0.420

centroid 0.45 0.75 0.455

centroid 0.50 0.50 0.498

centroid 0.50 0.55 0.494

centroid 0.50 0.60 0.475

centroid 0.50 0.65 0.441

centroid 0.50 0.70 0.418

centroid 0.50 0.75 0.442

centroid 0.55 0.50 0.494

centroid 0.55 0.55 0.490

centroid 0.55 0.60 0.465

centroid 0.55 0.65 0.435

centroid 0.55 0.70 0.414

centroid 0.55 0.75 0.440

centroid 0.60 0.50 0.491

centroid 0.60 0.55 0.483

centroid 0.60 0.60 0.458

centroid 0.60 0.65 0.428

centroid 0.60 0.70 0.409

centroid 0.60 0.75 0.438
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Table 7.2: PyAnnote with adjusted hyperparameters on VoxConverse. The
3 configurations with the lowest DER are marked in green, the 3 highest are
marked in red and the default values are marked in yellow. A lower DER is
better.

.

Begin of Table

Method Segmentation threshold Clustering threshold DER

average 0.30 0.50 0.249

average 0.30 0.55 0.186

average 0.30 0.60 0.153

average 0.30 0.65 0.137

average 0.30 0.70 0.127

average 0.30 0.75 0.126

average 0.35 0.50 0.246

average 0.35 0.55 0.181

average 0.35 0.60 0.148

average 0.35 0.65 0.132

average 0.35 0.70 0.124

average 0.35 0.75 0.120

average 0.40 0.50 0.239

average 0.40 0.55 0.178

average 0.40 0.60 0.149

average 0.40 0.65 0.129

average 0.40 0.70 0.120

average 0.40 0.75 0.118

average 0.45 0.50 0.239

average 0.45 0.55 0.174

average 0.45 0.60 0.144

average 0.45 0.65 0.125

average 0.45 0.70 0.117

average 0.45 0.75 0.115

average 0.50 0.50 0.232
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Continuation of Table 7.2

Method Segmentation threshold Clustering threshold DER

average 0.50 0.55 0.171

average 0.50 0.60 0.142

average 0.50 0.65 0.122

average 0.50 0.70 0.113

average 0.50 0.75 0.114

average 0.55 0.50 0.233

average 0.55 0.55 0.170

average 0.55 0.60 0.140

average 0.55 0.65 0.120

average 0.55 0.70 0.113

average 0.55 0.75 0.113

average 0.60 0.50 0.232

average 0.60 0.55 0.168

average 0.60 0.60 0.139

average 0.60 0.65 0.119

average 0.60 0.70 0.112

average 0.60 0.75 0.111

centroid 0.30 0.50 0.443

centroid 0.30 0.55 0.348

centroid 0.30 0.60 0.228

centroid 0.30 0.65 0.163

centroid 0.30 0.70 0.132

centroid 0.30 0.75 0.129

centroid 0.35 0.50 0.434

centroid 0.35 0.55 0.349

centroid 0.35 0.60 0.222

centroid 0.35 0.65 0.162

centroid 0.35 0.70 0.130

centroid 0.35 0.75 0.127

centroid 0.40 0.50 0.432

centroid 0.40 0.55 0.349

centroid 0.40 0.60 0.220

centroid 0.40 0.65 0.161
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Continuation of Table 7.2

Method Segmentation threshold Clustering threshold DER

centroid 0.40 0.70 0.126

centroid 0.40 0.75 0.125

centroid 0.444 0.715 0.125

centroid 0.45 0.50 0.434

centroid 0.45 0.55 0.342

centroid 0.45 0.60 0.215

centroid 0.45 0.65 0.159

centroid 0.45 0.70 0.126

centroid 0.45 0.75 0.123

centroid 0.50 0.50 0.434

centroid 0.50 0.55 0.345

centroid 0.50 0.60 0.213

centroid 0.50 0.65 0.154

centroid 0.50 0.70 0.123

centroid 0.50 0.75 0.117

centroid 0.55 0.50 0.434

centroid 0.55 0.55 0.347

centroid 0.55 0.60 0.215

centroid 0.55 0.65 0.152

centroid 0.55 0.70 0.123

centroid 0.55 0.75 0.115

centroid 0.60 0.50 0.433

centroid 0.60 0.55 0.344

centroid 0.60 0.60 0.211

centroid 0.60 0.65 0.154

centroid 0.60 0.70 0.121

centroid 0.60 0.75 0.117

End of Table
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