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Abstract 
 

 
This study explores the use of XGBoost and Random Forest machine learning algorithms for predicting 
cash flow using transaction data from small and medium-sized enterprises (SMEs). The research aimed 
to identify performance differences between the two algorithms and assess their feasibility for practical 
use by accountants in their daily operations. While both algorithms showed potential, the Random Forest 
model marginally outperformed XGBoost, but the performance varied depending on the training data 
used. Despite XGBoost exhibiting a faster model training process, neither model yielded predictions 
reliable enough for practical use by accountants, with an average error rate of approximately 101.94% 
of the target variable's average magnitude. The complex nature of company's transactions and the 
limitations in the dataset used could have contributed to this low performance. This research contributes 
new insights to the domain of cash flow prediction, highlighting the need for more accurate and reliable 
machine learning models for this purpose and suggesting a potential path for further research to explore 
other models and incorporate additional company-related features. However, a more critical aspect to 
address would be the enhancement of data quality and the identification of clearer patterns within the 
dataset, as these factors significantly influence the predictive performance. These findings can guide 
future investigations and efforts in not only improving cash flow predictions for SME, but also 
advancing the broader field of time series forecasting. 
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1. Introduction  

1.1 Introduction 

Could machine learning algorithms, such as XGBoost and Random Forest, represent a new frontier in 
improving the precision of cash flow predictions, thereby offering accountants and finance controllers 
better insights into a company's financial future? 
Cash flows are critical financial indicators that are derived from a company's operating, investing, and 
financing activities, signifying the inflow and outflow of cash in a business (Needles et al., 1999). The 
available cash in a company's coffers can significantly fluctuate over time due to the company's payment 
and collection cycles. 
 
An accurate cash flow estimation empowers accountants and finance controllers to make vital financial 
decisions that can ultimately dictate the survival of a business. In addition to understanding the current 
cash flow situation, businesses also require reliable predictions of future cash flows within a specified 
time frame. These predictive insights assist accountants and financial managers in making informed 
decisions, such as ensuring continuous operations by facilitating complete and timely payments of 
necessary operational capital. The ability to predict cash flow is not only integral to business decision-
making, but also pivotal for potential lenders. Understanding a company's cash flow status enables them 
to adhere to sound lending principles, mitigating risks associated with bad loans (Fight, 2005). In sum, 
cash flow estimation and prediction are indispensable tools for financial stability and strategic planning. 
 
Financial forecasting has a long history. In 1966, Beaver used financial ratios to predict business distress, 
analyzing successful and failed firms (Beaver, 1966). Since then, researchers have built models to 
predict a company's financial health, using techniques like (S)ARIMA, neural networks, and other 
machine learning methods. These methods are explored in Section 1.2, which provides a review of 
studies predicting companies' cash flow and their financial situation. However, few studies use 
transactional data for forecasting time-series cash flow data, likely because companies do not want to 
share sensitive transactional data (Malkus & Nalepa , 2023). While some research uses machine learning 
for cash flow prediction, no studies specifically use XGBoost and Random Forest to predict company 
liquidity using transactional data. This study area remains unexplored. 
 
In this study, a comparison of the two models is conducted. The selection of XGBoost and Random 
Forest algorithms for this study is motivated by their ensemble learning approach, which leverages 
multiple decision trees to make accurate predictions, and their adaptability to handle complex datasets 
(Chen & Guestrin, 2016) (Breiman, 2001). However, the methodologies employed by these two 
algorithms to construct and combine multiple models diverge significantly. The difference is that 
Random Forest builds each tree independently (Breiman, 2001), while XGBoost builds one tree at a 
time, learning from the mistakes of the previous tree (Chen & Guestrin, 2016). In short, one is utilizing 
boosting and the other is employing bagging, making it interesting to compare them on their 
performance. Additionally, the two models, XGBoost and Random Forest, were specifically selected 
for this study to test their effectiveness on tasks they are not traditionally used for, such as time series 
forecasting. 
 
The performance and robustness of the two machine learning models XGBoost and Random Forest are 
compared in this study by conducting a series of experiments using a time series dataset from almost 
500 small and medium-sized businesses (SMEs) from the Netherlands. Companies from diverse 
industries, such as home care and repair, landscaping, and finance, are featured in the dataset. This 
diverse and extensive dataset provides a practical basis for the study, thereby enriching the relevance 
and impact of the results on financial advisory services.  
 
This study significantly contributes to the existing literature, offering new perspectives on algorithmic 
liquidity predictions utilizing transaction data from SMEs. The findings provide fresh insights that can 
enhance understanding and practice in the area of cash flow forecasting and liquidity management. 
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1.2 Related work  

Research into financial forecasting is not a new phenomenon. The first research, dating back more than 
half a century ago, used financial ratios to predict failure. After this paper, many other papers followed 
to predict the financial situation of a company. However, specific research on cash flow predictions 
using machine learning and transactional data is limited. In this Section, the history and the current 
techniques of financial forecasting are discussed.  
 
1.1.1 Where it all began  
In 1966, research was conducted on financial ratios as predictors of failure. The study provided evidence 
that certain financial ratios can predict corporate bankruptcy by using a dichotomous classification test. 
According to the study, the most significant predictors were the cash flow to total debt ratio and the net 
income to total assets ratio (Beaver, 1966). In 1968, Altman conducted similar research to Beaver but 
used a discriminant analysis to rank companies based on a weighted combination of five ratios. His 
model had an accuracy of 95% in selecting future bankrupts in the year prior to bankruptcy. However, 
the predictive accuracy declined strongly when predicting more than a year prior to bankruptcy (Altman, 
1968).  
 
Over time, researchers tried to improve bankruptcy forecasting models. In 1980, a model to evaluate the 
probability of bankruptcy was developed by Ohlson based on logistic regression analysis (Ohlson, 
1980). In a study that compared Ohlson’s model and Altman’s model (both original and re-estimated 
models), the researchers concluded that Ohlson’s original model had the strongest overall performance 
(Begley et al., 1996). Lorek and Willinger (1996) provided evidence on the time-series properties and 
predictive ability of cash flow. These studies conducted, in some cases more than half a century ago, 
form the foundation of modern financial prediction models. 

 
1.1.2 Modern predicting models  
This research focuses on predicting cash flow using machine learning techniques. Machine learning 
refers to a collection of techniques that can autonomously identify trends within data sets, learn from 
these patterns, and use this learning to make predictions or decisions. The discerned patterns are then 
employed for forecasting future data or making decisions in situations characterized by uncertainty 
(Murphy, 2014). 
 
One notable study by Weytjens et al., 2021, paralleled this research by comparing different machine 
learning techniques for cash flow prediction. They used a large dataset comprising over 700,000 invoices 
per year. They concluded that the cash flows in the dataset had a strong weekly pattern that enabled 
them to predict the cash flows well. Also, they introduced Interest Opportunity Cost (IOC), a measure 
proposed to minimize a firm's money lying idle in customer payments' bank accounts, thereby 
facilitating transfer to interest-earning savings accounts or reducing the firm's working capital. It also 
seeks to avoid overdraft situations, accounting for the opportunity cost difference between debit and 
credit interest rates. By using the IOC, MSE, and MAE, they concluded that neural networks, especially 
LSTM, outperformed traditional forecasting methods like Prophet and ARIMA. However, the results 
showed that the different models are also very useful to forecast cash flows.  
 
Other studies, like Dairu & Shilong (2021) and Paliari et al., (2021), have utilized XGBoost for 
forecasting in different (time series) contexts, like sales forecasting and stock market prediction, and 
reported positive results. Research by Salas-Molina et al., 2016, and Catal et al., 2019, showcased the 
effectiveness of Random Forest in time series predictions and sales forecasting, respectively. 
 
Building on the existing body of knowledge, this research aims to fill the gap in the literature by 
providing a focused examination of XGBoost and Random Forest for cash flow prediction using 
transactional data. Although machine learning techniques have been tested in various forecasting 
scenarios, their application to cash flow prediction, particularly with time series transactional data is less 
explored. Therefore, this research will contribute novel insights to the field of algorithmic liquidity 
predictions. 
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2. Preliminaries  
 
In this Section, an understanding of the operations of XGBoost and Random Forest is provided. Both 
belong to a family of models referred to as ensemble methods, yet they each employ different techniques. 
XGBoost utilizes a boosting approach, while Random Forest adopts a bagging strategy. The selection 
of these two models, Random Forest and XGBoost, for this investigation was based on two main 
reasons. Firstly, both models are capable of handling complex non-linear relationships. Secondly, the 
models could measure the significance of distinct features, offering valuable insights into the dataset. 

2.1 XGBoost  

XGBoost stands out as a high-performing supervised learning algorithm, distinguished as a prime 
example of gradient boosting machines. Frequently utilized by data scientists, this boosting system 
provides remarkable results in various machine learning tasks. The essence of XGBoost lies in the 
concept of gradient boosting, where each new model is trained to correct the errors made by previous 
ones (Chen & Guestrin, 2016). Figure 1 demonstrates the XGBoost model's basic setup, showcasing its 
key components and flow of operations, which collectively provide a clear overview of its structure and 
functionality. 
 

Figure 1 General Architecture XGBoost Model  

 
 
The model works as follows:  
If, for instance, we have for example a dataset DS with m features and an n number of examples: 
D = {(xi, yi)} (|D| = n, xi ∈ R m, yi ∈ R) 
 
Let ŷi be the predicted output of an ensemble tree model generated from the following equations: 

Å ·!= 𝜙(x!) = )f"(x!), f" ∈ ℱ
#

"$%

 

 
To solve the equation above, we must find the optimal collection of functions, denoted by fk (where k 
is a specific tree in a model consisting of K trees), by minimizing both the loss and regularization 
objectives. 

ℒ(𝜙) =)l/y!, Å ·!1
!

+)Ω(f")
"

 

 
The difference between the anticipated output I and the actual output yi is represented by the loss 
function, which is denoted by the letter l. The loss function measures the difference between the expected 
output and the actual output, yi. This not only helps in preventing overfitting of the model but also 
provides a measure of the model's complexity. 
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In the equation above, T stands for the number of leaves on the tree, and w for each leaf's weight. 
Boosting is a technique used in decision trees to minimize the objective function, and it works by 
continuously adding new functions while the model is trained. Thus, in the t-th iteration, the following 
new function (tree) is added: 
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One advantage of XGBoost over traditional gradient boosting is its inclusion of a regularization 
parameter, which controls model complexity and helps prevent overfitting. This makes XGBoost more 
robust to noise and able to handle more complex patterns. The model can also handle missing values 
and can make use of parallel processing, which makes the processing time faster.  
 
In the context of this study, XGBoost will take the features such as transaction date, classification code, 
division, sector code, company size code, business type code, state, year, and month, and use a gradient 
boosting framework to iteratively learn from the errors of prior models to make predictions about the 
monthly_total. It will treat these as inputs into a series of decision trees that are built in sequence, where 
each subsequent tree aims to correct the misclassifications made by the previous tree. In the upcoming 
Section 3, the specific features are clarified.  
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2.2 Random Forest 

While XGBoost builds an ensemble of shallow and weak successive trees with each correcting the errors 
of the previous ones, random forest builds an ensemble of deep independent trees. 
 
Introduced by Breiman in 2001, Random Forest is an ensemble machine learning algorithm that uses a 
collection of decision trees. The construction of these decision trees is governed by two key techniques: 
Bagging and the Random Subspace Method. 
 

1. Bagging: Random Forest applies a technique known as bootstrap aggregating, or bagging, 
which reduces the variance in predictions. This technique involves generating different subsets 
of the original dataset (with replacement), each of which is used to train a separate decision tree. 
This creates a "forest" of different trees. 
 

2. Random Subspace Method: To further enhance the model's robustness, Random Forest applies 
the Random Subspace Method during the tree construction phase. Instead of considering all 
features for each split in the decision tree, a random subset of features is selected. This additional 
layer of randomness helps create more diverse trees, reducing the correlation between them and 
thus the model's overall variance. 

 
3. Out-of-Bag (OOB) Error Estimate: The bagging procedure in Random Forest introduces an 

interesting property called the Out-of-Bag (OOB) error estimate. This error is calculated by 
averaging the prediction errors of each training instance xᵢ, using only the trees that did not have 
xᵢ in their bootstrap sample. The OOB error provides a useful internal error estimate of the 
model, often eliminating the need for a separate validation dataset. 

 
4. Prediction: When making a prediction, each tree in the Random Forest gives its own prediction. 

For regression tasks, the model's final output is the average prediction across all trees. For 
classification tasks, the class that receives the majority of votes across all trees is selected as the 
final output. In this paper, the average prediction across all trees will be calculated since it is a 
regression task.  

 
In Figure 2, the overall architecture of the Random Forest model is presented. The diagram visualizes 
the key components and the workflow of the model, providing a comprehensive overview of its structure 
and function. 

Figure 2 General Architecture Random Forest Model  

 
 
In this study, the Random Forest model uses features like transaction date, classification code to create 
a multitude of decision trees. Each tree is trained on a random subset of the data, and at each node, a 
random subset of features is used for splitting. The final prediction of 'monthly_total' is the average 
across all trees, providing a balanced and robust prediction. 
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3. The Data 

3.1 An overview of the data 

In this study, the performance of two machine learning models, XGBoost and Random Forest, is 
rigorously evaluated using a large transactional dataset from a Dutch accounting firm. The choice of this 
dataset stems from the prevalent issue in many accounting firms, which despite technological 
advancements, still heavily rely on manual methods for cash flow forecasting. As these firms scale up, 
such manual processes can become not only time-consuming but also expensive. By leveraging the large 
amounts of historical transaction data via machine learning models, there lies potential to automate 
forecasting systems, significantly reducing time, cost, and enhancing operational efficiency. 
 
This particular dataset is substantial, encompassing nearly 7 million rows, allowing for a robust and 
meaningful evaluation of the models. Using such a large dataset mimics real-world situations where 
dealing with big data is common, and thus provides a solid foundation for assessing the performance 
and robustness of these models. Moreover, both XGBoost and Random Forest excel at modeling 
complex, non-linear relationships, which are often inherent in large transactional datasets. This makes 
them appropriate selections for this evaluation. 
This dataset, anonymized for privacy, represents the historical transactions of roughly 500 Dutch 
companies. The span of data reaches back a decade, beginning in 2010 and extending to the current day. 
The features required for the models have been carefully selected, and after retrieving the data using 
SQL queries, the following columns remain: 
 

- Transaction_date: A standardized date format (YYYY-MM-DD) capturing the timing of each 
transaction from January 1, 2010, to March 1, 2023. 

 
- Classification_code: An RCSFI Code, representing the categorization of transactions based on 

the General Ledger Schemes (RCSFI) framework. 
 

- Division: A unique identifier assigned to each company within the dataset, allowing us to 
distinguish and analyze individual entities. 

 
- Sector_code: An identifier specifying the sector to which each company belongs, providing 

valuable insights into industry-specific trends and patterns. 
 
- Company_size_code: A code indicating the size of each company, allowing us to investigate 

potential variations based on company size. 
 

- Business_type_code: A code representing the type of business conducted by each company, 
providing additional context for our analysis. 

 
- State: The origin state of the company 
 
- Monthly_total: The total costs or income recorded per month, serving as a key variable for 

forecasting and analysis. 
 
The Reference Classification System of Financial Information (RSCFI), also known in Dutch as 
"Referentie GrootboekSchema" (RGS), is a standardized system designed for enhancing the automation 
and integration of administrative activities. Each general ledger account is associated with an RSCFI 
code, which is also tied to Standard Business Reporting (SBR). In this study, a subset of these codes is 
selected for cash flow prediction, including BEiv, Wafs, WBed, WBel, WFbe, WKpr, WOmz, WOvb, 
WOvt, WPer, and WRed. These codes embody key financial components of a company, including 
personnel expenses, total revenue, taxes, and depreciation, among others. A description of the RSCFI 
codes can be found in Appendix I. 
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3.2 Data preparation   

The dataset for this study was obtained from an accounting firm's database. Utilizing SQL to query data, 
an initial feature selection was conducted to remove features not pertinent to this study. The original 
dataset contained 6,863,336 rows and 15 columns. However, during the data preprocessing stage, several 
key decisions were made to refine the data for the predictive models. 
 

- Columns Elimination: Irrelevant columns were removed from the dataset to reduce the 
dimensionality and improve the computational efficiency of the models. Especially columns 
including descriptions of the data were removed.  
 

- Handling Missing Values: Rows with 'division' as NA were eliminated. For other variables 
with NA values, new categories were created to maintain the integrity of the dataset without 
excluding valuable data. While XGBoost and Random Forest are capable of handling missing 
values, new categories were created for these NA values to maintain the integrity and 
completeness of the dataset. 
 

- RCSFI Codes: RCSFI codes were shortened to four characters, reducing the complexity of the 
dataset. Non-relevant RCSFI codes were also removed for the same reason. These include codes 
that do not contribute to the determination of the cash flow. 

 
- Data Aggregation: Data was grouped by month, RCSFI code, and company. The decision to 

group data by monthly simplifies the dataset, providing a fixed set of data points for each month 
rather than variable daily values. This approach not only makes the data more manageable, but 
also aligns well with the study's goal of forecasting the cash flow situation on a month-by-month 
basis. 

 
- Feature Scaling: The 'monthly_total' column was standardized using the scale function. This 

process, which involves subtracting the mean and dividing by the standard deviation, makes it 
easier to compare the models on their performance.  

 
- Time Frame: Rows with a 'transaction_date' earlier than 2016-01-01 were removed to focus 

the study on recent data, which is likely more relevant to future predictions. The number of 
divisions prior to 2016 was also relatively low. 

 
- Outlier Removal: Outliers can influence a model's performance negatively. Therefore, data 

points below the 2.5th percentile minus 1.5 times the interquartile range (IQR) or above the 
97.5th percentile plus 1.5 times the IQR were identified as outliers and removed. In this dataset, 
the outliers were extremely large transactions.  

 
- Feature Engineering: Additional 'month' and 'year' columns were derived from the 

'transaction_date' column. This process enhances the data's dimensional richness and allows the 
models to capture potential seasonal or annual trends in the transaction data. 

 
Table 1 illustrates examples of three full transactions including the features that are used. 
 

Transaction_date Classification_ 
code 

Division Sector_code Company_ 
size_code 

Business_ 
type code 

State Monthly_total Year Month 

2017-01-04 WOmz 999321 K A 90 UT 0.55352 2017 January 
2020-05-10 WKpr 567423 F H 41 NH -0.65352 2020 May 
2021-05-10 BEiv 192756 M D 41 UT -1.45439 2021 May 

 

Table 1 Full transactions example 
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4. Experiments  
 
In this Section, the two models are evaluated by conducting several experiments. The purpose of the 
experiments is to assess the robustness and effectiveness of the models in different circumstances. The 
performance of the models is expressed in terms of RMSE and MAE. Seven different main experiments 
are conducted, each of which also has sub-experiments. After these experiments, the model is tested on 
practical operation to see if it can assist accountants.  Firstly, the performance indicators are clarified. 
Secondly, the seven experiments are conducted and discussed. Lastly, the model is tested for its 
applicability to accountants. 

4.1 Performance Indicators  

The presented models are evaluated based on their errors. The comparison facilitates the identification 
of the best-performing model, which will subsequently serve as the foundation for developing the most 
accurate cash flow forecaster in this research. Specifically, two performance indicators, Root Mean 
Squared Error (RMSE) and Mean Absolute Error (MAE), are compared. These metrics were chosen as 
they are widely used in similar predictive modeling studies for their interpretability and effectiveness at 
capturing model performance. This approach aligns with similar research, such as the study by Weytjens 
et al., (2021), which used Mean Squared Error (MSE) and MAE. However, this study used RMSE over 
MSE due to its enhanced interpretability, as it is expressed in the same units as the original data, thus 
providing a clearer understanding of the model's error. 
 
Root Mean Squared Error (RMSE): A widely used indicator for assessing how well a model predicts 
the future. It determines the differences between actual and predicted values, also referred to as residuals. 
This metric evaluates the predictive errors of various models on a particular dataset, instead of making 
comparisons across multiple datasets. 
The RMSE can be calculated by using the following formula:  
 

𝑅𝑀𝑆𝐸 = JK (𝑦M/ − 𝑦/)&
5
/$%

𝑛
 

 
The Mean Absolute Error (MAE): By taking the average of absolute differences between the predicted 
and actual values, provides a clear and robust measure of the model's prediction error, less sensitive to 
the influence of potential outliers. It delivers an easily comprehensible metric, expressing the average 
error in the same units as the original data. 
 

𝑀𝐴𝐸 =	
1
𝑛
	)Q𝑦/ − 𝑌/&Q
5

/$%

 

 
By leveraging both Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) in conjunction, 
this study ensures a comprehensive assessment of the model's performance. It takes into account both 
the average error magnitude, as measured by MAE, and the distribution of error magnitudes, as captured 
by RMSE. This dual-metric approach allows for a more nuanced evaluation and comparison of the 
predictive models under investigation in this study. 
 
In Section 4.2.3, the RMSE as a percentage of the mean absolute is calculated. This percentage provides 
an understanding of the relative size of the RMSE in relation to the average value of the data. The 
formula that is utilized is: 
 

𝑅𝑀𝑆𝐸	𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = ((
𝑅𝑀𝑆𝐸
𝑀𝐴

) ∗ 100) 
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4.2  The Experiments  

4.2.1 The Experimental Setup  
The experiments to assess the robustness and effectiveness of the two models in different circumstances 
are conducted utilizing the transactional dataset which is clarified in Section 3. At first, default models 
are created utilizing default hyperparameters provided by the used package. In Appendix III, the default 
parameters that are used for building the models are listed and in Appendix II, the results of the 
experiments are given. The experiments that follow are meant to evaluate and compare the robustness 
of the default models. In Section 4.2.2, the results of the experiments are discussed. The models to 
conduct the experiments were built using the xgboost and randomForest packages. The training set for 
the default model contains data from 2016-01-01 till 2022-01-01.  
 
The XGBoost model, trained with default parameters, produced an RMSE of 0.5906 and an MAE of 
0.3503 on the test set. This resulted in an RMSE accounting for 101.83% of the absolute mean of the 
test set. The training time for the XGBoost model was 23.24 seconds. 
 
On the other hand, the Random Forest model, also trained with default parameters and 100 trees, resulted 
in an RMSE of 0.578 and an MAE of 0.338 on the test set. The RMSE represented 99.66% of the 
absolute mean of the test set, indicating a slightly better fit to the test data compared to the XGBoost 
model. However, the training time was considerably longer, taking 12.53 minutes. 
 
Once the performance of the default models was determined, the study further employed these models 
in a series of seven distinct experiments. The default models' performance, specifically in terms of their 
Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), was used as a benchmark for 
comparison and analysis of the results obtained from these subsequent experiments.  
 
The comparative visualization of the RMSE and MAE for XGBoost and Random Forest is presented in 
Figure 3. Despite the longer training duration required, the Random Forest model demonstrated 
marginally superior performance in terms of the RMSE, attributed to its density more closely mirroring 
the actual density. 
 

 
Figure 3 Density plot Actual vs. Predicted values 

 
 
Feature Performance  
In Appendix IV, the feature importance matrices for both models can be found. For the Random Forest 
model, the most determinant factor is the RCSFI Code of the transaction, followed by the division and 
sector. On the contrary, the XGBoost model places greater emphasis on the division as the most 
influential feature, succeeded by the RCSFI code 'WKpr'. 
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4.2.2 The Experiments 
Experiment 1: Examining Performance Improvement through Hyperparameter Optimization 
To optimize the hyperparameters, the Bayesian optimization technique is applied to both models. 
Bayesian optimization is a powerful technique for finding the extrema of functions that are 
computationally demanding (Brochu et al., 2010). This optimization technique carries the advantage of 
operating at a relatively swift pace. The optimal parameters to use according to the Bayesian 
optimization approach for both models can be found in Appendix III. The objective was to optimize the 
models in order to enhance their performance. 
 
When comparing the optimized models with the default models, it is evident that the Bayesian 
optimization had a positive impact on both models' performances. There was a notable improvement in 
both the RMSE and MAE for the XGBoost and Random Forest models. Table 2 includes the results of 
the experiment. These results indicate that applying hyperparameter tuning techniques like Bayesian 
optimization can improve the performance of the models. This results in better financial forecasting and 
more informed decision-making for accountants, given the reduction in prediction error rates. 
 

Table 2 Results Experiment 1 

Experiment 1 Optimized  XGBoost (MAE, 
RMSE) 

Random Forest 
(MAE, RMSE) 

Default model No MAE: 0.3503 
RMSE: 0.5906 

MAE: 0.338 
RMSE: 0.578 

Experiment 1.1 Yes MAE: 0.333 
RMSE: 0.5636 

MAE: 0.306 
RMSE: 0.5396 

 
Experiment 2: Time Series Flexibility Assessment 
In experiment 2, the performance of the two models over different time frames is examined. After every 
experiment, the training period is extended, and the test data is shifted by one year. These experiments 
provide insights into how the models adapt and perform with the alteration in training and testing 
datasets over time. Also, this helps to in understanding how well the model would perform on unseen 
future data while respecting the chronological order of the data. Assumed was that the performance of 
the models declines when the amount of training data available is limited. 
 
As can be seen in Figure 4, the RMSE and MAE improve slightly when adding more years to the training 
set. However, after adding two years, the performance stabilizes, indicating that further expansion of 
the training set does not significantly enhance the predictive performance of the models. Both models 
demonstrate relatively stable performance as the training data expands. However, the Random Forest 
model appears to be more stable than XGBoost, with less fluctuation in its RMSE and MAE values. 
Also, the relatively stable performance as more data is added might suggest that overfitting is not a 
major issue in these models. If overfitting were present, a decrease in performance would be expected 
as more data is added. In short, using more historical data can improve the models' performance, but it 
does not guarantee better results, especially for XGBoost. 
 

 
Figure 4  Bar chart of RMSE and MAE Experiment 2 
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Experiment 3: Sliding Window Robustness Test 
In this experiment, the rolling window analysis is introduced and conducted. The goal of this experiment 
is to address potential temporal dynamics and evaluate the robustness of the predictive models under 
changing conditions over time. Different then experiment 2, the training set shifts ahead by one year for 
each iteration, maintaining a constant size while focusing on more recent data. It was initially expected 
that the performance would improve as the training and testing sets became more recent, considering 
that with each passing year, more divisions are added to the dataset, thereby increasing the number of 
data points. 
 
From the data presented in Figure 5, it's apparent that the performance of both XGBoost and Random 
Forest models, as assessed by Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) 
metrics, is at its lowest in Experiment 3.1. In this experiment, the models are trained with data from 
2016. The reason for this could be that there were fewer datapoints in 2016 since there were fewer 
divisions. As subsequent experiments were conducted, the performance of the models stabilized and 
showed improved results. In general, Random Forest outperforms XGBoost in terms of both RMSE and 
MAE metrics for most of the years tested. This suggests that the Random Forest model may be better 
suited to handling this specific dataset's temporal dynamics, even if the differences are small.  
 
 

 
Figure 5  Bar chart of RMSE and MAE Experiment 3 
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Experiment 4: Scalability Evaluation with Decreased Data Points 
To assess the adaptability and stability of the models under different conditions, this experiment 
systematically altered the number of divisions involved. Initial testing was conducted with half of the 
total divisions, delivering an initial evaluation of the model's performance. Following this, the 
experiment further reduced the divisions to 25% of the total, providing a stringent test of the models' 
ability to maintain accuracy and reliability in the face of substantial data reduction. This is insightful 
when considering the use of these models in scenarios where data is limited. 
 
Table 3 includes the results of the experiments. The performance of Random Forest improves slightly 
after reducing the number of divisions in the dataset. The performance of XGBoost decreases by a 
reduction of 50% and increases when reducing the number of divisions by 75%. One reason for better 
performance when reducing the number of divisions for Random Forest might be due to the reduction 
in overfitting or noise, as having fewer divisions can sometimes help to improve the model's ability to 
generalize. The performance of the XGBoost model shows a more variable response to the change in 
divisions. When the number of divisions in the dataset is reduced by 50%, the performance decreases. 
This could potentially be due to underfitting, as the model might not have enough data to accurately 
learn the underlying patterns. However, when the number of divisions is reduced further by 75%, the 
performance increases. It suggests that at this level of data reduction, the model might be getting an 
optimal balance between bias and variance, leading to improved performance.  
 

Table 3 Results Experiment 4 

Experiment 4 Reduction in 
Divisions 

XGBoost (MAE, 
RMSE) 

Random Forest 
(MAE, RMSE) 

Default model 0% MAE: 0.3503 
RMSE: 0.5906 

MAE: 0.338 
RMSE: 0.578 

Experiment 4.1 50% MAE: 0.348, 
RMSE: 0.61332 

MAE: 0.3267, 
RMSE: 0.5576 

Experiment 4.2 75% MAE: 0.3126 
RMSE: 0.533 

MAE: 0.3194 
RMSE: 0.55370 

 
Experiment 5: Performance Assessment After Integration of Auxiliary Datasets 
In this experiment, the performance of the models is evaluated before and after the inclusion of two 
external datasets. The datasets that are joined to the existing dataset include the consumer confidence of 
Dutch households and the Dutch Consumer Price Index (CPI). These external datasets might provide 
additional context or features that could potentially improve the performance of the models since the 
original dataset could have data limitations. The external dataset may fill in the missing information. 
The two external datasets are retrieved from the statistics Netherlands database Statline. The selected 
datasets were chosen strategically for their unique attributes. Both datasets depict a monthly 
representation of the economic situation in the Netherlands.  
The additional datasets had not much influence on the performance of both models. However, adding 
the CPI dataset resulted in a slightly better performance for XGBoost. This could be because the CPI 
data may contain useful information that the model can leverage to make more accurate predictions. See 
Table 4 for the results of the experiment.  
 

Table 4 Results Experiment 5 

Experiment 5 Dataset  XGBoost  
(MAE, RMSE) 

Random Forest  
(MAE, RMSE) 

Default model - MAE: 0.3503 
RMSE: 0.5906 

MAE: 0.338 
RMSE: 0.578 

Experiment 5.1 Consumer 
Confidence 

MAE: 0.3583, 
RMSE: 0.5956 

MAE: 0.3469 
RMSE: 0.5888 

Experiment 5.2 CPI MAE: 0.3468  
RMSE: 0.5790 

MAE: 0.35182, RMSE: 
0.5935 
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Experiment 6: Outlier Sensitivity Analysis 
To boost model performance and avoid overfitting, outliers from the initial dataset have been removed. 
Particularly, 2.5% of the data's bottom and upper extremes have been eliminated. To evaluate the impact 
of outliers on the performance of the two models, the outliers are reintroduced to the dataset in this 
experiment. Reintroducing the outliers back in the dataset resulted in a decrease in the RMSE and MAE 
for both models, thus improvement of the performance. The nature of the outliers may be the cause of 
this. The outliers might have aided the model in capturing more data variance, which would have 
improved predictions and hence lower error values. For Random Forest the increase in performance is 
smaller than for XGBoost. This suggests that XGBoost benefits more from the inclusion of outliers. The 
experiment demonstrated that reintroducing outliers back into the dataset had a positive effect on the 
performance of both models, resulting in slightly improved performance. 

Table 5 Results Experiment 6 

Experiment 6 Outliers Removed  XGBoost (MAE, 
RMSE) 

Random Forest 
(MAE, RMSE) 

Default model Yes MAE: 0.3503 
RMSE: 0.5906 

MAE: 0.338 
RMSE: 0.578 

Experiment 6.1 No MAE: 0.1085 
RMSE: 0.5096 

MAE: 0.1116 
RMSE: 0.5616 

 
Experiment 7: Assessing Random Forest and XGBoost Model Robustness Against Added Noise 
To expose the models to variations and uncertainties in the data, noise is added to the training and test 
dataset. Noise levels with standard deviations of 0.01, 0.1, 1, and 10 are added to the original data. It 
was expected that the performance of the models would decrease when adding more noise. This 
experiment was conducted to evaluate how sensitive XGBoost, and Random Forest models are to slight 
changes in the data. If the model's performance significantly decreases by adding a small amount of 
noise to the data, the models might not be robust to real-world data. 
 
The RMSE and MAE did not change much after adding 0.01 and 0.1 standard deviations of noise to the 
data compared to the default model. However, when adding 1 or 10 standard deviations of noise to the 
data, the performance of the models decreased strongly. The introduction of noise into the dataset 
complicates the model's task of discerning the inherent patterns or trends, as it must contend with these 
random variations that do not reflect the true nature of the data. However, the models are robust to low 
levels of noise. Figure 6 demonstrates a noticeable decline in both models' performance. It highlights a 
limitation of the two models: their sensitivity to high levels of noise. While they can handle a small 
amount of randomness, large disruptions in the data, that do not correspond to real-world patterns, can 
significantly impair their prediction capabilities. 
 

 
Figure 6 Bar chart of RMSE and MAE Experiment 7 
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4.3 Practical application of the two algorithms  

In Section 4.2.1, a technical analysis of the XGBoost and Random Forest machine learning models has 
been performed. This section shifts focus to the practical applications of these models, particularly 
within the field of accounting. The central objective is to examine how well these models perform in 
real-world settings, with a spotlight on their capacity to predict a company's cash flows. Moreover, this 
analysis investigates the potential of these models to aid accountants and financial controllers in making 
more insightful, strategic decisions. An in-depth investigation of prediction errors across RCSFI codes 
and sectors is carried out in this Section, contributing to a comprehensive evaluation of the practical 
value of these machine learning models. 
 
4.3.1 Default Model  
Upon comparison, the Random Forest model outperformed XGBoost on unscaled data across all sectors 
and RGS codes, with a lower RMSE (3557.33 vs. 3774.98) and MAE (1891.20 vs. 2089.81). These 
findings suggest the superior predictive performance of the Random Forest model in the given context. 
In Figure 7, the relationship between actual and predicted values is presented. Comparing the two plots 
shows only relatively minor differences, suggesting that the models predict quite similar values. When 
translated into monetary terms, the Random Forest model’s predictions deviate from the actual values 
by approximately €3557.33, whereas the XGBoost model deviates by about €3774.98, resulting in a 
difference of around €217.65. 
 
The mean of absolute values of the test set is €3703.06. This means that the RMSE as a percentage of 
the mean absolute target value is 101.94%. In other words, the model's predictions are off by an amount 
that is more than the mean of the absolute target values. A lower percentage of the mean Absolut target 
value means a better-performing model.  
 
 

 
 

Figure 7 Actual vs Predicted values XGBoost and Random Forest 
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4.3.2 Performance by Sector 
It is hypothesized that certain sectors are inherently more challenging to predict due to factors such as 
less regularity in their patterns. Figure 8 illustrates the absolute prediction error, denominated in euros, 
across various sectors, revealing substantial variability. Sectors B, G, N, and R - representing mineral 
resource extraction, wholesale and retail trade, professional scientific and technical activities, and arts, 
entertainment, and recreation, respectively - show the highest prediction errors. The highest prediction 
error is observed in sector B, with a value of €5624 when using the XGBoost model. This means that 
the average difference between the predicted values and the actual values is €5624. However, a high 
prediction error does not necessarily indicate a poor or ineffective model. 
 

 
Figure 8 Absolute RMSE and MAE per sector 

In order to assess the model's efficacy and its potential utility for accountants, the prediction error was 
calculated as a percentage of the absolute mean. This percentage-based error metric provides a more 
normalized basis for evaluating the model's performance. Figure 9 visualizes the RMSE as a percentage 
of the absolute mean, computed using the Random Forest model. Figure 8 indicated sectors B, G, N, 
and R as those with the highest prediction errors. While sectors R and B continue to demonstrate 
relatively high prediction errors, the model's performance for sectors G and N is notably better. The 
model is the most efficient when predicting values for sectors M and K. However, since the average 
RMSE as a percentage of the absolute mean is around 100%, the model's predictions deviate by an 
amount equivalent to the mean of the actual observed values. 
 

 
Figure 9 RMSE as percentage of Absolute mean by sector (RF) 
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4.3.3 Performance by RCSFI Code 
The operational structure of a company encompasses both fixed and variable expenses. Fixed costs, such 
as depreciation, interest expense, insurance, and often salaries, are generally predictable since they 
remain constant regardless of production volume. Conversely, variable costs and revenues, including 
operating expenses and taxes, fluctuate with business activity levels, making them more challenging to 
predict accurately. 
It is observed in this analysis that the smallest prediction errors arise when forecasting fixed costs such 
as depreciation (WAfs), financial income and expenses (WFbe), and share in the result of associated 
companies (WRed), see Figure 10. Conversely, predicting variable components like revenue (WOmz) 
results in the largest prediction errors, closely followed by taxes (WBel). On average, the predicted value 
for WOmz deviates from the actual value by approximately €6000, while more accurate predictions 
would be beneficial. These findings could suggest the inherent predictability of fixed costs and the 
volatility of variable costs in forecasting models. 
 

 
Figure 10 Absolute RMSE and MAE per RCSFI Code) 

However, the absolute prediction errors do not provide a comprehensive understanding of the model's 
performance. To get a better sense of the model's predictive performance, the RMSE should be 
considered as a percentage of the absolute mean. As indicated in Figure 11, the model shows the greatest 
precision in predicting salaries (WPer) and revenue (WOmz). Conversely, the Random Forest model 
struggles significantly with predicting the share in the result of associated companies (WRed), as 
indicated by an exorbitant 2872.91% RMSE, making accurate predictions nearly impossible. 
  

 
Figure 11 RMSE as percentage of Absolute mean by RCSFI Code (RF) 
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5. Conclusion & Discussion  
 

5.1 Conclusion & Discussion  

This research aimed to identify the differences in performance between XGBoost and Random Forest 
when predicting cash flow using time series transactional data from SMEs. The study also aimed to 
assess whether these predictive models could realistically be employed by accountants in their daily 
operations. In conclusion, this study determined that while the performances of the models are 
comparable, the default Random Forest model marginally outperformed XGBoost. However, in various 
experiments conducted, there were instances where XGBoost outperformed Random Forest. Therefore, 
the performance of one model over another depends on the training data used. One key advantage of 
XGBoost is the accelerated model training process. Random Forest is more than 12 minutes slower 
when training the model than XGBoost. 
 
When it comes to the usability of the model, and in answering the question of whether accountants can 
use machine learning models like XGBoost and Random Forest to predict a company's liquidity with 
this specific dataset, the oversimplified answer is no. Although Random Forest and XGBoost show 
promising performance in certain circumstances, the RMSE of the best default model as a percentage of 
the mean absolute target value was 101.94% using this cash flow time series data. This means that, on 
average, the predictions of the default model have an error that is approximately 101.94% of the average 
magnitude of the target variable. This renders the predictions unreliable for usage by accountants since 
they benefit from more accurate predictions.  
 
Accountants benefit from accurate predictions since they base their budget models for companies on 
these predictions. Since accountants manually predicted the cash flow position of companies, they 
wanted to optimize this process, which led to the request to create a prediction model based on 
transactional data. However, the two models cannot be employed because of their lack of precision. 
Interestingly, in other cases, such as in the study of Weytjens et al., (2021), machine learning predictions 
based on transactional data were useful. This study used a smaller dataset and roughly identical attributes 
to those used in the current analysis. This can be due to the nature of the data. 
 
Two fundamental issues may be to blame for the prediction models' low performance. The first is related 
to the debits and credits of a company. Figure 8 illustrates the income and outcome per RCSFI code of 
the most represented division in the dataset. In the data, it is difficult, if not impossible, to identify a 
distinct pattern for the different RCSFI codes. This could be the result of the debits and credits. For 
instance, if 'WOmz', representing a company's net sales, is received and later needs to be reversed, a 
negative 'WOmz' transaction results. While expected is that net sales are always positive, this is not the 
case in the transactional dataset. If a 'WOmz' transaction has been received and for some reason needs 
to be reversed, a negative 'WOmz' transaction will result. 
 

 
Figure 12 Income and Outcome of one company 
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Secondly, the dataset's limitations may contribute to the issue at hand. The main factors influencing the 
predictive models are the division, the RCSFI code, and the date. The use of other existing features in 
the predictions is minimal. Considering the absence of a significant seasonal pattern in the data, the 
introduction of other features might be necessary to enhance the predictive performance. Although 
additional features are not typically employed in the relevant literature, their datasets generally exhibit 
a greater degree of seasonality. This difference could potentially stem from the varied methods used in 
bookkeeping. In the fifth experiment, despite incorporating two general economic datasets into the 
existing one, there was no observed improvement in performance.  
 
 

5.2 Further Research 

Future research could explore the creation of individualized cash flow prediction models for each 
company, using methods like (S)ARIMA or Prophet. Instead of a singular model that fits all companies, 
this approach allows each company to base their predictions on a model unique to its situation. However, 
this method requires identifiable trends in the data to ensure its success. Hence, further investigation is 
needed to confirm the feasibility and effectiveness of this more personalized approach to cash flow 
prediction. To delve further into this issue, one possible approach is to explore hybrid models that blend 
machine learning models with traditional statistical methods. For example, this could involve coupling 
an ARIMA model, recognized for its effectiveness in time-series analysis, with machine learning models 
like Random Forest or XGBoost. Support for this proposition comes from the compelling research 
conducted by Phan & Nguyen (2020). They successfully integrated ARIMA with machine learning 
models, finding this hybrid approach superior and more reliable than both other hybrid models and 
traditional single-component methods. This affirms the potential value and effectiveness of hybrid 
modeling cash flow prediction, reinforcing its viability as an avenue for future exploration." 
 
Although machine learning offers innovative approaches to cash flow prediction, it is crucial to 
understand and address the specific challenges posed by time series data to improve predictive 
performance. 
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Appendix I – Sector and RCSFI Codes 
 
 
Below, the different sector codes included in the dataset are explained. Each code corresponds to a 
specific industry. Sector T is added for all rows where sector was NA. Sectors E, L and T were not 
included in Section 4.3 due to the insufficient number of data points. 
 
Sector Codes: 
B   Winning of mineral resources 
E    Distribution of water; waste and wastewater management and sanitation 
F    Construction industry 
G    Wholesale and retail trade; repair of motor vehicles and motorcycles 
I    Provision of accommodation and meals. 
J    Information and communication 
K    Financial activities and insurances 
L    Real estate operations and trading 
M    Professional, scientific, and technical activities 
N    Administrative and support services 
P    Education 
Q    Human health and social work activities 
R    Art, entertainment, and recreation 
S    Other services 
T    Unknown 
 
 
There are 11 RCSFI codes used which can be used to calculate the cash flow / working capital. The 
different RCSFI codes are:  
 
RCSFI Codes: 
BEiv   Group equity, Equity capital, Capital 
WAfs    Depreciation 
WBed   Other operating expenses   
WBel   Taxes   
WFbe    Financial income and expenses  
WKpr   Cost of sales  
WOmz    Revenue 
WOvb    Other operating income  
WOvt   Revenue from claims which are fixed assets and from securities.   
WPer   Charges related to employee benefits.   
WRed   Share in the result of associated companies. 
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Appendix II – Experiments 
 
 
Detailed explanations and results of the seven different experiments are provided below. For each 
experiment, both the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) have been 
calculated. In total, seven different main experiments are conducted.  
 
Examining Performance Improvement through Hyperparameter Optimization  
Experiment 1: Hyperparameters are fine-tuned using the Bayesian optimization approach. The results 
are as follows: 

- XGBoost: RMSE = 0.5636, MAE = 0.333 
- Random Forest: RMSE = 0.5396, MAE = 0.306 

 
Time Series Flexibility Assessment 
Experiment 2.1 (Training: Jan 2016-Dec 2016, Testing: Jan 2017-Dec 2017) 

- XGBoost: RMSE = 0.70273, MAE = 0.42274 
- Random Forest: RMSE = 0.6170, MAE = 0.3776 

 
Experiment 2.2 (Training: Jan 2016-Dec 2017, Testing: Jan 2018-Dec 2018) 

- XGBoost: RMSE = 0.64418, MAE = 0.3937 
- Random Forest: RMSE = 0.59606, MAE = 0.3640 

 
Experiment 2.3 (Training: Jan 2016-Dec 2018, Testing: Jan 2019-Dec 2019) 

- XGBoost: RMSE = 0.58348, MAE = 0.34704 
- Random Forest: RMSE = 0.5669, MAE = 0.33564 

 
Experiment 2.4 (Training: Jan 2016-Dec 2019, Testing: Jan 2020-Dec 2020) 

- XGBoost: RMSE = 0.5904, MAE = 0.3469 
- Random Forest: RMSE = 0.56908, MAE = 0.3313 

 
Experiment 2.5 (Training: Jan 2016-Dec 2020, Testing: Jan 2021-Dec 2021) 

- XGBoost: RMSE = 0.5844, MAE = 0.3372 
- Random Forest: RMSE = 0.5685, MAE = 0.32613 

 
Experiment 2.6 (Training: Jan 2016-Dec 2021, Testing: Jan 2022-Dec 2022) 

- XGBoost: RMSE = 0.5910, MAE = 0.3515 
- Random Forest: RMSE = 0.579620, MAE = 0.3398 

 
Sliding Window Robustness Test 
Experiment 3.1 (Training: Jan 2016-Dec 2016, Testing: Jan 2017-Dec 2017) 

- XGBoost: RMSE = 0.7575, MAE = 0.4572 
- Random Forest: RMSE = 0.61696, MAE = 0.3776 

 
Experiment 3.2 (Training: Jan 2017-Dec 2017, Testing: Jan 2018-Dec 2018) 

- XGBoost: RMSE = 0.6859, MAE = 0.413 
- Random Forest: RMSE = 0.605137, MAE = 0.3711 

 
Experiment 3.3 (Training: Jan 2018-Dec 2018, Testing: Jan 2019-Dec 2019) 

- XGBoost: RMSE = 0.6126, MAE = 0.3665 
- Random Forest: RMSE = 0.57272, MAE = 0.3401 

 
Experiment 3.4 (Training: Jan 2019-Dec 2019, Testing: Jan 2020-Dec 2020) 

- XGBoost: RMSE = 0.5570, MAE = 0.3314 
- Random Forest: RMSE = 0.5785, MAE = 0.33949 
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Experiment 3.5 (Training: Jan 2020-Dec 2020, Testing: Jan 2021-Dec 2021) 
- XGBoost: RMSE = 0.6259, MAE = 0.3373 
- Random Forest: RMSE = 0.59149, MAE = 0.341740 

 
Experiment 3.6 (Training: Jan 2021-Dec 2021, Testing: Jan 2022-Dec 2022) 

- XGBoost: RMSE = 0.5581, MAE = 0.335 
- Random Forest: RMSE = 0.5974, MAE = 0.35486 

 
Scalability Evaluation 
Experiment 4.1: Decrease the number of divisions with 50% 

- XGBoost: MAE: 0.348, RMSE: 0.61332 
- Random Forest: MAE: 0.3267, RMSE: 0.5576 

 
Experiment 4.2: Decrease the number of divisions with 75% 

- XGBoost: MAE: 0.3126, RMSE: RMSE: 0.533 
- Random Forest: MAE: 0.3194, RMSE: 0.55370 

 
Auxiliary Dataset Integration 
Experiment 5.1: Adding the consumer confidence dataset.  

- XGBoost: MAE: 0.3583, RMSE: 0.5956 
- Random Forest: MAE: 0.3469, RMSE: 0.5888 

 
Experiment 5.2: Adding the CPI dataset.  

- XGBoost: MAE: 0.3468, RMSE: RMSE: 0.5790 
- Random Forest: MAE: 0.35182, RMSE: 0.5935 

 
Outlier Sensitivity Analysis 
Experiment 6.1: Adding the existing outliers to the data.  

- XGBoost: MAE: 0.1085, RMSE: 0.50958 
- Random Forest: MAE 0.1116, RMSE: 0.5616 

 
Assessing Random Forest and XGBoost Model Robustness Against Added Noise  
Experiment 7.1: Adding Gaussian noise to test and training data (standard deviation = 0.01)  

- XGBoost: MAE: 0.3479, RMSE: 0.5929 
- Random Forest: MAE: 0.3402, 0.57941 

 
Experiment 7.2: Adding Gaussian noise to test and training data (standard deviation = 0.1)  

- XGBoost: MAE: 0.370, RMSE: 0.6014 
- Random Forest: MAE: 0.3577, RMSE: 0.5864 

 
Experiment 7.3: Adding Gaussian noise to test and training data (standard deviation = 1)  

- XGBoost: MAE 0.9318, RMSE: 1.184 
- Random Forest: MAE: 0.907, RMSE: 1.1555 

 
Experiment 7.4: Adding Gaussian noise to test and training data (standard deviation = 10)  

- XGBoost: MAE: 8.272, RMSE: 10.3760 
- Random Forest: 8.1995, 10.2810 
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Appendix III – Parameters  

 
Default Parameters  
The default parameters are used for the seven experiments. On the left side, the parameters after 
optimization are given. The differences are small between the default version and the optimized version.  
 

Default Parameters  After Bayesian Optimization  
Random Forest: 

• ntree=100 
• mtry=sqrt(number of features) 
• replace=TRUE 
• classwt=NULL 
• cutoff=1/(number of classes) 
• strata=NULL 
• sampsize=NULL 
• nodesize=5 
• maxnodes=NULL 
• importance=FALSE 
• localImp=FALSE 
• nPerm=1 

 

Random Forest: 
• ntree=100 
• mtry=3.996979 
• replace=TRUE 
• classwt=NULL 
• cutoff=1/(number of classes) 
• strata=NULL 
• sampsize=NULL 
• nodesize=5 
• maxnodes=NULL 
• importance=FALSE 
• localImp=FALSE 
• nPerm=1 
 

XGBoost: 
• missing=NA 
• nrounds=100 
• objective="reg:squarederror" 
• booster="gbtree" 
• gamma=0 
• max_depth=6 
• min_child_weight=1 
• subsample=1 
• colsample_bytree=1 
• colsample_bylevel=1 
• eta=0.3 
• tree_method="auto" 
• verbosity=1 
• nthread 
• feval 
• maximize 
• early_stopping_rounds 
• eval_metric 
• seed 
• base_score=0.5 
• monotone_constraints 
• interaction_constraints 
• n_jobs=1 
• scale_pos_weight=1 
• validate_parameters 
• predictor="auto" 

 

XGBoost: 
• missing=NA 
• nrounds=23 
• objective="reg:squarederror" 
• booster="gbtree" 
• gamma=0 
• max_depth=10 
• min_child_weight=0.9948652 
• subsample=0.9948652 
• colsample_bytree=1 
• colsample_bylevel=1 
• eta=0.2239748 
• tree_method="auto" 
• verbosity=1 
• nthread 
• feval 
• maximize 
• early_stopping_rounds 
• eval_metric 
• seed 
• base_score=0.5 
• monotone_constraints 
• interaction_constraints 
• n_jobs=1 
• scale_pos_weight=1 
• validate_parameters 
• predictor="auto" 
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Appendix IV – Feature Importance   
 
The feature importance chart of both models is given. The XGBoost chart provides a more detailed 
analysis, while the Random Forest chart offers a broader perspective. For Random Forest, the most 
important feature is classification code or RCSFI code. For XGBoost, this is Division.  
 
Feature Importance – Random Forest 
 

 
 
Feature Importance – XGBoost 
 

 
 



 28 

Appendix V – Performance per Sector and RCSFI Code 
 
The two tables below provide the RMSE and MAE per sector and per RCSFI code. Also, the absolute 
mean and the percentage of Random Forest’s RMSE relative to the absolute mean is given, providing a 
measure of the error that is relative to the scale of the data. This is used in Section 4.3.  
 
Per Sector code  

Sector XGBoost  
(RMSE, MAE) 

Random Forest  
(RMSE, MAE) 

Absolute 
Mean 

% (RF) 

B 5624, 2966 5511, 2846 3889.788 141.68 
C 2852, 1489 3067, 1500 2574.315 119.13 
E 1578, 1050 936, 650 2146.579 43.60 
F 3535, 1957 3405, 1841 3560.564 95.64 
G 5079, 3156 4967, 2968 4909.238 101.18 
I 2189, 1296 2201, 1321 2137.994 102.95 
J 4393, 2458 4218, 2217 4635.416 91.00 
K 2745, 1524 2634, 1328 3168.016 83.17 
L 1164, 918 528, 410 4059.563 13.00 
M 4200, 2469 3636, 2034 4387.077 82.88 
N 5164, 3026 5209, 2953 5351.826 97.33 
P 3041, 1658 2781, 1389 2831.005 98.23 
Q 4801, 2744 4262, 2472 4615.339 92.34 
R 5461, 3030 5025, 2669 3988.825 125.98 
S 3290, 1950 2990, 1588 2740.866 109.09 
T 3153, 1702 3191, 1657 3162.996 100.88 

 
 
 
The RMSE and MAE per RCSFI Code. Also, the absolute mean of the RCSFI code is given to calculate 
the RMSE as a percentage of the absolute mean.  
 
 

RCSFI XGBoost 
(RMSE, MAE) 

Random Forest 
(RMSE, MAE) 

Absolute 
Mean 

% (RF) 

BEiv   3984, 2383 3943, 2354 3665.32 107.57% 
WAfs    929, 441 859, 263 446.17 192.57% 
WBed   2829, 1521 2571, 1296 2176.32 118.13% 
WBel   5130, 4484 5414, 4531 5597.42 96.73% 
WFbe    644, 406 442, 207 344.48 128.34% 
WKpr   4388, 2984 4091, 2783 4407.79 92.81% 
WOmz   6329, 4528 6015, 4242 9531.65 63.10% 
WOvb   2204, 1460 1559, 931 520.00 300.17% 
WOvt   2311, 1178 2109, 887 1194.02 176.65% 
WPer   3164, 1921 2998, 1801 6449.05 46.48% 
WRed   2394, 575 1470, 488 51.16 2872.91% 

 
 
 
 


